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ÁNGEL FERNÁNDEZ GAMBÍN
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Abstract

The massive use of Information and Communications Technology (ICT) is increasing the amount of
energy drained by the telecommunication infrastructure and its footprint on the environment. With
the advent of the smartphone, mobile traffic is massively growing driven by both the rising number
of user subscriptions and an increasing average data volume per subscription. This is putting a lot
of pressure on the mobile network operators side, which are enforced to boost their infrastructure
capacity by densifying the network with more Base Stations (BSs) and resources, which translates
to a growth in the energy consumption and related costs. Hence, any future development in the
ICT sector and its infrastructure has definitely to cope with their environmental and economical
sustainability, where energy management is essential.

In this thesis, we discuss the role of energy in the design of eco-friendly cost-effective sustainable
mobile networks and, in particular, we elaborate on the use of Energy Harvesting (EH) hardware
as a means to decrease the environmental footprint of the 5G network. Specifically, we investigate
energy management strategies in 5G mobile networks with the main goals of: (i) improving the
energy balance across base stations and other network elements, (ii) understanding how the energy
can be exchanged either among network elements and the electrical grid, and (iii) investigating
how renewable energy sources can be utilized within network elements to maximize the utility for
the overall network in terms of better performance for the users (e.g., throughput, coverage, etc.),
and lower energy consumption (i.e., carbon footprint) for the 5G network infrastructure.

Therefore, we address, formulate and solve some of the problems related to the energy man-
agement in different scenarios within the 5G mobile network. The main covered topics are: (i)
Wireless Energy Transfer where we investigate the tradeoffs involved in the recharging process
from base stations to end users; (ii) Energy Cooperation in Mobile Networks where we target de-
ployments featuring BSs with EH capabilities, i.e., equipped with solar panels and energy storage
units, that are able to transfer energy among them; (iii) Energy Trading with the Electrical Grid
where energy management schemes to diminish the cost incurred in the energy purchases from the
electrical grid are pursued; and (iv) Energy Harvesting and Edge Computing Resource Management
where EH and Mobile Edge Computing (MEC) paradigms are combined within a multi-operator
infrastructure sharing scenario with the goal of maximizing the exploitation of the network re-
sources while decreasing monetary costs. Online learning techniques, such as Gaussian Processes
and Machine Learning Neural Networks, and adaptive control tools, like Model Predictive Control,
are put together to tackle these challenges with remarkable results in decreasing costs related to
energy purchases from the electrical grid and energy efficiency among network elements.
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1

Introduction

We live in the digital era where humans and machines alike are globally connected through the
Internet. With the advent of 4G technology and the smartphone, mobile traffic is massively grow-
ing driven by both the rising number of user subscriptions and an increasing average data volume
per subscription, fueled primarily by a higher viewing time, online embedded video and streaming
services, plus the evolution toward higher resolutions [4]. Actually, International Telecommuni-
cation Union (ITU) estimated that 750 million households are online and there exist almost as
many mobile subscribers as people in the world [5]. This new era is undoubtedly opening up new
possibilities for individuals as well as new opportunities for businesses and organizations. However,
this is putting a lot of pressure on the mobile network operators side, which are enforced to boost
their infrastructure capacity by densifying the network with more Base Stations (BSs) and re-
sources, increasing the amount of energy drained by the telecommunication sector and its footprint
on the environment. Forecast values for 2030 are that 51% of the global electricity consumption
and 23% of the carbon footprint by human activity will be due to ICT [6], which also translates
into electricity bills in the order of 10 billion for the operators worldwide [7]. Moreover, the ICT
industry has to solve an economical problem, since operators’ Average Revenue Per Unit (ARPU)
is decreasing every year (see an example here [8]). One of the reasons of this is the annual increase
of the OPerative EXpenditure (OPEX) of its network. Energy has been dominating these costs:
it has been calculated that the energy bill equals the cost of the personnel required to run and
maintain the network, for a western Europe company in 2007 [8]. Hence, any future development
in the ICT sector and in its infrastructure has definitely to cope with their environmental and
economical sustainability, where energy management is essential.

In this thesis, we discuss the role of energy in the design of eco-friendly cost-effective sustainable
mobile networks, focusing on the use of Energy Harvesting (EH) hardware as a means to decrease
the environmental footprint of the 5G network. Specifically, we investigate energy management
strategies in 5G mobile networks with the following objectives:

i) Improve the energy balance across BSs and other network elements.

ii) Understand how the energy can be exchanged either among network elements and the elec-
trical grid.

iii) Investigate how energy from ambient energy sources, i.e., harvested energy, can be utilized
within network elements to maximize the utility for the overall network in terms of: better
performance for the users (e.g., throughput, coverage, etc.), and lower energy consumption
(i.e., carbon footprint) for the 5G network infrastructure.
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Therefore, the prime goal is to address, formulate and solve some of the problems related to the
energy management in different scenarios within the 5G mobile network. The main topics covered
in this thesis are the following:

T1) Wireless Energy Transfer: we investigate the tradeoffs involved in the recharging process
within a dense mobile network deployment, where mobile users can be wirelessly recharged
through radio frequency transmissions. Our objective is to devise and compare several dis-
tributed charging schemes, that dictate which users have to be charged and when, depending
on the residual energy level in their batteries, on their distance from the serving BS, on the
radiating frequency and on their mobility behavior. The focus is on a distributed network
deployment, considering explicitly user mobility.

T2) Energy Cooperation in Mobile Networks: we target deployments featuring small BSs
with EH capabilities, i.e., equipped with solar panels and energy storage units. BSs can
collect energy from the environment, and have a local energy storage, which they can use
to accumulate energy when the harvested inflow is abundant. This local energy reserve can
be utilized to serve the local traffic and can be transferred to other BSs (energy routing) to
compensate for imbalance in the harvested energy or in the traffic load. Some of the BSs,
referred to as ongrid, are connected to the power grid, whereas the others are offgrid and,
as such, rely on either the locally harvested energy or on the energy transferred from other
BSs. Within this setup, intelligent policies are to be designed to transfer the surplus energy
to offgrid BSs, to ensure the self-sustainability of the mobile system.

T3) Energy Trading with the Electrical Grid: here only ongrid EH BSs are under investiga-
tion. The aim is to devise energy management schemes to diminish the cost incurred in the
energy purchases from the electrical grid. This can be achieved by intelligently controlling the
amount of energy that BSs buy from the power grid over time, accounting for the harvested
energy, traffic load, and hourly energy prices.

T4) Energy Harvesting and Edge Computing Resource Management: EH and Mobile
Edge Computing (MEC) paradigms are combined by considering an edge infrastructure
shared among several mobile operators, and equipped with a solar EH farm for energy effi-
ciency purposes together with an edge MEC server for low-latency computation. Two main
goals are pursued: (i) maximize the exploitation of the available resources at the edge in a
fair fashion among BSs belonging to different operators; and (ii) decreasing the monetary
cost incurred by energy purchases from the power grid.

Although we focus on different applications and scenarios in every chapter, throughout this
thesis we use similar techniques and methodologies to model, formulate and optimize the proposed
problems. In particular, we leverage on pattern forecasting techniques, such as Gaussian Processes
(GPs) and Machine Learning (ML) Artificial Neural Networks (ANNs), and adaptive control tools
like Model Predictive Control (MPC). More details about these tools will be given in following
chapters.
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1.1. THESIS OUTLINE

1.1. Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 presents the state of the art related to the covered topics. The content of this
chapter is mainly based on publication [J1] and related to all publications listed at the end
of Chapter 6.

• Chapter 3 refers to Topic 1. It is mainly based on publication [C1].

• Chapter 4 refers to Topic 2 and 3. This chapter is based on publications [J3], [C2], [C3]
and [C4].

• Chapter 5 tackles Topics 3 and 4. It is mainly based on publications [J2], [J5], [C5], [C6]
and [C7].

• Chapter 6 provides the final remarks and includes the list of publications summarized
through this thesis.

Chapters 3, 4 and 5 can be read separately as they tackle different scenarios. Moreover, each of
them defines its own notation, although some of it can be the same throughout the whole thesis.
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2

State of the Art

2.1. Introduction

In this chapter, we elaborate on the topics presented in Section 1.1. The aim of the chapter is to
introduce the topics and their related work, by discussing the existing literature, highlighting open
issues, and presenting possible solutions and contributions that will be explained with more details
in the following chapters.

2.1.1. Chapter Outline

The rest of the chapter is organized as follows. In Section 2.2, we analyze the possibility of
wirelessly transferring energy to end-devices through different techniques. New network design
paradigms in mobile networks, named energy cooperation and energy trading, are respectively
described in Sections 2.3 and 2.4. There, it is shown that network nodes can collaborate for energy
self-sustainability and even trade some energy with the electrical grid to make profit, in the presence
of renewable energy sources. Insight and conclusions are provided at the end of each section. Our
final remarks are given in Section 2.5.

2.2. Wireless Power Transfer

Wireless Power Transfer (WPT) [9] technology allows charging a mobile device without the need to
connect it to any external power supply and, in some cases, without the user even being aware of it.
In the following, we analyze WPT techniques that have been studied from different perspectives:

1) Wireless Energy Transfer (WET): concentrating on the energy transfer from BSs to
User Equipments (UEs) (downlink);

2) Simultaneous Wireless Information and Power Transfer (SWIPT): where both
energy and information are transferred in downlink;

3) Wireless Powered Communication Network (WPCN): where energy is transferred in
downlink, while information is transferred in uplink.

2.2.1. Wireless Energy Transfer

First, we consider the case of a transmitter that wirelessly transfers energy to multiple receivers.
In general, (power) senders and receivers are equipped with multiple antennas and the transmitted
signal is modulated. The energy harvesting module at the receiving end is based on a rectifying
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Figure 2.1: WPT architectures. Green arrows represent energy transmission, whereas red arrows
indicate information transmission. In the figure, AP represents an Access Point, i.e., a BS, while
U1 and U2 represent end users.

circuit that is composed of a diode and a low pass filter. This circuit converts the received RF
signal into a DC one.

According to [10], the harvested energy per unit time is proportional to the received RF power.
To improve it, one can increase the number of antennas at both transmitter and receiver, allowing
a higher (combined) antenna gain. This solution, referred to as energy beamforming, effectively
steers the transmit power towards a specific direction, with a subsequent improvement in the energy
transfer efficiency. Furthermore, the width of the energy beam can be narrowed by increasing the
number of antennas.

When considering the simultaneous charge of multiple energy receivers, a beamforming ap-
proach can lead to a near-far problem, where the users close to the transmitter receive more
energy than those located further away. Furthermore, the use of beamforming requires an accurate
knowledge of the channel state at the transmitter, but in many cases energy transmitters are simple
devices, which do not possess signal processing capabilities. Including such capabilities comes at
the cost of an increase in the device energy consumption and in its processing time. The acquisi-
tion of the Channel State Information (CSI) is investigated in [11], where the channel reciprocity
is exploited to design an efficient channel acquisition method for a point-to-point Multiple Input
Multiple Output (MIMO) WET system. In this paper, the antenna weights are set through a
training phase, which is formulated as an optimization problem for the case of uncorrelated fading
channels. Optimal solutions are derived for the special cases of MIMO Rayleigh and Multiple In-
put Single Output (MISO) Rician fading channels, with the aim of maximizing the net harvested
energy at the energy receiver.

2.2.2. Simultaneous Wireless Information and Power Transfer

The SWIPT technique aims at transmitting energy and information through the same waveform,
considering that information signals also carry energy that can be harvested by an energy receiver.
Generally, Information Detection (ID) and EH receivers have different power sensitivities (−10 dBm
for EH, −60 dBm for ID, according to [10]). This means that to work properly, EH receivers should
be closer to the transmitter than ID receivers.
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Since the design of the waveforms has a major impact on the performance of simultaneous
energy and information transfer, a tradeoff between energy transmission and information trans-
mission efficiencies has to be found. As for the energy transmission, the objective corresponds
to maximize the power transferred to the end user, whereas, for the information transmission,
it is the transmission rate that has to be maximized. In the literature, this tradeoff is explored
through the definition of Rate-Energy (R-E) regions, which contain all the feasible rate (bit/s/Hz)
and energy (J/s) pairs under a maximum transmit power budget. For any given technique, the
optimal tradeoff between energy and information transfer rates is provided by the boundary of the
corresponding R-E region, and depends on the receiver structure. An ideal receiver, that jointly
decodes information and harvests energy from the same signal, using the full signal power for both
tasks, is physically infeasible. Thus, the following practical receiver designs are proposed [10] (see
Fig. 2.2 for further details):

1. Time switching: the transmitter sends data (ID) and energy (EH) using disjoint time slots.
Within each time slot, the transmission can be optimized depending on its content (energy
or information). The receiver, periodically switches between harvesting energy and decoding
information.

2. Power splitting: the transmitter sends a single waveform to carry energy and information.
The receiver splits the received signal into two streams: one stream with power ratio 0 ≤ ρ ≤ 1
is used for energy harvesting, the other, with power ratio 1 − ρ, is used to decode the data
message.

3. Integrated receiver: the received signal is at first converted into DC current and then split into
two streams. This solution allows using a passive rectifier for RF-to-baseband conversion,
which entails a lower energy usage when compared to the active mixer that is required by
the information decoder of the previous technique.

4. Antenna switching: this solution can be used when the receiver is equipped with multiple
antennas. In this case, the receiver can use a number of antennas for energy harvesting and
the remaining ones for information decoding. This simple solution reduces the hardware
complexity at the receiver side, as it only needs to synchronize a switch.

In [12], a MIMO wireless broadcast system is investigated. In the considered setup, there
are three nodes, one transmitter, one energy harvesting receiver and another receiver that decodes
information. The cases of (i) disjoint and (ii) co-located receivers are explored. In the first case, the
two receivers see two different channels, while, in the second, they experience the same channel.
For the MIMO link between the transmitter and the energy harvesting receiver, the amount of
energy harvested is maximized through beamforming. For the MIMO link between the transmitter
and the data decoder, the transmission rate is maximized through spatial multiplexing. The R-E
region is computed to assess the optimal broadcasting policy in the case of simultaneous wireless
power and information transfer. In scenario (i), where the receivers are disjoint, the beamforming
strategy is demonstrated to be optimal when considering MISO links (between the transmitter and
the EH/ID receivers). It is also shown that increasing the correlation between the two channels
widens the R-E region, proving that an increase in the antenna correlation is beneficial. In scenario
(ii), where the two receivers are co-located, the optimal strategy is spatial multiplexing.
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Figure 2.2: SWIPT receiver designs.

An improvement is proposed by [13], where the robust beamforming problem in a MIMO
SWIPT wireless broadcasting system is investigated under the assumption of imperfect channel
state information at the transmitter. The objective is to maximize the worst-case harvested energy
for the energy receiver, while guaranteeing that the information transmission rate is above a given
threshold, for all the possible channel realizations. This amounts to a non-convex problem, which
is relaxed into a semi-definite programming formulation that can be solved efficiently. Simulation
results show that neglecting the CSI in the system design leads to frequent violations of the target
information rate.

The multi-user system case is investigated in [14], where a setup with two users and a receiver
is considered. The first considerations are made on a scenario comprising a standard multiple
access channel under the constraint that the energy received by the decoder is large enough. It is
demonstrated that, as the required energy at the decoder increases, time-sharing is necessary to
achieve optimal performance. This indicates the need for additional coordination between the two
users. In a second scenario, a multi-hop channel is considered, where the relay is assumed to be
capable of harvesting the energy received from the transmitter to forward packets to the receiver. It
is shown that for small Signal-to-Noise Ratios (SNRs) in the second hop, it is desirable to maximize
the energy transfer to the relay, while for sufficiently large SNRs in the second hop, it is optimal to
maximize the information transfer to the relay. This means that the transmitter needs to adjust
its transmission strategy according to the quality of the second link, with a subsequent need for
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further coordination. A scenario with relay nodes is also considered in [15], where the performance
limits of a two-hop multi-antenna amplify-and-forward relay system are investigated.

The employment of wireless energy harvesting in dense networks has been studied in [16].
Sensors are supplied by batteries and can harvest energy from neighbor packet transmissions. Two
communication scenarios are considered: i) direct, where the sensors exchange messages directly,
and ii) cooperative, where randomly deployed relays assist the message exchange. Simulation results
indicate that the direct communication scenario presents better communication performance in
randomly deployed dense network, whereas the cooperative scenario is superior in terms of network
lifetime, providing higher harvested power. However, the wireless energy harvesting is not able to
provide enough power to counterbalance the consumed energy in realistic scenarios, mainly due to
the the path loss and the Radio Frequency (RF)-to-Direct Current (DC) conversion. A solution
to this problem is tackled by the deployment of dedicated power transmitters of power beacons as
done in [17], where a wireless powered sensor network with battery-less devices is considered. The
authors provides results about the connectivity of the sensor network considering different routing
mechanism (i.e, unicast, broadcast) and fading conditions.

2.2.3. Wireless Powered Communication Network

In this scenario, an Access Point (AP) transmits energy to multiple wireless devices. These devices
use the harvested energy to transmit information in the uplink channel. Considering a transmission
block of duration T , during a first phase of duration τ0T (0 < τ0 < 1), the wireless devices harvest
energy, while in the second phase, of duration (1− τ0)T , they use the harvested energy to transmit
information back to the AP. This protocol is termed harvest-then-transmit.

A typical issue of WPCNs is defined as doubly-near-far problem and it is quite similar to the
near-far problem that was discussed in Section 2.2.1. In this case, a device placed further away from
the AP harvests less energy than a closer device, due to the higher signal attenuation experienced
by the former. For the same reason, it requires a smaller amount of power to transmit data to the
AP. A solution to this problem is proposed in [18], where the cooperation among users is exploited
in a two-user WPCN. The AP and the users are equipped with a single antenna. The user with the
best channel, both for the EH downlink and the information transmission, uses part of its allocated
uplink time and harvested energy to relay information. Simulation results show that this approach
leads to improvements in the throughput and in the user fairness.

In [19], a scenario with a multi-antenna AP and a number of single-antenna users is consid-
ered. The minimum throughput among all users is maximized (max-min allocation problem) by a
joint design of the downlink-uplink time allocation, the downlink energy beamforming, the uplink
transmit power allocation, and the receive beamforming, while guaranteeing fairness. An optimal
two-stage algorithm is proposed and two suboptimal designs, exploiting zero-forcing based receive
beamforming, are also proposed. Numerical results show that the performance of suboptimal ap-
proaches is close to the optimal one when the distance from the AP is small, while the performance
gap increases as this distance gets larger. Moreover, the max-min throughput is shown to increase
significantly with the number of active antennas at the AP. The same scenario, with a multi-antenna
AP and multiple single-antenna users, is considered in [20]. In this paper, the transmission time
frame includes a slot for the channel estimation in the uplink. The users at first consume a fraction
of the harvested energy to send pilots in the uplink. Then, the AP estimates the uplink channels
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and obtains the downlink channel gains exploiting channel reciprocity. Hence, the scheme follows
the classic steps of the harvest-then-transmit protocol described above. Even though a perfect CSI
at the transmitter is not available, a more accurate CSI is shown to contribute to a higher energy
transfer efficiency and to lead to a higher uplink information rate.

2.2.4. State-of-the-Art of RF and Microwave Energy Conversion Efficiencies

This subsection discusses the efficiencies of state-of-the-art energy harvesting devices, according
to [1]. The contributions on this research field have been made essentially by two communities,
focusing on space-based solar power harvesting and Radio-Frequency IDentification (RFID) sys-
tems. The first community deals with energy conversion at long distances and high powers, while
the second with ultra-low power applications.

In Fig. 2.3, the state-of-the-art efficiencies from [1] are shown. Specifically, the input power
is plotted versus the energy receiver efficiency for different energy transmission frequencies, in
the 900MHz, 2.4GHz and 5.8GHz bands. Efficiencies of applications working in bands above
5.8GHz are also shown. Observing the curve for the 900MHz band, we see that these systems are
typically designed to work with low input levels. This is motivated by the fact that the research on
Ultra High Frequency (UHF) energy harvesters have been engineered for RFID applications. Since
RFID applications are designed to work in multipath environments, the available energy levels at
the receiver are low.

Other studies consider WPT applications operating at microwave frequencies. Working in these
bands permits the use of smaller antennas, thus reducing the required antenna aperture and making
antenna beam steering easier. In particular, the availability of the unlicensed 5.8GHz band has led
researchers to focus on it. From Fig. 2.3, we see that most of the microwave frequency applications
discussed in the literature, operate at high power levels. This is motivated by the fact that these
works consider space-based solar power or pure WPT applications, which typically deal with high
powers.

From this graph we see that as the transmitting power increases, the efficiency of energy har-
vesting devices increases too, whereas it decreases with an increasing frequency. This last fact can
be motivated by the higher circuitry parasitic losses encountered at microwave frequencies.

2.2.5. Conclusions

The main findings of this section are described as follow:

1. The wireless transmission of energy has been studied in the literature considering different
architectures, namely WET, SWIPT and WPCN.

2. The energy transmission efficiency depends on the distance between transmitter and receiver.
Therefore, far users receive less energy and, in the case of WPCN, they are those that need
it more to communicate. Cooperation schemes are a good solution to solve this problem.

3. Rate-Energy regions are used to find the optimal tradeoff between energy transmission and
information rate in SWIPT.
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Figure 2.3: State-of-the-art RF and microwave conversion efficiencies from [1]. Several topologies
are used under a variety of load conditions and technologies.

4. Different design for simultaneous transmission of information and power have been studied:
time switching, power splitting, integrated receiver and antenna switching.

Future information and energy networks are likely to operate on overlapping portions of the
spectrum, due its scarcity. For this reason, there is a need to manage the interference that will
be dominated by the transmission of energy. It is also necessary to investigate scenarios with
multiple users and, specifically, new ways of mitigating the interference, such as opportunistic
WET with spectrum sensing and energy/information schedulers. In particular, when considering
energy transmission, harmful interference can be turned into useful harvested energy. Hence, the
problem of mitigating interference while facilitating energy transfer must be addressed.

The described literature analyses static scenarios, but nodes can also be mobile. In this case,
the transmission of energy and information becomes time-variant, thus requiring dynamic and
adaptive resource allocation policies. Further investigation is necessary to characterize the tradeoff
between transmit power and distance from the receiver in mobile settings.

When considering the wireless transmission of energy, the intensity of microwaves can become
a problem in some areas, especially when using massive MIMO and beamforming technologies.
In particular, the power radiated by wireless devices must always satisfy the Equivalent Isotropi-
cally Radiated Power (EIRP) limitations dictated by existing regulations. To solve this problem,
systems based on the concept of distributed antennas can be exploited. In this way, we have an
omnidirectional and weak radiation for each antenna. The combined effect of this radiation is
destructive everywhere, except for the desired location, where it is constructive. This solution
should be further investigated taking into account the increased power consumption due to the use
of multiple antennas. In particular, the tradeoff between the energy harvesting efficiency and the
power consumption should be analyzed.

Finally, we underline that current studies are mainly theoretical and the achievable throughput
performance for practical wireless information and energy transmission systems shall be assessed.
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These studies should test the use of new technologies like mmWave, massive MIMO and distributed
antenna arrays.

As we already discussed, the sensitivity of the receivers is a fundamental aspect to consider
in the analysis of SWIPT schemes. Actually, the low sensitivity of energy receivers represents
a problem, leading to situations where a device can only decode information without harvesting
energy, with the consequent degradation of the SWIPT performance. For this reason, it is necessary
to improve the energy receiver circuits in terms of hardware and design.

Overall, considering (i) the energy consumption sources, (ii) the energy efficiency of WPT
receivers, (iii) the limited transmission powers due to regulations and especially to (iv) wireless
channel losses, WPT is not deemed an effective technology yet to provide energy to mobile devices,
as discussed in [21] and Chapter 3. Transfer efficiencies are in fact very small (often smaller than
10−4) even when beamforming is exploited.

2.3. Energy Cooperation in Mobile Networks

We now consider a scenario where the BSs are supplied by energy harvesters and storage devices
(rechargeable batteries) and may be disconnected from the electrical grid (offgrid). There, coop-
eration strategies can be conceived to make them quasi self-sustainable, i.e., to operate mostly
relying on the harvested (and stored) energy.

In this context, geographical diversity shall be exploited to mitigate the well-known temporal
and spatial variability in the energy harvesting process, especially when using renewable sources
such as the wind. This aspect is partially investigated in [22], where a network made of two BSs
equipped with energy harvesters and some limited energy storage capability is considered. The
authors propose an offline linear programming algorithm, which limits the power drained from
the power grid when the energy profiles are deterministic. Furthermore, an online algorithm is
put forward for a more realistic scenario where they are stochastic and not known a priori. As
expected, the best results are achieved when the harvested energy profiles at the two BSs are
sufficiently uncorrelated. In fact, if the amount of energy harvested is highly correlated, we have
a problem when the energy inflow is little, as this concurrently occurs at both BSs. When the
correlation is low, it is instead very likely that one BS will experience an abundant energy inflow
when the other one is in a low energy state. The former BS could then transfer some of its energy to
the latter. The performance gap between the two algorithms in [22] is small, reaching the minimum
value for anti-correlated energy profiles. We observe that a low correlation in the energy profiles
can be more easily reached by using different renewable types, for example solar and wind, where
the latter may be very useful to mitigate the shortage of energy from solar panels during the night.

