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SUMMARY - Back pain (BP) is a common clinical condition that leads to high morbidity 

with significant psychosocial and economic effects. It is the leading cause of disability in 

people under 45 years of age, and it results in enormous national economic losses in 

developed countries. The wide majority of BP is associated with degenerative changes of 

the intervertebral disc (IVD). Intervertebral disc degeneration (IVDD) is an age-related 

chronic process that is characterized by a progressive reduction of proteoglycans and 

water content in the nucleus pulposus (NP) with loss of the IVD's ability to resist 

compressive forces. Current treatment options for BP and IVDD range from conservative 

measures to invasive procedures however, these treatment modalities have limited 

efficacy and do not produce predictable and reliable outcomes. Therefore, there is a clear 

need for more effective early treatment of BP that may prevent, slow down, or reverse the 

degenerative changes. To evaluate the efficacy of novel IVD regenerative treatments, 

prior to translation into humans, ex vivo and in vivo animal model systems are needed.  

In the present study, a novel transpedicular approach to the IVD was validated in 12 

sheep. Under fluoroscopy, a 2-mm Kirshner wire was introduced through the vertebral 

body with a cranio-medial inclination of approximately 45° in all plans direction to reach 

the center of the NP. In each animal four IVDs, from L1 to L5, were addressed by 

performing different surgical techniques, respectively: (I) nucleotomy, (II) tunnel, (III) 

nucleotomy + polyurethane (PU) scaffold, and (IV) tunnel + PU scaffold. Intact IVDs (L5-6) 

were used as controls. Intra- and post-surgical morbidity rates were low; CSF leakage 

was recorded in two spinal segments whereas discospondylitis and vertebral luxation 

occurred respectively at L1-2 and L3-4 in two different animals. The quantitative and 

qualitative analysis of MRI, radiologic, histologic and macroscopic data, collected at four 

different time points (before and 1, 3 and 6 months after surgery), suggested that the 

injury induced in the present model represents a reliable method for initiating a 

progressive IVDD process, obtaining different degrees of IVDD depending on the type of 

lesion performed. The endplate damage itself, caused by the realization of the 
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transpedicular tunnel, led to IVD degenerative changes, although to a lesser extent than 

those caused by performing nucleotomy. Furthermore, the sealing of the tunnel with the 

PU scaffold resulted in a lack of cells leakage throughout the tunnel.  

The transpedicular approach represents a feasible alternative route to the IVD, with 

respect to the traditional ventral and ventrolateral approaches through the annulus 

fibrosus. This new pathway to the IVD provides a new valid model to study biologic and 

biomechanical alterations in relation either, to IVD degenerative processes and to 

potential NP regenerative therapies. 

RIASSUNTO - La lombalgia è una condizione clinica molto frequente associata ad 

elevata morbidità, con effetti sia dal punto di vista psicosociale che della spesa sanitaria 

nazionale. La lombalgia é la principale causa di disabilità nella popolazione al di sotto dei 

45 anni, e rappresenta una della principali voci di spesa nei paesi sviluppati. La grande 

maggioranza dei casi di lombalgia è associata alla degenerazione del disco 

intervertebrale (IVDD). L'IVDD è un processo cronico età-correlato caratterizzato da una 

progressiva riduzione del contenuto di proteoglicani ed acqua nel nucleo polposo (NP), 

con perdita della capacità del disco di resistere a forze compressive. Le attuali opzioni di 

trattamento disponibili per lombalgia e IVDD comprendono sia approcci conservativi che 

procedure invasive. Tuttavia, queste modalità di trattamento hanno un'efficacia limitata e 

non producono risultati prevedibili e riproducibili. Per queste ragioni, vi è una chiara 

necessità di trattamenti che siano efficaci nel prevenire, rallentare o invertire le 

modificazioni degenerative causate dal processo di IVDD. Al fine di valutare l’efficacia di 

nuove tecniche di rigenerazione discale e prima di trasferirle all’uomo, é necessario 

testarle su modelli animali ex vivo ed in vivo. 

Questo studio ha permesso di validare, in 12 pecore, un nuovo approccio al disco 

intervertebrale (IVD) per via transpeduncolare. Tramite guida fluoroscopica, un filo di 

Kirshner di 2-mm di diametro é stato introdotto attraverso il corpo vertebrale con 

un’inclinazione di circa 45° in tutti i piani dello spazio  e in direzione cranio-mediale, tale 
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da raggiungere il centro del NP. In ciascun animale sono stati trattati quattro IVD, da L1 a 

L5, effettuando in ciascuno una diversa tecnica chirurgica: (I) nucleotomia, (II) tunnel, (III) 

nucleotomia + scaffold in poliuretano (PU) e (IV) tunnel + scaffold PU. I dischi non trattati 

(L5-6) sono stati considerati come gruppo controllo. Le percentuali di morbiditá intra- e 

post-operatoria si sono rivelate basse; in due occasioni é stata riportata fuoriuscita di 

liquor in fase chirurgica, inoltre lussazione di L3-4 e discospondilite a livello di L1-2 si 

sono verificate in due soggetti. Le analisi quantitative e qualitative, effettuate sui dati 

ricavati in quattro diversi time point (prima e 1, 3 e 6 mesi dopo la chirurgia) dalle 

immagini radiografiche e di risonanza magnetica e dai campioni macroscopici e istologici, 

hanno rivelato l’efficacia del metodo presentato nell’ottenere un modello progressive di 

IVDD. Inoltre, attraverso l’approccio transpeduncolare é stato possibile ottenere diversi 

gradi di IVDD, dipendentemente dalla tipologia di lesione effettuata. Il solo danno al piatto 

vertebrale ha determinato alterazioni degenerative del IVD, tuttavia inferiori rispetto a 

quelle causate effettuando la nucleotomia. Inoltre, l’utilizzo dello scaffold in PU per 

sigillare il tunnel é servito a prevenire la fuoriuscita di cellule attraverso il tunnel.  

 L’approccio transpeduncolare rappresenta una via alternativa per raggiungere il IVD 

rispetto ai tradizionali approcci ventrali e ventrolaterali attraverso l’anello fibroso. Questa 

nuova tecnica fornisce un nuovo modello per lo studio di alterazioni biologiche e 

biomeccaniche in relazione sia ai processi di IVDD sia a potenziali terapie regenerative.
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INTRODUCTION 

Back pain (BP) is a common clinical condition that leads to high morbidity with significant 

psychosocial and economic effects. It is the leading cause of disability in people under 45 

years of age, and it results in enormous national economic losses in developed countries. 

The wide majority of BP is associated with degenerative changes of the intervertebral disc 

(IVD) (Luo et al., 2004). Intervertebral disc degeneration (IVDD) is an age-related chronic 

process that is characterized by a progressive reduction of proteoglycans (PGs) and water 

content in nucleus pulposus (NP) with loss of the IVD’s ability to resist compressive 

forces, therefore to assure spinal stability. BP is the first symptom of IVDD that may 

progress to multiple spinal disorders such as disc herniation, degenerative 

spondylolisthesis, instability, and spinal stenosis (Figure 1) associated with neurological 

signs due to radiculopathy and myelopathy that often require surgical treatments (Wilste 

et al., 1976). 

Currently, there are no treatment options able to reverse the degenerative process 

targeting the pathophysiology involved in IVDD. Nowadays, there is a strong effort to 

develop an effective early treatment of BP that may prevent, slow down, or reverse the 

degenerative changes in the IVD. Recovering the IVD’s ability to repair the extracellular 

matrix (ECM) and re-establishing the PG content may have a significant therapeutic effect 

by increasing IVD hydration and thereby improving its biomechanics.  

Animal models are widely used to study IVDD and to evaluate treatment methods 

because of the availability of the tissue, the dicreased variability between subjects 

compared with humans, and the feasibility to perform in vivo experiments. In vivo animal 

models are essential to study the aetiopathogenesis of IVDD, how it evolves over time 

either spontaneously or following experimental injury, and to show how therapeutic 

strategies may ameliorate, resolve, or prevent it. Animal models must be ethical, 
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controllable, reproducible, and cost-effective; in addition, they should be able to model 

human pathologic processes. 

 

Figure 1   

            

 

 

 

Spinal stenosis - Progressive 
narrowing of the spinal canal could 
be either a congenital or acquired 
condition. It is most common in the 
cervical and lumbar areas. The 
canal components that contribute to 
acquired stenosis include the facets 
(hypertrophy, arthropathy), 
ligamentum flavum (hypertrophy), 
posterior longitudinal ligament, 
vertebral body (spondylosis), IVD, 
and epidural fat. Spinal stenosis 
implies spinal canal narrowing with 
possible subsequent neural 
compression. Congenital stenosis 
may predispose an individual with 
mild degenerative changes to 
become symptomatic earlier in life. 

  
Spondylolisthesis – It is defined 
as the translation of one vertebra 
in relation to the adjacent level 
and is commonly referenced as 
an anterolisthesis of the cranial 
segment on the caudal segment. 
Five different types of 
spondylolisthesis have been 
described: dysplastic, isthmic, 
degenerative, traumatic, and 
pathologic (Wilste et al., 1976). 
Spondylolisthesis can be either 
congenital or acquired. 

 

Numerous in vivo animal models for IVDD are described in literature, and each 

model has its own advantages and disadvantages. There are several important aspects to 

consider in relation to using animals for studying IVDD such as development and anatomy 
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of the spine, loading and size differences, the mechanical, biochemical and nutritional 

conditions.  

o INTERVERTEBRAL DISC 

§ EMBRYOGENESIS AND POSTNATAL DEVELOPMENT 

The embryonic development of the vertebral column centers on the notochord, a rod-like 

mesoderm-derived structure (Fleming et al., 2001; Stemple, 2005). The notochord is 

important both as a signaling center that mediates cell migration, differentiation and 

survival, and as a structure that physically gives rise to the NP (Peacock, 1951; Walmsley, 

1953; Choi et al., 2008). Embryonic morphogenesis of the disc, as well as key molecules 

implicated in this process, are illustrated schematically in Figure 2. 

The annulus fibrosus (AF) and NP regions of the IVD arise concurrently along 

distinct developmental pathways. During human fetal gestation, at approximately 30 days 

(12 days in the mouse), cells of the sclerotome migrate medially from pairs of paraxial 

somites (Figure 2A) to condense around the notochord (Figure 2B) (Peacock, 1951; 

Hunter et al., 2003a), adopting a metameric pattern of more condensed and less 

condensed regions (Figure 2C), which later give rise to the AF and vertebral bodies, 

respectively (Aszodi et al., 1998). Cells in the future AF region adopt a fibroblastic 

morphology. These cells align and orient to form the template for ECM deposition that 

later defines the AF angle-ply lamellar structure (Figure 2E) (Rufai et al., 1995).  

Concurrently with AF morphogenesis, the notochord contracts within the forming vertebral 

body rudiments, simultaneously expanding within the intervertebral regions to form the NP 

(Figure 2D) (Peacock, 1951; Pazzaglia et al., 1989; Aszodi et al., 1998).  
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Figure 2. Schematic representation of embryonic morphogenesis of the mammalian IVD. Colours 
represent origins and destinations of cell populations. Also indicated are key morphogens and 
transcriptional regulators implicated in the growth and differentiation of the disc structures at each 
developmental stage. (A) The notochord adjacent to pairs of paraxial somites, which contain 
sclerotome cells. (B) Sclerotome cells condense around the notochord. (C) Cells adopt a 
metameric pattern of more condensed (green) and less condensed (brown) regions that give rise to 
the AF and vertebral bodies, respectively. (D) The notochord contracts within the vertebral body 
rudiments and expands within the future intervertebral disc to form the NP. (E) Basic structures of 
the disc are established, and AF cells adopt orientations and alignments that form the template for 
the lamellar structure. VB, vertebral body. 

 

Once the basic structures of the IVD are established, several developmental 

changes occur. In humans, during the early postnatal years, blood vessels that have 

penetrated the AF and cartilage endplates (EPs) from as early as 35 weeks gestation 

begin to recede, determining the avascular structure of the IVD (Urban and Roberts, 1995; 

Nerlich et al., 2007). The vascular regression has been hypothesisied to be a 

consequence of decreased nutrient requirements following the initial period of rapid 

growth or, more likely, of the inability of circulatory pressure to compete with large 

physiological stresses in the surrounding ECM. Poor nutritional supply to the cells of the 

avascular IVD has been implicated in the pathogenesis of IVDD. 

Further changes characterising the resident cell populations, and specifically those of 

the NP, begin to occur very early in life. Soon after birth, the cells that populate the NP 

exhibit morphological characteristics that are similar to the cells that populate its 

notochord precursor (Peacock, 1952; Wolfe et al., 1965; Trout et al., 1982a; Trout et al., 

1982b). Notochordal cells (NCs) in the postnatal NP are large (30-40 µm in diameter), 

frequently appear in clusters and possess actin-filament-bounded intracellular vacuoles 
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that occupy more than 25% of the cell area (Hunter et al., 2003b; Hunter et al., 2004) 

(Figure 3b).  

In the first 10 years following birth, the number of NCs declines, and no NCs are present 

by adulthood (Peacock, 1952; Trout et al., 1982a; Hunter et al., 2004). Concurrently, a 

second population of chondrocyte-like cells appears, characterised by apparent 

morphological similarities with cartilage chondrocytes (Urban and Roberts, 1995) (Figure 

3). In comparison with NCs, the chondrocyte-like NP cells are smaller (~10 µm in 

diameter) and lack intracellular vacuoles (Hunter et al., 2004).  

In many species (mouse, rat, cat, mink, chondrodystrophoid dog, pig and rabbit) the NCs 

persist through most of adult life, whereas in other species they gradually disappear 

during aging (human, sheep, non-condrodystrophoid dog, cow) (Hunter et al., 2004). 

Horses apparently have no NCs at birth (Table 1). The exact mechanism of transition from 

NCs to chondrocytic-like cells is not precisely known; however, developmental changes to 

both mechanical and nutritional microenvironment have been implicated (Rastogi et al., 

2009; Guehring et al., 2010). It is unclear whether this change in cell populations is due to 

continued differentiation of the NCs into chondrocytic phenotype (Choi et al., 2008; 

Risbud et al., 2010), or due to apoptosis of the resident cells with the subsequent 

migration to the NP by cells derived from the cartilaginous EPs or AF (Kim et al., 2003).  

Considered that altered cellularity represents a hallmark of IVDD, the relevance of 

NCs in animal models used to study IVDD can be great since this is a completely different 

cell type in terms of morphology and function to the cells populating the adult human NP 

(Hunter et al., 2003a). 

Another key factor in early IVDD is the decrease in the PG content in the NP. NCs 

have been shown to synthesize ECM in a distinct manner respect the mature NP cells 

(Cappello et al., 2006). PGs synthesized by NCs are evenly distributed between the inter- 

and pericellular regions, compared with mature NP cells, in which the majority of PGs are 

intercellular. Additionally, the rate at which PGs migrate to the intercellular regions is 

significantly greater for NCs than for mature NP cells (Cappello et al., 2006). 



 14 

Table 1. Age of loss of notochordal cells in different species (Hunter et al., 2004) 

Species Age of skeletal 
maturity 

Age of loss of 
notochordal cells References 

Dog (c) 12 months 12 months Hansen, 1952; Hutton et al., 
2000; Ganey et al., 2003 

Dog (n/c) 12 months 60 months 

Frick et al., 1994; Hansen 
1952; Maldonado and 
Oegema, 1992; Katsuura 
and Hukuda, 1994; 
Matsuzaki et al., 1996; 
Hunter et al., 2004 

Rabbit 10 months 6 months 

Anderson et al., 2002; Smith 
and Serafini-Fracassini, 
1968; Scott et al., 1980; 
Nomura et al., 2001; Hunter 
et al., 2004 

Pig 12 months Unknown 
Holm et al., 2004; Kawchuck 
et al., 2001; Hunter et al. 
,2004 

Cat 24 months Never 
Hansen 1959; Butler 1989; 
Kathmann et al., 2000; 
Hunter et al., 2004 

Ferret n/d Never Hunter et al., 2004 

Sheep 12 months Unknown Kadoya et al., 2001 ; Hunter 
et al., 2004 

Rat 2 months 12 months 

Adler et al., 1983; 
Moskowitz et al., 1990; 
Nishimura and Mochida, 
1998; Iatridis et al., 1999; 
Mente et al., 1999; MacLean 
et al., 2003; Hunter et al., 
2004 

Mouse 4 months n/d 
Ariga et al., 2001; Lotz et 
al., 1998; Lotz and Chin, 
2000; Wlash and Lotz, 
2004; Hunter et al., 2004 

Human 20 years 6-10 years Horwitz, 1977 

C, chondrodystrophoid (beagles); n/c, non-chondrodystrophoid (mongrels); n/d: no data available. 

§ INTERVERTEBRAL DISC MORPHOLOGY AND BIOCHEMISTRY 

The human vertebral column consists of 24 mobile vertebrae: 7 cervical, 12 thoracic, and 

5 lumbar. With the exception of the first and second cervical vertebrae, all vertebral bodies 

are connected by IVDs. IVDs form a strong and flexible connection between the 

vertebrae, allowing flexion, extension, and rotation of the spinal column and forming an 

amphiartrosis type of joint. Moreover, the IVDs constantly transmit loads arising from body 

weight and muscle activity through the spinal column (Twomey and Taylor, 1987; Roberts 

et al., 1989).  
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  As described previously, developmentally the IVD is a unique structure formed 

from cells of at least two embryonic origins: the notochord and the somites. These 

lineages give rise to a tissue that is complex and specialized in terms of its microstructure, 

mechanical function and cell types (Smith et al, 2011). IVDs consist of a thick outer ring of 

fibrous cartilage (AF), which surrounds a more gelatinous core known as the NP; the NP 

is delimited cranially and caudally by cartilage EPs (Figure 4A), forming a symphysis type 

of cartilagineous joint. 

Nucleus pulposus - The central NP contains large quantities of aggrecan, the major PG, 

which aggregates along chains of hyaluronan (Urban, 1996). The glycosaminoglycan 

(GAG) side chains of these PGs carry a fixed negative charge and generate an osmotic 

swelling pressure within an irregular meshwork of collagen II fibrils (Inoue, 1981) and 

elastin fibres, which are arranged radially (Yu et al., 2002). Interspersed at a low density 

(approximately 5000/mm3) (Maroudas et al, 1975) are chondrocytes-like cells (Figure 3c; 

4b).  

Annulus fibrosus - Outside the NP is the AF, characterized by heterogeneous 

composition and architecture. The highly organized outer regions consist of concentric 

distinct lamellae (Figure 5A-B), which are composed of bundles of collagen I fibers 

oriented at oblique angles that alternate within each consecutive lamella to form an angle-

ply structure (Marchand and Ahmed, 1990). In the inner AF, there is a transition to 

collagen II that, together with increasing PGs concentration, gives rise to a less fibrous 

and less organized structure (Humzah and Soames, 1988). Elastin fibres lie between the 

lamellae, possibly helping the IVD to return to its original arrangement following bending. 

