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1. INTRODUCTION 

 

 

The study of numerical abilities represents one of the main issues of experimental 

psychology. The large body of evidence collected in literature agrees on the existence of 

two different types of abilities: verbal and pre-verbal numerical abilities (Gelman & 

Butterworth, 2005). The former abilities are strictly related to culture and language and 

permit us to learn the wide range of symbols and syntax required in school mathematics. 

However many studies also reported the existence of rudimentary numerical abilities 

that are independent from culture and language (Feigenson et al., 2004; Nieder, 2005). 

Such pre-verbal numerical skills are likely to have helped us to solve most of the 

quantity problems faced throughout human evolution, permitting to assess which group 

is more numerous even without verbal counting or mathematical syntax, for instance 

when we have to quickly evaluate which queue is less numerous at the airport. 

Data supporting the existence of pre-verbal numerical systems come from four 

different field of psychology: cultural, cognitive, developmental and comparative 

psychology.  

Cultural psychology investigates how cultural factors influence human behaviors and 

cognitive mechanisms. In our context, the study of numerical competence in cultures in 

which the language of numbers is either absent or limited represents an almost unique 

opportunity to elucidate the relations between language and arithmetic in adult humans. 

For instance, Pica and colleagues (2004) reported numerical abilities in native speakers 

of Mundurukú, a language that has number words only for the numbers 1 through 5. 

People belonging to this Amazonian population exhibit exact calculation in the range 

supported by verbal language, and approximate calculation beyond 5 units, showing that 

language plays a special role in the emergence of exact arithmetic but, at the same time, 

that language is not a sine qua non condition for rudimentary numerical abilities. 

Cognitive psychology studies mental processes such as memory, problem solving, 

decision-making, perception, language use and attention. Despite it is difficult to 

disentangle verbal and pre-verbal numerical skills in adult humans, it is possible to 

investigate the mechanisms underlying pre-verbal numerical abilities by requiring 

participants to make a rapid judgments of relative numerosities (e.g., 150 milliseconds: 
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Agrillo & Piffer., 2012) while being prevented from using verbal counting (articulatory 

suppression). Using this procedure, it was demonstrated that adults required to estimate 

which set of dots is larger while repeating aloud non numerical words (i.e., abc) are still 

able to discriminate between quantities even without the possibility of counting the 

items  

Developmental psychology focuses on human growth throughout the lifespan, from 

childhood to adulthood. This includes changes across a broad range of topics including 

physical, emotional, intellectual, social, perceptual and personality development. 

Interestingly, several studies have reported that pre-verbal human infants are able to 

discriminate between different number of objects, auditory sequences and actions (Xu 

& Spelke, 2000; Lipton & Spelke, 2003, Wood & Spelke, 2005) and that their accuracy 

increases over development, thus providing evidence that these skills emerge early in 

infancy, well before the acquisition of language, and persist throughout adulthood. 

Comparative psychology studies the behavior and cognitive mechanisms of non-

human animals and often involves comparing similarities and differences among 

species in order to understand their evolutionary relationships. Furthermore, 

comparative data can lead to a deeper comprehension of human psychology, trying to 

track continuities and discontinuities between human and non-human abilities. Evidence 

of similar cognitive abilities in different species then raises the question whether these 

traits evolved in a common ancestor or if they evolved independently as a result of 

similar selective pressures (Hauser & Spelke, 2004). 

Although only our species has achieved high level of mathematical reasoning, 

numbers are not a human prerogative and rudimentary numerical abilities have been 

reported in non-human animals too (e.g., Uller, 2008; Feigenson et al. 2004). Indeed, 

there are many real-life situations in which the ability to discriminate between quantities 

is useful and there is no reason to believe that selective pressures in favour of the ability 

to quantify different magnitudes should have acted only on hominids. Quantitative 

abilities can permit animals to optimize foraging, enabling them to rapidly select the 

largest of two available sources of food (Beran, 2004). These abilities represent a 

powerful tool for anti-predator defence, reducing the probability of being spotted by 

predators (Agrillo et al., 2012; Gòmez-Laplaza & Gerlai, 2011a, b) and are also useful 

in social interactions: for instance, lionesses and hyenas are more willing to enter a 
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contest when their group outnumbers that of opponents (McComb et al., 1994, Benson-

Amram et al., 2011). 

The discovery that the capacity to discriminate between quantities is widespread 

among vertebrates led several authors to suggest that these non-symbolic numerical 

systems may have a long evolutionary history (Beran, 2008a; Feigenson, et al., 2004; 

Agrillo et al., 2012).  

Especially in the last decade, researchers have increased their attention on numerical 

cognition. Part of this remarkable development is related to the discovery of a linkage 

between verbal and pre-verbal numerical systems. Several lines of research suggest that 

our verbal numerical abilities are rooted in pre-verbal numerical systems (Halberda et 

al., 2008; Park & Brannon, 2013). For instance it has been found that deficits in the 

study of mathematics, such as dyscalculia, are associated with low performance in non-

verbal numerical tasks (Piazza et al., 2010; Furman & Rubinstein, 2012). In this sense, 

the study of pre-verbal numerical abilities becomes crucial to understand the foundation 

of our mathematical abilities.  

With respect to this topic, animal models can play a key role in increasing our 

knowledge on human cognitive systems, as in other research fields, helping to 

investigate the exact mechanisms underlying pre-verbal numerical abilities. Actually 

there are several advantages in using animals models in this issue: the study of non-

human animals permit to investigate numerical systems without any influence of 

language and culture; some species (such as zebrafish or drosophila) represent an ideal 

model to investigate the genetic origin of these cognitive systems, as we now have full 

knowledge of their genome. Also, rapidly growing species represent proper models to 

study the ontogeny and developmental trajectory of pre-verbal numerical abilities, as 

well as the role of experience and maturation can be finely manipulated in controlled 

laboratory studies with non-human animals.  
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1.1. Numerical abilities in animals 

 

1.1.1. Field studies 

 

Being able to discriminate between different quantities yield benefits in several 

contexts. For example, a number of studies have shown that different species decide 

whether attack intruders or retreat depending on the number of individuals in the 

interacting groups. 

McComb and colleagues (1994) investigated whether lionesses (Panthera leo) in the 

Serengeti National Park based their aggressive interactions on the assessment of the 

relative number of intruders. Researchers used a play back technique to reproduce roar 

recordings from one single stranger lioness or from a group of three females to simulate 

the presence of unfamiliar individuals. Lionesses were more likely to approach the 

playbacks when they outnumbered the opposite group.  

Recently a similar behavior has been 

reported in spotted hyenas (Crocuta 

crocuta) in the Masai Mara National 

Reserve using a playback procedure 

similar to the one previously adopted by 

McComb and colleagues (1994). Hyenas 

were more vigilant when they heard 

contact calls from three unknown 

individuals than from two or one and took 

more risk in approaching the speakers 

when they were in numerical advantage 

(Benson-Amram et al., 2011) (Fig. 1). 

Brood parasitism offers another interesting ecological context in which numerical 

assessment play a key role in decision making. The number of eggs in a nest is an 

indicator of the nest stage and its quality. A small clutch size indicates that the host has 

not begun the incubation yet and hence parasitic individuals can lay their own eggs to 

synchronize hatching with that of the host. The number of eggs may also affect the 

Fig. 1: Hyenas tend to attack other 

conspecifics when they outnumber the 

potential opponents (Benson-Amram et 

al., 2011) 
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efficiency of incubation: a large number reduces the probability of hatching and 

sometimes the nest may be abandoned because of the lower hatching success. Since the 

reproductive success in brood parasitic species is determined by the number of eggs in 

the host nest, it is likely that selective pressure has favoured mechanisms to discriminate 

quantities. 

White and colleagues (2009) studied the ability of an obligate brood parasite, the 

brown-headed cowbirds (Molothrus ater), to assess the number of eggs in possible host 

nests in order to lay in the most suitable one. Cowbird host usually lays one egg per day 

until it reaches the clutch size and then starts the incubation. Researchers manipulated 

the number of eggs in two experimental nests, adding one egg each day in one nest and 

adding a fewer number of eggs in the other one for a different number of days. Data 

showed that female cowbirds used both the total number of eggs in the nests and the 

rate at which eggs were added as indicator of the nest stage in order to choose the one in 

which the number changed in accordance with the number of days elapsed between two 

successive visits. Comparable results have been obtained with a conspecific brood 

parasite, the wood duck (Aix sponsa) (Odell & Eadie, 2010). Four kinds of experimental 

nests containing a different number of eggs were used to simulate different nest stages: 

5 eggs (reproducing a situation in which the host was still laying), 10 eggs (the host was 

close to start the incubation), 15 eggs (incubation started), 20 eggs (incubation started or 

nest abandoned). Parasite females preferred to lay eggs in the nests with the smaller 

clutch size (5 or 10 eggs), regulated the number of eggs laid on the basis of the eggs 

already present and were more willing to incubate the experimental nests with 5 or 10 

eggs.  

Animals rely on quantitative information also to guide their foraging decisions. 

Theories of optimal foraging (MacArthur & Pianka 1966; Stephens & Krebs 1986) 

predict that animals have evolved strategies to maximize their energy intake when 

foraging, and hence it is expected they have evolved the ability to select larger amounts 

of food. 

Different avian species have shown to prefer the larger quantity of food in natural 

environment. Hunt and colleagues investigated in the Karori Wildlife Sanctuary 

whether the ability of New Zealand robins (Petroica australis) to retrieve cached food 

was based on the numerical estimation of hidden prey. Different number of mealworms 



6 

 

were sequentially placed in two artificial cache sites and then obscured from robins’ 

view. In this way subjects could never see the whole content of each group, thus 

preventing the use of non-numerical information (see Section 1.2). Even in this 

condition, robins chose the larger amount of food (1 vs. 2, 2 vs. 3, 3 vs. 4 and 4 vs. 8). 

Furthermore, when subjects were allowed to retrieve only a fraction of the prey because 

a certain number of mealworms was removed after being shown to birds, subjects 

searched for longer the expected number of prey, showing the ability to take into 

account quantitative information (Hunt et al., 2008). Garland and colleagues (2012) 

observed a similar performance in North Island robins (Petroica longipes), both when 

mealworms were sequentially hidden and when prey were simultaneously presented as a 

whole set.  

In conclusion, field studies show that the ability to discriminate between quantities 

can provide advantages for animals’ fitness and hence it is plausible that multiple 

selective pressure have acted on numerous species to cope with different problems in 

their natural environment. 

 

 

1.1.2. Laboratory studies 

 

Field studies are useful to understand the ecological relevance of numerical 

information. However, they seldom control for non-numerical cues, making it difficult 

to understand whether animals use numerical information only or other perceptual cues. 

With respect to this topic laboratory researches permit to study numerical abilities under 

more controlled conditions. Two procedures are commonly used: the spontaneous 

choice paradigm and the training procedure. 

The first method investigates the spontaneous preference for small or large quantities 

based on relative numerousness judgements (e. g., A is greater than B). This ability 

represents a basic discrimination mechanism that does not necessary require real 

enumeration. 
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Food has been commonly used as stimulus due to its high ecological value for animals. 

Since it is more advantageous to select larger amounts of food, they are expected to 

spontaneously choose the larger group of food items. 

Red-backed salamanders (Plethodon 

cinereus) placed in a T-shape 

enclosure with two plastic tubes 

containing a different number of fruit 

flies, approached the one with the 

larger number of prey in 1 vs. 2 and 2 

vs. 3 numerical contrasts but not 

when the choice was between  3 vs. 4 

or 4 vs. 6 fruit flies (Uller et al., 

2003) (Fig. 2). 

Recently, Perdue and colleagues 

(2012) investigated relative quantity 

judgements in two African elephants 

(Loxodonta africana). In the Visible 

condition, subjects could choose 

between two sets of food items (from 1 through 10) presented simultaneously as whole 

sets. In the Nonvisible condition, food items were inserted sequentially in two 

containers to avoid animals from seeing the entire sets and compare them directly. The 

elephants chose the larger amount of food in both conditions but their performance 

decreased as the ratio between the two quantities increased becoming more difficult. 

Other studies have showed that animals as diverse as dogs (Ward & Smuts, 2007), sea 

lions (Abramson et al., 2011), beluga whale and bottlenose dolphins (Abramson et al., 

2013) select the larger quantity of food. 

In other works, social companions were used as stimuli (Agrillo et al., 2008a; 

Gòmez-Laplaza & Gerlai, 2011 a, b). The assumption was that social animals can take 

advantage in nature by spontaneously joining the larger group of conspecifics to reduce 

the risk of being caught by predators. For example, it has been shown that different fish 

species prefer to join larger groups of conspecifics when placed in an unfamiliar and 

potentially dangerous environment to reduce the chance of being spotted by predators 

Fig. 2: Schematic representation of the 

experimental set-up used by Uller and 

colleagues (2003). Salamanders selected the 

larger number of fruit flies in 1 vs.2 and 2 

vs.3. 
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(fathead minnow: Hager & Helfman 1991; banded killifish: Hoare et al., 2004; green 

swordtail: Buckingham et al., 2007). 

Despite quantity discrimination has been mainly investigated in vertebrates, recently, it 

has been shown that some invertebrates display rudimentary quantity abilities too. 

Carazo and colleagues (2009) exposed male yellow mealworm beetles (Tenebrio 

molitor) to substrates bearing odour from groups of females differing in number (1 vs. 

4, 1 vs. 3, 2 vs. 4 and 1 vs. 2). The subjects discriminated between the sources of odour 

reflecting 1 vs. 4 and 1 vs. 3 (0.25 and 0.33 ratios respectively) females, while no choice 

was observed for 1 vs. 2 or 2 vs. 4 contrasts (0.5 ratio).  

For what concern training procedures, subjects are commonly required to learn a 

numerical rule in order to receive a reward. 

Spontaneous choice tasks can be run quickly but they usually require a relatively large 

sample size, making the study of some uncommon species (e.g., marine mammals, 

primates) more difficult. For this reason, training procedures may be the best way for 

testing a limited number of individuals multiple times in order to collect sufficient data, 

even though this kind of procedure sometimes may require time consuming efforts. 

Early laboratory studies were performed by Otto Koehler who tested different avian 

species (pigeons, jackdaws and budgerigars). His studies suggested that birds were able 

to discriminate groups of items presented simultaneously and to assess the number of 

events that occur successively (Koehler, 1941; 1951).  

Despite Koelher’s researches were criticized for lack of control, further studies using 

computerized tasks confirmed his findings. Emmerton and Delius (1993) trained 

pigeons (Columba livia) to discriminate between arrays of white dots on a dark 

background using a standard operant procedure. Stimuli varied in number and dot size 

across trials and when pigeons chose the correct array (the large one), they received a 

food reinforcement, whereas the choice of the wrong quantity led to a period of 

darkness. In transfer trials with new pairs of stimuli equated for brightness, pigeons 

were capable to discriminate up to 6 vs. 7 dots but their performance decreased to 

chance level in 7 vs. 8. Other studies have reported that pigeons are also able to order 

serially numerical quantities (from 1 through 7) (Emmerton et al., 1997), and to 

associate a specific number of pecks in response to visual symbols representing 

numbers from 1 to 6 (Xia et al., 2000). 
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Brannon and Terrace (1998) trained two rhesus monkeys (Macaca mulatta) to order 

numerosities from 1 to 4 in ascendant way. Stimuli were groups of two-dimensional 

figures varying in size, shape, color and surface area to avoid monkeys from using non-

numerical cues rather than number to order the numerosities. When the subjects learned 

the ascendant rule (1-2-3-4), new stimuli with novel numerosities (5-9) were introduced 

in transfer test to see whether monkeys were able to generalize to unfamiliar 

numerosities. Both animals correctly ordered the sequence from 1 to 9 showing to be 

able to represent the ordinal relations among the numerosities. The same paradigm was 

successfully adopted in studies with capuchin monkeys (Cebus apella) (Judge et al., 

2005) and pigeons (Scarf et al., 2011), revealing a similar pattern of choice.  

More recently, american black bears (Ursus americanus) have been trained to 

discriminate between groups of dots (from 1 to 10) in three conditions (Vonk & Beran, 

2012). In the first one, the dots were static, in the second condition, the items moved on 

a screen and in the third one, bears had to discriminate subsets of dots within each group 

of moving items. All the subjects successfully chose the correct set of items in all three 

conditions even though the performance decreased with ratio and was less accurate with 

moving stimuli. The lower performance in enumerating moving dots could be due to the 

fact that the black bear is a non-social 

species and hence it probably does not 

need a precise mechanism to track 

individual members of the moving group 

(see Section 1.3). However, since they 

were able to discriminate the moving sets 

differing in numerosity to some extent, it 

is possible they have evolved a less 

accurate system to quantify amount of 

moving objects. 

Insects have been trained to study their 

numerical skills too. Bees (Apis 

mellifera) were trained to obtain a sugar 

solution (a food reward) after they had 

flown beyond a certain number of 

Fig. 3: Experimental tunnels with 

different landmarks spaced at regular 

intervals to assess numerical ordering 

abilities in bees (Dacke & Srinivasan, 

2008) 
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regularly spaced landmarks in a tunnel. When the distance between the landmarks was 

modified to verify whether bees had learned to use the exact number of landmarks 

passed instead of the distance covered, they used the numerical position to receive the 

reward rather than their spatial arrangements. When subjects were presented with novel 

landmarks (Fig. 3), bees were still able to identify the correct one on the basis of its 

numerical location (Dacke & Srinivasan, 2008). 

 

 

 

1.2. The role of continuous variables in quantity discrimination 

judgments 

 

Quantity judgements are not always necessarily “numerical” judgments. The 

discrimination between “more” or “less” items could be achieved without counting. In 

natural environment numerosity normally co-varies with other perceptual cues, usually 

named continuous variables or quantities (i.e., density, overall space occupied by the 

items, brightness, etc.), that may be informative about the magnitude of the sets to be 

compared. For instance, two groups with a different number of apples normally differ in 

the overall space occupied, in the their total volume and cumulative surface area. As a 

consequence animals can rely on continuous quantities to guide their choice instead of 

using numbers.  

Some authors suggest that animals spontaneously represent number and can 

discriminate sets of items on the basis of their numerosity (Gallistel & Gelman, 1992; 

Dehaene, 1997). 

Conversely, other authors claimed that animals are not naturally attuned to number 

since numerical information is less salient in natural contexts than physical attributes. 

Furthermore they argue that number is more cognitively demanding to be processed 

than perceptual cues and hence animals would mainly attend to continuous quantities 

than discrete ones. However, when no other cues are available animals could base their 

choice on number as a “last resort” strategy (Breukelaar & Dalrymple-Alford, 1998; 

Davis, 1993; Davis & Memmot, 1982; Davis & Perusse, 1988).  
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Numerosity is a property of a set of items: it means that numerosity remains constant 

even when continuous variables are manipulated and it changes only if other items are 

added or subtracted. In this sense, if a subject still discriminates groups containing 

different number of objects when perceptual features are controlled it probably means 

that the subjects can use numerical information.  

Different experimental strategies have been used in literature to disentangle the 

relative salience of numerical and non-numerical information. 

One involves the use of stimuli controlled for continuous quantities (i. e., cumulative 

surface area is equated between the sets) in order to assess whether subjects can use  

numerical information only (Vonk & Beran, 2012; Emmerton & Renner, 2006; Brannon 

& Terrace 1998; Rugani et al., 2008; Xu & Spelke, 2000, Clearfiled & Mix, 1999). 

The other strategy, commonly called item-by-item procedure, consists in sequentially 

presenting each item in a set in order to prevent the subjects from having a global view 

of the entire sets. For example, the experimenter place 3 apples in one opaque container 

and 2 apples in a second one, and then the subjects is allowed to select only one 

container. Furthermore, since the numerosity is correlated with the amount of time 

required for hiding the items, total duration and ratio of presentation are also controlled. 

In this conditions it is difficult that subjects rely on continuous quantities and the only 

way to solve the task is to mentally add each item within each container and then 

compare the two representations (Hauser et al., 2000; Perdue et al., 2012; Utrata et al., 

2012, Feigenson et al., 2002a). 

To date, there are conflicting data about the salience of numerical information both 

in human and animal literature.  

For instance, when chimpanzees (Pan troglodytes) were given the choice between 

arrays containing a different number of crackers, presented both simultaneously and 

sequentially, they chose the set with the larger amount of food even when it contained 

the smallest number of food treats. Subjects based their preference on the total amount 

rather than on the number probably because animals naturally try to maximize their 

energy intake and the total amount is usually a better indicator of the total edible mass 

than the number of food items (Beran et al., 2008a). 
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Likewise, Pisa and Agrillo (2009) observed that 

the ability to discriminate quantities is strongly 

affected by continuous quantities in cats (Felis 

silvestris catus). Four cats were trained to 

discriminate between 2 and 3 black dots on a 

withe background in order to get a food reward 

(Fig. 4). Stimuli used during the training phase 

were not controlled for continuous variables and 

the dots in the larger set had also the largest 

cumulative surface area and occupied the largest 

space. Cats learned the discrimination in the 

training phase but their performance dropped to chance level during the test phase when 

new stimuli controlled for cumulative surface area were presented, suggesting that they 

were attending to non-numerical cues to discriminate between quantities. 

When biologically relevant stimuli are used, such as living organisms, the amount of 

movement is another cue that may play an important role in decision making. Larger 

groups usually have an higher level of activity providing clear information about the 

group size. Despite Uller and colleagues (2003) have shown that salamanders chose the 

larger amount of fruit flies, they did not control for the total movement of the prey. 

Since salamanders are very sensitive to the movement pattern and the speed of the prey, 

Krusche and colleagues (2010) used a two choice task to study whether salamanders 

could assess differences in large groups (8 vs. 16 crickets) even when the movement 

was controlled. In short, salamanders were presented with three sets of stimuli: live 

crickets, videos of live crickets or computer-animated crickets. The latter kind of stimuli 

allowed to control for perceptual cues that co-varied with the number of the prey 

(movement and distribution). Salamanders preferred the larger group when they could 

choose between live crickets and videos of live crickets but they chose randomly when 

the movement duration was equal in the computer-animated stimuli. This result 

demonstrated that salamanders were not sensitive to number but rather that the total 

activity of the stimuli was a prominent cue in their decision making. 

All together, these studies bolster the last resort hypothesis showing a preferential 

use of continuous rather than discrete (numerical) variables in different species.  

 

Fig. 4: Representation of the 

experimental set-up used to 

study numerical cognition in 

cats (Pisa & Agrillo,2009). 



13 

 

After all, it is remarkable that continuous quantities are relevant in humans too. For 

instance, some authors claim that human infants attend preferentially to continuous 

variables than to numerical information to discriminate between quantities. Despite in 

early studies infants proved be able to discriminate between small number of items 

(Starkey & Cooper, 1980; Strauss & Curtis, 1981; Antell & Keating, 1983), continuous 

quantities were correlated with number and therefore it is possible that infants 

responded to changes in these cues instead of changes in numerical information. 

Clearfield and Mix (1999) used the habituation procedure to study whether infants were 

able to detect a change in number or a change in continuous quantities in a number 

discrimination task. Six month-old infants were initially presented with sets of two or 

three bi–dimensional black squares with constant contour length until they reached the 

habituation criterion. Subsequently, stimuli familiar in number but novel in contour 

length and stimuli familiar in contour length but novel in number were shown 

alternatively in test phase. Infants looked longer at the arrays with new contour length 

than at the sets novel in number thus suggesting that they were able to detect changes in 

continuous variables but not in number. A similar conclusion was reached by Feigenson 

and colleagues (2002a) in a study where 10- to 12-month-old infants were allowed to 

choose one of two containers where a different amount of crackers had been 

sequentially inserted. When the number of crackers co-varied with the cumulative 

surface area and hence with the total amount of edible food, infants preferred the larger 

group in 1 vs. 2 and 2 vs. 3 comparisons. However, when the crackers were of different 

sizes, the choice was determined by total surface area and the authors concluded that 

infants relied on continuous variables rather than on numerical information.  

Continuous quantities affect numerical estimation also in adult humans who have 

been shown to spontaneously and automatically represent number, size and area when 

judging which array of dots is larger. Continuous variables were found to interfere with 

numerosity judgements more than variation in number interfered with area judgements. 

Subjects relied on number only when the numerical distance between the sets was large, 

but when the distance was small they spontaneously based their choice on the area of 

the dots showing to be unable to ignore area/size information (Hurewitz et al., 2006). 

Gebuis and Reynvoet (2012) have proposed that we normally make quantity judgements 

by weighing different visual cues because in daily life number usually co-varies with 
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perceptual cues and this is likely to have favoured the evolution of systems that rely on 

multiple information. In their study, adults were required to estimate the number of dots 

in arrays differing in numerosity (12, 20, 28, 36 or 44). The visual properties of the 

stimuli were manipulated in order to be not predictive of the numerosity and hence there 

was no correlation between number and continuous variables (i.e: the cumulative 

surface area in the 28-dot set was smaller than in 20-dot set but larger than in the 36-dot 

one). Subjects unconsciously estimated the number on the basis of the visual cues. This 

result bears on the hypothesis that we are probably unable to process number 

independent of the perceptual cues. 

However data are controversial since numerous studies have reported a spontaneous 

use of numbers both in humans and non-human animals thus challenging the last-resort 

hypothesis. 

Cantlon and Brannon (2007a) showed that rhesus monkeys were able to naturally 

extract numerical information. Monkeys were trained to discriminate between arrays 

containing a different number of two-dimensional figures using a match-to-sample 

technique. During training stimuli were not controlled for continuous variables and 

monkeys could use both continuous and discrete quantities to solve the task. However, 

when continuous quantities were pitted against number in test phase, all three number-

experienced monkeys matched the stimuli on the basis of numerical information when 

the numerical ratio was easy. In addition authors tested also a number-naïve monkey to 

verify how much the training history might have influenced the performance of 

monkeys that had undergone extensive number training. Even though the monkey 

without previous experience on number relied more on continuous cues when the 

numerical ratio was difficult, it spontaneously used number to solve the task when the 

ratio between the stimuli was small.  