In the following, two cooperation types are considered:

1) Energy sharing: in this case, BSs are interconnected with electric wires, forming a sort of
microgrid that provides mechanisms to exchange the harvested energy among BSs. In Fig.
2.4 two deployment scenarios are depicted: direct connections among BSs (Fig. 2.4a) and
BSs connected through an aggregator (Fig. 2.4b).

2) Communication cooperation: BSs are not interconnected via electric cables and their
cooperation involves mechanisms to support the radio communication such as power control,
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bandwidth control, sleep modes and traffic offloading. In this case, high-capacity mmWave
backhaul connections [23] can be exploited to facilitate the deployment of drop-and-play
devices, such as small cells. The scenario is depicted in Fig. 2.5.

(a) Energy sharing through a microgrid.

AGGREGATOR

GRID

(b) Energy sharing through a microgrid with an aggregator.

Figure 2.4: Energy sharing scenarios

2.3.1. Energy Sharing

Energy sharing among BSs is investigated in [24] through the analysis of several basic multiuser
network structures, namely, (i) an additive Gaussian two-hop relay channel with one-way energy
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Figure 2.5: Communication cooperation scenario

transfer from the source to the relay node, (ii) a Gaussian two-way channel with one-way energy
transfer and (iii) a two-user Gaussian multiple access channel with one-way energy transfer. A
two-dimensional and directional water-filling algorithm is devised to control the harvested energy
flows in both time and space (among users), with the objective of maximizing the system through-
put for all the considered network configurations. The allocation algorithm is offline, relies on
a priori information, i.e., the amount of energy harvested by sources and relays, and assumes
unlimited data and energy buffers. However, these assumptions are unrealistic.

A very interesting energy sharing framework is presented in [25], where the concept of the
Energy Packet Network (EPN), also called Power Packet Grid (PPG), is introduced. In an EPN,
discrete units of energy, termed energy packets, can be exchanged among network elements or
acquired from the environment through harvesting hardware. Accordingly, the harvested energy
can be modeled as a packet arrival process, the energy storage as a packet queue and the energy
consumption process as a queue of loads, i.e., one or more servers. These three components of
the EPN are interconnected thanks to power switches. Electronic systems of this type, named
power packet systems, have been recently experimented with. In some approaches, see [26], the
packet takes the form of a pulse of current with fixed voltage and duration. Each energy packet is
equipped with an encoded header, containing the information about the destination identity (i.e.,
its address), which is used to route the energy packet through the EPN.

The cost of deploying the micro-grid infrastructure that would be required by an EPN can be
high. In [24,27], the use of wireless energy transfer is considered as a means to avoid the installation
cost of electric cables. However, such technology has a low energy transfer efficiency nowadays, as
we will demonstrate in Chapter 3 (see also [1, 21]).

A solution to reduce the costs of deploying electrical connections between BSs, is presented
in [28], where a new entity named aggregator is introduced, as shown in Fig. 2.4b. The aggregator
is in charge of mediating between the grid operator and a group of BSs to redistribute the energy
flows.

In [29], the authors propose an algorithm that tries to jointly optimize the transmit power
allocations and the transferred energy, so as to maximize the sum-rate throughput for all the users.
This joint communication and energy cooperation problem is proven to be convex. Numerical
simulation shows that this approach achieves better performance than no cooperation or cooperation
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through communication in terms of average sum-rate.
Infrastructure sharing may be exploited to reduce power consumption by fairly distributing

the harvested energy among mobile network operators [30]. The problem to capture the energy
interactions among operators is stated as a bankruptcy game where fairness is pursued to further
motivate cooperation. The results show that all cooperative operators could be provided with 6-7
hours of operation during non-solar hours, regardless the traffic demand. Furthermore, operators
purchase energy from the grid at similar percentages when no green energy is available.

2.3.2. Communication Cooperation

The micro-grid deployment cost (i.e., the EPN installation cost) is one of the main aspects that
motivate the introduction of this second cooperation mode. In this case, each BS has an energy
harvester and may have a storage unit (battery), but it is not connected with the other BSs via
electric cables and, in turn, cannot directly exchange energy with them, as shown in Fig. 2.5.
This approach eliminates the costs related to the deployment of the micro-grid infrastructure
(e.g., wires, converters and controllers). However, it may require harvesters and storage units with
higher capacity, to achieve a certain Quality of Service (QoS). Ongoing research aims at finding the
optimal size of harvesting devices and batteries to sustain the traffic demand through the available
energy budget. In particular, methods that allow BSs to cooperatively optimize the network energy
usage are proposed.

In [31], the fraction of time during which a BS cannot satisfy the traffic demand, due to energy
scarcity is defined as outage. The authors compute the size of harvesters and batteries as a function
of the outage probability. A photovoltaic panel is considered as the harvester and the size-outage
region is obtained for different geographical locations. The authors conclude that full network
self-sustainability may be feasible in locations with high solar irradiation, considering the cost and
dimension of the energy harvesting hardware (panels and batteries). In [32], the authors define
a system model of a K-tier heterogeneous cellular network, where BSs independently switch off
when their energy reserve is insufficient. The authors determine the availability region, i.e., the
uncertainty in BS availability due to the finite battery capacity and to the inherent randomness
in the energy harvesting process. This provides a fundamental characterization of the conditions
under which standalone BSs provide the same performance as BSs relying on traditional energy
sources. The introduction of sleeping capabilities in some BSs in order to reduce the size of their
harvesting and storage devices is explored in [33]. In this paper, sleep modes are enabled for 50% of
the BSs, when the traffic is below 50% of its peak. Although simple, this scheme allows reductions
in the power consumption from 10% to 40%, depending on the sleep policy, and to reduction in the
size of batteries and photovoltaic panels. However, the impact of sleep modes on the user QoS is
not assessed. In [34], an optimization problem that seeks to minimize delay and power consumption
by turning off small BSs is investigated. The proposed algorithm is online and is based on the so
called ski rental framework. Each agent operates autonomously at each small cell and without
having any a priori information about future energy arrivals. The algorithm is compared against
a greedy scheme that uses sleep modes when the battery level is below a fixed threshold. It is
shown that the proposed solution outperforms the greedy approach in terms of power consumption
and network cost. The performance is evaluated assuming that energy arrivals are Poisson. This
assumption is however unrealistic in most energy harvesting scenarios, as demonstrated in [35],
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where a stochastic Markov process has been derived for solar energy harvesting systems.
In [36], a two-tier urban cellular network is considered, where macro BSs are powered by

the power grid and energy harvesting small cells are deployed for capacity extension. The authors
propose a centralized optimal direct load control of the small cells based on dynamic programming.
The optimization problem is represented using Graph Theory and the problem is stated as a
Shortest Path search. The same scenario is considered in [37], where the authors propose an
algorithm based on a multi-agent reinforcement learning that controls the energy spent according
to the energy harvesting inflow and the traffic demand. Each node independently decides as to
whether entering a sleep mode or serving the users within coverage. This algorithm is also shown
to outperform a greedy scheme.

2.3.3. Conclusions

The main findings of this section are described as follows:

1. Energy cooperation between BSs can provide better results when exploiting different types
of renewable energy sources and geographical diversity. However, this comes at expenses of
higher deployment and infrastructure costs.

2. Energy sharing possibilities are limited by the cost of deploying a microgrid among BSs.
Some architectural solutions have been provided. Specially, EPNs represent an interesting
solution for future energy sharing deployments.

3. Communication cooperation between BSs avoids the deployment of a microgrid. Nonethe-
less, the dimension of energy harvesting and storage devices depends on the system outage
constraints and on the deployment site.

Energy cooperation is a recent and open field of research. Moreover, the definition of coopera-
tion methods is crucial in case of energy self-sustainability. A key aspect is the characterization of
the network load that is still not precisely captured by current analyses. We also underline the lack
of performance assessments for the user perceived quality in the presence of energy cooperation
mechanisms.

The harvesting process is usually characterized by very intensive power generation periods,
interleaved with cycles where the harvested energy is scarce of even absent. In the case of solar
energy, for example, the generated power depends (among other things) on the season of the year.
Since the system is designed for the worst case (e.g., winter months), the imbalance in the power
generation across a full year may lead to an excess of energy during high power periods, which
may be poorly handled. Investigations on an efficient use of the energy surplus shall be carried
out to avoid this. The impact of energy storage devices still has to be investigated. In such a
case, the adoption of energy storage leads to higher capital expenditure and the tradeoff between
installation cost and network performance would also have to be assessed, taking into consideration
the payback period.

Most of the work cited in this section solves offline optimization problems assuming a full
knowledge of energy and load patterns. This is useful as a feasibility study and to obtain perfor-
mance bounds, but it is still far from the design of a practical solution. In the literature, we see an
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increasing interest in learning and distributed approaches for the design of online algorithms. How-
ever, these control methods are not yet mapped into the proposed 5G architecture. Concepts like
network softwarization and virtualization should be included in their design and their performance
should be evaluated considering real traffic (user demand) and energy harvesting traces.

Finally, a new research field is represented by the design of EPNs. There, energy packets would
represent a flexible and convenient method to route energy when and where needed. However, the
design of power switches, as well as the definition of proper energy routing protocols, are still open
research directions.

2.4. Energy Trading with the Electrical Grid

In this section, we discuss a scenario where the 5G network trades energy with the Smart Grid (SG).
In a SG, communication is provided across energy producers and consumers. Energy can be bought
from the main power distribution network, but also from distributed users, if equipped with some
energy harvester. Finally, these users can even sell their surplus energy, injecting it into the SG.
A user may then concurrently act as an energy consumer and producer (often termed prosumer
for short). In the scenario that we envision here, a BS with energy harvesting capability can be
considered a prosumer of the SG. Next, we analyze the possible interactions that may occur between
BSs within a mobile network and the SG, by reviewing the existing literature and discussing open
challenges.

2.4.1. A Review of Energy Trading in Smart Grids

The energy supply system consists of energy retailers and consumers. The retailers offer a source-
dependent energy price that varies over time. Consumers choose one or more retailers to buy
energy from, depending on market prices.

The SG infrastructure is dimensioned to meet the peak energy demand and to avoid blackouts.
This leads to an underutilization of the resources during off-peak periods. Furthermore, an increase
in the peak demand requires investments in the distribution network and, possibly, in the power
plants. For these reasons, grid operators are pushing the consumers to reduce their demand (the
SG load) during peak hours (through dynamic pricing and economic incentives) or to shift their
load to off-peak hours. The activities that target (i) reshaping the consumer’s demand profile to
make it match the power supply, (ii) eliminating blackouts, and (iii) reducing the operational costs
and the carbon footprint are referred to as Demand-Side Management (DSM) in the literature.
A practical way of achieving them is through Demand Response (DR), i.e., the energy provider
issues some offers (incentives, etc.) over time and the users “respond” to these by adapting their
behavior. Some researchers and practitioners use DSM and DR interchangeably [38], although DR
can be seen as a way to implement DSM policies.

A real-time pricing scheme is presented in [39] to reduce the peak-to-average load ratio. The
system is composed of several consumers and a single retailer. Each user reacts to the prices an-
nounced by the retailer and maximizes its payoff, which is the difference between its quality-of-usage
and the cost of the energy bought from the retailer. The retailer designs realtime prices in response
to the forecast user reactions to maximize its own payoff.
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Game theory, and specifically Stackelberg games, has been widely used to find distributed
solutions for dynamic pricing problems. This type of game models the behavior of two agents, one
of them being the leader (having the first move advantage) and the other one being the follower,
who plays a best response strategy to maximize his own utility. In energy trading scenarios, the
retailer is usually the leader and sets energy prices according to market needs in an attempt to spur
the participation of users, while also trying to maximize its own revenue [40]. A similar approach
is presented in [41], where the authors propose a decision model for a retailer, who plays the role of
an intermediary agent between a wholesale energy market and end-consumers. The response of the
consumers with respect to the retailer price follows a two-stage Stackelberg game, while the market
price uncertainty is modeled by a robust linear optimization model. The problem is reformulated
as a mixed integer linear program and solved heuristically. A non-cooperative energy supply game
is formulated in [42] to capture the competitive market within a multiple-supplier micro-grid. The
authors of this paper propose an iterative algorithm to find the Nash equilibrium of the energy
supply game and another one to form coalitions between micro-grids. Their results show that the
pricing mechanism reduces the electricity imbalance inside the micro-grid and that the profit made
by cooperating is higher than that made operating independently.

Collaborative schemes among consumers, designed to reduce the energy cost, are explored
in [43]. There, two optimization problems are formulated with the goal of minimizing the peak-
to-average ratio and the system energy cost. These problems are solved in a distributed manner
through a scheduling algorithm based on game theory. Moreover, to encourage users to behave
in a desired way (i.e., to minimize the energy cost) the authors propose a smart pricing tariff
such that the interactions among the users automatically lead to an optimal aggregate load profile.
Cooperation is also investigated in [44] for the case of urban buildings composing a micro-grid. The
problem of deciding the optimal capacities of the harvesting equipment as well as of determining
the optimal daily power operation plan is formulated as a mixed integer linear program. The
objective function is optimized based on the Nash bargain method to enable equally distributed
savings among the participants. Results show that power exchanges affect the required equipment
size and viceversa. Furthermore, energy exchanges enhance the system self-sufficiency and reduce
carbon emissions.

In [45], the social-welfare, defined as the difference between the total demand, the total cost
experienced by all the generators and the wastage cost caused by transmission losses, is maxi-
mized through a distributed demand and response algorithm. The problem is formulated using
convex optimization and solved in a distributed fashion applying the Lagrange-Newton method.
In the computation of the optimal solution, each node (consumer or supplier) exchanges rounds
of messages with its neighboring nodes. Although simulation results verify the correctness of the
distributed algorithm, the computation rate and the entailed communication load are rather high.
DSM is also a viable approach to control the temporal separation between energy generation and
demand. In fact, load shifting allows demand flexibility without compromising the QoS [46]. This
flexibility can be achieved thanks to energy storage devices, which can be used to accumulate
renewable energy and use it when needed.
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2.4.2. Cellular Networks meet SG

The interaction between cellular networks and the SG can be implemented in two different ways:
1) the SG is the only energy supplier, and 2) the energy harvesting BSs along with the SG are the
energy suppliers.

1) The SG is the only energy supplier: in this scenario, several retailers operate within the SG
to serve the consumers. An example of this can be found in [47], where a power allocation scheme,
formulated as a non-cooperative game, is put forward to increase the network energy efficiency.
Retailers offer different prices to the BSs and a multi-agent Q-learning scheme is proposed for
the game to reach the optimal transmission power configuration. Along the same lines, in [48] a
cognitive HetNet only powered by the SG is considered. In this paper, the authors formulate the
problems of: (i) electricity price decision, (ii) energy-efficient power allocation and (iii) interference
management, which are jointly and iteratively solved as a three-level Stackelberg game.

In [49], a DSM framework for cellular networks powered by multiple energy suppliers is pro-
posed. The system model comprises a set of cellular operators, characterized by the QoS offered
to their subscribers, and powered by a common pool of energy suppliers, characterized by energy
prices and pollutant emission levels. Closed-form expressions for the amount of energy provided
by each supplier to the operators are derived using stochastic geometry, accounting for user QoS,
energy cost and carbon emissions.

2) The suppliers are the EH BSs and the SG: in this second scenario, BSs have energy
harvesting capabilities, and act as prosumers of the SG, see Fig. 2.6. Different scenarios can be
envisioned. For example, in [50] mobile operators are responsible for supplying power to their base
stations. Each network operator has to procure energy from several SG retailers. The procurement
decision is affected by two factors: the unitary price of energy and a penalty term depending on
the amount of pollutant emissions from the energy source. Moreover, BSs are prosumers, i.e.,
they can procure energy from their own renewable energy sources, which are free of charge for the
network operator. Using a two-level Stackelberg game, the authors of [50] formulate and find the
optimal solution for an optimization problem that seeks to maximize the operator profit, as well
as to reduce the emission of pollutants. We remark that, besides this centralized decision-making
model, where the network operator decides the energy retailer for each of BSs, there are distributed
scenarios where base stations are themselves responsible for carrying out the acquisition of energy
in a distributed manner, choosing the most appropriate retailer according to their energy status,
i.e., on their current energy income and reserve.

An adaptive power management for wireless BSs is studied in [51]. Here, each BS is a prosumer
equipped with a solar panel and an energy storage unit, but is also plugged into the electrical
grid. Due to the random nature of renewable generation, power prices and traffic load, the authors
formulate a multi-stage stochastic optimization problem. This problem is then framed as a linear
program and solved using standard tools. Energy management strategies are presented in [52,53].
In these works, the authors also elaborate on the use of storage devices. In [52], simulations results
show that a cost reduction can be attained through a higher battery capacity, but a greater cost
reduction is possible by increasing the number of base stations. In [53], the authors get a critical
battery capacity level above which no further cost reduction can be achieved. According to the
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SMART GRID

CONSUMERS

(a) One supplier.

SMART GRID

PROSUMERS

(b) Multiple suppliers.

Figure 2.6: Diagram illustrating the two ways of interaction between mobile networks and the
smart grid.

authors, these results can be used as guidelines in the design of storage systems for BSs in a SG
environment. Auctioning is explored in [54], where a double auction trading algorithm is proposed
to incentivize BSs with extra harvested energy to share their energy surplus with BSs with a lower
energy reserve. Auction mechanisms are the key elements of many applications in wholesale and
retail electric power markets. Similar to traditional auction rules, the main goal of distributed
energy trading is to find the lowest-cost match between the supply and the demand, so as to
maximize the economic efficiency [40]. BS energy storage is studied in [55]. Batteries must operate
within a guard range to avoid a rapid decrease of their performance (i.e., typically between the 20%
and 90% of their capacity). The authors propose a fuzzy Q-Learning small cell energy controller
to simultaneously minimize the electricity bought from the SG and enhance the life span of the
storage device.

Finally, a hybrid energy sharing framework is proposed in [56], where a combination of physical
power lines and energy trading with other BSs using smart grid is used. Algorithms for physical
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power lines deployment between BSs are designed based on the renewable energy availability.
An energy management framework is also formulated to optimally determine the quantities of
electricity and renewable energy to be procured and exchanged among BSs, respectively. Results
demonstrate considerable reduction in average energy cost thanks to the hybrid energy sharing
scheme.

2.4.3. Conclusions

The main findings of this section are described as follows:

1. Collaborative schemes and energy cooperation among consumers in smart grids are effective
techniques to reduce energy costs, while increasing network efficiency. Specifically, game the-
ory and auctioning schemes have been widely investigated within DSM strategies, providing
valuable outcomes for energy trading. Stackelberg games are the most popular approach.

2. The use of BSs with energy harvesting capabilities opens new scenarios in the smart grid
market, where green network operators could trade their harvested energy with the SG.

3. Some initial papers dealing with the interaction between SGs and green network operators
(managing EH BSs) have recently appeared. Initial results, for selected network scenarios,
look promising. In particular, energy resources can be optimally allocated (and traded be-
tween BSs and the SG) to obtain monetary cost reductions and a higher energy efficiency for
the BS network.

A few open issues are now identified. The basic scenario studied in the reviewed literature
involves a single retailer (the SG), which offers hourly energy prices to the final consumers, i.e.,
the BSs. The energy price depends on the cost of production and on the expected demand. In this
scenario, decision-making solutions shall be addressed to find the best energy-purchasing policies
for the BSs taking into account: (i) current and forecast renewable energy income, (ii) current and
forecast traffic load and (iii) the future evolution of the energy prices. In addition, the presence of
energy storage devices makes the problem more involved, allowing the storage of energy for later
use, when the market conditions are unfavorable. There is a vast literature on dynamic pricing
and price forecast, but this is mostly limited to the smart grid domain, whereas the integration
of prices, energy and load forecast for the control of base stations, when these act as prosumers
within a SG, is still unexplored.

Further, existing papers study network scenarios where the BSs can harvest energy, use it
locally (to serve their own mobile users) or purchase it from the SG. Few studies additionally
consider BSs as possible energy sources, and allow them to sell energy to the SG retailer. However,
more complex scenarios are possible, where BSs interact and are endowed with the capability of
exchanging energy among themselves (using their local energy storage). According to this new
paradigm, BSs can sell (buy) energy to (from) other BSs in the mobile network, besides using it
locally or selling it to the main SG retailer. This amounts to green mobile networks, where BSs
can self-organize and cooperate toward the overall reduction of the energy that the mobile network
drains from the SG, reducing the carbon footprint of ICT.

Finally, stochastic optimization and adaptive control tools, involving, e.g., model predictive
control, shall be considered to handle the integration of energy harvesting capabilities in mobile
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networks where BSs can be considered as prosumers of the SG. Better load models (accurately
tracking the spatio-temporal traits of mobile traffic) are needed, along with lightweight and flexible
tools for pattern analysis and prediction, to be integrated into foresighted optimization techniques.
Within these settings, micro-economic models should also be investigated when consumers (BSs)
aim at maximizing their utility (e.g., combining energy, monetary cost and served traffic), subject
to their monetary budget constraints; while SG retailers aim at maximizing their profit.

2.5. Conclusions

In this chapter, the topics tackled in this thesis have been presented. Moreover, existing literature
has been discussed, highlighting open challenges and potential solutions. Some of those solutions
are addressed throughout this work where the main goals and contributions are summarized in
Section 1.1 and then, detailed on each of the following chapters. Furthermore, literature related
to the application scenario is provided on each chapter. Note that we do not provide a general
section in this chapter about Topic 4 but just related work in Section 5.2, since MEC paradigm is
not intended to be the focus of this thesis, apart from its integration within a specific application
tackled in Chapter 5. Actually, the combination of EH and MEC paradigms opens a wide research
field that shall be addressed in future work. Moreover, EH resources are modeled, used, and
managed throughout all chapters where extensive state of the art is provided.
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3

Energy Transfer from Base Stations to End Users

3.1. Introduction

Nowadays, the Internet counts more than three billions active users in the world, sending more
than two millions emails and watching more than 130 thousands YouTube videos per second [57].
The largest part of the overall Internet traffic is generated by mobile devices, which have almost
completely replaced desktop computers and even laptops, to a large extent. These devices, either
being smartphones, tablets or wearable ones, are battery-powered and tend to discharge quite
rapidly. This fact usually forces their owners to plug them into power outlets during the day,
maybe just for a short period of time, to gain some extra energy that permits the devices to safely
reach the end of the day, when they will be plugged back in and be fully recharged. However,
connecting a device to an energy source in the middle of the day is not always possible.

WPT [9] is a recent technique that allows charging a mobile device without the need to connect
it to any external power supply and, in some cases, without the user even being aware of it. This
technique relies on external tools, such as BSs that are capable of communicating with the UE and
charging it by wirelessly sending energy to it, if necessary. This approach involves a transmitter,
i.e., a BS that sends energy through the wireless medium, and at least one receiver, i.e., a UE that
harvests this energy to replenish its battery.

In this chapter, we investigate the tradeoffs involved in the recharging process for a dense (e.g.,
inter-BS distances of about 20 meters) cellular network deployment, where mobile users can be
wirelessly recharged through radio frequency transmissions. Our objective is to devise and sys-
tematically compare several distributed charging schemes, which dictate which users have to be
charged and when, depending on the residual energy level in their batteries, on their distance from
the serving BS, on the radiating frequency and on their mobility behavior. Most of the related
literature focuses on a single BS that transmits energy to the users being served, designing tech-
niques that entail the joint transmission of power and information (see Section 3.2). A distinctive
trait of this work is that we look at a distributed network deployment and explicitly consider user
mobility. We do not consider the transmission of information, but we are rather concerned with
the allocation of power transfer slots from each BS according to the mobility patterns of the users
and to the residual energy in their batteries. Our results shed some light on the actual effectiveness
of WPT in future mobile networks, assessing whether it can be considered an effective means to
charge terminals while they are on-the-go, considering real world system parameters, along with
independent and group mobility models. Also, we provide useful results on the best WPT schedul-
ing strategies. A somewhat counterintuitive finding from our study, is that the location of the
mobile users is the sole metric that has to be taken into account in the design of WPT schedules,
as this will steer the system toward higher transfer efficiencies and, at the same time, decrease the
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number of dead nodes (whose battery is completely depleted). Designing for the battery level will
lead to worse results in all respects.

In our numerical analysis, a genie is at first utilized to devise optimal charging schedules,
where user locations and residual battery levels are exactly known by the BS controllers at all
times. Hence, several heuristic policies are proposed and their performance is compared against
that of genie-based approaches in terms of transfer efficiency and fraction of dead nodes. Our
results reveal that: i) an even allocation of resources among UEs is inefficient, whereas even a
rough estimate of their location allows heuristic policies to perform very close to the genie-based
schemes, ii) mobility matters: group mobility leads to higher efficiencies and an increasing speed
is also beneficial, iii) wireless charging can substantially reduce the fraction of dead nodes, due
to their battery level dropping below a certain critical threshold. Nevertheless, this comes at the
expense of constantly transmitting power and transfer efficiencies are low under any scenario.