They may also bind the lamellae together as elastin fibres pass radially from one lamella 

to the next (Yu et al., 2002). The cells of the AF, particularly in the outer region, tend to be 

fibroblast-like, elongated, thin and aligned parallel to the collagen fibres (Figure 3a), while 

toward the inner AF the cells can be more oval. Cells of the IVD, both in the AF and NP, 

can have several long, thin cytoplasmatic projections, which may be more than 30 µm 
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long (Errington et al., 1998; Bruehlmann et al., 2002). Their function in the IVD is unknown 

but it has been suggested that they may act as sensors and communicators of mechanical 

strain within the tissue (Bruehlmann et al., 2002).  

 

Figure 3. Morphology of IVD cells. Cells of the intervertebral disc differ in morphology according to 
the region of origin, age and species. (a) Annulus fibrosus cells (bovine disc): the cells in the outer 
fraction are fibroblast-like, therefore much more bipolar and elongated (arrow) than those in the 
inner fraction that are more rounded; (b) Notochordal cells (bovine disc): large highly vacuolated 
cells; (c) Nucleus pulposus cells (human disc) are rounded, often sitting inside a capsule (thin 
arrow) that may be surrounded by an obvious pericellular matrix (thick arrow) (Roberts et al., 2006; 
Alini et al., 2008). 
 

Endplate - The third morphologically distinct region is the cartilage EP, a thin horizontal 

layer, usually less than 1 mm thick, of hyaline cartilage. The EPs extend cranially and 

caudally over the inner AF and NP to interface with the vertebral bodies (Figure 4), and 

function to regulate nutrient diffusion between the IVD and the vertebral bodies. In the 

outer regions of the AF, collagen fibres anchor directly into the vertebral bone, interfacing 

the IVD and the vertebral body. The collagen fibres within it run horizontal and parallel to 

the vertebral bodies, with the fibres continuing into the IVD (Roberts et al., 1989). During 

childhood and adolescence, the EP functions also as a growth plate of the adjacent 

vertebrae in humans, whereas the vertebral bodies of other mammals contain separate 

growth plates (Adam and Roughley, 2006). 
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A B 
Figure 4. Schematic representations of the adult intervertebral disc. (A) Midsagittal cross-
section showing anatomical regions. (B) Three-dimensional view illustrating the AF lamellar 
structure. 
 

Extracellular matrix - The mechanical functions of the IVD are determined by the 

composition and organization of the ECM. The main mechanical role is provided by the 

two major macromolecular components, collagen and PGs. The collagen network, formed 

mostly of type I and type II collagen fibrils and making up approximately 70% and 20% of 

the dry weight of the AF and NP respectively (Eyre and Muir, 1977), provides tensile 

strengh to the IVD and anchors the tissue to the bone. Aggrecan, the major PG of the IVD 

(Johnstone and Bayliss, 1995), is responsible for maintaining tissue hydration through the 

osmotic pressure provided by its constituent chondroitin and keratan sulphate chains 

(Urban et al, 1979) (Figure 5B). The PGs and water content of the NP (around 50% and 

80% of the wet weight, respectively) is greater than in the AF (approximately 20% and 

70% of the wet weight, respectively) (Figure 5A). In addition, there are many other minor 

components, such as collagen types III, V, VI, IX, X, XI, XII and XIV; small PGs such as 

lumican, biglycan, decorin and fibromodulin; and other glycoproteins such as fibronectin 

and amyloid (Roberts et al., 1991; Melrose et al., 2001). The functional role of many of 

these additional matrix proteins and glycoproteins is not yet clear. Collagen IX, however, 

is thought to be involved in forming cross-links between collagen fibrils and is thus 

important in maintaining network integrity (Eyre et al., 2001). 
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A B 
Figure 5. (A) Distribution of the main  IVD constituents within the AF, NP and EPs (Prithvi, 2008). 
(B) Structure of an aggrecan type complex PG. Aggrecan is a high molecular weight PG, in which 
chondroitin sulfate and keratan sulfate GAG chains are attached to an extended protein core. 

 

The ECM is a dynamic structure. Its molecules are continually being broken down 

by proteinases such as the matrix metalloproteinases (MMPs) and aggrecanases, which 

are also synthesized by IVD cells (Sztrolovics et al., 1997; Roberts et al., 2000; Weiler et 

al., 2002). The balance between synthesis, breakdown and accumulation of ECM 

macromolecules determines the quality and integrity of the ECM, and thus the mechanical 

behaviour of the IVD itself. The integrity of the ECM is also important for maintaining the 

relatively avascular and aneural nature of the healthy IVD. 

§ INTERVERTEBRAL DISC INNERVATION AND VASCULARIZATION 

The adult IVD is almost completely avascular (Figure 6B) (Nerlich et al., 2007), so 

resident cells must survive and function in an environment that is low in nutrients and 

oxygen (Urban et al., 2004). In the longitudinal ligaments adjacent to the IVD and in young 

cartilage EPs (less than about 12 months old) are present blood vessels which represent 

branches of the spinal artery (Crock et al., 1991) (Figure 6A). The cartilagineous EP, like 

other hyaline cartilages, is normally totally avascular and aneural in the healthy adult 

PATHOPHYSIOLOGY

Loss of Proteoglycan

The most significant biochemical change to occur in disc
degeneration is loss of proteoglycan (Figure 11A and

B).29 The aggrecan molecules become degraded, with
smaller fragments being able to leach from the tissue
more readily than larger portions. This results in loss of
glycosaminoglycans; this loss is responsible for a fall in

A

B

Figure 10. (A) A line drawing of the intervertebral disc structure.
(B) A line drawing of a disc proteoglycan aggregate.

Figure 11. (A) The proteoglycan aggregates are depicted as the
central hyaluronan molecule (dashed line) substituted with
aggrecan molecules possessing a central core protein (open line)
and sulfated glycosaminoglycan side chains (solid lines) The
hydration properties of the glycosaminoglycan chains of aggre-
can cause the tissue to swell until an equilibrium is reached,
where the swelling potential is balanced by tensile forces in the
collagen network. (B) Degradation of proteoglycan with the
degeneration of the intervertebral disc. This results in loss of
water pressure and disc dehydration.

Intervertebral Disc • 23
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(Groen et al., 1990). 

  The nerve supply of the IVD is complex. The healthy adult IVD innervation is 

mainly restricted to the outer lamellae where some branches terminate in proprioceptors 

(Roberts et al., 1995) (Figure 6). A meningeal branch of the spinal nerve, known as the 

recurrent sinuvertebral nerve, originates near the IVD space and innervates the dorsal 

circumference of the AF (Figure 7). This nerve stems from the rami communicantes, runs 

ventral to the nerve root, enters the foramen back to the spinal canal, where the nerve 

splits into finer branches (ascending and descending branches), which form nerve 

networks – one in the posterior longitudinal ligament (PLL) and a network in the ventral 

dura (Groen et al., 1990). It has been shown in animal studies that further afferent 

contributions to the sinuvertebral nerve arises via the rami communicantes from multiple 

superior and inferior dorsal root ganglia (Figure 7B). In addition, the anterior longitudinal 

ligament (ALL) also receives afferent innervation from branches originating in the dorsal 

root ganglion. The PLL is richly innervated by nociceptive fibers from the ascending 

branch of the sinovertebral nerve, which also innervate the adjacent outer layers of the AF 

(Figure 8). The sensory innervation of the IVD occurs via branches of the truncus 

sympathicus (Groen et al., 1990), supplying the ventral and lateral sides of the IVD.  

Some of the nerves in the IVD have glial support cells, or Schwann cells, alongside them 

(Johnson et al., 2001).  

Afferent fibers from the IVD travel along with the sympathetic nerve and both nerve 

networks consist of interverconnected nerves with somatic and autonomic branches from 

various lumbar spinal nerves (Groen et al., 1990; Suseki et al., 1998; Oh and Shim, 2004).  
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A B 
Figure 6. (A) An axial section of the IVDD of a 10-month-old girl. Numerous vascular channels and 
wide cartilaginous endplates traversing to the AF and the NP are present. The disc is gel-like and 
highly hydrated. (B) The organization of the blood vessels branching from the segmental artery 
entering the vertebral body and end as capillaries in the EP (Raj, 2008).  

 

 

A B 
Figure 7. (A) Innervation of the PLL and the disc annulus by the ascending branch of the 
sinuvertebral nerve. (B) The course of the recurrent sinuvertebral nerve, which innervates the 
postero-lateral region of the disc. The nerve exits from the dorsal root ganglion and enters the 
vertebral foramen, where it divides into a major ascending and a lesser descending branch. The 
PLL is richly innervated by nociceptive fibers from the ascending branch of the sinuvertebral 
nerve (Raj, 2008).  

 

  

original arrangement following bending, whether it is
flexion or extension. They may also bind the lamellae
together as elastin fibers pass radially from one lamella
to the next.9 The cells of the annulus, particularly in the
outer region, tend to be fibroblast-like, elongated, thin,
and aligned parallel to the collagen fibers. Toward the
inner annulus the cells can be more oval. Cells of the
disc, both in the annulus and nucleus, can have several
long, thin cytoplasmic projections, which may be more
than 30 mm long.12,13 Such features are not seen in
cells of articular cartilage.12 Their function in disc is
unknown but it has been suggested that they may act as
sensors and communicators of mechanical strain within
the tissue.12

The Structure of the Endplate

The third morphologically distinct region is the cartilage
endplate, a thin horizontal layer, usually less than 1 mm
thick, of hyaline cartilage (Figure 4). This interfaces the
disc and the vertebral body. The collagen fibers within it
run horizontal and parallel to the vertebral bodies, with
the fibers continuing into the disc.7 The appearance of the
intervertebral disc at young (10 months old) and adult
periods are shown in Figure 5A and B, respectively.

Blood Vessels and Nerve Supply of the Disc

The healthy adult disc has few (if any) blood vessels, but
it has some nerves, mainly restricted to the outer lamel-

lae (Figure 6), some of which terminate in proprio-
ceptor.14 The cartilaginous endplate, like other hyaline
cartilages, is normally totally avascular and aneural in
the healthy adult. Blood vessels present in the longitu-
dinal ligaments adjacent to the disc and in young carti-
lage endplates (less than about 12 months old) are
branches of the spinal artery.15

Figure 4. The organization of the vertebral endplate containing
hyaline cartilage bonded to the perforated cortical bone of the
vertebral body and collagen fibers of the annulus and the
nucleus. Arrows indicate routes for nutrient transport from
blood vessels into the central portion of the disc (Adapted from
J Orthop Res. 1993;11:747–757).

A

B

Figure 5. (A) An axial section of the intervertebral disc in a
10-month-old girl. Note the numerous vascular channels and
wide cartilaginous endplates traversing to the annulus fibrosis
and Nucleus Pulposus. The disc is more gel-like and highly
hydrated. (B) An axial section of the intervertebral disc of a
50-year-old adult. Note the thin cartilaginous plate and lesser
vascular channels traversing to less hydrated distinct Annulus
Fibrosis and Nucleus Pulposus.
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Nerves in the disc have been demonstrated, often
accompanying these vessels, but they can also occur
independently, being branches of the sinuvertebral nerve
or derived from the ventral rami or gray rami com-
municantes. A meningeal branch of the spinal nerve,
known as the recurrent sinovertebral nerve, originates
near the disc space (Figure 7). This nerve exits from
the dorsal root ganglion and enters the foramen, when
it then divides into a major ascending and a lesser
descending branch. It has been shown in animal studies
that further afferent contributions to the sinovertebral
nerve arises via the rami communicantes from multiple
superior and inferior dorsal root ganglia (Figure 8). In
addition, the anterior longitudinal ligament also receives
afferent Innervation from branches that originate in the
dorsal root ganglion. The posterior longitudinal liga-
ment (PLL) is richly innervated by nociceptive fibers
from the ascending branch of the sinovertebral nerve.
These nerves also innervate the adjacent outer layers of
the annulus fibrosis. Some of the nerves in discs also
have glial support cells, or Schwann cells, alongside
them.16

PATHOPHYSIOLOGY

Changes in the Disc due to Aging

During growth and skeletal maturation, the boundary
between annulus and nucleus becomes less obvious,
and with increasing age the nucleus generally becomes
more fibrotic and less gel-like.17 With increasing age and
degeneration, the disc changes in morphology, becom-
ing more and more disorganized. Often the annular
lamellae become irregular, bifurcating, and interdigitat-
ing and the collagen and elastin networks also appear to
become more disorganized. There is frequently cleft
formation with fissures forming within the disc, par-
ticularly in the nucleus. Nerves and blood vessels are
increasingly found with degeneration.14 Cell prolifera-
tion occurs, leading to cluster formation (Figure 9), par-
ticularly in the nucleus.18,19 Cell death also occurs, with
the presence of cells with necrotic and apoptotic appear-
ance.20,21 It has been reported that more than 50% of
cells in adult discs are necrotic.20 With discs from indi-
viduals as young as 2 years of age having some very mild
cleft formation and granular changes to the nucleus.
With increasing age comes an increased incidence of
degenerative changes, including cell death, cell prolif-

Figure 6. The organization of the blood vessels branching
from the segmental artery entering the vertebral body and
end as capillaries in the endplate (adapted from http://www.
Medscape.com).

Figure 7. Innervation of the PLL and the disc annulus by the
ascending branch of the Sino-vertebral nerve.
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eration, mucous degeneration, granular change, and
concentric tears. It is difficult to differentiate changes
that occur solely due to aging from those that might be
“pathological.”

PHYSIOLOGY
Biochemistry of the Normal Disc

The mechanical functions of the disc are served by the
extracellular matrix; its composition and organization
govern the disc’s mechanical responses. The main
mechanical role is provided by the two major macro-
molecular components.

Collagen Fibers

The collagen network, formed mostly of type I and
type II collagen fibrils and making up approximately
70% and 20% of the dry weight of the annulus
and nucleus, respectively,22 provides tensile strength
to the disc and anchors the tissue to the bone
(Figure 10A).

Aggrecan

Aggrecan, the major proteoglycan of the disc,23 is
responsible for maintaining tissue hydration through the
osmotic pressure provided by its constituent chondroitin
and keratan sulfate chains.24 The proteoglycan and
water content of the nucleus (around 15% and 80%
of the wet weight, respectively) is greater than in the
annulus (approximately 5% and 70% of the wet weight,
respectively) (Figure 10B).

Matrix

The matrix is a dynamic structure. Its molecules are
continually being broken down by proteiniases, such
as the matrix metalloproteinase (MMPs) and aggreca-
nases, which are also synthesized by disc cells.25–27 The
balance between synthesis, breakdown, and accumula-
tion of matrix macromolecules determines the quality
and integrity of the matrix, and thus the mechanical
behavior of the disc itself. The integrity of the matrix is
also important for maintaining the relatively avascular
and aneural nature of the healthy disc.

The intervertebral disc is often likened to articular
cartilage. However, there are significant differences
between the two tissues, one of these being the compo-
sition and structure of aggrecan. Disc aggrecan is more
highly substituted with keratan sulfate than that found
in the deep zone of articular cartilage. In addition, the
aggrecan molecules are less aggregated (30%) and more
heterogeneous, with smaller, more degraded fragments
in the disc than in articular cartilage (80% aggregated)
from the same individual.28 Disc proteoglycans become
increasingly difficult to extract from the matrix with
increasing age.23

Figure 8. The course of the recurrent Sino-vertebral nerve, which
innervates the Postero-lateral region of the disc. The nerve exits
from the dorsal root ganglion and enters the vertebral foramen,
where it divides into a major ascending and a lesser descending
branch. The posterior longitudinal ligament is richly innervated
by nociceptive fibers from the ascending branch of the
Sino-vertebral nerve.

Figure 9. A nerve bundle in human intervertebral disc stained
with an antibody to neurofilament (with permission from:
Roberts S, Evans H, Menage J et al. Eur Spine J. 2005;14:36–42).
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Figure 8. Schematic representation of the innervation of the normal IVD. The ventral and lateral 
sides of the IVD are supplied by branches of the rami communicantes, direct branches of the 
truncus sympathicus, and the ligamentum longitudinale anterius and ligamentum longitudinale 
posterius nerve plexus. In healthy adult animals and human beings, nerves extend no further into 
the IVD than the outer third of the annulus fibrosus.  

 

 

§ INTERVERTEBRAL DISC DEGENERATION 

During growth and skeletal maturation the boundary between AF and NP becomes less 

obvious, the NP becomes progressively more fibrotic and less gel-like and the disc 

morphology becomes more disorganized (Buckwalter, 1995). The IVD degeneration 

process involves four main stages: dehydration, fissuring, neovascularization, and bony 

changes.  

 Dehydration of the IVD results from the reduced synthesis of the PG matrix. The 

morphological changes associated with IVDD are characterised by increased incidence of 

cell death with necrotic and apoptotic appearance (Trout et al., 1982b; Gruber and 

Hanley, 1998), cell proliferation leading to cluster formation particularly in the NP 
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(Johnson et al., 2001; Hastreiter, 2001), reduced ECM turnover and accelerated loss of 

PGs due to the production of interleukin-1 (IL-1) and tumour necrosis factor in response to 

repeated injury (Boos et al., 2002). 

 Over time, the AF becomes thickened and may develop radial fissures. The EPs 

are prone to fracturing under repeated loading. The nuclear material may leak out into 

either the AF or the EP. As nuclear material contains proinflammatory cytokines, this 

leads to an inflammatory response within this parts of the IVD. As these injuries heal, the 

healing process is accompanied by new vessel formation, or neovascularization within the 

AF (Figure 9) or EP. In conjunction with this neovascularization, sensory nerve endings 

spread into the inner layers of the AF and into the EPs. In severely degenerate IVDs, 

nerves fibers may extend all the way into the NP (Roberts et al., 1995).  

 IVDD is radiologically and histologically characterized by a loss of disc height (DH) 

which leads to altered spinal mechanics. Furthermore, subchondral sclerosis of the EP, 

osteophite formation, facet joint atrophy, radial bulging may occur over time (Lotz et al., 

1998).  

It is difficult to differentiate changes that occur solely due to ageing from those that 

might be considered “pathological”. Examples of IVDs with advancing degrees of 

degeneration, as visualized by magnetic resonance imaging, are shown in Figure 10. 

As mentioned previously, the most significant biochemical change that occurs in 

IVDD is loss of PGs (Lyons et al., 1981). The aggrecan molecules become degraded, with 

smaller fragments being able to leach from the tissue more readily than larger portions. 

