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ABSTRACT 

The content of Electronic Health Records (EHRs) is hugely heterogeneous, depending on the overall health sys-

tem structure. Possibly, the most present and underused unstructured type of data included in the EHRs is the 

free-text. Nowadays, with Machine Learning (ML), we can take advantage of automatic models to encode nar-

ratives showing performance comparable to the human ones. In this dissertation, the focus is on the investiga-

tion of ML Techniques (MLT) to get insights from free-text in clinical settings.  

We considered two main groups of free-text involved in clinical research. The first is composed of extensive 

documents like research papers or study protocols. For this group, we considered 14 Systematic Reviews (SRs), 

including 7,494 studies from PubMed and a whole snapshot of 233,609 trials from ClinicalTrials.gov. Pediatric 

EHRs compose the second group, for which we considered two sources of data: one of 6,903,035 visits from 

the Italian Pedianet database, and the second of 2,723 Spanish discharging notes from pediatric Emergency 

Departments (EDs) of nine hospitals in Nicaragua.  

The first contribution reported is an automatic system trained to replicate a search from specialized search 

engines to clinical registries. The model purposed showed very high classification performances (AUC from 

93.4% to 99.9% among the 14 SRs), with the added value of a reduced amount of non-relevant studies ex-

tracted (mean of 472 and maximum of 2119 additional records compared to 572 and 2680 of the original man-

ual extraction respectively). A comparative study to explore the effect of changing different MLT or methods to 

manage class imbalance is reported. 

A whole investigation on pediatric ED visits collected from nine hospitals in Nicaragua was reported, showing a 

mean accuracy in the classification of discharge diagnoses of 78.31% showing promising performance of an ML 

for the automatic classification of ED free-text discharge diagnoses in the Spanish language. 

A further contribution aimed to improve the accuracy of infectious disease detection at the population level. 

That is a crucial public health issue that can provide the background information necessary for the implemen-

tation of effective control strategies, such as advertising and monitoring the effectiveness of vaccination cam-

paigns. Among the two studies reported of classify cases of Varicella-Zoster Virus and types of otitis, both the 

primary ML paradigms of shallow and deep models were explored. In both cases the results were highly prom-

ising; in the latter, reaching performances comparable to the human ones (Accuracy 96.59% compared with 

95.91% achieved by human annotators, and balanced F1 score of 95.47% compared with 93.47%). 

A further relevant side goal achieved rely on the languages investigated. The international research on the use 

of MLTs to classify EHRs is focused on English-based datasets mainly. Hence, results on non-English databases, 

like the Italian Pedianet or the Spanish of ED visits considered in the dissertation are essential to assess general 

applicability of MLTs at a general linguistic level. 

Showing performances comparable to the human ones, the dissertation highlights the real possibility to start 

to incorporate ML systems on daily clinical practice to produce a concrete improvement in the health care pro-

cesses when free-text comes into account. 
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SOMMARIO 

 

Il contenuto delle cartelle cliniche elettroniche (EHR) è estremamente eterogeneo, dipendendo della struttura 

generale del sistema sanitario. Al loro interno, il testo libero è probabilmente la tipologia di dati non struttu-

rato più presente e contemporaneamente sottoutilizzato. Al giorno d'oggi, grazie alle tecniche di Machine 

Learning (MLT), possiamo sfruttare modelli automatici per codificarne il contenuto testuale con prestazioni 

comparabili a quelle umane. In questa tesi, l'attenzione si concentra sull'investigazione delle MLT per l’otteni-

mento di informazioni utili non triviali dal testo libero in contesti clinici. 

Abbiamo considerato due tipi principali di testo libero coinvolti nella ricerca clinica. Il primo è composto da do-

cumenti estesi come articoli scientifici o protocolli di studio. Per questo gruppo, abbiamo preso in considera-

zione 14 revisioni sistematiche (SR), tra cui 7.494 studi di PubMed e un'intera istantanea composta da 233.609 

studi clinici da ClinicalTrials.gov. Le cartelle cliniche elettroniche pediatriche compongono il secondo gruppo, 

per il quale abbiamo considerato due fonti di dati: una di 6.903.035 visite dal database italiano Pedianet e la 

seconda da 2.723 note di dimissione ospedaliera scritte in spagnolo e provenienti dai dipartimenti di emer-

genza (DE) pediatrica di nove ospedali in Nicaragua. 

Il primo contributo riportato è un sistema automatico addestrato per replicare una ricerca dai motori di ricerca 

specializzati ai registri clinici. Il modello proposto ha mostrato prestazioni di classificazione molto elevate (AUC 

dal 93,4% al 99,9% tra i 14 SR), con il valore aggiunto di una quantità ridotta di studi non rilevanti estratti (me-

dia di 472 e massimo di 2119 record aggiuntivi rispetto a 572 e 2680 dell'estrazione manuale originale rispetti-

vamente). Viene riportato anche uno studio comparativo per esplorare l'effetto dell’utilizzo di differenti MLT e 

di metodi diversi per gestire gli effetti dello squilibro di numerosità nelle classi. 

Nella tesi è riportata inoltre un'intera indagine sulle visite pediatriche presso i DE raccolte presso i nove ospe-

dali del Nicaragua. In tale indagine emerge un'accuratezza media nella classificazione delle diagnosi di dimis-

sione coi modelli proposti del 78,31%, mostrando promettenti prestazioni per un sistema ML per la classifica-

zione automatica delle diagnosi di dimissione da testo libero in lingua spagnola. 

Un ulteriore contributo riportato ha mirato a migliorare l'accuratezza del rilevamento delle malattie infettive a 

livello di popolazione. Questo è un problema cruciale per la salute pubblica che può fornire le informazioni di 

base necessarie per l'implementazione di strategie di controllo efficaci, come la notifica e il monitoraggio di 

efficacia di campagne di vaccinazione. Tra i due studi riportati, sono stati esplorati entrambi i paradigmi pri-

mari di ML classici e profondi. In entrambi i casi i risultati sono stati molto promettenti; nel secondo, raggiun-

gendo prestazioni paragonabili a quelle umane (precisione del 96,59% rispetto al 95,91% raggiunta dagli anno-

tatori umani e livello F1 bilanciato del 95,47% rispetto al 93,47%). 

Un ulteriore obiettivo secondario ma rilevante raggiunto riguarda le lingue indagate. La ricerca internazionale 

sull'uso delle MLT per classificare gli EHR si concentra principalmente su set di dati testuali in lingua inglese. 

Pertanto, i risultati su database non inglesi, come il Pedianet italiano o quello spagnolo delle visite ED conside-

rate nella tesi, risultano contributi chiave per valutare l'applicabilità generale delle MLT a livello linguistico ge-

nerale. 

Mostrando prestazioni paragonabili a quelle umane, la tesi evidenzia la reale possibilità di iniziare a incorpo-

rare i sistemi ML nella pratica clinica quotidiana per produrre un miglioramento concreto nei processi sanitari 

quando si tiene conto del testo libero. 
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1 INTRODUCTION 

 

Statistics: The study of the collection, analysis, interpretation, presentation, and organization of data 
--- The Oxford dictionary of statistical terms 

Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed 
--- Arthur Samuel (1959) 

Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance on T, as measured by P, improves with experience E 

--- Tom Mitchell (1998) 

Text Mining: The discovery and the extraction of interesting, non-trivial knowledge from free, unstructured text 
--- Anne Kao and Steve Poteet (2007) 

 

1.1  CLINICAL RESEARCH IN THE MACHINE LEARNING ERA 

 

Clinical research, from the statistical and methodological point of view, is made up of observing, collecting, in-

vestigating, and analyzing data. Statistical methods and biostatistics have been widely exploited from the 

twentieth century on the different faces of research in clinical environments, like to draw reasonable infer-

ences, to support decisions, to conduct agreement. In the Internet era, with the possibility to share and re-

trieve with near no effort the information, the amount of data available started to increase exponentially in 

time, and that led the development of new computational methods. The principal aim of those methods was 

to face the impossibility to manage a massive amount of data directly by humans. On the side of programs and 

languages born to assess specific low- or high-complexity tasks, there started to be necessary to have compu-

tational instruments to analyze data too. As a result, specialized programming languages explicitly oriented to 

statistical research, like S [1] appeared. 

Nevertheless, clinical data were increasing more than humans could deal by themselves alone. Classical meth-

ods that permit to incorporate many human and expert decisions coded into algorithms started to be used 

along with other computational methods, exclusively designed to be data-driven. Those ecosystems of algo-

rithms are well-known as machine learning (ML) techniques. 

Thanks to classical programming and methods, a problem can be solved through a program defining its inter-

nal rules, like an exact mathematical formula or an expert human decision regarding possible interactions be-

tween the investigated factors. That kind of programs aims to answer a question by applying those rules to the 

data given them in input. They implement complex or simple formulas the program applies to data. If we have 

new data for which we do not know the related answer we are looking for, we can use that kind of programs 

to get an evaluation of that unknown answer. On the other hand, if we have new data for which we know the 

answer, then we can use that new pieces of information to enhancing our understanding of the problem, figur-

ing out new ways to improve the rules, i.e., the formulas. That way, thanks to data, we can re-define the algo-

rithm to have better evaluations on new data. 

In contrast, the main feature of the ML approach is that the program is designed to be trained by the data, on 

the side of their already known related answers. In this case, the program aims to define a model, i.e., the for-

mula which can represent at best the general rules linking data with their answers. Once a model is trained, 

i.e., our ML program has defined its optimal formulas to code the rule behind the data provided, it can be 



[Title] 

applied to new data to infer the corresponding answers when those answers are unknown. On the other hand, 

if we know the answers related to some new data, then it is possible to add those data to the training ones, 

improving the model representation automatically and without changing anything in our ML algorithm (Figure 

1). Develop an ML system is an act of coding an algorithm that from data and known answer given in input, 

conduct to formula as output. Hence, ML precisely tries to answer the considerable impact Big Data impose in 

daily life, that is too hard to be managed by humans thinking or with pre-defined expert rules alone. 

In the massive amount of digitally stored information we produce nowadays, clinical data which are stored 

electronically at the patient level comes with the name of Electronic Health Records (EHRs). The primary pur-

pose of ML efficiently fits to analyze EHRs, which are a vast source of clinical information. Indeed, an emerging 

research paradigm lies in the extraction and in the processing of massive amounts of clinical data to gain clini-

cal insights and ideally to complement the decision-making process at different levels, from the individual 

treatment to the definition of national public health policies. As acknowledged by others [2], the development 

and application of big data analysis methods on EHRs may help to create an effective, continually learning 

healthcare system [3]. 

On the other hand, the content inside EHRs is hugely heterogeneous and depends on the overall health system 

structure. It is worth noticing that the EHRs’ content is generally characterized by structured data, i.e., infor-

mation directly linked with numerical measurements that can be placed easily on a table. Those kinds of infor-

mation can report continuous health or socio-demographic related measurements, like the Systolic Blood Pres-

sure, the weights, or the age of a patient, as well as a discrete and coded information or factors, like the gen-

der, the ethnicity, or an International Classification of Diseases (ICD) code. The main characteristic of that kind 

of information is that their usage as an input to a computer program is quite straightforward, i.e. the way we 

can communicate that information to software is similar to the way we can communicate them between us as 

humans. Systolic Blood Pressure, weight, age, codes are numbers we can directly pass to a computer, small 

discrete information like ethnicity or gender can be easily linked to numbers as a code to communicate them 

to a computer in a way that we still understand. 

On the opposite, unstructured data are represented by a type of information that we can code into numbers 

to pass them to a computer program, but the code of a single object is not represented by a single number, 

nor it can be easily understood by a human, like images, sounds, or movements for which a single instance of 

them is represented by possibly multiple matrices of numbers. Possibly, the oldest and one of the most used 

unstructured type of data in clinical research (and not only in clinical research) is the free-text. We can easily 

encode letters, numbers, and symbols to single numbers to use them in a computer program with a one-to-
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Figure 1 Classical and Machine learning paradigms to solve a given task 
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one map still understandable by humans — on the other hand, coding the meaning of a sentence still unlikely 

to be considered a structured type of information.  

Natural Language Processing (NLP) represent the set of all the processes or techniques to automatically man-

age, annotate and, in general, process human languages. Using those tools, Text Mining (TM) is the field of 

computational science with the specific aim to extract non-trivial knowledge from natural text. Nowadays, 

with ML methods for NLP, we can take advantage of the knowledge of a vast number of expert physicians to 

train models for TM tasks, like the automatic encode of narratives. Often, the principal needs are collecting or 

retrieving enough textual data related to the environment of interest, along with their known and already en-

coded outcomes of interest. Especially in clinical environment, that is a task which is possibly costly or with 

legal limitations, but practically effortless nowadays. 

In this dissertation, we will focus on the investigation of automatic techniques to get insights from free-text in 

clinical settings. Particular attention and space will be given to pediatric tasks of clinical interest which can be 

highly expensive in term of time and cost, or which can involve procedure to reduce the delay in the adapta-

tion and the development of standardized data collection systems especially in Low- or Middle-Income Coun-

tries (LMIC).  

For those reasons, our primary attention will be on text produced by researchers or physics, on the contrary of 

text produced by patients. We will consider two major free-text groups involved in clinical research: first, ex-

tensive electronic documents like research paper or study protocols; second, EHRs like discharging notes, med-

ical reports, or diaries from family doctors or other professionals involved in the health care process.   

To do that we will investigate several of the most effective ML techniques which have proved to be valid for 

text analyses, spanning from shallow classical techniques to deep learning (DL) architectures. On the same 

time, we will explore and compare different ways to manage textual sources, both considered at individual 

level and as a whole corpus of documents. 

Moreover, to distinguish promising results to the ones that can be of real end practical utility for health care, 

we maintain a constant reference to the human performances on the same tasks investigated. 

Free-text in clinical research is possibly both one of the most used resources by its professionals, and at the 

same time quite completely unused nor analyzed automatically by computer programs helping the same pro-

fessionals which have produced all that text. This dual situation gives to clinical free-text and ML the potential 

to be of crucial help to improve the clinical research translationally among its branches in the very next future.  

 

1.2  AUTOMATIC TEXT CLASSIFICATION FOR CLINICAL RESEARCH 

 

Text analysis by a computer program is possible only after the establishment of a procedure to convert text, 

i.e., human-readable sequences of symbols, into numbers, i.e., computer-readable sequences of symbols. This 

process is called pre-processing, and it is the first [4] and probably the most critical step in TM and the stage in 

which NLP concentrate its efforts traditionally [5]. Generally, a TM strategy consists of i) text preprocessing, ii) 

training of the ML model and iii) estimation of its performance on new test data. 

Classical text pre-processing steps aim to convert text into numbers in a way that humans can transfer their 

expert knowledge of the text directly inside to the coded representation. This process is also known as a fea-

ture engineering. Main classical pre-processing processes are the following ones: 
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- Conversion of the text to all lowercase; this is useful to have the same representation for words  re-

ported differently with uppercase o lowercase; this is useful to represent with the same token (i.e., a 

generalization of the concept of “words” to a piece of text representing a single digital entity) a word 

which is at the beginning of a sentence and the same word in another position in sentences.  

- Removing non-words, like symbols, punctuations, and sometimes even numbers; this is useful to re-

duce the feature space, eliminating possible noise produced by non-words which do not contain infor-

mation useful for the task. 

- Stemming words, i.e., removing the ending part of a word to merge distinct tokens which contain in-

formation which is considered similar, e.g. English plurals “-s.” This method can be useful in languages 

with strict rules about endings mainly. 

- An approach with the same aim of the previous one but more agnostic regarding the language is the 

conversion of all the words to their lemma, i.e., the corresponding entry founded into the dictionary. 

In that way, tokens lose their meaning that language variations can incorporate in their variations like 

the time reference for a verb.  

- Stripping white space is used mainly to avoid the possibility that two identical tokens were repre-

sented differently because of redundant spaces, and to save memory space too. 

- Building n-grams, sequences of n adjacent words from the original text considered like a single token. 

The aim is to retain information stored directly in the exact sequences the words appear into the text, 

like negations, or questions (in English-language).  

All the preprocessing procedures described still maintain text like it is: i.e., text, without converting it into 

numbers. A Document-Term Matrix (DTM) is how text can be classically represented as a matrix of numbers. It 

is made up of the coding of the collection of all the preprocessed tokens, i.e., the vocabulary. The DTM encode 

every document row-wise and every token column-wise like vectors. Initially, the DTM is made up by the so-

known one-hot representation of the tokens. In this representation, every token is coded into a vector of the 

dimensionality of the entire vocabulary; only a single entry is filled with a 1 (the “one-hot”) at the same posi-

tion in the vector corresponding to the token’s index in the vocabulary. All the other entries of the vector are 

filled with 0s. A document is then represented by the sum of its tokens’ representation like a vector, creating a 

single vector which is all empty but in the entries related with the tokens included in that document. The re-

sulting document-vector, in its non-zero’s entries, is finally filled with the tokens’ frequencies. All the docu-

ment-vectors are then stacked together like rows of the DTM. 

Often, to include information about the tokens’ distribution in the corpus, the DTM is next weighted. One of 

the most used and useful weights are the TF-iDF ones: all the original Token Frequencies (TF) reported in the 

DTM are multiplied by the inverse of the Document Frequency (iDF) of every Token, i.e. the number of docu-

ments containing that token (often taken at the logarithmic scale). Hence, the iDF is a property (a number) of 

every distinct token, i.e., of every column of the DTM. This weighting schema is adequate to represent how 

much a token is relevant in distinguishing documents by each other. Indeed, the more time a token appears in 

a document, the more critical it is to define that document, but the more documents contain that tokens, the 

less useful it is to distinguish one document from another one in that corpus.  

Like weighting strategies, other preprocessing techniques aim to prepare better the corpus to effectively ana-

lyzed by the ML program in a way to permit to encode information of the document collection like a whole and 

not like individuals only. An important one is related to the phenomenon of imbalance in the classes target of 

the classification. Often, in classification tasks, data are not separated in uniform classes respect to their fre-

quencies. That means that one class can contain more documents than another one. Those differences can 

have an impact both in the training phase and in the evaluation of the performances. In the research con-

ducted during my Ph.D. and reported in this dissertation, we have also explored the impact that different pre-

processing approaches and strategies can affect the performances on classification tasks. 
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Adopting a completely different point of view, there is another effective way to represent the text tokens: the 

dense representation. In the dense representation, every token is represented by a vector in a D-dimensional 

space. Typically, D is much lower than the dimensionality of the entire vocabulary. The encoding of a token’s 

vector is often the output of an ML model aimed to capture the syntactical and lexical information inside the 

text provided. That way the feature space tries to represent the whole complexity of the language, within all 

its possible variations. There, every token is represented by a vector, tokens with similar linguistic rules are 

supposed to be near, and also syntactical rules are supposed to be represented by the geometrical position of 

the vector in that space. E.g., one of the most famous examples reported by in the first work which purposed 

this representation is that subtracting from the vector related to the token “king” the vector related to the to-

ken “man”, and next adding the vector related to the token “woman” to the previous result will lead to the 

vector related to the token “queen” [6]. 

In the last project at the end of this dissertation, we will explore a dense representation approach connected 

to deep ML architectures; hence, avoiding by design the needs of any other feature engineering. 

Once the data and the information within them are encoded, the training phase can be conducted following 

one or more different strategies which are represented by the ML techniques considered. Choosing an ML 

strategy for a classification task means selecting an algorithm able to be trained with data labeled with their 

known classes to produce a model representation for the rules linking data with the classes. 

Nowadays, we can distinguish two main categories of ML algorithms: shallow and deep ones. Shallow tech-

niques take in input data, and after few or more simple or complex computations they provide the resulting 

model. The main shallow methods we will explore, describe and compare here are the following ones: 

- Techniques that expands the family of Generalized Linear Model (GLM). In particular we will investi-

gate Elastic-Net Regularized Generalized Linear Models (GLMNet), which are a regularized regression 

methods that linearly combines the L1 and the L2 penalties of the lasso and ridge methods applied in 

synergy with a link function and a variance function to overcome the linear model limitations; 

MaxEnt, which is an implementation of (multinomial) logistic regression aimed at minimizing the 

memory load on large datasets; and the LogitBoost, which use the boosting methods applied to single 

binary decision trees.  

- k-Nearest Neighbor (k-NN), which is a geometrical approach that assigns data in classes considering 

their distances accordingly to a suitable norm. 

- Support-Vector Machines (SVM), which is another geometrical approach that projects the vectors 

data in higher dimensional space respect to the original one with a dimension big enough (possibly 

infinite) to be all the data linearly separable by an hyper-plane accordingly to their classes. 

- Random Forests (RF), which bring together the most useful properties of the decision trees, with 

boosting, while randomly sampling the feature to use in every tree and merging results with a voting 

system. 

On the other side, we have deep models based on artificial neural networks methods. ANN is based on units 

also known as neurons which implements a linear transformation of the inputs followed by a non-linear differ-

entiable function. Networks of neurons are stacked sequentially into layers. Each layer can report different 

number of neurons connected with different inputs from the previous layers to create from simple to highly 

complex architecture which is only bounded to be a Direct Acyclic Graph (DAG). Every neuron is identified by 

the parameters of its linear transformation. The DAG from the inputs to the outputs represent a high complex 

non-linear function which is differentiable. Hence, through a gradient descent process on the surface of a suit-

able loss-function, parameters of all the neurons are updated after every evaluation of the loss function on 

new known data. 
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In this dissertation, we will explore the applications of classical ML techniques, comparing their performances 

on the tasks investigated, as well as distinct deep neural network architectures for the last reported project. 

The last step in an ML project regards the evaluation of the performances for the trained models. To evaluate 

a model there are necessary two main ingredients: a measure and data on which apply that measure. The se-

lection of the data used to evaluate the measurements is crucial to have fair estimation of the model perfor-

mance. Indeed, a testing set of data must be wholly hided from all the training process. If it does not be the 

case, the model trained could have learned structures from the test data too, producing biased and optimistic 

measure of its performance. 

On the other hand, a ML model should be trained, or at least tuned, on data similar to the testing one, in a way 

that the distribution of the information stored in the training data on which the model-based its knowledge 

reflect the distribution of the information of the testing data on which we are interested in applying the 

trained model. That requires a strict and precise design of all the stages of the learning processes. The pre-pro-

cessing must be designed to assure to be precisely the same for the training and the testing data, but at the 

same time it cannot incorporate information regarding the testing set into the pre-processed encoding of the 

training set. The training phase design is also crucial: there must be some data used to measure the perfor-

mance during the training to permit the model to improve; on the other hand, those data must be completely 

disjoint from the testing without including any possible hidden information about the testing set, while they 

must be as similar as possible each other to be confident the model is learning to assess the right task in which 

we are interested. 

One of the strengths of all the projects conducted during my Ph.D. and reported here in this dissertation relay 

in the rigorous design of the training and testing phases, which is, in my opinion, the most crucial aspect for a 

model definition and a fair performance evaluation and reporting.  

 

1.3  MAIN CONTRIBUTIONS 

 

Among the two groups of text considered in the projects reported in this dissertation, i.e. extensive literature 

of clinical research and EHRs, one of the crucial uses of the free-text in the first one relay on the retrieval of 

scientific documents to synthesize evidence at scale into Systematic Reviews (SR) and Meta-Analyses (MA). 

SRs and MAs summarize the results of controlled trials and provide the highest levels of evidence on the ef-

fectiveness of health care interventions [7]. The quality of the results depends on how much the identification 

is accurate and comprehensive of all the available knowledge on a specific topic. Also, the reliability of an SR is 

determined by the inclusion of up-to-date contents [8]. However, the increasing number of web repositories 

and the development of new scientific topics makes the SR process even more complex than it was used to be 

[9]. Moreover, time requirement and the need for involvement of different professionals make SRs very labor-

intensive processes [10]. 

To retrieve published studies for SRs, researchers can quite easily use search engines like PubMed or Embase. 

Those platforms are organized in hierarchical branching structures (MeSH and EmTree respectively) facilitating 

paper’s categorization and specific search. Anyway, SRs should be based on a broader set of literature dataset, 

and ML can be highly useful for the selection of scientific literature related to the investigated topic when the 

search is not conducted inside indexed search engines, e.g., when they are reported in specialized study regis-

tries like ClinicalTrials.gov. In those situations, often the platforms are not designed for hierarchical, or ad-

vanced searches and filtering based on text. At the contrary, they are often easy to be harvested retrieving all 

the textual information included in the documents they store. 
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The first contribution from my Ph.D. research reported in this dissertation is the development of an automatic 

system able to replicate a search conducted on specialized search engines to clinical registries. The model pur-

posed showed performances at the same level of the human ones regarding the proportion of relevant study 

founded and extracted, but with reduced amount of non-relevant studies extracted respect to a manual search 

conducted by humans.  

The second type of narratives investigated is the one reported into EHRs. Those narratives are used by doctors 

to store and find patients’ clinical history, or they are explored by health professionals for public health pur-

poses. Particularly in the latter case, the information extraction from free-text stored into the EHRs might be 

done through a manual, in-deep, review of individual medical records; however, such a strategy is costly and 

time-consuming [11]. Conversely, an automatic coding of free-text information reported into EHRs through ML 

trained models would be a promising opportunity [12], which is increasingly used also for the analysis of emer-

gency department (ED) records, with encouraging results [13, 14]. 