3.1.1. Contributions

The main contributions of this chapter are:

• We investigate the tradeoffs involved in the energy transfer from BSs to UEs within a dense
cellular network, where mobile users can be wirelessly recharged through radio frequency
transmissions.

• We present and compare different distributed charging strategies, that dictate which users
have to be charged and when, depending on the residual energy level in their batteries, on
their distance from the serving BS, on the radiating frequency and on their mobility behavior.
The focus is on a distributed network deployment, considering explicitly user mobility.

• We provide numerical results, revealing that: i) an even allocation of resources among UEs is
inefficient, whereas even a rough estimate of their location allows heuristic policies to perform
very close to the optimum; ii) mobility matters: group mobility leads to higher efficiencies
and an increasing speed is also beneficial; iii) wireless charging can substantially reduce the
fraction of nodes with depleted battery. However, this comes at the expense of constantly
transmitting power and transfer efficiencies are low under any scenario.

3.1.2. Chapter Outline

The rest of the chapter is organized as follows. In Section 3.2, we discuss the related literature.
Section 3.3 describes the system model. Then, WPT policies are proposed in Section 3.4. In
Section 3.5, we present and discuss some selected numerical results. Finally, we conclude our work
in Section 3.6.

3.2. Related Work

Due to the large diffusion of Wireless Sensor Networks (WSNs), involving relatively small and
usually battery-powered devices, the study of WPT and EH has emerged as an interesting field of
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research, including its application in future mobile networks. Below, we detail some of the main
literature approaches.

In an early work [58], the authors show that it is possible to apply WPT with satisfactory results.
There, they wirelessly transferred energy between a pair of devices by adopting self-resonant coils
in a strongly coupled regime. The efficiency of the non-radiative transfer is demonstrated over
higher distances than the radii of the two coils. A quantitative model, describing WPT, is also
presented and the practical applicability of the system is discussed. It is also highlighted that
specific materials and more elaborated geometries can be taken into account in order to improve
the transfer efficiency. In this way, in [59], Kurs et al. exploit strongly coupled electromagnetic
resonators to transfer energy from a transmitter to a receiver separated by a distance much larger
than the size of the resonators. This technique can also be used to remotely power multiple
devices from a single transmitting source. The power transfer efficiency is experimentally shown
for cases involving coupling objects of different sizes. The authors also highlight that a single source
powering many small devices, distributed over a large volume, achieves a good overall efficiency,
even in scenarios where the transfer efficiencies of the single devices are quite low.

In [60], the SWIPT approach is tackled. The authors studied the tradeoff between the rates
at which energy and information can be injected over a wireless channel affected by noise. A
capacity-energy function of the channel was also found. According to this paper, by adopting the
found tradeoff, it is possible to receive both large amounts of energy and information per unit
time. Moreover, a three-node wireless MIMO broadcasting system for SWIPT is described in [61],
involving two receivers and a single transmitter. In the described scenario, one of the two receiving
devices harvests energy from the source, while the other one decodes the transmitted information.
Two cases are studied: one where the information and energy receivers see two different channels
from the transmitter, and another one in which they see the same channel. In the first case,
strategies for maximum information rate versus energy transfer are derived. In the second case,
instead, a performance bound outside of the rate-energy region is shown. This bound, though, is
not reachable with existing technology, because circuits for harvesting energy from radio signals
are not able to also decode information yet.

In [62], an optimal packet scheduling problem in a single-user energy harvesting wireless com-
munication system is considered. In this network scenario, both the data packets and the harvested
energy are modeled at the source node as random arrival processes, and the goal is to adaptively
change the transmission rate according to the traffic load and to the available energy, such that
the time by which all packets are delivered is minimized. Moreover, the authors of [63] propose
an amplify-and-forward relay network, where an energy constrained relay node harvests energy
from an acquired RF signal and uses it to forward the received information from the source to the
destination.

The use of MIMO techniques along with beamforming allows for a considerable improvement
in the transfer efficiency of energy and information. In [64], a MIMO beamforming scheme is
considered to power mobile devices without needing them to be placed on apposite charging pads
or with a particular orientation. This approach transfers energy by beamforming the nonradiated
magnetic field and steering it toward the mobile device. Differently to what is doable using tradi-
tional inductive or resonating techniques, where the device to be charged has to be placed close to
the charger, with this scheme a UE can be charged while inside the owner’s pocket or a bag. Also,
it does not require to modify the smartphones’ hardware, but can be used with today’s devices by

26



3.3. SYSTEM MODEL

simply including a small receiver coil and circuit in a sleeve attached to the mobile device. A sim-
ilar approach is presented in [65], where the authors consider a MISO femtocell cochannel overlaid
with a macrocell to exploit the advantages of SWIPT, while promoting the energy efficiency. The
femto BSs send information and simultaneously transfer energy to femto users via beamforming.

Finally, a recent work [66] presents a model for joint downlink and uplink transmission of K-tier
heterogeneous cellular networks with SWIPT for efficient spectrum and energy utilization. In the
downlink transmission, mobile users, equipped with power splitting receiver architecture, simulta-
neously decode information and harvest energy. In the uplink transmission, instead, UEs use the
harvested energy to transmit information.

Novelty of the present work: the distinctive trait of our present work is that we explicitly
consider user mobility in a distributed cellular system composed of several WPT-enabled BSs,
investigating how mobility affects the charging efficiency of heuristic and optimal approaches.

3.3. System Model

We consider a cellular network covering a toroidal area of M1×M2 square meters. Within such an
area, we randomly deploy N > 0 nodes, that represent the UEs in the network, as well as B > 0
BSs, with B ≪ N . Each base station i = 0, . . . , B − 1 keeps track of the nodes that are located
inside its coverage area Ai and, each node n = 0, . . . , N − 1, keeps track of all the surrounding
base stations. Hence, each node will be associated with the BS that provides the highest Received
Signal Strength Indicator (RSSI), which is referred to as the serving BS. For WPT, each BS uses
M ≥ 1 transmitting antennas, whereas each UE uses a single antenna, entailing a MISO power
transfer channel. The UEs are free to move according to a certain mobility model, whose discussion
is deferred to Section 3.3.4. In the following, we consider a target UE that is to be charged in a
specific time slot by its serving BS and with d we mean their physical distance.

3.3.1. Channel Models

As for the channel model, we consider path loss and multi-path fading propagation phenomena. To
model the path loss, we use the following simplified formula [67]: Prx = PtxK(d0/d)

γ , where Ptx is
the power transmitted by the BS, Prx is the power received at the UE, d0 is a reference distance for
the antenna far-field, d is the distance between the WPT transmitter and the receiver, and γ is the
path loss exponent. K depends on the antenna characteristics and is given by K = (λ/(4πd0))

2,
where λ is the wavelength. The power gain due to path loss is thus fpl(d) = K(d0/d)

γ .
Furthermore, for the considered dense network scenario, which is typical of network deployments

in urban areas, we assume that a direct channel between the BS and the UE is unlikely to exist and
for this reason the UEs receive a number of weak multi-path components, whereas the direct path
is blocked. In such case, the received fading envelope is Rayleigh distributed. In order to model
the Rayleigh fading, we use an improved version of the Pop-Beaulieu simulator based on Clarke’s
model [68]. According to this model, the normalized lowpass fading process y(t) = yc(t)+ jys(t) is
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obtained through a sum-of-sinusoids statistical simulation model, where:

yc(t) =
1❄
P

P
∑

p=1

cos(ωdt cosαp + φp), (3.1)

ys(t) =
1❄
P

P
∑

p=1

sin(ωdt cosαp + φp), (3.2)

with αp = (2πp + βp)/P , p = 1, 2, ..., P , where P is the number of propagation paths, ωd = 2πfd,
fd is the Doppler frequency, αp and φp respectively represent the arrival angle (at the receiver) and
the initial phase of the p-th propagation path. Finally, βp and φp are statistically independent and
uniformly distributed in [−π, π), for all p = 1, 2, . . . , P .

3.3.2. Transmission Beamforming for WPT

In the considered MISO scenario, beamforming techniques are utilized to increase the received
power at the target UE. Here, we assume the channel gains are known at the transmitter and
we use transmit beamforming [67] to maximize the amount of power that is transferred to the
UE that is to be charged in the current time slot t. At the transmitter, the signal si(t) that
is to be transmitted from antenna i is multiplied by a complex gain ωi = ρie

−jθi , ρi ∈ [0, 1].
This multiplication implements co-phasing (θi) and weighting (ρi) relative to the channel gains.
Let gi =

❛
fpl(d)y(t) be the complex lowpass channel gain (amplitude domain) between the i-th

antenna at the BS and the receiving antenna at the UE, which depends on the path loss gain❛
fpl(d) and on the lowpass fading envelope y(t) in the current time slot t. With perfect channel

knowledge, co-phasing amounts to setting θi = arg(gi), i = 1, . . . ,M . Moreover, the combined
lowpass signal at the receiver is:

r(t) =

M
∑

i=1

ρirisi(t), (3.3)

where ri = |gi|. For maximum power transfer, the (optimal) beamforming weights are obtained
as [67]:

ρi =
ri❜

∑M
i=1 r

2
i

, (3.4)

which satisfies
∑M

i=1 ρ
2
i = 1. With transmit beamforming and M transmit antennas at the BS, the

power transmitted from antenna i = 1, . . . ,M , is P i
tx = Ptxρ

2
i , where Ptx is the total transmitted

power. The harvested power Q at the target UE in slot t is proportional to the total received power
in that slot, and is obtained as [65]:

Q = ξ

M
∑

i=1

Ptx|giωi|
2= ξPtx

M
∑

i=1

(ρiri)
2, (3.5)
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where 0 < ξ ≤ 1 is the power harvesting efficiency, which depends on the energy scavenging
technology at the receiver. The channel gains gi are obtained as a function of the path loss gain
and of the multi-path fading envelope in the current time slot t. Moreover, we assume independently
distributed fading processes across the transmitting antennas.

3.3.3. Energy Consumption and Efficiency Metrics

Time is slotted, slot times have a constant duration of T seconds, are grouped into windows, and
each window contains W subsequent time slots. In each time slot, each UE consumes a certain
power, Pd, which depends on the current task, i.e., emailing, Web browsing, calling, idling, etc.
Assuming a constant power consumption in a time slot entails an energy drainage of TPd.

The power consumption quantities, taken from [3], are measured using a Samsung Galaxy S3
smartphone and are shown in Table 3.1. In our numerical results, one activity from this table is
picked with a certain probability at the beginning of each time window and is kept unchanged for
its whole duration. The energy consumption for a time window is thus Ed = WTPd.
Taking a specific UE n = 0, . . . , N −1, and referring to its battery level at the beginning of window
w = 0, 1 . . . as En,w, from window w − 1 to w we have:

En,w =

{

En,w−1 − En,d + Erx,n,w−1, if En,w > 0

0, otherwise,
(3.6)

where En,d is the energy consumed by UE n due to the phone’s activity and Erx,n,w−1 is the energy
harvested by this user through WPT in window w − 1. Note that, if the battery gets empty, i.e.,
En,w = 0, UE n is considered dead and cannot be wirelessly charged any longer.

Table 3.1: Battery discharge power Pd vs activity from [3].

Task Pd [mW]

Audio 226

Email 1299

Phone call 854

Standby 24

Web 1080

WPT efficiency: for a given WPT scheduling policy, we measure the wireless power transfer
efficiency η ∈ [0, 1] as the ratio between the total energy harvested by the UEs and the total
amount of energy that is transmitted by the BSs:

η = lim
L→+∞

∑L−1
w=0

∑N−1
n=0 Erx,n,w

∑L−1
w=0

∑B−1
i=0 Etx,i,w

, (3.7)

where L is the number of time windows, B is the number of BSs, N is the number of UEs, Etx,i,w

and Erx,n,w respectively represent the total energy transmitted by BS i and the total energy har-
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vested by UE n within time window w.

Charging metrics: at the beginning of a new window w, each BS i has to decide which ones of
the users within its own coverage area Ai are to be charged and in which time slots: this is referred
to as power transfer schedule. This decision is made in order to maximize one of the following
global metrics. Metric 1 (M1) jointly considers the transfer efficiency η and the residual battery
level averaged over all UEs across all time slots, E, and is obtained by their linear combination
through a weight α ∈ [0, 1]:

M1 = αη + (1− α)E. (3.8)

Here, α ∈ [0, 1] weighs the importance of the charging efficiency versus the residual energy
level of the terminals. In fact, when α = 1 the UEs providing the best transfer efficiency (i.e., the
highest η) are charged, as these will have the largest M1 metric, while when α = 0 the devices
whose battery is about to deplete are prioritized, as charging these will increase E. Intermediate
cases occur for 0 < α < 1.

With Metric 2 (M2), the previous quantities are multiplied:

M2 = ηE. (3.9)

Here, the UEs with the lowest battery level, and that at the same time would benefit the most
from the power transfer (leading to the highest η), are prioritized.

In the charging strategies that will be discussed in Section 3.4, we aim at maximizing the global
metrics M1 and M2 by devising WPT schedules on a window-by-window basis. That is, at the
beginning of any time window w = 0, 1, . . . , each BS assesses the η and E metrics only for the users
within its cell and for the entire window w. The best local schedule is then found through dynamic
programming, by assessing all the possible allocation policies for the W time slots in the current
window w [69]. The policies that we obtain through this approach are referred to as genie-based
in Section 3.4, are not guaranteed to lead to the globally optimal metrics, but are preferred due to
their practical and lightweight character.

3.3.4. Mobility Models

For the mobility, we consider the Random Waypoint Model (RWP) and Reference Point Group
Mobility Model (RPGM). RWP allows the users to move freely and without restrictions around
the network. In this model, first proposed by Johnson and Maltz [70, 71], UEs randomly choose
their destination, speed and traveling direction and they do so independently of other users. RWP
permits to study mobility scenarios where the users travel alone. At the beginning of the algorithm,
each UE randomly chooses its destination and speed v such that its modulus is |v|∈ [vmin, vmax],
where vmin and vmax respectively are the minimum and maximum speed, then it chooses the
movement direction in order to get closer to its destination. Upon reaching it, the user stops for
a pause time Tpause, then he randomly chooses a new destination and the whole process repeats
anew. A mobility path example for RWP is shown in Fig. 3.1.

RPGM [2], permits to study mobility scenarios where the movements of UEs are spatially
correlated, i.e., users moving in groups, or carrying multiple devices. Nodes are divided into group
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Figure 3.1: Example of node’s movement in RWP [2]. (xi, yi), i ∈ {1, . . . , 8}, are the destinations
for 8 subsequent steps, (x0, y0) is the initial position.

leaders and followers and each group is composed of a group leader, that determines the direction
of movement and speed for the whole group, and a certain number of followers, that tag along the
leader of their group. At the beginning of the algorithm, each group leader behaves as an RWP
node would do, i.e., randomly choosing his destination and speed and, at each round, he gets closer
to his destination. The followers, instead, move in the same direction and with the same speed of
their group leader, eventually deviating of a bounded distance from their reference point, i.e., the
point they would reach traveling along the very same direction of their leader and with the same
speed. This process goes on until the leader reaches his intended destination, then the whole group
stops for a pause time, Tpause, after which the leader chooses another destination and the whole
process repeats again. A group mobility example in RPGM is shown in Fig. 3.2.

3.4. Wireless Power Transfer Policies

Whenever the battery energy of any UE decreases below a certain threshold, Eth ∈ (0, Emax] (Emax

is the UE’s maximum battery energy), the UE sends a charging request to the BSs within coverage.
The collection of charging requests and the decision of which UEs are to be charged is made on a
window-by-window basis. Specifically, the requests that arrive during window w−1 are processed at
the beginning of the w-th window, at which point the BSs decide which of the requesting users shall
be charged during window w. Hence, a certain amount of power will be wirelessly transmitted to
the selected users in their allotted time slots in a Time Division Multiple Access (TDMA) fashion.
Note that the time slot allocation has to be made wisely, i.e., in order to maximize some selected
metrics (see previous metrics M1 and M2). This means that, depending on the specific metric that
is to be maximized, some users may be preferred as they are located within a shorter distance
from the base station and thus the power transfer efficiency toward them is higher or other users
may be given higher priority as their battery is about to deplete (i.e., energy level below Eth).
Hence, in each window the number of time slots that is to be allocated by each BS to each user
within coverage may change and may be uneven across different users, depending on their battery
level and location. Next, we propose several policies to obtain suitable power transfer schedules by

31



3.4. WIRELESS POWER TRANSFER POLICIES

leader
follower

follower

group

w-th window

(w + 1)-th window

Figure 3.2: Example of group movement in RPGM [2]. The dashed straight lines represent the
followers’ reference path in absence of deviations. Two topology snapshots are drawn: one at the
w-th window, and one at the (w + 1)-th window.

adopting genie (optimal) or heuristic approaches and considering either metric M1 or M2.

3.4.1. Policy 1 (genie-based, metric M1)

According to Policy 1 (P1), the BSs exactly know the position of all UEs throughout the entire
simulation and optimally allocate TDMA (power transfer) time slots among the nodes that are to
be charged, so as to maximize metric M1 of Eq. (3.8).

Policy P1 uses a genie which knows the exact position of all users at all times. P1 is utilized
as a benchmark for the heuristic policies that we detail below.

3.4.2. Policy 2 (heuristic, metric M1)

With Policy 2 (P2), instead, the BSs estimate the positions of the UEs in the current time window.
Any BS i, given that a UE is inside its coverage area Ai, and by observing at least two different
positions of it, predicts its trajectory as we now describe. Consider UE n ∈ {0, . . . , N − 1}, and
assume that we measure its position in time slots t and t − k, with k ≥ 1, which we respectively
call pn,t = (pn,t,x, pn,t,y) and pn,t−k = (pn,t−k,x, pn,t−k,y). The UE speed vn = (vn,x, vn,y) is then
estimated as:

vn,x =
pn,t,x − pn,t−k,x

Tk
, (3.10)

vn,y =
pn,t,y − pn,t−k,y

Tk
, (3.11)
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where T is the duration of a time slot. The BS can also estimate the future UE location at any
time slot t′ > t, p̂n,t′ = (p̂n,t′,x, p̂n,t′,y), as:

p̂n,t′,x = pn,t,x + vn,x(t
′ − t)T, (3.12)

p̂n,t′,y = pn,t,y + vn,y(t
′ − t)T. (3.13)

If BS i sees that the estimated future position of any UE n falls outside its coverage area, say,
inside the one of BS j, with i, j ∈ {0, . . . , B − 1}, i 6= j, it notifies the latter BS of this fact,
providing it with estimates of the UE arrival time and location. Given that each BS executes the
above steps, estimates for UEs arrivals and departures are available to all BSs. After executing
these estimations, which are made at the beginning of each window w, the BSs pick the power
transfer slots as in P1, i.e., they determine the UEs to charge in order to maximize metric M1 of
Eq. (3.8) for each time slot. The only difference with respect to P1 is that in this case the estimated
locations are used in place of the exact ones.

3.4.3. Policy 3 (genie-based, no metric)

With Policy 3 (P3), the BSs know the location of the UEs inside their coverage area Ai at the
beginning of each time window. However, for the remaining time slots within the same time window
they only know whether each of these UEs will remain inside their coverage area Ai. Hence, for
any given time window, each BS i = 0, . . . , B− 1 only charges the UEs that have issued a charging
request (with energy level below Eth at the beginning of the time window) and that remain inside
its coverage area Ai for the entire window. For the charging schedule, the TDMA slots in the
window are evenly split among these UEs. P3 is a genie policy as, although the exact position of
the UEs is not known for all the future time slots, their serving BS is known beforehand for all the
future slots in the current window, and since the beginning of it.

3.4.4. Policy 4 (heuristic, no metric)

With Policy 4 (P4), as with P3, the BSs only know the location of the UEs at the beginning of
the current time window. Differently from P3, though, each BS i does not know those nodes that
remain inside its coverage area Ai, but has to get an estimate for this using a method analogous to
that of P2. After this, the TDMA time slots are evenly split among all the UEs that are estimated
to remain within the coverage area Ai and that need to be charged, i.e., whose energy level is below
Eth at the beginning of the time window.

3.4.5. Policy 5 (genie-based, metric M2)

With Policy 5 (P5), the BSs exactly know the position of the UEs throughout the simulation and
optimally allocate TDMA slots between the nodes to charge. Differently from P1, though, with
P5 the BSs do this in order to maximize metric M2, see Eq. (3.9). Analogously to P1, also P5 is a
genie policy, designed to evaluate the performance of its corresponding heuristic policy, i.e., P6.
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3.4.6. Policy 6 (heuristic, metric M2)

With Policy 6 (P6), instead, each BS i has to estimate the future positions of the UEs inside its
coverage area Ai and does so in the very same way as with P2. Differently from P2, though, the
metric to maximize when choosing which UEs are to be charged is M2, see Eq. (3.9).

3.5. Numerical Results

In this section, we present some selected numerical results for the WPT scenario of Section 3.3.
The parameters that were used for the simulations are given in the following Tables 3.2 and 3.3. In
all the graphs reported below, the network area is 1600 m2 for an inter-BS distance of dBS = 20 m,
except for Fig. 3.3, where it varies according to dBS.

In Fig. 3.3, we show the transfer efficiency η obtained by the considered policies P1-P6 for
N = 100 users, Ptx = 16 W, M = 4, vmax = 2.5 m/s and varying the inter-BS distance in
dBS ∈ [20, 100] m. As expected, for all the policies, the transfer efficiency increases with a decreasing
inter-BS distance. This confirms that a densely deployed scenario, such as the one envisioned for
next generation mobile networks, is beneficial to WPT. Further, we see that P1, P2, P5 and P6
behave similarly for the whole range of distances, with P1 and P2 being respectively the best and
second-best. This fact was consistently verified across the whole parameter range, which means
that metric M1 has to be preferred to M2. We also observe that P3 and P4 provide unsatisfactory
performance, and this indicates that the user location (or at least a good estimate of it) is a
valuable information for the considered WPT scheduling task. The inadequacy of P3 and P4 has
been confirmed in all our numerical results. For these reasons, P3, P4, P5 and P6 will be dismissed
and will no longer be considered in the following plots.
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Figure 3.3: Power transfer efficiency η vs inter-base station distance dBS. RWP mobility, N = 100
UEs, Ptx = 16 W and M = 4 transmit antennas.
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Table 3.2: System parameters used in the numerical results.

Parameter Value

BS coverage range 10 m

Power harvesting efficiency, ξ 0.4

Energy threshold to issue a charging request, Eth 30% of Emax

Inter-BS distance, dBS [20, 100] m

Minimum UE speed, vmin 0 m/s

Maximum UE speed, vmax [1, 4.5] m/s

Network area [1600, 40000] m2

Number of antennas per BS, M [1, 8]

Number of fading paths, P 8

Number of TDMA slots per window 10

Number of UEs, N 100

Number of UEs per group in RPGM 5

Number of windows in each simulation 28800

Path loss exponent, γ 3.5

Pause time, Tpause 2 s

Reference distance, d0 1 m

Window duration 2 s

Total transmit power, Ptx 16 W

Transmit frequency, ftx [100, 2000] MHz

UE battery capacity 2100 mAh

UE battery voltage 3.8 V

In Fig. 3.4, we explore the relationship between the power transfer efficiency η and the transmit
frequency ftx. As expected, lower frequencies are to be preferred and those commonly used for
FM broadcasting (around 100 MHz) provide the highest transfer efficiencies within the considered
frequency range, due to their lower path loss. As promptly inferred from this plot, the transfer
efficiency that we may expect from this technology is rather small, but as we shall see in the
following, when the network deployment is dense (e.g., dBS = 20 m) the mobile users may still be
able to charge their batteries (although at a low pace) and a good percentage of them to prevent
their batteries from draining fast or being depleted. Moreover, in Fig. 3.4 we show results for
random (RWP) and group (RPGM) mobility and we see that group mobility attains the best
transfer efficiencies. In fact, we observe that when one user is in a favorable location (i.e., close
to a WPT-enabled BS), with high probability his followers will also be favorably located. Hence,
more users will be efficiently charged per unit time than with RWP mobility. This was consistently
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Table 3.3: Parameters used in the following plots.

Figure α dBS [m] ftx [MHz] M vmax [m/s]

Fig. 3.3 1 [20, 100] 100 4 2.5

Fig. 3.4 1 20 [100, 2000] 4 2.5

Fig. 3.5 1 20 100 4 [1, 4.5]

Fig. 3.6 1 20 100 [1, 8] 2.5

Fig. 3.7 [0, 1] 20 100 4 2.5

Fig. 3.8 [0, 1] 20 100 4 2.5

Fig. 3.9 1 20 100 [1, 8] 2.5

verified across all our experiments.
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Figure 3.4: Power transfer efficiency η varying the transmit frequency ftx.

Another interesting result is shown in Fig. 3.5, where we compare policies P1 and P2 for an
increasing UE speed. From this plot, we see that mobility is actually beneficial in terms of η. This
is because, through mobility, even users that are initially located far away from the WPT-enabled
BSs eventually move closer to one of them and can thus benefit from WPT. Hence, the probability
that there exist users in favorable positions, i.e., close to some WPT-enabled BS is higher in the
presence of mobility and increases with an increasing maximum speed vmax.