Animals other than primates are capable of encoding numerical information. Domestic 

chicks and pigeons successfully discriminated the larger set of geometrical figures both 

when continuous and discrete quantities were simultaneously available and when 

continuous quantities were controlled (overall area and contour length in chicks: Rugani 

et al., 2008; brightness and area in pigeons: Emmerton & Ranner, 2006), showing a 

similar performance in the two conditions. 
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In a recent study by Utrata and colleagues 

(2012) wolves (Canis lupus) chose the 

larger set of food treats (1-4) sequentially 

introduced into two opaque containers, 

even in control tests set up to rule out the 

possible influence of continuous 

quantities. In the time control experiment 

(Fig. 5a), stones were added in the 

smaller set in order to equate the amount 

of objects hidden and the handling time. 

In the stone control experiment (Fig. 5b), 

an extra stone was added in both sets to 

exclude that wolves simply have avoided 

the sound of the stone in the smaller 

group in the previous control.  

Wolves successfully discriminated between the two numerosities, suggesting that their 

preference was based on the effective number of food items. 

Taken together, these results revealed a number sense in non-human animals and a 

natural sensitivity to numerical information. 

A similar conclusion was drawn about human infants. Six-month old infants proved 

be able to discriminate 16 from 8 dots when stimuli were controlled for continuous 

variables showing to be capable of detecting a twofold change in number (Xu & Spelke, 

2000). More recently Cordes and Brannon (2008) have provided data challenging the 

hypothesis that the representation of continuous quantities is less complex than the 

representation of number in human infants. Six-month-old infants were initially 

habituated to dot sets with constant cumulative surface area but with different number 

of dots to make numerical information irrelevant. In test phase stimuli that alternated 

between the familiar and a novel cumulative surface area were shown. Infants failed to 

detect a twofold and a threefold change in area and required at least a fourfold change to 

notice the difference. These results are clearly in contrast with the idea that pre-verbal 

infants spontaneously attend to continuous quantities and use number only as a last 

a 

Fig. 5: Control experiment to verify 

whether wolves base their choice on 

continuous cues: Time control (a), Stone 

control (b). (Utrata et al., 2012) 

b 
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resort strategy. Furthermore it seems that continuous variables are more difficult to be 

processed, at least when arrays with multiple elements are presented. 

Interestingly Nys and Content (2012) have shown that number is as salient as area in a 

discrimination task in adults. Participants were presented with dot arrays (30 through 

100) and were asked to perform a number comparison task or an area comparison task. 

Stimuli were both congruent (number and area were correlated) and incongruent 

(number and area were negatively correlated). Results showed that cumulative area 

affected the ability to compare set differing in numerosity, thus confirming previous 

data (Hurewitz et al., 2006). Interestingly, numerosity interfered with area judgements 

providing evidence that adult spontaneously extracted number. Overall, the fact that 

adults could not ignore numerical information when processing continuous quantities 

supports the view that number is a prominent cue. 

Even though data on the relative salience of continuous variables on number and vice 

versa are very ambivalent, it seems to be widely confirmed that the redundancy of 

information may facilitate to solve quantity discrimination tasks both in humans and in 

non-human animals. 

For example, Agrillo and colleagues (2011) trained mosquitofish to discriminate 2 dots 

from 3 in order to re-join conspecifics in an external tank, in three conditions. In the 

first one stimuli were controlled for continuous quantities and subjects could use only 

numerical information; in the second one the number was kept constant (1 vs. 1) and 

only continuous quantities were available (the area in one stimulus was 2/3 the area of 

the other one) and in the last condition both number and continuous quantities were 

available. Fish learned to discriminate more quickly in the last condition compared to 

when they could use continuous quantities only or numbers only; interestingly, no 

difference in the learning rate between these two latter conditions was found. Hence, the 

authors suggested that the redundancy of information helped fish in learning faster to 

solve the task and that processing numbers was not more cognitively demanding than 

processing continuous quantities. 

Among adult humans, multiple information facilitate learning and memory either 

presented in the same sensory modality or in different modalities (Armelius & 

Armelius, 1974; Neil et al., 2006). Evidence for the use of multiple types of information 

has been reported for infants too (Suanda et al., 2008). Iuculano and colleagues (2008) 
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found that 8- to 9-year-old were more accurate when discriminating stimuli in which 

both area and number suggested the correct response than stimuli in which only area or 

only number were available.  

In a study by Jordan and colleagues (2008a) 6-month-old infants were habituated to see 

a movie in which a ball dropped and bounced 8 or 12 times in three different conditions. 

In the first one every time the ball bounced, it produced a tone synchronized with each 

ball impact, in the second condition infants could see just the ball bouncing without any 

sound and in the third situation classical music was played all along the duration of the 

visual sequence thus not providing synchronous numerical information. During test 

phase sequences with the ball bouncing 8 and 12 times were shown alternately in all 

three conditions. Infants looked longer at the novel sequence only when they could see 

the ball and listen the tone synchronized with the impact, providing the first evidence of 

6-month-old infants’ ability to discriminate a 2:3 ratio: a level of discrimination 

normally achieved at about 9 months of age when unimodal stimuli are used (Xu & 

Spelke, 2000, Lipton & Spelke, 2003). The authors claimed that redundant information 

across multiple sensory modalities might have improved infants’ accuracy in a quantity 

discrimination task. 

 

 

 

1.3. One or multiple numerical systems of numerical representation ? 

 

Numerous studies have provided evidence that humans have both verbal and pre-

verbal numerical systems to represent and compare quantities. The verbal systems are 

unique to humans and are promoted by teaching and enhanced by day to day 

engagement in numbers (Carey, 2004; Feigenson et al., 2004). They allows complex 

mathematical reasoning and are strictly related to language since imply the use of 

abstract numerical symbols (namely, Arabic words and number words) to perform 

arithmetic calculus. Through the verbal systems we can discriminate precisely both 

large and small quantities, that is, the discrimination between 150 and 155 items is as 

much accurate as the discrimination between 7 and 8.  
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Fig. 6: Depiction of the accumulator 

mechanism proposed by Meck and 

Church (1983). The mechanism 

generates an impulse for each 

object in a set. The magnitude 

accumulated at the end of the count 

represents the total number of 

items. 

On the other hand, we are also equipped with pre-verbal numerical systems that allow to 

quickly estimate which group is larger without symbols or verbal counting, for instance 

when we have to select which queue is shorter at the ticket office. However quantity 

discrimination is less accurate when pre-verbal number systems are involved. 

In last years a number of studies have found a positive correlation between our 

complex numerical skills and pre-verbal quantification systems: the more accurate we 

are in non-verbal numerical estimation, the better we are in mathematics (Halberda et 

al., 2008; Lyons & Beilock, 2011). Furthermore children’s acuity in quantity estimation 

tasks measured at preschool predicts their performance on math achievement 

(Mazzocco et al., 2011). It is also worth noting that Park and Brannon (2013) have 

observed that improvement in a non-

symbolic-arithmetic task after a specific 

training transferred to improvement in a 

symbolic-arithmetic task thus providing the 

first evidence that pre-verbal systems may be 

causally related to verbal systems. Overall, 

these studies support the hypothesis that pre-

verbal numerical systems underlie our 

mathematical abilities.  

Regarding the pre-verbal systems, many 

authors agree with the existence of an 

approximate number system (ANS) able to 

support the representation of numerosities 

without language. The pre-verbal counting 

process could be explained by the 

accumulator model proposed by Meck and 

Church (1983). The system works by 

generating an impulse for each object in a set: 

the more items to be enumerated, the more 

impulses are generated and stored in a mental 

accumulator. The final magnitude of impulses 

in the accumulator at the end of the counting 
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process is stored into memory and represents the cardinal value of the counted array 

(Fig. 6). This system does not represent individual objects but rather, the numerosity of 

a set is represented as an approximate mental magnitude proportional to the quantity to 

be represented. As a consequence, if the difference between two sets is small, their 

representations may overlap, leading to lower accuracy.  

The numerical discrimination through this mechanism is subject to Weber's law which 

states that the just-noticeable difference between two stimuli is proportional to the 

magnitude of the stimuli. It means that discrimination depends on the ratio between two 

quantities to be compared rather than on their absolute difference (Gallistel & Gelman, 

1992): the discrimination between 10 from 20 (ratio 1:2) is easier than the 

discrimination between 40 from 50 (ratio 4:5) even if the numerical distance is the same 

(10 units). For this reason as numerical magnitudes increase, a larger numerical distance 

is required to discriminate between quantities. Despite the discrimination is not accurate 

and is ratio dependent, this system allows quantity discrimination without an apparent 

upper limit. 

When adults are tested in quantity discrimination tasks which prevent verbal 

counting, their performance is commonly affected by the ratio confirming the idea of a 

pre-verbal number system that underlies quantity discrimination without symbols.  

For example, Cordes and colleagues (2001) provided data showing a difference in 

accuracy between the verbal and non-verbal numerical systems. Adult humans were 

asked to press a key as many times as indicated by an Arabic number appeared on a 

screen. In one condition subjects had to repeat the word “The” every time they pressed 

the key in order to prevent them from counting; conversely in the other condition 

subjects could count out loud at each press. The number of errors in pressing the key 

until reaching the target number was greater when people could not verbally count. 

Furthermore the number of key presses and the variability in the responses were 

proportional to the target number. Similar ratio dependence has been observed by Beran 

and colleagues (2006) when tested adult humans employing articulatory suppression. 

Adults required to repeat the alphabet aloud were less accurate and their performance 

was more dependent on the ratio of the sets to be compared in comparison with adults 

who were allowed to count. 
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All these findings taken together show that even adult humans with knowledge of 

symbolic mathematics, represent quantities through the ANS when they have no access 

to verbal count. 

Developmental studies provide far more evidence of an ANS. Newborns discriminate 

a 1:3 ratio (4 vs. 12) but not a 1:2 ratio (4 vs. 8) (Izard et al., 2009); six-month-old 

infants proved be able to discriminate arrays of dots that differ by a ratio of 1:2 (4 vs. 8, 

8 vs. 16, 16 vs. 32) but not 2:3 (8 vs. 12, 16 vs. 24) (Xu & Spelke, 2000; Xu, 2003; Xu 

et al., 2005), whereas 10-month-old infants can discriminate numerosities with a 2:3 (8 

vs. 12) but not a 4:5 (8 vs. 10) ratio (Xu & Arriga, 2007). The resolution of this system 

continues to increase throughout childhood, with 6-year-olds being able to discriminate 

a 5:6 ratio and adults a ratio of 9:10 (Halberda et al., 2008). On the whole, these studies 

indicate that this capacity is normally present at birth and increases in precision during 

development.  

Comparative studies have reported ratio dependence also in animals. Cantlon and 

Brannon (2007b) used a non-verbal arithmetic task to compare adult humans and rhesus 

monkeys’ ability to perform mental addition. Both monkeys and college students were 

presented with two dot arrays on a screen that disappeared after 500 ms to prevent 

humans from counting the items in each array. Subsequently it was given the choice 

between a set corresponding to the sum of dots previously seen and a distractor set 

containing a different numerosity. Despite accuracy was greater in college students, 

Fig. 7: Accuracy and reaction time are similarly affected by numerical ratios 

in the large and small number range both in rhesus monkeys and adult humans 

(Cantlon & Brannon, 2007b). 
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monkeys and humans’ performance was qualitatively similar and was constrained by 

the numerical ratio between the correct sum and the distractor value. This similarity not 

only yields evidence of monkeys’ ability to mentally sum quantities but also points 

toward a continuity in the cognitive processes underlying approximate quantity 

discrimination across the species (Fig. 7). 

Similarly, when dogs (Canis lupus familiaris)were presented with two plates containing 

a different number of food treats (from 1 to 5 pieces), they chose the larger quantity of 

food but their performance decreased with increasing ratio: dogs were more accurate in 

1 vs. 4 discrimination than in 3 vs. 4 (Ward & Smuts, 2007). Baker and colleagues used 

the same procedure to test coyotes (Canis latrans) (2011) and re-test dogs (2012) 

finding similar results to those previously obtained by Ward and Smuts (2007): 

numerical ratio was the best predictor of the performance. 

Al Aïn and colleagues (2009) studied African grey parrots’ (Psittacus erithacus) ability 

to discriminate discrete (seed) and continuous (liquid) amount of food. Birds were 

tested in their ability to select the larger number of food items (from 1 to 5) or the larger 

volume of a food substance (from 0.2 to 1.0 ml). Accuracy was correlated with the 

numerical ratio in both experiments with worst performance when the ratio was large. 

These findings suggest that the ANS underlies quantity judgements in animals and 

support the hypothesis that we share with animals similar mechanisms for representing 

approximate quantities with a long evolutionary history. 

Despite a wealth of studies supports the existence of an unique approximate system 

for the whole numerical range, some authors claim the existence of a second core 

system, uniquely involved to represent small quantities. 

When adult humans are required to enumerate the items in a dot array, they are precise 

and fast for numerosities up to 4 objects but their accuracy decreases and the reaction 

time increases beyond this range (Mandler & Shebo, 1982; Pylyshyn & Storm, 1988, 

Trick & Pylyshyn, 1994). The process underlying the fast and accurate enumeration of 

small numerosities without real counting is known as subitizing (Kaufman et al., 1949, 

Jevons, 1871; Revkin et al., 2008) and it has been proposed to be based on an 

evolutionarily ancient system, known as the object tracking system (OTS). 

The primary purpose of this system is supposed to be not quantitative but rather, its 

original function seems to be keeping track in parallel of objects moving in the space 
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even if underwent brief periods of occlusion (Trick & Pylyshyn, 1994; Scholl & 

Pylyshyn, 1999, Assad & Maunsell, 1995). This mechanism would have been 

particularly useful in social species, for example, to track individual members of a 

moving group or, to track the presence of possible competitors or prey. This system 

would have been co-opted for numerical discrimination since object representations 

indirectly contain information about the number of items in the array, due to the one-to-

one correspondence between each real item and its mental representation stored in the 

working memory. The OTS was initially described to explain adults’ ability to track 

small sets of items (Kahneman et al., 1992; Pylyshyn & Storm, 1988; Scholl, 2001), but 

researches increasingly suggest that it may also underlie small quantity discrimination 

in infants (Uller, 1999, Feigenson et al., 2002a, Spelke & Kinzler, 2007, Leslie et al., 

1998).  

As opposed to the ANS, the OTS is accurate and shows no ratio effect (i.e., 

performance is similar in 1 vs. 4 and 3 vs. 4 comparison), but it is characterized by a 

set-size signature, which reflects the inherent limit of short term memory to 

store/represent simultaneously no more than 3-4 objects (Trick & Pylyshyn, 1994; 

Scholl & Pylyshyn, 1999). 

Evidence of this system comes from studies reporting a set-size limit of 3 items in 

infants’ quantity discrimination ability. 

When 10-to 12-month-old infants were given the choice between two sets of crackers 

they approached the container with the larger quantity when the choice was between 1 

vs. 2 and 2 vs. 3 crackers but failed when the numerical comparisons were 3 vs. 4, 2 vs. 

4 and 3 vs. 6. These data suggest that infants relied on the OTS rather than on the ANS 

which would have predicted a successful choice in both 2 vs. 4 and 3 vs. 6 due to the 

same numerical ratio of 1 vs. 2 (0.5). Furthermore infants’ performance dropped when 

one set contained more than 3 items in accordance with the set-size signature of object 

representations. However, in control tests, the authors observed that infants’ choice was 

based on the total area rather than on number and suggested that infants represented 

each item as a distinct individual and then summed their area to represent the total 

amount of food. One possible explanation is that each object-representation conveys 

information about the real object they represent (such as, area, colour): in this way 
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infants can compare the physical properties of the representations to make their choice 

(Feigenson et al., 2002a).  

In a further study, Feigenson and Carey (2003) provided evidence of infants’ ability to 

compare sets using number (via one-to-one correspondence) through a manual research 

task. Twelve- to 14-month-old infants could see the experimenter placing one ball into a 

box and were allowed to retrieve it. Then they observed two balls being placed inside 

the box but, one of them was removed from the back of the box out of infants’ view. 

Authors compared the amount of time spent to search for the ball between the condition 

in which infants saw 1 ball hidden and expected to retrieve 1 and the condition in which 

they expected 2 balls but were allowed to retrieve only one. When subjects retrieved the 

single expected ball in the first condition, they stopped searching whereas they searched 

longer for the second ball when they expected 2. A similar behavior was recorded when 

they could see 2 balls hidden and could retrieve both balls compared with the condition 

where they expected 3 balls but could take only 2. Conversely, when infants watched 4 

balls but 2 were removed, they stopped searching after retrieving the remaining 2 balls. 

Infants proved be able to represent exactly arrays with 1, 2 and 3 objects but not sets 

with 4 objects. Infants failed even when an easier numerical comparison was presented 

(1 vs. 4) both sequentially (manual research paradigm) and simultaneously (food choice 

task) thus confirming the striking limit of 3 units in infants (Feigenson & Carey, 2005). 

Furthermore other experimental paradigms reported that small quantity 

discrimination is independent from the ratio in accordance with the hypothesis of a 

second mechanism different from the ANS. Six-month-old infants proved be able to 

discriminate a 0.67 ratio in the small number range (2 vs. 3: Kobayashi et al., 2005; 

Jordan & Brannon; 2006) but not in the large number range (8 vs. 12: Xu & Spelke, 

2000; Lipton & Spelke, 2003).  

Other evidence of a second core system comes from studies showing that infants 

consistently fail to compare small (≤4) and large sets (≥4). 

Infants do not pick the larger number of crackers when the choice is between 1 vs. 4, 2 

vs. 4 and 3 vs. 6 (Feigenson et al., 2002a, Feigenson & Carey, 2005), and they stop 

searching for balls after retrieving 1 or 2 ones from a box even though they have seen 4 

balls being hidden (Feigenson & Carey 2003, 2005). Six-month-old infants discriminate 

4 vs. 8 jumps or dots when continuous quantities are controlled but not 2 vs. 4 
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(respectively: Wood & Spelke, 2005, Xu, 2003) and 10- to 12-month-old infants prefer 

the larger amount of food items (Cheerios) when quantities are both small (1 vs. 2) or 

large (4 vs. 8) but not when one is small and the other one is large (2 vs. 4 and even 2 

vs. 8) (vanMarle, 2013). If they had used the ANS they should have succeeded in all 

comparisons due to the easy ratio (0:5 or even 0.25). Infants’ failure in comparing sets 

across the boundary between the small and large numbers has been explained in terms 

of incompatibility between the two systems (Xu, 2003, Feigenson et al., 2002a, 

vanMarle, 2013). It is possible that infants represent small number through the OTS and 

large number through the ANS creating two different kinds of representations 

impossible to be compared.. 

Further evidence supporting the two-system hypothesis is provided by Revkin and 

colleagues (2008). Adult humans were required to name the numerosity of dot arrays 

ranging from 1 to 8 dots and from 10 to 80 dots with the assumption that if only a single 

system is engaged for both small and 

large quantities, performance should be 

similarly affected by ratio along all 

numerical contrasts, irrespective of the 

range (≤ 4 or ≥ 4). Results showed that 

subjects were faster and more accurate 

in the subitizing range (1-4) and that 

discrimination was independent from 

the ratio. Conversely accuracy 

decreased and reaction time increased 

in the comparison 10 through 80, 

revealing also a ratio effect, in line with 

the idea of two separate mechanisms 

involved in discrimination of small and 

large sets (Fig. 8). 

Apart from behavioral researches, which leave open the question about the existence 

of one or two systems, recently, psychophysiological and neuroimaging studies have 

provided additional data in favour of the hypothesis of two distinct systems. Hyde and 

Spelke (2009) recorded the event-related potentials when participants were presented 

Fig. 8: Adult humans were more accurate 

and faster over numerosities 1-4 than over 

numerosities 10-80, in contrast with the 

hypothesis of a single system to process 

both small and large quantities (Revkin et 

al., 2008) 
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with arrays of small (1-3) and large number (8-24) dots. They observed an early-evoked 

component (N1), modulated by absolute number with small number arrays and a later 

component (P2p), modulated by the numerical ratio between large dot arrays, but not 

small, numbers  

In addition, Vetter and colleagues (2011) studied the neural correlates of visual 

enumeration using fMRI and showed that manipulating attentional load modulated the 

neural signal specifically in the subitizing range (up to 3 items), and moreover, in the 

right temporo-parietal junction, rather than in the IPS, the locus for larger number 

estimation and discrimination (e.g. in Piazza et al., 2003). These results bolster the 

hypothesis that adult humans spontaneously process both small and large quantities but 

through different systems.  

Comparative studies add further evidence of a precise mechanism involved in small 

quantity representation in animals. 

As previously reported, salamanders preferred the larger number of fruit flies when the 

choice was between 1 vs. 2 (0.50) and 2 vs. 3 (0.67) but not 3 vs. 4 prey (0.75), showing 

an upper limit of 3 units in small quantity representations similar to that of infants (Uller 

et. al., 2003). In addition they failed in 4 vs. 6 discrimination even though the same ratio 

as 2 vs. 3 (0.67). If numerical ratio is the best predictor of the performance, we should 

expect the same discrimination ability in both small and large number range. On the 

contrary, performance was affected by ratio, in large quantity discrimination of prey: 

salamander preferred 16 crickets to 8 but not 12 to 8 (Krusche et al., 2010). The set-size 

limit in small numerosities and the ratio dependence in large numerosities support the 

existence of two distinct mechanisms. 

Other studies have found the typical hallmark of the object tracking system even if 

the limit of the representational system is not 3 items like in infants, but 4 items like in 

adults. 

Rhesus monkeys presented with apple slices sequentially hidden in two boxes picked 

the larger quantity in 1 vs. 2, 2 vs. 3 and 3 vs. 4 comparisons, but not in 4 vs. 5 and 4 vs. 

6 ones (Hauser et al., 2000). Similarly, New Zealand robins successfully discriminated 

1 vs. 2, 2 vs. 3, and 3 vs. 4 mealworms, but they required at least a 1:2 ratio (4 vs. 8) to 

discriminate larger numerosities (≥ 4) (Hunt et al., 2008) in contrast with the existence 

of an unique system based on the ratio. 
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In a semi-naturalistic study on free-ranging dogs, Bonanni and colleagues (2011) 

observed that the decision to attack another group was based on the numerical ratio 

between one’s own group and the opposing one when packs contained more than four 

dogs. Conversely, when both groups were small (≤ 4 individuals), dogs approached the 

opponent pack with the same probability when they outnumbered the opponents by a 

1:2, 2:3, or 3:4 ratio, suggesting that they were able to precisely assess the group size 

irrespective of the ratio.   

Despite multiple findings in favour of the two-system hypothesis data are not 

consistent and there is an on-going debate about the mechanism underpinning small and 

large number representations. In short, while the existence of the ANS is generally 

accepted, researchers tend to disagree as to whether a distinct precise system operates 

within 3-4 units.  

 

In contrast to the existence of separate cognitive mechanisms, empirical evidence 

supports the existence of a single supramodal and domain-independent core system of 

number representation in both humans and non-human animals to account for both 

small and large discriminations (Izard et al., 2009, Jordan et al., 2005, Gallistel & 

Gelman, 1992). 

For instance, similar ratio limits have been observed in 6- to 9-month-old infants’ 

ability to discriminate large quantities with both visual-spatial arrays and auditory-

temporal sequences (Xu & Spelke, 2000; Lipton & Spelke, 2003). Interestingly, the 

ANS seems to be also engaged to discriminate small quantities in the auditory domain. 

vanMarle and Wynn (2006) investigated 6-month-old infants’ ability to discriminate 

between durations with a 1:2 and 2:3 ratio. Infants were habituated to audio-visual 

sequences that lasted either 2 or 4 seconds (or 0.5 vs. 1 s. in a second experiment). In 

test phase both the events were alternated and infants looked longer at the novel one. 

However, when tested with duration differing by a 2:3 ratio (3 vs. 4.5 seconds or 0.67 

vs. 1 second), they did not discriminate between the events. Likewise, 7-month-old 

infants discriminated sequences of 2 vs. 4 tones but not 2 vs.3 tones, matching the 

results obtained in the duration task (vanMarle & Wynn, 2009).  
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Furthermore Cordes and Brannon (2009) showed that 7-month-old infants were able to 

discriminate small from large arrays of dots when the ratio was at least 1:4 (1 vs. 4 and 

2 vs. 8) providing data at odds with previous findings.  

On the whole, the same ratio limits are consistent across modalities in infants: 6-month-

old infants are able to discriminate a 1:2 ratio but not a 2:3 one, 9- to10-month-old 

infants discriminate a 2:3 ratio but not a 4:5 ratio (single item area: Brannon et al., 

2006; auditory stimuli: Lipton & Spelke, 2003; van Marle & Wynn, 2006, 2009; 

number of multiple items: Xu & Spelke, 2000; Xu et al., 2005; Xu & Arriga, 2007; 

actions: Wood & Spelke, 2005). In addition a 1:4 ratio is required to discriminate the 

cumulative area of multiple items (Cordes & Brannon, 2008), to compare small and 

large quantities (Cordes & Brannon, 2009) and to discriminate between substances 

(vanMarle & Wynn, 2011).  

Nonetheless, Tokita and colleagues (2013) disagree with the idea that humans and non-

human animals share a single modality-independent cognitive mechanism because they 

found clear difference in adults’ performance across modalities: subjects were more 

accurate with auditory sequences than with visual arrays and performance of cross-

modal comparisons laid between the performance of visual and auditory trials.  

Other authors suggest the existence of multiple core number systems engaged to 

solve a limited set of problems and that operate independently from each other 

(Feigenson et al., 2004; Spelke, 2000). 