This results in loss of GAG, which leads to a fall in the osmotic pressure of the disc ECM, 

therefore a loss of hydration. In degenerate IVDs, however, the IVD cells can retain the 

ability to synthesize large aggrecan molecules, with intact hyaluronan-binding regions, 

which have the potential to form aggregates (Johnstone and Bayliss, 1995).  
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Although the collagen population of the IVD also changes with degeneration of the 

ECM, the changes are not as obvious as those of the PGs. The main changes are related 

to the types and distribution of collagens rather than to the absolute quantity. In addition, 

the fibrillar collagens, such as type II collagen, become progressively more denatured with 

degeneration, apparently because of enzymatic activity (Antoniou et al., 1996; Hollander 

et al., 1996). However, as with PGs, new collagen molecules may be synthesized, at least 

early in IVDD, possibly in an attempt at repair (Duance et al., 1998). 

At the molecular level, increased levels of cytokines and catabolic enzymes are 

associated with IVDD (Gruber et al, 2002). The catabolic process in IVDD is thought to be 

mediated by several cytokines: IL1β, IL6, IL8, IL10, and TNFα (Hansen, 1951; Lotz, 

2004). The biochemistry of IVDD indicates that enzymatic activity contributes to this 

disorder, with increased fragmentation of the collagen, PG and fibronectin populations. 

 

Figure 9. Schematic representation of the innervation of the injured IVD. The innervation of IVD is 
more extensive. Sensory nerve structures have been demonstrated in the AF, extending into the 
inner layers of AF, and even reaching up to NP. 
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Several families of enzymes are capable of breaking down the various matrix molecules of 

IVD, including cathepsins, MMPs and aggrecanases; they may be produced by the cells 

of the IVD themselves as well as by the cells of the invading blood vessels (Eyre and 

Muir, 1977; Roberts et al., 2000; Ariga et al., 2001).  

 

Figure 10. Magnetic resonance images 
illustrating different stages of human lumbar disc 
degeneration. (A) A healthy disc exhibiting distinct 
AF lamellae (AF) and central NP region (NP). (B) 
A disc exhibiting early stages of degeneration, 
inlcuding moderate height reduction, decreased 
NP signal intensity and inward bulging of AF 
lamellae (*). (C) A disc exhibiting advanced 
stages of degeneration, including severely 
reduced height, large fissure (*) and generalized 
structural deterioration. Images obtained using 7T 
Siemens scanner and a turbo spin echo 
sequence at 200 µm isotropic voxel resolution. 
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§ AETIOLOGY OF DISC DEGENERATION 

Several mechanisms have been postulated to be involved in IVDD, however a clear 

understanding of the basic mechanisms of its pathogenesis and specific therapeutic 

agents is still lacking. Unquestionably, IVDD is a multifactorial process influenced by 

genetics, lifestyle conditions (e.g. obesity, occupation, smoking and alcohol consumption), 

biomechanical loading and activities, and other health factors (e.g. diabetes, aging) (Ariga 

et al., 2001; Boos et al., 2002; Gruber and Hanley, 2002; Lotz et al., 2002; Roughley et 

al., 2002; Ferguson and Steffen, 2003). 

Nutritional pathways to IVDD – The pathway from the blood supply to the NP cells is 

precarious because these cells are supplied virtually entirely by capillaries that originate in 

the vertebral bodies, penetrating the subchondral plate and terminating just above the 

cartilaginous EP (Urban et al., 1978; Crock et al., 1991). Nutrients must then diffuse from 

the capillaries through the cartilaginous EP and the dense ECM of the NP to the cells. 

Considering that, like all cell types, IVD cells require nutrients such as glucose and 

oxygen to remain alive and active, failure of the nutrient supply has been proposed to be 

one of the primary causes of IVDD (Nachemson et al., 1970). In vitro, it has been 

demonstrated that IVD cells activity (ECM synthesis) is very sensitive to low extracellular 

oxygen and acidic pH (Ishihara and Urban, 1999; Ohshima and Urban, 1992), and that 

cells do not survive prolonged exposure to low pH or glucose concentrations (Horner and 

Urban, 2001). Several factors have been reported to affect the nutrient supply to the NP. 

Sclerosis of the subchondral bone is a well known characteristic of IVDD (Thompson et 

al., 1990). Atherosclerosis (Kauppila et al., 1997a; Kauppila, 1997b), sickle cell anaemia, 

Caisson disease and Gaucher’s disease all appear to lead to a significant increase in 

IVDD, due to impaired blood supply to the vertebral body. Long-term exercise or lack of it 

appears to have an effect on diffusion of nutrients into the IVD, and thus on their 

concentration in the tissue (Holm and Nachemson, 1982; Holm and Nachemson, 1983). 

The mechanism is not known but could be related to an alteration of the architecture of 
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the capillary bed at the disc-bone interface. Finally, even if the blood supply remains 

undisturbed, nutrients may not reach the IVD cells if the cartilaginous EP calcifies or 

becomes sclerotic (Nachemson et al., 1970; Roberts et al., 1993; Roberts et al., 1996), 

due to a decreased subchondral bone’s permeability (Holm and Nachemson, 1988; Urban 

et al., 2001).  

Mechanical load and injury – Epidemiologic data suggest an associaton between spinal 

force and IVDD. In attempt to understand mechanisms for this phenomenon, several 

animal models have been reported where forces across the normal IVD are altered. While 

regular loading of the IVDs is assumed to be essential for maintaining a normal phenotype 

of IVD cells, excessive and repetitive loading can lead to the biochemical and radiological 

changes that are associated with IVDD (Sztrolovics et al., 1997; Eyre et al., 2001). Both 

occupational loading of the lumbar spine and obesity have been reported to increase the 

risk of IVD degeneration; instead, intense exercise does not appear to affect IVDs 

adversely (Puustjarvi  et al, 1993) and IVDs are reported to respond to some long-term 

moderate loading regimens by increasing PG content (Iatridis et al, 1999). Further support 

for the role of abnormal mechanical forces in IVDD comes from findings that disc levels 

adjacent to a fused segment tend to degenerate more rapidly (Eck et al., 1999). 

Genetic factors in IVDD – Although genetic factors by themselves are not a cause of 

disease, IVDD seems to have a strong genetic background (Ghosh et al., 1976; 

Silberberg, 1988). Several studies have reported familial predisposition for IVDD and 

herniation (Heikkila et al., 1989; Varlotta et al., 1991; Matsui et al., 1998). MRI twin studies 

have shown that the hereditability of low back pain ranges between 52%-81% (Eijkelkamp 

et al., 2002). 
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o DISCOGENIC PAIN 

The mechanisms for the provocation of discogenic pain have been associated to 

five main different causes:  

1. stretching of the fibers of an abnormal AF; 

2. extravasation of extradurally irritating substances such as 

glycosaminoglycans, lactic acid, and acidic media; 

3. pressure on nerves posteriorly caused by bulging of the AF; 

4. hyperflexion of posterior joints on disc injection (during discography) (Wiley 

et al., 1986);  

5. presence of vascular granulation tissue, with pain caused by scar 

distension (Heggeness and Doherty, 1993). 

The pathways for discogenic pain are still very controversial. The spreading of 

sensory nerve endings into the inner layers of the AF, the EPs and NP during the 

degenerative process seems to play an important role in the development  of 

discogenic pain (Coppes et al., 1997; Freemont et al., 1997; Freemont et al., 2002; 

Hurri and Karppinen, 2004; Peng et al., 2005; Peng et al., 2006; Peng et al., 2009; 

Freemont et al., 2009). Indeed, as a consequence of annular fissure and tears 

formation, chronic pain may occur if the outermost third of the AF is involved. 

Furthermore, smaller insults within the IVD with repeated small extravasation of 

proinflammatory nuclear material lead to sensitization of nerve endings and pain. 

The release of inflammatory mediators from the nuclear material onto neural 

structures within the spinal canal is believed to promote the development of 

radicular pain as a result of IVD herniation  (Rea et al., 2012). Herniation-induced 

pressure on the nerve root is not the only cause of pain because more than 70% of 

“normal”, asymptomatic people have disc prolapses pressurizing the nerve roots but 

no pain (Boden et al., 1990; Boos et al., 1995). A hypothesis is that, in symptomatic 
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individuals, the nerves are somehow sensitized to the pressure (Cavanaugh, 1995), 

possibly by molecules arising from an inflammatory cascade from arachidonic acid 

through to prostaglandin E2, thromboxane, phospolipase A2, TNF-α, the interleukins 

and matrix metalloproteinasis (MMPs) (Kang et al., 1996). These molecules can be 

produced by cells of herniated IVDs, and because of the close physical contact 

between the nerve root and IVD following herniation they may be able to sensitize 

the nerve root (Kawakami et al., 1996; Olmarker et al., 2002). 

Analyzing the innervation pattern, which has been described previously, it is 

possible to observe that the presence of the left-right connections in the nerve plexuses 

suggests that lateralized disorders, in which nociceptive stimuli reach the spinal cord via 

sinuvertebral nerve from the other side, can cause pain at the side that is controlateral to 

its origin. Another implication is that the majority of spinal structures, including the IVDs, 

are innervated multisegmentally (Groen et al., 1990). Via the mechanism of deep somatic 

referred pain, this innervations pattern lead to an overlap in distribution of referred pain 

areas from adjacent structures. As a result, the pain projections are not always reliable for 

determining the source of the pain. Traditionally, pain signals that originate in the nerve 

roots adjacent to the IVD move from that root, into the corresponding dorsal root ganglion 

and into the spinal cord (Figure 11A). However, has been suggested that pain signals 

from the lower lumbar IVDs (L4 and L5) are detoured up the sympathetic nerves (gray 

ramus communicans) and into the upper lumbar dorsal root ganglions—especially at the 

L2 level (Figure 11B) (Oh and Shim, 2004; Morinaga et al., 1996; Ohtori et al., 1999). 

Therefore, it would be possible that some patiens with L4 and L5 IVD pathology, manifest 

L1 or L2 dermatomal pain (groin and anterior thigh pain). 
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Figure 11. Pain pathways for discogenic pain. (A) Pain signals that generate from the IVD traverse 
pass into the corresponding dorsal root ganglion and into the spinal cord. (B) Pain signals from the 
lower lumbar IVDs (L4-L5) detour up the sympathetic nerves (grey ramus communicans) into the 
upper lumbar dorsal root ganglion, especially at the L2 level (Raj, 2008).  

 

o HISTOLOGIC AND MRI CLASSIFICATION OF IVDD 

§ THOMPSON GRADING SCALE 

A fine-category grading scheme for assessing the gross morphology of midsagittal 

sections of the human lumbar IVD has been developed by Thompson et al. (1990) (Table 

2). The scheme has been applied to IVDs sectioned in midsagittal plane and permits to 

observe all four tissues of the IVD: NP, AF, EP and adjacent vertebral bodies, providing a 

valid overall assessment of the tissue. 

 

Table 2. Description of morphologic histologic grades 

Grade NP AF EP Vertebral body Histology 

Gadolinium-DTPA Enhanced MRI

Although provocation discography with CT discogra-
phy is the “gold standard” to make the diagnosis of
symptomatic IDD, the procedure itself can damage the
disc and spread the degenerative disc disease.97–102

As an alternative, the use of gadolinium (contrast)
enhancement may be considered. Gadolinium-
dimethoxypropane, when injected into the vein during
the MRI, will “light up” the granulation tissue that
forms within a healing/healed full thickness annular disc
tear (Figure 15A and B).

Hyper Intensity Zone

A hyper intensity zone is a focal high intensity signal in
the posterior annulus fibrosis distinct from the nucleus
without disc protrusion. This phenomenon also gives
another clue that IDD might be involved in the patient’s
pain syndrome, although this T2-weighted MRI finding
is highly controversial (Figure 16).

OPTIONS FOR TREATMENT OF DISCOGENIC PAIN

The Pathological Basis for some Low Back Pain may
be due to internally disrupted intervertebral discs and
in particular, sensitized annular tears. Treatments
described to manage IDD and discogenic pain include
surgical intervention with total disc excision and
arthrodesis or more conservative measures such as in-
tradiscal steroids, chemonucleolysis, intradiscal decom-
pression, annuloplasty, and the use of intradiscal laser
devices.

Two minimally invasive procedures have been pro-
moted as alternatives to major surgical interven-
tions. Both involve the introduction of a flexible
electrode into the painful disc, with the aim of
coagulating the posterior annulus. In addition, new
minimally invasive procedures have been introduced
to decompress the disc with painful pathology. A
classification of such percutaneous procedures is given
below.

1. Annuloplasty
A. Intradiscal electrothermal therapy (IDET)
B. Radiofrequency posterior annuloplasty (RFA)
C. Biacuplasty

2. Percutaneous disc decompression
A. Laser discectomy
B. Radiofrequency coblation (plasma discec-

tomy)

A

B

Figures 14. Pain pathways for discogenic pain. (A) Pain signals
that generate from the disc traverse pass into the corresponding
DRG and into the spinal cord. (B) Pain signals from the lower
lumbar discs (L4-L5) detour up the sympathetic nerves (grey
ramus communicans) into the upper lumbar DRG, especially at
the L2 level. DRG, dorsal root ganglion.
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I Bulging gel Discrete fibrous 
lamellas 

Hyaline, uniformly 
thick Margins rounded 

 

II 
White fibrous 
tissue 
peripherally 

Mucinous 
material between 
lamellas 

Thickness 
irregular Margins pointed 

 

III Consolidated 
fibrous tissue 

Extensive 
mucinous 
infiltration; loss of 
anular-nuclear 
demarcation 

Focal defects in 
cartilage 

Early 
chondrophytes or 
osteophytes at 
margins 

 

IV Horizontal clefts 
parallel to EP Focal disruption 

Fibrocartilage 
from subchondral 
bone, irregularity 
and sclerosis in 
subchondral bone 

Osteophytes less 
than 2 mm 

 

V 
Clefts extend 
through NP and 
AF 

 Diffuse sclerosis 
Osteophytes 
greater than 2 
mm 

 
 

   

§ PFFIRMANN GRADING SCALE 

A morphologic grading system relating to the MRI pathologic changes in the lumbar IVDs 

has been developed by Pfirrmann et al. (2001) (Table 3). This MRI grading system is 

based on a gross morphology grading scheme and evaluates, on sagittal T2-weighted 

(T2w) images, variations in MRI signal intensity, IVD structure, distinction between NP 

and AF, and IVD height. Degeneration of the NP and the anatomical structure of the IVD 

itself is readily seen in T2w sagittal images of the spinal column. Normal hydrated NP has 

a hyperintense signal compared to the AF. As the NP loses hydration, the signal becomes 

less intense and may appear iso- or hypointense relative to the AF.  

Table 3. MRI classification of disc degeneration (Pfirrmann et al., 2001) 

Grade Structure Distinction 
NP/AF Signal intensity Height of IVD MRI 
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I Homogeneous, 
bright white Clear Hyperintense, 

isointense to CSF Normal 

 

II 
Inhomogeneous 
with or without  
horizontal bands 

Clear Hyperintense, 
isointense to CSF Normal 

 

III Inhomogeneous, 
gray Unclear Intermediate 

Normal to 
slightly 
decreased 

 

IV Inhomogeneous, 
gray to black Lost Intermediate to 

hypointense 

Normal to 
moderately 
decreased 

 

V Inhomogeneous, 
black Lost Hypointense Collapsed disc 

space 

 

The signal intensity of the IVD on T2w images correlates with the progressive 

degenerative changes of the IVD (Modic et al., 1988) and the brightess of the NP 

has been shown to correlate directly with the PG concentration, but not with the 

water or collagen content (Pearce et al., 1991). The DH is important mainly for 

distinguishing between Grades IV and V, while for Grades III and IV, the DH is not a 

discriminative feature. 

o CURRENT TREATMENT OPTIONS: MEDICAL / SURGICAL 

Current treatments for IVDD still remain a subject of debate. Conservative therapy of 

chronic low back pain may involve a vast group of treatment modalities, such as 

physiotherapy, analgesic and anti-inflammatory medications, acupuncure and 

chiropractics (Mirza and Deyo, 2007). Approximately 75-90% of all chronic low back pain 

patients obtain satisfactory results with conservative treatment (Burkus et al., 2004; Smith 

et al., 2011; Highes et al., 2012; Ludwinski et al., 2012). Analgesia, such as non-steroidal 
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anti-inflammatory drugs and muscle relaxants are very effective for both acute and chronic 

pain (Pye et al., 2004; Ludwinski et al., 2013). In the patients that remain symptomatic 

surgery becomes an option (Blummenkrantz et al., 2004). The two main surgical 

treatment alternative for IVDD are spinal fusion and the placement of an IVD prosthesis. 

Despite spinal fusion is considered the gold standard (Radin et al., 1986; Blummenkrantz 

et al., 2004), the results of three randomized controlled trials, which compared spinal 

fusion with conservative treatment, showed substantial clinical improvement in only a 

limited number of patients (Diamant et al., 1986; Thompson et al., 1990; Nguyen-minh et 

al., 1998; Haefeli et al., 2006). Furthermore, spinal fusion could accelerate the 

degenerative process in adjacent levels (Wang et al., 2007; Rutges et al., 2010) and it 

seeks only to alleviate painful symptoms without restoring disc mechanics and structure. 

Implantation of an IVD prosthesis (disc arthroplasty) has been introduced more recently to 

restore mobility. Randomized controlled trials, where prosthesis has been compared with 

spinal fusion, revealed comparable results with both techniques (Sandtrom, 1951; Radin 

et al., 1986; Feinberg et al., 1990; Prescher, 1998; Drissi et al., 2005). This technique has 

been reported to provide a statistically better clinical outcome when compared to 

conservative treatment (Huang et al., 2008), although with minor improvement; therefore, 

the peri-operative risks and possible complications do not out-weight these limited 

benefits of total disc prosthesis placement (Huang et al., 2008). Furthermore, disc 

arthroplasty do not reestablish the mechanical function of the native joint, is subject to 

wear and failure, and resection is a complex surgical procedure (Hanley et al., 2010). 

Current surgical treatment strategies for chronic low BP yield far from optimal results and 

there is, therefore, a strong need for therapies that both alleviate painful symptoms and 

restore IVD structure and mechanical function by directly addressing the underlying 

biological causes of IVDD.  
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o NOVEL THERAPEUTIC APPROACHES 

The aim of therapeutic approaches for IVDD is both to alleviate painful symptoms and to 

restore mechanical function. Depending on the stage of degeneration during which 

treatment strategies are designed to act, they can be classified as regenerative or 

reparative. In general, in the early stage of IVDD (grades II-III, Figure 12), protein factors 

such as growth factors or proteinase inhibitors may be effective. In the intermediate stage 

of degeneration (grade IV), cell or gene therapy may be required; in the advanced stage 

of IVDD (grade V, Figure 12), tissue engineering approaches are needed (Zhang et al., 

2011). 