Further contributions of my Ph.D. research reported here aim to improve the accuracy of infectious disease 

detection at the population level. That is a crucial public health issue that can provide the background infor-

mation necessary for the implementation of effective control strategies, such as advertising and monitoring 

the effectiveness of vaccination campaigns [15]. Indeed, the need for fast, cost-effective, and accurate detec-

tion of infection rates has been widely investigated in recent literature [16]. Notably, the combination of in-

creased EHR implementation in primary care, the growing availability of digital information within the EHR, 

and the development of data mining techniques offer great promise for accelerating pediatric infectious dis-

ease research [17]. Although EHRs data are collected prospectively in real-time at the point of health care de-

livery, observational studies intended to retrospectively assess the impact of clinical decisions are likely the 

most common type of EHR-enabled research [17]. 

Accessing daily data activities of pediatric general practitioners and family pediatricians is a unique resource, 

both for studying specific diseases, as well for pharmacoepidemiologic and pharmacoeconomic analysis [18–

20]. For two of the studies reported in this dissertation, we had the opportunity to access to the Pedianet [21] 

database which focuses on children aged 0-14 years [22–25] and records reasons for accessing healthcare, di-

agnosis and clinical details. The sources of those data are primary care records written in the Italian language, 

and which are filled in by pediatricians with clinical details about diagnosis and prescriptions; they also contain 

details about the eventual hospitalization and specialist referrals. 

A whole investigation on pediatric ED visits collected from nine hospitals in Nicaragua was made by one of the 

researches conducted during my Ph.D. and reported here. The availability of computerized and coded patients’ 

information (e.g., signs, symptoms, admission diagnosis) is crucial for the successful monitoring of ED visits, 

with the purpose of epidemiological surveillance. Anyway, using information on ED visits for epidemiological 

research is still challenging [26]. The main barrier is represented by the employment of heterogeneous data 

collection systems, regarding methods of data collection, type of data collected, data structure, data format, 

lack of consistency and underuse of coding systems of diseases and injuries, and the widespread use of narra-

tive free-text, especially in low- and mid-income countries. 

The model developed shown results consistent with the consideration of Nicaragua like a pre-transitional 

country, characterized by a high prevalence of infectious diseases and adverse maternal and neonatal out-

comes [27]. Moreover, it has highlighted the discrepancy in the performances according to the children’s gen-

der. Considering that the overall performances still high even considering variation inside the 95% confidence 

interval and that the model is trained on textual data only, this could suggest further investigation to clarify if 

the reason can rely on a lower accuracy in reporting the diagnoses for female children compared with males.  
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1.4  MAIN REMARKS 

 

To develop models that can be of help in the clinical settings investigated, classical shallow ML strategies 

showed highly promising results. On the other hand, they all suffer from some issues. 

Firstly, most of them cannot take full advantage of a massive amount of data [28, 29] reaching a plateau in the 

performances after a certain amount of data provided that cannot be improved providing more data [30]. That 

is not necessarily an issue if the performances showed are good enough concerning the level of interest, but 

should be a characteristic to take into account in developing an ML system. 

Secondly, all the models trained using those algorithms cannot be improved without a complete re-training 

from scratch of the full model. It is possible to expand self-ensembled models like RF, adding, or removing 

weak learners to the ensemble [31]; anyhow, update a trained model without retraining all the trees still a 

complex problem [32–34]. Moreover, to our knowledge, there are not options to factorize or stratify the 

“knowledge” they have learned in recyclable pieces suitable for other tasks. Their learning ability relay in a full 

single black-box from the input to the output because of their shallow intrinsic nature. 

Third, excluding self-ensembled models like RF, the level of non-linear complexity of the boundary classifica-

tion regions, as well as all the interaction and level of correlation between the features considered, must be 

hard defined by the human’s knowledge, expertise or guess. GLM Net must explicitly state all the features in-

volved in known or supposed interactions, as well as the level and nature of those [35, 36]. Moreover, the 

GLMNet link function, defining the non-linear hypothesis related to the classification task in the feature space, 

must be hard decided by a human too. SVM theoretically overcome the problem but projecting the feature 

space in a “higher enough” dimensional one in which the classes are linearly separable is a task often computa-

tionally intractable. That force to introduce the well-known kernel-trick to define the non-linear behavior of 

the problem [37], which makes SVM one of the fastest algorithms but, again, it introduces an hard-decision, 

made by a human, among a limited amount of reasonable options, for the non-linear hypotheses. 

On the other hand, a deep-learning approach can take advantage of the amount of data that are orders of 

magnitude larger than classical shallow ML models [38]. Then, they can be improved over time, starting to 

learn from an already trained model and not from scratch only. Moreover, each layer provides a stratum for 

the model, which can be explored and even visualized to have a better understanding of the model learning 

process. That permit to consider reduced models, e.g., excluding the last decision layer, to achieve what is 

known as transfer-learning. Transfer-learning represents the possibility to use a substantial portion of the 

knowledge of a model, trained on a massive amount of data and possibly to achieve a different task, as a start-

ing point to train a model on a similar, but likely different, task [39]. 

Among all of these advantages, the network learns non-linearities automatically [40–42]. The network design 

is the only limitation to the learning ability of non-linearities, and it still hard designed by a human. Anyway, as 

ML shifted the aim of a model definition from defining the structure of the problem to learning its rule, the 

deep-learning approach, as well as the RF ones, shifts the design of possible interaction and non-linearities 

from the exact human definition (e.g., as required for GLMNet or SVM) to the formulation of structural bound-

aries. Within those boundaries, by the training process, the network can explore all possible non-linearities, 

and interactions within the features or between them and the outcome(s) [43]. 

As a final consideration for the end of my research experience in clinical text classification during my Ph.D., I 

can retain that adopting a deep-learning approach leads to several specific advantages respect to the shallow 

counterparts. The first one is related to the pre-processing step. There are no more needs to hand-crafting fea-

tures like n-grams, or even performing spelling corrections [44–46]. The ability of a network to find meaningful 

substructure and interaction inside the data has much more options and focus compared with a single, 
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multiple, and even expert, hard human decisions for feature engineering. Moreover, taking advantage of the 

transfer-learning ability of deep networks, scientific and professional communities already started to develop 

high performing models trained on a massive amount of language-specific textual data [47]. That gives access 

to model suitable to solve specific problems, different from the original one, even when only a small amount 

of data is present for the actual task. On the other hand, when enough amount of labeled data are present for 

the task, it still possible to train a tailored network reusing the architecture of some well-performed model al-

ready trained [48–50], as we did for the project aimed to classify otitis, reported in the study at the end of this 

dissertation. 

A further relevant side goal achieved by the projects reported here, relay on the languages investigated. The 

international research on the use of Machine Learning Techniques (MLTs) to automatically extract or classify 

information from medical records is applied mainly to English-based datasets. That leads to reliable results for 

system English-based, but it left more uncertainty for systems developed for text on other languages. On that 

regard, it is well-known that different languages show different levels of linguistic, morphological, and syntacti-

cal complexities [51] (e.g., Spanish exhibits slightly higher levels of morphological complexity compared to Eng-

lish [52]). That inevitably influences how medical information is reported in EHRs which reflect the possible 

investigation of different ML approaches too. That highlights the need for testing MLTs algorithms on different 

languages other than the English ones too. Hence, results on non-English databases, like the Italian Pedianet or 

the Spanish collection of ED visits from the hospitals in Nicaragua are essential to assess general applicability of 

those techniques on topic which are possibly already explored on English-language environment. 

As a closing comment, beside the extraction or the classification of information from free-text, a measure of 

comparison for the performance reached by the models purposed is crucial. Especially in a clinical environ-

ment, “good” or “promising” performance must not be enough, and economic or time-person motivations 

worth nothing if the performances are not comparable or possibly better than the human ones. 

On both the tasks of detect literature of interest for SRs and to classify EHRs at the visit level with the aim of 

disease classification, the performances of the automatic system developed during my research Ph.D. program 

have shown levels comparable or higher respect to the human ones. This highlight the real possibility to start 

to incorporate ML systems on daily clinical practice to produce a concrete improvement when free-text come 

into account into health care processes. 

 

1.5  DISSERTATION OUTLINE 

 

The growing number of medical literature and textual data in online repositories led to an exponential increase 

in the workload of researchers involved in citation screening for SRs. Indexed search engines are unable to 

cover all relevant knowledge; hence, current literature recommends the inclusion of clinical trial registries in 

SR for MA. In Chapter 2, we provide an automated approach based on SVMs to extend a search on PubMed to 

ClinicalTrials.gov database, relying on a TM English free-text provided by search results. Fourteen SRs, covering 

a broad range of health conditions, are used as case studies for external validation. 

One of the challenges dealing with SR is the high rate of imbalance between records “of interest” and “not of 

interest” among the retrieved ones. In Chapter 3, we combine four classical MLT with other four data prepro-

cessing methods for the class imbalance to identify the outperforming strategy on the first stage of the task 

described in Chapter 2, i.e., screening articles in PubMed for inclusion in SRs. The same fourteen SRs were 

adopted as case studies. In those scenarios resampling techniques slightly improve the performance of the in-

vestigated MLT; on the other hand, their choice can have a considerable impact from the computational per-

spective. 
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Moving from providing support in what we can call pure research, to the application of MLTs on topics more 

focused on daily clinical interests, the detection of infectious diseases through the analysis of free-text on EHRs 

can be of interest and impact for health care. Indeed, it can provide timely and accurate background infor-

mation for the implementation of preventative measures, such as advertising and monitoring the effectiveness 

of vaccination campaigns. In 4, we compare three of the main ML variations of the classical GLMs to the aim of 

detect diseases in pediatric medical records. We used the Italian Pedianet database as a data source for a real-

world scenario on the identification of cases of Varicella-Zoster Virus (VZV) infections. We considered data 

from two different Italian regions’ subset of Pedianet: the first including 7,631 patients from Padova and their 

1,230,355 records, the second from the Sicilia region, with 2,347 patients and 569,926 records. 

Free-text is not used on routinely collected data only: this type of (unstructured) type of data to store infor-

mation is still widely used in EDs too. Considering such a framework, in Chapter 5, we tested the performance 

of a ML approach to a classification task on a dataset of pediatric Spanish-language ED’s visits. For the anal-

yses, we considered records from nine hospitals in Nicaragua and every free-text discharge diagnoses inside. 

In the last chapter, we face a topic of high clinical interest because of one of the leading causes of antibiotic 

prescriptions to children: the detection and classification of otitis, one of the most common infections in pedi-

atrics. Daily diaries are used by pediatricians to record an exhaustive status of their patients. However, using 

the very same diaries in a traditional manual human-driven analysis proved to be costly in terms both of per-

son-time (years) and economic resources, and not feasible in practice. In Chapter 6, we purpose an automatic 

ML system trained to classify all the Pedianet records in six mutually excluding category: non-otitis, otitis, otitis 

media (OM), acute otitis media (AOM), AOM with tympanic membrane perforation or recurrent AOM. In this 

final work, all the 6,903,035 pediatric visits collected into Pedianet starting from 1st January 2004 to 23rd 2017 

from 144 family pediatricians throughout Italy were used to learn the syntactical structure of all the text they 

contain. Next, we trained an ensemble model made upon five distinct Deep-Learning (DL) architectures. That 

model was able to reach 96.59% of accuracy with 95.47% of balanced F1 score through the classes, on a test 

set never involved in the training phases. It is worth to note that both those measures are comparable to the 

highest of their corresponding expert human-evaluator ones, i.e. 95.91% and 93.47% respectively. 
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2 EXTENDING PUBMED SEARCHES TO CLINICALTRIALS.GOV THROUGH A MACHINE 

LEARNING APPROACH FOR SYSTEMATIC REVIEWS 

SUMMARY 

Despite their essential role in collecting and organizing published medical literature, indexed search engines 

are unable to cover all relevant knowledge. Hence, current literature recommends the inclusion of clinical trial 

registries in Systematic Reviews. This study aims to provide an automated approach to extend a search on 

PubMed to ClinicalTrials.gov database, relying on Text Mining and Machine Learning Techniques. The proce-

dure starts from a literature search on PubMed. Next, it considers the training of a classifier that can identify 

documents with a comparable word characterization in the ClinicalTrials.gov clinical trial repository. Fourteen 

Systematic Reviews, covering a broad range of health conditions, are used as case studies for external valida-

tion. Cross-Validated Support-Vector Machine was used as the classifier. The sensitivity was highest (100%) in 

all Systematic Reviews except one (87.5%) and the specificity ranged from 97.2 to 99.9%. The ability of the in-

strument to distinguish on-topic from off-topic articles ranged from AUC of 93.4 to 99.9%. The proposed Ma-

chine Learning instrument has been shown to have the potential to help researchers in identifying relevant 

studies along Systematic Reviews process by reducing workload, without losing sensitivity and at a small price 

in terms of specificity. 

 

This chapter was published as: 

Lanera, C., Minto, C., Sharma, A., Gregori, D., Berchialla, P., & baldi, I. (2018). Extending PubMed Searches to 

ClinicalTrials.gov Through a Machine Learning Approach for Systematic Reviews. Journal of Clinical Epidemi-

ology. https://doi.org/10.1016/j.jclinepi.2018.06.015  

https://doi.org/10.1016/j.jclinepi.2018.06.015
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2.1  INTRODUCTION 

In medical practice and research, the highest level of evidence is represented by SRs [53]. An SR is the synthe-

sis and evaluation of all relevant literature on a specific topic, aimed to make the available knowledge more 

accessible to physicians, care providers and decision makers [8]. Conducting an SR is not an easy task since it 

must follow specific guidelines and protocols, in order to ensure reproducibility of methodology. After the defi-

nition of review questions, researchers should accurately identify evidence from articles, studies, and any 

other relevant documentation. This selection process consists of active search through online and offline liter-

ature repositories and final identification of evidence among a large amount of irrelevant information [54]. In 

the search phase, researchers use keyword combinations to create queries which are able to filter documenta-

tions in large medical databases. This operational step is prone to potential bias related to the source of infor-

mation, specificity, and completeness of search strings. After application of queries, researchers manually 

complete study selection process by a screening of titles, abstracts, and full-texts and eligibility assessment. 

Finally, they describe the process using the Preferred Reporting Items for SRs and MAs (PRISMA) flow diagram 

[55].  

The increasing number of web repositories and the development of new scientific topics makes SR process 

even more complex [9]. Researchers can retrieve information using search engines, such as PubMed or Em-

base, that are organized in hierarchical branching structures (MeSH and EmTree) facilitating paper’s categori-

zation and specific search. This logical and hierarchical structure has important implication in literature search 

process. Firstly, it facilitates article retrieval by reducing or eliminating potential bias related to the difference 

in wording, language or brand names. Secondly, even if not exhaustive, MeSH or EmTree structures are useful 

for limiting the number of records to the relevant ones especially when the study topic is broad and non-spe-

cific. 

Despite their essential role in collecting and organizing published medical literature, indexed search engines 

are often unable to cover all relevant knowledge. A meta-analysis based on this type of sources only may pro-

vide biased estimates due to the exclusion of relevant not-published information [56]. Furthermore, it has 

been proven how trial findings can influence the probability of publication and the presence of selective re-

porting outcomes [57]. World Health Organization stated how unreported studies could leave a misleading pic-

ture of the risks and benefits of a treatment, leading to the use and consumption of not-effective or harmful 

products[58]. For this reason, SRs should be based on a wide literature dataset, which is essential for clinicians 

and patients to have a reliable and complete picture of their condition and make informed decisions. Among 

alternative informative sources, current literature recommends the inclusion of clinical trial registries such as 

the ClinicalTrials.gov [59, 60]. ClinicalTrials.gov is an international web-based platform organized by US Na-

tional Library of Medicine providing access to more than 263,373 clinical trials from 202 countries all over the 

world. Studies are registered and regularly updated by the principal investigator, and records are never re-

moved from the site. On ClinicalTrials.gov, clinicians and patients can retrieve complete information about the 

disease, intervention, study design and phase, location and contacts, as well as the link to published papers. 

Some records also included results of the study, such as main characteristics of the population, incidence of 

adverse events and collected outcomes. Clinical trials registries are important literary sources contributing to 

an updated evidence-based medicine and may contain data that cannot be found in published papers [61]. It 

has been estimated that quite the 50% of results reported in ClinicalTrials.gov was not initially available else-

where, while some other information on serious adverse events was not always reported in the corresponding 

publication [62, 63]. In a recent study, Baudard and colleagues confirmed how searching through registries 

does make a difference by identifying additional 122 trials for 41 SRs [60]. Despite their relevant role, clinical 

trial registries are seldom used as sources of studies for SRs, probably due to difficulties in records manage-

ment. Main limitations are related to the absence of hierarchical order, poor interfaces, a limited number of 

synonyms and the impossible combination of different queries. In ClinicalTrials.gov the search strategy is 

based only on retrieval of one or more text words in the fields of Condition/Disease, Title, Brief Description, 
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Interventions, Locations, and Country. Text word variations include a limited number of synonyms, but no ref-

erence to any hierarchical order or subcategories. Recently the Clinical Trials Transformation Initiative (CTTI) 

proposed a solution to improve the usability of data included in ClinicalTrials.gov by creating a database for 

aggregate analysis (AACT) and categorization of clinical trials based on clinical specialty. However, this classifi-

cation is limited to the definition of Disease/Condition and is not consistent with original MeSH classification 

that does not allow differentiation among clinical specialties. 

This study aims to 1) provide an instrument based on TM and MLT able to perform an automated literature 

search on clinical trial registries; 2) evaluate usability and effectiveness of the proposed instrument. To reach 

our objectives, we present a case study based on results reported in a previous paper of Baudard et al [60].  

2.2  METHODS 

2.2.1  DATA SOURCES 

To create and test the instrument for automated literature search, we used two different data sources. First, 

we used information reported in the article Impact of searching clinical trials registries in Systematic Reviews 

of pharmaceutical treatments: methodological Systematic Review and reanalysis of meta-analyses [60]. This 

study aimed to identify additional trials not included in original SRs, through a manual search on ICTRP (Inter-

national Clinical Trials Registry Platform). Specifically, authors adapted and applied on ICTRP the search strings 

of fourteen SRs on effectiveness of pharmacological treatment for several health conditions (i.e., atrial fibrilla-

tion, psoriasis, colorectal cancer, gastric cancer, Alzheimer disease, Parkinson disease, diabetes, rheumatoid 

arthritis, hypertension). Then, they verified consistency of retrieved records with inclusion criteria listed in the 

original paper and included relevant trials in final estimation of treatment effectiveness. For our purpose, we 

used the same fourteen SRs listed in [60]. This information allowed us to recreate search strings for PubMed 

and compare results of automated search with those reported by the authors. Secondly, we used the full-data-

base of ClinicalTrials.gov downloaded from the website of Clinical Trials Transformation Initiative. The data-

base was organized in pipe-delimited files with data on each single study, such as identifier (NCT number), lo-

cation, start date, sample size etc. Data could be reported as number, string (i.e., text), date or Boolean (i.e. 

true and false). 

2.2.2  TRAINING DATASETS 

We created a training dataset for each one of the fourteen SRs described above. Each training datasets in-

cluded positive and negative records. Positive records were papers included in the original SRs, while negative 

records were a sample of papers off topic. Positive records were identified by running the original query in 

PubMed. When the search strategy did not allow to retrieve all relevant papers, missing citations were manu-

ally included in the training set. On the other hand, negative records were retrieved adding the Boolean opera-

tor NOT to the original query. In other words, we identified off-topic papers by subtracting records of original 

search strategy from the complete PubMed database. Negative records were filtered by “Text availability: ab-

stract”, “Article types: Clinical trial”, “Species: Humans” and “Languages: English”. Since PubMed allows for 

downloading up to 200 citations at a time, “Sort by: Best Match” option was selected to avoid any potential 

bias in the selection of papers based on Entrez Date. Then, negative records were downloaded in group of 200 

every time to achieve a ratio of at least twenty negative records for each positive one. The description of 

search strings and retrieved records is reported briefly in Table 1 (a more detailed description is reported as a 

supplementary material Table 2). Finally, first author, year, title and abstract from each positive and negative 

papers were collected and included in the training set.   

2.2.3  TESTING DATASETS 
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A snapshot of the whole ClinicalTrials.gov was taken at January 5th, 2017. This was composed of a set of pipe-

delimited files from which we extracted the following information:  

• unique identifier (NCT number); 

• brief title; 

• official title; 

• brief summary; 

• detailed description; 

• study type (nature of investigation, such as interventional or observational); 

• overall recruitment status; 

• month and year of study start (enrollment of first participant); 

• month and year of primary completion (examination of final participant); 

• allocation; 

• number of arms;  

• study phase;  

• minimum age for participant eligibility;  

• interventional study model (otherwise the strategy for assigning interventions to participants); 

• inclusion of drug product subject to the US FDA (Federal Food, Drug and Cosmetic Act).  

We used the brief title, official title and detailed description as textual information to perform our testing 

search. The other information was used to identify trials (NCT numbers) and to include filters similar to those 

applied in [60]. Specifically, Baudard and colleagues limited ICTRP results to clinical trials whose overall status 

were either completed or terminated. Moreover, we applied additional filters using fields consistently with 

inclusion and exclusion criteria described in the fourteen SRs replicating selection filters used in [60] and in 

original SRs (see 2.5 Procedure Workflow for further details). Overall 233,609 trials were finally included in the 

testing dataset. 

2.2.4  TEXT MINING 

The TM strategy consists of (i) text preprocessing, (ii) training of the ML classifier, and (iii) estimation of the 

performance of the classifier on the testing dataset. We have also considered an option to handle the unbal-

anced data in training set. Text preprocessing steps converted the textual data into numbers. SVM, which is 

one of the most widely used classifiers for TM [64], was chosen as the classifier and trained using 5-Fold Cross-

Validation (CV). In each of the training datasets, the ratio of positive to negative samples was at least 1:20 by 

construction. This type of data is known as unbalanced data. Hence, on the side of the straight application of 

the defined procedure we have also used the data handling strategy Random Undersampling (RUS), which ran-

domly removes cases from the majority samples (in our case the negative samples) to make the classes more 

balanced [65]. We applied the RUS strategy up to obtain a final positive to negative ratio of the class samples 

of 35:65 according to [66]. This way we have an overall of 28 datasets, two for each SR, i.e., the original one 

and the one after the application of the RUS. 

2.2.5  PROCEDURE WORKFLOW 

For each one of the fourteen SRs, the title and the abstract of the retrieved records were merged together, 

and text preprocessing steps were applied in the following order: conversion to lowercase, removing non-

words, stemming words, stripping white space, and building the sequences of every two adjacent words from 

the original text (bi-grams). Further, DTM was created with this collection of tokens (i.e., a unit of textual infor-

mation) and the matrix was filled with Term Frequency (TF) weighting scheme. The sparsity of all 14 different 

DTMs was very high, ranging from 99-100 %. Top 4% of the features were selected according to TF-iDF rank as 

a tribute to (a double application of) Pareto’s rule, i.e., the 80% of the effects comes from 20% of the causes. 
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These selected features were retained. The SVM was 5-fold cross-validated, and within the CV step, the bal-

ancing strategy that is RUS and ratio 35:65 (positive to negative samples), when applied, and reweighting with 

TF-iDF were applied.  

Testing ClinicalTrials.gov dataset went through the same text preprocessing strategy, in the same order and 

then DTM was created with the TF weighing scheme initially. Further, it was adapted with same features re-

tained from the training dataset and was reweighted with TF-iDF weighing scheme with the same retained iDF 

weights of the corresponding training DTM, which were retained when applied on the whole training dataset.  

Each cross-validated SVM model was applied on the corresponding testing dataset for each SR. Procedure 

workflow is briefly described in Figure 1. Analyses were carried out in R version 3.4.2 [67] with the packages: 

caret, tm, stringr and unbalanced [68–71]. 

To compare consistency between manual search in [60] and automated search, we replicated selection filters 

used in [60] and in original SRs. Thus, positive citations identified by automated search, were limited adding all 

following filters: 1) recruitment status defined as completed or terminated; 2) interventional design; 3) start 

dated before search on ICTRP; 4) primary completion dated before the search on ICTRP as reported in [60]; 5) 

specific filters based on inclusion criteria reported in original SRs. Goodness and robustness of our results were 

evaluated by verifying the inclusion of the additional clinical trials previously identified by Baudard and col-

leagues.  

2.3 RESULTS  

Performance results of the most suitable filter are reported in 
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Table 3. The sensitivity was highest (100%) in all SRs except one (87.5%), and the specificity ranged from 97.2% 

to 99.9%. The AUC, which measures the ability of the instrument to distinguish relevant articles from off-topic 

articles, ranged from AUC 93.4% to 99.9%. Performance of the procedures in which an RUS strategy was imple-

mented was similar (data are not shown). Table 4 reports the numbers of predicted positive citations before 

and after the application of a selection of filters. Comparison with results of Baudard and colleague’s manual 

search’s results on ICTRP is also reported. As shown in the table, filters progressively reduced number of cita-

tions (predicted positives), without excluding additional clinical trials identified in [60] (true positives).  

The only false negative (1 out of 8 positives) pertained to an SR on the role of biological therapy in metastatic 

colorectal cancer [72] and referred to the study with ClinicalTrials.gov identifier: NCT00079066.  

Noteworthy, the total number of records from automated search (predicted positives) was lower than the 

number of records from manual search in half cases, with a mean of 472 and 2119 maximum records com-

pared with a mean of 572 and 2680 maximum ones retrieved in [60]. 