When infants are presented with sets of food items (crackers) smaller than 4 units, they 

discriminate quantities via OTS but their representation is based on the summation of 

continuous properties rather than on number (Feigenson et al., 2002a). However in a 

manual research task, infants exactly represent up to 3 objects even when continuous 

variables are controlled suggesting that they rely only on numerical information 

(Feigenson & Carey, 2003, 2005). The different salience of number may be due to the 

kind of stimuli and task used. When the goal is obtaining a certain number of objects, 

the choice on the basis of their continuous extent instead of the number is not useful to 

solve the task. On the contrary, when the stimulus is food, it is probable that infants 

respond to perceptual features (i.e., surface area) since they are more informative of the 

total amount of food in order to maximize the food intake. As a consequence it seems 

that infants can make different computations over object representations depending on 
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the task. This is supported by experiments in which infants were tested using the 

habituation procedure with three-dimensional objects. When the sets to be discriminated 

were composed by identical objects, infants detected changes in continuous extent but 

not in number, conversely, when heterogeneous stimuli were presented, they showed be 

able to represent the number of items in the array (Feigenson, 2005). 

Not only the type of stimulus but also the way in which it is presented influences 

infants’ performance. VanMarle and Wynn (2011) showed that 10-month-old infants 

discriminated food presented as discrete entities (1 vs. 2 crackers or 5 vs. 10 cheerios 

sequentially hidden) when the numerical ratio was 1:2, but they required a 1:4 ratio to 

discriminate food presented as substances (two portions of cheerios poured in cups to 

make them as substance-like as possible). In addition, in the substance-like condition, 

infants failed when density or perimeter were equated in contradiction with previous 

data that showed a robust ability to represent discrete quantities when continuous 

variables were controlled (Lipton & Spelke, 2003; Wood & Spelke, 2005; Xu & Spelke, 

2000), suggesting that infants need multiple cues when comparing substances.  

Furthermore it is important to consider that the OTS is thought to be a mechanism for 

tracking multiple visible objects; thus when sounds are represented, it is unlikely that 

this system is activated since there are no objects to be represented. Data seem to 

confirm this assumption. Six-month-old infants successfully discriminate small 

sequence of audiovisual events with a 1:2 ratio but not with a 2:3 ratio as expected by 

the hypothesis that in absence of visual stimuli, the approximate system and not the 

object system is involved (vanMarle & Wynn, 2006;2009). Conversely, Lipton and 

Spelke (2004) observed that 9-month-old infants failed in 2 vs. 3 sounds discrimination, 

a numerical contrast expected to be solved at that age if the ANS has been involved. 

Mixed results are also reported in comparative studies. For example, when Beran 

(2007) tested rhesus macaques using a computerized version of the item-by-item 

procedure in which no food but red squares were hidden (from 1 to 10), monkeys’ 

performance was affected by the numerical ratio throughout the whole numerical range 

and no set-size limit was detected in small quantities, in contrast with results provided 

by Hauser and colleagues (2000). Dogs and coyotes’ preference for the larger quantity 

of food treats (1 to 5) is a function of the ratio between quantities (Ward & Smut, 2007; 
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Baker et al., 2011, 2012) whereas wolves choose 1 vs. 4 pieces with the same accuracy 

as 3 vs. 4 (Utrata et al., 2012). 

In conclusion, results across studies are not entirely consistent, and it is unclear 

whether these differences are due to the task presented, the sensory modality involved, 

the context or if they are related to differences among the species investigated. 

To date it is difficult to understand whether animals possess a single or multiple systems 

of numerical representation since very few studies have investigated numerical abilities 

in the same species across different contexts. 

The same problem occurs in human literature, In particular it is difficult to design 

experimental paradigms suitable for testing at the same time newborns and infants since 

sensitivity at stimuli and the level of attention may change over development.  

 

 

 

1.4. Development of pre-verbal numerical abilities  

 

Developmental studies are fundamental to assess which cognitive skills a species is 

naturally endowed with since comparing performance at different ages may provide 

insights about the existence of common cognitive systems at work during development. 

In particular in the domain of numbers, the study of numerical abilities in non-verbal 

creatures (pre-verbal infants and animals) is relevant to increase our comprehension of 

non-symbolic representation of number in absence of language. To date the literature on 

the ontogeny of numerical competence is almost entirely focused on human infants and 

provides evidence that infants’ numerical abilities are continuous with those of adults 

(Hauser & Spelke, 2004). 
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1.4.1. Developmental studies in humans   

 

As previously reported, several studies have described numerical abilities in infants. 

Early studies on infants’ numerical skills focused on the ability to discriminate small 

sets of figures using the habituation procedure. Infants were first presented with stimuli 

containing a fixed number of items and when they were habituated novel numerosities 

were shown in test phase. The procedure relied on a preference for novelty and the 

assumption was that if infants were able to detect the difference in number they would 

look longer at the novel numerosity.  

Starkey and Cooper (1980) habituated 4- to 7-month-old infants with linear arrays of 

either 2 or 3 dots with different density and total line length in order to avoid 

discrimination by configuration. After habituation, infants were shown with either an 

array containing the familiar number of dots or an array with the novel numerosity. 

Infants looked longer at the new quantity, thus suggesting that they detected a change in 

number. However, when tested with 4 vs. 6 dots, no difference in their looking time was 

perceived. Subsequent studies obtained similar results. Antell and Keating (1983) 

replicated the experiment with dots in newborns whereas Strauss and Curtiss (1981) 

habituated 10- to 12 month-old infants to pictures of items (e. g., dogs, houses, etc.) that 

varied in number and found that subjects discriminated 2 vs. 3 as well as 3 vs. 4 items. 

Together, these pioneering studies suggested that infants are sensitive to number since 

they looked longer at the novel numerosity.  

Wynn (1992) drew similar conclusions using the expectancy violation procedure. 

The method consisted in presenting the subjects with simple arithmetic problems (such 

as easy addition or subtraction) and then comparing the looking time between an 

unexpected and an expected numerical outcome. In this experiment, one toy was placed 

on a stage, a barrier was raised to hide the item and then the experimenter placed a 

second toy behind the screen. If infants were able to compute simple arithmetical 

operations it was expected they would look longer at an unexpected result (1 + 1 = 1) 

than at an expected one (1 + 1 = 2) (Fig. 9). Five-month-old infants looked longer at the 

incorrect output both in an addition and in a subtraction task and the author concluded 

that infants were responding to the change in number. 
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However all the studies reported so far, did not properly controlled for continuous 

quantities and number was always correlated with perceptual features, such as, contour 

length or area. As a consequence, although infants proved be able to discriminate small 

quantities, the nature of this discrimination was unclear.  

Clearfield and Mix (1999) observed that 6- to 8-month-old infants dishabituated only to 

change in continuous quantities but not in number and suggested that the relevance of 

perceptual cues had been underestimated in previous researches. 

This result was confirmed by Feigenson and colleagues (2002b), who adopted the 

habituation/dishabituation procedure using three-dimensional objects to further 

investigate infants’ sensitivity to continuous extents when presented with small sets of 

items. When homogeneous stimuli were controlled for surface area and other 

continuous variables (i.e., total volume, contour length, brightness and total spatial 

envelope), 6- to 7-month-old infants did not respond to change in number, in agreement 

with Clearfield and Mix (1999). Conversely, when infants were habituated and tested 

with heterogeneous objects differing for colour, pattern and texture, they were able to 

Fig. 9: Expectancy violation procedure adopted to study whether infants can 

represent numerical information. Infants were presented with simple 

arithmetic problems and then the looking time between an unexpected and an 

expected numerical outcome was compared (Wynn, 1992). 
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compute number (Feigenson, 2005). One possible explication for the different 

representations might be that dissimilar items are easier to be remembered. It is possible 

that infants are capable to represent two objects for two identical items but their 

similarity can make it difficult to recall them as different items. Alternatively, infants 

may fail to create a new object-representation for an item already represented when 

objects have the same properties. On the contrary, it seems to be easier to maintain 

items as distinct individuals when they differ for some details and it facilitates the 

discrimination based on number. In conclusion, when objects are similar, infants 

represent continuous variables, but when objects are different, infants compute number. 

The habituation procedure has been widely used in literature not only with visual 

arrays but also with other kinds of stimuli such as, series of events, sequences of tones 

and durations. 

For instance, infants habituated to sequences of either 2 or 3 puppet jumps, looked 

longer at the sequence with the new number of jumps in test phase. However, although 

the sequences were controlled for total duration and rate, the total amount of movement 

was greater in the three-jump series and it was not possible to exclude that infants used 

the motion as a cue rather than the number of jumps (Wynn, 1996). van Marle and 

Wynn (2006, 2009) used the habituation technique to investigate infants’ ability to 

discriminate auditory stimuli controlled for non–numerical properties to ensure they 

used numerical information. In both cases 6- to 7-month-old infants’ performance 

followed Weber’s Law since they succeeded in the 1:2 ratio but failed in the 2:3 one. 

However data on infants’ representation of small quantities are inconsistent since 

different procedure yields to different conclusions. 

In a food choice task, 10- to 12 month-old infants’ discriminated between 1 vs. 2 and 2 

vs. 3 crackers but in control test their choice was determined by total surface area or 

total volume, accordingly to the predominant idea that infants are able to compute 

continuous variables but not number (Feigenson et al., 2002a) 

Conversely, Feigenson and Carey (2003) showed that 12- to 14-month-old infants tested 

in a manual research task were able to represent the individual items up to 3 objects 

even when the authors controlled for the continuous variables. For instance the infants 

could see two small objects being hidden in a box but could retrieve only one big. If 

their searching behavior was based on the total volume to be retrieved, they should 
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expect the box empty and should stop searching. On the contrary, if they were relying 

on number they should continue searching, expecting the box to contain more items. 

Infants continued to search after retrieving the big object thus showing that they noticed 

the difference in number and did not rely on volume. 

The discrimination in the small number range has been investigated also using cross-

modal comparisons to assess whether infants are able to match the number of items they 

could see with the number of sounds they could hear. In a study by Kobayashi and 

colleagues (2005), six-month-old infants were initially familiarized with two and three 

toys dropping and emitting a tone when they impacted the surface. In test trials subjects 

could just hear two or three tones but the toys’ motion was hidden by a barrier 

occluding infants’ view. When the barrier was removed infants could see two or three 

toys on the stage and looked longer at the unexpected outcome (i.e., they heard two 

tones but three toys were on the stage). The authors interpreted the result as evidence of 

infants’ ability to recognize the numerical equivalence across modalities. 

In a further study, Jordan and Brannon (2006) reported that infants possess the ability to 

match the number of women seen on a screen (visual stimuli) with the number of voices 

heard (auditory stimuli) even when potential confounding factors such as the duration 

and the rate were controlled for. In their experiment, 7-month-old infants looked longer 

at the display showing the number of women (2 or 3) that numerically matched the 

number of voices (2 or 3) saying the word “look” in comparison with the non-matching 

display. 

To date, these findings provide evidence of infants’ ability to discriminate small 

quantities but it is still debated which information (discrete or continuous) they use.  

 

Conversely, data collected on large quantity discrimination are more consistent 

across modalities and reveal that infants’ representation of large numerosities is 

approximate and affected by ratio, but also that the accuracy increases over 

development until adulthood, supporting the idea of a continuity in numerical abilities. 

Furthermore, the convergence of the results in studies using different procedures 

provides unequivocal evidence of infants’ sensitivity to number in the large number 

range (see Section 1.3). Infants can discriminate between 8 and 16 items with both 
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visual and auditory stimuli strictly controlled for continuous variables (Xu & Spelke, 

2000; Lipton & Spelke, 2003). 

Interestingly, Izard and colleagues (2009) tested 2-day-old newborns in a numerical 

cross-modal matching task and yielded evidence of approximate number skills even 

early in the development. Newborns were familiarized with sequences of either 4 or 12 

syllables (1:3 ratio) and then were presented with arrays of two-dimensional items 

containing the same or a different number of figures. Subjects looked longer at the 

display numerically matching the sequence of syllables and the data was confirmed by a 

second group tested with 6 vs. 18 (1:3 ratio). However newborns failed in the 4 vs. 8 

contrast, thus revealing the typical ratio limit signature of the ANS observed in older 

infants and adults. 

The discrepancy between the results obtained in the small and in the large number 

range is still unexplained. It is possible that when infants face with small sets, they 

focus their attention on the individual objects rather than on the number and hence are 

unable to perceive the cardinal value (Xu et al., 2005), but further studies are required to 

shed light on the difference between the two systems. 

On the whole, these data show that infants are endowed with numerical systems early 

in the development but the inconsistency of the results highlights the limits of studying 

the ontogeny of numerical cognition in our species. For ethical and practical reasons it 

is difficult to manipulate infants’ experience during development and it hampers the 

comprehension of the relative salience of maturation and experience. Furthermore 

different procedures are used at different ages and it is difficult to make a fine 

comparison of collected data. With respect to this topic, animal models may represent 

an useful tool, in particular those species with a short life–span, because it is possible to 

study the developmental trajectories of cognitive abilities through newborns, juveniles 

and adults in a relatively short amount of time. 

 

1.4.2. Developmental studies in animals 

 

Presently, longitudinal data are available only for human infants and little is known 

about how numerical skills unfold over development in animals.  
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Domestic chicks (Gallus gallus) in particular have become a preeminent model, 

given the possibility they present to controlled-rearing and testing conditions.  

Rugani and colleagues (2007) initially investigated whether chicks possess ordinal 

abilities, namely, if they were able to identify a certain location/object in a series of 

identical ones on the basis of its position. To address the question, 5 day- old chicks 

were trained to peck either at the 3
rd

, 4
th

, or 6
th

 hole in a series of 10 identical aligned 

holes spaced 1 cm from each other. The chicks successfully selected the correct location 

above chance level. However, since animal could have used geometrical-spatial cues to 

solve the task, the authors carried out a series of experiments to control for potential 

non-numerical cues. In one experiments, chicks were initially trained to peck at the 4
th

 

location but, in test phase, the series of holes was rotated by 90° and was horizontally 

positioned instead of being aligned with the starting point. In the second experiment, the 

authors manipulated the distance between the holes to assess if chicks chose the correct 

one on the basis of the absolute distance from the starting point or if they

 relied on the ordinal position of the correct hole. To further avoid the use of potential 

geometrical cues, in the last experiment chicks were tested in a circular arena and were 

trained to retrieve food from the 3
rd 

jar in series of identical ones and the position of the 

jars was changed from one trial to the subsequent one. Chicks successfully chose the 

location they were trained to in all conditions providing evidence that ordinal abilities 

are inborn in this species. It was also observed that, in absence of asymmetrical cues, 

the subjects spontaneously preferred to approach the correct location starting from the 

left end of the series and not from the right. Ordinal competency and preference location 

starting from the left was later confirmed by Rugani and colleagues (2010a), who 

advanced the suggestive idea of a mental number line in chicks’ brain, even though 

other explications were possible, such as a bias in the allocation of their attention when 

choosing. Based on this evidence, the capacity to take into account ordinal information 

seems to be present at birth, and might have been selected due to its potential adaptive 

value. It is possible to imagine ecological contexts in which displaying such a skill 

might be useful from the first days of life, for instance, when searching for a source of 

food ('after three rocks') or a shelter ('the third cave') for predator avoidance.  
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Other studies show that the domestic chick is able to represent also the cardinality 

(the number of items in an array) of small sets even when continuous variables are 

equated to avoid subjects from using them.  

Chicks were trained to discriminate between arrays containing different number of dots 

or squares in order to get a food reward (Rugani et al., 2008). They successfully learned 

the discrimination in 1 vs. 2 and 2 vs. 3 comparisons, even when stimuli were controlled 

for contour length and overall surface but they performed at chance level in 3 vs. 4, 4 

vs. 5 and 4 vs. 6. The results shows that chicks have a set-size limit of 3 units in the 

small number range, in line with data in infants literature, and that are able to represent 

numerical information in small quantity discrimination.  

Simple arithmetic seems also to be processed by 5-day-old chicks (Rugani et al., 

2009). Chicks were initially reared with five identical objects that served as imprinting 

objects. During test phase, subjects could see two sets of objects; one composed by 3 of 

the 5 imprinting objects and the other made of the remaining 2, being hidden 

sequentially or simultaneously behind one of two screens. After the disappearance of 

both sets the chicks spontaneously preferred to join the larger number of imprinting 

objects, probably because a larger group of them represents a sort of 'super-stimulus' 

(Rugani et al., 2010b). Interestingly, the chicks inspected the screen occluding the larger 

set even when continuous quantities were controlled, proving that they were able to 

keep track of single items relying on numerical information alone. In a subsequent 

experiment, after the initial disappearance of both sets (3 vs. 2), the researchers 

transferred some of the objects, one by one, from one screen to the other in full view of 

the subjects before releasing them into the arena. The chicks again selected the group 

containing the larger number of objects. In another test (4 vs. 1), the chicks were 

required to choose against the potential directional cue provided by the final visible 

displacement (indeed, in the 3[-1] vs. 2[+1], the chicks could have simply followed the 

last moving objects) by presenting the following comparison: 4(-1) vs. 1(+1). Even in 

this case, the chicks spontaneously chose the screen hiding the larger number of objects, 

irrespective of the cue provided by the final displacement thus showing proto-arithmetic 

capacities. 

In a subsequent study (Rugani et al., 2011) when larger sets (5 vs. 10 and 6 vs. 9) 

were sequentially hidden behind a screen, the subjects chose the larger number of items 
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only when both number and continuous quantities were simultaneously available; hence 

chicks seem to be sensitive to continuous extent and not to numerical information in 

large quantity discrimination, in contrast not only with previous results on the same 

species (Rugani et al., 2008, 2009) but also with data collected in infants (Xu & Spelke, 

2000, Izard et al., 2009). 

However, it seems that the ability to rely on number depends on the characteristics of 

the objects used to rear the chicks (Rugani et al., 2010b). In one condition, chicks were 

imprinted on either 1 or 3 yellow plastic balls. In the absolute discrimination test phase, 

subjects were presented with two arrays: one made of 1 imprinting objects and the other 

made of 3 imprinting objects. In the relative discrimination test phase, instead, chicks 

were presented with two sets composed by 4 plastic balls each, but one set contained 

only one imprinting objects and three similar balls but differing in colour whereas the 

other set contained three imprinting objects and a single different ball. Chicks chose the 

larger set, irrespective of the number of balls they were reared with, both in the absolute 

and in the relative discrimination task. However, when they were reared with objects 

differing in shape, size and colour and then were tested with sets containing other new 

and different objects, the subjects approached the array containing the same number of 

items they were imprinted on, even if the stimuli were completely novel and were 

equalized for volume and surface. This data aligns with those collected in human 

infants: infants represent number when they discriminate between heterogeneous stimuli 

but rely on continuous variables in presence of homogeneous items (Feigenson, 2005). 

On the whole, these results largely parallel those obtained in human infants literature 

providing evidence that young chicks, and not only human infants, are endowed with 

numerical abilities early in development. Chicks, such as infants, exhibit the same 3 

item-size hallmark of the OTS, compute continuous extents when tested with 

homogeneous items but number when tested with heterogeneous stimuli and show 

proto-arithmetic abilities. 

However, despite performance are strikingly similar, chicks represent small arrays by 

using numerical information only but not sets larger than 3 items, a pattern of data that 

does not entirely align with infants (Clearfiled & Mix, 1999; Xu & Spelke, 2000; Izard 

et al., 2009). It is possible that human infants share with domestic chicks early 

developing systems of pre-verbal numerical cognition which are similar but not exactly 
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the same, due to the different performance in the large quantity discrimination. It would 

be interesting to assess whether this numerical abilities change over development untill 

adult hen showing a pattern similar to the one observed in humans. 

 

 

1.5. Numerical abilities in fish 

 

Being able to process quantitative information provide multiple benefits to fish too. 

For instance, joining larger shoals allow fish to find food faster (Pithcer et al., 1982), to 

have hydrodynamic advantages (Barber & Folstad, 2000) and to decrease the risk to be 

spotted by predators (Foster & Treherne, 1978; Landeau & Terrborgh, 1986). For these 

reasons it is possible that selective pressure have favoured numerical abilities in fish. 

However, while there is a well-established tradition of studying numerical cognition in 

mammals and birds, researches have only recently focused on numerical abilities in 

fish, an animal model in behavioral and cognitive studies (Brown & Laland, 2003). 

Agrillo and colleagues (2008a) exploited the spontaneous tendency in social species to 

re-join conspecifics when placed in an unfamiliar environment (Hager & Helfman, 

1991; Pritchard et al. 2001; Buckingham et al., 2007) to assess numerical competence in 

fish. Female mosquitofish (Gambusia holbrooki) were singly inserted in an empty tank 

and two groups of conspecifics differing in number were presented at the two ends (Fig. 

10). Fish spent significantly more time close to the larger shoals when the two groups 

differed by one unit (1 vs. 2, 2 vs. 3, and 3 vs. 4), while no choice was observed when 

groups larger than 4 fish were presented (4 vs. 5, 5 vs. 6, 6 vs. 7 e 7 vs. 8). Larger 

numerosities were discriminated only when numerical ratio between the two groups was 

at least 0.5 (4 vs. 8, 8 vs. 16 e 4 vs. 10). 

Recently, Gòmez-Laplaza & Gerlai, (2011a, b) observed a similar pattern of choice in 

the small and large number range in angelfish (Pterophyllum scalare). Fish 

discriminated 1 vs. 2 (0.50) and 2 vs. 3 (0.67) conspecifics while their capacity to 

discriminate between large numbers was limited up to a ratio of 0.56 (5 vs. 9). 
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b a b 

Fig. 10: Schematic representation of the experimental apparatus used in 

spontaneous shoal choice. Subject was inserted in the central tank, subject 

tank (a) and two groups of conspecifics differing in numerosity were 

inserted at the two ends, stimulus tanks (b )(Agrillo et al., 2008). 

 

The different ratio sensitivity for small and large numbers suggests the existence of 

two distinct numerical system in fish: one precise and accurate for small numerosities (≤ 

4) and one dependent on numerical ratio when large quantities are involved (≥ 4).   

However, in the studies mentioned above, number is always correlated with 

continuous variables and it is difficult to assess the mechanism adopted by fish to select 

the larger shoal.  

For example, when total surface area occupied by stimulus fish was equated, using 

smaller individuals in the large shoal and larger individuals in the small one, 

mosquitofish did not select any group, both in 2 v. 3 and in 4 vs. 8 comparisons, 

suggesting the relevance of cumulative surface area in shoal choices (Agrillo et al., 

2008a). Similarly Gòmez-Laplaza and Gerlai (2013) found that angelfish were unable to 

discriminate between large (5 vs. 10) and small (2 vs. 3) shoals when the surface area of 

the contrasted shoals was equated.  

The quantity of movement of stimulus fish represents another factor that might 

indirectly reveal the numerosity of a shoal. Most fish can live in a wide range of 

temperatures and their activity is directly influenced by water temperature. An increase 

in water temperature can determine an increased activity of the individuals. For 

instance, Pritchard and colleagues (2001) observed that zebrafish generally preferred the 

larger shoal in a 4 vs. 2 discrimination when the two stimulus shoals were in water of 



40 

 

the same temperature. However, this preference decreased if the activity of the larger 

shoal was reduced by using colder water in their tank. The same technique was adopted 

with mosquitofish by Agrillo and colleagues (2008a), showing that the total movement 

of stimulus fish influenced the choice for the larger group differently in presence of 

small (≤ 4) or large (≥ 4) shoals. When the authors controlled for the quantity of 

movement, keeping the water temperature in the small group tank at 29 ± 1 °C and in 

the large one at 19 ± 1 °C, mosquitofish selected the larger shoal only in 2 vs. 3 but not 

in 4 vs. 8 contrast, suggesting that total movement was an additional cue necessary in 

large quantity discrimination but not in the small one. Subsequently, similar results have 

been obtained in angelfish. Gòmez-Laplaza and Gerlai (2012) designed two 

experiments to control for the total movement: in one experiment they used the same 

procedure adopted with mosquitofish, whereas in the second one they kept the stimulus 

fish in restricted compartments in order to reduce their swimming activity. In the first 

condition, angelfish preferred the larger shoal over the small one in 2 vs. 3 but, similarly 

to mosquitofish, not when larger shoals were presented (5 vs. 10). However, using the 

second procedure, angelfish preferred the larger shoal both in 2 vs. 3 and in 5 vs. 10 

numerical contrasts. It is difficult to hypothesize why different results have been 

obtained as a function of the technique adopted to control for the quantity of movement. 

This result, however, highlights the importance of using multiple experimental 

strategies to control for continuous quantities before drawing a firm conclusion about 

the influence on continuous quantities in numerical tasks.  

One limit of spontaneous choice tasks is that subjects may attend to perceptual 

features rather than to number, since both kind of information can yield to comparable 

results. Also when researchers control for one continuous variable at a time (e.g. 

quantity of movement) the possibility exists that fish use other continuous variables 

(overall space) instead of number. To assess whether fish can use numerical information 

only, Agrillo and colleagues (2009) initially trained mosquitofish to discriminate 

between 2 and 3 geometrical figures not controlled for continuous quantities. Subjects 

were singly inserted in an unfamiliar environment provided with two doors, one 

associated with three figures and the other associated with two figures, placed at two 

opposite corners. To re-join social companions, subjects were required to discriminate 

between the two numerosities and select the door associated with the reinforced 
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numerosity. When fish reached a learning criterion, they were admitted to test phase, 

where subjects were presented with 5 different sets of stimuli. In four of them, one 

perceptual cue was controlled at a time (total luminance, sum of perimeter, cumulative 

surface area and overall space occupied by figures) while in the last set stimuli where 

not controlled for continuous variables. Fish performance dropped to chance level when 

stimuli were matched for the cumulative surface area or for the overall space occupied 

by the arrays, indicating that these latter cues had been spontaneously used by the fish. 

In a second experiment, where all continuous quantities were controlled during the 

training, mosquitofish proved able to learn the discrimination, suggesting a pure use of 

numerical information like reported in mammals (Beran, 2007; Vonk & Beran, 2012) 

and birds (Rugani et al., 2008; Emmerton & Renner, 2006).  