§ REGENERATIVE STRATEGIES 

Regenerative strategies for the treatment of IVDD are focused on reviving or healing 

extant IVD tissue. This can be done either by altering the phenotype of cells native to the 

degenerate IVD or by introducing new cell populations (Smith et al., 2011).  

Injections of growth factors into the IVD has been widely studied as a means to 

stimulate extracellular matrix production and cell proliferation (Masuda, 2008). Despite 

succesfull results obtained in certain animal models of IVDD (Masuda, 2008), the 

translation of such treatments to human application and clinical use is hampered by the 

inability to accurately recreate the progressive, life-long degenerative transformation of the 

disc in an animal model (Alini et al., 2008). Moreover, the potential success of anabolic 

factors injected directly into the disc might be limited, both owing to the short biological 

half-life of the factors and their rapid diffusion away from the delivery state (Smith et al., 

2011).  

Alternatively, cell populations within the IVD can be manipulated through gene 

therapy approaches, which involve the delivering of genes into cells through viral-vector-

mediated gene transfer (Sobajima et al., 2004). The NP represents a promising site for 

gene introduction, as its avascular encapsulated nature can protect the vector form body’s 
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own immune system, preventing damaging immune reaction against the transfected cells 

and prolonging gene expression (Kalson et al., 2008). Questions remain as to the best 

method for gene delivery (Wallach et al., 2006). Adenoviruses are currently the most 

commonly used vector owing to their high transfection rate, although safety concerns 

preclude their use in clinical trials. Alternatives are represented by non viral vectors such 

as the gene gun or liposomes, which deliver the gene as an episome into the host cell 

cytoplasm (Wells, 2004). These methods have the disadvantage of reduced duration of 

gene expression and lower transfection success rate.  

Finally, a more recent regenerative approach under investigation is cell therapy, 

whereby cells are delivered locally to the degenerated IVD. The purpose of these cells is 

to either provide signaling cues that ameliorate the effects of IVDD, or adopt and/or 

maintain disc-like phenotypes themselves, producing extracellular matrix intended to re-

establish healthy disc function (Sakai, 2005; Leung et al., 2006). 

§ REPAIR STRATEGIES  

Reparative strategies are focused on, either augmenting or replacing degenerate IVD 

tissue to re-establish healthy IVD function. In IVDs with higher grades of degeneration 

(grade IV-V) (Figure 12), the number of cells responsive for example to growth factor 

stimulation diminishes (Zhang et al., 2011). In this setting, has been recently observed an 

increased interest in the tissue engineering approach. Cell therapy and cell-based gene 

therapy may be useful treatment strategies at most advanced stages of IVDD (grade V) 

(Figure 12), with the aim of restoring the IVD function (Zhang et al., 2011). The appeal of 

tissue engineering strategies is that, unlike non-biological materials that can wear with 

time, cell-generated tissues retain their capacity for remodeling and growth. A cell therapy 

approach has been described using different type of cells such as IVD cells, cartilaginous 

chondrocytes, and progenitor cells.  



 35 

 Autologous IVD cell transplantation are currently under clinical investigation, and 

two-year follow-up has shown a decrease of BP and prevention of IVD narrowing. 

However, this approach is limited by the poor expansion rates or the loss of phenotypic 

characteristic when expanded in monolayer cell culture, and it is applicable only when 

discectomy is required (Meisel et al., 2002; Meisel et al., 2006).  

 Autologous articular chondrocytes are phenotypically similar to IVD cells and 

can be obtained from non-weight bearing areas of the knee without significant donor site 

morbidity (Brittberg et al., 1994). Hydrogels sich as alginate-, collagen-, and hyaluronan-

based gels, among others, have been shown to support the survival of mature NP cells 

and to be conducive to ECM deposition (O’Halloran and Pandit, 2007). However, although 

NP tissue engineering has been a particular focus over the years, interest has more 

recently turned to the AF and to whole IVD composite tissues (Bowles et al., 2010; Mizuno 

et al., 2006; Nerurkar et al., 2010; Nesti et al., 2008).  

 Adult stem cells are self-renewing cells that, because of their ability to 

differentiate into different cell types and to secrete a range of cytokines, have received 

considerable interest and shown promise in respect of treating chronic conditions such as 

IVDD. The potential use of different adult stem cells has been described for IVD 

regeneration, and recent studies have demonstrated that bone marrow mesenchymal 

stem/stromal cells (MSCs) therapies might be a feasible and effective approach to prevent 

and cure IVDD (Sakai et al., 2006). In vivo studies have demonstrated proof of efficacy of 

MSCs transplantation in reproducible animal models in terms of enhanced PG content, 

DH and hydration (Sakai et al., 2006). Therefore, adult stem cell therapy may be 

considered a powerful tool in the future treatment of IVDD. If stem cell therapy is 

convenient for the low harvest site morbidity, ease of ex vivo cell expansion, and favorable 

modulation of the cell phenotype before or after transplantation, many open questions 

remain in the translation of this new cell therapy in the medical arsenal, such as the most 
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reliable transplantation method including the surgical route to approach the IVD, the 

carrier choice and the optimal cell dose. 

 

Figure 12. Human IVD with different degrees of degeneration classification according to the 
Thompson grading scale and Pfirrmann grading scale (Zhang et al., 2011) 

 

o ANIMAL MODELS 

Animal models are essentials in making the transition from scientific concepts to clinical 

applications. The scarse availability of primary human degenerate disc tissue, and the 

almost non-existence of healthy tissue for comparison in in vitro studies, means that 

model systems, despite their limitations, are indispensable for investigating the molecular 

and cellular pathways that maintain healthy IVDs and that characterize the degenerative 

cascade (Smith et al., 2011). 
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  Certain fundamental principles must be followed for an animal model to be 

effective. The animal model must be ethical, controllable, reproducible and cost-effective 

and must adequately model the human pathologic process that is under investigation. 

 Ethical issus are always of concern. The Animal Welfare Act and the Public Health 

Service Animal Welfare Policy require that an Institutional Animal Care and Use 

Committee review and approve each protocol. The use of appropriate technologies to 

eliminate or reduce pain and to humanely euthanize the animals is required. The use of 

the minimum number of animals from which significant conclusions can be inferred is not 

only ethically necessary but also cost-effective. In addition, the species selected should be 

carefully chosen with serious consideration given to all applicable federal regulations, 

Public Health Service Policy and institutional policies (Singh et al., 2005). 

 The degree of IVDD obtained in an animal model should be controllable and 

selectable to aid the researcher in proving the hypothesis. The validation of the 

reproducibility  of an animal model allows results from different scientific researchers to be 

compared. Furthermore, for validation, the interobserver variability of outcome measures 

should be fully studied. If a surgical technique or other environmental change is used, the 

procedure should be standardized in detail to increase the transferability of models to 

other groups (Singh et al., 2005). 

 The time period required to generate IVDD and the size of the animal used are 

other factors related to cost-effectiveness. The cost and availability of a specific strain of 

animal, the housing and husbandry requirements and the ease of handling by researchers 

and animal technicians are other factors to be taken into consideration. Generally, animal 

models of IVDD that use species higher in the phylogenetic tree and less invasive 

procedures show a slower progression. However, although these models are desirable to 

study the natural course of IVDD, the associated costs can be prohibitive. Ultimately, the 

selection of the proper animal model of IVDD depends on the stage of development of the 

investigational drugs or devices (Singh et al., 2005).  
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 Most important, the animal model must be similar in nature to the human 

pathologic process that it is intended to mimic. Otherwise, conclusions made from 

dissimilar animal and human pathologic states may not be clinically appropriate (Singh et 

al., 2005).  

 The development and application of model systems in which to study the 

pathogenesis of IVDD and evaluate associated treatments is extremely challenging (Alini 

et al., 2008), due to the natural slow progression of the condition, multifactorial underlying 

causes and a poor understanding of the circumstances under which degenerative 

changes are associated with painful symptoms.  

In vivo, animal models are important to study how degeneration evolves over time 

either spontaneously or following experimental injury, and to determine how constitutive, 

environmental, or biomechanical risk factors may initiate, promote, or otherwise regulate 

these changes (Lotz, 2004). Animal models are also needed to show how therapeutic 

strategies may ameliorate, resolve, or prevent IVDD. These models can be classified as 

either experimentally induced or spontaneous (Table 4) (Lotz, 2004). In IVDD research, 

experimentally induced models can be further subdivided into mechanical or structural 

perturbations. Mechanical perturbation is the alteration of the magnitude or distribution of 

forces on the normal joint. By contrast, structural models perturb tissue functioning by 

means of injury or chemical alterations. Spontaneous models include animals that develop 

IVDD naturally in a systematic fashion, including those that have been genetically altered 

or specially bred to develop this condition (Hansen, 1951; Gruber et al., 2002).  
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Table 4 In vivo animal models used to study disc degeneration (Alini et al., 2008). 

Model type Animal Stimulus References 

Spontaneous Mouse Pintail mouse-genetic Berry, 1960 

 

Mouse Cmd aggrecan knockout Watanabe et al., 1997; 
Watanabe and Yamada, 2002 

Mouse Inherited kyphoscoliosis Mason and Palfrey, 1984 

Mouse Collagen II mutation Sahlman et al., 2001 

Mouse Collagen IX mutation Kimura et al., 1996 

Mouse Myostatin knockout Hamrick et al., 2003 

Mouse HLA-B27 transgenic spondylolisthesis Weinreich et al., 1995 

Mouse Defect at ank locus, ankylosing spondylitis Sweet and Green, 1981 

Mouse twy mouse—IVD calcification and 
ankylosis Furuya et al., 2000 

Rat HLA B27 transgenic, spondylolisthesis Hammer et al., 1990; Taurog et 
al., 1999 

Sand rat Accelerated ageing Moskowitz et al., 1990 

Dog Chondrodystrophy Braund, 1974 

Baboon Ageing Lauerman et al., 1992 

Structural (induced) 

Chemical 

 

Rat  Norcross et al., 1991 

Rabbit Chondroitinase ABC Ando et al., 1995 

Dog  Yamada et al., 2001 

Rabbit Fibronectin fragments Anderson et al., 2003 

Dog Chymopapain, krill proteases Melrose et al. 1995; Melrose et 
al., 1996; Suguro et al., 1986 

Antigen induced 
inflammation 

Mouse 
(BALB/c) 

Immunized with aggrecan and/or versican, 
develops spondylitis 

Shi et al., 2003, Mikecz et al., 
1987; Glant et al., 1987 

Mechanical 

Disc compression Rabbit Static compression Kroeber et al., 2002 

 Pig 
Compression injury, lumbar spine and 
caudal 
disc compression 

Lundin et al., 1998; Lundin et al., 
2000 

Bipedal Mouse, 
rat Amputation of upper limbs and tail Higuchi et al., 1983; Cassidy et 

al., 1988 

EP damage Pig EP perforation Holm et al., 2004 

Hyperactivity 
(running) Dog Long distance running training 

Puustjarvi et al., 1993; Puustjarvi 
et al., 1994; Saamanen 
et al., 1993 

Fusion Dog  Cole et al., 1985 a,b 

 
Rabbit  Lumbar arthrodesis Phillips et al., 2002 

Sheep  Foster et al., 2002 

Spinal distraction Rabbit Controlled dynamic distraction Kroeber et al., 2005 

Spinal instability Mouse Resection of spinous processes, 
Resection of facet joints 

Ariga et al., 2001; Peng et al., 
2001 

 

Rabbit  Stokes et al., 1989 

Pig  Kaigle et al., 1995 

Rabbit Bilateral facet joint resection at L7S1 and 
rotational anipulation Osterman and Osterman, 1996 

Rat Facetectomy/capsulotomy torsional 
lumbar injury Latorre et al., 1998 

Rabbit  Hadjipavlou et al., 1998b 

Rabbit Distraction, rib resection and spinal 
rotation Thometz et al., 2000 
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Rabbit 
Surgical narrowing of intervertebral neural 
foramen, vibrational stimulation of dorsal 
root ganglia 

Pedrini-Mille et al., 1990 

Disc lesions Rabbit Full depth anterior annular stab Lipson and Muir, 1980; Lipson 
and Muir, 1981 

 

Rabbit Multiple 5 mm stab incisions using 16, 18 
or 21G needles 

Kim et al., 2005 a,b, Masuda et 
al., 2005; Sobajima et al., 2005 

Rabbit NP removal Urayama, 1986 

Rabbit Surgical resection of NP Takaishi et al., 1997 

Sheep 3–5 mm outer anterolateral annular 
incision (rim-lesion) 

Osti et al., 1990a; Melrose et al. , 
1992; Melrose et al., 1997 a,b,c;  
1997; Melrose et al., 2002 a,b 

Sheep Circumferential annular tear 
(delamellation) 

Fazzalari et al., 2001; Thompson 
et al., 2004 

Pig 5 mm outer annular incision Kaapa et al., 1994; Kaapa et al., 
1995 

Dog Full depth posterior annulotomy Olsewski et al., 1996 

Chronic AF, NP, 
facet joint lesion 
model 

Pig Combined lesions in AF, NP, facet joint 
and capsule Kaigle et al., 1997 

Pinealectomy 
models of scoliosis Chicken Pinealectomy Cheung et al., 2003; Machida et 

al. 1993; Machida et al., 1995  

 Rat Pinealectomy + bipedal Machida et al., 1999 

 

 

o SHEEP MODEL IN SPINE RESEARCH 

Sheep have been widely used as models in spinal research and several comparative 

studies have indicated the adequacy of this species as a model for IVD research 

questions due to specific biologic, anatomical and biomechanical characteristics similar to 

those present in human spine. (Wilke et al., 1997a; Wilke et al., 1997b, Kandziora et al., 

2002; Reid et al., 2002; Smit, 2002; Hunter et al., 2004; O’Connell et al., 2007; Melrose et 

al., 2009; Schmidt et al., 2013).  

Notochordal cells - In sheep as in humans, NCs predominate in the very young 

NP, their number decreases very rapidly after birth and no NCs are present by adulthood 

(Trout et al., 1982a; Trout et al., 1982b; Hunter et al., 2003). This is important because 

IVDs exhibiting NCs may respond differently to a degenerative stimulus than IVDs without 

NCs (Alini et al., 2008). As mentioned previously, NCs represent a completely different 

cell type in terms of morphology and function to the cells populating the adult NP (Hunter 

et al., 2004), and their disappearance seems to precede the onset of IVDD (Hunter et al., 

2003). 
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Microscopic anatomy - Several microscopic IVD features have been described in 

sheep, demonstrating important analogous results to what has been reported in humans. 

Indeed, the water and collagen content of the IVD, as well as collagen fibre orientation 

angles, are similar in lumbar IVDs from sheep and humans (Reid et al., 2002).  

A peculiar microscopic characteristic that has been identified both in sheep (Shea 

et al., 2001; Shea et al., 2002; Sinclair et al., 2013) and in humans (Boyce and Bloebaum, 

1993; Bloebaum and Kopp, 2004) is represented by the presence of calcified 

fibrocartilage (CFC) in various anatomical sites. This tissue layer is also present on the 

vertebral EPs and shows lack of vascularization and of remodelling ability (Benjamin et 

al., 2000; Shea et al., 2002).  Sheep can be therefore useful for translational research to 

observe how this CFC affects the supply of nutrients to the IVD space and how its 

presence may affect the outcome of spinal surgeries. Indeed, Sinclair et al. (2012) have 

observed that the incomplete removal of CFC during vertebral spinal fusion or total IVD 

replacement preparation inhibits skeletal attachment between the cortical EP and the 

intervertebral implant and obstruct successful fusion. 

Anatomical characteristics - Anatomical variations between species are 

important to consider when selecting an appropriate animal model. In general, sheep 

spines consist of 7 cervical, 12-14 thoracic, and 6-7 lumbar vertebrae (Nickel et al., 1984); 

they are therefore different from human spines, which are consistently formed by 7 

cervical, 12 thoracic and 5 lumbar vertebrae. Several differences and similarities in terms 

of shape, profile and relative sizes between sheep and human IVDs and vertebrae have 

been described. Sheep vertebrae are taller rather than wide, whereas human vertebrae 

are wider rather than tall; sheep vertebral bodies have a conic shape, whereas human 

vertebral bodies are cylindrical; sheep pedicles are ellipsoid, whereas human pedicle are 

nearly round; in the sheep spine, the cranial EP is convex and the caudal endplate 

concave, whereas both EPs are concave in the human spine (Wilke et al., 1997a; 

Kandziora et al., 2001). In humans, the antero-posterior diameter of the vertebral EPs 
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steadily increases from the cervical to the lumbar region, while in sheep this diameter 

almost stays the same over the whole spine (Wilke et al., 1997a). Therefore, compared to 

humans, this species has larger EP diameters in the cervical but smaller diameters in the 

lumbar spine. Despite the differences listed above, the trends of the two species in spinal 

canal width are nearly identical (Wilke et al., 1997a; Mageed et al., 2013) and similarities 

in the major dimensions have been reported to be strongest for the motion segment C5-

C6 (Kandziora et al., 2001) and for the thoracic and lumbar regions (Wilke et al., 1997b). 

When comparing the macroscopic appearance of a sheep and a human motion segment, 

it is evident that their sizes greatly differ; in particular IVD height and endplate cross-

section area of sheep IVDs are smaller than those of human (Schmidt and Reitmaier, 

2013). This difference in sheep IVD size in comparison to human IVD may influence 

results interpretation (Elliott and Sarver, 2004); in fact size affects rates of biologic 

processes (West et al., 1997) and is influenced by competing biomechanical 

(Nakatsukasa and Hirose, 2003) and nutritional (Horner and Urban, 2001) demands. 

However, radiographic evaluation of IVD space height (IVD-SH) has shown an average of 

6 mm in the sheep cervical spine, which is only approximately 1 mm (15%) higher than 

the IVD-SH in the human cervical spine (Kandziora et al., 26). In the lumbar spine, 

differences in intervertebral IVD-SH are higher (Wilke et al., 1997a; Green et al., 1993; 

Nachemson et al., 1979). Therefore, with regard to IVD-SH, the sheep cervical spine may 

represent a better model for human studies than sheep lumbar spine.  