2.4 DISCUSSION  

Time requirement and the need for involvement of different professionals makes SR a very labor-intensive 

process [10]. Quality of results depends on how much identification is accurate and comprehensive of all avail-

able knowledge on a specific topic. Also, the reliability of an SR is determined by the inclusion of up-to-date 

contents [8].  

Our study proposes a classifier that can extend PubMed searches to clinical trials registries, by reducing efforts 

and time expenditure without losing accuracy and sensitivity.  

Previous researchers highlighted how ML could make the standard SR process more efficient [73]. They fo-

cused on living SR, considering starting point as the existence of an initial SR provided by humans. Accordingly, 

we have provided an instrument which is also usable for the “living” step of updating an SR dataset, but it is 

specially tailored for the more complex and tricky step of contributing to the base dataset definition/extraction 

for new sources of data (work left to humans in [73]). Our procedure reached high performance in detecting 

true positive citations of interest in completely different sources of data from the original one regarding the 

way of storing meta-data, access, and structure of information, and leaving out only 1 of 133 human-detected 

positive citations through fourteen independent SRs. From this starting point we have also highlighted how, 

with simple and quick filtering, the number of false positives can be easily and drastically reduced without af-

fecting the sensitivity of the procedure. This way the work left to humans can be reduced and quite limited on 

the first run of the living update of the SR, i.e. the part of dataset definition which was completely based on 

human research until now.  

Other studies have shown how an ML approach for the classification of information based on clinical text could 

be very effective [74] also when tested on databases different (and not subsampled) from the original one 

[75]. On the other hand, to our knowledge, no other study was conducted on this wide range of differentiated 

dataset test with hundred-thousands of entries.  

Anyway, the strict procedure followed, maintaining all the test sets blinded both from the training ones at 

every stage and from all the training procedure, make us confident in the quality of the results themselves. In 

an SR, both very specific positive and very specific negative sets can be selected to create a high-quality train-

ing set. This characteristic together with the ability of the SVMs to distinguish the well-separated type of data 

and the high disproportion of few positive records against a huge number of negative ones have led to the 

quite perfect results in sensitivity, which is the main characteristic of interest in this contest. 

Our study demonstrates the usefulness of ML when scientific literature is not reported in indexed search en-

gines. This is the case of clinical trial registries such as ClinicalTrials.gov, whose interfaces are usually not 
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sophisticated. Limited functionality has an important impact on process workload and often requires the appli-

cation of long search strings, multiple searches and the screening of a high number of not-specific records. 

Moreover, when a researcher wants to use the same query on different search engines and registries, he must 

adapt each singular term and string according to the specific requirement of each platform. In the case of reg-

istries, an adaptation from common search engines (PubMed or Embase) is even more complex due to fre-

quent absence of text functionalities such as truncation or brackets. The use of ML could allow a more accu-

rate and easier translation of queries by reducing the number of not-relevant records. 

The main strength of the study is the robustness of the training and testing procedure which was designed to 

be stable and unbiased. Furthermore, an R-package and a companion Graphical User Interface (GUI) are under 

development (preliminary version publicly available at https://github.com/UBESP-DCTV/costumer). They are 

intended as a user friendly tool for healthcare researchers, who will only have only to provide: a) the set of 

citations finally retained, b) a personalized set of negative citations or the search string used on PubMed (to 

automatically identify a suitable set of random negative citations), c) an optional set of false positives already 

known from a previous run or directly the set of filters to be applied on non-textual meta-data. The first part of 

the feature c) highlights also the usability of the package for a very quick update of the SR, e.g., after the first 

run (for which the false positives must be manually identified).  

2.4.1  LIMITATIONS 

Our study has some limitations. Firstly, the adoption of a defined ML algorithm and the use of only one strat-

egy for managing the unbalanced data. We acknowledge that other techniques such as Convolutional Neural 

Networks (CNNs) are effective in achieving slightly better F-scores [76] over more traditional approaches to 

biomedical text classification, such as SVM, especially, when there is significant label imbalance. Nevertheless, 

CNNs typically take at least an order of magnitude more time than traditional classifiers, especially when com-

pared with SVM [77]. Hence, we decided to start our investigation by considering SVM only. We are already 

working on testing both a wider range of ML techniques and more methods for unbalanced datasets. Anyway, 

the performance with the choice adopted in terms of number of positives, number of true positives and nega-

tives as well as in terms of computational speed, is already good and we do not expect more improvement. 

Though small relative increases in specificity can still have a big impact on absolute numbers of false positives. 

Moreover, filters were manually applied after automatic search and were not yet included in ML instrument. 

The reason for this choice is related to the fact that inclusion/exclusion criteria are rarely reported in title, ab-

stract or description. Thus it was not possible to make a more accurate automatic selection of trials. That said, 

similar studies were able to reach a very high level of sensitivity at the cost of a discrete specificity [78]. 

Explanations for our results lie in the choice of the training set and of the task itself. I.e., positives and 

negatives are highly-separated by design: the set of positives is the (human filtered) output of a PubMed query 

string and not of a “rule-free” human selection on the whole PubMed as it was made, e.g., for the classification 

task performed in [78]. The same applies to the negatives, which are sampled from the output of the negative 

search of PubMed query string used for positives. As a result, positives share a similar word characterization 

which is easily identified by SVM and can lead to a near perfect sensitivity and also an excellent specificity.  

2.5  CONCLUSION 

Following the recommended paradigm for model validation [79, 80], this predictive tool underwent internal 

validation through CV and external validation on an independent data source. This aspect, in conjunction with 

the broad range of health conditions analyzed, strongly argues in favor of credibility of the proposed instru-

ment. 
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3 SCREENING PUBMED ABSTRACTS: IS CLASS IMBALANCE ALWAYS A CHALLENGE TO 

MACHINE LEARNING?  

SUMMARY 

The growing number of medical literature and textual data in online repositories led to an exponential increase 

in the workload of researchers involved in citation screening for systematic reviews . This work aims to com-

bine machine learning techniques and data preprocessing for class imbalance to identify the outperforming 

strategy to screen articles in PubMed for inclusion in systematic reviews.  We trained four binary text classifi-

ers (support-vector machines, k-nearest neighbour, random forest, and elastic-net regularised generalised lin-

ear models) in combination with four techniques for class imbalance: random under-sampling, and over-sam-

pling with 50:50 and 35:65 positive to negative class ratios, and none as a benchmark. We used textual data of 

fourteen systematic reviews as case studies. Difference between cross-validated area under the receiver oper-

ating characteristic curve (AUC-ROC) for machine learning techniques with and without preprocessing (delta-

AUC) was estimated within each systematic review, separately for each classifier. Meta-analytic fixed-effects 

models were used to pool delta-AUCs separately by classifier and strategy. Cross-validated AUC-ROC for ma-

chine learning techniques (excluding k-nearest neighbour) without preprocessing were prevalently above 90 

per cent. Except for k-nearest neighbour, machine learning techniques achieved the best improvement in con-

junction with random over-sampling 50:50, and random under-sampling 35:65. Resampling techniques slightly 

improved the performance of the investigated machine learning techniques. From a computational perspec-

tive, random under-sampling 35:65 may be preferred. 

 

This chapter was submitted and currently under revision as: 

Lanera, C., Berchialla,  P., Sharma, A., Minto, C., Gregori, D., & Baldi, I. (2019). Screening PubMed Abstracts: is 

Class Imbalance Always a Challenge to Machine Learning? BMC Systematic Reviews. 
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3.1 BACKGROUND  

The growing number of medical literature and textual data in online repositories led to an exponential increase 

in the workload of researchers involved in citation screening for SRs. The use of TM tools and MLT to aid cita-

tion screening is becoming an increasingly popular approach to reduce human burden and increase efficiency 

to complete SRs.[10, 73, 78, 81–83]  

Thanks to its 28 million citations, PubMed is the most prominent free online source for biomedical literature, 

continuously updated and organised in a hierarchical structure that facilitates article identification.[84] When 

searching through PubMed by using keyword queries, researchers usually retrieve a minimal number of papers 

relevant to the review question and a higher number of irrelevant papers. In such a situation of imbalance, 

most common ML classifiers, used to differentiate relevant and irrelevant texts without human assistance, are 

biased towards the majority class and perform poorly on the minority one.[85, 86]. Mainly, three sets of differ-

ent approaches can be applied to deal with imbalance.[86] The first is the pre-processing data approach. With 

this approach either majority class samples are removed (i.e., undersampling techniques), or minority class 

samples are added (i.e., oversampling techniques), to make the data more balanced before the application of 

an MLT.[65, 85] The second type of approaches is represented by the set of algorithmic ones, which foresee 

cost-sensitive classification, i.e., they put a penalty to cases misclassified in the minority class, this with the aim 

to balance the weight of false positive and false negative errors on the overall accuracy.[87] Third approaches 

are represented by the set of ensemble methods, which apply to boosting and bagging classifiers both 

resampling techniques and penalties for misclassification of cases in the minority class.[88, 89].  

This study examines to which extent class imbalance challenges the performance of four traditional MLTs for 

automatic binary text classification (i.e., relevant vs irrelevant to a review question) of PubMed abstracts. 

Moreover, the study investigates whether the considered balancing techniques may be recommended to in-

crease MLTs accuracy in the presence of class imbalance. 

 

3.2  METHODS 

3.2.1  DATA USED 

We considered the fourteen SRs used and described in [90]. The training datasets contain the positive and neg-

ative citations retrieved from the PubMed database, where positives were the relevant papers finally included 

in each SR. To retrieve positive citations, for each SR, we ran the original search strings using identical key-

words and filters. We selected negative citations from those resulting by the addition of the Boolean operator 

NOT to the original search string (see Figure 3). The whole set of these negative citations was then sampled up 

to retain a minimum ratio of 1:20 (positives to negatives). 

Further details on search strings and records retrieved in PubMed can be found in the supplementary material 

in [90]. The search date was the 18th of July 2017. For each document (n = 7,494), information about the first 

author, year, title and abstract were collected and included in the final dataset.   

3.2.2  TEXT PRE-PROCESSING 

We applied the following text pre-processing procedures to the title and abstract of each retrieved citation: 

each word was converted to lowercase, non-words were removed, stemming was applied, whitespaces were 

stripped away, bi-grams were built and considered as a single token like a single word. The whole collection of 

tokens was finally used to get fourteen document-term matrices (DTMs), one for each SR. The DTMs were 

initially filled by the TF weights, i.e., the simple counting number of each token in each document. The sparsity 
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(i.e., the proportion of zero-entries in the matrix) of the DTM was always about 99 per cent (see Table 5). TF-

iDF [91] weights were used both for reducing the dimensionality of the DTMs by retaining the tokens ranked in 

the top 4 per cent and as features used by the classifiers. The TF-IDF weights where applied to DTMs during 

each CV step, accordingly to the same process described in [90].  

3.2.3  CHOSEN LEARNERS 

We selected four commonly used classifiers in TM: SVMs [92], k-NN [93], RFs [26], and GLMNet [28]. SVM and 

k-NN are among the most widely used MLTs in the text classification with low computational complexity [64]. 

Although computationally slower, RFs have also proved effective in textual data classification [64]. We selected 

GLMNets as benchmark linear model classifiers.[94] 

3.2.4  DEALING WITH CLASS IMBALANCE 

Random over-sampling (ROS) and random under-sampling (RUS) techniques were implemented to tackle the 

issue of class imbalance [65]. RUS removes the majority samples randomly from the training dataset to the de-

sired ratio of the minority to majority classes. Since it reduces the dimensionality of the training dataset, it re-

duces the overall computational time as well, but there is no control over the information being removed from 

the dataset [65]. ROS adds the positive samples, i.e., the ones in the minority class, randomly in the dataset 

with replacement up to the desired minority to majority class ratio in the resulting dataset. 

We included two different ratios for the balancing techniques: 50:50 and 35:65 (the minority to the majority). 

The standard ratio considered is the 50:50. On the other hand, we also examined the 35:65 ratio as suggested 

in [66].  

3.2.5  ANALYSIS 

The 20 modelling strategies resulting from any combination of MLTs (SVM, k-NN, RF, GLMNet), balancing tech-

niques (RUS, ROS) and balancing ratios (50:50, 35:65) plus the ones resulting from the application of MLTs 

without any balancing technique were applied to the SRs reported in [90].  

Five-fold CV was performed to train the classifier. The Area Under Receiver Operating Characteristic Curve 

(AUC-ROC) was calculated for each of the ten random combinations of the tunable parameters of the MLTs. 

The considered parameters were the number of variables randomly sampled as candidates for the trees to be 

used at each split for RF, the cost (C) of constraints violation for SVM, the regularization parameter (lambda) 

and the mixing parameter (alpha) for GLMNet, and the neighborhood size (k) for k-NN. The parameters with 

the best cross-validated AUC-ROC were finally selected. 

RUS and ROS techniques were applied to the training dataset. However, the validation data set was held out 

before using the text preprocessing and balancing techniques to avoid possible bias in the validation.[95] The 

whole process is represented in Figure 4.  

To compare the results, separately for each MLT, we computed the within SR difference between the cross-

validated AUC-ROC values resulting from the application of some balancing technique and the AUC-ROC result-

ing from the crude application of the MLT (i.e., by the “none” strategy to managing the unbalanced data). For 

all those delta-AUCs we computed 95% confidence intervals, estimated by the observed CV standard devia-

tions and sample sizes. Next, we pooled the results by MLT using meta-analytic fixed-effects models. To evalu-

ate the results, sixteen forest plots were gridded together with MLTs by rows and balancing techniques by col-

umns, in Figure 5.  
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3.3  RESULTS 

Table 6 reports cross-validated AUC-ROC values for each strategy, stratified by SR. In general, all the strategies 

achieved a very high cross-validated performance. Regarding the methods to handle class imbalance, ROS-

50:50 and RUS-35:65 reported the best results. The application of no balancing technique resulted in a high 

performance only for the k-NN classifiers. Notably, for k-NN, the application of any method for class imbalance 

dramatically hampers its performance. A gain is observed for GLMnet and RF when coupled with a balancing 

technique. Conversely, no gain is observed for SVM. 

Meta-analytic analyses (see Figure 5) show a significant improvement of the GLMNet classifier while using any 

strategy to manage the imbalance (minimum delta-AUC of +0.4 with [+0.2, +0.6] 95% CI, reached using ROS-

35:65). Regarding the application of strategies in combination with k-NN, all of them drastically and signifi-

cantly hamper the performance of the classifier in comparison with the use of the k-NN alone (maximum 

delta-AUC of -0.38 with [-0.39, -0.36] 95% CI reached using RUS-50:50). About the RF classifier, the worst per-

formance was reached using ROS-50:50 which is the only case the RF did not show a significant improvement 

(delta-AUC +0.01 with [-0.01, +0.03] 95% CI), in all the other cases the improvements were significant. Last, the 

use of an SVM in combination with strategies to manage the imbalance shows no clear pattern in the perfor-

mance: i.e., using RUS-50:50, the performance decreases significantly (delta-AUC -0.13 with [-0.15, -0.11] 95% 

CI); ROS-35:65 does not seem to have any effect (delta-AUC 0.00 with [-0.02, +0.02] 95% CI); for both ROS-

50:50 and RUS-35:56 the performance improves in the same way (delta-AUC 0.01 with [-0.01, +0.03] 95% CI), 

though not significantly.  

 

3.4  DISCUSSION 

Application of MLTs in TM has proven to be a potential model to automatize the literature search from online 

databases.[10, 73, 78, 81, 82] Although it is difficult to establish any overall conclusions about best ap-

proaches, it is clear that efficiencies and reductions in workload are potentially achievable.[83] 

This study compares different combinations of MLTs and pre-processing approaches to deal with the 

imbalance in text classification as part of the screening stage of an SR. The application of such a methodology 

would allow researchers to make comprehensive SRs, by extending existing literature searches from PubMed 

to other repositories such as ClinicalTrials.gov where documents with a comparable word characterisation 

could be accurately identified by the classifier trained on PubMed, as illustrated in [90]. 

Regardless of the balancing techniques applied, all the MLTs considered in the present work have shown the 

potential to be used for the literature search from the online databases with AUC-ROCs across the MLTs (ex-

cluding k-NN) ranging prevalently above 90 per cent. 

Among study findings, the resampling pre-processing approach showed a slight improvement in the perfor-

mance of the MLTs. ROS-50:50 and RUS-35:65 techniques showed the best results in general. Consistent with 

the literature, the use of k-NN does not seem to require any approach for imbalance.[96] On the other hand, 

for straightforward computational reasons directly related to the decrease in the sample size of the original 

dataset, the use of RUS 35:65 may be preferred. Moreover, k-NN showed unstable results when data had been 

balanced using whatever technique. It is also worth noting that k-NN-based algorithms returned an error, with 

no results, three times out of the seventy applications, while no other combination of MLT and pre-processing 

method encountered any errors. The problem occurred only in the SR of Kourbeti [97] which is the one with 

the highest number of records (75 positives and 1600 negatives), and only in combination with one of the two 

ROS techniques or when no technique was applied to handle unbalanced data, i.e., when the dimensionality 

does not decrease. The issue is known (see for instance the discussion in 
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https://github.com/topepo/caret/issues/582) when using the caret R interface to MLT algorithms, and manual 

tuning of the neighbourhood size could be a remedy [68].  

According to the literature, the performance of various MLTs was found sensitive to the application of 

approaches for imbalanced data.[87, 98] For example, SVM with different kernels (linear, radial, polynomial 

and sigmoid kernels) was analysed on a genomics biomedical text corpus using resampling techniques and re-

ported that normalised linear and sigmoid kernels and the RUS technique outperformed the other approaches 

tested.[99] SVM and k-NN were also found sensitive to the class imbalance in the supervised sentiment classifi-

cation.[98] Addition of cost-sensitive learning and threshold control has been reported to intensify the training 

process for models such as SVM and Artificial Neural-Network, and it might provide some gains for validation 

performances, not confirmed in the test results.[100] 

However, the high performance of MLTs in general and when no balancing techniques were applied are not in 

contrast with the literature. The main reason could be that each classifier is already showing good perfor-

mance without the application of methods to handle unbalanced data, and there is no much scope left for the 

improvement. A possible explanation for such a good performance lies in the type of the training set and fea-

tures, where positives and negatives are well-separated by design, and based on search strings performing 

word comparison into the metadata of the documents.[90] Nevertheless, the observed small relative gain in 

performance (around 1%) may translate into a significant absolute improvement depending on the intended 

use of the classifier (i.e., an application on textual repositories with millions of entries).  

Study findings suggest that there is not an outperforming strategy to recommend as a convenient standard. 

However the combination of SVM and RUS-35:65 may be suggested when the preference is for a fast algo-

rithm with stable results and low computational complexity related to the sample size reduction. 

3.4.1  LIMITATIONS  

Other approaches to handle unbalanced data could also be investigated, such as the algorithmic or the ensem-

ble ones. Also, we decided to embrace the data-driven philosophy of ML and compare the different methods 

without any a-priori choice and manual tuning of the specific hyper-parameter for each technique. This with 

the final aim of obtaining reliable and not analyst-dependent results. 

3.5  CONCLUSIONS 

Resampling techniques slightly improved the performance of the investigated MLT. From a computational per-

spective, random under-sampling 35:65 may be preferred. 

https://github.com/topepo/caret/issues/582
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4 USE OF MACHINE LEARNING TECHNIQUES FOR CASE-DETECTION OF VARICELLA 

ZOSTER USING ROUTINELY COLLECTED TEXTUAL AMBULATORY RECORDS 

SUMMARY 

The detection of infectious diseases through the analysis of free text on electronic health reports (EHRs) can 

provide prompt and accurate background information for the implementation of preventative measures, such 

as advertising and monitoring the effectiveness of vaccination campaigns. Purpose of this paper is to compare 

Machine Learning Techniques with application to EHR analysis for disease detection. The PEDIANET database 

was used as a data source for a real-world scenario on the identification of cases of varicella. The models’ 

training and test sets were based on two different Italian regions’ dataset of 7,631 patients and 1,230,355 rec-

ords, and 2,347 patients and 569,926 records, respectively, for whom a gold standard of varicella diagnosis 

was available. GLMNet, Maximum Entropy (MAXENT) and LogitBoost (Boosting) algorithms were implemented 

in a supervised environment and 5-fold cross-validated. The DTM  generated by the training set involves a dic-

tionary of 1,871,532 tokens. The analysis was conducted on a subset of 29,096 tokens, corresponding to a ma-

trix with no more than 99% of sparsity ratio. The highest test accuracy was reached by Boosting (96.0% and 

95% CI (93.8%, 98.1%)). GLMNet delivered superior predictive accuracy compared to MAXENT (86.6% vs 

66.0%). MAXENT and GLMNet predictions weakly agree with each other (AC1 = 0.60, 95% CI of (0.58, 0.62)), as 

well as with LogitBoost ((AC1 = 0.64, 95% CI of (0.63, 0.66) and AC1 = 0.53, 95% CI of (0.51, 0.55) respectively)). 

Boosting has demonstrated promising performance in large-scale EHR-based infectious disease identification. 

 

This chapter was submitted and currently under revision as: 

Lanera, C., Berchialla, P., Baldi, I., Lorenzoni, G., Tramontan, L., Scamarcia, A., Cantarutti, L., Giaquinto, C., & 

Gregori, D. (2019). Use of Machine Learning techniques for case-detection of Varicella Zoster using routinely 

collected textual ambulatory records. Journal of Medical Internet Research. 
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4.1  INTRODUCTION 

Improving the accuracy of infectious disease detection at the population level is an important public health 

issue that can provide the background information necessary for the implementation of effective control strat-

egies, such as advertising and monitoring the effectiveness of vaccination campaigns  [15]. 

The need for fast, cost-effective and accurate detection of infection rates has been widely investigated in re-

cent literature [16]. Particularly, the combination of increased Electronic Health Reports (EHR) implementation 

in primary care, the growing availability of digital information within the EHR, and the development of data 

mining techniques offer great promise for accelerating pediatric infectious disease research [17]. 

Although EHRs data are collected prospectively in real time at the point of healthcare delivery, observational 

studies intended to retrospectively assess the impact of clinical decisions are likely the most common type of 

EHR-enabled research [17]. 

Among the high-impact diseases, the prompt identification of Varicella Zoster viral infections is of key interest 

due to the debate around the need and cost-benefit dynamics of a mass-vaccination program in young chil-

dren [101, 102]. 

Challenges in this context arise from both the unique epidemiological characteristics of VZV with respect to 

information extraction, such as age-specific consultation rates, seasonality, force of infection, hospitalization 

rates and inpatient days [103], and from the way that medical records are organized, often in free-format and 

un-coded fields [104]. A critical step is to transform this large amount of healthcare data into knowledge. 

Data extraction from free text for disease detection at the individual level can be based on manual, in-depth 

examinations of individual medical records or, to contain costs and ensure time-tightening and control, by au-

tomatic coding. MLTs are the most commonly used approaches [105], which show good overall performance 

[106, 107]. Nevertheless, few indications are currently available on the most appropriate technique to be used, 

and comparative evidence is still lacking on the performances of each available technique [108] in the field of 

pediatric infectious disease research. 

In recent years, GLM based techniques have been largely used for TM of EHRs, both as a technique of choice 

[12] and as a benchmark [94]. The performance of GLMs, specially multinomial or in the simplest case logistic 

regression, has been indicated as unsatisfactory [109] because they are prone to overfitting and are sensitive 

to outliers. Enhancements to GLMs have been proposed recently in the form of the lasso, and elastic-net regu-

larized GLM [110] (GLMNet), multinomial logistic regression (MAXENT) and the boosting approach imple-

mented in LogitBoost algorithm [111] to overcome the limitations of naïve GLMs. Nevertheless, to the best of 

our knowledge, no comparisons have been made among these techniques to determine to what extent im-

provements are needed. 

The purpose of this study is to make comparisons among enhanced GLM techniques in the setting of auto-

matic disease detection [112]. Particularly, these methods will be assessed on their ability of identifying cases 

of VZV from a large set of EHRs. 

 

4.2  METHODS 

4.2.1  ELECTRONIC MEDICAL RECORD DATABASE 

The Italian PEDIANET database [21] collects anonymized clinical data from more than 300 pediatricians 

throughout the country. This database focuses on children aged 0-14 years [22–25] and records reasons for 
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accessing healthcare, diagnosis and clinical details. The sources of those data are primary care records written 

in Italian, which are filled in by pediatricians with clinical details about diagnosis and prescriptions; they also 

contain details about the eventual hospitalization, and specialist referrals. 

For the purpose of the study, we were allowed to access only two subsets of the PEDIANET database, corre-

sponding to the data collected between 2004 and 2014 in the Italian regions of Veneto (Northern Italy) and 

Sicilia (South Italy). Since the Veneto region dataset was larger, it was considered for carrying out the training 

of the model. The dataset of the Sicilia region provided an independent dataset for testing the model.  The 

main characteristics of the two datasets are reported in Table 7. It is worth to note that the proportion of posi-

tive cases of VZV is different in the two databases. Interpreting differences in prevalence between Regions is 

beyond the purpose of this study; nevertheless, given the smaller prevalence, it is expected a lower Positive 

Predictive Value (PPV) and a higher in Negative Predictive Value (NPV) on the test set. 

The PEDIANET source data includes five different tables. In Table 8, we report a short description of them: 

All the tables can be linked at the individual level; i.e., each row of all the tables contains the fields reporting 

information on dates, the assisting pediatrician’s anonymous identifier, and the patients’ anonymous identi-

fier, which constitutes the linking key. 