Although not shown in the plot for the sake of readability, the gap between P3/P4 and P1/P2
becomes substantial, which confirms that it is inappropriate to charge users without accounting for
their distance from the charging BS. As for policies P5/P6, these still perform close to P1/P2, but
their performance is always dominated. Also, an increasing speed leads to a higher gap between

36



3.5. NUMERICAL RESULTS

0

5

10

15

20

25

30

35

1 1.5 2 2.5 3 3.5 4 4.5

x 10−5

P
ow

er
tr
an

sf
er

effi
ci
en
cy
,
η

vmax [m/s]

P1 (genie, M1) RWP
P2 (heuristic, M1) RWP
P1 (genie, M1) RPGM

P2 (heuristic, M1) RPGM

Figure 3.5: Power transfer efficiency η varying the maximum UE speed vmax.

genie-based and heuristic policies and this is because the estimates obtained through Eq. (3.12)
and (3.13) become less accurate. This is especially evident with RPGM mobility, as group mo-
bility patterns are poorly described by these estimates (where the mobility of each terminal is
independently assessed).
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Figure 3.6: Power transfer efficiency η vs number of transmit antennas, M .

Fig. 3.6 shows the transfer efficiency η as a function of the number of transmit antennas M
at the charging BS. When a single antenna is employed (M = 1, no beamforming) we obtain the
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Figure 3.7: Power transfer efficiency η vs α.

lowest efficiency, which then improves by more than one order of magnitude for M = 2 and more
than two for M = 4. Beyond M = 4, the additional improvement is marginal. We observe that,
in theory, additional benefits may be possible by also using antenna arrays at the receiver side.
Due to space constraints at the UEs, this is however only feasible at high frequencies (in the GHz
range), due to the antenna size and the separation (≈ λ/2) that is required to ensure uncorrelated
fading among antennas. Nevertheless, in the GHz range the efficiency appears too small to justify
the use of WPT in the considered network scenario (see Fig. 3.4).

In Fig. 3.7, we show the efficiency η for the best policies P1 and P2 as a function of the weight α
(see Eq. (3.8)). With α = 1, metricM1 puts more weight on η, which becomes the only performance
indicator to be maximized. As seen from this graph, this is in fact what the policies do: as α goes
from 0 to 1, the efficiency η correspondingly increases of about 50%. In this figure, we also show
the impact of the mobility behavior, plotting results for the RWP and RPGM mobility models.
Once again, group mobility leads to the highest efficiencies.

At this point, one might rightly wonder what happens to the energy metric E when we decrease
α down to 0. This latter tradeoff is shown in Fig. 3.8, from which we get a somewhat counterintuitive
result, i.e., that putting more weight on the residual energy level at the nodes (α → 0) does not lead
to an increased energy metric E, but the residual energy is actually maximized when α = 1, i.e.,
when the WPT schedules are solely computed based on the power transfer efficiency η. The reason
behind this is that, when α = 0, WPT slots will be assigned based on the residual energy level and
disregarding the users’ location. However, with this approach it may happen that users that are
located far away from the BSs will be charged anyway as their energy level is below threshold, but
the charging efficiency in this case will be very small and we would be better off by charging these
users as they get sufficiently close to one of the WPT-enabled BSs. Overall, this means that the
best strategy is to compute the charging schedules only based on the UE location, as the transfer
efficiency will otherwise be too small. Besides, Fig. 3.8 confirms the fact that group mobility helps
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Figure 3.8: Normalized average energy per non-dead node per window vs α.

increase the nodes’ energy level and that the heuristic policy P2 for vmax = 2.5 m/s performs very
close to the genie-based policy P1.

In the last Fig. 3.9, we evaluate the fraction of UEs whose battery is depleted during the simu-
lation for a pedestrian mobility scenario (vmax = 2.5 m/s). Once again, we see that beamforming is
quite efficient, lowering this fraction from 0.7 (i.e., 70% of the users) down to 0.53 for M = 8, which
corresponds to a relative improvement of about 24%. This is considerable, especially in light of the
very small efficiencies that are provided by WPT in the considered network scenario. Although
not evaluated in this chapter, we foresee that in the near future BSs will be equipped with energy
harvesting technology (e.g., solar panels), which will make it possible to collect ambient energy
(see next chapters). Part of this energy, especially during daytime, could be used to charge mobile
users. Although the charging efficiency is very low, this ancillary service is valuable to the users,
who may be willing to pay for it, generating revenue for the mobile operators.

3.6. Conclusions

In this chapter, we have studied WPT techniques for sustainable mobile networks, using transmit
beamforming to wirelessly charge mobile UEs in densely-deployed MISO femtocell networks. We
have designed several policies to assess which users are to be charged and in which time slots, while
prioritizing them based on their location and on their battery level.

Through numerical simulation, we have then analyzed the performance of these policies finding
that heuristic approaches, that estimate the user locations, behave close to genie-aided ones, where
locations are exactly known for all the future time slots. This is especially true for pedestrian
scenarios, where the user speed is moderate and even simple linear approximations suffice to obtain
accurate estimates. We have also assessed the impact of the mobility behavior, finding that mobility
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Figure 3.9: Fraction of dead nodes vs number of transmit antennas M . RWP mobility with
maximum user speed vmax = 2.5 m/s.

helps to increase the power transfer efficiency and also that the best results are achieved when users
move in groups. Although typical WPT efficiencies are rather small in any scenario, our results
indicate that the number of dead nodes, whose battery is depleted during the simulation, decreases
of about 24% with WPT for an inter-BS distance of 20 meters.

Finally, it should be noted that although the considered setup in terms of configuration and
network parameters might be far from conventional 5G deployments, the proposed methodology
could be applied to the 5G air interface as well with minor modifications.
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4

Energy Cooperation among Energy Harvesting Base Stations

4.1. Introduction

In this chapter, we advocate future networks where small BSs are densely deployed to offer coverage
and high data rates, and EH hardware (e.g., solar panels and energy storage units) is installed to
power them. BSs collect energy from the environment, and have a local energy storage, which they
can use to accumulate energy when the harvested inflow is abundant. This local energy reserve
can be utilized to serve the local traffic and can be transferred to other BSs (energy routing) to
compensate for imbalance in the harvested energy or in the traffic load, see Fig. 4.1. Some of the
BSs, referred to as ongrid, are connected to the power grid, whereas the others are offgrid and,
as such, rely on either the locally harvested energy or on the energy transferred from other BSs.
Within this setup, intelligent policies are to be devised to transfer the surplus energy to offgrid
BSs, to ensure the self-sustainability of the mobile system.

Energy transfer is an important feature of EH mobile networks and can be accomplished in
two ways: i) through WPT or ii) using a PPG [72]. For i), our previous studies (see Chapter 3
and [21]) have shown that its transfer efficiency is too low for it to be a viable solution when
distances exceed a few meters, but ii) looks promising. In analogy with communications networks,
in a PPG a number of power sources and power consumers exchange power (Direct Current, DC)
in the form of “packets”, which flow from sources to consumers thanks to power lines and electronic
switches. The energy routing process is controlled by a special entity called the energy router [73].
Following this architecture, a local area packetized power network consisting of a group of energy
subscribers and a core energy router is presented in [74], where a strategy to match energy suppliers
and consumers is devised.

Within this setting, the allocation and transfer of energy among BSs is performed through the
PPG infrastructure, where a centralized energy router is responsible for deciding the power alloca-
tion and transfer among the BSs over time (Fig. 4.1). This energy allocation and transfer problem
is solved devising an online framework combining: 1) pattern learning (time series forecasting), 2)
adaptive control (through MPC), 3) energy allocation and 4) energy routing, see Fig. 4.2. Pattern
learning is performed via Gaussian Processes (GPs), to learn the BS energy harvesting and con-
sumption (load) patterns over time. This knowledge is utilized within the multi-step ahead MPC
block, that is in charge of determining the role of each BS, i.e., whether it should act as an energy
source or consumer, and the maximum energy amount that it can either supply (if acting as a
source) or demand (consumer), in order to keep the BS system as much as possible energetically
self-sufficient over time. The energy allocation block computes the actual amount of energy to
transfer from energy sources to consumers: two schemes are proposed, one based on convex opti-
mization and one, used as a benchmark, based on an optimal assignment problem, that is solved via
the Hungarian method. Finally, once the energy allocations are computed, the energy transfer
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Figure 4.1: Power packet grid topology.

block schedules in time the energy routes, by transferring the energy among nodes. Since the PPG
is operated in a Time Division Multiplexing (TDM) fashion, each power link can only be used for
a single energy transfer operation at a time. An optimal algorithm to allocate routing schedules is
put forward, ensuring that routes between energy sources and consumers do not interfere in time
and space, while minimizing the total time needed to complete the energy transfers. Further details
are provided in Section 4.4.

Although the considered online optimization problem can be solved with other tools, such
as a monolithic formulation or dynamic programming, the presented decomposition into four
sub-problems makes it possible to deal with low-complexity convex problems, without introducing
significant approximations and/or quantization to the involved variables. The resulting approach
is practical and appealing for real-world applications.

Numerical results, obtained with real-world harvested energy traces and traffic load patterns,
show that the proposed approach effectively keeps the outage probability1 to nearly zero for a wide
range of traffic load and system configurations. Also, the amount of energy purchased from the
power grid to operate the mobile network is reduced by more than 50% with respect to computing
energy schedules solely based on the present network status [75], i.e., disregarding future energy
arrivals and load conditions. As we elaborate in Section 4.2, we have not identified previous works
coping with distributed BS deployments with energy harvesting, storage and transfer capabili-
ties (via PPG), and proposing an energy management solution based on statistical learning and
predictive control.

1Computed as the ratio between the number of BSs that are unable to serve the users within range due to energy
scarcity, and the total number of BSs.
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4.1.1. Contributions

The main contributions of the present chapter are:

• We present an online statistical learning framework based on Gaussian Processes, which
is customized to learn the EH and consumption (load) patterns over time. Specifically, a
specific composite kernel is designed and tuned with optimal hyperparameters to cope with
local quasi-periodic structures in the data, with noise operating at different scales. GPs are
then utilized to predict these processes in future time slots, in an online and adaptive fashion
(based on the most recent samples).

• We formulate an online and predictive optimization problem for the energy transfer across
EH BSs with the goal of making the mobile network energetically self-sustainable.

• We provide numerical results, quantifying the effectiveness of the proposed solution with
real-world harvested energy and load traces. An important finding is that the combination of
forecasting and predictive control can substantially reduce the total amount of energy that
the BS system drains from the power grid, halving it in most cases. This descends from a
more intelligent redistribution of the harvested energy.

4.1.2. Chapter Outline

The chapter is organized as follows. In Section 4.2, we present the literature on energy cooperation,
the mathematical tools used in this work and highlight the novel aspects of our design. The network
scenario is described in Section 4.3. Our optimization framework is detailed in Section 4.4. The
numerical results are presented in Section 4.5, and final remarks are provided in Section 4.6.
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4.2. Related Work

In this section, we present some specific literature on energy cooperation, the mathematical tools
used in this chapter, namely MPC and GPs, and highlight the novel aspects of the proposed design.

4.2.1. Energy Transfer in Mobile Cellular Networks

The concept of energy transfer, also referred to as energy cooperation [22, 24, 29] or energy ex-
change [53], is motivated by the fact that the distributed renewable energy generated at the BSs
can be leveraged upon through a microgrid connecting them [56], with the aim of improving the
network self-sustainability, while reducing the cost entailed in purchasing the energy from the
power grid. Energy sharing among BSs is investigated in [24] through the analysis of several mul-
tiuser network structures. A two-dimensional and directional water-filling-based offline algorithm
is proposed to control the harvested energy flows in time and space, with the objective of max-
imizing the system sum-rate throughput. In [29], the authors introduce a new entity called the
aggregator, which mediates between the grid operator and a group of BSs to redistribute the energy
flows, reusing the existing power grid infrastructure: one BS injects power into the aggregator and,
simultaneously, another one draws power from it. This scheme does not consider the use of energy
storage devices, and for this reason some of the harvested energy can be lost if none of the base
stations drains it when it is injected. The authors of [76] consider BSs with energy harvesting
capabilities connected to the power grid as a means to carry out the energy trading. A joint
optimization tackling BS operation and power distribution is performed to minimize the on-grid
power consumption of the BSs. Wired energy transfer to/from the power grid, and a user-BS
association scheme based on cell zooming are investigated. The problem is solved using heuristics.
A similar approach is considered in [77], where two problems are addressed: the first one consists
of optimizing the energy allocation at individual BSs to accommodate for the temporal dynamics
of harvested energy and mobile traffic. Considering the spatial diversity of mobile traffic patterns,
the second problem amounts to balancing the energy consumption among BSs, by adapting the
cell size (radio coverage) to reduce the on-grid energy consumption of the cellular network. Again,
the solutions are obtained through heuristic algorithms. Also, in these works, differently to what
we propose here, BSs do not perform any actual energy transfer among them.

A two-cell renewable-energy-powered system is studied in [78], where the sum-rate over all users
is maximized while determining the direction and amount of energy to be transferred between the
two BSs. Energy can be transferred across the network either through power lines or wireless
transfer and the energy transfer efficiency is taken into account. This resource allocation problem
is formulated under a Frequency Division Multiple Access (FDMA) setup and is solved numerically.
A low-complexity heuristic approach is also proposed as a practical near-optimal strategy when
the transfer efficiency is sufficiently high and the channel gains are similar for all users. A similar
two-BS scenario is considered in [22], where BSs gather energy from the power grid and from
renewable energy sources, have a limited energy storage capability, and are connected through
power lines. The authors study the case where renewable energy and energy demand profiles are
deterministically known ahead of time, and find the optimal energy cooperation policy by solving
a linear program. They then consider a more realistic case where the profiles are stochastic and
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propose an online greedy algorithm. Finally, an intermediate scenario is addressed, where the
energy profiles are obtained from a deterministic pattern, adding a small amount of random noise
at each time step.

The authors of [53] consider a setup similar to ours, i.e., multiple BSs, energy harvesting
with local storage devices and energy exchange among BSs through the power grid. The main
differences are that perfect knowledge of hourly varying energy demand profile (BS load) and
hourly harvested energy is assumed, and energy routing is not studied. An optimal constrained
problem is formulated, assessing its performance via simulation. Other relevant papers are [56,79].
There, energy sharing takes place either via physical power lines or through the power grid (virtual
energy exchange). Interestingly, the authors investigate the impact of the power line infrastructure
topology: agglomerative and divisive hierarchical clustering algorithms are utilized to determine it.
Upon establishing the physical connections among BSs, an optimization framework for day-to-day
cost optimization is developed for the cases of 1) zero knowledge, 2) perfect knowledge, and 3)
partial future knowledge of the harvested energy process. The main differences with respect to our
work are: for the partial future knowledge case, a static model is adopted, where the amount of
energy harvested through the day is given by an average value for each time slot, plus a random
displacement. Average values are obtained from historical data, but are kept fixed during the day.
In contrast to this, we devise an online estimation algorithm through which future harvested energy
incomes are estimated based on those measured in the most recent time slots, providing online
adaptation and tracking capabilities. Also, in [56] perfect knowledge of the BS consumption pattern
across a whole day is assumed, whereas we estimate and track it at runtime. Online predictive
control takes these estimates into account for the computation of optimal energy transfers, making
our solution applicable to real settings.

Techniques exploiting energy trading / sharing through, e.g., spectrum sharing or Coordinated
MultiPoint (CoMP), are combined for energy cost reduction in EH BS networks and a power grid
in [28]. While the authors discuss interesting future research directions, their system model does
not consider time dynamics. The joint energy purchase and wireless load sharing among mobile
network operators is exploited in [80] to reduce energy costs. The authors of this paper propose a
scheme named energy group buying with load sharing, where the two operators are aggregated into
a single group to implement a day-ahead and real-time energy purchase, and their BSs share the
wireless traffic to maximally put lightly-loaded BSs into sleep mode. This scenario is tackled using
two-stage stochastic programming. The scenario that we consider here is different, as we focus on
actual energy exchange among BSs belonging to the same operator. The authors of [81] consider a
delay minimization problem in an energy harvesting communication network with energy cooper-
ation. Their study considers fixed data and energy routing topologies, determining optimum data
rates, transmit powers, and energy transfers through an iterative algorithm, subject to flow and
energy conservation constraints, to minimize the network delay. Two last papers are [82, 83]. The
authors of [82] consider multiple EH transmitters communicating with multiple receivers, with the
goal of maximizing the weighted throughput within a data broadcasting setup. They put forward
an iterative algorithm that solves the energy and bandwidth allocation sub-problems optimally. [83]
presents an energy-bandwidth allocation problem for a multiuser network where each node is pow-
ered with renewable and grid energy and the aim is to maximize the weighted sum throughput for
transmitter-receiver pairs, while minimizing the use of grid energy. Differently from our present
work, in this prior paper energy harvesting flows are considered to be deterministically known be-

46



4.2. RELATED WORK

forehand, and the energy transfer between nodes is not explicitly modeled in terms of architecture,
physical layer technology and (possibly multi-hop) energy routing.

4.2.2. Pattern Learning along with Multi-step Optimization Techniques

Model Predictive Control has its roots in optimal control theory. The main idea is to use a dynamic
model to forecast the system behavior, and exploit the forecast state sequence to obtain the control
at the current time. The system usually evolves in slotted time, the control action is obtained
by solving, at each time slot, a finite horizon optimal control problem where the initial state is
the current state of the system. The optimization yields a finite control sequence, and the first
control action in this sequence is applied [84]. MPC has the ability to anticipate future events
and makes control decisions accordingly. It has been widely used in industrial processes, including
chemical plants [85–87] and oil refineries [88, 89] and, recently, to balance energy consumption in
smart energy grids [90–92]. Moreover, it has been applied to supply chain management problems,
with promising results [93–96].

It is known that using time-series forecasting within an MPC framework can improve the
quality of the control actions by providing insight into the future [97]. Over the last decades,
numerous forecasting approaches have been developed, including Autoregressive Integrated Moving
Average (ARIMA) processes and ANNs. ARIMA models (introduced by Box and Jenkins in [98])
are known for their prediction accuracy, but their main limitation lies in the assumption that the
data follows a linear model. Conversely, ANNs capture non-linear models and, in turn, can be a
good alternative to ARIMA [99]. Nonetheless, ANNs give rise to mixed results for purely linear
correlation structures. In [100, 101], hybrid schemes that combine them are put forward to take
advantage of their unique strengths. Experimental results with real-world data indicate that their
combined use can improve the prediction accuracy achieved by either of the techniques when used
in isolation.

Several authors have proposed the use of non-linear models to build non-linear adaptive con-
trollers. In most applications, however, these non-linearities are unknown, and non-linear param-
eterization must be used instead. In time-series analysis, where the underlying structure is largely
unknown, one of the main challenges is to define an appropriate form of non-linear parameterization
for the forecasting model. Some implementations claim to be non-parametric, such as GPs, which
can be considered (in some sense) as equivalent to models based on an infinite set of non-linear
basis functions [102]. The basic idea of GPs is to place a prior distribution directly on the space
of functions, without finding an appropriate form of non-linear parameterization for the forecast-
ing model. This can be thought of as a generalization of a Gaussian distribution over functions.
Moreover, a GP is completely specified by the mean function and the covariance function or ker-
nel, which has a particular (but simple) parametric structure, defined through a small number of
hyperparameters. The term non-parametric does not mean that there are no parameters, but that
the parameters can be conveniently adapted from data. While GPs have been used in time-series
forecasting [103], to the best of the authors’ knowledge, [104] is the first application of GPs to
electrical load forecasting [105–108].

The electricity supply is mainly influenced by meteorological conditions and daily seasonality.
Nevertheless, forecasting for short-term horizons of about a day is often performed using univariate
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prediction models, which are considered to be sufficient because the weather tends to change in
a smooth fashion, which is reflected in the electricity demand itself. Also, in a real-world online
forecasting scenario, multivariate modeling is usually considered impractical [106]. Due to daily
seasonality, we can say that the electrical load data bears some similarities with the time series
that we consider in this chapter, i.e., the harvested energy profile of Section 4.3.2 and the traffic
load of Section 4.3.3.

The idea of combining MPC and GPs was first proposed in [109], where the framework is eval-
uated by means of a simple (simulated) first order non-linear process. Other practical implemen-
tations can be found in application domains such as greenhouse temperature control systems [110],
gas-liquid separation plant control systems [111], combustion power plants control systems [112]
and in a number of other cases [113–116]. To the best of our knowledge, the present work is the
first where MPC and GPs are combined to control an energy harvesting mobile network. Our
purpose is thus to demonstrate the feasibility of application and realization of a GP based control
algorithm for online power management, highlighting its potentials for the development of greener
technologies, with the aim of improving the network self-sustainability.

4.2.3. Novelty of the Present Work

Despite the existence of previous works on energy cooperation, here we consider a more complete
setup, where: (i) EH BSs are equipped with storage capabilities, (ii) the harvesting process and
traffic load in the system are unknown and fully stochastic, (iii) the harvested energy and traffic
load in BSs that we use for GP training and for our numerical results come from real-world traces,
and (iv) the physical power grid is based on the novel concept of PPG. The combination of MPC
and GPs has already been considered in the literature. However, to the best of our knowledge,
this is the first time where this tool chain is used in an energy-aware mobile network scenario.
Also, in the proposed optimization architecture, the overall problem is split into sub-blocks, where
optimization problems are convex, can be solved at runtime and have low-complexity. This makes
it possible to implement the presented solution in real systems.

4.3. System Model

We consider a mobile network comprising a set S of ns = |S| BSs, each with energy harvesting
capabilities, i.e., a solar panel, an energy conversion module and an energy storage device. Some
of the BSs are ongrid (termed ongrid BSs, being part of set Son) and, in turn, can obtain energy
from the power grid. The remaining BSs are offgrid (set Soff). The proposed optimization process
evolves in slotted time t = 1, 2, . . . , where the slot duration corresponds to the time granularity of
the control and can be changed without requiring any modifications to the following algorithms.

4.3.1. Power Packet Grids

A PPG is utilized to distribute energy among the BSs. The grid architecture is similar to that of a
multi-hop network, see Fig. 4.1, where circles are BSs and the square is the energy router, which is
in charge of energy routing decisions and power allocation. As assumed in [74], BSs are connected
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through DC power links (electric wires) and the transmission of energy over them is operated in a
TDM fashion. Energy transfer occurs by first establishing an energy route, which corresponds to a
sequence of power links between the energy source and the destination. Each power link can only
be used for a single transfer operation at a time. Power distribution losses along the power links
follow a linear function of the distance between the source and the destination [74]. They depend
on the resistance of the considered transmission medium and are defined by [117]: R = ρℓ/A, where
ρ is the resistivity of the wire in Ωmm2/m, ℓ is the length of the power link in meters, and A is
the cross-sectional area of the cable in mm2. Here, we consider a PPG with a single energy router
in the center of the topology. A number of sub-trees originates from the router and, without loss
of generality, each hop is assumed to have the same length ℓ, i.e., the same power loss.

4.3.2. Harvested Energy Profiles

Solar energy generation traces have been obtained using the SolarStat tool [35]. For the solar
modules, the commercially available Panasonic N235B photovoltaic technology is considered. Each
solar panel has 25 solar cells, leading to a panel area of 0.44m2, which is deemed practical for
installation in a urban environment, e.g., on light-poles. As discussed in [31, 35], the EH inflow is
generally bell-shaped with a peak around mid-day, whereas the energy harvested during the night
is negligible. Here, the framework in [35] is utilized to obtain the amount of energy harvested for
each BS n ∈ {1, . . . , ns} in time slot t, which is denoted by Hn(t).

4.3.3. Traffic Load and Power Consumption

Traffic load traces have been obtained using real mobile data from the Big Data Challenge organized
by Telecom Italia Mobile (TIM) [118]. The dataset is the result of a computation over Call Detail
Records (CDRs), logging the user activity within the TIM cellular network for the city of Milan
during the months of November and December 2013. For the traffic load traces we use the CDRs
related to SMS, calls and Internet activities, performing spatial and temporal aggregation. In this
way, we obtain a daily traffic load profile for each BS.

Clustering techniques have been applied to the dataset to understand the behavior of the mobile
data. To this end, we use DBSCAN unsupervised clustering [119] to classify the load profiles into
several categories. In Fig. 4.3, we show the typical traffic behavior of two clusters, corresponding to
the heaviest (cluster 1) and lightest (cluster 2) daily load. As noted in previous works, the traffic is
time-correlated (and daily periodic) [31, 120]. In our numerical results, each BS has an associated
load profile, which is picked at random as one of the two clusters in Fig. 4.3. Depending on the
cluster association probabilities, there is some imbalance in the load distribution across BSs that,
as we shall see, plays a key role in the performance of energy transfer algorithms. Given the traffic
load profile Ln(t), intended as the percentage of the total bandwidth that a BS n allocates to serve
the users in its radio cell, the BS energy consumption (energy outflow), referred to in the following
as On(t), is computed through the linear model in [31] (see Eq. (1) in that paper).