Biomechanical properties - Although the several variations of anatomical shapes 

and dimensions listed above influence the biomechanical behavior of the spinal 

segments, in vivo and in vitro studies have indicated that sheep may represent a valid 

model in spinal research. Sheep spinal range of motions (ROMs) present smaller absolute 

values in particular in flexion/extension of the lumbar spine, however the ROMs of sheep 

spines for different loads directions (flexion/extension, axial rotation right/left, lateral 

bending right/left) are qualitatively similar in their cranio-caudal trends to those of human 
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specimens reported in the literature (Ahlgren et al., 1994; Oxland et al., 1992; Panjabi, 

1988; Panjabi et al., 1994; Wen et al., 1993; Wilke et al., 1995). Further similarities 

between sheep and humans are related to the relative DH loss and internal NP pressure 

after compression tests (Schmidt et al., 2013). It is nevertheless important to underline 

that differences in compressive forces are present between the two species; therefore, for 

example, pedicle screw systems and interspinous implants can be transferred from animal 

model to human but neither magnitude of the effect nor the statistical results can be 

compared. 

Loading on the spine and IVDs - Another important aspect that needs to be 

considered is the fact that sheep are quadrupeds therefore, their spines supposedly are 

subjected to loads that differ considerably from those in humans (Bogdanffy et al., 1995; 

Frick et al., 1994; Goel and Gilbertson, 1997; Herkowitz, 1994; Robin and Stein, 1975; 

Yoganandan et al., 1996). In humans, the weight of the upper body acts on the lumbar 

spine, therefore the loading of the lumbar spine is often assumed to be larger than in 

quadrupeds. This, however, may not be correct since additional tensile forces from 

muscle contraction and tension of passive structures such as ligaments are necessary to 

control the posture of a quadruped spine as it cannot withstand substantial bending 

moments (Smit, 2002; Wilke et al., 2003). A finite element study has shown that the stress 

distributions in ovine and human motion segments under physiological loads are similar, 

thus strengthening the justification for their use as in vivo models for the study of the spine 

(Schmidt and Reitmaier, 2013). Furthermore, Smit (2002) demonstrated that quadrupeds’ 

spine is mainly loaded by axial compression and that trabecular distribution in the 

vertebral bodies courses horizontally between their caudal and cranial EPs, implying that 

the main load within the vertebral body is indeed an axial compression force, as well as in 

human spine. An important point of difference, however, is that sheep are subjected to 

higher axial compression stress than humans (Smit, 2002), leading to a bone mineral 

density in the vertebrae up to fourfold higher than in humans (Wilke et al., 1996). Although 
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these differences should be considered on the transferability of the results of animal 

experiments, Kandziora et al. (2001) did not find significant differences between the bone 

mineral density value of human and sheep lower cervical spine, which therefore 

represents a suitable model for the testing of fixation devices such as plates, screws, and 

interbody fusion cages (Kandziora et al., 2001). 

IVD changes with age and degeneration - The age of animals used for spine 

research must be closely monitored as naturally occurring changes, both histological and 

biochemical, occur with age. Several histologic, radiologic and biochemical changes, that 

are generally associated with pathology in human IVDs, have also been observed in 

sheep (Bayliss et al., 1988; Maeda et al., 2000). For example, common features of IVDD 

in both sheep and humans are represented by altered metabolism and PGs synthesis by 

the IVD fibrochondrocytes, decreased PGs aggregation levels with hyaluronan, increased 

PG hydrodynamic size and relative keratan sulphate content, increased serine proteinase 

activity and decreased serine proteinase inhibitory protein levels (Bayliss et al., 1988; 

Maeda and Kokubun, 2000). However, an important variation that should be considered is 

related to the fact that, in the aging sheep, the composition of IVD varies with the IVD 

location within the spine. In fact, lower PG levels are present in IVDs at the level of the 

thoracolumbar and lumbosacral junction (Melrose et al., 1994). 

Disc calcification is a degenerative process, which has been described to occur in 

the IVDs of both humans and sheep (Melrose et al., 2009; Miller et al., 1988; Feinberg et 

al., 1990; Cheng et al., 1996; Chanchairujira et al., 2004). The aetiology remains 

unknown. It is characterized by hydroxyapatite (HA) crystals deposition and a decrease in 

IVD PGs content and size, suggesting that IVD calcification may be involved in the IVD 

degenerative process in ageing IVDs. The HA deposition seems to affect mainly the 

transitional zone between the AF and NP (Melrose et al., 2009). 

Sheep provides a useful, naturally occurring model for investigation of the 

aetiology and pathogenesis of HA deposition, however direct comparison with human IVD 
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is inappropriate due to dissimilarities in IVD calcification between sheep and humans 

(Melrose et al., 2009). In sheep, HA deposition is restricted mainly to the lumbar region 

(L4-L5; L5-L6) whereas in humans the thoracic and upper lumbar regions are 

predominantly affected (Taylor et al., 1981). In sheep, IVD calcification seems to be 

secondary to a degenerative process whereas histological studies have indicated that 

metaplasia is the event, which leads to this form of calcification in humans (Depalma and 

Kruper, 1961; Uhthoff et al., 1976). 

§ SURGICAL AND MRI ANATOMY OF THE OVINE LUMBAR SPINE  

A variation concerning the number of lumbar vertebrae is normal in the ovine species, as 

they can be either 6 or 7 (Lori et al., 2005). The curvature of sheep spine has a kyphotic 

shape (Barone, 2004). The vertebral body heights commonly exceed 40 mm (mean 

42.49, SD 2.36) whilst DHs are usually only 4-5 mm (mean 4.48, SD 0.66) (Wilke et al., 

1997). The IVDs and EPs appear as bulbous convex expansions in between concave 

elongated vertebral bodies. The tip of sheep transverse processes are large and easily 

palpable, and are visible in the flank region, serving as useful landmarks when performing 

surgery. Radicular veins and arteries run approximately 1 cm below the inferior endplates 

across the vertebral bodies and are variable in size and number. Muscular insertions into 

the lower lumbar vertebral bodies are usually thick and tendinous, whilst those higher in 

the lumbar spine are thin and easily divided. The spinal cord continues into the sacral 

region in the sheep (Baramki et al., 2000).  

 On MRI (1.5 Tesla) (Figure 13), the bone marrow has a characteristic 

distribution on sagittal T2w in all vertebrae with a zone of hyperintensity parallel to the 

endplate (Nisolle et al., 2013). This might be due to the characteristic presentation of 

secondary ossification centres that arise at the cranial and caudal aspects of the vertebral 

bodies, forming complete osseous plates above and below the physical plates (Alini et al., 

2008). The facet joints appear as “J-shaped” lines, with the surfaces of the caudal and 

cranial articular processes being respectively concave and convex. The articular facet 
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cartilage, characterized in humans by a linear focus of high signal in T2w (synovial fluid), 

is not always visible in sheep due to the fact that are thin (Harnsberger et al., 2006). The 

ligaments appear hypointense in T2w, however only the supraspinous and interspinous 

ligaments can be well identified, whereas it is not always possible to differentiate the 

dorsal and ventral longitudinal ligaments from the low signal of the vertebral cortical bone 

or the AF (Harnsberger et al., 2006). This may be due to the fact that the ventral 

longitudinal ligament is very thin and narrow, while the dorsal ligament is thin but wider 

and spreading on the floor of the spinal canal (Nisolle et al., 2013). In the sheep, the 

ligamentum flavum is also difficult to identify by MR imaging due to the small space 

present between the capsule of the apophyseal joint and the junction of tha lamina with 

the spinous process, where the ligamentum generally extends (Nisolle et al., 2013). In 

high field MRI, in both T1w and T2w images, IVDs signal mirrors the water content that 

increases from outer to inner AF (74-82%), while the NP consists of 86% of water (Reid et 

al., 2002). Indeed, the moderately high signal for both NP and inner AF may be explained 

by these high percentages of water content. On transverse planes through the 

intervertebral foramen it is possible to identify the dorsal and ventral roots, the dorsal 

spinal ganglion and the ventral and dorsal branches of the spinal nerve. Due to the fact 

that in sheep the spinal cord ends at S1, a small subarachnoid space and conus 

medullaris are visible below the level of S1 vertebral body. Peripheral nerves can be 

identified in the centre of the neural foramen surrounded by hyperintense fat, with the 

same signal intensiy, in T1w and T2w images, of the spinal cord (Nisolle et al., 2013). 
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Figure 13. Sagittal view obtained at the median plane. 1. Spinal cord, 2. Cerebrospinal fluid, 3. 
First sacral vertebra, 4. Spinous process, 5. Supraspinous ligament, 6. Interspinous ligament, 7. 
Basivertebral veins, 8. Subcutaneous fat, 9. Epidural fat, 10. Nucleus pulposus and inner part of 
annulus fibrosus, 11. Outer part of annulus fibrosus, 12. Vertebral body, 13. End of spinal cord, 14. 
Vertebral plate. Note in T2w the nuclear cleft that appears as a hypointense spot in the centre of 
the nucleus pulposus (Nisolle et al., 2013). 

 

 

o THE TRANSPEDICULAR APPROACH 

As described above, IVD pathological changes affect all areas of the IVD. The NP is 

particularly affected in this degenerative process, therefore regenerative strategies are 

primarily focused on NP regeneration. The relatively homogeneous structure of NP tissue 

and its avascular compartmentalized microenvironment make easy to conceive molecular 

and engineering strategies toward tissue regeneration (Sowa et al., 2008). However, 

many issues still have to be overcome taking into account the biological, biophysical, and 

biomechanical environment.  
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Delivery of therapeutic growth factors, stem cells, and/or bioactive hydrogels for 

NP regeneration might be considered a straightforward task because of the easy 

accessibility of the NP through the AF. However, even a very modest AF injury may 

induce or enhance a degenerative cascade of the IVD (Elliott et al., 2008; Iatridis et al., 

2009), affecting IVD biomechanics, cellularity, and biosynthesis (Korecki et al., 2008; 

Hsieh et al, 2009). A retrospective study, with ten years follow-up, showed how 

discography performed through small needle puncture resulted in accelerated IVDD, 

higher IVD herniation rate on the same side of the disc injection, and changes in the EP 

compared with matched control IVDs (Carragee et al., 2009).  Furthermore, it has been 

recently shown on a rabbit IVDD model that the injection of MSCs into the NP through the 

AF route may lead to cell leakage and accelerated osteophyte formation (Vadalà et al,, 

2012). Taking into account that the majority of regenerative strategies for IVD (molecular 

therapy, cell therapy, and biomaterial based tissue engineering) are traditionally delivered 

through the AF route, it should be considered that the resulting lesion might impair the 

expected outcomes leading to further degeneration, leakage of the biologically delivered 

material, and potential failure of the regenerative treatment. Therefore, alternative delivery 

methods and/or AF regeneration strategies have been considered. 

The transpedicular approach has been recently described in a descriptive 

anatomical study on ovine and human cadaveric lumbar spinal segments, as an 

alternative route to deliver therapeutic agents to the IVD without  disruption to the AF 

(Vadalà et al., 2013) (Figure 14).  
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Figure 14. Representative images of the gross anatomy of the sheep spinal segments. The 
transpedicular technique approaches the disc through the EP, performing a tunnel through the 
pedicle with a specific angle. The K-wire angle to reach the center of the NP without affecting the 
AF is approximately 45° on coronal (A), frontal (B), and sagittal (C) planes (Vadalà et al., 2013). 

 

The pedicle is a thin shell of cortical bone filled with cancellus bone that connects 

the vertebral body with the posterior arch. Despite its position close to vital neural 

structures, such as spinal cord and nerve roots, the pedicle can provide passage of biopsy 

instruments to the vertebral body, cannulae for cement injections in percutaneous 

vertebroplasty procedures, and screws for spinal fixation (Misenhimer at al., 1989). 

Furthermore, the pedicle morphology allows the insertion of instruments at various angles 

to assess any vertebral body lesion (Renfrew et al., 1991) or, orienting the instruments 

caudal to cranial, it is also possible to access the disc space (Vadalà et al., 2013). The 

transpedicular approach to the IVD is currently used as a way to perform biopsy and 

discectomy for the diagnosis and management of early discospondylitis (Figure 15), to 

facilitate the isolation of pathogens, natural healing, and immediate improvement of pain 

(Hajipavlou et al., 1998; Di Martino et al., 2012). 
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Figure 15. Lateral view of diagrammatic representation of transpedicular access at L4-L5 level that 
shows the guide pin introduced into the intervertebral disc space though the caudally located 
pedicle (A). Axial diagram illustrating the instrumentation for creating transpedicular channel for the 
insertion of discectomy instrumentation. A guide pin is first inserted percutaneously through the 
pedicle and subchondral bone into the disc space (a). Subsequently, a tissue dilator (b) is 
introduced over the guide pin, and over the tissue dilator, a sleeve (c) is placed to be used as a 
working channel. Then the dilator is removed and a toothed cutting bone tool (d) is inserted over 
the guide pin into the intended target (Hadjipavlou et al, 2004). 

 

In a descriptive study (Vadalà et al., 2013) the transpedicular injection of a contrast 

agent demonstrated that drugs can diffuse into the whole NP tissue. Nucleotomy was 

obtained performing a very small diameter tunnel (2-mm) into the pedicle using an 

arthroscopic and/or endoscopic spine surgery device and the NP was replaced by an 

agarose gel. To avoid material leakage through the tunnel, biomechanical impairment, 

and diffusion of serum or blood cells into the disc space, a porous polyurethane 

biomaterial, with the ability to regenerate both bone tissue and cartilage tissue (Eglin et 

al., 2010), was used to seal the tunnel. Therefore, the small EP break generated by the 2-

mm drill could be potentially closed/repaired by the biomaterial. The EP, which damage 

could trigger a degenerative cascade (Alini et al., 2008), is a paramount structure that 

supplies nutrients to the avascular IVD, therefore its impairment represents a potential 

limitation that needs to be carefully evaluated. Blood vessels in soft tissues provide the 

nutrients for the outer AF cells, while NP and inner AF cells rely on a capillary network in 

the subchondral EP through which nutrients diffuse. The reduction in nutritional supply is 

known to be one of the leading causes of IVDD (Urban et al., 2004).  Holm et al. have 

described a technique to create IVDD in porcine lumbar spine by drilling a hole through 
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the central part of the EP into the NP. This model has been shown to trigger similar 

degenerative changes observed in degenerated human IVDs, such as alteration of water, 

PG, and cellular contents. However, this IVDD model is based on large damage to the EP 

(3.5 mm), which is quite extensive considering the relatively small geometry of the IVDs of 

the animal model used.  

On the basis of different IVDD stages, the transpedicular approach could be used 

to deliver growth factors or drugs in early stages, or progenitor cells in moderate stages, 

of disc degeneration. Furthermore, it might also be used to introduce osteoinductive 

and/or osteoconductive agents to achieve interbody fusion in late stages of IVDD.
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OBJECTIVES OF THE STUDY  

The objectives of the study were divided into two main sections:  

1. The first aim was to describe in detail and validate in vivo the transpedicular 

approach as an alternative route to the IVD, highlighting possible surgical-

related difficulties and complications. The purpose of this novel approach was 

not only to provide a new model of IVDD without disruption of the AF, but also 

a new system for delivering therapeutic agents into the NP. 

 

2. The second purpose was to collect qualitative and quantitative data from MRI, 

radiologic, macroscopic and histologic findings, with the aim of assessing the 

type and degree of IVDD changes obtained by performing four different 

surgical approaches to the IVD. 
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Section 1: in vivo characterization and validation of a new 
intervertebral disc degeneration model 

MATERIALS AND METHODS 

o CASES SELECTION  

Twelve skeletally mature (approximately three years of age), female Brogna breed sheep, 

weighing 34 to 42 kg, were included in the study. Ethical approval for the use of animals in 

this study was granted by the Italian Ministry of Health. All animal procedures and 

surgeries were performed at an accredited facility (Department of Animal Medicine, 

Productions and Health, Veterinary Teaching Hospital, University of Padua, Padua, Italy) 

where sheep were monitored at least once a day.  

After arrival, a two-week period was provided to each animal to acclimate prior to any use 

for the experiments; this is important to reduce the stress associated with transportation 

and new environment which can have widespread effects on animals’ physiological 

systems, including changes in cardiovascular, endocrine, immune, central nervous, and 

reproductive system. Blood analysis were performed as part of a general screening; 

subcutaneous injection with ivermectin (200 µg/kg) was administered to all animals, on 

arrival and 2 weeks later, to treat any possible infection and infestation due to 

gastrointestinal roundworms, lungworms, and larval stages of the nasal bot. 

Sheep were followed serially before surgery (T0) and at 1 (T1), 3 (T2) and 6 (T3) months 

post surgical procedure.  

o IMAGING 

X-RAY - Before the surgery and at each time point, conventional lateral plain radiographs 

of the lumbar spine were taken in each animal under sedation. The radiographs were 

analyzed qualitatively for evidence of changes in the vertebrae adjacent to the disc 
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spaces, looking for possible post-surgical alterations such as luxations, fractures, 

discospondylitis.    

MRI - MR images of the lumbar spine were performed serially in 6 sheep, before surgery 

and at 1, 3, and 6 months post surgery. MR imaging scans were obtained using a 0,25 

Tesla clinical magnet (Esaote Vet MR). Sheep were premedicated and anaesthetised and 

placed in lateral recumbency within the open magnet (Figure 16). A dorsal T1-weighted 

(T1w) localizer image (TR, 770 milliseconds; TE, 18 milliseconds) was obtained to 

establish the position of the lumbar discs from L1–L2 to L5–L6. A 4-mm thick midsagittal 

section was imaged, using a T2-weighted imaging sequence (TR, 2500 milliseconds; TE, 

120 milliseconds) to highlight the signal from the NP. T1w (TR, 770 milliseconds; TE, 18 

milliseconds) and 3D HYCE transverse images (TR, 10 milliseconds; TE, 5 milliseconds) 

were also obtained.  

 

Figure 16. Sheep under anaesthesia placed in lateral recumbency within the open magnet 
 

o SURGICAL PROCEDURE  

Preparation - Sheep were fasted for 24 hours in order to prevent abdominal distension 

and aspiration of rumen fluids during surgery. Medetomidine hydrochloride (5-10 µg/kg IV) 
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was administrated to facilitate transport to the operating theatre, followed by intravenous 

injection of propofol (2-4 mg/kg IV) for anaesthetic induction. An endotracheal tube was 

inserted and anaesthesia maintained by isoflurane (2-3%) in oxygen and nitrous oxide. 

During surgery, replacement fluids (lactate Ringer’s solution or 0.9% NaCl, 10mL/kg/h) 

and analgesia (alfentanil 60 µg/kg/h) were provided. 

The lumbar region of each sheep was clipped from T10 to approximately the level of S3 

vertebra. The sheep were placed on the operating table in sternal recumbency. The 

surgical site was aseptically prepared with chlorhexidine and alcoholic-iodide antiseptic 

wash followed by sterile draping. Local anaesthetic (lidocaine 0.5%) was subcutaneously 

injected around the incision site. Strict sterile precautions were maintained at all times. 