4.2.2  CASE DEFINITION  

The case definition comes directly from the gold standard provided, and the training set for ML was created 

using those dichotomous labels, i.e., ‘0’ = non-case, i.e., the case was not a VZV case, and ‘1’ = case, i.e., the 

case was a VZV case. 

Training and test sets for ML 

Linking by Patient ID, Pediatrician ID, and reporting date, we merged the five tables into a single table consist-

ing of several entries, each of which represents a visit/evaluation of a patient carried out by a pediatrician on a 

specific day. At this step, the information, other than Patient ID, Pediatrician ID and reporting date, are con-

tained in fifteen columns containing free text mixed with coded text, considered by us as free text as well. Fi-

nally, all remaining columns of the table were merged into a single corpus, i.e., a body of text. This process was 

applied to training the models on 1,230,355 entries (database of the Veneto region) and to test them on 

569,926 entries (database of the Sicily region) separately. 

4.2.3  PRE-PROCESSING 

Text analysis by a computer program is possible only after establishing a way to convert text, i.e., human read-

able, into numbers, i.e., computer-readable. This process is called pre-processing, and it is the first [4] and 

probably the most important step in data mining [5]. To process the corpus of PEDIANET EHRs included in the 

training set, we used the following strategy: first, we converted all fields in a text type, lowered the content 

and cleared it of symbols, punctuation, numbers and extra white spaces. Next, we stemmed the words, i.e., 

reducing them to their basic form, or “root”, which is recognized as one of the most important procedures to 

perform [113] and constructed 2-gram tokens, which has been shown to be the optimal rank for gram tokeni-

zation [114]. After that, we removed all the (stemmed) stopwords, i.e., very common and non-meaningful 

words, such as articles or conjunctions, from the set of tokens as well as all bigrams containing any of them. 

We decided for this strategy after exploring different approaches described in [115]. Finally, we created the 

DTM as a patient-token matrix. To take into the account both the importance of the tokens within a patient, 

i.e., a row of the DTM, and its discrimination power between patients’ records, i.e., the rows of the DTM, we 

computed the TF-iDF (Term Frequencies – inverse Document Frequencies) weights. TF-iDF weights help to ad-

just for the presence of words that are more frequent but less meaning [116]. TF-iDF-ij entry is equal to the 

product of the frequency of the j-th token in the i-th document by the logarithm of the inverse of the number 
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of documents that contain that token; i.e., the more frequent a word appears in a document the more its 

weight rises for that document, while the more documents contain the j-th token the more the weight shrink 

across all the documents [117]. In the initial DTM there were 1,871,532 tokens that appear at least once, with 

non-sparse/sparse entries ratio of (18,951,304/14,262,709,388). We decided to reduce it up to achieve 99% of 

overall sparsity. Filtering out the tokens that do not appear in at least 1% of the documents lead to a final spar-

sity of 94%, i.e. 29,096 tokens that appear at least once for a non-sparse/sparse entries ratio of 

13,140,370/208,891,206.  The choice of 99% level of sparsity was a tradeoff between the need to retain as 

many tokens as possible and the computational effort. 

The corpus of PEDIANET EHRs comprised in the test set went through the same text preprocessing strategy, in 

the same order and then DTM was created with the TF weighing scheme initially. Further, it was adapted with 

the same tokens retained in the training phase, (i.e., adding the missing tokens, weighting them like zero, and 

removing the ones not included in the training DTM), and was finally reweighted with TF-iDF weighing scheme 

with the same retained iDF weights of the corresponding training DTM, which were retained when applied on 

the whole training dataset. Those are necessary step to guarantee that the two feature spaces are the same 

and that the models trained can be evaluated on the test set.  

4.2.4  MACHINE LEARNING TECHNIQUES 

Enhancements of GLMs for carrying out TM on EHR have been proposed in the form of the lasso, and elastic-

net regularized GLM [111] (GLMNet), multinomial logistic regression (MAXENT) and boosting approach 

(LogitBoost) [111]. 

GLMNet is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and 

ridge methods applied in synergy with a link function and a variance function to overcome linear model limita-

tions (such as the constant variability among the mean and the normality of the data). The link function se-

lected was the binomial, i.e., the model fit a regularized logistic regression model for the log-odds; while the 

amount of regularization was automatically selected by the algorithm trough an exploration of one hundred 

values between the minimum value that drop down all the coefficients to zero and its 0.01 fraction. 

MAXENT is an implementation of (multinomial) logistic regression aimed at minimizing the memory load on 

large datasets in R and is primarily designed to work with the sparse DTM provided by the R package tm [118]. 

It is proven to provide results mathematically equivalent to a GLM with a Poisson link function [119].  

Boosting is a general approach for improving the accuracy of any given learning algorithm. We used the adap-

tations of Tuszynski [120] to the original algorithm, i.e., LogitBoost [121, 122], which is aimed at making the 

entire process more efficient while applying it on large datasets. The standard boosting technique [122] is ap-

plied to the sequential use of a decision stump classification algorithm as a weak learner, i.e., a single binary 

decision tree. The number of stumps considered is the same of the columns provided in the training set. 

Those techniques are chosen among computationally treatable algorithms for use with large datasets [118]. 

GLMNet and MAXENT, respectively, represent classical benchmark approaches to linear and logistic classifica-

tion in a manner that differs from LogitBoost, which is a modern boosted tree-based ML approach [123, 124]. 

Moreover, LogitBoost generalizes the classical logistic models by fitting a logistic model at each node [125] and 

shows an alternative point of view with regards to models, such as the GLMs, for which the structure of the 

learner must be chosen a priori [126]. 

4.2.5  TRAINING AND TESTING 

We addressed the issue of internal validation by performing CV on the training set comprising records from the 

Veneto region. We dealt with external validation by accessing a truly external sample of Pedianet EHRs from 

another Italian region, Sicily. This accomplishes two tasks: 1) to preserve precision in the training phase; 2) to 

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Tikhonov_regularization
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complement study findings with external validation results using data that were not available when the predic-

tive tool was developed. 

We used a 5-fold CV approach to validate each of the three MLTs on the DTM with the corresponding (by row) 

“case/non-case” attached labels. All MLTs were simultaneously fitted on the same set of folds to ensure a 

proper comparison between techniques. Values of k = 10 or k = 5 (especially for large dataset) has been shown 

empirically to yield acceptable (in term of bias-variance trade-off) error rate [95, 127]. Thus, the choice of 5-

folds was driven by the computational complexity, the fewer fold, the fewer complexity.  

As measures of performance, we calculated point estimates and 95% Confidence Intervals (95% CI) of: 

- PPV or Precision: 
𝑇𝑟𝑢𝑒(𝑇)𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑃𝑜)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑃𝑟)𝑃𝑜
 i.e., the fraction of positively identified cases that are true positives; 

- NPV: 
𝑇𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑁)

𝑃𝑟𝑁
, i.e., the fraction of positively identified non-cases that are true negative; 

- Sensitivity or Recall : 
𝑇𝑃𝑜

𝑅𝑒𝑎𝑙(𝑅)𝑃𝑜
, i.e.,  the true positive rate; 

- Specificity: 
𝑇𝑁

𝑅𝑁
, i.e., the true negative rate; 

- Accuracy: 
𝑇𝑃+𝑇𝑁

𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝑆)
 i.e., the fraction of cases correctly classified; 

- F score: 
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

= 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, i.e., the harmonic mean of the PPV (or Precision) and Sensitivity (or 

Recall). 

The Gwet’s Agreement Coefficient 1 (AC1) statistics of agreement [128] between the techniques are computed 

and reported, along with their corresponding 95% Cis. Given A = the number of times both models classify a 

record as non-case, D = the number of times both models classify a record as a case, and N = the total sample 

size, then 𝐴𝐶1 =
𝑝−𝑒𝛾

1−𝑒𝛾, where  𝑝 =
(𝐴+𝐷)

𝑁
, and 𝑒𝛾 is the agreement probability by chance and is equal to 

2𝑞(1 − 𝑞), where 𝑞 =
𝐴1+𝐵1

2
𝑁, A1 is the number of records classified as non-case by model 1, and B1 is the 

number of records classified as non-case by model 2 , AC1 has been used given its propensity to be weakly af-

fected by marginal probability, and therefore it was chosen to manage unbalanced data [129]. 

All the analyses were implemented in the R System [67] with the computing facilities of the Unit of Biostatis-

tics, Epidemiology and Public Health. The R packages used were: SnowballC to stem the words and RWeka (to 

create n-grams) for the pre-processing step; Matrix and SparseM to manage sparse matrices; GLMNet, 

MAXENT and caTools for the GLMNet, MAXENT and LogitBoost MLT implementation; caret to create and eval-

uate the CV folds; and ROCR to estimate the performance and the tidyverse bundle of packages for data man-

agement, functional programming and plots. 

4.3 RESULTS  

The flow chart, from data acquisition to pre-processing, is shown in Figure 6. In the training set, 29,096 initial 

terms out of 1,871,532 were retained by the sparsity reduction step. 

Boosting significantly outperforms all other MLTs on the training set, with a predictive accuracy of 94.8% with 

95% CI (94.0%, 95.5%), and a positive predictive value of 95.8 with 95% CI (93.2%, 98.5%). The GLMNet predic-

tor delivered superior predictive accuracy compared to MAXENT, with 85.02% versus 79.7% accuracy, and 

73.2% versus 66% positive predictive value, respectively (Table 9).  
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The same considerations hold on the test set where Boosting, GLMNet and MAXENT reach a predictive accu-

racy of 96% (93.8%, 98.1%), 86.6% (84.6%, 88.7%), and 66% (56.4%, 75.5%), and a positive predictive value of  

63.1% (42.7% – 83.5%), 24.5% (21.0% – 28.0%), and 11.0% (9.5% – 12.5%)   respectively (Table 10).  

Agreement between MLT predictions on the training set was good as measured by AC1 statistics (Table 11). 

MAXENT and GLMNet achieved an AC1 of 0.68 with a 95% CI of (0.67, 0.70) between each other, and an AC1 of 

0.66, 95% CI of (0.65, 0.68) and 0.74, 95% CI of (0.72, 0.75) with LogitBoost. 

With the aim to analyze the most relevant errors, we explored if any records were wrongly classified by all the 

techniques. It turned out there were three records: one wrongly classified as positive and two wrongly classi-

fied negatives by all the MLTs.   

 

4.4 DISCUSSION  

The application of MLTs to EHRs constitutes the analytical component of an emerging research paradigm 

which rests on the capture and pre-processing of massive amounts of clinical data to gain clinical insights and 

ideally to complement the decision-making process at different levels, from individual treatment to definition 

of national public health policies. As acknowledged by others [2], the development and application of big data 

analysis methods on EHRs may help create a continually learning healthcare system [3]. 

This study trains and compares three different ML approaches towards infectious disease detection at the pop-

ulation level based on clinical data collected in primary care EHRs. In line with the recommended paradigm for 

model validation [95], MLTs performance underwent internal validation through CV and external validation on 

an independent set of EHRs.  

The predictive capabilities of the developed MLTs are promising even if quite different from each other, e.g., 

validation accuracy ranges from 80% to 94% and test accuracy from 66% to 96%. Findings on the higher level 

of accuracy reached by LogitBoost are in line with recent evidence that shows an improvement in general clas-

sification problems moving from maximum entropy algorithms to LogitBoost-based ones [130]. LogitBoost is 

thus confirmed to be a useful technique for solving health-related classification problems [122]. 

Only three records were wrongly classified by all the models. The first one was wrongly classified as positive 

probably because the text entry was “vaccini:varicella e mpr” and after the pre-processing the bigram “vaccin 

varicell” was removed, because the TF-iDF weight was very low. Thus the relationship between VZV and vac-

cine was lost and remained only the token “varicell”. 

The other two records were wrongly classified as negative. For one of them, the misclassification was probably 

due to an issue in the tokenization. In fact, an anomalus sequence of dashes (“-”) and blanks leaded to the to-

ken “- varicella”, which was removed from the feature space, leaving no reference to the disease. The second 

negative misclassified record referred to a child who was vaccinated for measles, mumps, rubella, and VZV 

(quadrivalent vaccine). The pediatrician wrote “vaccinazione morbillo parotite rosolia varicella”. The bigram 

“rosol varicell” (e.g. “rubell varicell”) was weighted 0.361 and hence retained in the feature space and was 

considered by all the MLTs a pattern of non-infection. 

The strength of tree-based models such as LogitBoost also lies in their high scalability. In fact, their computa-

tional complexity, i.e., the asymptotical time needed for a complete run, grows linearly with the sample size 

and quadratically with the number of features used, i.e., the number of tokens considered [125]. Assuming 

that the richness of the pediatric EHRs vocabulary, i.e., the number of tokens reaches a plateau as data 
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accumulates over time, the further increase in computational time will only depend linearly on the number of 

patients. 

Any attempt to use EHRs to identify patients with a specific disease would depend on the algorithm, the data-

base, the language and the true prevalence of the disease.  As to the generalization of these models to other 

contexts, we hypothesize that they could be successfully applied also in public health systems with EHR chart-

ing in other languages (https://apha.confex.com/apha/2017/meetingapp.cgi/Paper/387228).  

We acknowledge that one metric, i.e., sensitivity, specificity, PPV, or NPV may be more important than an-

other, depending on the intended use of the classification algorithm. Thus, LogitBoost model is adequate for 

ascertaining VZV cases, with a preference for case identification with good sensitivity and excellent specificity.  

Finally, if the aim of using ML techniques is to help creating gold standard database, limited agreement be-

tween the ML techniques reported in Table 11 suggests that these classification algorithms are not reliable as 

set of annotators. 

4.4.1  LIMITATIONS  

Some limitations must be acknowledged. First, it is acknowledged that text pre-processing is a crucial step. The 

way to convert free text into numbers and numbers into features is an essential step of the process and one of 

the most impactful on the results [5]. For the same reason as before, we decided to follow a standard pre-pro-

cessing procedure without searching for the best one to obtain results that are at most independent of human 

tuning. 

Furthermore, we set the number of boosting iterations at the same number of features considered. This is 

suboptimal in computational time because the same performance can be reached with fewer iterations [125]. 

Nevertheless, we aimed to reach an upper-bound value for the performance estimated in an optimal situation. 

4.5 CONCLUSIONS  

Given their promising performance in identifying VZV cases, LogitBoost, and MLTs, in general, could be effec-

tively used for large-scale surveillance, minimizing time and cost in a scalable and reproducible manner.  
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5 ANALYSIS OF UNSTRUCTURED TEXT-BASED DATA USING MACHINE LEARNING 

TECHNIQUES: THE CASE OF PEDIATRIC EMERGENCY DEPARTMENT RECORDS IN 

NICARAGUA 

SUMMARY 

Free text information is still widely used Emergency Department (ED) records. Machine Learning Techniques 

(MLT) are useful for analyzing narratives, but they have been used mostly for English-language datasets. Con-

sidering such a framework, it was tested the performance of an ML classification task of a Spanish-language ED 

visits database. ED visits collected in the EDs of nine hospitals in Nicaragua were analyzed. Spanish-language, 

free-text discharge diagnoses were considered in the analysis. Five-hundred RFs were trained on a set of boot-

strap samples of the whole dataset (1789 ED visits) to perform the classification task. For each one, after hav-

ing identified optimal parameter value, the final validated model was trained on the whole bootstrapped da-

taset and tested. The classification accuracies had a median of 0.783 (95% C.I. 0.779-0.796). MLTs seemed to 

be a promising opportunity for the exploitation of unstructured information reported in ED records in low- and 

middle-income Spanish-speaking countries. 

 

This chapter was published as: 
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Text-Based Data Using Machine Learning Techniques: The Case of Pediatric Emergency Department Records 

in Nicaragua. Medical Care Research and Review. https://doi.org/10.1177/1077558719844123 
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5.1  INTRODUCTION 

Monitoring ED visits represents a powerful tool for public health surveillance [26]. It allows for the analysis of 

frequency (e.g., time trends, seasonality) and distribution of diseases and injuries referred to ED, the early de-

tection of outbreaks (through syndromic surveillance [131, 132]  which is currently employed in a growing 

number of application fields other than the ones for which it has been initially developed, i.e., the early detec-

tion of bioterrorism attack [133]), the quality assessment of health services, and, not least, the evaluation of 

the effectiveness of intervention programs. 

The availability of computerized and coded patients’ information (e.g., signs, symptoms, admission diagnosis) 

is crucial for the successful monitoring of ED visits with the purpose of epidemiological surveillance. In view of 

making ED information readily accessible, since the beginning of the 2000s, several signs of progress have been 

made in the computerization and coding of ED health records, especially in high-income countries (e.g., in the 

USA [134]). However, using information on ED visits for epidemiological research is still challenging [26]. The 

main barrier is represented by the employment of heterogeneous data collection systems, regarding methods 

of data collection, type of data collected, data structure, data format, lack of consistency and underuse of cod-

ing systems of diseases and injuries, and the widespread use of narrative free-text. Particularly, the documen-

tation of ED visits using unstructured free-text is still widely used, since several coding systems are available 

and are continually being developed, but their use is not straightforward [11]. 

Such barriers in the analysis of ED datasets for epidemiological research are even more relevant for low- and 

middle-income countries (LMICs), where the care of acute conditions is not as well established as in high-in-

come countries [135]. Fortunately, in recent years, several initiatives have been put forward to improve the 

performance of EDs in LMICs, and especially in Latin American ones [136, 137]. However, the wide use of free-

text information instead of coded and computerized data collection systems makes the analysis of ED visits 

epidemiology difficult. These data are useful to monitor ED performance and to target ad hoc interventions to 

develop emergency care systems in such countries further [138].  

5.1.1  CONCEPTUAL FRAMEWORK  

Given such a framework, besides a progressive development of a standardized data collection system for ED 

visits, in both high- and LMICs, it is crucial to adopt approaches of analysis allowing for the exploitation of un-

structured, text-based, ED medical records currently available. Data extraction from free-text ED health rec-

ords might be done through a manual, in-deep, review of individual medical records; however, such a strategy 

is extremely expensive and time-consuming [11]. Conversely, the automatic coding of free-text information 

reported in ED health records through appropriate MLTs would be a promising opportunity [12], which is in-

creasingly used also for the analysis of ED records, with encouraging results [13, 14]. However, the research on 

the use of MLTs to automatically extract information from medical records is still at an early stage, and it is ap-

plied mainly to the English-based datasets. Only a few examples are available in the literature about the appli-

cation of MLT to the Spanish language [139–142], which is one of the most widespread languages worldwide. 

In addition to that, it is well-known that different languages show different levels of linguistic, morphological, 

and syntactical complexities [51] (e.g., Spanish exhibits slightly higher levels of morphological complexity com-

pared to English [52]). This inevitably influences how medical information is reported in ED health records and, 

consequently, the accuracy of automatic classification algorithms. This highlights the need for testing MLTs 

algorithms on different languages other than the English ones. 

5.1.2  NEW CONTRIBUTION 

Considering the usefulness of ED data for monitoring population’s health care needs, but the wide heterogene-

ity of data collection systems employed in the EDs and, not least, the wide use of free text information instead 

of coded ones, it is crucial to develop analysis approaches able to exploit the ED data available for deriving 



[Title] 

useful information to monitor population’s health. MLTs would be a promising approach of analysis of free-

text medical information, but their use is still limited, and most of the studies have been done on English lan-

guage datasets. Considering such a framework, it was tested the performance of a ML classification task of 

Spanish free-text discharge diagnoses reported in an ED visits database from Nicaragua.  

5.2  METHODS 

5.2.1  ITALY-NICARAGUA  COOPERATION PROJECT 

Data were derived from an international cooperation project between Italian and Nicaraguan pediatricians 

aimed at setting up a pediatric emergency clinical network in Nicaragua. The project started in 2011 and was 

carried out thanks to the partnership between the Regione Lombardia; the IRCCS Fondazione Ca’ Grande – 

Policlinico Milano, the Department of Women’s and Children’s Health– University of Padova, the Nicaraguan 

government and La Mascota Hospital in Managua.  

Nine Nicaraguan hospitals were included in the project: one referral center, La Mascota Hospital located in 

Managua, the capital city of Nicaragua, and eight referring hospitals located in the towns of Chinandega, Gra-

nada, Juigalpa, Jinotega, Matagalpa, Masaya, Bluefields, and Puerto Cabeza. Clinical resources and pediatrician 

coverage greatly varied between hospitals making pediatric emergency care of acutely ill or injured patients 

challenging. 

5.2.2  DATA SOURCE 

An electronic data collection system was developed, using FileMaker Pro 11.0v3 (Santa Clara, CA, USA), as part 

of the international cooperation project to monitor the clinical outcomes of patients presenting to the ED with 

urgent or emergent clinical conditions based on the inclusion criteria available as Supplementary Material (Ta-

ble S1). All the ED visits entered in the data collection system, according to the inclusion criteria, were used in 

the analysis. Such a system, initially developed with the goal to use it as a base for telemedicine communica-

tion with the referral hospital, worked within an intranet system between the referring hospitals and the refer-

ral center.  

Data available in the system were represented by children’s demographic characteristics (age and gender) and 

clinical history, vital signs (body temperature, blood pressure, heart and breathing rates, and oxygen satura-

tion), results of laboratory tests, diagnostic and therapeutic interventions (if performed), discharge diagnosis, 

outcomes of the ED visit (hospitalization, transfer to another hospital, death, discharge from ED). Most infor-

mation was reported in Spanish narrative free-text. 

For the study, we focused on ED visits reported in the data collection system in 2012 for which discharge diag-

nosis was available. The full dataset (ED visits collected in 2012) was represented by 2723 ED visits, and those 

for which discharge diagnosis was available were 1789 (66%).  

5.2.3  DISCHARGE DIAGNOSIS CLASSIFICATION: THE GOLD STANDARD 

The free-text discharge diagnoses were manually revised and classified by an independent peer-review group 

of expert pediatricians. The classification comprised ten different classes, including diseases of the cardiovas-

cular, gastrointestinal, metabolic, neurological, respiratory systems, tropical diseases, injuries, poisonings, 

burns, and others. Such classification was considered as the gold standard. Table 12 reports the variables avail-

able in the dataset after the manual classification. The variable reporting the final discharge diagnosis (i.e., dis-

charge diagnosis) was the basis to create the set of tokens used as predictors. The variable reporting the man-

ual classification (i.e., manual classification, which represents the gold standard) was used as the target varia-

ble in the classification procedure. 
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5.2.4  DATA IMPORT, PRE-PROCESSING, AND MANAGEMENT 

Original data were available in Excel file format. For the analysis using MLT, they were converted in CSV using 

the UTF-8 character’s encoding. Data pre-processing [5] consisted in the transformation of all characters in 

lower-case letters, in the removal of all non-alphabetical characters and extra white spaces, and the transfor-

mation of each word to its corresponding lemmata (i.e., term reported in the dictionary). Every single word 

and every consecutive sequence of two words (bigrams) were considered as tokens. 

A DTM was then built up. Each column in a DTM corresponds to a token and each row to a discharge diagnosis. 

It was reported the TF-iDF [143] in each cell of the DTM. The TF-iDF consists in the product between the TF 

(number of times that a token was reported in a free text diagnosis record), and the inverse of the logarithm of 

DF (number of free text diagnosis records in which a token appeared), thus providing information on the fre-

quency a token appeared in the diagnoses. The most important tokens (including bigrams) are reported in Ta-

ble S2 of the Supplementary Material. 

5.2.5  DATA ANALYSIS AND MLT TRAINING 

To obtain a fair estimation of the performance ranges, the strategy adopted for the analyses was to repeat the 

whole training procedure on five hundred bootstrap resamples of the dataset. Each training procedure in-

volved the fitting of a set of RFs MLT [144, 145]. The classification task was to classify the manual-identified 

diagnoses’ classes (i.e., the gold standard) using only the text of discharge diagnoses.  Each RF was trained con-

sidering a forest with 500 trees. The number was set large enough to reach the stability of the votes in the 

classification model (Figure 7). For each RF, the optimal number of variables (tokens) to be sampled and se-

lected for the training procedure, namely mtry parameter, was established independently for each one. The 

mtry selection strategy was to perform five repetitions of a 10-fold CV procedure [146]. This was the optimal 

mtry selected to guarantee the optimal trade-off between bias and variance of the models estimated. As a set 

of options for the mtry search, the procedure considered a pseudo-exponential sequence of possible values 

(i.e.,  3, 10, 30, 100, 300, 1000 up to the maximum number of variables -tokens- available).   

Once the optimal mtry was chosen (through the five repetitions of the 10-fold CV procedure), a final validated 

model (i.e., a brand new RF made up of new 500 trees), was trained on the whole bootstrapped dataset (1789 

bootstrapped ED visits), and tested on its Out-Of-Bag (OOB) set, i.e., the observation initially excluded by the 

bootstrap selection and hence never seen by the whole training procedure. The strategy is reported in Figure 

8. 

5.2.6  STATISTICAL ANALYSIS  AND ESTIMATION OF MLT PERFORMANCE 

Descriptive statistics were reported as median (I and III quartiles) for continuous variables, and percentages 

(absolute numbers) for categorical variables. Thanks to the bootstrap procedure adopted, the classification 

task could have been evaluated by the Out-Of-Bag (OOB) classification performance of the final trained RF 

[147] for each one of the 500 bootstrapped RFs, i.e., the performance of every one of this final set of forests 

were assessed on the set of observations not included in the bootstrapped dataset used to train the trees in 

the forest.  The quality of the classification task was assessed by computing the accuracy (rate of discharge di-

agnosis correctly classified, according to the gold standard, by the algorithm) overall and stratified by each 

class of discharge diagnosis. The set of accuracies of the 500 bootstrapped RFs was computed and reported 

with their median and the corresponding 95% confidence interval.  