Although fish could be trained to use numerical information to discriminate between 

set of abstract stimuli it was not clear whether they were also able to spontaneously use 

number in a more ecologically context. To verify whether numerical information is 

naturally represented by female mosquitofish, Dadda and colleagues (2009) used a 

modified version of the item-by-item presentation of the stimuli. To this purpose, the 

apparatus previously used in the spontaneous shoal choice by Agrillo and colleagues 

(2008a) was modified: each stimulus fish was confined in separate compartments at the 

two bottoms of the subject tank and several opaque screens were inserted in the subject 

tank to prevent a global view of the groups and to allow the subjects to see no more than 

one stimulus fish at a time (Fig. 11). In this way, subjects were required to add the 

number of stimuli on one side, make the same operation on the other side and then 

compare the two numerosities in order to select the optimal shoal.  

Results showed that mosquitofish spent more time near the larger shoal in 2 vs. 3 and in 

4 vs. 8. Further control experiments for density of individuals and the overall space 

occupied by the stimulus shoals showed that no continuous quantities could be 

advocated to explain the choice of the larger shoal. 

Agrillo and colleagues (2010) used the same procedure adopted to study small quantity 

discrimination (Agrillo et al., 2009), to investigate large quantity discrimination (4 vs. 

8) in mosquitofish. Similarly to previous study, fish learned the discrimination when no 

control was made but failed when stimuli were controlled for cumulative surface area. 
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Fig. 11: Schematic representation of the apparatus used in shoal choice task in 

2 vs. 3 comparison. Subjects were singly inserted in a central sector (a). Each 

stimulus sector (b) was subdivided in identical compartments housing the 

stimulus fish. In each choice area artificial vertical screens were placed so that 

the subject could only see one stimulus fish at time from any position of its 

sector (c). (Dadda et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However it is of interest that fish choice was not affected by the overall space occupied 

by the items whereas it was a relevant cue in the 2 vs. 3 discrimination. This difference, 

together with the different salience of the quantity of movement in the small and large 

number range (Agrillo et al., 2008a), might reflect the existence of two distinct 

numerical systems: one for small quantity and one for large quantity (Hauser et al., 

2000; Feigenson et al., 2004). A similar conclusion was drawn by Agrillo and 

colleagues (2012) when tested guppies (Poecilia reticulata) in a spontaneous choice 

task. The same numerical ratios were used (0.25, 0.33, 0.50, 0.67, 0.75) for small (1 vs. 

4, 1 vs. 3, 1 vs. 2, 2 vs. 3, and 3 vs. 4) and large (6 vs. 24, 6 vs. 18, 6 vs. 12, 6 vs. 9, 6 

vs. 8) numerical contrasts. Fish discriminated up to 4 items with the same accuracy, 

whereas discrimination for large quantities was approximate and ratio dependent. 

When Agrillo and colleagues (2010) controlled for all continuous quantities during 

training, mosquitofish proved able to learn the discrimination by using pure numerical 
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information also when large quantities were presented. Furthermore, researchers carried 

out two more experiments to assess whether there was an upper limit in fish numerical 

discrimination and the influence of numerical ratio. Results showed that fish 

discriminated 100 vs. 200 as well as 4 vs. 8, revealing apparently no upper limit of 

numerical discrimination, while the numerical ratio had a clear effect on performance 

(accuracy decreased from 7 vs. 14 to 9 vs. 12). Finally, fish performance was compared 

with that of undergraduate students tested with the same stimuli while being prevented 

from using verbal counting. Data collected with humans replicated those observed in 

fish: although humans were obviously more accurate than fish, their pattern of accuracy 

was similar since both species showed a similar sensitivity to numerical ratio.  

The ratio dependency in large number discrimination is a typical signature of ANS 

and it has been documented not only in humans but also in a wide range of animal 

species, suggesting that all vertebrates may share similar pre-verbal numerical systems. 

The nature of these systems is still debated: maybe it is the result of convergent 

evolution or it is inherited from a common ancestor.  

Recently the ontogeny of numerical abilities has been investigated in fish too. 

Bisazza et al., (2010) used guppies as a model: this species is viviparous with relatively 

short lifespan and gives birth to fully developed offspring that are independent at birth 

and display a complex behavioral repertoire. In this sense, newborn guppies represent a 

suitable model for assessing the developmental trajectories of numerical abilities. 

Experiments were done using a small-scale version of the experimental apparatus 

adopted to study spontaneous quantity discrimination in adult fish (Agrillo et al., 

2008a). Results showed that, at birth, guppies discriminated between shoals differing by 

one individual up to 4 units (1 vs. 2, 2 vs. 3, 3 vs. 4), but not when larger quantities 

where presented (4 vs. 5, 5 vs. 6). That is, the capacity of newborn guppies to 

discriminate between small numerosities is the same as that shown by adult individuals 

(Agrillo et al., 2012). At the same time, one-day-old fish were unable to find a 

difference in 4 vs. 8 (0.50 ratio) and 4 vs. 12 (0.33), suggesting that large quantity 

discrimination is absent or highly approximate at birth.  

Because adult fish can easily discriminate between large shoals with at least a 0. 50 

ratio (Agrillo et al., 2012), the development of large quantity discrimination (4 vs. 8) 

was investigated in a subsequent experiment. Guppies were tested at three different ages 
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(1, 20, or 40 day old) to assess the salience of maturation. Furthermore newborns were 

reared in two experimental conditions to evaluate the role of experience. In one 

condition fish were reared in pairs to allow a normal development of their social 

behavior but preventing them from seeing more than one fish at time. In the second one, 

fish were reared in group of 13 – 15 similar age fish with the possibility of seeing sub-

groups of peers differing in numerosity. Fish from both experimental conditions were 

capable to discriminate 4 from 8 fish when they were 40 days old, but only subjects 

reared in groups were already able to choose the larger shoal at 20 days of age. This 

study showed that the ability to discriminate small sets is innate, whereas the large 

quantity system emerges only later as a result of both maturation and previous social 

experience. Overall, these results provide further evidence of the existence of two 

separate numerical systems. If the species is endowed with only one system of 

numerical representation, one would actually expect the same developmental 

trajectories for both small and large quantities: a condition not occurred in this study. 

Finally, this study also included an experiment similar to that reported in adult fish 

using the item-by-item procedure (Dadda et al., 2009) to investigate whether newborn 

guppies were able to discriminate quantities by using numerical information only. 

Subjects could choose between two groups of conspecifics (2 vs. 3 and 4 vs. 8, 

presented respectively to newborns and young guppies) controlled for non-numerical 

cues, namely, the overall space occupied by the shoals, the density of the fish and the 

total surface from which stimulus fish were visible to the subjects (visibility space). 

Subjects joined the larger shoal in both numerical contrasts suggesting that, similarly to 

adults, juvenile guppies can process numerical information when tested in conditions 

that reduce the access to continuous quantities. 

In conclusion, these results, in addition to the literature on chicks, show that some 

proto-counting abilities appear quite early, suggesting the existence of a 'number sense', 

that is inborn not only in primates (Feigenson et al., 2004; Izard et al., 2009), but also in 

other vertebrates. 
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2. AIM OF THE RESEARCH 

 

In the last decade fish have become an useful model in numerical cognition 

studies. As previously reported, fish are able to select the larger shoal of conspecifics 

and can be trained to discriminate between groups of figures differing in numerosity 

both when allowed to use number and continuous quantities and when only number 

was available. Fish can also make a spontaneous use of numerical information with 

apparently the same effort required to discriminate continuous quantities. These 

abilities seem to be partially inborn as one-day old fish are already able to 

discriminate between small groups of peers. 

Nonetheless some questions about numerical abilities in fish are still unanswered. 

For instance, it is unclear whether numerical systems are the same among different 

species, whether numerical acuity may be affected by different factors, such as 

cooperation among individuals and the presence of items in motion or whether 

newborn fish could be trained to discriminate between sets of items.  

The aim of the present thesis was to fill this gap. In particular, the first part of the 

research deals with some of the open questions about numerical cognition in adult 

fish; the second part is focused on the ontogeny of numerical competence. 

First of all, a novel training procedure was set up to investigate numerical abilities 

in fish. Recently it has been shown that fish can successfully be trained to 

discriminate between sets of two-dimensional figures, but the procedure previously 

used took long time and was stressful for fish. A new procedure was designed in 

which, at intervals, two stimuli representing different numerosities were introduced 

at opposite ends of the tank and food was delivered near the stimulus to be 

reinforced. Fish initially were trained on an easy numerical ratio (0.50). Once they 

reached the learning criterion, they were tested in non-reinforced probe trials for their 

ability to generalize to both small and large new numerosities. Time spent near 

positive stimulus in probe trials was taken as a measure of discrimination 

performance. To validate the method, two published experiments that used operant 

conditioning to investigate the mechanisms of numerical discrimination in 
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mosquitofish were replicated (Agrillo et al., 2009, 2010). The replication of previous 

studies is useful to determine whether the results are simply an artifact of the 

methodology adopted or, conversely, they reflect the true cognitive abilities of the 

species. Since data indicated a complete overlap of the results obtained using the two 

different methods, the novel protocol was adopted in all the training experiments 

presented in this thesis. 

The second study focused on a potential limit in numerical cognition research: the 

lack of cross-species studies using the same methodology. Adults, infants and non-

human primates are thought to possess similar pre-verbal numerical systems, but 

there is considerable debate regarding whether all vertebrates share the same 

numerical abilities. Despite an abundance of researches on animals, cross-species 

comparison remains difficult because the methodology employed, the stimuli and the 

context of species examination vary considerably across studies. To date no study 

has investigated if different fish species have the same numerical systems. To fill this 

gap, the same procedure, stimuli, and numerical contrasts were used to compare 

quantity abilities of five teleost fish commonly used as model species in behavioral 

and cognitive studies: redtail splitfin, guppies, zebrafish, Siamese fighting fish, and 

angelfish. Fish initially were trained on an easy numerical ratio (5 vs. 10 and 6 vs. 

12). Once they reached the learning criterion, they were subjected to non-reinforced 

probe trials in which the set size was constant but numerical ratios varied (8 vs. 12 

and 9 vs. 12). They also were subjected to probe trials in which the ratio was 

constant, but the total set size was increased (25 vs. 50) or decreased (2 vs. 4). 

Similarities in numerical abilities in different species would support the hypothesis of 

cognitive mechanisms inherited from a common ancestor. 

In the third and fourth studies it has been investigated whether numerical acuity 

could be affected by two factors that commonly occur in nature: collective behavior and 

movement of the items. In natural environment individuals interact with each other and 

these repeated interactions among grouping animals can influence adaptive response. 

Furthermore animals are naturally exposed to items in motion (prey, predators) and 

hence the movement represents a relevant cue in their life. However no studies have 

investigated whether fish can discriminate two-dimensional figures in motion and 

whether the accuracy is the same in the small and large number range. 
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The third study assessed whether the collective behavior may improve numerical 

acuity in guppies. In many ecological situations the capacity to process numerical 

magnitudes is important for an accurate decision-making but animals are often 

severely constrained in their ability to elaborate numerical information. However, it 

has been reported that, in some contexts, collective actions allow to bypass the 

cognitive limits of a species and to solve problems that go beyond the capacity of a 

single individual. Two experiments aimed to verify whether fish in dyads were more 

accurate than single individuals and could discriminate numerical ratios that 

singletons could not. In Experiment 1, the performance of dyads was confronted with 

that of singletons in a task requiring to join the larger shoal (4 vs. 6). In Experiment 

2, fish were trained to discriminate between sets of figures (0.5 ratio) and hence were 

tested singly or in dyads in discriminations of increasing difficulty (8 vs. 12 and 9 vs. 

12). 

Finally, the fourth study investigated whether numerical acuity of fish is improved 

in the presence of items in motion. There is controversy in comparative psychology 

about whether the non-symbolic number estimation of small (≤4) and large numbers 

(≥ 4) involves a single mechanism (the ANS), or whether the enumeration of the 

numbers 1–4 is accomplished by a separate mechanism, the OTS. To date, support 

for the latter hypothesis has come only from the different ratio-dependency of 

performance seen in the two numerical ranges, a reading that has been criticized on 

several grounds. In humans, the two-system hypothesis is supported by evidence 

showing that manipulation of the physical properties of the stimuli (e.g., the motion 

of the items) has dissimilar effects on small- and large-number discrimination. This 

research studied the effect of items in motion on adult guppies. Initially, fish were 

trained to simultaneously discriminate two numerical contrasts having the same easy 

ratio (0.50): one in the small-number range and one in the large-number  range. Half 

of the fish were presented with moving items; the other half were shown the same 

stimuli without motion. Fish were then subjected to non-reinforced probe trials in the 

presence of a more difficult ratio (0.75). A difference in fish ability to discriminate 

between small and large sets may provide further evidence of two separate numerical 

systems in fish. 
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The second part of the thesis is focused on the development of numerical abilities 

in newborn guppies. The study of cognitive abilities generally requires that subject 

are assessed individually, but social isolation can be stressful, especially for 

newborns and young individuals. The first study aimed to design a learning protocol 

for newborn guppies based on knowledge of their social needs. Firstly, the 

development of social behavior in the first two weeks of life was investigated by 

using a spontaneous choice task where newborn guppies could choose between social 

companions and an empty compartment. Then newborns were given the choice 

between a group of peers and their own mirror image to investigate whether mirrors 

could be used as a substitute for social companions during learning experiments. 

Based on the findings of these experiments, the protocol for discrimination learning 

in adult fish was adapted to study shape discrimination in newborn fish.  

The ability to estimate shoal size was previously found to be inborn in guppies, 

although it improves with age and experience. However, it is not clear whether 

animals possess a single system of numerical representation, or rather are equipped 

with domain-specific numerical systems with distinct characteristics. To this 

purpose, the aim of the last study was to investigate whether newborn guppies could 

be trained to discriminate between groups of two-dimensional geometric figures 

differing in number (1 vs. 4, 2 vs. 4 and 2 vs. 3) and whether exhibit the same 

performance previously observed in the spontaneous shoal choice. To study the 

influence of continuous quantities, three different experiments were set up: in the 

first one number and continuous quantities were simultaneously available, in the 

second experiment only numerical information was available and in the last one, 

numerical information was made irrelevant (3 vs. 3) and only continuous quantities 

were available. Differences in developmental trajectories in comparison with shoal 

discrimination experiments would suggest the presence in fish of multiple 

quantification mechanisms which are domain-specific and serve to solve a limited set 

of problems. 
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3. THE SPECIES 

 

 

Gambusia holbrooki 

 
Regno        Animalia 

Phylum Chordata 

Classe Actinopterygii 

Ordine Cyprinodontiformes 

Famiglia Poeciliidae 

Genere Gambusia 

Specie Gambusia holbrooki 

 

 

The eastern mosquitofish (Gambusia holbrooki) is a live-bearer fish native to North 

America and introduced in Europe at the beginning of XX century. It has been widely 

introduced as mosquito control agent and now it is described as the most widespread 

freshwater fish in the world. This species lives in shallow water with rich vegetation, 

but it is resistant to harsh conditions (low oxygen concentrations, high salt 

concentrations and high temperatures for short periods). Mosquitofish are omnivorous 

though the diet is based primarily on insect larvae.  

It is a social species but males are less gregarious than females.  

Sexual dimorphism is pronounced in body size but not in coloration: females are 

larger than males and adult female mosquitofish can be identified by a gravid spot they 

possess on the posterior of their abdomen (Fig. 12).  

Fertilization is internal. Mosquitofish are viviparous: females give birth to newborns 

that are well developed and independent at birth. There is no parental care.  

This species has been used as animal model in ecology (Howe et al., 1997; Toft et 

al., 2003; Hamer et al., 2002) and numerical cognition (Agrillo et al., 2008a, 2009, 

2010, 2011) 

 

Fig. 12: Male (below) and female 

(above) of Gambusia holbrooki. 
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Poecilia reticulata  

    
Regno        Animalia 

Phylum Chordata 

Classe Actinopterygii 

Ordine Cyprinodontiformes 

Famiglia Poeciliidae 

Genere Poecilia 

Specie Poecilia reticulata 

  

 

The guppy (Poecilia reticulata) is a live-bearer fish native to Venezuela, Guyana, 

Barbados, Trinidad and Tobago. This species is widespread in different habitat but 

tends to be more abundant in smaller streams and pools than in large, deep, or fast 

flowing rivers. The guppies are omnivorous.  

It is a social species though males are less gregarious than females. 

Sexual dimorphism is pronounced: females are larger than males but males more are 

brightly coloured than females: males show a complex colour pattern polymorphism 

which consists of spots or patches varying in colour (orange, red, yellow, black; blue 

and green, Fig. 13).  

Fertilization is internal and the species is viviparous: females gives birth to newborns 

that are well developed and independent at birth. There is no parental care.  

This species is an important animal model to study sexual selection (Houde & 

Endler, 1990; Magurran et al., 1994; Pilastro et al., 2007), sociality (Laland & William, 

1997; Magellan & Magurran, 2009; Croft et al., 2004) and it has been recently used to 

study numerical cognition (Agrillo et al., 2012, Bisazza et al., 2010) 

 

 

 

 

 

Fig. 13: Male (above) and female 

(below) of Poecilia reticulata. 

http://scholar.google.it/citations?user=ckRmWcoAAAAJ&hl=it&oi=sra
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Xenotoca eiseni  

 

Regno        Animalia 

Phylum Chordata 

Classe Actinopterygii 

Ordine Cyprinodontiformes 

Famiglia Goodeidae 

Genere Xenotoca 

Specie Xenotoca eiseni 

 

 

The redtail splitfin (Xenotoca eiseni) is a live-bearer fish native to Mesa Central 

plateau of Mexico. This species lives in shallow, quiet, transparent water with rich 

vegetation and  pebbles (though fish rapidly adapt even to different environments) and 

is omnivorous.  

It is a social species though males are less gregarious than females. 

Females are generally slightly larger than males, but there is a strong dimorphism in 

the coloration, with males more brightly coloured than females (in males, but not 

females, the front part of the caudal peduncle is blue, and the area adjacent to the caudal 

fin is bright red, Fig. 14).  

Fertilization is internal. Redtail splitfin is viviparous and females gives birth to 

newborns that are well developed and independent at birth. There is no parental care. 

This species has been used to study spatial orientation (Sovrano et al., 2003, 2007), 

visual perception (Sovrano & Bisazza, 2008; Truppa et al., 2010) and numerical 

cognition (Stancher et al., 2013). 

 

 

 
 
 
 
 

Fig. 14: Male (above) and female 

(below) of Xenotoca eiseni. 
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Betta splendens 

 
Regno:        Animalia 

Phylum: Chordata 

Classe: Actinopterygii 

Ordine: Perciformes 

Famiglia: Osphronemidae 

Genere: Betta 

Specie: Betta splendens 

 

 

The Siamese fighting fish (Betta splendens) is native to Southeast Asia. It lives in 

rice paddies and marshy areas with a low oxygen content where can live as this species 

has an organ, called the labyrinth, that enables to breathe air through the surface of the 

bodies. The Siamese fighting fish are primarily carnivorous (crustaceans, larvae of 

mosquitoes and other insects).  

It is a non-social species and both males and females are aggressive to each other. 

Fish are sexually dimorphic: adult males are distinguished by larger bodies and 

longer fin length from the smaller, shorter finned females (Fig. 15). 

Fertilisation is external and parental care is engaged by the male. Males build bubble 

nests at the water surface among floating plants and during and after spawning, they 

retrieve sinking eggs and deposit them in the bubble nest. After spawning the female is 

chased away from the male's territory and the eggs remain in the male's care. He keeps 

them in the bubble nest, making sure none falls to the bottom, repairs the nest and guard 

it from intruders.  

The Siamese fighting fish has been primarily used in behavioral studies (Evans , 

1985; Doutrelant et al., 2001, McGregor et al., 2001) but it is poorly investigated in 

comparative cognition. 

 

Fig. 15: Male (left) and female (right) 

of Betta splendens. 

http://en.wikipedia.org/wiki/Larva
http://en.wikipedia.org/wiki/Mosquito
http://en.wikipedia.org/wiki/Bubble_nest
http://en.wikipedia.org/wiki/Bubble_nest
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Pterophyllum scalare 

 

Regno        Animalia 

Phylum Chordata 

Classe Actinopterygii 

Ordine Perciformes 

Famiglia Cichlidae 

Genere Pterophyllum 

Specie Pterophyllum scalare 

 

 

The angelfish (Pterophyllum scalare) is a cichlid fish native to South America. This 

species lives in shore areas along the banks of lakes and slow-moving rivers with rich 

vegetation and roots, and fish are omnivorous.  

The angelfish lacks sexual dimorphism and the difference in the genital papillae is the 

only reliable way to distinguish between males and females (Fig. 16). 

It is a monogamous social species: angelfish tend to mate with a single partner and 

pairs form long-term relationships. 

Fertilization is external: the pair selects a spawning site (such as a broad-leaf plant) 

and thoroughly clean it about two or three days before actual spawning takes place, then 

the female lays eggs and the male fertilizes them. Both partners engage in prolonged 

parental cares of the eggs and of the fry for a few days after hatching.  

This species has been used as animal model to study sociality (Gòmez-Laplaza & 

Gerlai, 2002, 2005) and numerical cognition (Gòmez-Laplaza & Gerlai, 2011a, b; 2012, 

2013).   

 

 

 

 

 

Fig. 16: Sub-adults of Pterophyllum 

scalare 
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Danio rerio 

 

Regno        Animalia 

Phylum Chordata 

Classe Actinopterygii 

Ordine Cypriniformes 

Famiglia Cyprinidae 

Genere Danio 

Specie Danio rerio             

 

 

The zebrafish (Danio rerio), is a small, shoaling cyprinid, native to Northeast India, 

Bangladesh and Nepal, where it lives in shallow, slow-flowing waters, and rice paddies 

but also in rivers and hill streams. The zebrafish is an omnivorous and social species. 

They are characterised by a distinctive colour pattern based on alternating dark and 

light horizontal stripes, which may be broken up into blotches or bars and they do not 

display striking sexual dimorphism (Fig. 17).  

Fertilisation is external, the eggs are released directly over a substratum with no 

preparation by either sex and there is no parental care. Development is rapid and larvae 

display food seeking and active avoidance behaviors within 2-3 days after hatching. 

The zebrafish is an important model organism in developmental genetics, 

biomedicine, neurophysiology, (Lieschke & Currie, 2007; Rubinstein, 2003; 

Amsterdam & Hopkins, 2006, Best & Alderton, 2008) and in behavioral studies 

(Miklósi & Andrew, 2006). 

 
 

 

 

 

 

Fig. 17: Male (above) and female 

(below) of Danio rerio 
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4. NUMERICAL ABILITIES IN ADULT FISH USING A 

TRAINING PROCEDURE 

 

The study of animal cognition and its neurobiological bases often requires the 

adoption of associative learning procedures. Although fish are increasingly used as a 

model system in behavioral and cognitive studies, the availability of adequate learning 

protocols can be a limiting factor in this field of research. This Section describes a novel 

training procedure adopted in further studies to explore number discrimination in 

several teleost fish. 

 

 

4.1. A new training procedure for studying discrimination learning in 

fish*  

 

*This research is a modified version of “Agrillo, C., Miletto Petrazzini, M. E., Piffer, L., Dadda, 

M., & Bisazza, A. (2012). Behavioural Brain Research, 230, 343-348”. 

 

During the past decade, an ever-increasing number of studies have used fish as a 

model system in behavioral neuroscience. Zebrafish, guppies, goldfish, and stickleback, 

among others, have been successfully employed to study learning, memory, and visual 

perception, to screen new drugs, to identify the function of brain genes, and to model 

human psychopathology and neurodegenerative diseases (Portavella et al., 2002; Burns 

et al., 2008; Sanogo et al., 2011; Geling et al., 2002; Hoffmann et al., 2007; Blank et al., 

2009).  

Many of these studies require visual discrimination. Although procedures of classical 

and operant conditioning used in avian and mammalian species can be adapted for fish 

(Siebeck, 2009; Bitterman, 2009; Yager, 1967) to learn to discriminate, they have 

several limitations. For example, with fish, water cannot be used as a reward, and food 
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deprivation is not as effective as with warm-blooded vertebrates. Consequently, fish can 

only be administered a few trials per day and experiments may last several weeks.  

Recently, some studies have used social reinstatement as a reward. Sovrano et al. 

(2002) studied the ability of fish to use the geometry of the environment for spatial 

reorientation. In this study, one fish was placed in an unfamiliar place and could only 

re-join its shoal mates by choosing the correct exit door. More recently, the same 

method was employed to study numerical abilities in mosquitofish (Agrillo et al., 2009; 

Agrillo et al., 2010). Al-Imari and Gerlai (2008) used social reinforcement successfully 

to train zebrafish to choose the arm associated with a red cue card in a four-arm radial 

maze. However, fish tend to become used to these procedures and the reinstatement 

tendency decreases after repeated testing. Hence, even with social reinforcement, the 

number of consecutive trials that can be performed is usually limited and the process of 

learning can last several weeks (Agrillo et al., 2010; Sovrano et al., 2008). In addition, 

the conditioning procedure requires that each subject is moved back and forth between 

the housing tank and the test apparatus several times a day, a procedure that is 

potentially very stressful for fish.  

This study presents a novel procedure for training small fish to discriminate between 

two visual stimuli. In brief, for the entire experiment, each fish resides in a small tank 

that serves as testing apparatus. The stimuli to discriminate are repeatedly placed at the 

two ends of the tank while food is delivered in the proximity of the rewarded stimulus. 

The capacity to discriminate is measured as the time spent near the reinforced stimuli 

during probe trials without a reward.  

To compare the new procedure with existing methods, we replicated recent published 

experiments that used operant conditioning to assess the limits of numerical 

discrimination in mosquitofish (Agrillo et al., 2009, 2010). As some authors (Feigenson 

et al., 2004; Agrillo et al., 2007, 2008a; Bonanni et al., 2011) have suggested that 

discrimination of small numbers (ranging from one to four) may be based on other 

mechanisms than discrimination of large numbers (≥ 4), we performed separate 

experiments for the two numerical ranges. In the first two experiments, we studied the 

influence of ratio and the influence of total size of the set on large number 

discrimination, respectively. In the third experiment, we studied the limit of 
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discrimination in the small number range. In the fourth experiment, we tested whether 

extended training can improve the ability of fish to discriminate numerosities. 