Dorso-lateral approach to the lumbar IVD – Landmarks used for the incision were 

easily palpable; these were iliac crest, lumbar transverse processes and the costo-

vertebral angle (Figure 17A); in addition a backhaus towel forcep was placed on one of 

the lumbar dorsal processes which was then identified on lateral X-Ray performed before 

starting surgery (Figure 17B).  

  
A B 
Figure 17. (A) Preoperative photo of sheep demonstrating lumbar spinous processes (lower 
dashed line), left lumbar transverse processes (upper dashed line), iliac crest (left) and costal 
margin (right) (Oeheme et al., 2012). (B) Radiographic landmark obtained by placing a backhause 
preoperatively (red circle); T13 can be easily identified due to the presence of the last pair of ribs. 
 

A dorsal midline skin incision was extended from T12 to S1, using fluoroscopy to verify the 

correct localization in each animal. Following incision and retraction of the skin and 

superficial fascia, the deep fascia was incised unilaterally (left) around the tip of the 

spinous processes and retracted. Following left side dissection to the level of the synovial 
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joint of the articular processes, the incision was continued laterally and ventrally, by 

elevating the multifidus muscle attachments from the pedicles, allowing exposure of the 

articular and part of the transverse processes from L1 to L6. Electrocautery was used 

throughout the exposure to minimize bleeding. Once the procedure had been performed 

and haemostasis achieved, the wound was irrigated with Ringers’ solution. Then, the 

transpedicular approach to the NP was performed by one surgeon. Five lumbar discs 

were assigned to different groups of treatment:  

• L1-2: EP tunnel + nucleotomy;  

• L2-3: EP tunnel;  

• L3-4: EP tunnel + nucleotomy + EP repair with the polyurethane (PU) scaffold;  

• L4-5: EP tunnel + EP repair with the PU scaffold;  

• L5-6: intact control.  

The different treatments are described below. 

End-plate tunnel - Throughout a dorso-lateral surgical access to the lumbar spine, a 2-

mm tunnel was drilled using a Kirschner wire (k-wire) into the pedicle of the vertebra to 

access the NP space of the cranial spinal segment under fluoroscopy guidance (Figure 

18), checking the wire direction (mean angle degree ± standard deviation) in latero-lateral 

(Figure 18A) and dorso-ventral (Figure 18B) images, as already described (Vadalá et al., 

2013). The k-wire was directed cranially and medially to reach the center of the NP, with 

an inclination of approximately 45°. A manual 2-mm drill was used to hole the EP and 

access the NP space. 
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A B 
Figure 18. Representative intraoperative fluoroscopic images on the lateral (A) and dorsal (B) 
planes of the lumbar spine. It is possible to appreciate the k-wire reaching the center of the disc 
space through the transpedicular approach. 

Nucleotomy - A 2-mm diameter shaver resector (Smith & Nephew Shaver Blades, 2.0 

mm Full Radius, 7 cm length), powered by an arthroscopy shaver unit (Smith & Nephew, 

Dionics Inc. PS3500, Germany) and connected to a vacuum pump, was introduced 

through the 2-mm tunnel. NP tissue was removed maintaining the shaver blade in the IVD 

space oscillating at 4000 rpm for 5 minutes (Figure 19). 

  

Figure 19.  Surgical pictures showing placement of the 2-mm shaver dissector through the 
transpedicular approach in the disc space, used to perform nucleotomy under aspiration. 

 

 
End-plate repair - The EP was repaired by sealing the edge of the tunnel using a press-fit 

porous polyurethane (PU) cylinder (2.2 mm diameter and 10 mm length) (Figure 20A) that 

was placed at the EP edge using a 14G cannula (Bonopty® Bone Biopsy System, 

AprioMed, Sweden) inserted through the tunnel (Figure 20B). The elastomeric PU cylinder 

was synthesized as previously described (Eglin et al., 2010; Laschke et al., 2010; Laschke 

et al., 2009). The scaffold was sterilized by cold ethylene oxide process and stored until 

the time of surgery. 
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At the end of the surgical procedure, the deep fascia, the subcutaneous layers and the 

skin were closed in a simple continuous pattern.  

  
A B 
Figure 20.  (A) A porous polyurethane (PU) cylinder was inserted using 14-G cannula (Bonopty - 
Bone Biopsy System, AprioMed, Sweden) at the edge of the tunnel performed through the 
vertebral body to repair the end-plate and seal the disc space. (B) Representative fluoroscopy 
image control showing the cannula placed into the transpedicular tunnel during the scaffold 
positioning (arrow). 

 

o PAIN MANAGEMENT AND POSTOPERATIVE CARE  

As soon as each sheep was breathing spontaneously, following cessation of isofluorane 

anaesthesia, it was extubated, transferred to a heated room and returned to the sheep 

housing, where it was given food when fully alert and standing. The sheep were observed 

for approximately one hour following surgery. All sheep received prophylactic antibiotics 

(Amoxicillin 15 mg/kg/q48 hours IM) perioperatively and postoperatively for 10 days. 

Tramadol (4 mg/kg/q12h) and Carprofen (4 mg/kg/q24h) were administered for 

postoperative analgesia at least for the first 5 days after surgery. Vital signs were 

monitored, neurological examination was performed postoperatively on a routine basis, 

and standard nursing care was provided. The sheep were monitored for normal feeding 

behaviour and cage activity twice daily to determine their general health.  A wound 

inspection to check for possible infection or wound openings was performed on a daily 

basis until a complete healing.  
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o EUTHANASIA  

At each time point (before and 1, 3, and 6 months post surgery), 3 sheep were 

anaesthetized with medetomidine (5-10 µg/kg IV) and propofol (2-4 mg/kg IV), and then 

euthanized with a solution of embutramide, mebenzonio ioduro and tetracaine 

chlorhydrate (0.3 ml/kg IV). 

o COMPLICATIONS  

Intra- and post-operative complications were recorded. Potential intraoperative 

complications included: 

• Improper identification of the surgical site 

• Inability to reach correctly the NP 

• Excessive haemorrhage 

• Incorrect k-wire inclination 

• Iatrogenic damage to the spinal cord and nerve roots 

Postoperative complications included: 

• Persistent kyphosis 

• Vertebral fracture and instability 

• Pelvic limbs paresis/paralysis 

• Seroma 

• Wound infection  

• Cutaneous fistula 

• Discospondylitis
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RESULTS 

o SURGICAL PROCEDURE  

The transpedicular approach was feasible in all animals included in the study. In all the 

animals the K-wire was inserted correctly in the 4 discs treated (L1 to L5), allowing the 

correct placement of the shaver within the center of the NP.  

The K-wire mean orientation angles (angle ± standard deviation) assessed on the 

latero-lateral and dorso-ventral fluoroscopy images were 50.6° ± 3.1 on the dorsal plane 

and 50.1° ± 6 on the sagittal plane. The average operation time was 92 minutes (range 

74-110). The duration of the procedure to reach the NP, perform nucleotomy and place 

the PU scaffold became shorter over the course of the experimental period.  

o IMAGING  

In animals that underwent MR imaging it was possible to detect the transpedicular 

tunnel throughout the vertebral body and pedicle of each treated disc, confirming the 

correct positioning of the k-wire (Figure 21).  

 

Figure 21. Representative middle-sagittal T2-weighted MR images showing the L3-L4 disc before 
the surgical approach (a) and after nucleotomy and scaffold placement at 3-month follow-up (b). 
The tunnel is visible on both sagittal (a) and transverse (c) images; furthermore the transverse MR 
image shows that the tunnel entry point on the end-plate is in its central area (c). 
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On parasagittal and transverse T2w images the tunnel appeared hypointense to the rest 

of the vertebral body (Figure 21b). Furthermore, loss of the NP signal intensity in the discs 

that underwent nucleotomy was visible in transverse images. The PU scaffold inserted in 

two of the treated discs in each sheep was not discernible from the surrounding bone.   

o PERI- AND POST-OPERATIVE CARE AND COMPLICATIONS 

§ INTRAOPERATIVE DATA  

The only intraoperative complication was CSF leakage from the tunnel during the drilling 

process, that occurred in 2 of the 48 IVD spaces treated (complication rate 2.1%). Blood 

loss was minimal and no clinically apparent neural or great vessel injury was caused by 

any of the surgical procedures. There were no anaesthetic complications as confirmed by 

stable cardiovascular parameters. 

§ POSTOPERATIVE DATA 

In the early post-operative period, no significant problems with mobility or pain have been 

encountered; all animals tolerated the procedure and within two hours from the end of the 

surgery were able to walk. After surgery all the sheep presented kyphosis, which had 

resolved after 3-5 days in 10/12 sheep. Post-operative complications verified in 3/12 

sheep (25%). One sheep developed a sterile seroma, which reabsorbed completely after 

7 days without causing any clinical problem. In none of the animal postoperative wound 

dehiscence did occur. A fracture to the cranial aspect of L4 vertebral body was detected 

radiologically in one sheep at 1-month follow-up (Figure 22a). The fracture evolved into 

L3-4 spondylarthritis after 3 months (Figure 22b). Apart from mild kyphosis the animal did 

not develop further clinical signs, such as discomfort and paresis, however was 

euthanized at 3-month follow-up. Through the analysis of the X-ray (Figure 22c) and MR 

images (Figure 22d) performed one month after surgery, discospondylitis at L1-2 (2.1% 

complication rate) was diagnosed in one sheep. The animal presented mild paraparesis, 
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ataxia and kyphosis and for ethical reasons was euthanized. Macroscopic changes 

attributed to discospondylitis were confirmed during autopsy.  

Post-operative pain management was considered adecuate in all the sheep, with 

exception of the one that developed discospondylitis. Indeed, all the animals were 

walking, eating and drinking regularly and no evident reactions were elicited on spinal 

palpation. No weight loss was detected in any of the animal at their last time point; after 

the experimental period the animals weighed approximately 41 to 50 kg. 

 

Figure 22. X-ray images showing a fracture of the cranial aspect of the vertebral body observed 1 
month after the transpedicular approach (a) and that evolved into spondylarthritis after 3 months 
(b). Discospondylitis developed at L1-L2 as shown by the erosion of both end-plates and the 
consequent widening of disc space in letero-lateral X-ray image (c); T2-weighted MR image shows 
increase intensity of the disc and end-plates and apparent extension of the infection into the 
vertebral canal causing ventral compression of the spinal cord (d).  
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DISCUSSION  

The recent consensus about the importance of maintaining the AF structural integrity 

(Elliott et al., 2008; Iatridis et al., 2009) has brought attention within the field of IVD 

regeneration on both novel AF repair strategies (Vadalá et al., 2012) and alternative ways 

to access the NP space. Indeed, taking into account that the majority of regenerative 

strategies for the IVD are traditionally delivered through the AF route, it should be 

considered that the resulting lesion might impair the expected outcomes leading to further 

degeneration, leakage of the biologically delivered material, and potential failure of the 

regenerative treatment (Vadalá et al., 2011). 

The transpedicular approach has been described in a preliminary ex vivo study, 

which demonstrated that injections, nucleotomy and nucleoplasty were feasible by 

realizing a tunnel passing through the pedicle and the EP (Vadalá et al., 2013). The 

present study has proved that this alternative approach to the IVD is feasible in vivo with a 

relatively low morbidity rate. Indeed, both the transpedicular tunnel and nucleotomy were 

performed successfully in 48 and 24 IVD, respectively.  

Technical surgical skills and a good knowledge of the regional anatomy are needed, 

however a remarkable progressive shortening of the surgical time was recorded, reflecting 

a quick rate of improvement of the learning curve.   

The transpedicular approach provides good visualization and surgical access to 

the IVDs. The procedure can be performed from either the right or the left side of the 

lumbar spine. The only limitation is related to the realization of the technique caudally to 

L5, where the pelvis and the pelvic limbs can interfere with the acquisition of fluoroscopic 

lateral images.  

Particular care must be taken to avoid any damage to the spinal cord. The 

inclination of the k-wire through the pedicle represents a key-point to perform this 

technique correctly and to reach the NP without causing any significant damage. On the 
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preliminary study (Vadalá et al., 2013) performed on lumbar ovine and human spinal 

segments, the k-wire angles which enabled to reach the centre of the NP were 47.5° ± 

5.1° on the dorsal plane and 49.6° ± 6.2° on the sagittal plane. The angles recorded in the 

present study are very similar (50.6° ± 3.1° on the dorsal plane and 50.1° ± 6.0° on the 

sagittal plane), however it is possible that even a subtle difference in the inclination could 

explain the occurence of CSF leakage. Indeed, pedicles are paired, strong, tubular bony 

structures, made of hard cortical bone outside and cancellous bone inside and acting as 

thin lateral walls of the spinal canal. Due to the thin conformation of the pedicles and their 

proximity to the spinal cord even a small angle variation could cause severe 

consequences; it is therefore essential the careful evaluation of the anatomical landmarks 

and the k-wire inclination. Furthermore, when performing the transpedicular approach and 

before considering its application in human medicine, interspecies anatomical variations 

should be considered. In the light of this consideration and of the need of an experimental 

animal model able to reproduce the disc degenerative process, sheep spine was selected 

to minimize the differences with human spine. Sheep are readily available and show great 

homogeneity when selected for age, breed, and sex (Wilke, 1997a). Sheep have been 

widely used in spinal research and several comparative studies have pointed to 

similarities between the sheep and human IVD: (1) proportions are similare, though 

absolute size is smaller in sheep (Wilke et al., 1996), (2) the sheep spine is loaded along 

its long axis, like humans (Smit, 2002) and, (3) similar to adult human IVDs, no notochord 

cells are present in mature sheep discs (Trout et al., 1982 a,b). The skeletally mature 

sheep used in the present study showed uniform anatomical disc and vertebral patterns. 

Several surgical approaches to the lumbar IVDs have been described in spinal 

research, however they can carry some limitation related to anatomical characteristics. 

For example, dorsal approaches to the lumbar spine, commonly used in human surgery, 

are difficult in sheep due to the risks related to the presence of the spinal cord within the 

lumbar spinal canal and due to the ossification of the dorsal longitudinal ligament 

(Oeheme et al., 2012). For this reason, the ovine lumbar IVD have traditionally been 
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accessed via a ventral or ventrolateral approach through the retroperitoneal or 

transperitoneal regions (Melrose et al., 2012; Baramki et al., 2000). These approaches 

carry significant risks, including bowel and great vessel injury, neural injury, and hernia 

formation. The procedure also requires a large abdominal incision with greater retraction 

of abdominal viscera, which can be harmful to the animal (Baramki et al., 2000). Recently, 

a minimally invasive retroperitoneal lateral approach has been described in an ovine 

model, allowing for a small focused incision and causing minimal morbidity (Oheme et al., 

2012). Lateral approaches to the human lumbar spine, such as the extreme lateral 

interbody fusion procedure, have gained popularity as minimally invasive approaches to 

the lumbar IVDs. In the lateral body fusion procedure, a retroperitoneal transpsoas route 

is employed, requiring real-time neuromonitoring to ensure safe passage through the 

psoas without damaging the lumbar plexus (Youssef et al., 2010), which represents the 

main concern with this procedure. The transpedicular approach to the IVD is currently 

used, in humans, as a route to perform biopsy and discectomy for the diagnosis and 

management of early spondylodiscitis, to facilitate the isolation of pathogens, natural 

healing, and immediate improvement of pain (Hadjipavlou et al., 1998a; Di Martino et al., 

2012). The technique is performed through a dorsal percutaneous approach; the 

advantage of this procedure is its minimal invasiveness that allows bacteriological and 

histological testing, drainage of infected material, as well as injection of therapies, 

permitting early patient mobilization (Arya et al., 1996; Hadjipavlou et al., 2004). The 

approach is simple, cost-effective and its diagnostic accuracy is comparable to that of 

open biopsy (Arya et al., 1996; Hadjipavlou et al., 2004). The transpedicular approach has 

been validated in spinal research both ex vivo by Vadalá et al. (2013) and in vivo with the 

present study, providing a model to perform biological and biomechanical studies of NP 

regenerative therapies (Vadalá et al., 2013). Further future perspectives are represented 

by the validation of CT/fluoroscopy guided minimally invasive approaches and by the 

clinical translation of new regenerative strategies for biological restoration of early and 

mild degenerative changes in IVD, which is crucial to improve present clinical treatments 
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and life quality of several patients.  

Most of the structural injury IVDD models are based on a direct damage to the AF 

by performing different tear types (rim lesions, concentric and radiating annular tears) of 

different sizes, evaluating the evolution and progression of the biologic intradiscal 

alterations and demonstrating how these may affect the mechanics of the joint (Osti, 

1990a; Melrose et al., 1992; Moore et al., 1992; Gunzburg et al., 1993; Ahlgren et al., 

1994; Moore et al., 1996; Fazzalari et al., 2001; Melrose et al., 2002; Elliott et al., 2008). A 

porcine experimental model of IVDD, based on EP fractures or NP herniation through the 

EP, was described by Holm et al. (2004). Through a retroperitoneal approach, the cranial 

EP of the lumbar vertebra was perforated using a 3.5-mm drill bit inserted from the lateral 

cortex at mid-height, angulated at 45° so as to reach the central part of the EP. This 

model highlighted how the EP damage can trigger similar degenerative changes as those 

observed in degenerated human IVD, such as alteration of water, PG and cellular 

contents (Holm et al., 2004; Salo et al., 2008a,b). In contrast with this model, the 

transpedicular approach performed in the present study is based on a smaller EP damage 

(2-mm) and, in 2 of the 4 treated discs, the EP tunnel was sealed using conductive 

scaffolds with the aim of limiting the degradation cascade and preventing Schmorl’s nodes 

formation or material leakage. The histological evaluation of the degeneration obtained in 

the IVDs treated and of the changes related to the use of the scaffold will be discussed in 

the second part.   

A moderately low rate of intraoperative (2.1%) and postoperative complications 

(25%) occurred in the present study. The CSF leakage reported in two sheep is likely to 

be secondary to dural tear provoked by the incorrect k-wire positioning during the 

realization of the transpedicular tunnel. To our knowledge, neural complications related to 

the perforation of the dura have not occurred as the animals recovered uneventfully. 

Vertebral subluxation and discospondylitis, localized at L3-4 and L1-2 IVDs respectively, 

were observed during the postoperative period in two different sheep; the two lesions 

were likely to be iatrogenic. The fact that both the affected discs were nucleotomized may 
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imply that nucleotomy could contribute to increasing the risk of potential complications. 

Experimentally, it is generally agreed that the structural damage due to in vitro nucleotomy 

significantly destabilizes the motion segment (Zollner et al., 2000). However, in vivo 

biomechanical tests suggested that post-operative instability might not be exclusively a 

consequence of the trauma to the IVD, but that dorsal passive-spine supportive structures 

integrity (articular facets, spinous processes) play a crucial role in maintaining motion 

segments stability (Reitmaier et al., 2014). In the current study, dorsal vertebral structures 

remained intact, however we cannot rule out that the retraction of the lumbar epaxial 

muscles may have contributed to reducing the strength of the motion segments involved.   