5.2.7  SOFTWARE 

R software (ver. 3.4.2) [67] was used for the analyses, within the packages rms [148] for the statistical anal-

yses, tidyverse [149] for the data management, lubridate [150] for the date-time data management. Packages 

stringr [70] and glue [151] were used for the text management, while tm [69], randomForest [145] and caret 
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[68] were employed for text analyses and ML interface. All the analyses run on a Windows 10 Enterprise desk-

top computer powered by an Intel(R) quad Core (TM) i7-6700 CPU @ 3.4GHz with x64-based operating system 

and processor, equipped with 40 GB of RAM. The scripts were implemented to train the trees of the RFs in par-

allel on 3 (i.e., n-1) cores. 

5.3  RESULTS 

One thousand seven hundred eighty-nine pediatric ED records reported in 2012 in the data collection system 

set-up in the context of the Italy-Nicaragua Cooperation Project were considered in the analysis. Most of the 

children admitted to ED were young children (median age of two years) of male gender (56%). According to 

the gold standard (manual classification), the discharge diagnoses’ class most represented was that about the 

respiratory system (mainly pneumonia), followed by that of the gastrointestinal tract (diarrhea) (
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Table 13). The male gender was the most prevalent in all the discharge diagnoses classes except for the meta-

bolic and the poisoning ones. Children admitted to ED with diagnoses about the metabolic system and affected 

by tropical diseases were the oldest (median age of 13 and 9 years, respectively). 

5.3.1  MACHINE LEARNING CLASSIFICATION TASK PERFORMANCE 

Overall three thousand eight hundred ninety-one distinct tokens were considered in the analyses, in particular, 

they range from two hundred fifty-six distinct tokens for Hospital Juigalpa to one thousand five hundred fifty-

two distinct tokens for Hospital La Mascota, and a median of 461 tokens. The overall CPU time (on Intel(R) 

quad Core (TM) i7-6700 CPU @ 3.4GHz with x64-based operating system and processor, equipped with 40 GB 

of RAM ) to train all the models was of 3968.68 seconds, ranging from 35.33 seconds for Hospital Puerto Cabe-

zas to 3090.29 seconds for Hospital La Mascota, and a median CPU time of 95.56 seconds. 

Looking at the classification task, it showed an accuracy of 0.7831 (95% C.I. 0.7792-0.7965) on the dataset 

overall (Table 14). The analysis of the accuracy of the RF according to discharge diagnoses’ classes generally 

showed good performance. Figure 7 shows the trend of the OOB error from 1 to 500 trees considered for each 

of the validated bootstrap RF models, showing very good performance of the ML algorithm, with a very low 

and stable error rate at 500 trees. 

The analysis of the RF performance according to the sample characteristics (age and gender) showed a good 

performance for age (Figure 9). Conversely, the accuracy of the models was better (p-value <0.001) for male 

gender (0.788 95% C.I. 0.783-0.785) compared to the female ones (0.777 95% C.I. 0.772-0.773).  

5.4  DISCUSSION 

The present study aimed at assessing the performance of RF-based classification strategy in the automatic 

classification of free-text discharge diagnoses reported in pediatric ED records from the country of Nicaragua.  

Nicaragua is one of the poorest countries in the Western world. In recent years, several efforts have been put 

forward to try to improve the Nicaraguan healthcare system, although hampered by a lack of resources. From 

the epidemiological point of view, Nicaragua is still considered a pre-transitional country, characterized by a 

high prevalence of infectious diseases and adverse maternal and neonatal outcomes [27]. This is consistent 

with the present analysis since most of the children were admitted to the ED with respiratory and gastrointes-

tinal diseases (mainly respiratory infections and diarrhea).  

The analysis of RFs accuracy according to sample characteristics showed that the performance of the classifica-

tion algorithm was stable over children’s age, even though the age group most represented was that of young 

children. Conversely, the RFs performance varied according to gender. The accuracy of the classification task 

was better for boys compared to girls. One potential explanation of such finding could be represented by the 

fact that the algorithm was unsuitable to classify discharge diagnoses in female children. However, this seems 

very unlikely, given the good performance of the classification algorithm for the overall sample. The lower ac-

curacy in reporting the diagnoses for female children compared with males is more likely to explain our find-

ing. However, there are no available data to support either hypothesis.  

Overall, the algorithm’s performance was found to be very good, providing new insights about the application 

of such techniques to ED data. MLTs have been increasingly used in the field of emergency medicine, as it has 

been shown by a recent literature review [152]. It is worth pointing out that the ED visits included in the anal-

yses were the most severe ones corresponding to 1-2% of all the ED visits. This is even more relevant from the 

public health perspective since the most severe ED visits are those that require the most careful monitor and 

the most complex clinical management since they are related to higher morbidity and mortality compared to 
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the less severe ones. For this reason, an accurate classification of such ED visits is essential to allow for careful 

planning of the ED activities and resources, especially in LMIC where the care of acute conditions is not as well 

established as in high-income countries. 

The main applications of such techniques to emergency medicine data are the development of predictive risk 

models, the patients’ monitoring, and the integration of such techniques with EDs activities (e.g., in the triage) 

[152]. Present findings further improve our knowledge about the potentials of the application of MLTs to 

emergency medicine data. Such an algorithm would be a promising tool to automatically classify information 

from ED health records for the Nicaraguan government since the only requirement for MLTs use is that the ED 

records are extractable. This means that the application of the algorithm to free text information might im-

prove (i) the epidemiological surveillance of ED visits (e.g., seasonality, identification of infectious diseases out-

breaks) to allow for a better plan of ED activities and resources’ allocation, (ii) the identification of pediatric 

population healthcare needs, (iii)  the monitor of the performance of the EDs, and (iv) the evaluation of the 

effectiveness of public health interventions. 

5.4.1  LIMITATIONS  

The main limitations were represented by the fact that the MLTs was applied to a small (1789 ED records) da-

taset in the Spanish language, which has been only rarely analyzed using MLTs. The fact that the dataset was 

small represents the main reason why the actual discharge diagnosis categories were broader than those iden-

tified by the manual classification (gold standard) and, as a consequence, some discharge diagnosis categories 

were underrepresented. However, the performance of the ML algorithm in classifying the discharge diagnoses 

was very good, both overall and by discharge diagnoses’ groups. This in line with the very few studies available 

from international literature about the application of MLTs to the Spanish language, suggesting a good perfor-

mance of MLT also in this linguistic context [139–142]. Looking specifically at the studies on the analysis of 

free-text ED records using MLT, our results are in line with those of previous studies, showing good perfor-

mance of RF [14] and the usefulness of analyzing free-text information to enhance information from medical 

records [153].  

5.5  CONCLUSIONS 

Results of the present study showed a good performance of a ML approach for the automatic classification of 

ED free-text discharge diagnoses in the Spanish language, providing insights for the use of MLT for the exploi-

tation of unstructured information reported in ED records for epidemiologic surveillance in LMICs Spanish-

speaking countries and communities. Clearly, further work should be done in testing the algorithm on wider 

pediatric ED datasets allowing for a more detailed classification, through a strict collaboration between physi-

cians, epidemiologists, and big data specialists. 
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6 AUTOMATIC IDENTIFICATION AND CLASSIFICATION OF DIFFERENT TYPES OF 

OTITIS FROM FREE-TEXT PEDIATRIC MEDICAL NOTES IN THE ITALIAN LANGUAGE: 

A DEEP-LEARNING APPROACH 

SUMMARY 

tabThere is a high clinical interest in the detection and classification of otitis being one of the most common 

infections in pediatrics and the main cause of antibiotic prescriptions. Daily diaries are useful for pediatricians 

to record a more exhaustive status of their patients. However, using the very same diaries in a traditional man-

ual human-driven analysis proved to be costly in terms both of person-time (years) and economic resources. 

The present work aims to develop an automatic machine learning system trained to classify all the Pedianet 

records in six mutually-exclusive  categories: non-otitis, otitis, otitis media, acute otitis media (AOM), AOM 

with tympanic membrane perforation or recurrent AOM. Data used comes from the Pedianet database con-

taining 6,903,035 pediatric visits starting from 1st January 2004 to 23rd August 2017 from 144 family pediatri-

cians throughout Italy. A gold standard composed by 4,928 records for training, 723 records for validation and 

880 records for tests was developed with a high rate of agreement between two expert evaluators (0.89 

weighted Cohen’s kappa). A pediatrician specialized in infectious diseases validated the gold standard, allowing 

us to estimate the expert evaluators’ performances too. Six deep-learning architectures were explored and 

tuned on the validation set, an ensemble model was constructed based on them. The ensemble model 

reached 96.59% of accuracy with 95.47% of balanced F1 score through the classes. Our ensemble obtained 

performance higher than our expert evaluators (max accuracy: 95.91%, max balanced F1: 93.47%). Our analy-

sis confirmed that deep learning models could indeed have a practical application in the differential diagnosis 

of otitis from free text. 
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6.1  INTRODUCTION 

Data from the daily consults of pediatric general practitioners and family pediatricians is an important re-

source, both for studying specific diseases and for pharmacoepidemiologic and pharmacoeconomic analysis 

[18–20]. In Italy, Pedianet is an example of an efficient pediatric outpatient network which collects specific 

data from electronic clinical files filled out by pediatricians during their daily professional activities [21]. With 

more than 300 Italian pediatricians enrolled throughout the country, this network has been shown its value for 

conducting epidemiological studies on major pediatric diseases or pharmacovigilance [19, 154–156]. 

There is a high clinical interest in the differential diagnosis of otitis for public health, as it is one of the most 

common infections in pediatrics and the main reason for antibiotic prescriptions [157].  

Queries on diagnoses in healthcare databases form the basis for clinical research and are usually based on 

ICD9-CM and ICD10-CM codes.  The ability (or desire) to use free text fields is rare, despite increasing evidence 

of the value of mining the free text portions of the Electronic Health Record (EHRs) [158–161]. Anyway, data-

bases don’t always include structured or closed fields for the diagnoses’ codes, and often codes are reported 

as free-text. For instance, Nunes et al. found that amongst patients with Type II diabetes, reports of episodes 

of hypoglycemia found using ICD codes showed 12.4% of the cohort reported at least one, whilst using the free 

text fields with automatic language processing methods showed 25.1%, and a combination of the two yielded 

32.2% [160]. In order to include not-coded diagnosis, free text fields could be searched using a search string 

strategy sensitive for the specific diagnosis. However, considering the non-specificity of symptoms, to clinically 

classify an otitis case could be quite challenging, especially if the recommended diagnostic instruments are not 

used (e.g. pneumatic otoscope is used in only 3.7% of the single acute otitis media episodes instead of the 

static otoscope) [162]. Those uncertainties are reflected in the healthcare report, thus in order to include all 

possible cases, the string for the diagnosis identification could become quite complex and lose specificity. 

Moreover, the potential episodes should then be manually evaluated and validated in order to exclude any 

false positive cases.  

An automatic machine learning (ML) approach to the problem could effectively use all the textual information 

and record-time at disposal to detect the diagnosis and classify it efficiently based on severity or other specifi-

cations has two primary advantages. Long term, it may reduce the time that humans are directly involved on 

the task, i.e. humans need to conduct the classification for gold standard preparation, its possible improve-

ments or update, and software implementation only, not requiring involvement with the full dataset. Second, 

a ML approach to differential diagnosis may reduce the time-to-diagnosis: once implemented and trained, the 

system would classify new records in real-time to inform a physician’s diagnosis. However, this would only be 

true if the ML system  reaches performances comparable to human-levels [163, 164]. 

The aim of the present work is to develop an automatic deep learning ML system trained to classify otitis from 

outpatient clinical records and to classify them into six mutually exclusive categories: non-otitis, otitis (not me-

dia nor acute), OM (not acute), AOM, AOM with perforation or recurrent AOM (when explicitly stated by the 

pediatrician into the corresponding EHR). We opted for a deep-learning approach, instead of classical shallow 

MLTs, for several reason: it can take effectively advantage amounts of data that are orders of magnitude larger 

than classical shallow ML models [38]. Then, a deep learning model can improve over time, starting to learn 

from an already trained model and not from scratch only. Moreover, a deep network can learn non-linearities 

and possible interactions among the features automatically [40–42]. 

6.2  MATERIALS AND METHODS 

6.2.1  DATA SOURCES  
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Data used for the present work comes from a snapshot (DB0) of the Pedianet database containing 6,903,035 

visits of 216,976 children collected by 144 family pediatricians starting from 1st January 2004 to 23rd August 

2017. The Internal Scientific Committee approved the study and access to the database. Pedianet [21] is an 

Italian pediatric general practice research database. It contains fields stating the reason for the visit, health 

status (according to the Guidelines of Health Supervision of the American Academy of Pediatrics), personal de-

tails, growth parameters, diagnosis and clinical detail (free text or the 9th International Statistical Classification 

of Diseases and Related Health Problems system (ICD-9) code), prescriptions (pharmaceutical prescriptions 

identified by the Anatomical-Therapeutical-Chemical code, specialist appointments, diagnostic procedures, 

hospital admissions) and outcome data of the children habitually seen by more than 300 family pediatricians 

distributed throughout Italy. The pediatricians are filling these fields using a standard software (JuniorBit) dur-

ing routine patient care, then data are anonymized and sent monthly to a centralized database in Padua for 

validation.  

6.2.2  GOLD STANDARD 

From DB0, records relevant to the classification were selected (DB1) through a search string similar to the one 

used by Barbieri et al. [19] but looking at all the free-text fields. The string was built to include a wide range of 

potential typographical errors and abbreviations, assuming QWERTY standard Italian layout keyboard usage 

(Regular expression 

Table 24, Supplementary WEB materials). Variations included in the developed search string aim to include 

most of the possible reasonable misspelling or abbreviation which can still be reasonably accurate for decision 

in the classification. 

We sampled the records included for annotation from DB1 in three main sets: training set (DBtrain), validation 

set (DBvali) and test set (DBtest). For all those three set, we considered the following rules for the sampling 

strategy: i) same proportion of patients each pediatricians like in DB1, ii) retrieve at least one record from 

every pediatrician, to grasp at least some of all the possible style variability in DB1, and iii) collecting at least 

500 records each set following the suggestion in [165]. DBtrain was sampled from historical records from 2004 

to 2007 including near ten times the threshold mentioned, i.e., 4,928 records. The other two datasets, i.e., 

DBvali and DBtest, were created from recent records from 2008 to 2017, and include 723 and 880 records re-

spectively (Error! Reference source not found.Figure 10). Table 15 reports the primary metrics of the data-

base. 

To build the DBtrain, DBvali and DBtest gold standard classes, two independent evaluators, expert in pediatric 

EHR, labelled all the records independently accordingly to six, mutually exclusive classes: 0 - non-otitis; 1 - oti-

tis (not acute); 2 - acute otitis (not media); 3 - AOM (without tympanic membrane perforation nor recurrent); 4 

- AOM with tympanic membrane perforation ; 5 - recurrent AOM. Next, a pediatrician specialized in infectious 

diseases classified the records showing disagreement between the first two evaluators. Class distribution from 

the DBtrain, DBvali, and DBtest are reported in Figure 11. 

With regards to the class related to recurrent AOM cases (i.e., label “5”), the definition used was the one 

coined by Goycoolea “the condition in a child is defined as having at least three episodes of acute otitis media 

(AOM) in a period of 6 months, or four or more episodes in 12 months” [166], or with an explicit statement of 

the pediatricians which mark the case as recurrent. The classification model was asked to consider the latter 

definition only, i.e., the model does not need to consider dates or to count the number of records previously 

classified like OMA cases. 

Considering that the gold standard has been built from scratch and it is not passed through along period of 

publicly revisions that can reasonably guarantee it does not contains errors, we considered the agreement be-

tween the annotators like an initial measure for the quality of the gold standard itself. Moreover, we set as 
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human-level performance to the task the better performances among the two annotators measured after the 

revision of the specialist on the records classified differently by the expert annotators. That provided the base 

of comparison for the model performances. 

Given that the classes are theoretically in order, the weighted Cohen’s Kappa (𝒌𝒘) index of agreement be-

tween the evaluators is used to compute raters’agreement [167]. Given 𝑵 is the number of possible classes (in 

our case 𝑵 =  𝟔) , to compute the weighted Cohen’s Kappa a symmetric 𝑵 × 𝑵 matrix of weights (𝒘) is built 

with zeros in the main diagonal and positive values elsewhere in a way that the farther apart the judgments 

are, the higher the weights assigned. Next, two additional 𝑵 × 𝑵 matrices are needed: the confusion matrix 

(𝒑) given by the evaluators’ decisions and the one reporting the values as if they were assigned by chance (𝒆), 

i.e., the cell 𝒑𝒊𝒋 reports the number of observation that the evaluator A assigned to the class 𝒊 and the evalua-

tor B assigned to the class 𝒋, during the cell 𝒆𝒊𝒋 reports the product between the proportion of records the 

evaluator A assigned to the class 𝒊 and the proportion of records that the evaluator B assigned to the class 𝒋, 

i.e., the probability that a record would be in 𝒑𝒊𝒋only by chance. Finally, 𝒌𝒘 =  𝟏 −  
∑ 𝒘𝒊𝒋𝒑𝒊𝒋

𝑵
𝒊𝒋 =𝟏

∑ 𝒘𝒊𝒋𝒆𝒊𝒋
𝑵
𝒊𝒋 = 𝟏

. 

On the other hand, to assess the level of human performances to the task to set a reference to rate the perfor-

mance of the model, the balanced precision (average of precisions for each class, i.e.,  
∑

𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒍𝒂𝒃𝒆𝒍𝒍𝒆𝒅 𝒍𝒊𝒌𝒆 𝒊

𝒍𝒂𝒃𝒆𝒍𝒍𝒆𝒅 𝒍𝒊𝒌𝒆 𝒊
𝑵
𝒊 = 𝟏

𝑵
), 

the balanced recall (average of recalls for each class, i.e., 
∑

𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒍𝒂𝒃𝒆𝒍𝒍𝒆𝒅 𝒍𝒊𝒌𝒆 𝒊

𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒄𝒍𝒂𝒔𝒔 𝒊
𝑵
𝒊 = 𝟏

𝑵
, also known as balanced sensi-

tivity), the balanced F1 score (harmonic mean of balanced precision and balanced recall, i.e., 𝟐 ∗
𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒓𝒆𝒄𝒂𝒍𝒍

𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒓𝒆𝒄𝒂𝒍𝒍
), and the overall accuracy (i.e., the gross proportion of correctly classified rec-

ords) were computed comparing the classifications provided by each one of the two expert evaluators with the 

final gold standard approved by the specialist, i.e., the pediatrician.  

6.2.3  PRE-PROCESSING 

To consider word similarities, like synonyms or spell-errors, we decided to use a dense representation for 

words in our models [168]. To create the dense representation model, i.e., the one which converts words into 

the corresponding dense vectors, we applied the fastText algorithm to the full DB0, i.e., 6,903,035 records, 

choosing the skip-gram architecture and a feature space of 300 dimensions [169]. Our final look-up dictionar-

ies linking each word to the corresponding 300-dimensional dense vector count 122,591 entries. Nowadays, it 

is possible to find pretrained embedding models for general language trained from a large amount of text, e.g., 

Wikipedia. On the other hand, when a context-specific corpus of text is accessible and huge enough, it is possi-

ble to achieve better performances by training a context-specific representation [XXX]. With near seven million 

records of free-text, including diaries, diagnoses, prescription, and specialistic visits, we considered the (unla-

beled) DB0 huge enough to train the word embeddings representation like a context-specific one. 

With regards to the datasets, we merged the fields from each visit to a single stream of text, i.e. all the text in 

diagnosis, signs-and-symptoms, diary, prescription, visit description, and visit result fields provided by Pedianet 

for every visit were considered as a single field. We used the token “__SEP__” to mark the separation between 

one field and the following one. Furthermore, to avoid a considerable amount of different tokens given by 

every different possible number appearing in some record, and also considering that our task is not focused 

on, nor related to, the detection of measurements, dosages or other kinds of numbers, we substitute all the 

numbers with the token “__NUM__.” In DBtrain and DBvali there were 11,544 distinct words/tokens (including 

“__SEP__” and “__NUM__”) we used to define the embedding representation from DB0. 

We considered the full embedding dictionary in the models; hence, every word in the sets considered must be 

present and has a representation. On the other hand, it could be possible than future records will include 

words which are not present in the current dictionary. For that kind of possible records, the model would 
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throw an errors when asked to classify them because it does not have a representation for the new unknown 

tokens. To avoid the problem, we added an additional token “__OOV__” representing any Out-Of-Vocabulary 

ones, on which the embedding will map every token not present in the vocabulary. We set the vector repre-

sentation for “__OOV__” to a small random vector with all the components included between -0.1 and 0.1; 

that is to represent a general word, non-polarized to any preferred direction. Taking into account that every 

token in the actual sets considered is included in the vocabulary used, this will not affect the current estima-

tion in any way, given that it will never be used. The aim of this vector is only to provide a representation for 

possible future unknown words, the choice to use a small random vector was driven by the consideration of 

using a vector which is central on the feature representation space, hence without polarized meaning, but dif-

ferent from the zero vector of the embedding space, which is reserved to another one: the __PAD__. 

The input to each network trained was a (.  × 𝒅) 2-dimensional tensor where “.” represent the batch size, i.e., 

the number of records the network receive in input at every training step, and 𝒅 represent the number of 

words to considers from each record. We set 𝒅 =  𝟏𝟎𝟎𝟎 as a standard value already adopted on similar anal-

yses [170]. Possible records longer than 1000 tokens were truncated to the first 1000 ones, while records 

smaller to 1000 tokens were padded with the tokens “__PAD__” to the right up to reach a length of 1000 total 

tokens as well. So, the first hidden layer of each network was the embedding layer which converts the 

(.  × 𝟏𝟎𝟎𝟎) input tensor to the (.  × 𝟏𝟎𝟎𝟎 × 𝟑𝟎𝟎) one, accordingly to the embedding lookup dictionary used 

of size 122,593 (the number of tokens in the dictionary plus the “__OOV__,” and “__PAD__”). 

6.2.4  LEARNING AND TUNING STRATEGIES 

Our DBtrain and DBtest come from different distributions, i.e., the first collects record from 2004 to 2007, the 

second from 2008 to 2017. Extracted from the same distribution of DBtest, the DBvali is used to tune the net-

works trained, i.e., to evaluate the performance of them with different values of the hyperparameters to se-

lect the best set [171–173]. 

On the other hand, having training set records that match the distribution of the test set can be useful to train 

better models. That is because our validation (and test) sets, comes from a distinct distribution respect to the 

training set one. Hence, while validating the models on a set with the same distribution of the test set is cru-

cial, train a model on records from a different distribution respect to the test set only could be suboptimal. To 

supply data from the distribution of the test set for the learning process, while maintaining data from that dis-

tribution but disjoint from the test set on which validate the learning progresses, we retained 300 randomly 

sampled records from DBvali to evaluate the performance of the models during the learning phase, training 

the models adding (the same) 418 remaining records from DBvali to the full DBtrain. To asses the concrete im-

pact of this strategy, we will retrain and evaluate the final models selected on the DBtrain alone too. 

The networks set up with the weights used in the earliest epoch in which the model reached the best accuracy 

in the first phase. The aim of this second phase is to allow the embedding weights, which were frozen in the 

first phase, to be tuned by the learning process. That can have the potential to achieve a further small im-

provement [174]. Considering this as an experimental approach, we decided that we would consider the fine-

tuned models if improvements were shown only. 

The best model of every architecture considered was retrained on the whole union set of DBtrain and DBvali 

sets. The final set of best models, as well as their ensemble, were asked to classify all the records in the DBtest, 

providing the final measures of performance (Figure 10). 

To evaluate the relation between the final performances obtained and the amount of data considered, the fi-

nal ensemble model were also trained considering firstly the DBtrain only, and next the DBtrain +20%, +40%, 

+60%, and +80% of the records in the DBval, on the side of the training on the full union of the DBtrain and 

DBval already mentioned. 
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6.2.5  ARCHITECTURES EXPLORED 

All the networks were trained by the Adam optimizer [175] to minimize the average training cross-entropy loss 

function among the batches, i.e.  
𝟏

𝒎
∑ ∑ ∑ 𝜹𝒊𝒎

𝒄 𝒍𝒐𝒈(𝒑𝒊𝒎

𝒄 )𝟓
𝒄 = 𝟎

𝑰
𝒊𝒎 = 𝟏

𝑴
𝒎 = 𝟏 , where M is the number of batches in 

which the training set is divided, 𝑰 is the size of each butch, i.e., 𝑴 ⋅ 𝑰 = |𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕|, c is the index for the 

classes, 𝜹𝒊𝒎

𝒄  is the Kronecker’s delta for the class of the i-th record of the m-th batch as compared with c, while 

𝒑𝒊𝒎

𝒄  is the probability assigned by the network for the i-th record of the m-th batch to inherit to the class c. 