4.3.4. Energy Storage Units

Energy storage units are interchangeably referred to as Energy Buffers (EBs). The EB level for
BS n ∈ {1, . . . , ns} is denoted by Bn(t) and three thresholds are defined: Bup, Bref and Blow,
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Figure 4.3: Load pattern profiles (two classes).

respectively termed the upper, reference and lower energy threshold, with 0 < Blow < Bref <
Bup < Bmax. Bmax is the EB capacity, Bref is the desired (reference) EB level and Blow is the
lowest energy level that any BS should ever reach. Bup is used in the energy purchase process from
the power grid, as detailed shortly below. For an offgrid BS, i.e., n ∈ Soff , if t is the current time
slot, Bn(t) is the EB level at the beginning of time slot t, which is updated at the beginning of the
next time slot t+ 1 as:

Bn(t+ 1) = ξn(t)(Bn(t) +Hn(t)−On(t) + Tn(t)) , (4.1)

where Tn(t) is the amount of energy transferred to/from BS n in time slot t, which is positive if
BS n is a consumer or negative if BS n acts as an energy source. In fact, for a source we have
Tn(t) < 0, as this models the outflow energy, i.e., the energy that the BS transfers, which is drained
from its energy buffer, while for a consumer we use Tn(t) > 0, as this models inflow energy, i.e.,
the new energy that is injected into the buffer. Hn(t), On(t) are the amount of energy harvested
and the energy that is locally drained (to support the local data traffic), respectively. Finally, ξn(t)
represents the losses in the EB due to charging and discharging. It depends upon the current state
of charge of the EB, which is a realistic assumption. For example, using the model in [121], we
have:

ξn(t) = 1−
(Bn(t)−Bmax/2)

2

βloss(Bmax/2)2
, (4.2)

where βloss > 1 is a constant depending upon the technology in use. Note that, as βloss increases,
the storage losses decrease, whereas βloss → ∞ models an ideal battery.

The EB level of an ongrid BS n ∈ Son is updated as:

Bn(t+ 1) = ξn(t)(Bn(t) +Hn(t)−On(t) + Tn(t) + θn(t)) , (4.3)
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where θn(t) ≥ 0 represents the energy purchased by BS n from the power grid during time slot
t. The behavior of a BS (i.e., Tn(t) and θn(t)) depends on its EB level. If the BS behaves as an
energy source, it is eligible for transferring a certain amount of energy Tn(t) to other BSs. In this
work, we assume that if the total energy in the buffer at the beginning of the current time slot t is
Bn(t) < Bup and the BS n is ongrid, then the difference θn(t) = Bup−Bn(t) is purchased from the
power grid in slot t, as an ongrid BS should always be a source, i.e., in the position of transferring
energy to other BSs. If instead the BS behaves as an energy consumer, it demands energy from
the sources. For example, the energy demand in time slot t may be set to Bref −Bn(t), so that
the EB level would ideally become no smaller than the reference threshold Bref by the end of the
current time slot t. Note that, this can only be strictly guaranteed if Hn(t)−On(t) ≥ 0. However,
Bn(t) is updated at the beginning of time slot t, whereas Hn(t) and On(t) are only known by the
end of it. To cope with this, the theory of Sections 4.4.2 and 4.4.3 computes Tn(t) accounting for
the expected behavior E[Hn(t)−On(t)], where E[·] is the expectation operator.

4.4. Optimization Framework

An optimal energy transfer is sought as follows. At time t, let i and j respectively be an energy
source (Ti(t) < 0) and a consumer (Tj(t) > 0). |Ti(t)| is the amount of energy that source i offers

to the other BSs and with T j
i (t) > 0 we indicate the amount of energy that i transfers to j in

time slot t, we must have Ti(t) +
∑

j 6=i T
j
i (t) = 0, ∀i, where T j

i (t) = −T i
j (t), ∀i, j, and T i

i (t) = 0,
∀i. Once i and j are selected, the energy routing path is unique, which descends from the PPG
network model, and we refer to aij ∈ [0, 1] as the energy loss coefficient between i and j, which
depends on the routing path (number of hops and their length). Due to routing losses, the energy
received at node j is T j

i (t)aij . A first objective function f1(t) weighs the energy losses incurred in
the energy exchange:

f1(t) =
∑

i,j∈S

(T j
i (t)− T j

i (t)aij)
2 . (4.4)

The second objective is to transfer energy among BSs such that all EB levels are kept as close as
possible to Bref , at all times. This is evaluated through a second objective function 2:

f2(t) =
∑

n∈S

(Bn(t)−Bref)
2 . (4.5)

With π we indicate an energy transfer policy, which specifies T j
i (t), ∀ i, j ∈ S, t ≥ 0. An optimal

2Bref can be made BS specific without requiring any changes in the following analysis.

51



4.4. OPTIMIZATION FRAMEWORK

policy π∗ is found as:

π∗ = argmin
π

{

lim
τ→+∞

1

τ
E

✓
τ−1
∑

t=0

♣ζf1(t) + (1− ζ)f2(t)q
✛}

,

Subject to:

T j
i (t) = −T i

j (t) , ∀i, j ∈ S , ∀t ,

Bi(t)−Bmax ≤
∑

j∈S

T j
i (t) ≤ Bi(t) , ∀i ∈ S , ∀t ,

if i ∈ Son, Bi(t) obeys Eq. (4.1), ∀ t ,

if i ∈ Soff , Bi(t) obeys Eq. (4.3), ∀ t .

(4.6)

In Eq. (4.6), the two objectives are combined through weight ζ ∈ [0, 1] and the expectation
is needed as harvested energy and traffic load are random processes.

∑

j∈S T j
i (t) is the net flow

for node i, which can either be positive or negative and the corresponding bounds have to be
enforced accordingly. In real settings, optimally solving Eq. (4.6) is difficult, as energy and load
statistics are non-stationary. A possible approach consists of modeling the problem as a sequence
of stationary dynamics of the environment, using a dedicate Markov Decision Process (MDP) for
each, and detecting the change points [122]. While of theoretical value, such approaches are still
preliminary and impractical. Next, we develop an online approach based on MPC, with tracking
capabilities over a finite time horizon, whose objective is to approximate π∗.

4.4.1. Overview of the Online Optimization Framework

A diagram of the optimization process is shown in Fig. 4.2, involving the following steps:

1. Pattern learning (Section 4.4.2): The harvested energy and traffic load processes are
statistically modeled through Bayesian non-parametric tools. This allows each BS to in-
dependently track its own harvested energy and load processes, capturing their statistical
behavior and obtaining multi-step ahead forecasts. These forecasts are then fed into the
MPC optimization approach of Section 4.4.3.

2. Model predictive control (Section 4.4.3): The goal of the MPC block is to determine the
BS role (source/consumer) and obtain Tn(t), for all BSs n and t. The MPC block considers
the current system state, i.e., traffic load, harvested energy and EB levels, but also future
ones (based on the forecasts from MPC).

3. Energy allocation (Section 4.4.4): A convex optimization problem is formulated to assess
how the available energy |Ti(t)| from the sources i is to be split among the consumers j in
time slot t, these energy shares are referred to as T j

i (t).

4. Energy routing (Section 4.4.5): For every time t, once the energy allocations T j
i (t) are

obtained, this block finds a feasible and optimal schedule implementing the required energy
transfers (energy routing) from sources to consumers. Since the PPG is operated in a TDM
fashion, each power link can only be used for a single energy transfer operation at a time.
Thus, routes must be allocated so that they do not overlap in time.
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We remark that, solving MPC (step 2) and the following energy allocation (step 3) as two
separate steps provides an approximation to the combined objective ζf1(t) + (1 − ζ)f2(t). On
the other hand, energy allocation (step 3) and routing (step 4) can be executed as two separate
optimization problems without incurring any inter-dependency as long as, for any optimal solution
for the first problem, the number of slots needed to schedule the involved energy routing paths
is smaller than the maximum number of slots that the system can devote to the energy transfer.
In this case, separability holds for the energy allocation and routing problems. With the system
parameters that we use in this chapter (see Table 4.2), this holds when the number of BSs is
ns ≤ 48.

4.4.2. Pattern Learning

In this section, we present statistical models to automatically capture the hidden structure in
harvested energy and load processes. GPs have become popular for regression and classification,
often showing impressive performance [123]. Hereinafter, we will focus on GPs for regression,
according to the function-space view applied to the Bayesian linear model [123]. The Bayesian
linear model for regression is defined as:

f(x) = φ(x)⊤w, r = f(x) + ǫ, (4.7)

where w is a vector of weights, also known as model parameters, f(x) is the function value, which
is linear in the weights w, r is the observed real value, and φ(·) : RD → R

F maps the D-dimensional
input column vector x into an F -dimensional feature vector φ(x) = φ. Assume we are given with
a training dataset with N observations, D = {(xi, ri)}

N
i=1, where each pair (xi, ri) consists of the

D-dimensional input column vector xi and the scalar target ri. We can aggregate inputs and
targets in a D × N matrix X and an N -dimensional column vector r, so that D = (X, r), and
φ(X) = Φ becomes an F × N matrix in the feature space. We are interested in the conditional
distribution of the targets, given the inputs in the feature space and the model parameters. We
further assume that r differs from f(x) by additive noise, which follows an independent identically
distributed (i.i.d.) Gaussian distribution with zero mean and variance σ2

n, i.e., ǫ ∼ N (0, σ2
n). From

the i.i.d. assumption, it follows that the likelihood (i.e., the conditional distribution of the targets
given the inputs in the feature space and the model parameters) is factorized over cases for the N
observations, i.e., r|X,w ∼ N (Φ⊤w, σ2

nIN ).
We can perform regression in the function-space view by using a Gaussian Process (GP), mod-

eling a distribution over functions. Formally: a GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution. Moreover, it is completely specified by the
mean function and the covariance function (or kernel). We define the mean function and the
covariance function of process f(·) ∼ GP(m(x), k(x, ♣x)) as

m(x) = E[f(x)]

k(x, ♣x) = E[(f(x)−m(x))(f(♣x)−m(♣x))⊤]. (4.8)

Next, we consider the zero mean function, i.e., m(x) = 0, which is a very typical choice [123].
In the Bayesian linear model of Eq. (4.7), the prior distribution is set to be Gaussian with zero
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mean and covariance matrix Σw, i.e., w ∼ N (0,Σw). Thus, we can derive an example GP as:

m(x) = φ(x)⊤E[w] = 0

k(x, ♣x) = φ(x)⊤E[ww⊤]φ(♣x) = φ(x)⊤Σwφ(♣x). (4.9)

Assume the training dataset has N observations, then vector f = [f(x1), . . . , f(xN )]⊤ has a
joint Gaussian distribution, i.e., f |X ∼ N (0,K), where the N × N covariance matrix K can
be computed evaluating the covariance function or kernel for the N observations, i.e., Kij =

φ(xi)
⊤Σwφ(xj) for i, j = 1, . . . , N . Given the noise ǫ ∼ N (0, σ2

n), it follows from the i.i.d. assump-
tion that a diagonal matrix σ2

nIN must be added to K, as compared to the noise-free model in the
GP literature [123]. To make prediction for the test case f(x∗) = f∗ given φ(x∗) = φ∗, we consider
the joint Gaussian prior distribution over functions✒

r

f∗

✚
= N

✂
0,

✒
K + σ2

nIN k∗

k⊤
∗ k(x∗,x∗)

✚✡
, (4.10)

where we define theN -dimensional column vector k∗ such that the i-th element equals φ(xi)
⊤Σwφ(x∗).

To derive the posterior distribution over functions we need to condition the joint Gaussian prior
distribution over functions on the data, so that we get the key predictive equations of GPs for
regression:

f∗|x∗,X, r ∼ N (µ,Σ)

µ = k⊤
∗ [K + σ2

nIN ]−1r

Σ = k(x∗,x∗)− k⊤
∗ [K + σ2

nIN ]−1k∗.

(4.11)

In practice, the predictive mean µ is used as a point estimate for the function output, while the
variance Σ can be translated into uncertainty bounds (predictive error-bars) on this point estimate,
thus making GPs for regression very appealing for MPC applications (see [109,124,125]).

For any set of basis functions in the feature space, we can compute the corresponding covariance
function or kernel ; conversely, for every (positive definite) covariance function or kernel, there
exists a (possibly infinite) expansion in terms of basis functions in the feature space. As we show
shortly, the choice of the kernel deeply affects the performance of a GP for a given task, as much
as the choice of the parameters (architecture, activation functions, learning rate, etc.) does for a
neural network. Specifically, the hyperparameters of the kernel must be set in order to optimize
the marginal likelihood,

p(r|X) =

∫

p(r|f ,X)p(f |X)df . (4.12)

Under the Gaussian assumption, the prior distribution is Gaussian, f |X ∼ N (0,K), and the
likelihood is a factorized Gaussian, r|f ,X ∼ N (f , σ2

nIN ), thus r|X ∼ N (0,K + σ2
nIN ). Extensive

derivation for the formulation of f∗|x∗,X, r and generalization to more that one test case can be
found in [123].

Suppose we have N∗ observations in the test set, i.e., (X∗, r∗), to make prediction for the
test cases f(X∗) = f∗ given φ(X∗) = Φ∗, we consider the joint Gaussian prior distribution over
functions ✒

r

f∗

✚
= N

✂
0,

✒
K + σ2

nIN K∗

K⊤
∗ K∗∗

✚✡
, (4.13)
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where we define the N × N∗ matrix K∗ similarly to k∗, such that K∗,ij = φ(xi)
⊤Σwφ(x∗,j) for

i = 1, . . . , N , j = 1, . . . , N∗, and x∗,j is a column vector in X∗. Finally, we define the N∗ × N∗

matrix K∗∗ similarly to k(x∗,x∗), such that K∗∗,ij = φ(x∗,i)
⊤Σwφ(x∗,j) for i, j = 1, . . . , N∗, thus

we get the key predictive equations of GPs for regression:

f∗|X∗,X, r ∼ N (µ,Σ)

µ = K⊤
∗ [K + σ2

nII ]
−1r

Σ = K∗∗ −K⊤
∗ [K + σ2

nII ]
−1K∗.

(4.14)

The choice of the kernel: This choice deeply affects the performance of a GP for a given task, as
it encodes the similarity between pairs of outputs in the function domain. There has been significant
work on constructing base and composite kernels [126]. Common base kernels include the Squared
Exponential (SE) kernel, the Rational Quadratic (RQ) kernel, and the Standard Periodic (SP)
kernel, defined as:

kSE(x, ♣x) = σ2
SE exp(−||x− ♣x||2/(2ℓ2SE))

kRQ(x, ♣x) = σ2
RQ(1 + ||x− ♣x||2/(2αRQℓ

2
RQ))

−αRQ

kSP(x, ♣x) = σ2
SP exp(−2 sin2(π||x− ♣x||pSP)/ℓ2SP).

(4.15)

The properties of the functions under a GP with a SE kernel can display long range trends,
where the length-scale ℓSE determines how quickly a process varies with the inputs. The RQ kernel
is derived as a scale mixture of SE kernels with different length-scales. The SP kernel is derived
by mapping the two dimensional variable (cos(x); sin(x)) through the SE kernel. Derivations for
the RQ and SP kernels are in [123].

Note that valid kernels (i.e., those having a positive-definite covariance function) are closed
under the operators + and ×. This allows one to create more representative (and composite)
kernels from well-understood basic components, according to the following key rules [126]:

• Any subexpression3 P can be replaced with P + B, where B is any base kernel family.

• Any subexpression P can be replaced with P × B, where B is any base kernel family.

• Any base kernel B can be replaced with any other base kernel family B′.

In time series, summing kernels can express superpositions of different processes, operating
at different scales, whereas multiplying kernels may be a way of converting global data proper-
ties onto local data properties. From here on, we will use one-dimensional kernels in the form
RQ × SP with period pSP, which correspond to a local quasi-periodic structure in the data, with
noise operating at different scales. Note that kernels over multidimensional inputs can be con-
structed via the operators + and × over individual dimensions. Next, we consider models based on
zero-mean GPs for the runtime multi-step ahead forecasting of time series, with application to a)
Harvested Energy Profile Hn(t) (defined in Section 4.3.2) and b) Traffic Load Ln(t) (Section 4.3.3).

3Subexpression refers to any valid kernel family, either basic or composite.
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The basic routine for prediction: We use models based on zero-mean GPs for the runtime
forecasting of time series, with application to Hn(t) and Ln(t), n ∈ {1, . . . , ns}, t = 1, . . . , T . The
strong daily seasonality of the data is evident for both time series, as well as the presence of noise
at different scales. Therefore, we define composite kernels for Hn(t) and Ln(t) in the form RQ×SP
with period pSP, i.e.,

k(x, ♣x) =σ2 exp(−2 sin2(πdpSP)/ℓ
2
SP)

× (1 + d2/(2αRQℓ
2
RQ))

−αRQ
(4.16)

where σ = σRQσSP and d = |x − ♣x| is the Euclidean distance between inputs. At this point,
the hyperparameters of the kernel must be set in order to optimize the marginal likelihood, which
is defined in Eq. (4.12), and here implemented using the toolbox of [127]. For compactness, we
aggregate the hyperparameters of the kernel in the initialization set θ(s) = {σ, pSP, ℓSP, αRQ, ℓRQ}.
Here, we opt for σ = 1, pSP = 24, and select the free parameters (ℓSP, αRQ, ℓRQ) via a grid
search, scanning combinations in the range [10−2, 102]. To model the strong daily seasonality in
the data, we also opt for a prior distribution on the period pSP, which is a delta function, i.e.,
δ(pSP − 24) = 1 if and only if pSP = 24, so that we treat the period pSP as a constant, excluding
it from the optimization (see [127]).4

Algorithm 1 Pseudo-code for the basic routine

1: Pre-training phase: find the optimal hyperparameters θ(0) for the kernel k(·, ·), starting from
θ(s) and minimizing the marginal likelihood on the training dataset {(xi, ri)}

N
i=1

2: Set t = 1
3: while t ≤ T − (N +N∗) do
4: Set D(t) = (X(t), r(t)) = {(xi, ri)}

t−1+N
i=t−1+1

5: Set D
(t)
∗ = (X

(t)
∗ , r

(t)
∗ ) = {(xi, ri)}

t−1+N+N∗

i=t−1+N+1

6: if (t− 1 modS) = 0 then % t− 1 is a multiple of S
7: Training phase: find the optimal hyperparameters θ(t) for the kernel k(·, ·), starting from

θ(0) and minimizing the marginal likelihood on the training dataset (X(t), r(t))
8: end if
9: Forecasting phase: get (µ,Σ) with test set (X

(t)
∗ , r

(t)
∗ ) and using the key predictive equations

of GPs in Eq. (4.14)

10: Compute RMSE
(t)
∗ =

❜
(
∑N∗

i=1 e
2
i )/N∗, e = r

(t)
∗ − µ

11: Set t = t+ 1
12: end while

Algorithm 1 describes the basic routine for the pre-training phase (line 1), training phase (line
7), and forecasting phase (line 9) for both zero-mean GPs, i.e., the same basic reasoning holds
for Hn(t) and Ln(t), where xt contains the time indices (in either the training or test dataset)
and rt refers to either process Hn(t) or Ln(t), at time t and BS n. Also, we assume that we
can access the N values in the training dataset, and we wish to predict the N∗ values in the

4In our numerical results, we have considered a time step duration of one hour, so setting pSP = 24 entails a
periodicity of one day.
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test set, where D(t) = (X(t), r(t)) refers to the training dataset and D
(t)
∗ = (X

(t)
∗ , r

(t)
∗ ) refers

to the test set, at time t, respectively. According to the pre-training phase, we first have to
find the optimal hyperparameters θ(0) for the kernel k(·, ·), starting from θ(s) and minimizing the
marginal likelihood on the training dataset {(xi, ri)}

N
i=1. Note that θ(0) will serve as initialization

for the optimal hyperparameters θ(t) at each step of the online forecasting routine, as the optimal
hyperparameters θ(t) are found over the training dataset (X(t), r(t)), which changes at each step of
the online forecasting routine. Assuming Gaussian noise with variance σ2

n, thus Gaussian likelihood,
it follows that we can perform exact inference. To do it, we use the Conjugate Gradients (CG)
optimization tool implemented in toolbox [127]. We get (µ,Σ) via Eq. (4.14) given the test set

(X
(t)
∗ , r

(t)
∗ ) with N∗ test cases, at time t. Finally, we derive the Root Mean Square Error (RMSE)

RMSE
(t)
∗ over the N∗ test cases, starting from residuals e, at time t, and iterating the procedure

(except for the pre-training phase) up to time T −(N+N∗). For the numerical results, the training
phase (line 7) is performed once every S steps: in Algorithm 1, we write (t − 1 modS) = 0, i.e.,
t− 1 is a multiple of S. Thus, the training phase (line 7) is performed when t = 1.

4.4.3. Model Predictive Control

The system to be controlled is described by means of a discrete-time model:

B(t+ 1) = ξ(t) ◦ (B(t) + T (t) +W (t) + θ(t)), (4.17)

where t is the current time slot and ◦ is the element-wise matrix product. All matrices ξ,B,T ,W ,θ
have size M ×ns. B(t) has elements [B(t)]k,n = Bn(k) (the system state), representing the energy
buffer level for BS n in time slot k, with k = t, t+ 1, . . . , t+M − 1, were M is the optimization
horizon. ξ accounts for EB losses, whose n-th column is [ξn(t), ξn(t+1), . . . , ξn(t+M − 1)]T . Note
that the system state in the first time slot t is known, whereas those in the following M − 1 time
slots have to be estimated. Referring to Section 4.4.2, we thus have M = N∗+1. Matrix T (t) with
elements [T (t)]k,n = Tn(k) denotes the control matrix, representing the amount of energy that each
BS n shall either transfer (if Tn(k) < 0) or receive (Tn(k) > 0) in time slot k = t, . . . , t+M − 1. θ
has elements [θ(t)]k,n = θn(k), which can be greater than zero only for ongrid BSs. Matrix W (t),
with elements [W (t)]k,n = Hn(k)−On(k), models the effective energy income, i.e., the stochastic
behavior of the forecast profiles (harvested and consumed energy), with:

W (t) ∼ N (❸W (t),ΣW (t)), (4.18)

where ❸W (t) and ΣW (t) contain the mean and variance of the forecast estimates, respectively. Note
that processes Hn(k) and On(k) are statistically characterized through the prediction framework
of Section 4.4.2, and their difference is still a Gaussian r.v. (in fact, On(k) is derived from Ln(k)
through a linear model, and as such is still Gaussian distributed). Following [128], due to the
stochastic nature of Eq. (4.18), the system state B(t) can also be written in a probabilistic way:

B(t) ∼ N ( sB(t),ΣB(t)), (4.19)

where sB(t) and ΣB(t) are the mean and the variance of B(t), respectively.
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Objective functions: The goal of the MPC controller is to determine the amount Tn(k) that each
BS n should either transfer or receive in time slots k = t, . . . , t+M−1, so that all the energy buffers
remain as close as possible to the reference value Bref . A first quadratic cost function tracks the
total amount of energy that is to be exchanged among BSs in time slot k, with k = t, . . . , t+M−1:

fMPC
1 (T (k)) =

∑

n∈S

Tn(k)
2. (4.20)

Through a second objective function, fMPC
2 (·), the MPC controller seeks to equalize the BS energy

buffer levels as close as possible to the reference threshold Bref (see Section 4.3.4):

fMPC
2 (B(k)) =

∑

n∈S

(Bn(k)−Bref)
2. (4.21)

Control problem: The following finite-horizon and multi-objective optimization problem is for-
mulated:

min
T (t)

1

M
E

✓
t+M−1
∑

k=t

✂
αfMPC

1 (T (k)) + αcfMPC
2 (B(k))

✡✛
(4.22a)

subject to: B(t) ∼ N ( sB(t),ΣB(t)), (4.22b)

W (t) ∼ N (❸W (t),ΣW (t)), (4.22c)

Blow ≤ Bn(k) ≤ Bmax, (4.22d)

Tn(k)min ≤ Tn(k) ≤ Tn(k)max, (4.22e)

with: k = t, t+ 1, . . . , t+M − 1

where α ∈ [0, 1] is a weight to balance the relative importance of the two cost functions and
αc = 1 − α. Blow and Bmax are the energy buffer limitations defined in Section 4.3.4, constraint
Eq. (4.22e) defines the amount of energy that each BS n ∈ S can exchange in slot k and depends on
the system state, i.e., the energy buffer level Bn(k), the expected harvested energy and expected
traffic load: the system state defines the limits of the control action for each k. Note that fMPC

1 (·)
(Eq. (4.20)) differs from Eq. (4.4) in that the energy losses due to the routing are not considered; this
makes it possible to decouple energy allocation and routing problems. Instead, fMPC

2 (·) (Eq. (4.21))
and Eq. (4.5) track the same exact cost, with the only difference that the time horizon M in
Eq. (4.22) is finite. Hence, Eq. (4.22) departs from a global optimal solution in two respects:
1) the number of optimization steps M is finite (the optimality gap is expected to be small for
increasing M), 2) f1(·) is upper bounded by neglecting the energy routing losses, which allows for
a fast and efficient solution through a decomposition of energy allocation and routing.