Iatrogenic IVD space infection represents one of the possible complications 

occurring after spinal surgery. In humans, discospondylitis represents a common 

complication following microsurgical discectomy, percutaneous laser disc decompression 

(Farrar et al., 1998), automated percutaneous lumbar nucleotomy operations (Dullerud et 

al., 1997), and discography (Guyer et al., 1997; Osti et al., 1990b).  In the present case, 

the occurence of discospondylitis could represent a consequence of either iatrogenic 

bacterial inoculation into the NP or hematogenous spread. Further laboratory and 

histologic analysis were not performed to confirm the diagnosis and identify a pathogen, 

however the characteristic radiologic and post-mortem macroscopic changes are highly 

supportive of IVD infection. MRI analysis has high sensitivity and specificity for the 

evaluation of pyogenic discospondylitis (Lucio et al., 2000). Characteristic MRI findings of 

discospondylitis include decreased signal from the disc and adjacent portion of vertebral 

bodies on T1w sequences and an increased signal from these structures on T2w 

sequences; contrast uptake can be detected in the adjacent vertebral bone marrow, in the 

disc space and in the dorsal AF (Lucio et al., 2000). In the present study post contrast 

images were not available, however T1w and T2w images showed alterations similar to 

those described. The peculiar radiographic changes, characterized by erosion of the EPs 

and widening of the IVD space, and the macroscopic bone remodeling observed on the 

ventral aspect of L1-2 vertebral bodies during necroscopy, supported the diagnosis of disc 
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infection.  

Summarizing, the transpedicular approach represents an alternative route to the 

traditional ventral and ventrolateral approaches through the AF. This new pathway to the 

IVD provides a new model to study biologic and biomechanical alterations in relation to 

both IVD degenerative processes and potential NP regenerative therapies.
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Section 2: evaluation of quantitative and qualitative data of the 

intervertebral disc degeneration model 

MATERIALS AND METHODS 

o QUALITATIVE ANALYSIS 

MR images, macroscopic and histologic samples of the intact and injured discs were 

analysed qualitatively for evidence of degenerative changes. 

§ MAGNETIC RESONANCE IMAGES ANALYSIS 

MRI images, acquired as described in the first part of the study, were analysed 

qualitatively. Disc morphologic changes, as seen on sagittal T2w images, were recorded 

and divided into 5 categories according to the Pfirrmann grading scale (Pfirrmann et al., 

2001). Variations of signal intensity, IVD structure, distinction between NP and AF, and 

IVD height were evaluated for each treated and control disc at each time point.  

§ GROSS ANATOMY AND HISTOLOGICAL EVALUATION   

At sacrifice, the lumbar spines were removed from the sheep (Figure 23a), and the discs 

(L1 to L6) together with intact adjacent vertebral body bone (Figure 23b) were fixed in 

10% neutral buffered formalin for at least 1 week, decalcified in 

ethylenediaminetetraacetic acid, and processed for paraffin sectioning. Blocks of tissue (5 

mm in thickness) were embedded in paraffin. The blocks of tissue were then cut into 

sections of 5 µm in thickness using a microtome and stained with Safranin O/Fast Green 

and hematoxylin and eosin (H&E). 
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A B 
Figure 23. (A) Post-operative photo of one of the sheep spine (L1-S3) harvested after euthanasia; 
perispinal muscles have been resected.  (B) Representative picture of treated (L1-L5) and control 
(L5-L6) removed from the spine. 
 

 Based on the previously described grading scale (Thompson et al., 1990), 

all midsagittal sections of the harvested discs within each single sheep were compared to 

each others, to discs of all other sheep and to the control discs. Anatomical characteristics 

and degenerative changes were evaluated for the NP, AF, EPs and vertebral bodies of 

each disc. More in detail, in the NP the progressive replacement of the bulging gel with 

fibrous tissue and the presence of clefts formation were evaluated; in the AF and EP, 

changes in the organization of the lamellae in the composition and structure of the hyaline 

cartilage were observed; finally, margins shape and osteophytes formation were recorded 

for the vertebral bodies. 

 Qualitative histological analysis was performed under a light microscope 

(Nikon Eclipse E800, Nikon, Melville, NY), at magnifications ranging from 10 to 200X. In 

particular, evidence of changes in NP cells composition and the presence of possible cells 

leaking from the tunnels were recorded.  

  

o QUANTITATIVE ANALYSIS 

The effect of the different degeneration modalities performed on each disc was evaluated 

quantitatively through the analysis of X-ray and MR images performed at each time point. 

Quantitative analysis of the images was performed by transferring the images to a 
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commercially available image processing software (OsiriX Imaging Software, www.osirix-

viewer.com) as follows. 

§ DISC HEIGHT INDEX (DHi) 

Under lateral view, vertebral body and DHs were measured in each segment from L1 to 

L6. Disc and vertebral body heights were derived by averaging the distance between EPs 

at 3 places obtained from the dorsal, middle, and ventral portions of the disc normalized to 

the average length of 2 adjacent vertebral bodies in each section (Figure 24). The 

preoperative radiograph was used as a baseline measurement. The data were then 

transferred to the Excel sofware program (Microsoft Excel, 2010) and the DHi was 

calculated using the method described by Masuda et al. (2004) (Figure 24).  

 

 

DHi = 2 x (D+E+F) / (A+B+C+G+H+I) 

Figure 24. Using digitized radiographs, measurements including the vertebral body heights and 
DH were analyzed by Osirix software. IVD height was calculated by averaging the measurements 
obtained from the dorsal, middle, and ventral portions of the IVD and dividing that by the average 
of adjacent vertebral body heights  (Masuda et al., 2004).  

 

§ MRI INDEX (MRi) 

The T2w midsagittal images of the intact and treated discs were analyzed quantitavely 

calculating the MRi (Sobajiama et al., 2004). The NP of each disc was outlined manually 

to define the region of interest (ROI), as shown in Figure 25. The area and average signal 

intensity (gray scale value) of this ROI were then computed automatically using the Osirix 

surement. A C-arm image intensifier (Philips Med System Ser:
15128, !55kV, 3mA, 30 seconds, 48 cm) was used. Efforts
were also made to keep the spine in a flexed position. To de-
crease the error from axial rotation of the spine and from beam
divergence, radiographs were repeated at least twice on each
animal in the lateral decubitus position with the beam centered
at 4 cm from the rabbit iliac crest. Radiographs were scanned
(Epson Expression 636) and digitally stored using an image-
capture software program.

Image Analysis. All radiographic images were independently
interpreted by an orthopedic researcher, who was blinded, ex-
cept for the initial validation study, to the following: study
purpose, surgical procedure, and whether the films were pre-
surgery or postsurgery. Using digitized radiographs, measure-
ments including the vertebral body height and IVD height were
analyzed using the public domain image analysis program de-
veloped at the U.S. National Institutes of Health (Scion soft-
ware, Scion Corp., Frederick, MD). The data were transported
to Excel software and the IVD height was expressed as the disc
height index (DHI) based on the method of Lu et al29 with a
slight modification (Figure 1B). The average IVD height (DHI)
was calculated by averaging the measurements obtained from
the anterior, middle, and posterior portions of the IVD and
dividing that by the average of adjacent vertebral body heights.
Changes in the DHI of injected discs were expressed as %DHI
and normalized to the measured preoperative IVD height
(%DHI " postoperative DHI/preoperative DHI x 100).

Magnetic Resonance Imaging Methods. Magnetic reso-
nance imaging examinations were performed on all the rabbits
in the needle puncture study using a 0.3-T imager (Airis II,
version 4.0 A; Hitachi Medical System America, Inc., USA)
with a quadrature extremity coil receiver. T2-weighted sections
in the sagittal plane were obtained in the following settings: fast
spin echo sequence with time to repetition (TR) of 4000 msec
and time to echo (TE) of 120 msec; 256 (h) # 128 (v) matrix;
field of view of 260; and 4 excitations. The section thickness
was 2 mm with a 0-mm gap. The MRIs were evaluated by 2
blinded observers using the modified Thompson classification
based on changes in the degree and area of signal intensity from
Grade 1 to 4 (1, normal; 2, minimal decrease of signal intensity
but obvious narrowing of high signal area; 3, moderate de-
crease of signal intensity; and 4, severe decrease of signal inten-
sity).

Reliability of Image Analyses

Disc Height Index. Two examiners, each of whom has over 5
years experience as an orthopedic researcher and as a board
certified orthopedic surgeon, participated in the image analysis
for DHI assessment.

To estimate interobserver error, 2 observers, who were
blinded to the treatment and follow-up period, independently
conducted the measurement of DHI. For intraobserver agree-
ment, DHI was remeasured in 158 discs, which were selected in
a randomized manner 1 month after the initial measurement. In
the DHI analysis, the intraobserver and interobserver error was
calculated by the Bland and Altman method and the coefficient
of variation. The within-subject standard deviation (Sw) was
calculated by the equation

!"$x1 ! x2)2#2n

where x1 is the first measurement value, x2 is the second mea-
surement value, and n " 158.30 The percent coefficient of vari-
ance (%CV) was calculated as (Sw/means of all measurements
x 100).

Magnetic Resonance Imaging. Intraobserver reliability in
classifying disc degeneration on MRI was assessed by having
the same examiner re-evaluate all images more than 1 month
after the initial assessment. To assess interobserver reliability, 2
senior authors who have over 10 years experience as board
certified surgeons independently performed the rating. The de-
gree of agreement beyond chance was determined using Cohen
kappa statistics.31

Histologic Preparation and Development of a Histologic
Grading Scale. After the final radiograph was obtained and
the rabbit killed, control and stabbed/punctured discs were
harvested for histologic studies. The tissues were fixed in 10%
neutral buffered formalin containing 10% cetylpyridinium
chloride, decalcified in Cal-Ex II Fixative/Decalcifier (Fisher
Scientific, Pittsburgh, PA), paraffin-embedded, and sectioned to
a 6-"m thickness. The sections were stained with hematoxylin
and eosin for cellular constituents and Safranin-O for proteo-
glycans.32 In addition, collagen fiber orientation was assessed
using picrosirius red staining and polarizing microscopy.33

Based on a literature review of disc degeneration stud-
ies22,27,34–39 and the review of 100 slides of rabbit discs in
various stages of degeneration, we developed a grading scale

Figure 1. The needle with a stopper (A) and the schematic representation of measurement of disc height index (DHI) (B). A, a hand-made
stopper using a regular cap from a commercially available needle was designed to control the depth of the needle puncture (5 mm depth).
B, Using digitized radiographs, measurements including the vertebral body height and intervertebral disc (IVD) height were analyzed by
Scion image software. Intervertebral disc height (DHI) was calculated by averaging the measurements obtained from the anterior, middle,
and posterior portions of the IVD and dividing that by the average of adjacent vertebral body heights.

7Disc Degeneration by Anulus Needle Puncture • Masuda et al
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software, and their product resulted in an MRi for each IVD (Figure 25). Considering that 

MRI images of a NP of a degenerating disc potentially could exhibit changes in area, 

signal intensity, or both, the MRi was computed to serve as a more comprehensive 

measure of NP degenerative changes. 

 

MRi = Area (mm2) x Signal 
Intensity (GY) 

Figure 25. T2-weighted MRI image of a representative rabbit lumbar disc with NP outlined to 
define ROI. The measured NP area, signal intensity, and MRi (product of area and signal intensity) 
are shown (Sobajima et al., 2004). 
 

o STATISTICAL ANALYSIS 

Data regarding DHI and MRi were collected in a spreadsheet (Microsoft Excel 2016, 

Microsoft Corporation, Redmond, WA, USA) and analyzed using commercially available 

software (JMP Pro 11, SAS Institute, Cary, NC, USA). Normal distribution of the residuals, 

symmetrical distribution of differences, and homoscedasticity of data were visually 

assessed. When necessary, a Shapiro-Wilk test and a Levene test were used to confirm 

or reject the aforementioned assumptions. 

Two different sets of analyses were performed both on MRi and on DHI data in order to 

identify differences between treatments (discs) and differences between time-points. 

Difference between techniques – Each individual DHI and MRi score at T1, T2, and T3 

were subtracted from the corresponding T0 value from the same individual, in order to 

obtain a score independent from individual variations in magnitude of DHI and MRi 
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possibly present at T0. The different treatments (discs) were therefore compared to the 

control group using a Dunn’s test.  

Difference between time-points – For each treatment group (discs) a Wilcoxon Signed 

Rank was used to identify differences in DHI and MRi scores of the same disc at different 

time-points (T1 vs. T0, T2 vs. T0, T3 vs. T0, T2 vs. T1, T3 vs. T1, T3 vs. T2).  

P-values were Bonferroni adjusted when necessary and a p<0.05 was considered 

significant for all the tests performed.



Section 2: evaluation of quantitative and qualitative data of the intervertebral disc degeneration model 

 
 

 74 

RESULTS 

o QUALITATIVE ANALYSIS 

§ MRI ANALYSIS  

Representative serial MRI scans of the lumbar spine of one sheep are shown in figure 26, 

consisting of T2w, midsagittal images obtained before and 1, 3 and 6 months after 

surgery. Progressive decrease in NP area and signal intensity was evident for each of the 

4 treated discs (L1-2, L2-3, L3-4, L4-5) over the 6-month period. Furthermore, different 

degrees (Pfirrmann scale) of disc degeneration could be assigned to each disc at time 

point 3 (6 months), depending on the surgical technique used. As shown in figure 26, 

lower degrees of IVDD (Grade II and III) were achieved by performing only the tunnel 

through the vertebral body, while higher degrees of degeneration were obtained by 

performing nucleotomy. The sealing of the tunnel with the PU scaffold seemed to lead to a 

lesser degree of disc degeneration at L3-4 and L4-5, if compared to L2-3 and L1-2 

respectively (Figure 26). MRI appearance of the NP of the intact control disc (L5-6) 

remained relatively constant over the same period.  Qualitative MRI observations are 

provided in Table 4.  

§ GROSS ANATOMY AND HISTOLOGY 

On gross inspection of the lumbar spines removed at sacrifice variable degenerative 

changes, depending on the surgical technique, were seen. In figure 27 are shown 

representative lumbar IVD specimens of three sheep collected at time point 3. Five 

categories (Thompson grading scale) of IVDD were observed for each IVD 

considered. In the two nucleotomized IVDs (L1-2, L3-4) macroscopic signs of 

degeneration, such as defects in EP cartilage, fibrous appearance of the NP, focal 

disruption of the AF and pointed vertebral bodies margins were observed. L2-3 and 
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L4-5 IVDs were degenerated as well, although to a lesser degree (Table 5). In figure 

27 it is possible to observe how control IVDs were showing the characteristic bulging 

gel NP, with uniform hyaline EPs in the three sheep represented. These macroscopic 

findings seemed to overlap with the MRI changes and the five grades of degeneration 

attributed to each treated IVD (Figure 30).  

The Safranin O/Fast Green (figure 28) and H&E histologic sections revealed a 

range of morphologies from normal to severely degenerated which were consistent in 

relation to the IVD observed, therefore to the surgical technique used. Normal-looking 

IVDs matched with the control group and displayed an intact AF with a normal pattern 

of well-organized fibrocartilage lamellar sheets and a well-defined border between the 

AF and the NP. The NP was rounded, bloated-looking and consisted of numerous 

chondrocyte-like cells. With progression of the degree of IVDD, the AF aquired a wavy 

appearance due to its disorganization and infolding and gradual loss of NP cells was 

observed. Cracks and fissures were progressively more evident in the AF, and a 

general loss of definition between the AF and NP was noticed. The NP was gradually 

occupied by disorganized, hypocellular fibrocartilagineous tissue. The qualitative 

histologic findings are summarized in Table 5. Further observations were made about 

possible differences between the discs where the tunnel was sealed with the PU 

scaffold (L3-4, L4-5) and those where the cylinder was not inserted (L1-2, L2-3). An 

important aspect observed was the presence of leakage of NP cells through the tunnel 

in non-sealed discs (Figure 29); moreover remodeling of the scaffold was noted.  
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•  

Figure 26. Representative serial MRI scans of lumbar spine of one sheep, showing Tw, 
midsagittal plane images obtained before and 1, 3 and 6 months after surgery. On L1-2, 
L2-3, L3-4 and L4-5 IVDs four different surgical techniques were performed; L5-6 was 
considered as control disc. Progressive decrease in NP area and signal intensity for 
each of the four treated discs over the 6-month period is present. In contrast, area and 
signal intensity of the NP of the intact control disc (L5-6) seem to remain relatively 
constant over the same period. 

•  

 

Figure 27. Midsagittal plane IVD samples of three sheep are represented. The 
specimen were collected at 6-month follow-up. 
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Figure 28. Representative histologic sections (Safranin O/Fast Green staining) of L1 to L6 IVDs, 6 
months after surgery. A progressive narrowing of the EPs can be observed; disorganization and 
fragmentation of the AF and NP matrix appear gradually increased depending on the surgical 
technique performed. 
 

 
 

 
Figure 29. NP tissue leakage within the tunnel without PU scaffold (H&E) (yellow arrows). 
 

Summarizing,  the qualitative MRI, macroscopic and histologic findings, similar and 

consistent results were observed for each disc evaluated (Figure 30). With the model of 

IVDD described in this study, four progressive degree of IVDD were obtained by 

performing either a transpedicular tunnel or nucleotomy technique, with or without the use 

of a PU scaffold. 
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Figure 30. Representative MRI, macroscopic and histologic images of L1 to L6 IVDs at time point 
3. Correspondence between the findings is observed and each grade of degeneration reflects a 
differet surgical technique, demonstrating progressive and reproducible changes similar to changes 
seen in human IDD. 

Table 5. Summary of MRI, macroscopic and histologic observations of the treated and control discs at 6-
month follow-up 

IVD Surgical technique MRI Gross anatomy Histology 

L1-2 Nucleotomy  Extensive decrease in 
NP area and signal 
intensity and increasing 
dark signal of the NP; 
loss of distinction 
between AF and NP 

Fibrotic appearance of 
both NP and AF, diffuse 
EP sclerosis and pointed 
vertbral body’s margins 

Loss of definition 
between NP and AF; 
cracks and fissures in 
AF; NP tissue leakage 
within the tunnel 

L2-3 Tunnel  Irregular NP and reduced 
area and signal intensity; 
decreased distinction 
between AF and NP  

Reduction in anular-
nuclear demarcation; 
defects in EP cartilage 

Apparent decrease in 
number off chondrocyte-
like cells; infolding of 
inner AF  

L3-4 Nucleotomy+PU 
scaffold 

Dark/grey signal of NP 
and reduction of its area; 
low definition between 
AF and NP 

Progressive fibrous 
appearance of the NP; 
irregularity and sclerosis 
in subchondral bone; 
smoothed vertebral 
body’s margins 

Hypocellular 
fibrocartilage evident in 
NP; loss of definition 
between AF and NP 

L4-5 Tunnel + PU 
scaffold 

Mild decrease in NP 
signal intensity 

Altered NP structure, 
irregular EP thickness  

Reduced number of 
chondrocyte-like cells in 
NP 

L5-6 Control Homogeneous, bright 
NP; clear distinction 
between NP and AF 

Bulging gel NP with 
fibrous lammellar AF and 
uniform hyaline EPs 

Homogeneous population 
of chondrocyte-like cells 
in NP 
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o QUANTITATIVE ANALYSIS 

DHi and MRi were calculated at each time point (T0 to T3) in 6 and 5 cases, respectively. 