We explored several different architectures. Common parts of all of them are the input provided, the first hid-

den layer, i.e., the embedding, and the output layer. Like the output layer, we considered a layer with six neu-

rons to represent all the possible classes. It was activated by the logit function and processed by the softmax 

function, i.e. 𝒑𝒊𝒎

𝒔 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒛𝒊𝒎
)𝒔 =

𝒆
𝒛𝒊𝒎

𝒔

∑ 𝒆
𝒛𝒊𝒎

𝒄
𝟓
𝒄=𝟎

, where 𝒛𝒊𝒎
=  {𝒛𝒊𝒎

𝟎 , ⋯ , 𝒛𝒊𝒎

𝟓 } is the vector of logits of the out-

put layer. We use the relu function to activate all the hidden layers, i.e., 𝒓𝒆𝒍𝒖(𝒙) = 𝐦𝐚𝐱 {𝒙, 𝟎}. 

To maintain under control both the exploding or vanishing gradient events, we apply a batch normalization 

after each hidden layer [176]. To take under control the overfitting, we considered a drop-out layer, i.e., a 

layer which randomly ignores a random set of neurons given a rate, after each hidden layer, once batch-nor-

malized. For the embedding layer, we considered a drop-out ratio of 0.2, while for the others, we explored two 

ratios, i.e., 0.5 and 0.7 [177]. With regards to the batch size, for each network, we explored two options, i.e., 

𝑴 = 𝟖 or 𝑴 =  𝟏𝟔 [178]. 

The architectures explored are reported in the section Networks of the Supplementary WEB materials. The 

final ensemble model was made up on the four networks described (simple embedding excluded) considering 

the mean of all their probability prediction for each class estimated by their output layer before the applica-

tion of their softmax activation function. The same softmax was applied next to decide the class assigned to 

the record by the final ensemble. 

6.3  RESULTS 

A high weighted Cohen’s Kappa level of agreement between the two expert annotators was achieved (0.89). 

Based on the specialist decisions made on the records they classified differently, the evaluations of their per-

formances on the test set have shown a mean accuracy of 95.86% and a mean balanced F1 score of 91.80. In-

dividual performances are reported in Table 16. 

In the first training phase aimed to select the best set of parameters for every architecture, the base architec-

ture considered like reference was the simple embedding which reached 88% of accuracy on the validation set 

in both the configuration explored. All the other architecture’s best models were able to reach 98% accuracy 

on the validation set, without fine-tuning of the embeddings. On the opposite, the simple embedding architec-

ture was the only one showing improvement after the fine-tuning stage. Indeed, fine-tuning hampers the per-

formances of all the best models of the other architectures. Table 17, Table 18, Table 19, and Table 20reports 

the accuracies on the validation set for all the models trained. Computational time is also reported in the ta-

bles. Given that, fine-tuning was not applied to the final models included in the ensemble one. 

Performances on the test set for the best model selected and their ensemble are reported in Table 22. Com-

posed by all the models but the simple embedding one, the ensemble reached 96.59% of accuracy with 

95.47% of balanced F1 score. Both those measures are over the highest of their corresponding expert annota-

tor ones, i.e., 95.91% and 93.47%. The classification matrix of the predicted classes vs. the ones reported in the 

gold standard is reported in Table 23. 
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Moreover, within the 30 records misclassified by the ensemble model,  a subsequent check made by the pedia-

trician highlighted five errors in the gold standard. Among the other, real, errors the most frequents are the 

class 0 predicted as 1 (7 times in which there were presence of negations of otitis in 4 times, and in the others 

the doctor mentioned other doctor’s diagnoses, predisposition, and a doubt case), and the class 4 predicted as 

3 (6 times, in all cases the doctors reported the perforation with uncommon expressions). 

The ensemble model showed slow and almost flat improvement while data were added to DBtrain from DBvali 

(Figure 12) after the first threshold in which DBtrain was considered alone. That could be a marker of the high 

amount of information the architectures explored grasped from the data provided from one side, and to the 

necessity to include in the training set records coming from the distribution of the test set. 

6.4  DISCUSSION 

In this work, we considered a deep-learning approach for a multiclass classification problem. In particular, we 

used the Pedianet database as a source of information to classify children visits as visit reporting: i) other than 

an otitis case, ii) a not media otitis, iii) an OM non acute, iv) an AOM, v) an AOM with tympanic membrane per-

foration or vi) a recurrent OMA; we trained models using five different deep-learning architectures. 

The final ensemble model developed was comparable on accuracy the best human performances observed 

among two expert evaluators (model: 96.59% vs. best-human: 96.33%), balanced precision (model: 97.03% vs. 

best-human: 95.91%) and balanced F1 score (model: 95.47% vs. best-human: 93.47%). Regarding the recall, 

the two evaluators performed quite differently, showing the first one recall of 95.30% and the second one re-

call of 84.66%. Our model reached a slightly lower lever (model: 93.97%) compared to the best of the two hu-

man performances, but considerably higher than the other one. 

The achieved performances are highly promising to classify diagnoses based on free-text in pediatric EHRs. To 

compare them with other similar studies, in one of our recent projects on binary decision for a set of possible 

discharge diagnoses from the notes of pediatric emergency departments [179] we adopted a bootstrap Ran-

dom Forest approach [180], reaching a median accuracy of 78.3%. In another one on the same Pedianet data-

base aimed to binary decide if children have been affected or not by Varicella-Zoster Virus (unpublished) we 

explored main ML generalizations of classical generalized linear models, and we were able to achieve an accu-

racy of 96% but with an F1 score of 68.5% caused by the low precision of the trained model (63.1%). Results 

are also consistent in comparison with a recent study on diagnoses evaluation for pediatric diseases from EHRs 

by Huiying Liang et al. [181] on more than one hundred million of EHRs of over a million of children, which 

achieve a mean F1 score of 96.33% while showing a mean exact match of 94.10% across the category of clinical 

data they considered applying a deep recurrent architecture on free-text. 

Indeed, a deep-learning model can take advantage of datasets that are orders of magnitude larger than classi-

cal shallow machine learning models [38]. Considering the rate of grown of the learning curves of our model, 

we can be confident that it has already saturated the amount of information it can effectively use from the 

data. That from one side is an indirect proof that classical shallow model would perform worst on the same 

task with the same data [38], while on the other side it stimulates the investigation of ways to improve further. 

Another advantage of the deep-learning approaches is that they can be improved over time, starting from an 

already trained model and not every time from scratch, like traditional shallow models. That permit also to 

consider reduced models, e.g., excluding some of the last layers, to reuse a substantial portion of the 

knowledge of a model, which has already achieved high performance on a task, as a starting point to train a 

new model on a different task which can take advantage of similar knowledge [39]. That means, on one side, 

that our training model could possibly be useful as a starting basis to train other deep-learning models to clas-

sify different infections; on the other side, that we can improve our model without restarting the training from 

scratch. 
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Moreover, considering that deep-learning models can be merged to combine their knowledge, our results and 

methodology could also be of interest to improve other deep learning models. Rashidian S. et al. [170] con-

ducted an analysis aimed to identify diabetes, chronic kidney disease and acute renal failure diagnosis consid-

ering structured data. They reached an accuracy of 87.12%, 90.91% and 89.06% (F1 score of 80.04%, 75.77%, 

66.86%) respectively. Including free text could have had a significant impact on such analyses, especially re-

garding the understanding of patients’ clinical history. 

For text analysis, adopting a deep-learning approach leads to further specific advantages, especially when 

joined with the use of embedding layers for the token representation. The first one is related to the pre-pro-

cessing step. There are no more needs to hand-crafting features like n-grams, stem the words or taking their 

lemmata, removing the stopwords, or even performing spelling corrections, as well as for deciding weighting 

strategies to represent the tokens [44–46]. The ability of a network to find meaningful substructure and inter-

action inside the data has much more options and focus compared with even expert human hard-decisions to 

hand-craft new features or select a particular set of weights. 

6.4.1  LIMITATIONS  

From a clinical point of view, given the difficulties in the diagnosis of otitis, it was not always easy to under-

stand the clinical situation described by the pediatricians. Moreover, in order to fasten the daily clinical prac-

tice, some family pediatricians have a pre-compiled sheet for reporting general parameters, which, if amended 

and not corrected later, sometimes were in contrast with the diagnosis. In this regard, it was useful to have 

information about other symptoms in order to understand the veracity of the principal diagnosis.  

Our gold standard was developed with a high agreement between the two evaluators, which reached expected 

high performance when compared with the external professional reviewer. On the other hand, a future option 

of developing a gold standard from specialist expert directly, evaluated by consensus from a team of them, 

would provide a more accurate estimation of the upper limit of the human performances in classifying that 

kind, and quantity, of data on the investigated task. 

A second possible improvement could be connected to the decision to collapse all the fields provided by Pedi-

anet in one, separating them by a specific token. With more computational effort, we will investigate the us-

age of a set of initial parallel layer to evaluate each field individually, before to merge them deeply in the net-

work. On the other hand, that would lead to a more complex network requiring different and more powerful 

computational resources. 

Indeed, a limitation of our approach is the computational power: powerful and modern deep-learning archi-

tectures like BERT [182] or XLNet [183], which reached the highest performance in text mining challenges, 

were not computationally feasible on our systems.  

6.5  CONCLUSIONS 

Our analysis confirmed the potential of deep learning models in identifying and classifying diagnosis from free 

text. These methodologies could be adopted in other health care databases and can improve healthcare re-

search limiting human errors and time speeding databases interrogations. 
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A LIST OF ABBREVIATIONS 

AC: Agreement Coefficient 

AOM: Acute Otitis Media 

AUC-ROC: Area Under Receiver Operating Characteristic Curve 

CI: Confidence Intervals  

CNN: Convolutional Neural Network 

CSV: Comma-Separated Values 

CV: Cross-Validation 

DAG: Directed Acyclic Graph 

DL: Deep Learning 

DTM: Document-Term Matrix 

ED: Emergency Department 

EHR: Electronic Health Record  

GLM: Generalized Linear Model 

GLMNet: Elastic-Net Regularized Generalized Linear Models  

GUI: Graphical user Interface 

ICD: International Classification of Diseases 

ICTRP: International Clinical Trials Registry Platform 

iDF: inverse Document Frequency 

k-NN: k-Nearest Neighbors 

LMIC: Low- Middle-Income Country 

LSTM: Long- Short-Term Memory 

MA: Meta Analysis 

MaxEnt: Maximum Entropy 

ML: Machine Learning 

MLT: Machine Learning Technique 

NLP: Natural Language Processing 

NPV: Negative Predictive Value 

OM: Otitis Media 



[Title] 

OOB: Out-Of-Bag 

PPV: Positive Predictive Value (or, Precision) 

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

RF: Random Forest 

SOAP: Symptoms, Objectivity, Diagnosis or Prescriptions 

SR: Systematic Review 

RNN: Recurrent Neural Network 

ROS: Random Over-Sampling 

RUS: Random Under-Sampling 

SR: Systematic Review 

SVM: Support-Vector Machine 

TF: Term Frequency 

TF-iDF: Term Frequencies – inverse Document Frequencies 

TM: Text Mining 

UTF: Unicode Transformation Format 

VZV: Varicella-Zoster Virus 
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A EXTENDING PUBMED SEARCHES TO CLINICALTRIALS.GOV THROUGH A MACHINE 

LEARNING APPROACH FOR SYSTEMATIC REVIEWS 

A.1 FIGURE 

 

Figure 2 General procedure workflow. 
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A.2 TABLES 

Table 1 Results of PubMed search strategies for the fourteen Systematic Reviews included in [60]. Final training datasets included the 

sum of positive and negative citations. 

Systematic Review Health condition Positive records Negative records 

Yang et al. 2014 [184] Atrial fibrillation  18  400  

Meng et al 2014 [185] Psoriasis  9  200  

Segelov et al. 2014 [72] Colorectal cancer  13  400  

Li et al. 2014 [186] Gastric cancer  6  200  

Lv et al. 2014 [187] Colorectal cancer  12  400  

Wang et al. 2015 [188] Alzheimer’s disease  32  800  

Zhou at al. 2014 [189] Parkinson’s disease  9  200  

Liu et al. 2014 [190]  Type 2 diabetes mellitus  23  600   

Douxfils et al. 2014 [191] Venous thromboembolic events  13  400  

Kourbeti et al. 2014 [97] Rheumatoid arthritis  75  1600  

Li et al. 2014 [192] Primary hypertension  9  200  

Cavender et al. 2014 [193] Venous thromboembolic events  14  400  

Chatterjee et al. 2014 [194] Venous thromboembolic events  18  400  

Funakoshi et al 2014 [195] Solid cancers  43  1000  

  
 



[Title] 

Table 2 Replication of PubMed search strategies for the fourteen Systematic Reviews included in [60]. Final training datasets included 

the sum of positive and negative citations reported in bold characters.  

Study Positive search strategy  
Sorted by Most recent 

Negative search strategy  
Filter for Abstract & Clinical trial & Humans & English   

Sorted by Best match 

Positive 
records 

Negative 
records 

Yang et al. 
2014 [184] 

(atorvastatin) AND atrial fibrillation AND 
("0001/01/01"[PDat]:"2014/04/30"[PDat])  

(("0001/01/01"[Date - Publication] : "2014/04/30"[Date - 
Publication])) NOT ((atorvastatin) AND atrial fibrillation)   

n=76 to-
tal rec-
ords  
n=5 man-
ually 
added   

n=563037 
total rec-
ords  

    Citations finally included in the main database  n=18 pos-
itives  

n=400 
negatives  

Meng et al 
2014 [185] 

(((((((ustekinumab) OR CNTO-1275) OR interleukin 12 
23 monoclonal antibody) OR stelara)) AND ((psoriasis) 
OR (pustulosis of palms and soles))) AND randomized) 
AND ( "0001/01/01"[PDat] : "2013/08/01"[PDat] )  

((("0001/01/01"[Date - Publication] : "2013/08/01"[Date - 
Publication]) AND ( "0001/01/01"[PDat] : 
"2013/08/01"[PDat] ))) NOT ((((((((ustekinumab) OR CNTO-
1275) OR interleukin 12 23 monoclonal antibody) 
OR stelara)) AND ((psoriasis) OR (pustulosis of palms and 
soles))) AND randomized))  

n=91 to-
tal rec-
ords  
n=0 man-
ually 
added   
  

n=538257 
total rec-
ords  

    Citations finally included in the main database  n=9 posi-
tives  

n=200 
negatives  

Segelov et 
al. 2014 
[72] 

(((((((("Antibodies, Monoclonal"[Mesh]) OR "Antineo-
plastic Combined Chemotherapy Protocols"[Mesh]) OR 
"Antineoplastic Agents"[Mesh])) AND (((("Bevaci-
zumab"[Mesh]) OR "Camptothecin"[Mesh]) OR "Fluor-
ouracil"[Mesh]) OR "Leucovorin"[Mesh])) AND (((("Col-
orectal Neoplasms"[Mesh]) OR "Adenocarci-
noma"[Mesh])) AND (advanced OR metastatic OR me-
tastases OR metastasis))) AND "Humans"[Mesh]) AND 
"Randomized Controlled Trial" [Publication Type]) AND 
( "0001/01/01"[PDat] : "2012/05/31"[PDat] )  

((("0001/01/01"[Date - Publication] : "2012/05/31"[Date - 
Publication])) NOT (((((((("Antibodies, Monoclonal"[Mesh]) 
OR "Antineoplastic Combined Chemotherapy Proto-
cols"[Mesh]) OR "Antineoplastic Agents"[Mesh])) AND 
(((("Bevacizumab"[Mesh]) OR "Camptothecin"[Mesh]) OR 
"Fluorouracil"[Mesh]) OR "Leucovorin"[Mesh])) AND 
(((("Colorectal Neoplasms"[Mesh]) OR "Adenocarci-
noma"[Mesh])) AND (advanced OR metastatic OR metasta-
ses OR metastasis))) AND "Randomized Controlled Trial" 
[Publication Type])))   

n=913 to-
tal rec-
ords  
n=10 
manually 
added   

n=499438 
total rec-
ords  

    Citations finally included in the main database  n=13 pos-
itives  

n=400 
negatives  

Li et al. 
2014 [186] 

(((((stomach cancer) OR gastric cancer)) AND S-1) AND 
fluorouracil) AND ( "0001/01/01"[PDat] : 
"2014/02/20"[PDat] )  

(("0001/01/01"[Date - Publication] : "2014/02/20"[Date - 
Publication])) NOT (((((stomach cancer) OR gastric cancer)) 
AND S-1) AND fluorouracil)  

n=1248 
total rec-
ords  
n=2 man-
ually 
added   

n=557386 
total rec-
ords  

    Citations finally included in the main database  n=6 posi-
tives  

n=200 
negatives  

Lv et al. 
2014 [187] 

(((((("Colorectal Neoplasms"[Mesh]) OR ((colorectal) 
AND neoplasms)) OR colorectal neoplasms)) AND (("Ce-
tuximab"[Mesh]) OR cetuximab)) AND (("Clinical Trial" 
[Publication Type]) AND "Humans"[Mesh])) AND ( 
"0001/01/01"[PDat] : "2014/02/16"[PDat] )  

((("0001/01/01"[Date - Publication] : "2014/02/16"[Date - 
Publication])) NOT ((((("Colorectal Neoplasms"[Mesh]) OR 
((colorectal) AND neoplasms)) OR colorectal neoplasms)) 
AND (("Cetuximab"[Mesh]) OR cetuximab)))   

n=201 to-
tal rec-
ords  
n=0 man-
ually 
added   

n=557094 
total rec-
ords  

    Citations finally included in the main database  n=12 pos-
itives  

n=400 
negatives  

Wang et al. 
2015 [188] 

(((((((alzheimer's disease[Title/Abstract]) OR (alz-
heimer[Title/Abstract) OR (AD[Title/Abstract])) AND 
((cholinesterase inhibitors[Title/Abstract]) OR 
(donepezil[Title/Abstract]) OR (galantamine[Title/Ab-
stract]) OR (rivastigmine[Title/Abstract]) OR (metri-
fonate[Title/Abstract]) OR (tacrine[Title/Abstract]) OR 
(antipsychotics[Title/Abstract]) OR (haloperidol[Ti-
tle/Abstract]) OR (thioridazine[Title/Abstract]) OR (thi-
othixene[Title/Abstract]) OR (chlorpromazine[Title/Ab-
stract]) OR (acetophenazine[Title/Abstract]) OR 
(clozapine[Title/Abstract]) OR (olanzapine[Title/Ab-
stract]) OR (risperidone[Title/Abstract]) OR (quetiap-
ine[Title/Abstract]) OR (aripiprazole[Title/Abstract]) OR 
(antidepressants[Title/Abstract]) OR (setraline[Ti-
tle/Abstract]) OR (fluoxetine[Title/Abstract]) OR (cital-
opram[Title/Abstract]) OR (trazodone[Title/Abstract]) 
OR (mood stabilizers[Title/Abstract]) OR (valproate[Ti-
tle/Abstract]) OR (carbamazepine[Title/Abstract]) OR 
(lithium[Title/Abstract]) OR (anticonvulsants[Title/Ab-
stract]) OR (benzodiazepines[Title/Abstract]) OR (me-
mantine[Title/Abstract]) OR (psychotropic drugs[Ti-
tle/Abstract])) AND ((behavioral and psychological 
symptoms of dementia) OR (BPSD) OR (neuropsychiat-
ric symptoms) OR (behavior)))) AND ( 

(("0001/01/01"[Date - Publication] : "2013/11/30"[Date - 
Publication])) NOT ((((((alzheimer's disease[Title/Abstract]) 
OR (alzheimer[Title/Abstract) OR (AD[Title/Abstract])) AND 
((cholinesterase inhibitors[Title/Abstract]) OR 
(donepezil[Title/Abstract]) OR (galantamine[Title/Ab-
stract]) OR (rivastigmine[Title/Abstract]) OR (metri-
fonate[Title/Abstract]) OR (tacrine[Title/Abstract]) OR (an-
tipsychotics[Title/Abstract]) OR (haloperidol[Title/Ab-
stract]) OR (thioridazine[Title/Abstract]) OR (thiothixene[Ti-
tle/Abstract]) OR (chlorpromazine[Title/Abstract]) OR (ace-
tophenazine[Title/Abstract]) OR (clozapine[Title/Abstract]) 
OR (olanzapine[Title/Abstract]) OR (risperidone[Title/Ab-
stract]) OR (quetiapine[Title/Abstract]) OR (aripiprazole[Ti-
tle/Abstract]) OR (antidepressants[Title/Abstract]) OR (se-
traline[Title/Abstract]) OR (fluoxetine[Title/Abstract]) OR 
(citalopram[Title/Abstract]) OR (trazodone[Title/Abstract]) 
OR (mood stabilizers[Title/Abstract]) OR (valproate[Ti-
tle/Abstract]) OR (carbamazepine[Title/Abstract]) OR (lith-
ium[Title/Abstract]) OR (anticonvulsants[Title/Abstract]) 
OR (benzodiazepines[Title/Abstract]) OR (memantine[Ti-
tle/Abstract]) OR (psychotropic drugs[Title/Abstract])) AND 
((behavioral and psychological symptoms of dementia) OR 
(BPSD) OR (neuropsychiatric symptoms) OR (behavior))))))  

n=1091 
total rec-
ords  
n=5 man-
ually 
added   
  

n=547357 
total rec-
ords  
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"0001/01/01"[PDat] : "2013/11/30"[PDat] ))) AND Eng-
lish[lang])  

    Citations finally included in the main database  n=32 pos-
itives  

n=800 
negatives  

Zhou at al. 
2014 [189] 

((((((pramipexole extended release) OR ropinirole pro-
longed release) OR rotigotine transdermal patch)) AND 
(((parkinson's disease) OR parkinson's) OR PD))) AND ( 
"0001/01/01"[PDat] : "2013/02/10"[PDat] )  

(("0001/01/01"[Date - Publication] : "2013/02/10"[Date - 
Publication])) NOT ((((((pramipexole extended release) OR 
ropinirole prolonged release) OR rotigotine transdermal 
patch)) AND (((parkinson's disease) OR parkinson's) OR 
PD)))   

n=107 to-
tal rec-
ords  
n=2 man-
ually 
added   

n=523622 
total rec-
ords  

    Citations finally included in the main database  n=9 posi-
tives  

n=200 
negatives  

Liu et al. 
2014 [190] 

((("Diabetes Mellitus, Type 2"[Mesh]) AND (((((((((dpp-
iv inhibitors) OR vildagliptin) OR sitagliptin) 
OR saxagliptin) OR alogliptin) OR linagliptin) OR 
dutogliptin) OR metformin) OR sulfonylureas))) AND 
Randomized Controlled Trial[ptyp] AND ( 
"0001/01/01"[PDat] : "2013/01/31"[PDat] ) AND Hu-
mans[Mesh] AND English[lang]  

((("0001/01/01"[Date - Publication] : "2013/01/31"[Date - 
Publication])) NOT (((("Diabetes Mellitus, Type 2"[Mesh]) 
AND (((((((((dpp-iv inhibitors) OR vildagliptin) OR sitagliptin) 
OR saxagliptin) OR alogliptin) OR linagliptin) OR 
dutogliptin) OR metformin) OR sulfonylureas))) AND Ran-
domized Controlled Trial[ptyp]))  

n=1427 
total rec-
ords  
n=0 man-
ually 
added   

n=521120 
total rec-
ords  

    Citations finally included in the main database  n=23 pos-
itives  

n=600 
negatives  

Douxfils et 
al. 2014 
[191] 

(((((dabigatran) OR dabigatran etexilate) OR BIBR 
1048)) AND ((((((randomized controlled trial) OR ran-
domized clinical trial) OR randomized trial) OR random-
ised controlled trial) OR randomised clinical trial) OR 
randomised trial)) AND ( "0001/01/01"[PDat] : 
"2013/12/08"[PDat] ) AND English[lang]  

(("0001/01/01"[Date - Publication] : "2013/12/08"[Date - 
Publication])) NOT (((((dabigatran) OR dabigatran etexilate) 
OR BIBR 1048)) AND ((((((randomized controlled trial) OR 
randomized clinical trial) OR randomized trial) OR random-
ised controlled trial) OR randomised clinical trial) OR ran-
domised trial))  

n=276 to-
tal rec-
ords  
n=3 man-
ually 
added   

n=548647 
total rec-
ords  

    Citations finally included in the main database  n=13 pos-
itives  

n=400 
negatives  

Kourbeti et 
al. 2014 
[97] 

(((((((rheumatoid) AND arthritis)) AND randomized) 
AND (((((((((infliximab) OR etanercept) OR adalimumab) 
OR certolizumab) OR golimumab) OR anakinra) OR 
abatacept) OR tocilizumab) OR rituximab)) AND ( 
"0001/01/01"[PDat] : "2013/06/24"[PDat] ) AND Eng-
lish[lang])) AND ( "0001/01/01"[PDat] : 
"2013/06/24"[PDat] )  

(("0001/01/01"[Date - Publication] : "2013/06/24"[Date - 
Publication])) NOT (((((rheumatoid) AND arthritis)) AND 
randomized) AND (((((((((infliximab) OR etanercept) OR 
adalimumab) OR certolizumab) OR golimumab) OR ana-
kinra) OR abatacept) OR tocilizumab) OR rituximab))  

n=827 to-
tal rec-
ords  
n=4 man-
ually 
added   

n=534353 
total rec-
ords  

    Citations finally included in the main database  n=75 pos-
itives  

n=1600 
negatives  

Li et al. 
2014 [192] 