 
 
 

4.1.1. Experiment 1: Influence of numerical ratio in large number discrimination 

 

This experiment investigated whether the discrimination of two large numbers 

worsens as the numerical ratio between the numerosities decreases, as previously 

reported using operant conditioning (Agrillo et al., 2010). To this end, fish were 

observed in their capacity to discriminate: 7 vs. 14, 8 vs. 12, and 9 vs. 12, which yielded 

ratios of 1:2, 2:3, and 3:4, respectively.  

 

Subjects  

Subjects were 11 adult female mosquitofish (ranging from 4 to 6 cm in length) of the 

species Gambusia holbrooki. Fish were initially collected from Valle Averto, a system 

of brackish water ponds and ditches in the Venetian lagoon basin. They were 

transported to the Laboratory of Comparative Psychology at the University of Padua 

and maintained for one month in 150 one-stock aquaria containing mixed-sex groups 

(15 individuals with approximately a 1:1 sex ratio). Aquaria were provided with natural 

gravel, an air filter, and live plants. Both stock aquaria and experimental tanks were 

maintained at a constant temperature of 25 ± 1◦ C and a 14:10 h light:dark (L:D) 

photoperiod with an 18-W fluorescent light. Before the experiment, fish were fed twice 

daily to satiation with commercial food flakes and live brine shrimp (Artemia salina).  

 

Apparatus  

The experimental apparatus was composed of a 50 x 19 x 32 cm tank. It was filled 

with gravel and 25 cm of water. The long walls were covered with green plastic 

material, and the short walls were covered with white plastic material. To reduce the 

potential effects of social isolation (see Section 6.1), two mirrors (29 x 5 cm) were 
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placed in the middle of the tank, 3 cm away from the long walls. An artificial leaf (9 x 8 

cm) was placed between the mirrors to provide some shelter for the subject. In 

correspondence with the sides in which stimuli were presented, two ‘choice areas’ were 

defined by white rectangles (14 x 12 cm) covered by a green net (Fig. 18).  

 

 

 

 

Stimuli  

 

Stimuli were inserted in a 6 x 6 cm square and were presented at the bottom of a 6 x 

29 transparent plexiglass panel. They were groups of black geometric figures differing 

in size on a white background. Different numerical contrasts were presented: 5 vs. 10 

and 6 vs. 12 (1:2 ratio) in the training phase; 7 vs. 14, 8 vs. 12, and 9 vs. 12 (1:2, 2:3, 

and 3:4 ratios, respectively) in the test phase. Stimuli selected for the experiment were 

Fig. 18: Experimental apparatus. Subjects were housed in the experimental tank 

(a: aerial view, b: lateral view) for the entire experiment. Stimuli (two groups of 

dots differing in numerosity) were presented at the bottom of the tank.  

 

 

a b 
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extracted from a pool of 24 different pairs for each numerical contrast. Both the size and 

position of the figures were changed across sets to avoid the fish having to discriminate 

the overall configuration of the stimuli instead of using numerical information. It is 

known that numerosity co-varies with other physical attributes, such as cumulative 

surface area, overall space encompassed by the stimuli, and density of the elements; as 

well, it is known that human and non-human animals can use these non-numerical cues 

to estimate which group is larger/smaller (Gebuis & Reynvoet, 2012; Kilian et al., 2003; 

Pisa & Agrillo, 2009; Feigenson et al., 2002a). Cumulative surface area (summed area 

of dots) was controlled to reduce the possibility of fish using non-numerical cues. In 

particular, for one third of the stimuli, the two numerosities were 100 % equated for 

cumulative surface area. However, a by-product of equating the cumulative surface area 

was that smaller than average figures would be more frequent in the larger groups and 

fish might use this cue instead of number. To reduce this possibility, cumulative surface 

area was controlled to 85 % in another third of the stimuli during the training phase, 

and, in the remaining one-third of the stimuli, it was controlled to 70 %. As a 

consequence, in the 70 % condition the biggest figure within each pair was shown in the 

larger set; in the 85 % condition the biggest figure was shown in the larger set in half of 

the trials and in the smaller set in the other half of trials. In probe trials, cumulative 

surface area was always matched to 100 %. In this way, should the fish discriminate 

between the matched quantities in probe trials, neither cumulative surface area (matched 

to 100 %) nor the individual figure size (an unreliable cue in the training phase) could 

have played a key-role. In addition, given that density (inter-individual distance) is 

negatively correlated to the overall space occupied by the arrays (space encompassed by 

the most lateral figures), half of the set was controlled for overall space, whereas the 

second half was controlled for density (Fig. 19). Area, space and density were 

controlled using TpsDig software. Cumulative surface area, density, and overall space 

represent the non-numerical variables most frequently controlled in numerical cognition 

studies (Durgin, 1995; Pisa & Agrillo, 2009; Vos et al., 1988). They also represent the 

only cues that proved to be sometimes used by fish with static stimuli (Agrillo et al., 

2009, 2010). 

Eleven identical experimental tanks were used. They were placed close to each 
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other on the same table and lit by two fluorescent lamps (36 W). A video camera was 

suspended about 1 m above the experimental tanks and used to record the position of 

the subjects during the tests. 

 

 

 

 

Fig. 19: Schematic representation of the stimuli used. Each panel contained black 

geometric figures differing in numerosity inserted in a white background. In the 

figure we depicted a 8 vs. 12 contrast with cumulative surface area controlled to 

100% (a), to 85% (b) and to 70%(c). In (a) and (b) stimuli are controlled for 

overall space, whereas in (c) they are controlled for density.  
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Procedure  

The experiment was divided into two different phases: training and test. During the 

training phase, we presented an easy numerical ratio (1:2) with the purpose of training 

the fish to the new task and selecting those fish successfully accomplished the task. In 

the test phase, we then assessed fish accuracy as the numerical ratio changed.  

Training 

In the two days preceding the start of the training, 11 fish were singly inserted into 

the experimental tanks in order to familiarize them with the tank. During this period, 

fish were fed twice a day. Artemia nauplii were inserted in the morning and in the 

afternoon near the two short walls.  

On days 1–3, fish received four trials per day (three consecutive days, for a total of 

12 trials). Each trial consisted of inserting the two stimuli hanged on the short walls. 

Two numerical contrasts were presented in a pseudo-random sequence: 5 vs. 10 and 6 

vs. 12. Six fish were reinforced to the larger quantity and five fish to the smaller 

quantity. Soon after the stimuli were inserted in the tank, the experimenter used a 

Pasteur pipette to release the food reward (Artemia nauplii) in correspondence with the 

reinforced numerosity; an identical syringe was used to simultaneously insert pure water 

close to the non-reinforced numerosity. Subjects were left free to feed for 7 min. After 

this time, stimuli were removed from the tank. The inter-trial interval lasted 3 h. The 

left–right positions of the stimuli were counterbalanced over trials.  

On days 4 and 5, two probe trials were alternated each day with two reinforced trials 

(four probe trials in total). In probe trials (two trials with 5 vs. 10 and two trials with 6 

vs. 12, presented in a pseudo-random sequence), stimuli were inserted in the tank for 4 

min; no reinforcement was provided (extinction procedure). The proportion of time 

spent by mosquitofish in the ‘choice areas’ was recorded as a measure of their capacity 

to discriminate the two numerosities (accuracy). In particular subjects were considered 

as selecting a stimulus when their heads were inside the choice area associated to that 

stimulus. Proportion of time was given by the following formula: (Time spent near the 

reinforced stimulus)/[(Time spent near the reinforced stimulus) + (Time spent near the 

non-reinforced stimulus)]. Reinforced trials were identical to those described for days 

1–3.  



62 

 

Only fish who met the learning criterion (defined as 60% of the time spent near the 

reinforced numerosity in probe trials) were selected for the test phase.  

To avoid the possibility of fish using the local/spatial cues of their tank, each subject 

was moved from one tank to another at the end of each day. 

Interval 

On days 6 and 7, fish received two reinforced trials each day, one in the morning and 

one in the afternoon. The same numerical contrasts of the training phase were presented 

in a pseudo-random sequence. 

Test  

Three probe trials were presented each day for four consecutive days (days 8–11). 

Fish were presented with three different numerical ratios, i.e., 1:2 (7 vs. 14), 2:3 (8 vs. 

12), and 3:4 (9 vs. 12), and four presentations for each ratio in a pseudo-random 

sequence. The inter-trial interval lasted 3 h. Two reinforced trials presenting the 

numerical contrasts of the training (5 vs. 10 and 6 vs. 12) were alternated in the probe 

trials. The time spent in the ‘choice areas’ during probe trials was used as a dependent 

variable in this and in the following experiments. 

Control test 

As a by-product of controlling for the cumulative surface area, smaller than average 

elements were more frequent in the more numerous sets, and fish could have used this 

cue instead of numbers to learn discrimination. On day 12, fish were therefore subjected 

to a control test (7 vs. 14) involving pairs of stimuli composed of figures of identical 

size. Four probe trials were presented, alternating with two reinforced trials (5 vs. 10 

and 6 vs. 12) in the following order: probe/probe/reinforced/probe/reinforced/probe.  
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Results 

Training  

In probe trials with a 1:2 numerical ratio, fish spent significantly more time near the 

trained numerosity (mean ± Standard deviation, SD: 0.609 ± 0.122; one sample t-test, 

t(10) = 2.967, p = 0.014). There was no difference in accuracy (proportion of time 

spent) between fish trained with the larger numerosities (0.586 ± 0.149) and those 

trained with the smaller numerosities as positive (0.637 ± 0.087; independent t-test, t(9) 

= 0.669, p = 0.520). Eight fish out of 11 met the learning criterion and hence started the 

test phase.  

 

Test  

Fish significantly discriminated in the 1:2 ratio (7 vs. 14, t(7) = 3.513, p = 0.010) and 

2:3 ratio (8 vs. 12, t(7) = 2.815, p = 0.026), whereas their accuracy did not differ from 

chance level in the 3:4 ratio (9 vs. 12, t(7) = 1.056, p = 0.326, Fig. 20). A 2 x 3 ANOVA 

examining the effects of the Reinforced Numerosity (small/large) and Ratio (1:2, 2:3 

and 3:4) revealed a main effect of Ratio (F(2,12) = 5.627, p = 0.019) with accuracy 

significantly decreasing with Ratio (linear trend: F(1,6) = 9.595, p = 0.021). Neither the 

main effect of Reinforced Numerosity nor the interaction between Ratio and Reinforced 

Numerosity were significant (F(1,6) = 0.082, p = 0.784, and F(2,12) = 0.204, p = 0.819, 

respectively). 

 

Control test  

In the presence of stimulus pairs composed of figures of identical size, fish 

significantly selected the trained numerosity (0.595 ± 0.061, t(7) = 4.367, p = 0.003). 
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4.1.2. Experiment 2: Influence of total set size in large number discrimination  

 

This experiment aimed at studying whether the capacity to discriminate large 

numbers worsens as the total set size increases, as previously reported using operant 

conditioning (Agrillo et al., 2010). To this end, fish were observed in terms of their 

capacity to discriminate 8 vs. 16, 15 vs. 30, and 100 vs. 200.  

 

Subjects and procedure  

We tested the same subjects completed in Experiment 1. Fish were tested two days 

after the end of Experiment 1.  

The general procedure was similar to the previous experiment. On days 1–3, four 

daily trials (three consecutive days, for a total of 12 trials) were performed. Three 

numerical contrasts with the same numerical ratio (1:2) but different total set size were 

presented: 8 vs. 16, 15 vs. 30, and 100 vs. 200 (four trials per numerical contrast).  

On days 4–8, three probe trials were alternated each day with two reinforced trials 

(12 probe trials overall, four per each numerical contrast). The same numerical contrasts 

as on days 1–3 were presented.  

 

Results 

Fish significantly discriminated all numerical contrasts: 8 vs. 16 (t(7) = 2.600, p = 

0.035), 15 vs. 30 (t(7) = 3.935, p = 0.006), 100 vs. 200 (t(7) = 2.385, p = 0.049, Fig. 20). 

A 2 x 3 ANOVA examining the effects of the Reinforced Numerosity (small/large) and 

Total Set Size (24, 45, and 300) revealed no main effects (Reinforced Numerosity: 

F(1,6) = 0.255, p = 0.631; Total Set Size: F(2,12) = 0.133, p = 0.877), or interaction 

(F(2,12) = 1.716, p = 0.221) 
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Fig. 20: Results of Experiments 1 and 2. The method used in the present study 

successfully replicated the results of previous works using operant conditioning. The 

ability to discriminate between large numerosities shows ratio dependence 

(Experiment 1). Conversely, fish accuracy is insensitive to the total set size 

(Experiment 2). Asterisks denote a significant departure from chance level (P<0.05). 

Bars represent the standard error. 

error 
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4.1.3. Experiment 3: Limit of small number discrimination 

 

This experiment aimed at studying the limit of precise number discrimination. To 

this end, fish were observed in their capacity to discriminate small groups differing by 

one unit (2 vs. 3, 3 vs. 4, and 4 vs. 5), as previously studied with operant conditioning 

(Agrillo et al., 2009)  

 

Subjects  

Subjects were 11 adult female mosquitofish (G. holbrooki). Before the experiment, 

fish were maintained in the same conditions described for Experiment 1.  

 

Stimuli and procedure  

The procedure was similar to Experiment 1. During the training phase, fish were 

presented (in both reinforced and probe trials) with the following numerical contrasts: 1 

vs. 2 and 2 vs. 4. In the test phase, fish were presented with three novel numerical 

contrasts: 2 vs. 3, 3 vs. 4, and 4 vs. 5, four presentations for each numerical contrast. 

Two reinforced trials presenting 1 vs. 2 and 2 vs. 4 were alternated with the probe trials. 

 

Results  

Training  

Fish significantly discriminated a 1:2 numerical ratio (mean ± SD: 0.591 ± 0.096; 

t(10) = 3.146,  p = 0.010). There was no difference in the accuracy between fish trained 

with the larger numerosities (0.593 ± 0.114) and those trained with the smaller 

numerosities as positive (0.588 ± 0.081; t(9) = −0.071, p = 0.945). Seven fish out of 11 

met the learning criterion and hence started the test phase.  
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Test 

Fish significantly discriminated 2 vs. 3 (t(6) = 5.464, p = 0.002), but not 3 vs. 4 (t(6) 

= 0.470, p = 0.655), or 4 vs. 5 (t(6) = 0.154, p = 0.883, Fig. 21). There was a main effect 

of Ratio (F(2,10) = 5.378, p = 0.026, linear trend: F(1,5) = 12.073, p = 0.018) but no 

effect of Reinforced Numerosity (F(1,5) = 5.324, p = 0.069) was found. Interaction was 

not significant (F(2,10) = 0.364, p = 0.704). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Results of Experiment 3. When trained to discriminate between groups 

differing by one unit, mosquitofish only prove able to successfully identify a 2 vs. 3 

discrimination. Asterisk denotes a significant departure from chance level (P<0.05). 

Bars represent the standard error. 
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4.1.4. Experiment 4: Influence of extended training on numerical discrimination 

 

This experiment aimed at studying whether extensive training could improve the 

limits exhibited by mosquitofish in Experiment 3. To this end, we studied whether fish 

could improve discrimination of the numerical contrasts previously presented in the test 

phase of Experiment 3 (2 vs. 3, 3 vs. 4, and 4 vs. 5).  

 

Subjects and procedure  

We tested the same subjects who completed Experiment 3. Fish were tested two days 

after the end of Experiment 3. In week 1, subjects received 12 trials (four daily trials in 

days 1–3) with the same numerical contrasts used in the test phase of Experiment 3. As 

previously, in days 4–7, they were subjected to 12 probe trials (three daily probe trials 

alternated with two reinforced trials), four probe trials for each numerical contrast. An 

identical procedure was repeated during week 2.  

 

Results  

Fish re-tested after training on 2 vs. 3, 3 vs. 4, and 4 vs. 5 showed no variation in 

performance compared with Experiment 3. After 12 reinforced trials, they significantly 

discriminated 2 vs. 3 (0.590 ± 0.066, t(6) = 3.603, p = 0.011), but their performance did 

not differ from chance level in 3 vs. 4 (0.521 ± 0.067, t(6) = 0.823, p = 0.442), or 4 vs. 5 

(0.504 ± 103, t(6) = 0.115, p = 0.913). No improvement was observed after 32 (12 trials 

+ 8 alternated with probe trials in week 1 + 12 trials of week 2) trials (2 vs. 3: 0.589 ± 

0.093, t(7) = 2.548, p = 0.044, 3 vs. 4: 0.514 ± 0.070, t(7) = 0.560, p = 0.596; 4 vs. 5: 

0.511 ± 0.122, t(7) = 0.248, p = 0.812).  

A repeated measures ANOVA with Sessions (Experiment 3/after 12/after 32 trials) 

and Numerical Ratio as within factors showed a main effect of Numerical Ratio 

(F(2,12) = 8.602, p = 0.005), whereas Sessions was not significant (F(2,12) = 0.149, p = 

0.863). Interaction was not significant (F(4,24) = 0.227, p = 0.921).  
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Cumulatively, in Experiments 1 and 3, seven of the 22 fish did not meet the criterion 

to enter the subsequent test phase. One of these fish never reached the choice areas 

during probe trials, always remaining in the shelter, and three others had two or more 

invalid probe trials for the same reason (all 15 fish that met the criterion were valid in 

all four probe trials). This suggests that poor learning could be owed to a fear response 

in at least some fish. Indeed, the time spent on choice areas was significantly smaller in 

fish not meeting the criterion (t(20) = 2.360, p = 0.029). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

4.1.5. Discussion  

 

Existing training procedures for fish are often time-consuming and inefficient. In the 

present study, we developed an innovative procedure for training small fish to 

discriminate between two visual stimuli. Association time has been traditionally 

employed to evaluate both social preference and mate choice in fish (Buckingham et al., 

2007; Fisher & Rosenthal, 2006). In the present study, we used association time near the 

positive stimulus as a measure of visual discrimination and tested the novel procedure 

by replicating recently published experiments on numerical abilities of mosquitofish 

(Agrillo et al., 2009, 2010).  

The outcome of the new training method shows a complete overlap with the results 

we previously obtained using a conventional procedure of operant conditioning. As 

previously shown, mosquitofish proved able (Experiment 1) to discriminate between 

two large numbers with a ratio of 1:2 (7 vs. 14 items) or 2:3 (8 vs. 12), but not with a 

ratio of 3:4 (9 vs. 12). When the set size was varied (Experiment 2), the fish showed 

similar ability to discriminate 8 vs. 16, 15 vs. 30, or 100 vs. 200 elements, the same 

result found in the previously published experiment (Agrillo et al., 2010). When tested 

with small numbers (Experiment 3), fish showed the ability to discriminate 2 vs. 3 

items, as reported by Agrillo et al. (2009) using operant conditioning, but not 3 vs. 4 or 

4 vs.5 items.  

One of the obvious advantages of this method is the rapidity of obtaining 

discrimination. In fact, in Experiments 1 and 3, we could demonstrate a significant 

choice of the positive stimulus only after the twelve reinforced trials of the training 

phase. As shown, fish in the training phase did not simply learn to discriminate the 

trained numerosities with a 1:2 ratio, but had apparently learned a general rule of 

choosing the larger (or smaller) numerosity, as they immediately extended their choice 

to new quantities with a 2:3 ratio. In other studies, subjects normally undergo many 

more trials to learn discrimination of similar difficulty (monkeys, approx. 5000 trials: 

Cantlon & Brannon, 2006; dolphins, approx. 3000 trials: Jaakkola et al., 2005; pigeons, 

approx. 1000 trials: Brannon et al., 2001), although much of this difference may be 

attributable to the different learning criterion adopted by the different studies.  
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Many more reinforced trials were also administered to fish in order to obtain 

numerical discriminations with the operant conditioning procedure adopted in the two 

studies we replicated here (Agrillo et al., 2009, 2010), a few hundred trials when one 

considers both training and pre-training phases of those experiments. As a reference, 

five days were necessary to train a group of fish to a simple numerical discrimination in 

the present study, whereas the same goal required a few weeks in previous studies 

(Agrillo et al., 2009, 2010).  

Association with a reinforced stimulus has been recently used as a measure of 

learning in another study. Sison and Gerlai (2010) tested zebrafish using a plus maze, 

similar in design to the radial arm maze employed to study learning in rats and mice. 

Zebrafish received four daily trials for five consecutive days, during which they could 

find a food reward in one of four arms of the maze that was marked by a red cue card. 

When then tested in a single probe trial without food, fish showed a significant 

preference for the cued arm. 

These results suggest that, in both mosquitofish and zebrafish, there may be an 

efficiency advantage in using a continuous measure of association instead of a 

classically discrete one, i.e., measuring time spent in association with a reinforced 

stimulus during one or a few probe trials, instead of computing the proportion of correct 

choices in many consecutive probe trials. Such a dependent variable however has been 

shown to be  positively correlated with the proportion of correct choices in a pilot 

experiment using the above described  procedure (Miletto Petrazzini et al., in 

preparation, unpublished data). With a traditional procedure, the learning criterion is 

normally established as 70–80% of correct choices in two consecutive series. Each 

series should contain no fewer than 10 probe trials (but more often larger figures are 

used) and probe trials should be mixed with a much larger number of reinforced trials. 

This easily raises the number of total trials necessary for the sole testing phase to 

several hundred, compared with a single (Sison & Gerlai, 2010) or a few probe trials 

(this study) with the new procedure. Since in our procedure the occurrence of 

discrimination is demonstrated through statistical inference (instead of a conventional 

individual threshold criterion), an adequate sample size is required. Therefore, this 

method appears less suitable for those studies that employ only one or a few subjects, 
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such as the many studies that use large mammals (Kilian et al., 2003; Biro & 

Matsuzawa, 2001; Brannon & Terrace, 1998).  

The procedure described here has some other advantages. Because it makes use of a 

very simple apparatus, a small glass tank, many subjects can be simultaneously tested. 

More importantly, by testing fish in their home tanks, we avoid the possible stress 

associated with moving the subject from its home tank to the testing apparatus and back 

in each experimental session. Further reduction of stress was obtained in our setup by 

two mirrors placed inside the tank. Many fish are in fact gregarious and may suffer if 

socially isolated. Several studies have shown that adult fish tend to interact with their 

own image as if they are in the presence of other conspecifics (Milinski, 1988; 

Thompson & Sturm, 1965, Meliska et al., 1980). Finally, unlike the traditional operant 

conditioning approach, our procedure did not require starving fish for protracted 

periods: our subjects were fed three or four times a day, thus receiving the same amount 

of food as they would receive during normal rearing. 

One of the drawbacks of our method is that a consistent proportion of subjects (27–

36%) did not meet the learning criterion in the training phase. For comparison, this 

normally occurred in fewer than 5% of the cases in previous mosquitofish experiments 

using other operant conditioning procedures (Agrillo et al., 2009, 2010). One obvious 

explanation for this finding is that we used too few trials in the training phase. In a 

recent experiment using this procedure with guppies, however, even after extensive 

training, we were unable to improve the performance of fish that did not meet the 

criterion after the first 12 trials (unpublished data). An analysis of time spent in choice 

areas by the seven mosquitofish that did not meet the criterion suggests that their poor 

performance was owed to a fear response to the procedure or to poor adaptation to the 

apparatus. Future experiments should perhaps contemplate a longer acclimatization 

period or an adaptation of fish to the apparatus in social groups (for example, see Al-

Imari & Gerlai, 2008).  

Some authors have argued that although training procedures are a powerful tool for 

investigating cognition and provide strong control over the stimulus conditions, 

extensive training can lead an animal to develop a learned ability that may not be 

present in the natural repertoire of the species (Hauser et al., 2000; Hauser & Spelke, 

2004; Uller, 2008). Conversely, the study of spontaneous capacities, for instance the 
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preference for different numbers of social companions or food items (Dadda et al, 2009; 

Hauser et al., 2000), may provide a better picture of what species do naturally and thus 

provide a deeper insight into adaptive functions. It must be pointed out that although our 

experiment involved an initial training phase, what we observed in the testing phase of 

Experiments 1 and 2 is indeed the spontaneous capacity to discriminate numerosities. 

For instance, in Experiment 1 we initially trained a fish to choose the larger (or smaller) 

quantity in a very easy discrimination task (1:2 ratio) and hence in the test phase we 

proposed new numerical ratios (2:3, 3:4) for the first time during probe trials (i.e., fish 

had no prior training on these tasks). Indeed, when we trained them to discriminate the 

same quantities for 30 trials (Experiment 4), we did not observe any improvement in 

their baseline capacity. Since this training is much longer than that necessary to obtain a 

1:2 discrimination, it appears that spontaneous and trained numerical capacities are 

coincident in mosquitofish. This does not exclude the possibility that with a different 

procedure mosquitofish could be trained to demonstrate finer numerical discrimination. 

Indeed in another context, spontaneous choice of the larger social group, mosquitofish 

have proved able to discriminate three from four fish, an ability not shown here (Agrillo 

et al., 2007, 2008a).  

As such, the paradigm described in this paper is feasible without special skills or 

tools, but the protocol is also well suited for automation. Stimulus delivery on a 

computer screen could be synchronized with automated tracking of the fish movements 

using one of the available programs (e.g., Willis et al., 2011; Verzijden & Rosenthal; 

2011), which could also serve for the automated measurement and analysis of visual 

choice. This might provide a system for high-throughput conditioning of fish in a 

manner similar to approaches already used with rodents and offer a powerful tool in 

many fish studies involving learning. 