In 4 sheep X-Ray were available until T1 or T2. The two animals that developed 

discospondylitis and vertebral fracture were omitted from the study (Table 6).  

Table 6. Survival time and diagnostic test performed 

Case N. Survival time 
(months) Diagnostic test 

22063 6 Rx+MRI 
84480 6 Rx+MRI 
22752 6 Rx+MRI 
85936 6 Rx+MRI 
83734 6 Rx+MRI 
84320 6 Rx 
85184 3 Rx 
85233 3 Rx 
22002 1 Rx 
22005 1 Rx 
23389* 3 Rx 
22542* 1 Rx+MRI 

* Cases eliminated from the study 

In table 6 are represented the differences, expressed in percentage, of DHi and MRi of 

each time point (T1, T2, T3) in comparison to the baseline (T0). Each IVD showed an 

overall reduction of both indices over the 6 months, apart from L4-5 IVD, which presented 

an increased DHi when T3 was compared to T0 (Table 7).  

  

MRi DHi 
Table 7. Percentage of variation of MRi and DHi comparing each time point to the baseline (T0) 
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In figure 31 it is represented the trend of the two indices evaluated over the 6-month 

experimental period. Each index is inversely proportional to the degree of degeneration 

obtained, therefore the overall negative trend shown in both DHi and MRi curves indicates 

a progressive increasing in IVDD over time (Figure 31). In the control IVDs was observed 

a gradual and progressive decrease in DHi and MRi among time points; this regular trend 

was not seen in the treated discs, which exhibited fluctuations over the time points. In the 

treated discs, major disc space narrowing was observed 3 months after surgery (time 

point 2), followed by an apparent widening of the disc heights at 6 months. MRi scores 

exhibited similar results in term of progressive reduction of the values noted at T3 if 

compared to T0.  

 

Figure 31. Graphic representation of the trend of DHi and MRi averages for each disc over 6 months 

  

 

                                  DHi                                                                        MRi 

 

 
Differences between techniques - Figure 32 shows the mean DHi and MRi of the 

pooled data of the treated discs (L1 to L5) and the intact control discs (L5–L6), plotted 

against time. Each IVD treated was then compared to the control disc (L5-6). No 

statistically significant differences were detected in these data for DHi (P > 0.05). 
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However, when the treated discs data where compared to the control disc, significantly 

higher higher values were observed for L4-5 at T3.  

 On MRi analysis was observed that the nuclotomy+scaffold technique significantly 

affected some results throughout the experimental period. The MRi was significantly lower 

at L3-4 than control group at T2 and T3. Further differences among the remaining discs 

were not detected.  

Differences between time points – DHi and MRi were evaluated for each disc by 

comparing the results obtained in two different time points (T0 to T1, T0 to T2, T0 to T3, 

T1 to T2, T1 to T3, T2 to T3) to judge which of each entitity had the lowest amount 

(increased degeneration) of the quantitative data (Figure 33). Disc height (Figure 33a) 

exhibited a significant narrowing at L2-3 IVD space between T0 and T2 and T1 and T2. 

The disc height of the control disc was significantly reduced when T3 was compared to 

T0. Statistically significant results were observed in the degree of degeneration obtained 

by calculating MRi (Figure 34b) for L1-2 (p< 0.03: T1-T0), L2-3 (p< 0.03: T2-T0), L3-4 (p< 

0.03: T1-T0; T2-T0; T2-T1; T3-T0; T3-T1) and L4-5 (p< 0.03: T2-T0; T3-T0) (Figure 33b). 

The degree of IVDD significantly increased throughout the experimental period in the four 

treated disc levels. Not all the time points where involved in the changes and in none of 

the discs significant degeneration was observed between T2 and T3. 
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Figure 32. Difference between techniques (Dunn’s test) 

 

 
(a) DHi. Changes in the 
IVD height were 
assessed quantitaviley 
and postsurgical results 
(T1, T2, T3) were 
normalized to the 
baseline (T0). When the 
effect of each technique 
was analyzed (L1-2: 
nucleotomy; L2-3: 
tunnel; L3-4: 
nucleotomy+scaffold; 
L4-5: tunnel +scaffold) a 
narrowing of the disc 
space was observed at 
T2 when compared to 
control; however this 
was not significant. At 
T3 the curve shows 
increasing results, with 
a significant difference 
between L4-5 and the 
control disc.  

  

 

 
(b) MRi. Statistically 
significant differences 
were detected in disc 
L3-4 
(nucleotomy+scaffold) 
when compared to the 
control disc. The disc 
was significantly and 
progressively more 
degenerated at time 
point 2 and 3. 
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Figure 33. Difference between time points (Wilcoxon test) 

  
(a) DHi. Statistically significant results (P < 
0.05) were detected for L3-4 and L5-6 (red 
asterisk) 

(b) MRi. Statistically significan results where 
detected for the four disc levels where surgery 
was performed. 
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DISCUSSION  

o QUALITATIVE ANALYSIS  

In the present study, four different IVDD techniques were performed through the 

transpedicular route in lumbar IVDs of skeletally mature sheep. Different degrees of 

degeneration were obtained by performing distinct types of surgical approaches to four 

lumbar IVDs. Through the transpedicular route, the IVDs from L1 to L5 were addressed by 

performing (1) nucleotomy, (2) tunnel, (3) nucleotomy + PU scaffold and (4) tunnel + PU 

scaffold, respectively. Variations in IVD degenerative changes were detected by 

quantitative MRI, macroscopic and histologic evaluations, in order to follow the IVDD 

process secondary to EP and NP injury.  

 The 4 transpedicular IVDD models led to slowly progressive MRI changes, 

similar to those observed in human IVDD. Through the analysis of MRI images, 

quantitative alterations in IVD hydration or composition can be detected non-invasively 

with a sufficient degree of accuracy (Boos et al., 1995). Indeed, the signal loss of IVDs on 

T2w images correlates with progressive degenerative changes of IVDs (Modic et al., 

1988), reflecting true biochemical IVDD (Tertti et al., 1991). Furthermore, the brightness of 

the NP has been demonstrated to correlate directly with PG concentration (Pearce et al., 

1991). Over the 6-month experimental period, the NP of all the treated IVDs displayed a 

progressive decrease of MRI signal intensity in T2w mid-sagittal image, exhibiting different 

degrees of degeneration in line with the type of treatment performed.  According to 

Pfirrmann grading scale, the control group (L5-6) maintained a grade I of degeneration at 

all time points; at T3, group L1-2 appeared as grade V, group L2-3 looked as grade III and 

group L3-4 and L4-5 appeared as grade IV and II, respectively.  

 These observations were further supported by macroscopic and histologic 

analysis. Morphologically, progressive increasing in IVD narrowing, fragmentation of the 
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NP matrix and loss of definition between NP and AF were observed at T3 in correlation to 

each technique performed. All stages of the degenerative process, from Thompson grade 

I to grade V, were observed with the same association of the Pfirrmann degenerative 

grade. The Thompson score reviews different aspects of the IVD (NP, EP and vertebral 

body) and subsequently a grade is assigned, ranging between I (normal disc) and V 

(severe degeneration) (Thompson et al., 1990). This scale has been widely accepted as a 

tool to measure IVDD (Battie and Videman, 2006; Bogduk, 1995), therefore represents a 

reliable parameter to evaluate IVD changes. 

 The histologic evaluation to assess IVDD showed a consistency to MRI and 

macroscopic findings at T3. The correlation between histologic and MRI findings 

supported the concept that the MRI findings correlate with changes, such as cellularity, 

and matrix of the NP, and border changes of the NP and AF. Although the MRI machine 

available for this research had a small magnet, the data obtained suggested that in vivo 

MRI might hold promise for assessing the NP integrity.  

The histologic evaluation provided interesting considerations regarding the efficacy 

of the PU scaffold. Unlike the spinal segments where the tunnel was sealed with the 

scaffold (L3-4, L4-5), in those segments where the device was not introduced at the EP 

edge (L1-2 and L2-3), NP tissue was observed within the tunnel with infiltration of 

inflammatory cells. This observation indicates that the PU scaffold prevents the NP from 

leaking within the tunnel. This is important for several reasons. The EP damage, caused 

by the 2-mm tunnel, represents a potential limitation of this technique. Indeed, the 

importance of the EP for IVD nutrition is well known and a lesion created by the proposed 

approach might induce Schmorl’s nodes, alter the nutrition supply to the centre of the IVD 

and cause further degeneration (Holm et al., 2004; Urban et al., 2004; Papalia et al., 

2015). These changes could be prevented or at least reduced by the use of the scaffold. 

Furthermore, when drugs, growth factors, stem cells, and viscoelastic biomaterials are 

delivered into the NP, the sealing of the tunnel would prevent the material from leaking 
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and might promote the restoration of intradiscal pressure, allowing the realization of 

biomechanical studies. Scaffolds should provide a three-dimensional matrix for the cells to 

attach, proliferate and finally form a functional tissue construct. They should exhibit a 

porous structure with interconnecting pores to allow a rapid and sufficient vascularization 

(Lashke, 2000). In particular, PU is regarded as a kind of bone repair material for its 

mechanical property and its special shape memory function. PUs have controlled 

degradation rate and the degradation time can take few months, which is compatible with 

the growth rate of osteoblasts (Guelcher et al., 2005; Guelcher et al., 2008). In the present 

study, evident signs of bone formation, in relation to the presence of the PU scaffold, were 

not observed; this could be related either to inadequate time for the surrounding cells to 

proliferate or to inadequate scaffold characteristics. Indeed, the biological quality of the 

scaffold determines to a great extent the regenerative potential of a tissue. In vitro, among 

the factors determining the cell-scaffold interactions are the biocompatibility of the 

scaffold’s material and its degradation products, the physicochemical characteristics of the 

scaffold’s surface, and the morphology, density, and size of pores in the scaffold (Gugala 

and Gogolewski, 2005).  

 The data collected from the qualitative findings suggest that the injury 

induced in this study is a reliable method for initiating a progressive form of IVDD in the 

adult sheep, obtaining different grades of IVDD depending on the type of lesion 

performed. The EP damage itself, caused by the realization of the transpedicular tunnel, 

led to IVD degenerative changes, although less severe than those caused by performing 

nucleotomy, which represents a more invasive and aggressive approach to the IVD. 

 This stepwise model could be suitable for studying pathogenesis and 

pathophysiology of IDD evaluated at the different stages of degeneration. Moreover, the 

model could be used to test safety and efficacy of novel treatments for IDD. Since has 

been proved that the sealing of the tunnel prevents the NP leakage into the cavity, growth 

factors and drugs could be tested in grade II model (tunnel + PU scaffold), while 
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biomaterials and cells as well as tissue engineering constructs might be tested in grade IV 

model (nucleotomy + PU scaffold) (Zhang et al., 2011). Moreover the intact AF would 

prevent leakage trough the AF allowing also reliable biomechanical tests (Vadalá et al., 

2013). 

 The above mentioned parameters, excluding the histology measures, 

represent indirect measurements of degeneration; therefore, despite the good correlation 

disclosed between the different scales, further quantitative analysis were performed to 

better determine the degenerative changes obtained. 

o QUANTITATIVE ANALYSIS  

 The parameters analyzed in the present experiment are commonly used to study IVDD 

(Krijnen et al., 2006; Loeser, 2002; Masuda et al., 2005; Sobajiama et al., 2005; Sakai et 

al., 2006). Both the DHi and the MRi are useful tools to quantify the results based on 

imaging techniques. Over the 6-month duration of the present study, the IVDs exhibited a 

progressive reduction in both indices if compared to the preoperative values.  

 MRI currently is the gold standard to evaluate IVDD in the (pre)clinical 

setting (Vaga et al., 2008). The MRI score and the MRi have been reported to correlate 

well with IVDD and are used to analyze the MRI images (Lu et al., 2008; Fan et al., 2012). 

The MRi assesses both the area and the signal intensity of the NP, which are both 

affected by IVDD (Fan et al., 2012).  Three of the treated IVDs (L1-2, L2-3, L4-5) 

presented a similar reduction in mean MRi at T3 (approximately 30%), whereas the 

“nucleotomy + PU scaffold” group showed a mean decrease of 57%, which was 

significantly higher than the control group at T2 and T3, when compared to the baseline. 

These results may indicate that the degree of degeneration induced was major and more 

consistent at L3-4, however no significant differences were found when treated discs were 

compared to each other. The intact control discs (L5-6) of the present model underwent 

some mild degenerative changes (15%) as well, possibly due to their proximity to and 
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interaction with the degenerated IVDs (Philips et al., 2002). When the variations of the 

MRi were evaluated for each treated IVD between the different time points, significant 

degree of degeneration were detected in all of them, demonstrating the potential 

effectiveness of each corresponding IVDD model. Interestingly, none of the IVDs 

presented significant indices variations between T2 and T3, which might indicate that 

most of the changes occurred during the first months of the study or may be related to the 

onset of reversal changes or spontaneous recovery between T2 and T3. When 

interpreting MRi results it is important to consider that several variables may influence the 

NP average signal intensity and its area. High signal intensity in the NP can be 

determined not only by the water content, but also by localized fluid collection in a fissure 

or the vacuum phenomenon (Schweitzer et al., 1998), that could represent rare but 

potential pitfalls for the assessment of the IVD. Increased NP signal intensity, secondary 

to the potential inflammatory process triggered by the nucleotomy, may also represent a 

limit for results interpretation. Limits linked to the outlined NP area could be related to the 

low field MRI machine and to the fact that the line was drawn manually, leading to 

reduced images detail and precision, respectively. In addition, the application of a 

phantom-based method (Luoma et al., 1997) to normalize the signal intensity at the 

different time points would have increased the accuracy of the MRI measurements.  

 Controversial results were observed for the DHi. At T3, the DH lost was 

only between 2 and 9% in 3 of the treated IVDs, whereas L4-5 presented a greater DH. 

Loss of DH is widely accepted as a measure of IVDD and the DHi enables the 

quantification of this phenomenon (Miyakoshi et al., 2000; Sasaki et al., 2001; Shao et al., 

2002; Masuda et al., 2005). The DHi neutralizes the effects of the sheep size and the 

magnification of the X-ray, allowing an inter-animal control of these values  (Miyakoshi et 

al., 2000; Sasaki et al., 2001; Shao et al., 2002; Masuda et al., 2004). The curves in 

Figure 33a are represented by “v-shape” lines, indicating an increased DHi when T3 was 

compared to T0. This result may imply the presence of spontaneous recovery or reversal 
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changes with consequent widening of the space. However, this variation must be 

evaluated cautiously; indeed, for practical reasons a consistent level of anaesthesia was 

not maintained during radiography of each animal and at each time point, leading to 

different degrees of muscle relaxation, which may have affected the DHi by causing a 

false increasing in the DH. 

 Animal models play a central role in current regenerative or reparative disc 

response studies (Alini et al., 2008). Different animal species, anatomical sites (spine or 

tale), and methods to induce IVDD are currently considered adequate to represent human 

IVD degenerative changes. In the present study, a variable degree of IVDD was induced 

by performing distinct type of injury, providing different models suitable to study different 

stages of IVDD in human. The nucleotomy produced a direct and fast damage to the NP, 

whereas the realization of the transpedicular tunnel through the EP induced a less severe 

and slower IVD damage. The time course of the modeled IVDD is relevant from several 

perspectives. The classic stab model developed by Lipson and Muir (1981) results in fast 

degeneration by immediate herniation of the NP and therefore might not mimic the 

process of human IVDD. Further, the rapid development of severe degenerative changes 

in this model does not allow the study of the mild changes occurring in early phase IVDD. 

Recently, new models have been developed to induce mild and slowly progressive 

degeneration by a needle puncture (Masuda et al., 2005; Sobajiama et al., 2005). These 

models provide an excellent and cost-effective method to study new regenerative 

therapies. However, the rabbit, used in these models, has some shortcomings in its 

comparability to humans, as it is much smaller and also retains the notochordal cells in 

the NP in maturity (Hunter et al., 2004). Therefore, a large animal model is needed to 

study the feasibility of newly developed therapies before moving towards clinical 

application. The present transpedicular sheep model is suitable for this purpose as it lacks 

notochordal cells at the skeletally mature age (Hunter et al., 2004) and its IVD has 

comparable proportions as humans (Reid et al., 2002); furthermore, it provides different 
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progressive stages of IVDD. To determine whether the induced degeneration is truly 

mimicking human IVDD, biochemical and biological parameters need to be evaluated.  

The present study has a number of limitations that have been partially discussed 

throughout the text (e.g. EP damage, use of low field MRI, possible imprecisions related to 

quantitative measures). Further limitations of this model are represented by the fact that, 

being an injury model, may not truly represent human IVDD, by the measurable costs and 

by time to generate a consistent IVD injury. In order to study a sufficient number of 

animals to test a new intervention procedure or a drug, this model is a reasonable testing 

model, although the results obtained should be confirmed in a larger number of animals.
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CONCLUSIONS  

The present study has demonstrated the feasibility of the transpedicular approach in vivo 

and its potential for studying IVDD physiopathology and for future clinical applications for 

delivering drugs, growth factors, stem cells, and viscoelastic biomaterials directly into the 

NP without affecting the AF. By sealing the transpedicular tunnel with a PU scaffold, will 

be also possible to perform additional biomechanical studies of the new NP regenerative 

therapies. Mechanical EP injury and nucleotomy of skeletally mature sheep lumbar IVDs 

has been performed via the EP route through the transpedicular approach, resulting in 

different degrees of MRI, radiographic, macroscopic and histologic IVDD changes. The 

IVDD seemed to occur with specific degrees of degeneration according to the group of 

surgical treatment at 6-month follow-up. The present IVDD model will be a significant 

contribution towards the translation to the therapeutic arsenal of new regenerative 

strategies for biological restoration of degenerative changes in the IVD, which is crucial to 

improve present clinical treatments and life quality of several patients.
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