For any fixed value of α, and since the optimization problem must be solved at runtime, it is
strongly preferable to choose a convex optimization formulation such as Eq. (4.22), which can be
solved through standard techniques. Here, we have used the CVX tool [129] to obtain the optimal
solution T (t)∗ = [Tn(k)

∗], which represents the amount of energy that BS n ∈ S shall either offer
or demand in time slot k = t, . . . , t+M − 1.

Optimization algorithm: The MPC controller performs as follows [130]:
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1. Step 1: At the beginning of time slot k, the system state is obtained, that is energy buffer
levels for all BSs, the harvested energy and traffic load forecasts for the next M time slots
(the optimization horizon).

2. Step 2: The control problem in Eq. (4.22) is solved yielding a sequence of control actions
over the horizon M .

3. Step 3: Only the first control action is performed and the system state is updated upon
implementing the required energy transfers.

4. Step 4: Forecasts are updated and the optimization cycle is repeated from Step 1.

4.4.4. Energy Allocation

Solving Eq. (4.22), we obtain Tn(t) for each BS n in any given slot t. In this section, we solve
the energy allocation problem, i.e., we compute for each source n, how to split Tn(t) among the
consumers. Note that this also depends on the distribution losses between sources and consumers
and, in turn, on the electrical PPG topology.

Notation: At time t, we use indices i and j to respectively denote an arbitrary BS source (set Ys)
and an arbitrary BS consumer (set Yc). gij is the number of hops in the PPG topology between
source i ∈ Ys and consumer j ∈ Yc, in matrix notation G = [gij ]. We assume that all hops have
the same physical length and aij = ϕ(gij) ∈ [0, 1] is the energy loss attenuation coefficient between
i and j and ϕ(·) is a suitable loss function (depending on the number of hops, i.e., on the physical
distance that the energy has to travel, see Section 4.3.1). Let i be a source, the maximum amount

of energy that a consumer j can receive from i is defined as eij
∆
= |Ti(t)|aij , i ∈ Ys, j ∈ Yc. In

matrix notation E = [eij ]. For notation compactness, we collect the energy demands from all

consumers j into a demand vector d = [d1, d2, . . . , d|Yc|], where element dj
∆
= Tj(t) is the energy

demand from consumer j.

Objective functions: As a first objective, we seek to minimize the difference between the amount
of energy that the BS sources i ∈ Ys deliver to the BS consumers j ∈ Yc and the consumers’ energy
demand. The energy amount |Ti(t)| can possibly be distributed among multiple consumers and
we denote by yij ∈ [0, 1] the fraction of |Ti(t)| that is allocated from source i to consumer j,
in matrix notation Y = [yij ]. The actual amount of energy that consumer j receives from i is
yijeij = yij |Ti(t)|aij . We write a first cost function as:

f1(Y ,E,d) =
∑

i∈Ys

☎✆∑

j∈Yc

yijeij − dj

☞✌2

. (4.23)

Due to the existence of a single path between any source and consumer pair and due to the fact
that each power link can only be used for a single transfer operation at a time, a desirable solution
shall: i) pick source and consumer pairs (i, j) in such a way that the physical distance (gij) between
them is minimized and ii) achieve the best possible match between sources and consumers, i.e.,
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use source i, whose available energy is the closest to that required by consumer j, for all (i, j)
pairs. Ideally, for each i we would like yij to be equal to 1 for a single value of j and zero for any
other consumer (i.e., 1-of-|Yc| coding scheme, where |Yc| gives the number of consumers). If this
is infeasible, multiple sources will supply the consumer, leading to yij > 0 for multiple values of
j and

∑

j yij ≤ 1. Minimizing the following cost function, amounts to minimizing the number of
hops gij between sources and consumers and favoring solutions with 1-of-|Yc| coding for y:

f2(Y ,G) =
∑

i∈Ys

☎✆∑

j∈Yc

− exp

✂
yij
gij

✡☞✌ . (4.24)

With this cost function we are looking for a sparse solution (i.e., a small number of sources with yij
close to 1). Note that when yij → 1 and gij is minimized, the argument yij/gij is maximized and
the negative exponential is minimized. Also, the exponential function was picked as it is convex,
but any increasing and convex function would do.

Solution through convex optimization: At each time slot t, each BS n updates its buffer level
Bn(t), using either Eq. (4.1) or Eq. (4.3) (note that Bn(t− 1), Hn(t− 1), On(t− 1), Tn(t− 1) and
θn(t−1) are all known in slot t, see Section 4.3). The MPC problem of Section 4.4.3 is solved. Each
source i evaluates eij for all j ∈ Yc through eij = |Ti(t)|aij , and each consumer j sets its energy
demand as dj = Tj(t). Hence, using Eq. (4.23) and Eq. (4.24), the following convex optimization
problem is formulated:

min
Y

βf1(Y ,E,d) + (1− β)f2(Y ,G) (4.25a)

subject to: 0 ≤ yij ≤ 1, ∀i ∈ Ys, ∀j ∈ Yc, (4.25b)
∑

j∈Yc

yij ≤ 1, ∀i ∈ Xs, (4.25c)

where β ∈ [0, 1] is a weight used to balance the relative importance of the two cost functions. The
first constraint represents the fact that yij is a fraction of the available energy from source i, and
the second constraint encodes the fact that the total energy i that each source transfers cannot
exceed its offer |Ti(t)|. For any fixed value of β, Eq. (4.25) is a convex minimization problem which
can be solved through standard techniques. The optimal solution Y ∗ = [y∗ij ] specifies the energy
fraction tat any source i must send to consumer j.

Solution as an assignment problem: At any time t, the energy distribution problem from
sources to consumers can alternatively be modeled as an assignment problem, where each source
i ∈ Ys has to be matched with a consumer j ∈ Yc. This approach can be solved through the
Hungarian method [131], an algorithm capable of finding an optimal assignment for a given square
m × m cost matrix, where m = max(|Ys|, |Yc|). An assignment is a set of m entry positions in
the cost matrix, no two of which lie in the same row or column. The sum of the m entries of an
assignment is its cost. An assignment with the smallest possible cost is referred to as optimal. Let
C = [cij ] be the cost matrix, where rows and columns respectively correspond to sources i and
consumers j. Hence, cij is the cost of assigning the i-th source to the j-th consumer and is obtained
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as follows:

cij = β(eij − dj)
2 + (1− β)

✂
− exp

✂
1

gij

✡✡
, (4.26)

where β ∈ [0, 1], the first term weighs the quality of the match (dj should be as close as possible
to eij) and the second the quality of the route. To ensure the cost matrix is a square matrix,
additional rows or columns are to be added when the number of sources and consumers differs. As
typically assumed, each element in the added row or column is set equal to the largest number in
the matrix.

The main difference between the optimal solution found by solving the convex optimization
problem (Eq. (4.25)) and that found by the Hungarian method is that the latter always returns
a one-to-one match between sources and consumers, i.e., each consumer can only be served by a
single source (1-of-|Yc| coding). While this is desirable to diminish losses, it is not always optimal
and can lead to inefficient allocations in some cases, as we shall see shortly.

4.4.5. Energy Routing

Next, we present an optimal sequential allocation algorithm to implement the energy transfers
from sources i ∈ Ys to consumers j ∈ Yc, in time slot t. Through the previous analysis, the
allocation matrix Y ∗ = [y∗ij ] is known and an energy transfer is to be implemented for each entry
y∗ij for which y∗ij > 0. Note that, in the considered topology each energy transfer y∗ij has a single
associated routing path r, connecting the energy source i to the energy consumer j. Such energy
route consists of the collection of: source node i, destination node j and the intermediate nodes
(if any) connecting i to j in the considered topology (Fig. 4.1). Let R be the number of such
routing paths, which are collected through the set of indices R = {1, 2, . . . , R} (see the example in
Fig. 4.4a). The problem to be solved is to schedule in time these energy transfers so that:

• The time needed to complete the R energy transfers is minimized.

• The destinations j are prioritized according to the residual energy in their local buffers Bj ,
i.e., the smaller Bj , the higher the priority. This induces a corresponding priority mechanism
on the routes in R.

This problem bears similarities with the literature on optimal airplane landing schedules, e.g., [132].
Specifically, a parallel may be drawn between the runaways of [132] and our routing classes (see
below). The main difference is that in our case routing classes may contain common (and thus
interfering) routes: this makes the analysis more involved, requiring major modifications in the def-
inition of the system state, in the calculation of route serving and completion times and single-stage
costs. Below, we report the optimal and original analysis addressing our technical scenario.

Mini-slots: Each time slot is further split into a number of mini-slots of equal duration, where
emax is the maximum transmission energy capacity (system parameter) for a power link in a mini
slot. Given an energy route r ∈ R with source node i and consumer node j, the required number
of mini slots to transfer the amount of energy yijeij from i to j is ∆r = ⌈yijeij/emax⌉.
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System model for sequential allocation: We refer to the example network of Fig. 4.4a. There,
we have three source nodes i1, i2, i3 and two destination nodes j1, j2. R = 3 energy routing paths
are to be allocated, with R = {1, 2, 3}, where route 1 connects i1 to j1, route 2 connects i2 to j1
and route 3 connects i3 to j2. The dependencies among routes are modeled through the bipartite
graph of Fig. 4.4b: the nodes in the left hand side represent the three routes and the nodes in the
right hand side represent the routing classes. A routing class contains the routes that have at least
one link in common, and that for this reason cannot be allocated in overlapping time intervals, i.e.,
only one route can be active in any mini-slot for each routing class. The routes within a routing
class are referred to as interfering. In our analysis, variable Q represents the number of routing
classes. Routing classes q1, q2 (Q = 2) suffice to track the dependencies in Fig. 4.4a and they have
route 2 in common. The following properties are key to our analysis. P1) Disjoint routes from
different classes can be allocated concurrently: this is the case for paths 1 and 3. P2) Common
routes, i.e., route 2, can also be allocated, but this entails that both classes will be busy for the
whole serving time of route 2: during this serving period both classes will be prevented from any
further allocation.

In the following analysis, a generic route is indicated by variable r, i and j are the corresponding
source and destination nodes, Rr is the set collecting all routing classes that contain route r. t̃r
and tr respectively denote the mini-slot at the end of which route r is allocated and the completion
time, i.e., the mini-slot at the end of which the energy transfer for route r is complete. All time
variables are expressed in terms of number of mini-slots and we assume that energy transfers occur
from allocation to completion, without interruption.

State space and transitions: We define an allocation vector v = [v1, v2, . . . , vR] with R binary
entries vr ∈ {0, 1}, r = 1, . . . , R, where vr = 1 if route r has been already allocated, and vr = 0
otherwise. The state space is defined as the tuple s = (v, (n1, t1), (n2, t2), . . . , (nQ, tQ)), where
(nq, tq) indicates the index nq of the route that is currently allocated for routing class q, with
associated energy transfer completion time tq. Let s be the current system state, a system transition
due to the allocation of any route r = 1, . . . , R is feasible if:

1. If r belongs to a single routing class ✾q, we have Rr = { ✾q}, and its allocation is feasible if
vr = 0 and its serving time is t̃r = t

✾q, i.e., we need to wait for the current transfer for class ✾q
to finish before we can allocate the new one for route r.

2. If r belongs to multiple routing classes, collected through set Rr, then its allocation is feasible
if vr = 0 and it serving time is t̃r = maxq∈Rr

tq, i.e., in this case we need the transfers for all
the classes in Rr to finish.

This leads to a transition from state s to state s′:

s ⇒ s′ = (v′, (n′
1, t

′
1), (n

′
2, t

′
2), . . . , (n

′
Q, t

′
Q)) (4.27)

where,

• v′k = vk, for k = 1, . . . , R, k 6= r,

• v′k = 1, if k = r,
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(a) Example of energy routing network: each ix is a source node and each jx is a consumer node. Three
routes {1, 2, 3} are present.

(b) Bipartite graph encoding the dependencies among routes. Route 1 (i1 → j1) and 2 (i2 → j1) interfere,
as well as routes 2 and 3 (i3 → j2). Interfering routes are collected in routing classes q1, q2.

Figure 4.4: Example for the allocation of energy routes.

• (n′
q, t

′
q) = (nq, tq), q = 1, . . . , Q and q /∈ Rr,

• (n′
q, t

′
q) = (r, t̃r +∆r), q = 1, . . . , Q and q ∈ Rr.

Note that if route r is contained in multiple routing classes, the completion time for all such classes
must be t̃r +∆r, as the transfer will concurrently involve all of them. The feasibility set encoding
these conditions for any state s is denoted by F(s). Transition s ⇒ s′ ∈ F(s) has an entangled
single-stage cost:

ω(s′) =

✂
1−

Bj

Bmax

✡
∑

q∈Rr

�
t̃r − tq +∆r

✟
, (4.28)

where j is the destination node of the current route r and Bj is its residual battery. The term
(1−Bj/Bmax) prioritizes the destination (consumer) j according to Bj . The term t̃r−tq+∆r is the
amount of time during which routing class q will be busy to serve route r. Note that, when r is in
multiple classes, i.e., |Rr|> 1, there may be a temporal inefficiency due to waiting for the class with
the longest completion time (t̃r = maxq∈Rr

tq). This inefficiency is weighed through the term t̃r−tq,
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N∗ = 1 N∗ = 2 N∗ = 12 N∗ = 24

S = 1 0.0119 0.0170 0.0385 0.0512

S = T 0.0116 0.0166 0.0383 0.0511

(a) Average RMSE(t)
∗

for H(t).

N∗ = 1 N∗ = 2 N∗ = 12 N∗ = 24

S = 1 0.0389 0.0464 0.0670 0.0740

S = T 0.0415 0.0483 0.0671 0.0743

(b) Average RMSE(t)
∗

for L(t).

Table 4.1: Average RMSE
(t)
∗ .

which is greater than zero in case class q ∈ Rr is freed before the serving time t̃r, i.e., tq < t̃r. The
optimal policy in the next paragraph minimizes these inefficiencies, achieving the fastest allocation.

Optimal policy: The accumulated cost from a state s can be obtained through the following
Bellman equation:

Ω(s) = min
s′∈F(s)

{ω(s′) + Ω(s′)} (4.29)

The initial state s0 = (v0, (0, 0)
Q) contains v0 = (0, 0, . . . , 0) (all-zeros), and the routing classes

terms (nq, tq) = (0, 0) for q = 1, . . . , Q and has cost Ω(s0) = 0. The optimal schedule is found by
finding:

s∗ = argmin
s∈Π

{Ω(s)} , (4.30)

where Π is the set of final states, a final state being any state with vend = (1, 1, . . . , 1) (all-ones)
and the remaining terms (nq, tq) depending on the outcome of the Bellman recursion. The optimal
schedule is derived by tracking the sequence of transitions that transform the initial state s0 into
all possible and feasible final states s ∈ Π which are recursively evaluated through Eq. (4.29),
inducing s∗ through Eq. (4.30).

4.5. Numerical Results

The forecasting approach based on GPs is evaluated in Section 4.5.1, whereas results of the proposed
optimization framework are provided in Section 4.5.2, using the algorithm of [75] as a benchmark.

4.5.1. Performance Evaluation of the Pattern Learning Scheme

The proposed GP-based forecasting method proposed in Section 4.4.2 is here assessed for the
runtime multi-step ahead forecasting of time series H(t) and L(t). The time slot duration is set to
one hour, N = 24× 14 = 336 hours (i.e., two weeks of data), T = 24× 60 = 1, 440 hours (i.e., two
months of data), and σn = 10−5. This choice of parameters is valid for both time series, as well
as the use of the kernel k(·, ·) in Eq. (4.16), whereas the hyperparameters differ, depending on the
nature of data.
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In Table 4.1a and Table 4.1b we show the average RMSE forH(t) and L(t), computed evaluating

the mean of the RMSE measures up to time T−(N+N∗), where we track RMSE
(t)
∗ over the N∗ test

cases, given N∗ = 1, 2, 12, 24. Also, as we perform the training phase once every S steps, comparing
the numerical results when S = 1 and S = T , i.e., when we update the free GP parameters at
each step of the online forecasting routine (S = 1), or just once every T steps (S = T ), at time

t = 1. In general, the average RMSE
(t)
∗ increases as we increase the N∗ test cases up to 24, which

corresponds to predicting the time series one day into the future. However, the worst performance
is 0.0743, which is still rather small if we consider that both time series are normalized in [0, 1]
prior to processing. Also, predictions for H(t) (Fig. 4.5a) are more precise than predictions for L(t)
(Fig. 4.5b), and this is due to the nature of the data, given that we use the same kernel for both
time series. In fact, values in H(t) (Fig. 4.5a) follow a more regular behavior than those in L(t)
(Fig. 4.5b), with quasi-periodic streams of zero values corresponding to zero solar energy income
during the night. These quasi-periodic streams of zero values help reinforcing prediction, while
allowing for a higher confidence at nighttime (see Fig. 4.6a). Finally, tuning parameter S explains
the impact of re-optimizing the hyperparameters according to the most recent history (i.e., two
weeks of data), but with a longer execution time. Numerical results suggest that tuning parameter
S could be reasonable when data exhibit multiple strong local behaviors rather than just a strong
daily seasonality, and the kernel has to adapt to these. However, S = 1 could not be the obvious
optimal choice (see Table 4.1a).

In Fig. 4.5a and Fig. 4.5b we show real values and predictions for two weeks of data, where we
track the one-step (i.e., N∗ = 1) predictive mean value at each time slot of the online forecasting
routine. The strong daily seasonality is evident, as well as the quasi-periodic structure in data with
noise operating at different scales. Note that predictions for H(t) (Fig. 4.5a) are more accurate

than those for L(t) (Fig. 4.5b), and this result can be confirmed by comparing the average RMSE
(t)
∗

in Tables 4.1a and 4.1b for N∗ = 1. As expected, predictions may be far from real values when
some unusual events occur, see, for example, the low solar energy income within hours 456 and 480
(sixth peak from the left), in Fig. 4.5a, or the sudden peaks in the traffic load profile of Fig. 4.5b,
which are very day-specific.

In Figs. 4.6a and 4.6b we show real and predicted values for three days of data, i.e., the last two
days of the training dataset, and 24 hours for the test set, plotting the multi-step predictive mean
value with N∗ = 24. Here, we compare the use of the kernel k(·, ·) in Eq. (4.16) with common base
kernels from the literature, such as the popular Squared Exponential (SE) kernel, the Rational
Quadratic (RQ) kernel, and the Standard Periodic (SP) kernel, see Eq. (4.16). Also, we compare
the use of the kernel k(·, ·) in Eq. (4.16) in terms of generalization capabilities over the training
dataset and the test set, i.e., we perform forecasting over the training dataset and the test set,
after the optimization of the hyperparameters given the observations. Note that the proposed kernel
(solid line) shows the best performance in terms of forecasting, since composite kernels are more
representative than base ones. Specifically, the RMSE is close to zero over the training dataset
(due to the fact that we set σn = 10−5, i.e., σn 6= 0), and this result also holds for both the SE
and RQ cases. However, the generalization capabilities over the test set are quite limited for SE
and RQ. In fact, these base kernels have limited expressive power, and simply act like smoothers.
Finally, the SP kernel succeeds in recovering the strong daily seasonality in the data, but it fails
to model noise at different scales. Again, its expressive power is quite limited, with respect to our
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(a) One-step predictive mean value for H(t).
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(b) One-step predictive mean value for L(t).

Figure 4.5: One-step online forecasting for two weeks of data.
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(a) Multi-step predictive mean value for H(t).
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(b) Multi-step predictive mean value for L(t).

Figure 4.6: Multi-step prediction with different kernels.
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Table 4.2: System parameters used in the numerical results.

Parameter Value

Number of BSs, ns (set S) 18

Number of ongrid BSs (set Son) 6

Cable resistivity, ρ 0.023Ωmm2/m

Cable cross-section, A 10mm2

Length of a power link, ℓ 100m

Energy buffer capacity, Bmax 360 kJ

Upper energy threshold, Bup 0.7Bmax (70%)

Reference energy threshold, Bref 0.5Bmax (50%)

Lower energy threshold, Blow 0.1Bmax (10%)

Time slot duration 1 h

Mini slot duration 60 s

Maximum transmission energy capacity, emax 90 kJ/mini-slot

MPC optimization horizon M 24 h

MPC weight parameter α 0.5

Energy allocation weight parameter β 0.5

proposed kernel in Eq. (4.16).

4.5.2. Performance Evaluation of the Optimization Framework

In this section, the following schemes are compared: i) no energy exchange (NOEE), i.e., the
offline BSs only have to rely on the locally harvested energy, ii) convex solution (CONV): this
is the scheme of [75], which computes energy allocations solely based on the system configura-
tion in the current time slot. This approach is myopic, as no knowledge into the future behav-
ior of the system is exploited. iii) Hungarian solution (HUNG): the energy allocation is found
through the Hungarian method of Section 4.4.4; this is also a myopic approach. iv) Convex so-
lution with model predictive control (GPs+MPC+CONV): this is the combined optimization
approach of Sections 4.4.2, 4.4.3 and 4.4.4, and v) Hungarian solution with model predictive control
(GPs+MPC+HUNG). ii) and iii) carry out energy allocation and routing only considering the
current time slot, while iv) and v) also take into account the future system evolution, exploiting
pattern learning and multi-step ahead adaptive control.

Before discussing the numerical results, some considerations are in order. All the algorithms
purchase some energy from the power grid, although the way in which they use it differs. With
NOEE, the energy purchased is exclusively used to power the base stations that are ongrid, whereas
those being offgrid have to uniquely rely on the harvested energy. Convex and Hungarian solutions
allow some energy redistribution among the base stations. With these schemes, an energy rich BS
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can transfer energy to other BSs whose energy buffer is depleted. Note that an energy rich base
station may belong to either the ongrid set or to the offgrid one. The latter case occurs when, for
instance, a BS experiences no traffic during the day and all the energy it harvests is stored locally.
In this case, this BS is likely to be “energy rich”, and energy transfer schemes consider it as an
energy source for other BSs. Looking at the whole BS network, it can gather energy in two ways:
i) harvesting it from the environment and ii) purchasing it from the power grid. The harvested
energy is basically free of charge and shall be utilized to the best extent: energy transfer among
BSs makes this possible. The energy bought by the ongrid BSs is costly and shall also be utilized
as efficiently as possible. Below, we shall evaluate both aspects.

For the numerical results, we consider the scenario of Section 4.3. For the EBs, we set Bmax =
360 kJ, which corresponds to a battery capacity of 100Wh (e.g., a small size Li-Ion battery). The
slot time is set to one hour, solar EH traces are obtained using SolarStat [35] for the city of Chicago,
and the BS topology is that of Fig. 4.1, with 6 ongrid BSs and a total of ns = 18 BSs. The other
simulation parameters are listed in Table 4.2. The curves plotted in Figs. 4.7a, 4.7b, 4.9a and 4.9b
are obtained averaging over 1, 000 simulation instances. Each simulation instance accounts for 168
hours, i.e., one week. The harvested energy profile for each BS is set at the beginning of each
simulation instance starting from a specific date, which is picked at random from the real-trace
dataset. For the traffic load, each BS picks one of the two available load clusters at random, with
probability p (in the abscissa). Moreover, Figs. 4.7a, 4.7b and 4.8 are obtained with ideal EBs, i.e.,
βloss → ∞. This changes in Figs. 4.9a and 4.9b where both cases, ideal and non-ideal (βloss = 3),
are shown. Finally, the location of the ongrid BSs within the topology of Fig. 4.1 changes randomly
at every simulation instance.

In Fig. 4.7a, we show the average BS energy buffer level over different traffic load configurations.
For the load assignment, each BS independently picks one of the two traffic clusters in Section 4.3.3:
cluster 2 (low traffic load) is picked with probability p and cluster 1 (high load) is picked with
probability 1− p. p is then varied as a free parameter along the abscissa. As expected, the average
energy buffer level when p = 0 is lower than that with p = 1, as the traffic load in cluster 1
is higher. Regarding the approaches, the highest difference in the energy buffer levels is found
between NOEE and GPs+MPC+HUNG, with an increment of around 60% (on average) when
MPC is adopted. Moreover, the Hungarian methods outperform convex solutions because, with
their assignment policy, any consumer is matched to a single source and this reduces the amount
of energy that is distributed, leaving more energy in the energy rich buffers. As we show shortly,
this behavior is not really desirable as, e.g., it leads to higher outage probabilities.