Even though investigating quantity abilities was not a primary goal of this study, the 

observation in Experiment 3 that mosquitofish can be trained to discriminate between 

two groups of figures differing by one to three units (1 vs. 2 and 2 vs. 3, but not 3 vs. 4 

or 4 vs. 5) agrees with the limit reported in other non-verbal organisms (infants: 

Feigenson et al., 2002a; horses: Uller & Lewis, 2009; domestic chicks: Rugani et al., 

2008; bees: Gross et al., 2009). This result contrasts however with previous findings 

that mosquitofish can select the larger shoal in a 3 vs. 4 discrimination task (Agrillo et 
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al., 2007, 2008a). One possible explanation is that numerical abilities vary with context 

and that perhaps accuracy in discriminating social groups is under stronger selective 

pressure since the ability to select larger shoals strongly affects susceptibility to 

predation (Hager & Helfman, 1991; Pritchard et al., 2001; Hoare et al., 2004). However, 

since we did not control for non-numerical variables (cumulative surface area, 

luminance, density and the overall space occupied by the groups) in shoal choice 

experiments, the better performance with this paradigm could also derive from the 

possibility for fish to use multiple cues for discriminating stimuli (Agrillo et al., 2011).  

In conclusion, although several questions remain unanswered and some of the details 

of the method will have to be refined, our study paves the way for developing reliable 

procedures for quick acquisition of discrimination in fish that are an alternative to the 

long and often inefficient training procedures presently in use. 
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4.2. Inter-specific differences in numerical abilities among teleost 

fish* 

 

*This research is a modified version of “Agrillo, C., Miletto Petrazzini M. E., Tagliapietra, C., 

& Bisazza, A. (2012). Frontiers in Psychology, 3:483”. 

 

Though numerical abilities were once considered a unique human ability, numerous 

studies have now shown that other primates display the capacity to add, subtract and 

order numerical information (Beran, 2004; Brannon & Terrace, 1998; Matsuzawa, 

2009). The evidence collected in cognitive, developmental and comparative research 

has led several authors to propose that adults prevented from verbal counting, infants 

and non-human primates possess similar numerical systems that are independent from 

language and culture (Beran, 2008a; Feigenson et al., 2004; Hauser & Spelke, 2004). 

For instance, the performance of rhesus monkeys adheres to that of adult humans in two 

comparative studies where both species were presented identical stimuli (Cantlon & 

Brannon, 2006, 2007b). In chimpanzees, error rates and reaction times are constant in 

the subitizing range (1–4) while they increase monotonically for larger numbers, 

suggesting the existence of a subitizing-like mechanism in apes (Tomonaga & 

Matsuzawa, 2002).  

Following the discovery of the remarkable numerical skills of primates, researchers 

initially believed in the existence of a sharp discontinuity in cognitive abilities between 

primates and other animal species. However, during the last decade, the presence of 

basic quantity abilities has been reported in other mammals (bears: Vonk & Beran, 

2012; elephants: Perdue et al., 2012; dogs: West and Young, 2002; dolphins: Kilian et 

al., 2003), in birds (parrots: Pepperberg, 2006; Al Aïn et al,, 2009; pigeons: Roberts, 

2010), in fish (mosquitofish: Agrillo et al., 2009; angelfish: Gómez-Laplaza & Gerlai, 

2011a, b; swordtails: Buckingham et al., 2007), and even in invertebrates (ants: 

Reznikova & Ryabko, 2011; bees: Gross et al., 2009; beetles: Carazo et al., 2009).  

 Such new evidence has prompted a debate as to whether or not all species share the 

same quantity systems. Some studies have reported interesting similarities between 

primates and non-primate species. For instance, different mammals (Perdue et al., 2012; 
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Ward & Smuts, 2007), birds (Al Aïn et al., 2009), amphibians (Krusche et al., 2010), 

and fish (Gómez -Laplaza & Gerlai, 2011b) are affected by the numerical ratio when 

required to compare numerosities, as commonly reported in primates (Beran, 2004; 

Cantlon & Brannon, 2007b). Rhesus monkeys can discriminate 1 vs. 2, 2 vs. 3, and 3 vs. 

4, but not 4 vs. 5 (Hauser et al., 2000), the same limit exhibited by distantly related 

species, such as Eastern mosquitofish (Agrillo et al., 2008a), guppies (Agrillo et al., 

2012) and robins (Hunt et al., 2008). Domestic chicks and robins can make spontaneous 

use of numerical information instead of using non-numerical perceptual cues that co-

vary with number, such as cumulative surface area or density (Hunt et al., 2008; Rugani 

et al., 2009), which aligns with what has been reported in human (Cordes & Brannon, 

2008; Nys & Content, 2012) and non-human primates (Cantlon & Brannon, 2007a). 

Similar performance in the discrimination of small and large numbers recently has been 

reported in a study comparing humans and guppies (Agrillo et al., 2012). 

However, many other studies have evidenced that performance varies across species 

in many respects. For example -unlike primates, chicks and robins- cats and dolphins 

seem to use numerical information only as a ‘last-resort’ strategy, when no other 

continuous information is available (Pisa & Agrillo, 2009; Kilian et al., 2003). Horses, 

chicks, salamanders and angelfish seem to be able to discriminate between groups 

differing by one unit up to 2 vs. 3 items (Rugani et al., 2007; Uller & Lewis, 2009; Uller 

et al., 2003; Gómez-Laplaza & Gerlai, 2011a), while mosquitofish, guppies and robins 

discriminate up to 3 vs. 4 items (Agrillo et al., 2008a, 2012; Hunt et al., 2008). Trained 

pigeons can discriminate up to 6 vs. 7 items (Emmerton & Delius, 1993), well above the 

limit of number discrimination of 2 vs. 3 items observed in trained chicks (Rugani et al., 

2007). Differences have been reported even between closely related species. For 

example, the ability to discriminate between large quantities appears to be affected by 

numerical ratio in African elephants (Perdue et al., 2012), but not in Asian elephants 

(Irie-Sugimoto et al., 2009). 

Despite the wealth of comparative data, cross-species comparison has been difficult 

because the tasks investigated, the methodology employed, the sensory modality 

involved, and the context of species investigation vary considerably from one study to 

another. In some cases, the inconsistency is clearly to be ascribed to the different 

methods adopted. For example, when required to discriminate 1 vs. 2 and 2 vs. 3, the 
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numerical ratio plays a key role in infants’ performance using auditory stimuli 

(vanMarle & Wynn, 2009), but not visual stimuli (Feigenson et al., 2002a). Similarly, in 

goldbelly topminnows, the performance in a quantity discrimination task was affected 

by the type of procedure, with fish able to discriminate 2 versus 3 only in one of two 

different procedures (Agrillo & Dadda, 2007).  

To date, cross-species comparison using the same methodology rarely has been 

attempted; such studies have primarily related to primates (Cantlon & Brannon, 2006, 

2007b; Hanus & Call, 2007). To fill this gap, the present study compares the numerical 

abilities of five teleost fish (redtail splitfin, guppies, zebrafish, Siamese fighting fish and 

angelfish) using the same procedure, stimuli and numerical contrasts. Subjects were 

trained with a food reward to discriminate between two sets of geometrical figures 

differing in numerosity. Fish initially were trained on an easy numerical ratio (0.50). 

Once they reached the learning criterion, they were tested in non-reinforced probe trials 

for their ability to generalize to more difficult ratios (0.67 and 0.75), or to a larger or a 

smaller total set size. In addition, because the proportion of individuals reaching the 

initial learning criterion was very low in one species, we conducted a control 

experiment on shape discrimination to assess if this difference was specific to the 

numerical domain or was due to a more general cross-species difference in learning 

with this procedure. 
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4.2.1. Experiment 1: Influence of numerical ratio and total set size in different 

fish species 

 

Subjects 

The initial subjects of this experiment were 16 Xenotoca eiseni (redtail splitfin, total 

length: mean ± SD: 3.02 ± 0.25), 16 Poecilia reticulata (guppies, 2.01 ± 0.30), 16 Betta 

splendens (Siamese fighting fish, 3.36 ± 0.32), 16 Pterophyllum scalare (angelfish, 4.09 

± 0.38) and 16 Danio rerio (zebrafish, 2.84 ± 0.27). All subjects were adult females 

with the exception of the group of angelfish composed by unsexed juvenile individuals. 

Redtail splitfin came from the stocks maintained in our lab; guppies were also 

maintained in our lab and were fifth generation descendants of wild-caught fish from 

the Tacarigua River in Trinidad. Siamese fighting fish, angelfish and zebrafish were 

obtained from local commercial suppliers. As few zebrafish reached the criterion, we 

increased the sample size for this species by adding 10 more specimens of the same 

strain (hereafter called “commercial stock”) and by testing 22 more specimens from 

another strain coming from the outbreed stock maintained at the Biology Department of 

University of Padua (hereafter called “lab stock”). 

Subjects were stocked at the Laboratory of Comparative Psychology (University of 

Padua) for at least 15 days before the beginning of the experiments and maintained in 

150 l stock aquaria; each species was housed separately. Aquaria were provided with 

natural gravel, air filters, and live plants. Both stock aquaria and experimental tanks 

were maintained at a constant temperature of 25 ± 1°C and a 14:10 h light:dark (L:D) 

photoperiod; stock aquaria were lit by an 18-W fluorescent light, experimental tanks 

were lit by two 36 W fluorescent lamps. Before the experiment, fish were fed twice 

daily to satiation with commercial food flakes and live brine shrimp (Artemia salina). 

 

Apparatus and stimuli 

We used the apparatus described in Section 4.1.  

Stimuli were groups of black geometric figures differing in size on a white 

background. We presented different numerical contrasts: 5 vs. 10 and 6 vs. 12 (0.50 
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ratio) in the training phase; 8 vs. 12 and 9 vs. 12 (0.67 and 0.75 ratios) in phase 1; 2 vs. 

4 and 25 vs. 50 in phase 2. Stimuli selected for the experiment were extracted from a 

pool of 24 different pairs for each numerical contrast. Both the size and position of the 

figures were changed across sets to avoid the fish having to discriminate the overall 

configuration of the stimuli instead of using numerical information. Stimuli were 

controlled for continuous quantities using the procedure described in Section 4.1. 

Sixteen identical experimental tanks were used. They were placed close to each other 

on the same table. A video camera was suspended about 1 m above the experimental 

tanks and used to record the position of the subjects during the tests. 

 

Procedure 

The experiment was divided into three different steps: pre-training, training, and test.  

Pre-training was set up to permit fish to familiarize themselves with the experimental 

apparatus. Subsequently, all fish were singly trained to discriminate an easy numerical 

ratio (0.50) with the purpose of selecting those fish that successfully accomplished the 

numerical task.  

Fish who reached the criterion were subsequently tested with novel numerical 

contrasts. This was divided in two phases: in phase 1, we observed the ability to 

discriminate between large numbers with two different numerical ratios: 8 vs. 12 (0.67) 

and 9 vs. 12 (0.75); in phase 2, we assessed whether fish showed the ability to 

generalize the numerical rule to novel numerosities having the same ratio (0.50), but 

very different total set size (2 vs. 4 and 25 vs. 50). 

Pre-training 

During the six days preceding the beginning of training, fish gradually were 

familiarized with the apparatus. On days 1-2, groups of 4 subjects of the same species 

were inserted in the experimental apparatus for a total of 4 hours; on days 3-4, two 

subjects of each species were inserted in the apparatus for 4 hours, while on day 5-6, 

fish stayed singly in the apparatus for the whole day. During this latter period, fish were 

fed twice a day. Artemia nauplii. were inserted in the morning and in the afternoon near 

the two short walls.  



80 

 

Siamese fighting fish are known to be poorly social, as a consequence they were the 

only exception to this procedure. For this species, pre-training was identical but subjects 

were individually inserted in the apparatus starting from day 1. 

Training  

We followed the procedure described in Section 4.1. 

On days 7 to 9, fish received four trials per day (three consecutive days, for a total of 

12 trials). Two numerical contrasts were presented in a pseudo-random sequence: 5 vs. 

10 and 6 vs. 12. We counterbalanced the position of the stimuli (left-right) over trials. 

Half of the fish were reinforced to the larger numerosities, while the second half was 

reinforced to the smaller numerosities.  

On days 10 and 11, two probe trials were alternated with two reinforced trials each 

day (four probe trials). In probe trials no reinforcement was provided (extinction 

procedure). Reinforced trials were identical to those described for days 7 to 9. Only fish 

that met the criterion (defined as 60% of the time spent near the reinforced numerosity 

in probe trials) were selected for the test. The previous study has shown that, in easy 

tasks, such a criterion permits to distinguish fish that learn discriminations from those 

fish that continue to choose randomly (see Section 4.1).  

Subjects were moved from one tank to another one at the end of each day in order to 

avoid the possibility of using the local/spatial cues of the tank. The latter was previously 

occupied by conspecific subjects. 

Test 

After a short interval (days 12-13) in which subjects received two reinforced trials 

each day with the same numerical contrasts presented during training, fish started the 

test. The test was composed of two different phases. In phase 1, three probe trials were 

presented each day for four consecutive days (days 14 to 17). Fish were presented with 

two different numerical ratios, 0.67 (8 vs. 12) and 0.75 (9 vs. 12), six presentations for 

each ratio in a pseudo-random sequence. The inter-trial interval lasted three hours. Two 

reinforced trials presenting the numerical contrasts of the training (5 vs. 10 and 6 vs. 12) 

were alternated in the probe trials.  
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In phase 2, four probe trials were presented each day for two consecutive days (days 

18 to 19). Fish were observed for their ability to generalize to small (2 vs. 4) and large 

(25 vs. 50) numbers; there were four presentations for each ratio in a pseudo-random 

sequence. The numerical ratio was equal to 0.50. 

In both phase 1 and 2, we considered the proportion of time spent in the ‘choice 

areas’ (accuracy) during probe trials as the dependent variable. Proportions were arcsine 

(square root)-transformed (Sokal & Rohlf, 1995). Mean ± SD are provided. Statistical 

tests were carried out using SPSS 18.0. 

 

Results 

Training 

In zebrafish, 5 out of 26 fish in the commercial stock and one out of 22 of the lab 

stock reached the criterion. The two strains of zebrafish did not differ in performance 

(independent t-test, t(46) = 1.48, p = 0.148) and were pooled together in subsequent 

analyses. A total of 42 fish reached the criterion and were admitted to the following 

phases (10 out of 16 redtail splitfin, 8/16 guppies, 10/16 Siamese fighting fish, 8/16 

angelfish and 6 out of 48 zebrafish). We found a significant difference among the 

species in the number of subjects reaching the criterion (chi square test, χ(4) = 23.48, p 

< 0.001). This finding results from the fact that the number of individuals reaching the 

criterion in zebrafish was significantly lower compared to the other four species 

(zebrafish: 6/48, 12.5%; remaining 4 species: 36/64, 56.3%; chi square test, χ(1) = 22.4 

p < 0.001). 

No difference between the species was found in the proportion of time spent in the 

choice areas (one way ANOVA, F(4, 37) = 0.94, p = 0.452). In particular, when 

analyzing the time spent in the choice areas of all individuals, no difference was found 

between zebrafish and the other species pooled together (independent t-test, t(110) = 

0.84, p = 0.400). 
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Test 

 

Phase 1: Influence of numerical ratio 

We found no difference in the accuracy between fish trained with the larger or 

smaller numerosities as positive (independent t-tests, p > 0.05 for both ratios). 

No species proved able to discriminate 9 vs. 12 items (Table 1). There was no 

difference in performance among the 5 species (one way ANOVA, F(4, 37) = 0.45, p = 

0.772). All species, except angelfish, significantly discriminated 8 vs. 12 items (table 1). 

A significant difference among the five species was found for this ratio (one way 

ANOVA F(4, 37) = 3.30, p = 0.021). On the whole there was a significant difference 

between the two numerical ratios (repeated measure ANOVA, Ratio: F(1, 37) = 9.42 p 

= 0.004; species: F(4, 37) = 1.59, p = 0.197; interaction: F(4, 37) = 0.70, p = 0.597, Fig. 

22).  

 

 

 

 

 

 

 

Table 1: Performance of the five species in the numerical contrasts presented 

in test phase 1.  
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Phase 2. Generalization to small and large numerosities 

No species proved able to generalize the learned discrimination to a larger set size, 

25 vs. 50 items (Table 2). There was no difference in performance among the five 

species (one way ANOVA, F(4, 37) = 0.06, p = 0.992). Three species (readtail splitfin, 

Siamese fighting fish and angelfish) significantly generalized the learned discrimination 

to a smaller set size, 2 vs. 4 items. One species (guppy) yielded a marginally significant 

result, and one species (zebrafish) was not significant (Table 2). However, the trend is 

similar in all 5 species, and the difference between them is not significant (one way 

ANOVA, F(4, 37) = 0.49, p = 0.741). A likelihood ratio analysis (see Glover & Dixon, 

2004 for details) confirmed that the probability that the five species do not differ is three 

times larger (λ = 2.98) than the probability that a difference exists. Overall, the 

difference in the generalization between the larger and smaller set size was significant 

(repeated measure ANOVA, F(1, 37) = 9.84 p = 0.003) with no species variation (F(4, 

37) = 0.23, p = 0.919; Interaction: F(4, 37) = 0.06, p = 0.911, Fig. 23). 

Phase 1 

8 vs. 12 9 vs. 12 

Fig. 22: Numerical contrasts are plotted against the accuracy of the five species. 

Most of the species significantly discriminated 8 vs. 12 but all species failed to 

discriminate 9 vs. 12. Asterisks denote a significant departure from chance level (p < 

0.05). Bars represent the standard error. 
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We found no difference in the accuracy between fish trained with the larger or 

smaller numerosities as positive (2 vs. 4, independent t-test, t(40) = 1.34, p = 0.187; 25 

vs. 50, independent t-test, t(40) = 0.22, p = 0.826). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Performance of the five species in the numerical contrasts presented 

in test phase 2.  

 
 Phase 2 

2 vs. 4 25 vs. 50 

Fig. 23: Numerical contrasts are plotted against the accuracy of the five species. 

Most of the species spontaneously generalized to smaller numerosities (2 vs. 4) but 

no species generalized to larger numerosities (25 vs. 50). Asterisks denote a 

significant departure from chance level (p < 0.05). Bars represent the standard 

error. 
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4.2.2. Experiment 2: Control test: shape discrimination test 

 

Subjects, apparatus, stimuli and procedure 

Twenty fish (10 D. rerio and 10 X. eiseni) were tested. Both species were observed 

in a discrimination between two black geometric figures in a white background (filled 

triangle vs. empty circle). For each species, half of the subjects were reinforced to the 

triangle, and half to the circle. The same figures were presented during all trials (both 

training and probe trials). The apparatus was identical to that of Experiment 1. The 

procedure also was the same, with the exception that the experiment ended after the four 

probe trials of the training phase.  

 

Results 

We found no difference in the accuracy between fish trained with the triangle or 

circle as positive (independent t-tests, p > 0.05 for both species). Redtail splitfin 

significantly discriminated between the two figures (mean ± SD: 0.594 ± 0.06, one 

sample t-test, t(9) = 4.65, p = 0.001), while zebrafish did not (0.471 ± 0.08, one sample 

t-test, t(9) = 1.08, p = 0.307). A significant difference between the two species was 

found (independent t-test, t(18) = 3.70, p = 0.002). No difference in the accuracy was 

found between fish trained in numerical discrimination (training of phase 1) and those 

trained to discriminate geometric figures (independent t-test for unequal cases redtail 

splifin: t(24) = 0.807, p = 0.428; zebrafish: t(56) = 0.005, p = 0.996).  
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4.2.3. Discussion 

 

The present study represents the first attempt to compare numerical abilities in 

teleost fish using the same methodology. Subjects of five teleost species first were 

trained to discriminate two sets of geometrical figures using an easy 0.50 numerical 

ratio (5 vs. 10 and 6 vs. 12) and then observed in non-reinforced probe trials in which 

the numerical ratios or total set size varied. Overall, similarities were far greater than 

differences. Fish trained with the larger or smaller numerosities as positive showed 

equal accuracy in all species. When we made the discrimination more difficult by 

increasing the numerical ratio, we observed a similar pattern of performance in all fish, 

with no species being able to discriminate the 0.75 ratio (9 vs. 12), but 4 out of 5 species 

being able to discriminate the 0.67 ratio (8 vs. 12). The pattern of generalization of the 

numerical rule to a different set size was also very similar in the different species. Fish 

generalized the learned discrimination to a smaller set size (2 vs. 4), showing no 

substantial inter-specific difference, while no species was able to generalize to a larger 

set size (25 vs. 50). These data, together with the results previously reported in 

mosquitofish tested in the same apparatus (see Section 4.1), point toward the existence 

of similar numerical discrimination among fish. 

In all, we observed three main inter-specific differences. First, the proportion of 

subjects that reached the criterion in the training phase was similar among species, with 

the exception of zebrafish, which showed a 4-fold smaller proportion of fish reaching 

the criterion. This difference might be ascribed to two reasons: a) a specific deficit of 

zebrafish regarding numerical skills, or b) a more general inability of this species in 

discrimination learning. The results of Experiment 2 support the latter hypothesis. When 

trained to learn simple shape discrimination, a filled triangle from an empty circle, 

zebrafish performed much worse than the control species, redtail splitfin. In recent 

years, a few works have been published regarding the possibility of training visual 

discrimination in zebrafish. In most cases, the required discrimination was even more 

simple than this, i.e. to distinguish a red wall from other non-colored ones (Sison & 

Gerlai, 2010), or implied a much larger number of trials (Braubach et al., 2009). To our 

knowledge, there are no data that allow a direct comparison between zebrafish and other 
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teleosts in the same procedure. It therefore remains to be seen whether the difference 

between zebrafish and other species is specific to the method we used in this study or 

extends to other learning tasks. It is important to note that the few zebrafish reaching the 

criterion were similar in performance to the other four species in both phase 1 and 2, 

reinforcing the hypothesis that the low performance of zebrafish primarily resulted from 

a low learning performance in this species.  

Different learning performance might in turn be explained with species-specific 

characteristics, such as neophobia. Consistent differences in behavior between 

individuals in a population, especially in the shy-bold continuum, have been reported in 

a variety of organisms, including many fish species (Sih et al., 2004; Dall et al., 2004); 

it has been termed “animal personalities” or “coping styles”. In many conditions, these 

different coping styles may affect the speed of acquiring a task (Amy et al., 2012; 

Kurvers et al., 2010; Sneddon, 2003). One might argue for instance that a shy species 

may have explored the experimental tank less than a bold species, thus having less time 

to associate the proximity to the positive stimulus with food reinforcement. However, 

this is not the case in our experiment, as we found that the proportion of time spent in 

the two choice areas by zebrafish was the same as other species. 

The second difference between the species was observed in phase 1. Unlike the other 

four species, angelfish seem to be unable to discriminate 8 vs. 12. Such a result is 

puzzling and even surprising if we consider that angelfish tested with another paradigm 

(spontaneous shoal choice) showed the same or even better performance than 

mosquitofish and guppies in large number discrimination (Gómez-Laplaza & Gerlai, 

2011b; Agrillo et al., 2008, 2012). P. scalare is larger species and, in order to match as 

far as possible the five species in size, we had to test sub-adult angelfish. This factor 

could potentially account the differences observed in this species. However we believe 

this is an unlikely explanation for the differences observed in this experiment, as other 

studies have shown that numerical abilities of very young fish are not much dissimilar 

from those observed in the adults (Bisazza et al., 2010). It is worth noting that, although 

the subjects of the five species had comparable body length, the morphological 

characteristics of angelfish differ from those of the other species tested: in angelfish the 

longitudinal axis is shortened, and the body is laterally compressed with extended dorsal 
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and anal fins and we cannot exclude that water depth used in experimental tanks was 

not entirely suitable for this species.  

The difficulty to understand the exact nature of angelfish peculiarity highlights one 

of the main problems of comparative studies: the strength of using the same 

methodology for testing different species may become a methodological weakness. 

Different species show different adaptations to their different ecological niches and, 

therefore, housing and testing requirements could be different in the lab; some species 

might be affected by such daily handling more than some others, or have perceptual or 

motivational characteristics that potentially render the tests more dissimilar across 

different species than initially planned. To assess whether the apparent inability of 

angelfish to discriminate the 0.67 ratio is simply an artifact of the methodology adopted, 

replication studies using different methods are needed (Agrillo & Miletto Petrazzini, 

2012).  

A third possible inter-specific difference was observed in phase 2 in which the 

generalization to small numbers was fully significant only for three species. The trend 

is, however, similar for the five species, and the likelihood ratio analyses indicated that 

the lack of difference between the species was 2.98 times more likely than the 

alternative hypothesis. One may argue that results of phase 2 might be affected by 

potential carry-over effects from phase 1, as all subjects performed the experiments in 

the same order (generalization to different numerical ratios firstly and generalization to 

different total numerosities secondly). However, it is worth noting that in the whole 

Experiment 1 fish were trained only in a 0.50 ratio and were exposed to more difficult 

ratios without receiving any reinforcement.  

In summary, with the possible exception of the angelfish results in one of four 

generalization tests, this study provides scarce evidence that quantification systems 

differ across teleosts. There is current debate regarding pre-verbal numerical systems. 

Some scholars argue that they are the same in all vertebrates, inherited from a common 

ancestor; others believe that each species has evolved its mechanisms in relation to the 

constraints imposed by the nervous system and the ecological problems faced in the 

environment. From a phylogenetic point of view, the five species studied here are 

distantly related. According to recent estimates, the Ostariophysi (Fig. 24), the group to 

which zebrafish belongs, and the Acanthopterygii, the group which comprises the other 
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four species, diverged more than 250 million ago (Steinke et al., 2006). They also 

encompass a broad spectrum of ecological adaptations. For example, some species live 

in open areas and others densely vegetated shallow waters, some are highly gregarious 

and other basically solitary, some care their young and other provide no form of 

parental care. The finding of so few inter-specific differences seems more in accord 

with the existence of ancient quantification systems inherited from a common ancestor. 

On the other hand, the species have been compared in a single context, and they may 

reveal larger differences if studied in wider spectrum of domains. 