((((((("Angiotensin Receptor Antagonists"[Mesh]) OR 
((((((((((((((((abitesartan) OR azilsartan) OR candesartan) 
OR elisartan) OR embusartan) OR eprosartan) OR foras-
artan) OR irbesartan) OR losartan) OR milfasartan) OR 
olmesartan) OR saprisartan) OR tasosartan) OR 
telmisartan) OR valsartan) OR zolasartan))) AND 
(((("Angiotensin-Converting Enzyme Inhibitors"[Mesh]) 
OR angiotensin converting enzyme inhibit*)) OR 
((((((((((((((((((((((((((((((((((((((((acei) OR alacepril) OR al-
tiopril) OR ancovenin) OR benazepril*) OR captopril) OR 
ceranapril) OR ceronapril) OR cilazapril*) OR 
deacetylalacepril) OR delapril) OR enalapril*) OR epi-
captopril) OR fasidotril*) OR foroxymithine) OR 
fosinopril*) OR gemopatrilat) OR idapril) OR imidapril*) 
OR indolapril) OR libenzapril) OR lisinopril) OR moex-
ipril*) OR moveltipril) OR omapatrilat) OR pentopril*) 
OR perindopril*) OR pivopril) OR quinapril*) OR rami-
pril*) OR rentiapril) OR saralasin) OR s nitrosocaptopril) 
OR spirapril*) OR temocapril*) OR teprotide) OR tran-
dolapril*) OR utibapril*) OR zabicipril*) OR 
zofenopril*))) AND (((hypertension) OR hypertens*) OR 
"Blood Pressure"[Mesh])) AND ((((((("Randomized Con-
trolled Trial" [Publication Type]) OR "Controlled Clinical 
Trial" [Publication Type]) OR randomi*[Title/Abstract]) 
OR placebo[Title/Abstract]) OR "Clinical Trials as 
Topic"[Mesh]) OR randomly[Title/Abstract]) OR trial[Ti-
tle])) AND "Humans"[Mesh]) AND ( "0001/01/01"[PDat] 
: "2014/02/15"[PDat] )  

(((("0001/01/01"[Date - Publication] : "2014/02/15"[Date - 
Publication])) NOT ((((((("Angiotensin Receptor Antago-
nists"[Mesh]) OR ((((((((((((((((abitesartan) OR azilsartan) OR 
candesartan) OR elisartan) OR embusartan) OR eprosartan) 
OR forasartan) OR irbesartan) OR losartan) OR milfasartan) 
OR olmesartan) OR saprisartan) OR tasosartan) OR 
telmisartan) OR valsartan) OR zolasartan))) AND (((("Angio-
tensin-Converting Enzyme Inhibitors"[Mesh]) OR angioten-
sin converting enzyme inhibit*)) OR 
((((((((((((((((((((((((((((((((((((((((acei) OR alacepril) OR alti-
opril) OR ancovenin) OR benazepril*) OR captopril) OR cer-
anapril) OR ceronapril) OR cilazapril*) OR deacetylalacepril) 
OR delapril) OR enalapril*) OR epicaptopril) OR fasidotril*) 
OR foroxymithine) OR fosinopril*) OR gemopatrilat) OR 
idapril) OR imidapril*) OR indolapril) OR libenzapril) OR lis-
inopril) OR moexipril*) OR moveltipril) OR omapatrilat) OR 
pentopril*) OR perindopril*) OR pivopril) OR quinapril*) OR 
ramipril*) OR rentiapril) OR saralasin) OR s nitrosocapto-
pril) OR spirapril*) OR temocapril*) OR teprotide) OR tran-
dolapril*) OR utibapril*) OR zabicipril*) OR zofenopril*))) 
AND (((hypertension) OR hypertens*) OR "Blood Pres-
sure"[Mesh])) AND ((((((("Randomized Controlled Trial" 
[Publication Type]) OR "Controlled Clinical Trial" [Publica-
tion Type]) OR randomi*[Title/Abstract]) OR placebo[Ti-
tle/Abstract]) OR randomly[Title/Abstract]) OR trial[Ti-
tle])))  

n=1441 
total rec-
ords  
n=0 man-
ually 
added   
  

n=556668 
total rec-
ords  

    Citations finally included in the main database  n=9 posi-
tives  

n=200 
negatives  

Cavender 
et al. 2014 
[193] 

(((((bivalirudin) OR Angiomax) OR Hirulog)) AND 
((((((stent) OR percutaneous coronary intervention) OR 
acute coronary syndromes) OR st-elevation myocardial 
infarction) OR non-ST-elevation myocardial infarction) 
OR unstable angina)) AND ( "0001/01/01"[PDat] : 
"2014/04/09"[PDat] )  

(("0001/01/01"[Date - Publication] : "2014/04/09"[Date - 
Publication])) NOT ((((((((bivalirudin) OR Angiomax) OR Hir-
ulog)) AND ((((((stent) OR percutaneous coronary interven-
tion) OR acute coronary syndromes) OR st-elevation myo-
cardial infarction) OR non-ST-elevation myocardial infarc-
tion) OR unstable angina)))))   

n=745 to-
tal rec-
ords  
n=1 man-
ually 
added   

n=561617 
total rec-
ords  

    Citations finally included in the main database  n=14 pos-
itives  

n=400 
negatives  



[Title] 

Chatterjee 
et al. 2014 
[194] 

(((((("Rivaroxaban"[Mesh]) OR dabigatran) OR "apixa-
ban" [Supplementary Concept]) OR "new oral anticoag-
ulants") OR "oral thrombin inhibitors") OR "oral factor 
Xa inhibitors") AND ( "2001/01/01"[PDat] : 
"2013/09/15"[PDat] ) AND English[lang]  

(("0001/01/01"[Date - Publication] : "2001/01/01"[Date - 
Publication])) NOT ((((((("Rivaroxaban"[Mesh]) OR 
dabigatran) OR "apixaban" [Supplementary Concept]) OR 
"new oral anticoagulants") OR "oral thrombin inhibitors") 
OR "oral factor Xa inhibitors"))   

n=2034 
total rec-
ords  
n=0 man-
ually 
added   

n=223263 
total rec-
ords  

    Citations finally included in the main database  n=18 pos-
itives  

n=400 
negatives  

Funakoshi 
et al 2014 
[195] 

((((((((((((axitinib) OR cabozantinib) OR erlotinib) OR ge-
fitinib) OR lapatinib) OR pazopanib) OR regorafenib) OR 
sorafenib) OR sunitinib) OR vandetanib)) AND "Ran-
domized Controlled Trial" [Publication Type]) AND ( 
"1966/01/01"[PDat] : "2013/03/31"[PDat] ) AND Eng-
lish[lang]  

(("0001/01/01"[Date - Publication] : "2013/03/31"[Date - 
Publication])) NOT ((((((((((((((axitinib) OR cabozantinib) OR 
erlotinib) OR gefitinib) OR lapatinib) OR pazopanib) OR 
regorafenib) OR sorafenib) OR sunitinib) OR vandetanib)) 
AND "Randomized Controlled Trial" [Publication Type])))   

n=418 to-
tal rec-
ords  
n=5 man-
ually 
added   

n=527068 
total rec-
ords  

    Citations finally included in the main database  n=43 pos-
itives  

n=1000 
negatives  
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Table 3 Number of training (PubMed) and testing (ClinicalTrial.gov) positive and negatives records on the side of the number of pre-

dicted positives and the relevant statistics for each Systematic Reviews considered (AUC = Area Under the receiver operator Curve; 

PREV = prevalence of positive in ClinicalTrial.gov; PPV = Positive Predictive Value; SENS = sensitivity; SPEC = specificity; LR+ = positive 

likelihood ratio LR- = negative likelihood ratio).  

Systematic  
Review 

Training 

positives 

Training 

negatives 

Testing 

positives 

Testing 

negatives 

Predicted 

positives 
AUC PPV SENS SPEC LR+ LR- 

Yang et al. 2014 [184] 18  400  5  233604  1718  0.9963  0.0029  1  0.9927  136.9863  0  

Meng et al 2014 [185] 9  200  4  233605  462  0.9990  0.0087  1  0.9980  500.0000  0  

Segelov et al. 2014 [72] 13  400  8  233601  1595  0.9341  0.0044  0.875  0.9932  128.6765  0.1259  

Li et al. 2014 [186] 6  200  3  233606  1635  0.9965  0.0018  1  0.9930  142.8571  0  

Lv et al. 2014 [187] 12  400  3  233606  1429  0.9969  0.0021  1  0.9939  163.9344  0  

Wang et al. 2015 [188] 32  800  5  233604  1901  0.9959  0.0026  1  0.9919  123.4568  0  

Zhou at al. 2014 [189] 9  200  3  233606  1011  0.9978  0.0030  1  0.9957  232.5581  0  

Liu et al. 2014 [190]  23  600  30  233579  2178  0.9954  0.0138  1  0.9908  108.6957  0  

Douxfils et al. 2014 [191] 13  400  10  233599  378  0.9992  0.0265  1  0.9984  625.0000  0  

Kourbeti et al. 2014 [97] 75  1600  25  233584  1843  0.9961  0.0136  1  0.9922  128.2051  0  

Li et al. 2014 [192] 9  200  2  233607  6558  0.9860  0.0003  1  0.9719  35.5872  0  

Cavender et al. 2014 [193] 14  400  7  233602  149  0.9997  0.0470  1  0.9994  1666.666  0  

Chatterjee et al. 2014 [194] 18  400  17  233592  771  0.9984  0.0220  1  0.9968  312.5000  0  

Funakoshi et al 2014 [195] 43  1000  11  233598  3851  0.9918  0.0029  1  0.9836  60.9756  0  
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Table 4 The number of predicted positives and true positives in manual and automated searches after filter application. Records of 

the manual search are those retrieved on ICTRP by Baudard and colleagues [60]. Records of the automated search are those retrieved on 

ClinicalTrials.gov using our ML instrument. Predicted positives are a pool of citations resulting from manual search strings or from auto-

mated search. True positives are clinical trials added by Baudard and colleagues in each Systematic Review. Description of filters reports 

data element entries and number of retrieved records. Filters are applied sequentially from Filter 0 to Filter 5.     

Systematic 
Review 

Manual search  Automated search    

Pre-
dicted  
posi-
tives  

True   
posi-
tives  

Filter 0  Filter 1  Filter 2  Filter 3  Filter 4  Filter 5  All  

none Pre-
dicted 
posi-
tives 

study_type Pre-
dicted 
posi-
tives 

over-
all_status 

Pre-
dicted 
posi-
tives 

start_be-
fore 

Pre-
dicted 
posi-
tives 

pri-
mary_com-

pletion 
be-

fore/within 

Pre-
dicted 
posi-
tives 

specific filters Pre-
dicted 
posi-
tives 

True 
posi-
tives 

Yang et al. 
2014 [184] 

12 1 - 1718  
interven-
tional  

1341  
completed 
OR termi-
nated  

759  April 2014  705  April 2014  588  
allocation = randomized  
numer_of_arms ≠ 1  

457  1  

Meng et al 
2014 [185] 

26 1 - 462  
interven-
tional  

399  
completed 
OR termi-
nated  

282  
August 
2013  

243  August 2013  202  
allocation = randomized  
numer_of_arms ≠ 1  

144  1  

Segelov et 
al. 2014 

[72] 
684 2 - 1595  

interven-
tional  

1432  
completed 
OR termi-
nated  

836  May 2012  770  May 2012  588  
allocation = randomized  
numer_of_arms ≠ 1  

274  2  

Li et al. 
2014 [186] 

201 1 - 1635  
interven-
tional  

1545  
completed 
OR termi-
nated  

376  
February 
2014  

837  
February 
2014  

695  
allocation = randomized  
numer_of_arms ≠ 1  
phase = 2 OR 3  

289  1  

Lv et al. 
2014 [187] 

665 1 - 1429  
interven-
tional  

1294  
completed 
OR termi-
nated  

727  
February 
2014  

716  
February 
2014  

583  
allocation = randomized  
numer_of_arms ≠ 1  
minimum_age ≥ 18 years  

243  1  

Wang et al. 
2015 [188] 

227 1 - 1901  
interven-
tional  

1690  
completed 
OR termi-
nated  

1191  
December 
2013  

1118  
December 
2013  

972  

allocation = randomized  
numer_of_arms ≠ 1  
intervention_model = par-
allel OR crossover  

729  1  

Zhou at al. 
2014 [189] 

3 1 - 1011  
interven-
tional  

793  
completed 
OR termi-
nated  

534  
February 
2013  

468  
February 
2013  

372  
allocation = randomized  
numer_of_arms ≠ 1  

263  1  

Liu et al. 
2014 [190]  

1661 21 - 2178  
interven-
tional  

2028  
completed 
OR termi-
nated  

1587  
January 
2013  

1317  
January 
2013  

1112  

allocation = randomized  
numer_of_arms ≠ 1  
minimum_age ≥ 18 years  
phase ≥ 3  

622  21  

Douxfils et 
al. 2014 

[191] 
76 1 - 378  

interven-
tional  

270  
completed 
OR termi-
nated  

190  
December 
2013  

174  
December 
2013  

150  
allocation = randomized  
numer_of_arms ≠ 1  

116  1  

Kourbeti et 
al. 2014 

[97] 
581 4 - 1843  

interven-
tional  

1449  
completed 
OR termi-
nated  

1023  June 2013  941  June 2013  756  
allocation = randomized  
numer_of_arms ≠ 1  
is_fda_regulated = true  

409  4  

Li et al. 
2014 [192] 

909 2 - 6558  
interven-
tional  

5483  
completed 
OR termi-
nated  

3629  
January 
2014  

3412  
January 
2014  

2771  
allocation = randomized  
numer_of_arms ≠ 1  

2119  2  

Cavender et 
al. 2014 

[193] 
71 1 - 149  

interven-
tional  

130  
completed 
OR termi-
nated  

87  April 2014  84  April 2014  74  
allocation = randomized  
numer_of_arms ≠ 1  

60  1  

Chatterjee 
et al. 2014 

[194] 
217 1 - 771  

interven-
tional  

509  
completed 
OR termi-
nated  

279  
March 
2014  

263  
January 2001 
- March 
2014  

207  
allocation = randomized  
numer_of_arms ≠ 1  

169  1  

Funakoshi 
et al 2014 

[195] 
2680 2 - 3851  

interven-
tional  

3762  
completed 
OR termi-
nated  

2147  
February 
2014  

2111  
January 2004 
- February 
2014  

1699  
allocation = randomized  
numer_of_arms ≠ 1  
phase = 2 OR 3  

711  2  
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B SCREENING PUBMED ABSTRACTS: IS CLASS IMBALANCE ALWAYS A CHALLENGE TO 

MACHINE LEARNING?  

B.1 FIGURES 

 

Figure 3 Building process of the training dataset. The positive citations are papers included in a systematic review. The negative cita-

tions are papers randomly selected from those completely off-topic. To identify positive citations, we recreate the input string in the 

PubMed database, using keywords and filters proposed in the original systematic review. Among retrieved records (dashed green line 

delimited region), we retain only papers finally included in the original systematic review (solid green line delimited region). On the 

other side, we randomly selected the negative citations (solid blue line delimited region) from those completely off-topic, by adding the 

Boolean operator NOT to the input string (region between green and blue dashed lines).  

  



[Title] 

 

Figure 4 Computational plan. The set of documents for each systematic review considered was imported and converted into a corpus, 

preprocessed, and the corresponding Document-Term Matrix (DTM) was created for the training. Next, for each combination of ma-

chine learning technique (MLT), each one of the corresponding ten randomly selected tuning parameters, and balancing technique 

adopted, the training was divided in 5 -fold for the Cross-Validation (CV) process. In each step of the CV, the DTM was rescaled to the 

Term Frequencies-Inverse Document Frequencies (TF-IDF) weights (which are retained to rescale all the samples in the corresponding, 

i.e., the out-fold, test set). Next, the imbalance was treated with the selected algorithm, and the classifier was trained. Once the fea-

tures in the test set were adapted to the training set, i.e., additional features were removed, missing ones were added with zero-

weight, and all of them were reordered accordingly, the trained model was applied to the test set to provide the statistics of interest. 



 

81 | P a g e  
 

 

Figure 5   Forest plots of Delta-AUCs by balancing and machine learning techniques (MLTs). Forest plots that show differences in AUC 

(delta-AUCs) between the AUCs obtained with each balancing technique (i.e. RUS-50:50, RUS-35:65, ROS-50:50, and ROS-35:65) and the 

AUC obtained without the application of any of them for each combination of MLT and systematic reviews. Red diamonds report to 

pooled results obtained with a by-MLT meta-analytic fixed-effect model. The first author and year of systematic review corresponding 

to each row of the forest plots are reported in the first column only, the MLTs are reported in the first row only, and the balancing tech-

niques are reported in each forest plot’s x-axis label.  



[Title] 

B.2 TABLES 

Table 5 Characteristics of the Document-Term Matrices (DTMs). For each DTM are reported the number of documents included (num-

ber of rows), the number of tokens included/computed within those documents (number of columns), the number of cells of the matrix 

which are filled with a 0 (zero), or a positive weight; the ratio of these last two numbers (i.e., the sparsity) is also reported. 

Systematic Reviews Documents Tokens Zero entries Non-zero entries Sparsity 

Yang et al. 2014 [184] 418 61208 147445 25437499 0.99 

Meng et al 2014 [185] 209 35821 73977 7412612 0.99 

Segelov et al. 2014 [72] 413 58351 125027 23963936 0.99 

Li et al. 2014 [186] 206 33851 68826 6904480 0.99 

Lv et al. 2014 [187] 412 57485 138846 23544974 0.99 

Wang et al. 2015 [188] 832 101418 288432 84091344 1.00 

Zhou at al. 2014 [189] 209 33389 69854 6908447 0.99 

Liu et al. 2014 [190]  623 88108 219258 54672026 1.00 

Douxfils et al. 2014 [191] 413 58133 141721 23869208 0.99 

Kourbeti et al. 2014 [97] 1675 187947 603479 314207746 1.00 

Li et al. 2014 [192] 209 33653 69130 6964347 0.99 

Cavender et al. 2014 [193] 414 59572 141105 24521703 0.99 

Chatterjee et al. 2014 [194] 418 54458 130782 22632662 0.99 

Funakoshi et al 2014 [195] 1043 131172 370385 136442011 1.00 
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Table 6 AUC-ROC values by combination of MLTs, balancing techniques and balancing ratios across 14 systematic reviews. AUC-ROC: 

Area Under the Receiver Operator Characteristic Curve; ROS: Random Oversampling; RUS: Random Under-Sampling; RF: Random For-

est; k-NN: k-Nearest Neighbours; SVM: Support-Vector Machines; GLMNet: elastic-net regularised generalised linear model. In boldface 

the best value(s) by row. 

MLT Systematic review Method for imbalance 

  Non
e 

ROS-
35:65 

ROS-
50:50 

RUS-
35:65 

RUS-
50:50 

GLMNet 

Cavender et al. 2014 [193] 
0.966
7 

1 1 0.9988 1 

Chatterjee et al. 2014 
[194] 

0.973
8 

0.9667 0.9667 0.9875 0.9963 

Douxfils et al. 2014 [191] 413 58133 141721 23869208 0.99 

Funakoshi et al 2014 [195] 
0.885
1 

0.9602 0.9799 0.9794 0.9885 

Kourbeti et al. 2014 [97] 
0.951
8 

0.9921 0.9991 0.9918 0.9991 

Li et al. 2014 [186] 0.9 1 1 0.9975 0.97 

Li et al. 2014 [192] 
0.897
5 

0.8975 0.9475 0.99 0.9375 

Liu et al. 2014 [190] 0.915 0.98 1 0.9983 0.9975 

Lv et al. 2014 [187] 1 1 1 0.9963 0.9963 

Meng et al 2014 [185] 1 1 1 1 0.9875 

Segelov et al. 2014 [72] 
0.966
7 

1 0.9988 0.995 0.9863 

Wang et al. 2015 [188] 
0.966
7 

1 1 0.9988 0.9988 

Yang et al. 2014 [184] 0.975 0.975 1 1 1 

Zhou at al. 2014 [189] 1 1 1 1 0.98 

k-Nearest Neighbors 

Cavender et al. 2014 [193] 1 0.5113 0.5063 0.5013 0.5792 

Chatterjee et al. 2014 
[194] 

0.998
8 

0.5388 0.5363 0.5063 0.6333 

Douxfils et al. 2014 [191] 
0.966
7 

0.5213 0.5113 0.5075 0.5625 

Funakoshi et al 2014 [195] 
0.995
5 

0.5005 0.5 0.5 0.5885 

Kourbeti et al. 2014 [97] NA NA NA 0.5 0.5661 

Li et al. 2014 [186] 
0.977
5 

0.63 0.6125 0.5125 0.7775 

Li et al. 2014 [192] 
0.797
5 

0.685 0.59 0.5675 0.71 

Liu et al. 2014 [190] 
0.997
5 

0.5017 0.5017 0.5 0.5983 

Lv et al. 2014 [187] 1 0.5075 0.505 0.5025 0.6996 

Meng et al 2014 [185] 
0.987
5 

0.59 0.57 0.515 0.71 

Segelov et al. 2014 [72] 
0.928
3 

0.51 0.5063 0.5 0.5625 

Wang et al. 2015 [188] 1 0.5056 0.5056 0.5 0.5237 

Yang et al. 2014 [184] 
0.940
4 

0.5288 0.52 0.5025 0.6333 

Zhou at al. 2014 [189] 1 0.675 0.6425 0.54 0.71 

Cavender et al. 2014 [193] 1 1 1 1 1 
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Random Forest 

Chatterjee et al. 2014 
[194] 

0.916
7 

0.975 0.975 0.9963 1 

Douxfils et al. 2014 [191] 1 1 1 1 1 

Funakoshi et al 2014 [195] 
0.918
4 

0.9517 0.9299 0.9895 0.9895 

Kourbeti et al. 2014 [97] 
0.991
8 

0.9854 0.9854 0.9988 0.9984 

Li et al. 2014 [186] 0.95 1 1 1 1 

Li et al. 2014 [192] 0.8 0.9 0.9 0.9 0.9475 

Liu et al. 2014 [190] 0.98 0.9992 0.9783 0.9992 0.9992 

Lv et al. 2014 [187] 1 1 1 0.9988 0.9988 

Meng et al 2014 [185] 0.95 0.95 0.95 1 1 

Segelov et al. 2014 [72] 
0.998
8 

0.9988 0.9988 0.9975 0.9963 

Wang et al. 2015 [188] 
0.981
5 

0.9821 0.9827 0.9994 0.9975 

Yang et al. 2014 [184] 0.95 0.975 0.95 0.9083 0.9046 

Zhou at al. 2014 [189] 1 1 1 1 0.995 

Support Vector Ma-
chines 

Cavender et al. 2014 [193] 1 1 1 1 0.825 

Chatterjee et al. 2014 
[194] 

1 1 0.9988 1 0.9263 

Douxfils et al. 2014 [191] 1 1 1 0.9963 0.8338 

Funakoshi et al 2014 [195] 0.999 0.999 0.9985 0.9945 0.975 

Kourbeti et al. 2014 [97] 
0.992
7 

0.9927 0.9991 0.9988 0.9875 

Li et al. 2014 [186] 1 0.9975 0.9975 0.9325 0.5625 

Li et al. 2014 [192] 0.85 0.9 0.9925 0.98 0.6775 

Liu et al. 2014 [190] 1 1 1 0.9992 0.96 

Lv et al. 2014 [187] 1 1 1 0.9988 0.785 

Meng et al 2014 [185] 1 1 1 0.99 0.62 

Segelov et al. 2014 [72] 
0.933
3 

0.9333 1 0.995 0.8013 

Wang et al. 2015 [188] 1 0.9857 1 0.9988 0.9681 

Yang et al. 2014 [184] 0.975 0.9417 0.9654 0.995 0.8825 

Zhou at al. 2014 [189] 1 1 1 1 0.7425 
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C USE OF MACHINE LEARNING TECHNIQUES FOR CASE-DETECTION OF VARICELLA 

ZOSTER USING ROUTINELY COLLECTED TEXTUAL AMBULATORY RECORDS 

C.1 FIGURE 

 

Figure 6 Flowchart from the acquisition of the five tables containing the Electronic Health Records (EHRs) 

(dark gray) in the training set that were merged into a single table (dark blue), preprocessed (gray) with the 

specification of what was removed (pink) prior to the creation of the Document-Term Matrix (DTM) (yel-

low), the computation of the weights (light blue), the dimensionality reduction, i.e., the reduction of the 

terms used (light gray), and the final DTM used (green). 



[Title] 

C.2 TABLES   

Table 7 Main characteristics for the train (Veneto) and test (Sicilia) datasets used. 

 Train Test 

Database PEDIANET PEDIANET 
Language Italian Italian 
Italian Region Veneto Sicilia 
Date span 2004/01/02 - 2014/12/31 2004/01/07 - 2014/12/30 
Records (No.) 1,230,355 569,926 
Children (No.) 7,631 2,347 
Pediatricians (No.) 46 13 
Positive cases (No. [%]) 3,481 [45.6%] 128 [5.4%] 

 

Table 8 Tables used from the PediaNET database, including topic, content, type of data and examples. 