As a proxy to the network QoS, the outage probability at time t, γ(t), is here defined as the
ratio between the number of BSs whose energy buffer level gets completely depleted, and the total
number of BSs in the system ns. The outage probability γ(t) as a function of the traffic load is
plotted in Fig. 4.7b. For all schemes, γ(t) is an increasing function of the load. The probability that
a BS runs out of service due to energy scarcity is higher when energy cannot be transferred among
BSs (NOEE) and is in general very high across the whole day for HUNG-based solutions. However,
applying MPC to the Hungarian method leads to a reduction in the average outage probability of
about 54%. Moreover, from Fig. 4.8 we see that with the Hungarian method, γ(t) increases when
the amount of energy harvested is very little (i.e., nighttime). The problem is that the Hungarian
allocation technique returns a matching of source-consumer pairs, where each source is allocated
to a single consumer and, in turn, some of the BSs may not be allocated in some time slots (due
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Figure 4.7: Numerical results over the cluster probability p.

to the imbalance between number of sources and number of consumers). This leads to high outage
probabilities for the considered scenario. CONV-based techniques are more flexible in this respect,
as they allow energy transfer from multiple BSs and in different amounts. This translates into a
zero outage probability in both cases, with and without MPC.
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Figure 4.8: Outage probability γ(t) over a day.

From the previous graphs, one may conclude that CONV and GPs+MPC+CONV (foresighted
optimization) provide the same benefits, being both capable of lowering the outage probability down
to zero. However, looking at additional metrics reveals that the two approaches show important
differences. For example, in Fig. 4.9a we compare these solutions in terms of amount of energy that
ongrid BSs purchase from the power grid. A big gap can be observed between the two schemes,
proving that the application of pattern learning and MPC is indeed highly beneficial, leading to a
reduction of more that 55% in the amount of energy purchased from the power grid.

Along these lines, we perform another set of simulations by putting a cap on the maximum
amount of energy that can be bought during a full day by the ongrid BSs. Specifically, we define
a purchased energy threshold η as the ratio between the amount of energy that each ongrid BS
is allowed to purchase and the total amount of energy it would require to serve a fully loaded
scenario across an entire day, i.e., the BS purchases energy up to Bmax every time slot. A plot
of γ(t) against threshold η is shown in Fig. 4.9b. From this graph, we see that predictive control
(GPs+MPC+CONV) leads to a much smaller outage probability than CONV. Moreover, as η
increases beyond 0.5 the outage probability drops to zero, which is a big improvement with respect
to CONV, for which γ is about 10%. Similar results are obtained for GPs+MPC+HUNG when
compared with HUNG, although in this case the gain is slightly smaller.

The use of non-ideal energy buffers is evaluated in Figs. 4.9a and 4.9b, using βloss = 3. In this
case, the energy losses incurred in the charging and discharging processes lead to an increase in the
energy purchased from the power grid (≈ 10%) and in the outage probability (≈ 15%) over time,
due to the smaller EB levels with respect to the ideal EB scenario.
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Figure 4.9: Numerical results regarding purchased energy.

4.6. Conclusions

In this chapter, we have considered small cell deployments where energy harvesting and packet
power networks are combined to provide energy self-sustainability through the use of own-generated
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energy and carefully planned power transfers among network elements. This amounts to a combined
learning and optimization problem (resource scheduling), where learning is carried out on energy
arrival (harvested ambient energy) and traffic load traces and this knowledge is exploited, at
runtime, for the computation of optimal energy transfer policies among the distributed energy
buffers. This foresighted optimization is performed combining model predictive control and convex
optimization techniques. Numerical results reveal great advantages over the case where energy
transfer schedules are optimized disregarding future energy and load forecasts: the amount of
energy purchased from the power grid is reduced by more than 50% and the outage probability is
lowered to zero in nearly all scenarios.

The energy transfer scenario posed in this chapter could be extended to the case where edge
computing servers are located close to the base stations. In this way, the energy cooperation
approach could be improved by considering not only the traffic load in the base station, but also
the computational tasks dynamically assigned to the edge servers. This entails a new research
paradigm that will be studied in the following chapter.
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5

Energy Harvesting and Edge Computing Resource Management

5.1. Introduction

The full potential of 5G radio access technology can be realized through the use of distributed
intelligence, whereby content, control, and computation are moved closer to mobile users, hereby
referred to as the network edge. This evolution has lead to the emergence of the MEC paradigm,
which allows network functions to be virtualized and deployed at the network edge to guarantee
the low latency required by some applications. The convergence of communication and comput-
ing within the mobile network poses new challenges related to energy consumption, as BSs are
densely-deployed to maximize capacity and also empowered with computing capabilities to mini-
mize latency. In addition, energy savings within the virtualized computing platform are of great
importance, as virtualization can also lead to energy overheads. Therefore, precise knowledge
about the edge energy usage is key in this aspect. Experimental results in [133] and [134] show
that the locus of energy consumption for the Virtualized Network Function (VNF) components is
the Virtual Machine (VM) where the VNF is instantiated and executed. Thus, the energy con-
sumption can be minimized by launching an optimal number of VMs (technique referred to as VM
soft-scaling) with efficient resource allocation policies [135].

To cope with these challenges, energy efficiency and self-sufficiency are key considerations where
the adoption of EH hardware within the network can provide a feasible solution. However, the
deployment of EH farms and MEC capabilities comes at a big investment cost and needs an
optimized planning for each network operator. Hence, multi-operator sharing techniques, such as
infrastructure sharing, can be exploited to diminish these costs.

In this chapter, EH and MEC paradigms are combined towards sustainable mobile networks.
We consider an edge shared infrastructure equipped with a solar EH farm for energy efficiency
purposes together with a MEC server for low-latency computation where we propose an energy and
computation resource management framework with two main goals: (i) maximize the exploitation
of the available resources at the edge in a fair fashion among BSs belonging to different operators;
and (ii) decreasing the monetary cost incurred by energy purchases from the power grid. These
two problems are solved devising an online framework combining: (i) pattern forecasting via a
specific type of Recurrent Neural Network (RNN) [136], that learns energy harvesting and traffic
load profiles over time, and (ii) adaptive control via foresighted optimization performed through
MPC theory [84].

Numerical results, obtained with real-world harvested energy, traffic load, and energy price
traces, show that the use of adaptive control schemes provides important benefits in decreasing
energy costs within the mobile network. Specifically, our proposal is able to reduce the amount of
purchased energy from the electrical grid of more than 50% with respect to the case where no EH
is considered, and about 30% with respect to the case where no foresighted optimization is applied,
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i.e., the optimization is performed disregarding future energy and traffic load forecasts. Moreover,
it is capable of reducing the computational load in the edge server about 20% with respect to two
benchmarks.

5.1.1. Contributions

The main contributions of the present chapter are:

• We present a novel scenario where EH and MEC paradigms are combined within a multi-operator
infrastructure-sharing mobile network, discussing new possibilities towards energy coopera-
tion.

• We propose an online forecasting framework based on RNNs, customized to learn the EH
and consumption patterns over time. Specifically, a Long Short-Term Memory (LSTM)
architecture is designed in this respect.

• We formulate two online and predictive optimization problems based on MPC theory for
energy purchases from the power grid and MEC resources allocation, with the goal of dimin-
ishing energy costs to mobile operators.

• We provide numerical results, quantifying the effectiveness of the proposed solution with
real-world traces. An important finding is that the combination of forecasting and predictive
control can substantially reduce the total amount of energy that the system drains from the
power grid and decrease the computational load in a MEC server, minimizing the related
energy consumption while maximizing the low-latency edge computation. See Section 5.5 for
more details.

5.1.2. Chapter Outline

The chapter is organized as follows. In Section 5.2, we present the related literature and highlight
the novel aspects of our work. The network scenario is described in Section 5.3. The optimization
framework is detailed in Section 5.4. Numerical results are presented in Section 5.5, and final
remarks are provided in Section 5.6.

5.2. Related Work

Some literature related to multi-operator sharing techniques in mobile networks is discussed here.
Then, some works dealing with MEC resource allocation and VM soft-scaling for energy savings
are presented. Lastly, the novelties of this work regarding existing literature are detailed.

Multi-operator sharing techniques: network operators sharing looks a promising viable solu-
tion towards the reduction of both capital and operational costs. This new paradigm, promoted
by legal regulations that obligate the operators to install their antennas on the same buildings,
embraces a set of strategies that enable a joint use of resources to reach a common goal, i.e.,
to guarantee customer service while achieving energy and cost reductions [7]. The joint energy
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purchase and wireless load sharing among mobile network operators is exploited in [80] to reduce
energy costs. The authors propose a scheme where two operators are aggregated into a single group
to implement a day-ahead and real-time energy purchase, and their BSs share the wireless traffic
to maximally put lightly-loaded BSs into sleep mode. This scenario is tackled using two-stage
stochastic programming. The scenario that we consider here is different, as we focus on energy
sharing infrastructure where energy and computation capabilities are allocated to BSs.

A distributed game theoretic intra-cell roaming-based infrastructure sharing scheme, where
mobile operators may switch off their BSs and roam their traffic to active BSs operated by other
operators in the same cell is presented in [7]. Moreover, they discuss possible network deployments
and architectures in current and future cellular scenarios motivated by the coexistence of multiple
operators in the same area.

Technological, regulatory, and business landscape from the perspective of sharing network re-
sources is investigated in [137], where different approaches and technical solutions are presented.
The authors introduce a model for estimating savings on capital and operating expenses, and eval-
uate it through simulation for various scenarios. Moreover, they assess the benefits of Managed
Services for the shared network case, a potentially highly attractive model to overcome some of
the challenges posed by infrastructure sharing. The authors in [138] discuss the business model
implications of different multi-operator solutions for indoor deployment. The key findings are in
the areas of: (i) how multi-operator small cell solutions can fit into existing market practices when
it comes to operator business, (ii) how local network operators, i.e., third parties, and outsourcing
can play a role in the business landscape, and (iii) how different spectrum allocation and access
strategies can play a role for indoor network deployments.

Radio Access Network (RAN) sharing where multiple mobile operators with a consolidated
network infrastructure coexist in a given set of geographical areas is investigated in [139]. The
operators have then to decide whether it is profitable to upgrade their RAN technology by deploy-
ing additional small-cell BSs and if to share the investment (and the deployed infrastructure) with
other operators. They address these strategic problems by proposing a mathematical framework
that returns optimal infrastructure sharing strategies for operators (coalitions and network con-
figuration) when varying techno-economic parameters such as achievable throughput and pricing
models for the service offered to the users. Fair sharing possibilities of stored renewable energy in
densely populated areas among multiple mobile network operators is addressed in [30]. To this end,
a bankruptcy game is designed so as to capture the energy sharing interactions among operators.
Furthermore, Shapley Value is employed to fairly determine the amounts of energy to be allocated
to each mobile operator.

MEC resource allocation and VM soft-scaling schemes: the distribution of resources within
a MEC server has been extensively studied in the literature from different perspectives and sce-
narios. Some examples are in order.

In [140], a fair resource allocation approach to maximize the overall network throughput, under
the constraint of each mobile user’s minimum transmission rate is proposed. They formulate the
problem as a fair Nash bargaining resource allocation game, where they obtain the near optimal
bargaining resource allocation strategy for the mixed integer nonlinear programming optimization.

MEC computation resource allocation is tackled along with offloading decision making and
Internet content caching within heterogeneous mobile networks in [141]. The authors formulate
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a convex problem and then decompose it in order to solve it in a distributed way using an Al-
ternating Direction Method of Multipliers-based algorithm. Along the same lines, a distributed
joint computation offloading and resource allocation optimization scheme in heterogeneous net-
works within MEC is presented in [142]. An optimization problem is formulated to provide the
optimal computation offloading strategy policy, uplink subchannel allocation, uplink transmission
power allocation, and computation resource scheduling. The optimization problem is decomposed
into two sub-problems due to the NP-hard property and solved through mutual iteration of two
proposed algorithms.

MEC can leverage on the Network Function Virtualization (NFV) benefits to significantly
reduce the energy consumption of network infrastructures. In virtualized computing environments,
the VMs running in the server(s) are the main elements contributing to the energy consumption.
Thus, energy saving studies within the virtualized computing environment have involved: (i) auto-
scaling [143], i.e., scaling down of the number of running computing nodes, (ii) VM migration [144],
i.e., movement of a VM from one host to another, and (iii) soft resource scaling [145], i.e., shortening
of the access time to physical resources, all hereby referred to as VM soft-scaling, i.e., the reduction
of computing resources per time instance.

Algorithms for the dynamic on/off switching of servers have been proposed as a way of mini-
mizing energy consumption in computing platforms. In [143], at the beginning of each time slot
computing resources are provisioned depending on the expected server workloads via a reinforce-
ment learning-based resource management algorithm, which learns on-the-fly the optimal policy
for dynamic workload offloading and the autoscaling of servers. In [144], the Central Processing
Unit (CPU) utilization thresholds are used to identify over-utilized servers. Hence, migration poli-
cies, enabled by the live VM migration method [146], are applied for moving the VMs between
physical nodes (servers). The VMs are only moved to hosts that will accept them without incurring
high energy cost, i.e., without any increase in the CPU utilization. Subsequently, the idle servers
are switched off.

Power management is also of interest in virtualized computing platforms, i.e., data centers
using virtualization technologies. In [145], a power management approach called VirtualPower is
presented. The algorithm exploits hardware power scaling, i.e., the dynamic power management
strategies using Dynamic Voltage and Frequency Scaling (DVFS) [147] [148], and software-based
methods, i.e., scaling the allocation of physical resources to VMs using the hypervisor scheduler,
for controlling the power consumption of underlying platforms. Due to the low power management
benefits obtained from hardware scaling, a soft resource scaling mechanism is proposed whereby
the scheduler shortens the maximum resource usage time for each VM, i.e., the time slice allocated
for using the underlying physical resources.

Novelty of the present work: despite the existence of previous works on energy cooperation
(see Section 2.3 and 4.2), sharing among operators and MEC resource allocation, here we consider
an original scenario where: (i) we put together EH and MEC topics within a shared infrastructure
among multiple operators; (ii) we consider only one EH farm within each macro cell, instead of
EH hardware for every BS, to reduce deployment costs; and (iii) harvesting process, traffic load,
and energy prices come from real-world traces. Apart from these novelties regarding the scenario,
more contributions are discussed in Section 5.1.1.
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SMART GRID

MEC SERVER

SHARED INFRASTRUCTURE

Figure 5.1: Example of the considered scenario where three operators (black, red and blue) share
the EH and MEC infrastructure.

5.3. System Model

We consider a densely-deployed macro cell comprising a set N of N = |N | BSs. Each BS n belongs
to a certain mobile operator s ∈ S with a total number of S operators. Ns defines the total number
of BSs within operator s. As a major deployment of MEC in line with current trends for future
mobile networks as suggested by big network operators (e.g., Huawei Technologies [149]), each
macro cell provides a cache-enabled MEC server for computation capabilities. Each MEC server
hosts M VMs. Moreover, an EH farm, i.e., one or more solar panels, an energy conversion module
and an energy storage device, is co-located with the MEC server for sustainability purposes. Energy
supply from the power grid is also available in case is needed. The whole infrastructure, the MEC
server along with the EH farm, is to be shared among all the BSs within the same cell, regardless
if they belong to different mobile operators. The overall scenario is depicted in Fig. 5.1. Finally,
the proposed optimization evolves in slotted time t = 1, 2, . . . , where the slot duration corresponds
to the time granularity of the control and can be changed without requiring any modifications to
the following algorithms.
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Figure 5.2: Traffic load patterns.

5.3.1. Harvested Energy Profiles

Solar energy generation traces have been obtained using the SolarStat tool [35]. For the solar
modules, the commercially available Panasonic N235B photovoltaic technology is considered. Each
solar panel has 25 solar cells, leading to a panel area of 0.44m2, which is deemed practical for
installation in a urban environment. As discussed in [31,35], the EH inflow is generally bell-shaped
with a peak around mid-day, whereas the energy harvested during the night is negligible. Here,
the framework in [35] is utilized to obtain the amount of energy harvested for each EH farm in
time slot t, which is denoted by h(t).

5.3.2. Traffic Load Profiles

Traffic load traces have been obtained using real mobile data from the Big Data Challenge organized
by TIM [118]. The dataset is the result of a computation over Call Detail Records (CDRs), logging
the user activity within the TIM cellular network for the city of Milan during the months of
November and December 2013. For the traffic load traces we use the CDRs related to SMS, calls
and Internet activities, performing spatial and temporal aggregation. In this way, we obtain a daily
traffic load profile for each BS.

Clustering techniques have been applied to the dataset to understand the behavior of the mobile
data. To this end, we use the X-means clustering algorithm [150] to classify the load profiles into
several categories. In Fig. 5.2, we show the traffic behavior of five clusters, being cluster 1 the
heaviest and cluster 2 the lightest on average daily load. In our numerical results, each BS n has
an associated normalized load profile cn(t) ∈ [0, 1], which is picked at random as one of the five
clusters in Fig. 5.2. We assume the computational load is given by Γn(t) = ηcompcn(t), where ηcomp
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is a parameter depending on the specific network scenario. The aim is to compute Γn(t) at the edge
for each BS whenever possible, i.e., if there are enough computation resources (VMs) available in
the MEC server. If not, the remaining load is transferred to a network processor in a cloud server.

5.3.3. Energy Consumption

Given a certain macro cell, the overall energy consumption is formulated as follows for a certain
time slot t:

otot(t) =
N
∑

n=1

on(t) + oMEC(t) , (5.1)

where on(t) is the energy consumption related to BS n, and oMEC(t) is the MEC server one. Given
cn(t), the BS energy consumption on(t) is computed through the linear model in [31] (Eq. (1) in
that paper) with on(t) = oind + αcn(t), where oind is a load independent value that represents the
operation energy, including baseband processing, cooling, etc. α > 0 is a system parameter which
depends on the BS type, and in product with cn(t), provides the load dependent component.

Moreover, oMEC(t) is defined as follows [151]: oMEC(t) = oidle + γ(t)odyn(t), where oidle is the
server load-independent operational component, and odyn is the maximum energy amount that is
consumed by the server when it operates at full power. Moreover, odyn is linearly scaled with respect
to the actual computational load γ(t) ∈ [0, 1] processed in time slot t, providing the load-dependent
component. This model represents the number of VMs running in time slot t, and on the CPU
frequency that is allotted to each virtual machine. Specifically, VMs are instantiated on top of the
physical CPU cores, and each VM is given a share of the MEC server CPU, memory and network
input/output interfaces. The CPU is thus the main consumer of energy in the MEC server [144]
due to the VM-to-CPU share mapping. We also note that, in practical application scenarios, the
maximum per-VM computation load to be computed is generally limited up to an assigned value in
bytes, named Γmax [135]. Hence, in a given time slot t, each BS n will require rn(t) = ⌈Γn(t)/Γmax⌉
VMs (with Γn(t) in bytes, i.e., without normalization) to allocate its total computational load at
the edge. The N × τ matrix R(t) with elements rn(t), specifies the VMs needs per BS n over the
time horizon τ . However, due to limited resources in the MEC server, the needed rn(t) VMs may
not be allocated to BS n, being mn(t) ≤ rn(t) the actual number of VMs allocated to BS n in time
slot t. mn(t) is an objective variable found in the optimization problem of Section 5.4. Therefore,
it holds that the computational load in the MEC server at time t is given by:

γ(t) =

∑N
n=1mn(t)

M
. (5.2)

where M denotes the maximum number of VMs that can be allocated, i.e., the server capacity.
Finally, with fs(t) we indicate the total number of VMs that are assigned to operator s ∈ S in
time slot t, where fs(t) =

∑

n∈Ns
mn(t).

5.3.4. Energy Storage Units

Every EH farm within the network provides an energy storage unit, referred also as EB. The EB
level for a certain macro cell is denoted by b(t). Bmax is the EB capacity. For a certain EB in
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current time slot t, b(t) is the EB level at the beginning of time slot t, updated at the beginning of
the next time slot t+ 1 as:

b(t+ 1) = b(t) + h(t)− otot(t) + θ(t)− l(t) , (5.3)

where otot(t) corresponds to the overall energy consumption and thus the amount of energy that is
transferred to all BSs within the cell in time slot t to cover the energy demand. h(t) is the amount
of energy harvested. θ(t) represents the energy purchased from the power grid during time slot
t. Finally, l(t) represents the losses in the EB due to battery deficiency and charging/discharging
processes, and is calculated as l(t) = ηEBb(t) for a certain time slot t, with ηEB being the energy
losses factor [30]. The goal is to maximize the use of h(t) to cover the energy demand otot(t)
while minimizing the energy purchase θ(t) from the electrical grid. Note that b(t) is updated at
the beginning of time slot t, whereas h(t) and otot(t) are only known at the end of it. The ex-
pected behavior E[h(t)− otot(t)] is obtained through the theory in Section 5.4.1 to make foresighted
decisions, where E[·] is the expectation operator.

5.3.5. Electric Retail Pricing

Hourly electric supply charges have been taken from the US National Grid database [152], consid-
ering the energy cost for the state of New York between January 2015 and August 2017. The price
that the shared infrastructure within each cell has to pay to purchase energy at a certain time slot
t is denoted by p(t).

5.4. Optimization Framework

In this section, we propose an energy and computation resource management framework with two
main objectives: (i) maximize the exploitation of the available resources in a fair fashion among
BSs belonging to different operators; and (ii) decreasing the monetary cost incurred by energy pur-
chases from the power grid. These two objectives pose two coupled problems, i.e., (i) refers to P1,
and (ii) to P2, that have to be solved sequentially due to the impact of P1 over the MEC server
energy consumption, and therefore in the overall energy consumption used in P2 (see Eq. (5.1)
and (5.3)). The section is organized as follows: first, notation and the two coupled problems are
formulated; details about the pattern forecasting are given in Section 5.4.1; the MPC adaptive
controller is discussed in Section 5.4.2; lastly, the algorithm steps of the optimization framework
are detailed in Section 5.4.3.

Notation: in what follows, boldface symbols, such as b(t), are used to denote variables across
multiple time slots, whereas b(t) indicates the corresponding variable at time t. The system to be
controlled is described through the following discrete-time model:

b(t+ 1) = b(t) + θ(t) +w(t)− ℓ(t), (5.4)

where t is the current time slot. The vector b(t) with elements b(t) denotes the system state,
representing the energy buffer level for time slots t, t+ 1, . . . , t+ τ − 1, were τ is the optimization
horizon. θ(t) with elements θ(t) denotes the control vector, specifying the amount of energy θ(t)
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purchased in every time slot within τ . The vector w(t) with elements w(t) models the system
disturbance, i.e., the stochastic behavior of the forecast profiles (harvested and consumed energy)
and corresponds to w(t) = h(t)− otot(t). In addition, an energy demand vector d(t) with elements
d(t) is defined to represent the minimum energy needed to cover the expected energy consumption
within τ . It is calculated for a certain time slot t as follows:

{

d(t) = 0 if w(t) ≥ 0,

d(t) = |w(t)| if w(t) < 0.
(5.5)

Moreover, the N × τ matrix M(t) with elements mn(t), specifies the VMs allocation per BS n
over the time horizon τ .

P1 - MEC resources allocation: an equal distribution of MEC resources over time among
the different operators is pursued by controlling the VMs allocation per BS regarding the expected
traffic load. It should be noted that a maximization on the use of the available resources located
in the edge is seeked, i.e., γ(t) → 1, assuming that the computation load required from BS is in
general higher than the computation capacity of the MEC server, and thus some of this load may
be transferred to the core network. Specifically, we want to minimize the difference between the
actual computational load processed at the edge mn(t) per BS n, and the total computational load
rn(t) that BS n has to compute in time slot t in terms of VMs. With πVM we denote a VMs
allocation policy, which specifies M(t) = [mn(t)], ∀n ∈ N . An optimal policy π∗

VM is found as:

π∗
VM = argmin

πV M

{

lim
τ→+∞

1

τ
E

✓
τ−1
∑

t=0

N
∑

n=1

(rn(t)−mn(t))
2

✛}
,

Subject to:

0 ≤ mn(t) ≤ M, ∀n,

N
∑

n=1

mn(t) ≤ M, ∀t,

βs

τ−1
∑

t=0

fs(t) = βi

τ−1
∑

t=0

fi(t),

with: s = 1, . . . , S; i = 1, . . . , S; and s 6= i .

(5.6)

The first and second constraints define the bounds with respect to the MEC server capacity. The
third constraint guarantees that the VMs allocation over time among the different operators will
be fair, where βs ∈ [0, 1] is a weighted factor defined as βs = 1 − Ns/N . This allows the system
to distribute proportionally the available MEC resources, designating more VMs to those mobile
operators that own more BSs within a cell.

P2 - Grid energy purchase: cost decrease related to energy purchases from the grid is
achieved by controlling the amount of energy that the shared infrastructure buys from the electrical
grid over time considering harvested energy, traffic load, energy price and stored energy. With πe
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we denote an energy purchase policy, which specifies θ(t). An optimal policy π∗
e is found as:

π∗
e = argmin

πe

{

lim
τ→+∞

1

τ
E

✓
τ−1
∑

t=0

♣p(t)θ(t) + εl(t)q
✛}

,

Subject to:

E rb(t+ 1) = b(t) + θ(t) + w(t)s ,
d(t) ≤ b(t) ≤ Bmax,

0 ≤ θ(t) ≤ Bmax .

(5.7)

The goal is to minimize the energy cost over time, i.e., p(t)θ(t), subject to certain constraints: the
first holds the discrete-time model used; the second defines the energy buffer limitations, ensuring
through d(t) that the energy buffer contains enough energy to fulfill the expected demand; the
third determines the limits in the energy purchasing process. Moreover, the addition of l(t) in the
formulation acts as a regularization factor that takes into account the energy losses in the whole
process. ε > 0 is a normalizing constant used to equalize both terms in the objective function.