 

 

The observation made in this study that fish can easily generalize to sets of reduced 

numerosity but not to sets of enlarged numerosity deserves consideration. The failure to 

generalize the numerical rule learned in 5 vs. 10 and 6 vs. 12 in contrast to 25 vs. 50 

items is particularly surprising considering that previous studies (Agrillo et al., 2010 

and see Section 4.1) showed that mosquitofish can successfully generalize to even 

larger numerosities, such as 100 vs. 200, provided that they receive some reinforced 

trials on these new stimuli. One could argue that during training, fish may have learned 

to choose a precise numerosity instead of learning a number rule (i.e. choose the 

FIig. 24: Phylogenetic relationship of the five teleost species used in the study. 
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larger/smaller quantity), and later they preferred the quantity closest to that previously 

reinforced. For example, a fish trained to choose 12 over 6 items during 25 vs. 50 probe 

trials might prefer 25 items because it is the closest to the reinforced numerosity. In this 

case, however, we would expect the same phenomenon to occur during the 

generalization to smaller numerosities, which did not happen. In addition, we expect an 

opposite performance depending on whether fish have been trained toward the smaller 

or the larger numerosity. Yet, no difference was found between these two conditions, 

thus excluding the possibility that the direction of the training might have interfered 

with the direction of the variation of total set size.   

We can only speculate about the meaning of this result. In nature, some items in a set 

may partially hide each other or temporarily disappear behind objects, thus reducing the 

visible total set size even if their composition is constant. For example, during the 

comparison of 5 vs. 10 conspecifics, fish might be required to continue the enumerating 

process when the perceived numerosity is reduced, for example when only 4 vs. 8 fish 

are visible. In this sense, the cognitive systems of these species might have been 

selected to generalize the numerical rule to another contrast with a reduced total set size. 

In contrast, it is physically implausible that groups of objects increase their numerosity 

without altering their composition. In other words, while 2 vs. 4 would appear as 

another version of the 5 vs.10 task, the shift from 5 vs. 10 to 25 vs. 50 items might 

appear to fish as a novel task, preventing generalization of the same numerical rule from 

smaller to larger numbers. It will be a challenging task to determine whether other 

vertebrate species show the same generalization pattern. 

As a last remark, we would like to note one important implication of the findings 

from Experiment 2. While the results of the training phase in Experiment 1 would 

superficially suggest cross-species differences in numerical abilities, the difference 

observed between redtail splitfin and zebrafish in another type of discrimination showed 

the true nature of zebrafish low performance. When investigating the existence of 

differences between experimental groups in one cognitive domain, it is always 

important to include control tests done in other domains to exclude the possibility that 

the observed differences depend on concomitant factors, such as personality, 

motivation, or attention differences. This is routinely performed in other disciplines 

(i.e., cognitive psychology), but still rarely adopted in comparative psychology studies. 
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5. FACTORS AFFECTING NUMERICAL ABILITIES IN 

FISH 

 

In natural environments there are several ecological factors that can affect animal 

behavior and play a key role in decision making. This Section describes the salience of 

two factors that can influence quantity discrimination abilities in fish: cooperative 

behavior and the perception of items in motion.  

 

5.1. Collective enhancement of numerical acuity by meritocratic 

leadership in fish 

 

We know that groups of animals are capable of marvelous feats of collective action 

that emerge from aggregation of numerous small contributions from a large number of 

individuals often through elegantly simple local mechanisms (Couzin, 2009). In 

addition, it has been recognize that collective behavior allows grouping animals to solve 

problems that go beyond the capacity of the single individuals in a way that cannot be 

implemented by singletons. For example bird flocks orient better than single 

individuals: flocks of pigeons (3-6 individuals) are less scattered around the target 

migration destination and have a shorter homing time in comparison with single pigeons 

(Tamm, 1980). Three-spine stickleback fish make more accurate decisions, avoiding a 

potential predator (Ward et al., 2008) or choosing the more attractive replica of a 

conspecific (Sumpter et al., 2008), as group size increases. Interestingly, in human 

literature several studies have provided evidence that groups perform better than 

individuals on a range of problem-solving tasks (Krause et al., 2010, Laughlin et al., 

2002, Kerr & Tindale, 2004). 

To explain better performance of groups in humans and animals two models of 

collective decision making have been proposed. The first model refers to the so-called 

“many wrongs” principle (from here called MW) (Galton, 1907). When each individual 

makes an estimate that is a close approximation to the correct one but with some error, 
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if these errors are randomly distributed around the true mean, they will cancel each 

other and the whole crowd will be more accurate than most if not all its single members. 

The MW principle has been suggested as an explanation for the advantage of group 

navigation in birds (Simons, 2004). This mechanism depends on large numbers of 

individuals in the crowd to be effective. For dyads, it predicts that the group accuracy 

will be the average of its members.  

This model assumes that all individuals have access to the same information. However, 

information is not often equally distributed and individuals differ in their informational 

status. In these circumstances a second model might explain this phenomenon. Such 

model, might be referred as “Meritocratic Leadership” (ML) and applies if some 

members are more accurate than others to accomplish the task. In this scenario the 

group would enjoy an advantage provided that collective decisions are guided by its 

best performing members. This mechanism is thought to be at the basis of collective 

decision in honeybees where few informed individuals can bias the decision of the 

whole group (Seeley et al., 1991). Bees have evolved specific recruit signals that help 

informed individuals to guide their conspecifics. However, in some animal groups 

crowding can limit individual recognition and the possibility to detect each other: in this 

condition it is difficult for an uniformed individual to recognize the informed ones  

Nevertheless, different computational models have been proposed that demonstrate 

how a group may, for example, forage or navigate accurately without signaling between 

group members or without group members needing to recognize who the best informed 

individual is (Counzin et al., 2005). Such models of leadership and collective actions in 

animals are mute when it comes to the most basic unit of social interaction: a dyad. 

Whether pre-social animals such as fish can even engage in any useful one-to-one 

collaborative effort is unknown and not accounted for by existing theories of collective 

action in animals.  

To address this question, we compared the performance of individual and dyads of 

guppies (Poecilia reticulata) in two different numerosity discrimination tasks. Guppies, 

and other small fish that risk predation, can discriminate numerosities and use this 

ability to reduce the risk by spontaneously joining the larger shoal of conspecifics 

(Agrillo et al., 2008a, 2012, Dadda et al., 2009). Furthermore, they can also learn to 

select the more or less numerous display of abstract objects even when controlled for 
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other confounds of magnitude such as size and density (Agrillo et al., 2009, 2010). 

Typically, guppies and other small fish can readily discriminate up to 1:2 ratio when 

numerosities larger than 4 are involved, although they exhibit a better numerical acuity 

within a limited range of numerosities (≤ 4) (Agrillo et al., 2008a; 2012). However, it is 

not known whether two guppies schooling together would be better at numerosity 

discrimination than they would as individuals. 

 

 

 

5.1.1. Experiment 1: Spontaneous discrimination of shoals differing in numerosity 

 

In Experiment 1, we used a shoal choice test to compare the accuracy of female 

guppies tested individually with that of female guppies tested in dyads in a shoal size 

discrimination. To investigate the role of familiarity in dyads, half of the dyads were 

composed of familiar individuals (fish that had lived in the same tank for at least 20 

days), and half of non-familiar individuals. Singletons and dyads were presented the 

numerical contrast 4 vs. 6, just above the threshold ratio reported for fishes in 

experiments using this procedure (Agrillo et al., 2008a, 2012).  

 

Subjects 

Adult female guppies (Poecilia reticulata) were stocked at the Laboratory of 

Comparative Psychology (University of Padova) and maintained for one month in 150 

one-stock aquaria containing mixed-sex groups (15 individuals with approximately a 

1:1 sex ratio). Aquaria were provided with natural gravel, an air filter, and live plants. 

Both stock aquaria and experimental tanks were maintained at a constant temperature of 

25 ± 1°C and a 14:10 h light : dark (L:D) photoperiod with an 18-W fluorescent light. 

Before the experiment, fish were fed twice daily to satiation with commercial food 

flakes and live brine shrimp (Artemia salina). 

We tested a total of 150 subjects (ranging from 3 to 6 cm in length). Forty-six 

subjects were singly tested, while 104 fish were tested in pairs (n = 52). In order to 
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investigate the potential role of familiarity, half of the pairs (n = 26) was composed by 

familiar individuals (fish living in the same tank for at least 20 days), while the other 

half was composed by non-familiar fish.  

 

Apparatus 

The experimental apparatus was one previously used to study numerical competence 

in adult guppies (Agrillo et al., 2012) and was composed of three adjacent tanks (Fig. 

25). The central one, called “subject tank”, was 60 x 36 x 35 cm. At the two ends, 

facing the subject tank, there were two “stimulus tanks” (10 x 36 x 35 cm) into which 

two shoals differing in numerosity were placed.  Water level was equal to 10 cm and the 

walls were covered with green plastic to prevent subjects from seeing outside. Each 

tank was lit by one fluorescent lamp with water maintained at a temperature of 25° ± 

2°C. A video camera was suspended about 1 m above the test tank to record the position 

of the subjects during the tests. 

 

 

 

 

 

 

 

 

 

 

 Figure 25: Schematic representation of the experimental apparatus: Subjects were 

inserted in the middle of three adjacent tanks. Two groups of social companions 

differing in numerosity (4 vs. 6) were presented at the two bottoms and the 

proportion of time spent near the larger shoal was taken as a measure of their 

numerical acuity. Dotted lines show the preference area. 
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Procedure 

As said in Section 1.5, single fish are known to re-join the largest group of social 

companions when placed in an unknown environment.  

Fish were presented with the same numerical contrast (4 vs. 6) and tested in two 

different conditions: singletons vs. dyads. In the single condition the subject was 

introduced into a hollow cylinder in the center of the subject tank. After 2 min the 

cylinder was carefully raised up and subject was allowed to acclimate for 2 min. After 

this period the subject was observed for 15 min. Shoal preference was calculated as the 

proportion of time spent by the subject shoaling within a distance of 11 cm from the 

glass facing the stimulus tanks (preference area). Subjects that did not visit each 

stimulus sector at least three times were discarded. 

As regard fish tested in dyads, the experimental procedure was the same. Two 

subjects were simultaneously inserted in the subject tank and their behavior was 

observed for 15 min. The shoal preference was calculated as the time spent by both 

subjects in the preference area. In the event that subjects were in the opposite preference 

area, or that only one subject was in a preference area, the choice of fish was not 

included in the analysis. Mean ± standard deviations were provided. Statistical tests 

were carried out using SPSS 18.0. 

To further verify which model (MW or ML) better explain the performance of the 

dyads in our experiments, we generated two sets of “simulated dyads”: we sampled the 

data from individually tested fish by randomly selecting and assigning two individuals 

to a dyad. For one set of simulated dyads, we calculated the average accuracy of the two 

members as the dyadic accuracy and for the other set we assigned the more accurate 

member’s accuracy to the simulated dyad. 

 

Results 

 

Two singletons and two dyads were discarded from the analysis because did not visit 

each stimulus sector at least three times. As no difference between familiar pairs and 

non-familiar pairs was found (mean ± SD respectively: 0.592 ± 0.243 and 0.575 ± 
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0.197; independent t-test: t(48) = 0.324, p = 0.747), the two groups were pooled 

together in the main analysis.   

The larger shoal was significantly preferred by dyads (one sample t-test, t(49) = 

2.741, p = 0.009) but not by individually tested fish (t(43) = 0.128, p = 0.898) that spent 

an equal amount of time with the two shoals (Fig. 26).  

Dyads spent significantly larger proportion of their time with the larger shoal than 

did the single fish (independent t-test, t(92) = 1.727, p = 0.043).  

 

 

 

 

 

 

Fig. 26:.Dyads were significantly better than single fish. Real dyads were also 

more accurate than the “average of two” simulated data set but did not differ 

from the “best of two” simulated data set. 
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Real dyads were more accurate than the “average of two” simulated data set (t(98) = 

2.136, p = 0.035) but did not differ from the “best of two” simulated data set (t(98) = 

0.730, p = 0.467) thus providing evidence against the MW hypothesis. This conclusion 

is supported by Bayesian model selection procedure. Bayes factor
 
(Penny et al., 2004) 

computed on BIC (Bayesian information criterion) show that that ML model is 4.64 

times more likely than MW model to explain the performance of the dyads in our 

experiment (conventionally there is a evidence for a model against an alternative when 

this value is greater than 3: Raftery, 1995).  
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5.1.2. Experiment 2: Trained abilities to discriminate between sets of stimuli 

differing in numerosities 

 

Experiment 1 demonstrated that dyadic interaction enhances numerosity 

discrimination in a directionally specific (i.e. choose larger quantity), socially and 

ecologically relevant context. One may argue that these specific features may render the 

collective benefit observed in Experiment 1 extremely specific. In addition in the 

previous experiment, stimuli were not controlled for continuous quantities. In order to 

search for a more general evidence for dyadic collective benefit, in Experiment 2, adult 

male guppies were trained to discriminate between two set of inanimate objects and 

were tested singly or in dyads in discriminations of increasing difficulty (8 vs. 12 and 9 

vs. 12). The 2:3 ratio corresponds to the upper limit in the ability of fish to discriminate 

quantities beyond 4 and 3:4 is just above this threshold (Agrillo et al., 2010 and see 

Section, 4.1) 

 

Subjects 

Subjects were 50 adult male guppies. Before the experiment, fish were maintained in 

the same conditions described for Experiment 1. 

 

Apparatus and stimuli 

We used the apparatus previously described (see Section 4.1) to study numerical 

competence in fish. 

Stimuli were groups of black dots differing in size on a white background. Different 

numerical contrasts were presented: 5 vs. 10 and 6 vs. 12 (1:2 ratio) in the training 

phase; 8 vs. 12, and 9 vs. 12 (2:3, and 3:4 ratios, respectively) in the test phase. Stimuli 

selected for the experiment were extracted from a pool of 24 different pairs for each 

numerical contrast. The size and position of the dots were changed across sets. Stimuli 

were controlled for continuous quantities using the procedure described in Section 4.1. 
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Eight identical experimental tanks were used. They were placed close to each other 

on the same table and lit by two fluorescent lamps (36 W). A video camera was 

suspended about 1 m above the experimental tanks and used to record the position of 

the subjects during the tests. 

 

Procedure 

The experiment was divided into three different phases: individual training, test, and 

control of individual performance of dyads. During the training phase, we presented an 

easy numerical ratio (1:2) with the purpose of training the fish to the new task and 

selecting those fish successfully accomplished the task.  

In the test phase, we assessed whether fish accuracy to discriminate novel numerical 

ratios (2:3 and 3:4) varied when subjects were tested singly or in dyads. 

In the control of individual performance of dyads, subjects previously tested in dyads 

were observed individually in their capacity to discriminate 2:3 and 3:4 numerical ratio, 

in order to assess whether the performance of dyads might be explained by a 

simultaneous increase in accuracy of both individuals, or by the presence of only one 

individual having a better performance. 

 

Individual training  

The individual training followed the procedure previously describe in Section 4.1. It 

consisted in 12 reinforced trials equally subdivided in three consecutive (days 1 to 3) 

days and 4 probe trials in the following two days (days 4-5). 

Only fish who met the learning criterion (defined as 60% of the time spent near the 

reinforced numerosity in probe trials) were selected for the test phase.  

 

Test 

After two-day interval (in which fish received a total of four reinforced trials, two 

each day), fish were divided in two groups: singletons vs. dyads. Fish included in the 

former group were observed individually; fish included in the latter group were tested in 

pairs. Dyads were assembled each morning, one hour before the beginning of the test; 
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only in the evening (after the test) each fish was inserted singly in the tank. Each pair 

was always composed by the same individuals. 

Three probe trials were presented each day for four consecutive days (days 8 to 11). 

Fish were presented with two novel numerical ratios, 2:3 (8 vs. 12), and 3:4 (9 vs. 12), 

and six presentations for each ratio in a pseudo-random sequence. The inter-trial 

interval lasted three hours. Two reinforced trials presenting the numerical contrasts of 

the training (5 vs. 10 and 6 vs. 12) were alternated in the probe trials. The proportion of 

time spent in the ‘choice areas’ during probe trials was used as a dependent variable. As 

Experiment 1, time spent in the choice area in the dyad condition was considered only 

when both subjects were simultaneously in the same choice area. Mean ± standard 

deviations were provided. Statistical tests were carried out using SPSS 18.0. 

 

Control of individual performance of dyads 

On day 12, fish tested in pairs were separated and observed individually in their 

ability to discriminate 2:3 and 3:4 numerical ratio. Four probe trials were presented, two 

each numerical ratio; two reinforced trials presenting the numerical contrasts of the 

training (5 vs. 10 and 6 vs. 12) were alternated in the probe trials. 

The comparison between dyads, average of two individuals and best individuals was 

calculated on the average accuracy of 2:3 and 3:4 ratio. 

 

Results 

Thirty fish out of 50 reached the criterion and hence started the test phase. Ten 

subjects were included in the singleton condition, 20 in the dyad condition.  

As no difference in the accuracy was reported between fish trained with the larger 

numerosity (mean ± SD: 0.648 ± 0.118) and those trained with the smaller numerosity 

as positive (0.564 ± 0.069, independent t-test t(18) = 1.98, p = 0.063), the two groups 

were pooled together in the main analyses. 

Dyads did significantly better than singletons (ANOVA, F(1,18) = 6.492, p = 0.020) 

and there was a significant effect of numerosity ratio (F(1,18) = 10.282, p = 0.005; 

Interaction F(1,18) = 0.011, p = 0.917). Discrimination was above chance for 2:3 ratio 
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both by singletons (one sample t-test, t(9) = 2.782, p = 0.021) and by dyads (t(9) = 

5.920, p < 0.001), while the 3:4 ratio was only discriminated better than chance by 

dyads (t(9) = 2.459, p = 0.036) but not by singletons (t(9) = 0.422, p = 0.683, Fig. 27). 

 

 

 

 

When analyzing the individual performance of the dyads, it was found that the 

accuracy of the dyad was superior to the average accuracy of the two members when 

performing individually (repeated measures ANOVA F(2, 18) = 5.65, p = 0.012; pos-

hoc LSD p = 0.045) but did not differ from that of the best member (p = 0.95). The 

Bayes factor indicates that the ML model is 5.57 times more likely than MW model. 

 

Fig. 27: Results of the test phase. Accuracy is plotted against numerical ratio, for 

single fish and dyads. Results parallels those reported in Experiment 1, with dyads 

showing a better numerical acuity than those reported in single fish. Asterisks denote 

a significant departure from chance level (P<0.05). Bars represent the standard 

error. 
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5.1.3. Discussion 

 

The aim of the present study was to assess whether the performance of fish in dyad 

outperform that of single fish. To this purpose, two experiments were set up. In the 

former, we observed numerical acuity in a task requiring to discriminate between social 

companions. In the latter fish were trained to discriminate between sets of inanimate 

objects. In both experiments dyads achieved a superior level of numerical acuity. 

Indeed, in Experiment 1, 4 vs. 6 was discriminated by dyads but not by singletons; in 

Experiment 2 dyads proved able to discriminate 9 vs. 12, a discrimination not shown by 

singletons. As the second experiment deployed a learning paradigm with stimuli 

carefully controlled for continuous quantities these results are likely to reflect that dyad 

outperform the singletons in a task in which only numerical information could be 

available. 

Numerosity discrimination has been repeatedly demonstrated in many animal species 

including invertebrates
 
(Gross et al., 2009), amphibians and mammals

 
(Agrillo & Beran, 

2013), as well as primates and fish. It has been shown to be beneficial in several ways. 

For example, bees enumerate the number of landmarks encountered during flight to 

relocate a food source
 
(Dacke et al., 2008); fish use it to select the larger, safer shoal

 

(Agrillo et al., 2008a); lions use to decide whether to fight or to flee
 
(McComb et al., 

1994). However, in this study we found that guppies tested singly show the same 

average discrimination limit observed in other teleost species in a free shoal choice (i.e., 

a 1:2 ratio
: 
Agrillo et al., 2008a, 2012), though singleton guppies can be successfully 

trained to manage a 2:3 ratio
 
(see Section 4.2). However when tested in pairs they were 

able to discriminate numerosities with a 3:4 ratio, a numerical acuity that mammals
 

(Tomonaga, 2008, Beran, 2006) and birds
 
(Emmerton & Delius, 1993) exhibit only after 

extensive training.  

Together, the results of  Experiments 1 and 2 clearly reject the MW hypothesis as the 

mechanism underlying collective benefit at the dyadic level
 
(Simons, 2004). The critical 

point that renders this mechanism inadequate at explaining these results is the dyadic 

nature of collective decisions studied here. The larger the number of agents in the 

collective the more successful this mechanism is expected to be. With only two agents 
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involved in collective decisions, this model predicts that the dyadic performance will be 

determined by average member accuracy which was not the case in both experiments. 

The results are consistent with the idea that dyad performance is determined by the 

better member taking a leadership role rather than by the “average of two”. We know 

that leadership can emerge spontaneously in the shoaling behavior of teleost fish
 

(Reebs, 2000) but, once again, this type of emergent phenomenon also depends 

critically on group size and the computational models explaining effective leadership
 

(Couzin et al., 2005) have not been tested in group sizes of N < 10. Indeed, social 

learning in guppies mediates meritocratic leadership where younger shoal mates learn to 

follow older or more successful foragers
 
(Lachlan et al., 1998, Laland & Williams, 

1997). Exactly how the pairs of guppies tested here could assign the leadership role 

among them is not possible to tell from our data presented here.  

By verbally exchanging decision confidences, human decision makers with similar 

competence levels achieve a collective benefit over and above their best individual
 

(Bahrami et al., 2010). For example, it has been observed that dyadic performance was 

superior to individual in an approximate enumeration task, irrespective of the familiarity 

between the dyad members (Bahrami et al., 2013). Interestingly the level of familiarity 

does not affect performance in fish too, but whether the behavior of guppy dyads 

implies social means of signal sharing such as confidence is unknown and beyond the 

scope of this study. Computationally, the confidence sharing model
 
(Bahrami et al., 

2010) does not offer a fixed prediction for dyadic collective benefit but instead suggests 

that collective benefit is proportional to similarity of competence between dyad 

members. But accurate assessment of similarity requires far more test trials than we 

could have administered here rendering it impossible to formally test the predictions of 

the confidence sharing model. Whether special physical and/or social cues are 

employed in determining the dyadic leader is an intriguing and important question for 

future research. The counter intuitive fact, now beyond doubt, is that collaboration 

among presocial animals is observable with minimum possible social group size of two 

agents.  
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5.2. Numerical acuity of fish is improved in the presence of moving 

targets, but only in the subitizing range* 

 

* This research is a modified version of “Agrillo, C., Miletto Petrazzini E. M., & Bisazza, A. 

(2013). Animal cognition, 1-10”. 

 

Several studies in cognitive psychology have demonstrated that humans use three 

types of processes—counting, estimating, and subitizing—to establish which group of 

items is more numerous (Chesney & Haladjian, 2011). Counting (Gelman & Gallistel, 

1978) assesses numerosity by assigning each item an exact number label from an 

ordered count list. This process, uniquely human, is very accurate but relatively slow, 

with response time becoming longer as the number of items in the set increases. 

Estimating (Kaufman et al., 1949) assesses the numerosity of a set quickly, instead, 

without a serial count. This process is supposed to be supported by an approximate 

number system (ANS) that is fast but poorly accurate (Nieder & Dehaene, 2009). 

Subitizing (Jevons, 1871; Revkin et al., 2008) is another way to estimate the numerosity 

of a set without a serial count. This process is fast and accurate but limited to up to 3–4 

items. While for numbers greater than 4 discrimination between two quantities is 

dependent on their ratio the numerical ratio is usually irrelevant in the range of 1–4  

Several authors hypothesize that subitizing is based on a system for representing and 

tracking up to 4 objects in parallel (Chesney & Haladjian 2011; Feigenson et al., 2004; 

Trick & Pylyshyn, 1994), known as the object tracking system (OTS).  

Other authors, however, argue that it is not necessary to invoke two distinct 

numerical systems and that ANS suffices to account for discrimination in the whole 

numerical range (Gallistel & Gelman, 1992; van Oeffelen & Vos, 1982; Vetter et al., 

2008). As noted by Gallistel and Gelman (1992), the representation of larger numbers is 

more variable and, as a consequence, representation of nearest values may overlap in 

the large number range, leading to lower accuracy. In contrast, in the subitizing range 

(1–4), ANS representations would have lower variability and there would be almost no 

overlap; thus, correct values would be consistently produced, leading to very accurate 

performance. In addition, while adults can discriminate even a 0.9 ratio (Halberda et al., 
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2008), the most difficult ratio in the subitizing range is 0.75 (3 vs. 4 items); therefore, 

ratio dependence might not appear, due to a ceiling effect in performance (Ross, 2003). 

Others have suggested that the different performance results in the subitizing range 

might be due to pattern recognition rather than to numerical processes per se. In two-

dimensional displays, small sets of items are typically arranged in recognizable 

geometric patterns (i.e., 1 item = a dot; 2 items = a line; 3 items = a triangle), which is 

not possible for sets of more than 4 items (Mandler & Shebo, 1982; Neisser, 1967; 

Woodworth & Schlosberg, 1954).  

One way to test the above-mentioned alternatives is by looking at factors other than 

ratio dependency. For example a potential prediction of the one-system hypothesis is 

that manipulation of physical properties of the stimuli should never have opposed 

effects on the estimation of small and large numbers, while the hypothesis for the 

existence of separate systems would allow for this possibility. Trick (2008) tested 

whether item heterogeneity affects performance differently in the subitizing and 

estimation ranges in adult humans. The results showed that heterogeneity slowed 

enumeration in the subitizing range and sped-up enumeration in the estimation range, a 

dissociation that would seem to negate the one-system hypothesis. Moving versus static 

items represent another variable that seems to affect numerical estimation differentially 

in humans. Trick and colleagues (2003) observed that even very slow motion reduced 

enumeration speed for stimuli containing 6–9 items, while the enumeration of 1–4 items 

was not affected when items were in motion. Similarly, Alston and Humphreys (2004) 

presented static and moving items, finding that faster and more accurate enumeration 

occurred in the subitizing range given the presence of moving items. Again these results 

tend to support the existence of separate systems for small and large-number 

enumeration.  