Table topic Content Type of 
data 

Example 

Accessing Reasons for accessing the 
pediatrician and diagnoses 

Free-text  
codes 

Ritardo di crescita <783.4> 

Diaries Pediatrician’s free-text diaris Free-text DIBASE OS GTT 10ML 10000UI/ML n° conf. 2\r\n per Vi-
sita di controllo e di follow up\r\n\r\n 

Hospitalizations Details on hospital admis-
sions, diagnoses and length 
of stays 

Free-text Divisione di pediatria 

Tosse, difficolta' respiratoria e di alimentazione 

SOAP Symptoms, Objectivity, Diag-
nosis or Prescriptions 

Free-text  
codes 

<SOAP> “P”, 

<SOAP_code> “77469”, 

<SOAP_text> “visita otorinolaringoiatrica<89.7>” 

Specialistic visits visit type and its diagnosis Free-text  
codes 

<codice_visitaSP> “89.01”, 

<visita> “ecografia anche sec. Graaf per screening”, 

<diagnosi> “problemi della vista <V41.0>” 

 

Table 9 Performance on the training set of the three Machine Learning Techniques under consideration using a 5-fold cross-validation 

method (e.g., GLMNet, MAXENT, and Boosting). The values represent the mean across the folds of the point estimates, with the 95% 

Confidence Intervals between the parentheses, of Sensitivity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Specific-

ity, Accuracy and F score (F). 

Technique Sensitivity PPV NPV Specificity Accuracy F 

GLMNet 80.2 (77.7-82.7) 73.2 (70.9-75.6) 90.9 (89.6-92.2) 87.1 (85.6-88.7) 85.0 (84.2-85.8) 76.5 (75.6-77.5) 

MAXENT 68.8 (66.8-70.7) 66.0 (62.5-69.5) 86.1 (85.2-86.9) 84.5 (82.7-86.3) 79.7 (78.1-81.3) 67.4 (64.7-70.0) 

Boosting 86.6 (82.1-91.1) 95.8 (93.2-98.5) 94.4 (92.4-96.3) 98.3 (97.0-99.6) 94.8 (94.0-95.5) 90.9 (89.7-92.1) 
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Table 10 Performance on the test set of the three Machine Learning Techniques under consideration. The values represent the mean 

across the folds of the point estimates, with the 95% Confidence Intervals between the parentheses, of Sensitivity, Positive Predictive 

Value (PPV), Negative Predictive Value (NPV), Specificity, Accuracy and F score (F). 

Technique Sensitivity PPV NPV Specificity Accuracy F 

GLMNet 72.3 (66.4–78.1) 24.5 (21.0–28.0) 98.3 (97.9–98.6) 87.4 (85.4–89.5) 86.6 (84.6–88.7) 36.5 (32.2–40.8) 

MAXENT 74.8 (62.2–87.5) 11.0 (9.5–12.5) 98.0 (97.3–98.6) 65.5 (54.7–76.2) 66.0 (56.4–75.5) 19.1 (17.2–20.9) 

Boosting 79.2 (69.7–88.7) 63.1 (42.7–83.5) 98.8 (98.3–99.3) 96.9 (94.2–99.6) 96.0 (93.8–98.1) 68.5 (59.3–77.7) 

 

 

Table 11 Agreement between GLMNet, MAXENT, and Boosting using 5-fold cross-validation. The “Wrongly Agree” column refers to the 

number of records misclassified by both techniques. The “Correctly Agree” column states the number of records correctly classified by 

both techniques. The “Disagree” column lists the number of records for which the techniques disagree in the classification. Gwet’s AC1 

represents the index of agreement between the identified techniques along with the 95% Confidence Interval. Legend for AC1 is: -1 ≤ 

AC1 < 0 = disagreement; 0 ≤ AC1 ≤ 0.4 = poor; 0.4 < AC1 ≤ 0.6 = discrete; 0.6 < AC1 ≤ 0.8 = good; 0.8 < AC1 ≤ 1 = optimal. 

Techniques Wrongly Agree Correctly Agree Disagree Gwet’s AC1 

GLMNet vs. MAXENT 669 5,609 1,353 0.68 (0.67-0.70) 
GLMNet vs. Boosting 195 6,269 1,146 0.74 (0.72-0.75) 

MAXENT vs. Boosting 224 5,895 1,491 0.66 (0.65-0.68) 
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D ANALYSIS OF UNSTRUCTURED TEXT-BASED DATA USING MACHINE LEARNING 

TECHNIQUES: THE CASE OF PEDIATRIC EMERGENCY DEPARTMENT RECORDS IN 

NICARAGUA 

D.1  FIGURES 

 

 

Figure 7 Out-of-bag error of the final validated models (calculated considering the Out-Of-Bag performance of 500 bootstrap repetitions 

of evaluation a 500-trees RF classifier by 5 repetition of 10-fold CV procedure). Dashed lines represent the performance corresponding 

to the 95% Confidence Interval borders for the bootstrapped classifiers, the solid line represents the median one, and each semi-trans-

parent dot corresponds to the performance of a single RF into the pool created by the bootstrapped procedure   
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Figure 8 Training Procedure: (ED: Emergency Department; CV: Cross-Validation; RF: Random Forest; OOB: Out-Of-Bag) For each of the 

500 bootstrap resampled dataset the performance estimation was calculated on its OOB set, which was never seen by the training pro-

cedure and different for every sample. For the final model trained on each bootstrap sample, the optimal parameter was selected by 5 

repetition of 10-fold CV estimation. 
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Figure 9 Accuracy according to children’s age. Dashed lines represent 95% C.I. (calculated considering 500 bootstrap repetitions), solid 

line represents the median. 
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D.2  TABLES 

Table 12 Variables included in the dataset with the corresponding type and examples 

Variables Data type Examples 

Age (in years) Numerical 6; 38; 13 

Gender Categorical Male; Female 

Vital signs (i.e., body temperature, blood pressure, 
heart rate, and breathing rate, oxygen saturation) 

Numerical Body temperature -°C (37.6; 39; 36.7) 

Blood pressure (BP)-mmHg (Systolic 
BP: 91; 79; 107) (Diastolic BP: 65; 79; 
50) 

Heart rate -bpm (145; 138; 149) 

Breathing rate -bpm (22; 42; 70) 

Oxygen saturation -% (97; 100; 78) 

Laboratory tests (i.e., White blood cells count; Creatin-
ite; Glucose; Natremia; Urea) 

Numerical 

 

Diagnostic and therapeutic interventions (i.e., radio-
logical examinations; respiratory support; medications 
administered; vascular access) 

Free-text Radiological examinations: "rx torax: 
infiltrado basal derecha"; "eco cardio-
grama: hap severa, falla cardiaca 
aguda, derrame pericardio mode-
rado."; "rx de abdomen. radiopoaci-
dad en fid." 

Outcome of ED visit Categorical Ingresado; Fallecido 

Discharge diagnosis Free-text "dengue hemorrágico" 

"crisis convulsiva febril" 

 

Manual classification of the discharge diagnosis (gold 
standard) 

 

Categorical 

 

Gastrointestinal; Cardiovascular; Neu-
rological   
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Table 13 Children’s characteristics according to diagnosis category. Data are expressed as medians [I; III quartile] for continuous data 

and percentages (absolute number) for categorical ones 

  N, gold standard Age, years Gender, male 

Burn  1% (   20) 4.0 [  4.0;   7.5] 70% (  14)  

Cardiovascular 5% (   98) 1.5 [  1.0;   9.0]  57% (  55)   

Gastrointestinal 12% ( 208) 2.0 [  1.0;   7.0]  52% (107)   

Injury 4% (    80) 8.0 [  5.0; 11.0] 68% (  54)   

Metabolic 2% (    29) 13.0 [10.0; 15.0] 31% (    9)   

Neurological 8% (  141) 4.0 [  2.0;   9.0] 59% (  82)   

Poisoning 1% (    13) 4.0 [  3.0;   7.0] 46% (    6)   

Respiratory 56% (1003) 1.0 [  1.0;   3.0] 56% (560)   

Tropical disease 6% (   104) 9.0 [  6.0; 11.0] 51% (  53)   

Other 5% (     93) 4.0 [  2.0;   9.0] 57% (  52)   

Overall 100% (1789) 2.0 [  1.0;   6.0] 56% (992)   

 

Table 14 Median accuracy (rate of diagnosis correctly classified by the final validated model) of the ML algorithms together with 95% 

Confidence Interval (C.I.) (calculated considering the Out-Of-Bag performance of 500 bootstrap repetitions of evaluation a 500-trees RF 

classifier by 5 repetition of 10-fold CV procedure). The C.I. was not estimated for Burn, Metabolic and discharge diagnosis’ classes be-

cause of the small size of the sample of children in these classes. 

 
Accuracy       (95% C.I.) 

Burn 0.900 - 

Cardiovascular 0.683 (0.663; 0.704) 

Gastrointestinal 0.759 (0.745; 0.769) 

Injury 0.837 (0.825; 0.850) 

Metabolic 0.758 - 

Neurological 0.602 (0.588; 0.624) 

Poisoning 0.692 - 

Respiratory 0.801 (0.797; 0.826) 

Tropical disease 0.971 (0.971; 0.980) 

Other 0.752 (0.731; 0.763) 

Overall 0.783 (0.779; 0.796) 
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D.3  SUPPLEMENTARY MATERIALS 

 

Table S 1 Criteria for inclusion in the study registry of urgent-emergent paediatrics visits to Paediatric Emergency Departments in Nica-

ragua 

Neurologic  Persistent altered mental status (GCS < 15)  

Signs of raised intracranial pressure  

Signs of severe neuroinfection  

Active seizures on arrival  

Acute focal neurological signs  

Respiratory  Signs of airway obstruction  

Severe respiratory distress (based on PALS 2015)  

Bradipnoea/apnoea  

Cardiovascular  Cardiac arrest  

Signs of shock (based on PALS 2015)  

Tachycardia/bradycardia  

Signs of cardiac failure  

Suspected sepsis  

Hypoxic spells  

Gastrointestinal  Acute gastroenteritis (vomiting and/or diarrhea) with severe dehydra-
tion (based on clinician judgment)  

Gastrointestinal bleeding  

Acute abdomen  

Metabolic  Diabetic ketoacidosis  

Injury  Potentially severe isolated (single site) or multiple trauma  

Burns > 20% BSA  

Venomous snake bite  

Poisoning (high risk- based on respiratory, neurologic, cardiovascular, 
and/or gastrointestinal signs or symptoms  

Suspected Dengue with warning signs  
BSA= Body Surface Area;  GCS= Glasgow Coma Scale;   
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Table S 2 Common tokens (including bigrams) among the 500 bootstrapped final validated model appearing in the top 100 of each 

model (according to the TF-iDF weight) 

Tokens (including bigrams)  

cetoacidosis  

dengue  

diabetes  

grado  

intoxicacion  

“intoxicacio por”  

quemadura  

sepsis  

shock  

sustancia  

trauma  
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E AUTOMATIC IDENTIFICATION AND CLASSIFICATION OF DIFFERENT TYPES OF 

OTITIS FROM FREE-TEXT PEDIATRIC MEDICAL NOTES IN THE ITALIAN LANGUAGE: 

A DEEP-LEARNING APPROACH 

E.1  FIGURES 

 

Figure 10 Flowchart for the project. 



[Title] 

 

 

Figure 11 The proportion of classes for the train, validation, and test set. 

 

 

 

. 
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Figure 12 Accuracy and balanced precision, recall, and F1 performances for the ensemble model when the base models ensembled are 

trained using only a subset of the validation set added to the training one. On the x-axis is reported the proportion of DBvali added to 

DBtrain for the training. 
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E.2  TABLES 

Table 15 The number of visits, children, pediatricians (MDs), male, female, and years for the databases considered for the study. I.e., 

DB0 is the Pedianet snapshot considered, DB1 contains data from DB0 positives to the search string. DBtrain, DBvalidation, and DBtest 

are the gold standard sets of data containing visits from DB1. 

Dataset Visits Children MDs Male [%] Female [%] 
Years 
(range) 

DB0 6,903,035 216,976 143 112,413 [51.8%] 104,563 [48.2%] 2004-1017 

DB1 297,373 99,896 142 53,159 [52.2%] 47,737 [47.8%] 2004-2017 

DBtrain 4,926 4,475 138 2,349 [52.5%] 2,078 [46.4%] 2004-2007 

DBval 723 718 142 377 [52.5%] 341 [47.5%] 2008-2017 

DBtest 880 873 142 463 [53.0%] 410 [47.0%] 2008-2017 

 

Table 16 Agreement between evaluators A and B (weighted Cohen’s Kappa), and measurements to assess the human-level perfor-

mances to the task, i.e., balance precision (BalPrec), balanced recall (BalRec), balanced F1 score (BalF1), and overall accuracy (Acc) for 

both A and B using as reference the final gold standard approved by the third specialist. 

Database Weighted 
Cohen’s 
Kappa 

BalPrec 
(A) 

BalRec 
(A) 

BalF1 
(A) 

Acc 
(A) 

BalPrec 
(B) 

BalRec 
(B) 

BalF1 
(B) 

Acc 
(B) 

DBtest 0.89 91.70 95.30 93.47 95.91 96.33 84.66 90.12 95.80 

 

Table 17 Performances for the simple embedding architecture. 

Simple 
embedding 

Batch 
[size] 

Accuracy 
(phase 1) 

Accuracy 
(fine-tuned) 

Running time 
[min] 

b8 8 88.00 [  75] 94.00 [296] 147.79 

b16 16 88.00 [  64] 93.00 [280] 88.47 
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Table 18 Performances for the single kernel CNN architectures. 

Single kernel Kernel 
[size] 

Batch 
[size] 

Filters 
[#] 

Drop-out 
[%] 

Accuracy 
(frozen)  
[epochs] 

Accuracy 
(fine-tuned) 
[epochs] 

Running 
time 
[min] 

b8-k2-f128-do05 2 8 128 50 98.00 [203] 96.67 [  48] 154.80 

b8-k2-f128-do07 2 8 128 70 97.00 [114] 96.67 [    3] 108.57 

b8-k2-f256-do05 2 8 256 50 97.33 [  73] 97.00 [    1] 119.82 

b8-k2-f256-do07 2 8 256 70 97.00 [  48] 96.67 [    1] 110.68 

b16-k2-f128-do05 2 16 128 50 96.33 [  23] 96.67 [121] 112.60 

b16-k2-f128-do07 2 16 128 70 96.33 [  92] 95.67 [    1] 87.15 

b16-k2-f256-do05 2 16 256 50 97.00 [  39] 97.33 [  24] 104.40 

b16-k2-f256-do07 2 16 256 70 97.33 [  69] 96.67 [    1] 103.79 

b8-k3-f128-do05 3 8 128 50 97.00 [  37] 96.67 [    1] 109.31 

b8-k3-f128-do07 3 8 128 70 96.33 [140] 95.67 [    1] 149.97 

b8-k3-f256-do05 3 8 256 50 97.33 [  53] 96.33 [    1] 141.60 

b8-k3-f256-do07 3 8 256 70 97.33 [111] 97.33 [    1] 174.00 

b16-k3-f128-do05 3 16 128 50 97.67 [128] 97.67 [    1] 125.11 

b16-k3-f128-do07 3 16 128 70 96.33 [  83] 95.33 [    1] 108.10 

b16-k3-f256-do05 3 16 256 50 97.00 [  30] 96.67 [  69] 151.93 

b16-k3-f256-do07 3 16 256 70 96.67 [  47] 95.67 [  20] 131.40 
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Table 19 Performances for the sequential kernels CNN architectures. 

Sequential kernels Filters 
[#-#] 

Batch  
[size] 

Drop-out 
[%] 

Accuracy 
(frozen)  
[epochs] 

Accuracy 
(fine-tuned) 
[epochs] 

Running 
time 
[min] 

b8-2x128-3x256-do05 128-256 8 50 97.67 [  57] 98.00 [    1] 119.67 

b8-2x128-3x256-do07 128-256 8 70 97.33 [  68] 96.67 [    1] 131.40 

b16-2x128-3x256-do05 128-256 16 50 97.33 [107] 97.00 [    1] 119.09 

b16-2x128-3x256-do07 128-256 16 70 97.00 [  80] 97.00 [    1] 110.03 

b8-2x256-3x512-do05 256-512 8 50 97.67 [  50] 97.67 [    1] 172.20 

b8-2x256-3x512-do07 256-512 8 70 97.67 [  65] 98.33 [    2] 183.00 

b16-2x256-3x512-do05 256-512 16 50 98.00 [  19] 97.67 [    1] 140.40 

b16-2x256-3x512-do07 256-512 16 70 97.33 [  95] 97.33 [    1] 184.80 

 

Table 20 Performances for the parallel kernels CNN architectures. 

Parallel kernels Filters 
[#] 

Batch  
[size] 

Drop-out 
[%] 

Accuracy 
(frozen)  
[epochs] 

Accuracy 
(fine-tuned) 
[epochs] 

Running 
time 
[min] 

b8-(emb+2+3)x128-do05 128 8 50 97.33 [  71] 97.33 [    1] 178.80 

b8-(emb+2+3)x128-do07 128 8 70 97.33 [  47] 97.33 [    1] 163.20 

b16-(emb+2+3)x128-do05 128 16 50 97.33 [  46] 97.00 [    1] 174.00 

b16-(emb+2+3)x128-do07 128 16 70 97.33 [107] 97.33 [    1] 212.40 

b8-(emb+2+3)x256-do05 256 8 50 97.00 [    7] 97.33 [  18] 190.80 

b8-(emb+2+3)x256-do07 256 8 70 98.00 [  82] 97.33 [    2] 232.80 

b16-(emb+2+3)x256-do05 256 16 50 97.33 [  48] 97.33 [    1] 243.60 

b16-(emb+2+3)x256-do07 256 16 70 97.67 [  65] 97.67 [    1] 257.40 
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Table 21 Performances for the deep-parallel kernels CNN architectures. 

Deep-parallel kernels Filters 
[#-#] 

Batch  
[size] 

Dropout 
[%] 

Accuracy 
(frozen)  
[epochs] 

Accuracy 
(fine-tuned) 
[epochs] 

Running 
time [min] 

b8-(emb+2+3)x128-(2+3)x256-do05 128-256 8 50 98 [  30] 98 [  11] 308.56 

b8-(emb+2+3)x128-(2+3)x256-do07 128-256 8 70 97.33 [  92] 97.67 [    1] 325.84 

b16-(emb+2+3)x128-(2+3)x256-do05 128-256 16 50 97.67 [101] 98.00 [  17] 379.12 

b16-(emb+2+3)x128-(2+3)x256-do07 128-256 16 70 97.00 [  70] 96.67 [    2] 311.08 

b8-(emb+2+3)x256-(2+3)x512-do05 256-512 8 50 98.00 [133] 97.67 [    8] 786.6 

b8-(emb+2+3)x256-(2+3)x512-do07 256-512 8 70 97.67 [  98] 97.33 [    1] 580.6 

b16-(emb+2+3)x256-(2+3)x512-do05 256-512 16 50 96.67 [  12] 97.00 [    2] 423.04 

b16-(emb+2+3)x256-(2+3)x512-do07 256-512 16 70 97.33 [  45] 96.67 [    1] 529.8 

 

Table 22 Performances on the test set evaluated on the best model of each architecture, re-trained on the whole training data available 

(DBTrain + DBval), and their ensemble model. Each model was re-trained using the best hyper-parameters set from the architectures 

explored, for the same number of epochs selected in the validation stage. 

Selected network Balanced 
precision 

Balanced 
recall 

Accuracy Balanced 
F1 

Simple embedding: b8 84.51 68.63 81.70 75.75 

single kernel: b8-k2-f128-do05 92.60 91.87 94.66 92.23 

sequential CNN: b16-2x256-3x512-do05 95.94 81.26 93.64 87.99 

parallel CNN: b8-(emb+2+3)x256-do07 96.95 94.78 96.59 95.86 

deep CNN: b8-(emb+2+3)x128-(2+3)x256-do05 96.38 93.36 96.25 94.85 

Ensemble (w/o simple embeddings) 97.03 93.97 96.59 95.47 
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Table 23 Confusion matrix for the classes predicted on the DBtest set by the ensemble model (by row) and reported on the gold stand-

ard (by columns) 

Predicted\Gold 0 1 2 3 4 5 Sum 

0 155 0 2 0 0 0 157 
1 7 168 7 0 0 0 182 
2 1 0 101 1 1 0 104 
3 2 1 1 389 6 0 399 
4 0 0 0 1 28 0 29 
5 0 0 0 0 0 9 9 

Sum 165 169 111 391 35 9 880 
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E.3  SUPPLEMENTARY MATERIALS 

6.6.1  REGULAR EXPRESSION 

Table 24 Regular expressions used to filter possible cases of otitis from Pedianet databases. The final regular expression applied was 

the disjunction of the reported ones (i.e., linked with the “OR” boolean operator) 

Regular expression 

"o{1,2}tit|ot{1,2}it|oti{1,2}t|otit{1,2}|toite|oitte|otiet|^om|^o\\.m|\\som|\\so\\.m\\.|\\Wom|
\\Wo\\.m\\.|\\dom|\\do\\.m\\.|\\nom|\\no\\.m\\." 
"\\so\\stit|ot\\sit|oti\\st|\\so\\m\\s|\\so\\.\\sm\\.\\s" 
"\\sitite|\\s9tite|\\s0tite|\\sptite|\\sltite|\\sktite" 
"\\sorite|\\so5ite|\\so6ite|\\soyite|\\sogite|\\sofite" 
"\\sotute|\\sot8te|\\sot9te|\\sotote|\\sotkte|\\sotjte" 
"\\sotire|\\soti5e|\\soti6e|\\sotiye|\\sotige|\\sotife]" 

 

6.6.2  NETWORKS 

were the following benchmark one (i.e., a simple embedding: “0”) plus four others of increasing complexity: 

0. Simple embedding: the only hidden layers were the embedding layer, followed by the batch normali-

zation end the drop-out ones (Figure 13). 

1. Single kernel Convolutional Neural Network (CNN): after the embedding layer we attached a convolu-

tional layer considering the same padding with a stride of 1, i.e., a sufficient quantity of zeros were 

added to each side of the input tensor to produce an output tensor with the same dimensions as the 

one received in input after applying the convolution kernel window sliding by one neuron at time. We 

explored the kernel sizes of 2, and 3, both with 128 or 256 filters. After the batch normalization and 

the drop-out layer, we flatted the tensor by the application of a global-max pooling layer before to 

pass it to the fully connected output layer (Figure 14).  

2. Sequential single kernel CNN: we considered like the first hidden layer after the embedding group 

(i.e., embedding + batch normalization + drop-out) a CNN group of layer made up by a CNN layer with 

kernel size equal to 2 and 128 filters, followed by batch normalization, drop-out and a max-pooling 

layer with both the window kernel and the stride equal to 2. After that, we attached a similar CNN 

group sequentially, but with a kernel size equal to 3, 256 filters, and a global max-pooling layer at the 

end, before the output layer (Figure 15). 

3. Multiple parallel kernel CNN: we consider for the first hidden layer after the embedding group, a layer 

composed by the concatenation of the simple embedding itself, with the two output of the applica-

tion of the embedding to two CCNs layers with same padding, kernel = 2, and 3, and 128 or 256 filters 

each one. To its output, we applied a batch normalization, a drop-out, and a global max-pooling layers 

before the application of the fully connected output layer (Figure 16). 

4. Deep multiple parallel kernel CNN: we stack sequentially two layers like the one designed in the case 

of multiple parallel kernel CNN, considering 128 or 256 filters for the first one which considers a ker-

nel size equal to 2 for its max-pooling layer, while 256 or 512 filters for the CNNs in the second group 

which use a global max-pooling layer at the end. The embedding layer was concatenated only to the 

first of those hidden layers, and not in the second (Figure 17). 
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Figure 13 Diagram for the simple-embedding architecture. The dropout rate was 20%. 
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Figure 14 Diagram for the single kernel architecture. The dropout rate was 20% after the embeddings, 50% after the convolution 
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Figure 15 Diagram for the sequential kernel architecture. The dropout rate was 20% after the embeddings, 50% after the convolution. 

MaxPooling after the first convolution layer has a window of size and stride both equals to 2, with valid padding. 
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Figure 16 Diagram for the parallel kernel architecture. The dropout rate was 20% after the embeddings, 50% after the convolutions. 
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Figure 17 Diagram for the deep-sequential kernel architecture. The dropout rate was 20% after the embeddings, 50% after the 

convolution. MaxPooling after the first convolution layer has a window of size and stride both equals to 2, with valid padding. 
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6.6.3  SYSTEM 

We run all the computations on an Ubuntu 18.04.3 LTS GNU/Linux 4.15.0-58-generic x86_64 virtualized server 

of the Unit of Biostatistics Epidemiology and Public Health of the University of Padova, equipped with 16 cores 

from Intel® Xeon® CPUs E5-2640 v4 @ 2.40GHz, and 96 GiB-RAM. We implement all the networks and codes 

for the analyses in R (v3.6.1) powered by the Keras (v2.2.4.1.9001) R interface to the TensorFlow (v1.14) 

backend, built from source enabling the usage of Intel® AVX set of instruction extensions. To learn word repre-

sentation was used fastText (v0.9.1). Diagram for the networks were automatically drowned from the Keras 

models trained using netron (v3.3.5). All the development and code was tracked on a GitHub repository pub-

licly available at www.github.com/UBESP-DCTV/limpido. 

 

http://www.github.com/UBESP-DCTV/limpido
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