In both Eq. (5.6) and (5.7), the expectation is needed as harvested energy and traffic load
are random processes. In real settings, optimally solving both problems is difficult, as energy and
load statistics are non-stationary. Therefore, we propose an online approach based on MPC with
tracking capabilities over a finite time horizon H, whose objective is to approximate π∗ for each
one of the two problems.

The framework consists of two main blocks: (i) pattern forecasting (Section 5.4.1) and
(ii) adaptive control (Section 5.4.2). In the first block, the harvested energy and traffic load
processes are predicted through a ML approach, specifically using a type of RNN [136]. More details
are provided in Section 5.4.1. This allows to track energy and traffic load over time, capturing their
statistical behavior and obtaining forecasts for the corresponding time series. Note that energy
prices are available one-day ahead, thus their forecasting is not needed. Energy and load forecasts
are then fed into the second block where foresighted optimization is performed using MPC. In P1,
the controller decides the number of VMs allocated to BS n in time slot t, i.e., mn(t). As for P2,
this block determines the amount of energy θ(t) that has to be purchased from the electrical grid at
each time slot t. The adaptive control block takes online actions, considering not only the current
system state, i.e., harvested energy, traffic load, energy price and EB levels, but also future ones
(based on the forecasts from the forecasting block), anticipating events and acting accordingly.
More details are given in Section 5.4.2.

5.4.1. Pattern Forecasting

RNN are a generalization of feed-forward neural networks (the input signal goes only one way
within the network), that have been devised for handling temporal and predictive problems. LSTM
networks are a particular kind of RNN, introduced in [153]. They have been explicitly designed
to avoid the long-term dependency issue, which is the cause of the vanishing-gradient problem in
normal RNNs [154].

The capability of learning long-term dependencies is due to the structure of the LSTM units,
which incorporates gates that regulate the learning process. The neurons in the hidden layers of
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Figure 5.3: LSTM memory cell diagram.

Figure 5.4: LSTM network architecture.

an LSTM are Memory Cells (MCs). A MC has the ability to store or forget information about
past network states by using structures called gates, which consist of a cascade of a neuron with
sigmoidal activation function and a pointwise multiplication block. Thanks to this architecture,
the output of each memory cell possibly depends on the entire sequence of past states, making
LSTM networks suitable for processing time series with long time dependencies [153]. An LSTM
memory cell diagram is presented in Fig. 5.3. The input gate is a neuron with sigmoidal activation
function (σ). Its output determines the fraction of the MC input that is fed to the cell state block.
Similarly, the forget gate processes the information that is recurrently fed back into the cell state
block. The output gate, instead, determines the fraction of the cell state output that is to be used
as output of the MC at each time step. Gate neurons usually have sigmoidal activation functions
(σ), while the input and cell state use the hyperbolic tangent (tanh) activation function. All the
internal connections of the MC have unitary weight [153].
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Figure 5.5: Model predictive control framework.

An LSTM neural network [136] has been used to forecast the harvested energy h(t) and the
traffic load cn(t) profiles for each BS n at each time slot t. The proposed architecture for the traffic
classification is depicted in Fig. 5.4. In our design, we consider two stacked layers combining one
LSTM layer with a final output fully connected layer, i.e., each output neuron from the previous
layer is connected to all input neurons of this layer (weights are not shared). Let x(t) be the input
vector to the network where it can be x(t) = h(t) or x(t) = c(t) (h(t) corresponds to the energy
harvesting dataset and c(t) to the traffic load one). More details about the input datasets are given
in Section 5.3 (5.3.1 and 5.3.2 respectively) and Section 5.5.1. The first layer RNN1 is composed
by NRNN1

= 32 MCs. The final fully connected layer RNN2 performs the actual regression where
the output vector y(t) with elements y(t) contains the forecast values in the corresponding time
series with size 1× τ , where τ is the finite time horizon. The network is trained using the ADAM
optimizer [155] and the Mean Squared Error (MSE) as the objective function. This function is
utilized in order to measure the performance of the estimated forecast where the error is obtained
as the difference between the real known value y(t) and the estimation ŷ(t). It is defined as follows:

MSE =
1

τ

τ
∑

t=1

�
ŷ(t)− y(t))2 (5.8)

During training, Eq. 5.8 is iteratively minimized, by rotating training examples in the batch set so
as to span the entire input x(t). Performance evaluation is discussed in Section 5.5.1.

5.4.2. Adaptive Control

A general MPC framework is composed of (i) an input section, (ii) an MPC controller and (iii)
a real system [115]. The first block contains the prediction model (see Section 5.4.1). The MPC
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solves a control problem at runtime (see below). Finally, the real system block receives the optimal
actions from the MPC controller and behaves accordingly. An overall diagram is shown in Fig. 5.5.
More details about MPC are given in Section 4.2.2.

The application of MPC theory within P1 and P2, presented in Eq. (5.6) and (5.7), poses new
finite-horizon formulations over τ at time k as follows:

P1:

min
M(k)

1

τ
E

✓
t+τ−1
∑

k=t

N
∑

n=1

(rn(t)−mn(t))
2

✛
(5.9a)

subject to: 0 ≤ mn(t) ≤ M, ∀n, (5.9b)

N
∑

n=1

mn(t) ≤ M, ∀t, (5.9c)

βs

t+τ−1
∑

k=t

fs(k) = βi

t+τ−1
∑

k=t

fi(k), (5.9d)

with: s = 1, . . . , S; i = 1, . . . , S; s 6= i, (5.9e)

with: k = t, t+ 1, . . . , t+ τ − 1 .

P2:

min
θ(k)

1

τ
E

✓
t+τ−1
∑

k=t

♣p(k)θ(k) + εl(k)q
✛

(5.10a)

subject to: E rb(k + 1) = b(k) + θ(k) + w(k)− ℓ(t)s , (5.10b)

d(k) ≤ b(k) ≤ Bmax, (5.10c)

0 ≤ θ(k) ≤ Bmax, (5.10d)

with: k = t, t+ 1, . . . , t+ τ − 1 .

Since the optimization problem must be solved at runtime, it is strongly preferable to choose a
convex optimization formulation such as Eq. (5.10) and (5.9). Here, we have used the CVX tool [129]
to obtain the optimal solutions θ(t)∗ = [θ(t)∗] and M(t)∗ = [mn(t)

∗].

5.4.3. Algorithm Steps:

The optimization framework performs as follows [130]:

1. at the beginning of time slot t, the system state is obtained: energy buffer level b(t), harvested
energy h(t) and traffic load forecasts cn(t), and energy price within the optimization horizon
τ .

2. P1 is solved by using the traffic load forecasts cn(t), finding M(t)∗ = [mn(t)
∗] and yielding

a sequence of control actions over the time horizon (τ slots). By doing this, the expected
total energy consumption otot(t) over τ is obtained (see Eq. (5.1)) thanks to Eq. (5.2) and
the found solution M(t)∗.
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Parameter Value

Number of BSs per macro cell, N 10

Number of operators per macro cell, S 3

Computational load parameter, ηcomp 0.2

BS operation energy consumption, oind 13.6W

BS type parameter, α 1.1

MEC server static consumption, oidle 3W

MEC server dynamic consumption, odyn(t) 6W

Maximum per-VM computation load, Γmax 100 MB

Energy buffer capacity, Bmax 1 kWh

Energy losses factor, ηEB 0.15

Time slot duration 1 h

Normalizing constant, ε 1

MPC optimization horizon τ 24 h

Table 5.1: System parameters used in the numerical results.

3. the P2 solution θ(t)∗ = [θ(t)∗] is found thanks to P1 solution, yielding a sequence of control
actions over the time horizon τ .

4. Only the first action is carried out and the system state is updated upon implementing the
required actions, i.e., MEC resource allocation and energy purchase.

5. at next time slot t+ 1, predictions are updated and the optimization cycle is repeated from
step 1.

5.5. Numerical Results

In this section, we evaluate the performance of the proposed optimization framework through some
numerical results, considering the scenario of Section 5.3. For the EB, we set Bmax = 1kWh, and
we consider Li-Ion battery technology with non-ideal features, i.e., energy losses are contemplated
through the parameter ηEB. The rest of parameters used for the simulations are listed in Table 5.1.
The pattern forecasting block is assessed in Section 5.5.1, whereas results of the overall framework
are provided in Section 5.5.2.

5.5.1. Performance Evaluation of the Pattern Forecasting

To assess the performance of the proposed forecasting approach, we utilize the datasets introduced
in Sections 5.3.1 and 5.3.2. The solar generation dataset contains 175, 200 samples taken every
hour during a period of 20 years in the city of Los Angeles, US. The traffic load dataset has
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1, 440 samples taken every hour for a period of two months in the city of Milan, Italy. For both
datasets, we perform τ -steps ahead forecasts, where τ is the optimization horizon (we use τ =
24 hours), using sequences of 24 past time samples. 80% of the dataset is used for training, while
the remaining samples are used to evaluate the accuracy of the obtained forecasts. The setup has
been implemented in Python using the high-level neural-networks-API Keras [156], running on top
of Tensorflow [157].

An example of forecasting is shown in Fig. 5.6. Harvested energy forecasts (h(t) in Fig. 5.6a)
are more precise than load forecasts (cn(t) in Fig. 5.6b), as solar energy traces follow quite regular
bell-shape patterns, which are easier to predict. This fact is confirmed by the average RMSE
over the test samples: in the case of h(t) we obtain RMSE = 0.033, whereas for cn(t) we get
RMSE = 0.08.

5.5.2. Performance Evaluation of the Optimization Framework

This section is split into two subsections discussing the performance of the propose online opti-
mization framework regarding the two tackled problems P1 and P2 separately.

P1 - MEC resources allocation: we compare our scheme, named MPC-P1 against two
benchmarks. B1-P1 distributes the resources equally among the operators. This means each
operator gets the same amount of VMs in every time slot t. Hence, no foresighted optimization is
performed in this benchmark, but however, it provides fairness. On the other hand, MEC resources
are shared proportionally to the BS load in B2-P1, i.e., the higher the load, more resources the
BS gets. Again, no adaptive control is applied here and also there is no fairness. This benchmark
prioritizes to cover the load over the equality among operators.

The curves plotted in Figs. 5.7 and 5.8 are obtained averaging over 500 simulation instances.
Each simulation instance accounts for 168 hours, i.e., one week. The harvested energy profile is
set at the beginning of each simulation instance starting from a specific date, which is picked at
random from the real-trace dataset. For the traffic load, each BS picks one of the five available
load clusters at random (see Fig. 5.2). Moreover, the optimization horizon has been set at τ = 24.
The number of operators and BSs within a cell are listed in Table 5.1. Regarding the distribution
of BSs among operators within a cell, operator 1 owns N1 = 2 BSs, operator 2 has N2 = 3, and
the third one owns the rest up to N = 10, i.e., it controls N3 = 5 BSs.

In Fig. 5.7, the average computational load over the MEC server capacity, in terms of available
number of VMs, is evaluated. The goal is to maximize the amount of load that is computed
in the edge, while minimizing the computational load whenever is possible to reduce the energy
consumption related to the MEC server (see Eq. 5.1). The average computation load achieved
by B1-P1 and B2-P1 is always 1, due to the fact that these benchmarks distribute the overall
resources among all BSs without dynamic allocation over time. Nonetheless, our scheme MPC-P1
is able to reduce the computational load while the available resources increase up to the 50% when
M = 50. On average, it reduces the computation about 20% with respect to the two benchmarks.
This result confirms the benefits of the adaptive control in this problem.

Fig. 5.8 shows the average difference between the amount of VMs needed R(t) to cover the load
at time slot t and the actual allocated M(t) over the MEC server capacity. If R(t)−M(t) > 0,
the respective amount of load is sent to the core network to be processed (see Section 5.3.3 for more
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(a) Example of harvested energy h(t) forecast.
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(b) Example of traffic load cn(t) forecast.

Figure 5.6: LSTM forecasting examples.

details). This happens when the MEC server capacity is not high enough to cover the demand,
it can be observed for all the approaches when M < 30. If R(t) −M(t) < 0, it means that the
number of allocated VMs is higher than needed, and then some resources are underutilization. This
happens in B1-P1 and B2-P1 when the MEC server capacity goes beyond 30 VMs, i.e., these
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Figure 5.7: Average computational load vs capacity in the MEC server.
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Figure 5.8: Average difference between needed R(t) and allocated M(t) VMs vs capacity in the
MEC server.

approaches allocate more resources than required to some BSs, increasing the energy consumption
of the MEC server without need. In this case, the MPC-P1 proposal outperforms the benchmarks
since it allocates the exact amount of needed VMs to cover the load, without incurring in under
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MPC-P2 B1-P2 B2-P2

Energy cost [cents/Wh] 0.348 0.791 0.514

Energy buffer level [Wh] 438.33 443.14 90.74

(a) Traffic load probability, ρ

MPC-P2 B1-P2 B2-P2

Energy cost [cents/Wh] 0.434 0.891 0.622

Energy buffer level [Wh] 394.52 399.78 22.92

(b) EB losses factor, ηEB

MPC-P2 B1-P2 B2-P2

Energy cost [cents/Wh] 0.298 0.823 0.457

Energy buffer level [Wh] 526.28 427.11 201.03

(c) EH farm capacity

Table 5.2: Average values of the performance evaluation regarding P2.

usage, reflected as R(t)−M(t) = 0.

P2 - Grid energy purchase: our proposed scheme, in this case MPC-P2, is again compared
versus two benchmarks: B1-P2 performs similarly as MPC-P2 but however does not consider
the use of EH within the system. This is addressed to understand the impact of the integration
of renewable energy sources within the mobile network and its capability to create self-sustainable
networks. The second benchmark B2-P2 is myopic, as no knowledge into the future behavior of
the system is exploited. This approach does not perform any pattern prediction neither foresighted
optimization, and the system purchases energy from the grid to cover the current energy demand,
i.e., θ(t) = d(t) for each time slot t. It would refer to a real case where no intelligence has been
applied to the system and works following the planned deployment, thus no dynamic control has
been configured. We choose these two benchmarks due to the impossibility to compare our scheme
against others from the literature since, to the best of out knowledge, the considered scenario here
is novel and has not been investigated yet.

In Fig. 5.9, we show the system operation of the MPC-P2 approach over a day. Based on the
energy price p(t) and on the expected behavior of E[h(t) − otot(t)], the adaptive control scheme
purchases energy over time. One peak in the purchase process (blue curve) can be observed around
six in the morning (t = 6), due to the low energy price at that time. Another increasing purchase
time is noticed from t = 16 (4 pm) when the disturbance, i.e., w(t) = h(t) − otot(t) (green curve)
decreases, which corresponds to an increase in the expected traffic load and a decrease in the
expected harvested energy due to the approaching sunset.

The results plotted in Figs. 5.10, 5.11 and 5.12 are obtained averaging over 500 simulation
instances. Each simulation instance accounts for 168 hours, i.e., one week. The harvested energy
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Figure 5.9: MPC behavior over one day.

profile is set at the beginning of each simulation instance starting from a specific date, which is
picked at random from the real-trace dataset. For the traffic load in Figs. 5.11 and 5.12, each BS
picks one of the five available load clusters at random (see Fig. 5.2).

For the traffic load in Fig. 5.10, each BS picks between cluster 1 and cluster 2 (see Fig. 5.2)
with probability ρ. Cluster 1 refers to the traffic load profile with the highest average load (ρ = 1),
and cluster 2 to the lowest (ρ = 0). The sweep over ρ allows to evaluate the performance of the
framework from high to load network load conditions. The energy buffer capacity Bmax and the
EB losses factor ηEB are set with the values from Table 5.1. In Fig. 5.10, we show the average
purchased energy comparison across different traffic load configurations. As expected, the higher
the traffic load, i.e., ρ = 1, the higher the amount of energy that is purchased from the power grid.
However, our approach MPC-P2 leads to a reduction in the purchased energy of more than 50%
with respect to B1-P2 and about 26% for B2-P2 on average.

In Fig. 5.11, the energy buffer capacity Bmax is set as the value from Table 5.1. In this case, a
sweep over the EB losses factor ηEB is performed to understand how important are the non-ideal
processes in the energy storage for the optimization. The average purchased energy against ηEB

is shown where it can be observed that more energy is needed to be purchased when higher losses.
Again, our scheme MPC-P2 outperforms the two benchmarks: there is a reduction of about 52%
with respect to B1-P2 and close to 32% for B2-P2. It is worth to mention that for the ideal
EB case, i.e., ηEB = 0, the best performance is achieved by B2. However, a non-ideal EB has
been considered for the rest of results to adequate for a real scenario. Moreover, it should be
noted that the increasing slope of MPC-P2 is much less pronounced than the others. This is a
remarkable result, meaning that our approach is able to dynamically adapt to higher losses but
however without incurring in higher energy purchases and related costs. This can be confirmed
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Figure 5.10: Average purchased energy vs traffic load.
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Figure 5.11: Average purchased energy vs EB losses factor.

with the results shown in Table 5.2b.
In Fig. 5.12, the energy buffer losses factor ηEB is set as the value from Table 5.1. In this figure,

the average purchased energy over several EH farm capacities is shown. The EH farm capacity
refers to the number or size of solar panels equipped within the shared infrastructure and also refers

94



5.5. NUMERICAL RESULTS

1 1.2 1.4 1.6 1.8 2

EH farm capacity [kWh]

50

100

150

200

250

300

350

P
ur

ch
as

ed
 e

ne
rg

y 
[W

h]

MPC-P2. Mean: 112.83 Wh
B1-P2. Mean: 293.22 Wh
B2-P2. Mean: 160.65 Wh

Figure 5.12: Average purchased energy vs EH farm capacity.

to the energy storage capacity. Actually, in this graph, both parameters are linearly dependent.
Hence, the abscissa axis of Fig. 5.12 shows the maximum EB capacity. As expected, an increase in
the EH capabilities translates into a decrease in the energy purchase needs. In this case, MPC-P2
and B2-P2 behave with a similar slope, however MPC-P2 is able to purchase less energy than
B2-P2 in about 30%. This reduction is more than 60% with respect to B1-P2.

Lastly, more numerical results regarding average energy costs and EB levels are presented in
Table 5.2. Conclusions about energy costs are the same as those aforementioned for energy pur-
chases, i.e., MPC-P2 outperforms both benchmarks with notable results. As for the average EB
level, MPC-P2 and B1-P2 perform with similar results: they are able to maintain an average
medium level with respect to Bmax, although B1-P2 requires to purchase much more energy, as we
have discussed before, due to the lack of renewable energy sources to power the network. B2-P2
provides a much lower EB level over time due to its own nature, i.e., the benchmark purchases
energy to cover the current demand, preventing the EB to be filled up with surplus energy. It
should be noted that MPC-P2 allows the possibility to set a certain desired EB level, named
Bref . This could be done by introducing another objective function in P2, Eq. 5.7, as follows:
fBref

= (b(t)−Bref)
2. By doing so, the system can be configured to save as much energy as possible

by setting Bref close to 0. In this way, MPC-P2 would reduce even more the energy purchased
over time. However, this configuration may entail some risks due to the possible sudden rise in
traffic demand or drop in harvested energy, which would compromise the network service and could
produce an outage. Therefore, a more balanced Bref is desirable dealing with the tradeoff between
saving energy but ensuring the service.

Finally, we evaluate the impact of the optimization horizon τ in the foresighted optimization
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Figure 5.13: Optimization horizon evaluation.

for both problems P1 and P2 in Fig. 5.13. It can be observed how the better performance is
achieved when τ = 7 for P1 and τ = 24 for P2. After reaching the minimum, both curves start
growing up due to the increasing uncertainties in the forecasting procedure, although the slope for
P2 is much less pronounced than in P1. The different optimal horizon value comes from the fact
that P1 only uses forecasts regarding the BSs traffic load, while P2 also uses energy harvesting
predictions together with the traffic load ones.

5.6. Conclusions

In this chapter, we have combined EH and MEC paradigms within a shared infrastructure equipped
with a solar EH farm for energy sustainability together with a MEC server for low-latency compu-
tation. Two main goals are pursued: (i) decreasing the monetary cost incurred by energy purchases
from the power grid; and (ii) maximize the exploitation of the available resources at the edge in
a fair fashion among BSs belonging to different operators. To do so, we have devised an online
framework combining pattern forecasting via an LSTM RNN that learns energy harvesting and
traffic load profiles over time, and adaptive control though MPC for dynamic resource allocation.
Numerical results, obtained with real-world harvested energy, traffic load, and energy price traces,
show that our proposal is able to reduce the amount of purchased energy from the electrical grid of
more than 50% with respect to the case where no EH is considered, and about 30% with respect to
the case where the optimization is performed disregarding future energy and traffic load forecasts.
Moreover, it is capable of reducing the energy consumption related to edge computation about 20%
with respect to two benchmarks.
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6

Conclusions

In this thesis, we have discussed the role of energy in the design of eco-friendly cost-effective
sustainable mobile networks and, in particular, we have elaborated on the use of energy harvesting
technology as a means to decrease the environmental footprint of the 5G network. Specifically, we
have devised energy management strategies for the 5G mobile network with the main goals of: (i)
improving the energy balance across base stations and other network elements, (ii) understanding
how the energy can be exchanged either among network elements and the electrical grid, and (iii)
investigating how renewable energy sources can be utilized within network elements to provide
better performance to the end users (e.g., throughput, coverage, etc.), and reduce the energy
consumption (i.e., carbon footprint) within the 5G network infrastructure.

Therefore, we have addressed, formulated and solved some of the problems related to the energy
management in different scenarios within the 5G mobile network, covering the following topics: (i)
Wireless Energy Transfer where we have investigated the tradeoffs involved in the recharging
process from base stations to end users; (ii) Energy Cooperation in Mobile Networks where we have
targeted deployments featuring BSs with EH capabilities that are able to transfer energy among
them; (iii) Energy Trading with the Electrical Grid where schemes to diminish the cost incurred
in the energy purchases from the electrical grid have been proposed; and (iv) Energy Harvesting
and Edge Computing Resource Management where EH and MEC paradigms have been combined
within a multi-operator infrastructure sharing scenario to maximize the exploitation of the network
resources while decreasing monetary costs.

Extensive literature has been surveyed in Chapter 2, highlighting open issues and challenges of
which some of them have been assessed throughout the several chapters of this thesis. Specifically,
the energy transfer from base stations to end users by using transmit beamforming to wirelessly
charge mobile UEs in densely-deployed MISO femtocell networks has been tackled in Chapter 3. We
have designed several policies to assess which users are to be charged and when, while prioritizing
them based on their location and on their battery level. The main conclusions are that: (i) UE
location estimation allows heuristic policies to perform very close to the optimum; (ii) mobility
helps to increase the power transfer efficiency and best results are achieved when users move in
groups; (iii) wireless charging can substantially reduce the fraction of nodes with depleted battery.
However, this comes at the expense of constantly transmitting power and transfer efficiencies are
too low under any scenario to make WPT technology a viable solution when distances exceed a
few meters.

In Chapter 4, the energy cooperation among EH BSs in mobile networks is addressed to provide
energy self-sustainability through the use of own-generated energy and carefully planned energy
transfers among BSs. This amounts to a combined learning and optimization problem, where
learning is carried out on energy arrival (harvested ambient energy) and traffic load traces and
this knowledge is exploited, at runtime, for the computation of optimal energy transfer policies
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among the distributed energy buffers. This foresighted optimization is performed combining model
predictive control and convex optimization techniques. Numerical results reveal great advantages
over the case where energy transfer schedules are optimized disregarding future energy and load
forecasts: the amount of energy purchased from the power grid is reduced by more than 50% and
the outage probability is lowered to zero in nearly all scenarios.

Finally, infrastructure sharing among mobile network operators is exploited in Chapter 5, com-
bining EH and MEC paradigms towards energy sustainability and low-latency computation at the
edge. We have devised an online framework combining pattern forecasting via an LSTM RNN that
learns energy harvesting and traffic load profiles over time, and adaptive control though MPC for
dynamic resource allocation. Our proposal is able to reduce the amount of purchased energy from
the electrical grid of more than 50% with respect to the case where no EH is considered, and about
30% with respect to the case where the optimization is performed disregarding future energy and
traffic load forecasts. Moreover, it is capable of reducing the energy consumption related to edge
computation about 20% with respect to two benchmarks.

To summarize, we have focused on the design of energy management strategies to build sustain-
able mobile networks where the application of learning techniques along with adaptive control tools
and foresighted optimization have provided remarkable results in decreasing energy costs related
to purchases from the power grid and efficiency among network elements.
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eration mobile networks. In [J4] publication (see above), we propose and validate algorithms to
perform this task, at runtime, from the raw physical channel of an operative mobile network, with-
out having to decode and/or decrypt the transmitted flows. Towards this, we decode Downlink
Control Information (DCI) messages carried within the Long Term Evolution Physical Downlink
Control CHannel (PDCCH). DCI messages are sent by the radio cell in clear text and, in this paper,
are utilized to classify the applications and services executed at the connected mobile terminals.
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