In recent years, numerical abilities have been reported in numerous animal species. 

Comparative psychology is explicitly focused on those processes that do not require 

symbolic number labels (estimation and subitizing). The similar performance reported 

in the literature for human and non-human species has led several authors to 

hypothesize the existence of the same numerical abilities among vertebrates (Beran, 

2008a; Feigenson et al., 2004). As in cognitive psychology, there is an open debate as to 

whether non-human animals display a single ANS for discrimination over the whole 
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numerical range (Evans et al., 2009; Perdue et al., 2012; Ward & Smuts, 2007), or a 

distinct OTS over the small-number range (Bonanni et al., 2011; Cutini & Bonato, 

2012; Hauser et al., 2000; Hunt et al., 2008). To date, empirical studies have focused on 

comparing ratio dependency on accuracy and reaction times in small- and large-number 

discrimination. For instance, Agrillo et al. (2012) compared the performance of humans 

and guppies, presenting the same ratios for small (≤ 4) and large (≥ 4) quantities and 

finding that accuracy for both species was affected by the ratio in the large- but not in 

the small-number range. Yet these results are subject to the same criticism raised for 

human studies, and different ratio sensitivity in the range of 1–4 does not automatically 

imply the existence of two distinct numerical systems (Gallistel & Gelman, 1992; Ross, 

2003). 

In the present study, we adopted a different approach to this issue. We tested 

whether, as in humans, the motion of the items for enumeration had a different 

influence on large- and small number discrimination in fish. For this purpose, we 

trained guppies to discriminate between groups containing different quantities of two-

dimensional geometric figures, using either static or moving objects. 

 

Subjects 

Twelve adult guppies (Poecilia reticulata) were tested. Subjects were maintained at 

the Department of General Psychology in 150 one-stock aquaria containing mixed-sex 

groups (15 individuals with approximately a 1:1 sex ratio). Aquaria were provided with 

natural gravel, an air filter, and live plants. Both stock aquaria and experimental tanks 

were maintained at a constant temperature of 25 ± 1 °C and a 14:10 h light:dark (L:D) 

photoperiod with an 18 W fluorescent light. Before the experiment, fish were fed twice 

daily to satiation with commercial food flakes and live brine shrimps (Artemia. salina).  

 

Apparatus and stimuli 

The experimental apparatus was similar to the one used in previous experiments (see 

Section 4.1), with the exception that at the two short ends of the tank, two identical 

monitors (19 inch) were used to present the stimuli (Fig. 28). 
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The stimuli employed in the training phase were pairs of geometrical figures (13 x 13 

cm each array) differing in numerosity: 2 versus 4 (small-number range) and 6 versus 

12 (large-number range). In the test phase, we presented the following numerical 

contrast: 3 versus 4 (small-number range) and 9 versus 12 (large-number range). Each 

array could contain circles, ovals, triangles, crosses, stars, squares, and rectangles (black 

figures on a white background). Stimuli were controlled for continuous quantities using 

the procedure described in Section 4.1.  

For each numerical contrast, we set up two different conditions: in the first (‘moving 

stimuli’), the items were moving on the screen; in the second, the same figures were 

presented without any motion (‘static stimuli’). As the overall quantity of motion could 

be another non-numerical cue used by animals to discriminate between two 

numerosities (Agrillo et al., 2008a; Krusche et al., 2010; Gòmez-Laplaza & Gerlai, 

2012), two different sub-conditions were created with the moving stimuli. In the first 

sub-condition (controlled motion), the overall quantity of motion was equated between 

the larger and the smaller group. For instance in the 2 versus 4 contrast, the figures 

included in the smaller group moved twice as fast as those included in the larger group. 

However, a by-product of controlling for total motion was that faster-than-average 

Fig. 28: Experimental apparatus. Subjects were housed in an experimental tank for 

the duration of the experiment. Stimuli were presented at the two ends of the tank 

using two PC monitors. 



108 

 

items would appear more frequently in the smaller group, and fish might use this cue 

instead of number. As a consequence, we set up another sub-condition (non-controlled 

motion) where number and quantity of motion were simultaneously congruent. In this 

case, in the 2 versus 4 contrast, the quantity of motion for the larger group was double 

what it was for the smaller group. For each numerical contrast, half of the stimuli were 

controlled for motion, and the other half were not. 

Moving and static stimuli were created and presented using Adobe Flash CS4®. For 

each numerical contrast, a total of 20 different pairs of stimuli were employed and 

alternated in pseudo-random order.  

Six identical experimental tanks were employed. They were placed close to each 

other, on the same table, and lit by two fluorescent lamps (36W). A video camera was 

suspended about 1 meter above the experimental tanks and used to record the position 

of the subjects during the tests. 

 

Procedure 

The experiment was divided into three different steps: pre-training, training, and test. 

Pre-training was set up to familiarize the fish with the experimental apparatus. 

Subsequently, all fish were singly trained to discriminate an easy numerical ratio (0.50), 

both within (2 vs. 4) and outside (6 vs. 12) the subitizing range: half of the fish were 

tested in the presence of moving stimuli; the other half was tested in the presence of 

static stimuli. In the test phase, we assessed whether they could generalize the numerical 

rule to a more difficult numerical ratio in both 

the small- (3 vs. 4) and the large-number (9 vs. 12) ranges. 

 

Pre-training 

To familiarize fish with the experimental environment, we allowed a two-day 

habituation period, starting 10 days before the beginning of the experiment. On the first 

day of habituation, a group of 6 fish was introduced to a slightly larger version of the 

tank (60 x 40 x 35 cm); on the second day, fish were grouped in three pairs and each 

pair was introduced to one of three experimental tanks (6 h each day). On both days, 
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subjects were exposed to continuous changes in the background colour of the monitors 

(alternating between black and white).  

After a five-day interval, when they were kept undisturbed in their home tank, we 

administered another identical two-day habituation treatment. The day before the 

beginning of the experiment, each fish was individually housed in one of the six 

experimental tanks.  

 

Training  

Fish were randomly assigned to one of two conditions: half of the fish were trained 

in the presence of moving stimuli; the other half in the presence of static stimuli. During 

this phase, they were subjected to four trials per day (three consecutive days, for a total 

of 12 trials). Soon after the stimuli appeared on the screens, the experimenter used a 

Pasteur pipette to release the food reward (Artemia nauplii) in correspondence with the 

reinforced numerosity; an identical syringe was used to simultaneously insert pure water 

close to the opposite stimulus. Subjects were left free to feed for 7 min. After this time, 

stimuli disappeared from the screen. The inter-trial interval lasted 3 h. Stimuli were 

presented in a pseudo-random sequence and the left–right positions of the stimuli were 

counterbalanced over the course of the trials. For each condition, half of the subjects 

were trained to move toward the larger numbers, whereas the other half was trained 

toward the smaller numbers as positive. 

In order to measure learning to discriminate between reinforced and non-reinforced 

numerosity, on days 4 and 5, two probe trials were alternated each day with two 

reinforced trials (four overall probe trials for both days). In the probe trials, stimuli 

appeared on the screen for 4 min; no reinforcement was provided (extinction procedure) 

and the time spent by fish within a 12-cm distance (‘choice area’) from the monitors 

showing the stimuli was recorded as a measure of their capacity to discriminate between 

the two numerosities. Reinforced trials were identical to those described for days 1 to 3. 

To avoid the possibility of fish using local/spatial cues in their tank, each subject was 

moved from one tank to another at the end of each day. 
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Test 

After a two-day interval, three probe trials were presented each day for four 

consecutive days (days 8–11). Novel numerical contrasts with higher ratios were 

presented at this time: 3 versus 4 (within the subitizing range) and 9 versus 12 (large-

number range). Fish previously trained with moving stimuli were presented with 

moving stimuli; fish trained with static stimuli were shown static stimuli. The inter-trial 

interval lasted 3 h. Two reinforced trials with the same stimuli as presented in the 

training phase were alternated with the probe trials. As a dependent variable, we 

considered the proportion of time spent in the ‘choice areas’ during probe trials. 

Proportions were arcsine square-root transformed (Sokal & Rohlf, 1995). Mean ± 

standard deviations were provided. Statistical tests were carried out using SPSS 18.0. 

 

 

Results 

 

Training 

Moving stimuli 

Fish spent significantly more time near the reinforced numerosity in both the 2 

versus 4 (one sample t-test, t(5) = 6.184, p = 0.002) and the 6 versus 12 (one sample t-

test, t(5) = 2.655, p = 0.045, Fig. 29) contrasts. No difference between the two 

numerical contrasts was found (paired t-test, t(5) = 0.535, p = 0.616). When we 

contrasted the controlled and non-controlled motion condition, we found no difference 

for either 2 versus 4 (controlled motion, mean ± SD: 0.730 ± 0.302; non-controlled 

motion: 0.762 ± 0.217; paired t-test, t(5) = 0.123, p = 0.907) or 6 versus 12 (controlled 

motion: 0.655 ± 0.258; non-controlled motion: 0.833 ± 0.258; paired t-test, t(5) = 1.332, 

p = 0.240).  

On the whole, we found no difference in accuracy between fish reinforced with the 

larger or smaller numerosities as positive (larger numbers as positive: 0.708 ± 0.105; 

smaller numbers as positive, 0.809 ± 0.128; independent t-test, t(4) = 1.052, p = 0.352). 
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Static stimuli 

Fish spent significantly more time near the reinforced numerosity in 2 versus 4 (one 

sample t-test, t(5) = 2.643, p = 0.046) and 6 versus 12 (one sample t-test, t(5) = 4.752, p 

= 0.005, Fig. 29). No difference between the two numerical contrasts was found (paired 

t-test, t(5) = 0.702, p = 0.514). On the whole we found no difference in the accuracy 

between fish trained with the larger or smaller numerosities as positive (larger numbers 

as positive, 0.779 ± 0.083; smaller numbers as positive, 0.639 ±0.054; independent t-

test, t(4) = 2.443, p = 0.071).We also found no difference in accuracy between trials 

controlled for density (0.651 ± 0.329) and those controlled for overall space (0.744 ± 

0.195, paired t-test, t(5) = 0.405, p = 0.702).  

When we compared the two conditions (moving vs. static stimuli), we did not find 

any difference between fish trained with moving stimuli and those trained with static 

stimuli (2 vs. 4: independent t-test, t(10) = 0.885, p = 0.397; 6 vs. 12: t(10) = 0.610, p = 

0.556). 

 

Fig. 29: Results of the training phase. Accuracy (proportion of time spent near the 

reinforced numerosity) is plotted against numerical contrasts, for moving (blue 

columns) and static (green columns) stimuli. Fish learned to discriminate the two 

numerical contrasts, with both static and moving stimuli. Asterisks denote a 

significant departure from chance level (P<0.05). Bars represent the standard error. 
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Test 

To assess whether the ability to discriminate a 0.75 ratio varies as a function of 

movement and the numerical range, we performed a repeated measures ANOVA with 

Condition (Moving/Static stimuli) as the between subjects factor and Numerical 

contrast (3 vs. 4/9 vs. 12) as the within subjects factor. Main effects of Condition (F(1, 

10) = 10.668, p = 0.008) and Numerical contrast (F(1, 10) = 5.460, p = 0.042) were 

found. The interaction was also significant (F(1, 10) = 5.054, p = 0.048), suggesting that 

fish succeeded with items in motion only in the small number range. Because of the 

significant interaction, in subsequent analyses we examined the effect of moving and 

static stimuli separately.  

 

Moving stimuli 

Fish spent more time near the reinforced numerosity in the 3 versus 4 contrast (one 

sample t-test, t(5) = 5.639, p = 0.002), while no significant discrimination was found in 

the 9 versus 12 contrast (t(5) = 0.363, p = 0.731, (Fig. 30). Paired t-tests showed a 

significant difference between the two numerical contrasts (t(5) = 2.655, p = 0.045). 

When we contrasted the controlled and the non-controlled motion conditions, we found 

no difference for 3 versus 4 (controlled motion: 0.843 ± 0.100; non-controlled motion: 

0.770 ± 0.123; paired t-test, t(5) = 1.550, p = 0.182), while we did find a significant 

difference for 9 versus 12 (controlled motion: 0.396 ± 0.155; non-controlled motion: 

0.623 ± 0.291; t(5) = 2.733, p = 0.041). 

 

Static stimuli 

Fish did not discriminate either 3 versus 4 (one sample t-test, t(5) = 0.089, p = 0.933) 

or 9 versus 12 (t(5) = 0.251, p = 0.812, Fig. 30). Paired t-tests showed no difference 

between the two numerical contrasts (t(5) = 0.054, p = 0.959).  
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Lastly, we analyzed whether the overall accuracy differed between moving and static 

stimuli for each numerical contrast. Independent t-tests showed that fish were more 

accurate in the presence of moving stimuli for 3 versus 4 (t(10) = 3.511, p = 0.006) but 

not 9 versus 12 (t(10) = 0.440, p = 0.670).  

 

 

 

 

 

 

Fig. 30: Results of the test phase. In the presence of moving stimuli (blue columns), 

fish successfully discriminated 3 versus 4, but not 9 versus 12. No discrimination for 

either numerical contrast was found in the presence of static stimuli (green 

columns). Asterisk denotes a significant departure from chance level (P<0.05). Bars 

represent the standard error. 
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5.2.1. Discussion 

 

Our first finding is that the influence of motion differs as a function of the numerical 

range examined. Fish trained with the 0.50 ratio showed the same performance for small 

and large numbers, whether they were tested with static or moving objects. In contrast, 

when the ratio became more difficult (0.75), items in motion were successfully 

discriminated in the subitizing range while no effect of motion was found on large-

number discrimination.  

Different performance for static and moving items has been previously reported in 

the literature. Humans proved to be faster (Trick et al., 2003) and more accurate (Alston 

& Humphreys, 2004) at enumerating the number of moving items in the range of 1–4. 

As concerns comparative psychology, the picture is less clear: it has been shown that 

old world (rhesus monkeys) and new world (capuchin monkeys) monkeys can 

discriminate the larger group of items in motion, apparently with the same effort 

required to discriminate static patterns (Beran, 2008b). However, the performance was 

not analyzed separately for small and large numbers in that study, making it impossible 

to assess whether items in motion were better discriminated in the small-number range. 

Instead, a recent study found that black bears are better able to enumerate static rather 

than moving stimuli (Vonk & Beran, 2012). The authors referred to the OTS as a 

potential explanation for their findings: bears are known not to live in social groups and 

hence they might not have been subject to strong selective pressures in favor of the 

ability to track individual members of a group. In this sense, their performance would 

be worse for items in motion. On the contrary, for social species (including guppies), it 

would be important to track the presence of individual members of a moving group, and 

the precision of their OTS would be crucial for survival. 

A second interesting finding is that, under some conditions, fish can discriminate up 

to a 0.75 ratio, a performance similar to that reported for most non-human primates 

(Beran, 2004; Beran et al., 2008b; Cantlon & Brannon, 2007b; Hauser et al., 2000). 

Previously, discrimination of a 0.75 ratio was reported when fish had to choose between 

two groups of social companions. However, the latter paradigm did not allow an 

accurate control for non-numerical continuous variables that co-vary with number; 

indeed, it was suggested that, in choosing the largest shoal, fish could have used 
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primarily a proxy for number, such as the cumulative area occupied by stimuli (Agrillo 

et al., 2008a). 

For both numerical ranges, the items to be enumerated were identical; the numerical 

ratio was the same, as well as the way we controlled for the continuous variables. How 

can we then explain the different effect of the items in  motion on the performance for 

small and large numerosities? Many authors have suggested that the discrimination of a 

small number of items is generally accomplished by the OTS. This system, shared by 

human and non-human animals, would primarily serve to keep track of objects present 

in the perceptual space, (Bisazza et al., 2010; Bonanni et al., 2011; Hauser & Spelke, 

2004), but it could be also co-opted to enumerate precisely small quantities of objects 

producing the subitizing effect. The OTS should respond maximally to moving objects. 

Indeed it was recently shown that the accuracy of the OTS in keeping track of objects is 

higher in human and non-human primates for moving items (Matsuno & Tomonaga, 

2006). It was suggested that ‘‘motion’’ would be a basic feature in the primate visual 

system, and that the presence of that basic feature would be more easily detected by the 

OTS than its absence. Regardless of the exact reason underlying this difference, the 

better performance of the OTS with respect to items in motion aligns with the 

hypothesis according to which the activation of the OTS would facilitate better 

performance in numerical tasks involving small numbers. 

While the existence of an ANS in non-human vertebrates is generally accepted, an 

open debate surrounds the possibility that non-human vertebrates are endowed with a 

distinct mechanism for enumerating small quantities. To date, evidence supporting the 

two-system hypothesis comes principally from empirical studies that have compared 

ratio dependency in small- and large-number discrimination. For instance, Agrillo and 

colleagues (2012) showed that adult guppies are particularly accurate when required to 

differentiate the larger shoal from the smaller one in the range of 1–4. Fish successfully 

discriminated 1 versus 4 (ratio 0.25), 1 versus 3 (0.33), 1 versus 2 (0.50), 2 versus 3 

(0.67), and 3 versus 4 fish (0.75) with the same accuracy, thus showing no influence of 

numerical ratio for small quantities. In contrast, their ability with larger quantities (≥ 4) 

for the same ratios depended on numerical ratio, with their accuracy decreasing as 

numerical ratios increased between the small and the larger groups. Similarly, data in 

line with the two-system hypothesis have been reported for macaques (Flombaum et al., 
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2005; Hauser et al., 2000), dogs (Bonanni et al., 2011), New Zealand robins (Hunt et al., 

2008), and angelfish (Gòmez-Laplaza & Gerlai, 2011 a). Nonetheless, as several 

authors noted, the different ratio sensitivity for small and large numbers may have 

alternative explanations. Our results provide further support to the idea of separate 

numerical systems as a function of numerical range. In addition, the fact that numerical 

acuity with items in motion is improved only with small numbers suggests the 

automatic activation of an OTS in fish similar to that described in adult humans. 

In our species the automatic engagement of the OTS by items in motion may not be 

present at birth. Infants fail when comparing sets near the boundary of the OTS range in 

both moving (Feigenson & Carey, 2005; Feigenson et al., 2002a; van Marle, 2013) and 

static conditions (Cordes & Brannon, 2009; Xu et al., 2005) and the possibility exists 

that the automatic activation of the OTS varies across development. This debate extends 

far beyond the scope of this study. However, future studies on newborn guppies may 

help us to test this hypothesis, at least in non-human species. It is worth noting that the 

present method is relatively rapid compared to standard operant conditioning 

procedures, thus making it possible to study the development of numerical abilities in a 

rapidly growing species, such as guppies. The influence of motion in the OTS range 

could now be investigated in newborn and juvenile fish. 

As an alternative explanation for the different ratio dependency seen in the two 

numerical ranges, some authors have suggested that small sets of items usually generate 

recognizable geometric patterns—the so-called ‘pattern recognition’ hypothesis 

(Mandler & Shebo, 1982; Neisser, 1967). Our study does not support this view, as we 

found that items in motion, whose general configuration is continuously dynamic and 

for which no stable pattern can be easily recognized hence, are better discriminated by 

comparison to static patterns. One may also argue that better performance with items in 

motion might reflect the use of a non-numerical cue, namely the total quantity of 

motion, as a proxy for number (Gòmez-Laplaza & Gerlai, 2012). However, this is not 

the case, as we did not find any difference in the range of 1–4 (2 vs. 4 and 3 vs. 4) and 

in 6 versus 12, whether stimuli were controlled or not controlled for the total quantity of 

motion. In contrast, it is interesting to note that the accuracy in discrimination of 9 

versus 12 varies as a function of the type of motion control: when stimuli were 

controlled for the total quantity of motion, fish performance was significantly lower 
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compared to that observed for the condition in which both number and total motion 

were congruent and simultaneously available. It is worth noting that several fish 

species, including guppies, are unable to use numerical information to discriminate a 

0.75 ratio in the ANS range (see Section 4.1 and 4.2). In this sense, guppies seem to use 

the quantity of motion cue when the numerical ratio exceeds their capacity to 

discriminate by using numerical information only.  

Previous evidence has found that in some circumstances human infants are sensitive 

to continuous quantities in the OTS range (Feigenson et al., 2002a; Wood & Spelke, 

2005; Xu, 2003). On the other hand infants repeatedly proved able to discriminate 

between large quantities by using numerical information only (Lipton & Spelke, 2003; 

Xu & Spelke, 2000). In our study the performance of guppies was not affected by any 

of static continuous quantities in both small and large number discrimination. However, 

as regards the quantity of motion cue, we found a reverse pattern from what would be 

predicted from the infant data, that is guppies use quantity of motion cue in the ANS 

range. Despite several similarities have been reported in large number discrimination 

between the numerical systems of fish and the pre-verbal systems of humans (Agrillo et 

al., 2010, 2012; Piffer et al., 2012), the possibility remains that the perceptual/cognitive 

mechanisms involved in the ANS range are at least partially different in the two species.  

To summarize, although the present work does not represent direct evidence for the 

existence of an OTS in fish, it reinforces the idea of separate cognitive systems for 

small and large numbers. Besides different responses to movement found in the present 

study and a ratio-insensitivity in the range of 1–4 reported by Agrillo and colleagues 

(2012), several other lines of evidence support the hypothesis for multiple numerical 

systems in fish. In spontaneous shoal choice, mosquitofish make use of different 

continuous quantities for small- and large-number discrimination (Agrillo et al., 2008a); 

as well, the continuous quantities used by trained mosquitofish to discriminate between 

sets of two-dimensional figures differed in the two numerical ranges (Agrillo et al., 

2009, 2010). In guppies, the developmental trajectory was found to differ for small- and 

large-number discrimination: the spontaneous ability to discriminate between small 

quantities of conspecifics is displayed at birth, while this ability appears at 20–40 days 

old for quantities beyond 4 units (Bisazza et al., 2010).  Human infants show an 

apparent inability to compare quantities across the small- and the large-number 
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boundary, for example, an inability to discriminate 1 from 4 items (the OTS in infants 

seems to be limited to 3 items, see Feigenson and Carey, 2005). According to some 

authors, a direct comparison between small numbers (which are supposed to be 

processed by the OTS) and large numbers (processed by the ANS) would determine a 

conflict between the two types of representations, leading to poor performance (Cordes 

& Brannon, 2009). A recent study found that fish may also suffer from the same 

inability to discriminate across the small-number/large number divide. In shoal choice 

experiments, guppies were able to discriminate 3 versus 4 fish, but not 3 versus 5 fish, 

although the latter had a more favorable numerical ratio (Piffer et al., 2012). 

Further investigation manipulating other physical features of the stimuli will help us 

to shed light on this issue. In the meantime, given the absence of alternative theoretical 

frameworks that might enable us to explain all of the differences reported below and 

above 4 units, we must admit the possibility that teleost fish, like humans, display the 

use of different numerical systems for small and large quantities. 
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6. ONTOGENY OF NUMERICAL ABILITIES 

 

Studying the ontogeny of numerical competence is useful to understand whether a 

species in naturally endowed with numerical capacities or rather, they emerge over 

development. The assessment of cognitive abilities often requires that subjects are 

maintained in social isolation for prolonged periods, raising ethical problems, especially 

when young individuals are tested. Once set up a proper procedure to study 

discrimination learning in newborn fish, the development of numerical abilities has 

been investigated in 4- to 9-old-day guppies. 

 

6.1. Development and application of a new method to investigate 

cognition in newborn guppies* 

 

* This research is a modified version of “Miletto Petrazzini M. E., Agrillo, C., Piffer, L., 

Dadda, M., & Bisazza, A. (2012). Behavioural Brain Research, 233, 443-449”. 

 

For a long time, the study of cognitive mechanisms underlying perception, memory, 

attention, and other higher mental functions has been almost entirely confined to 

mammals and birds. However, in recent years, it has become evident that even cool-

blooded vertebrates and invertebrates can exhibit complex behavior and sophisticated 

cognitive functions previously believed to be uniquely present in species provided with 

large, complex brains ( reviewed in: Bshary et al., 2002, Brown & Laland, 2003, 

Bisazza, 2010). 

Despite a long-standing tradition of research into the ontogeny of cognitive functions 

in humans and non-human primates (Matsuzawa, 2007; Haun et al., 2010, Bjorklund et 

al., 2010), it is only recently that attention has been paid to examine cognitive 

development in other vertebrate species such as fish (Bisazza et al., 2010), birds 

(Regolin et al., 1995, Hoffmann et al., 2011), and mammals (Dumas & Doré, 1989, 

Wills et al., 2010). Fish possess features that make them unique for the study of 

cognitive development. Unlike mammals and birds, parental care in fish is usually 
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restricted to the prenatal period; therefore, newly hatched fish must carry out many 

functions that characterize adult life. Hence, newborns are equipped with a behavioral 

repertoire that enables them to orient in the environment, find food, avoid predators, and 

interact with conspecifics. However, since newborn fish can be hundreds or thousands 

of times smaller than adults, there is a considerable ontogenetic niche shift, and the 

demands imposed by the physical and biological environment early in life could be 

quite different than those faced in adult life. The small relative size of early stages has a 

second important consequence. Since brain size in fish steadily increases throughout life 

(Brandstatter & Kotrschal, 1990, Kihslinger & Nevitt, 2006), at birth, the number of 

neurons that regulates behavior might be less than one-thousandth that of the adult. 

While there is evidence that in mammals and birds immature individuals show lower 

cognitive abilities (Adler & Adler, 1977, Zucca et al., 2007), it is not clear whether 

these abilities also improve during development in fish. In addition, how young fish 

solve frequent problems set by the environment—such as avoiding predators, catching 

prey, or swimming in a coordinated fashion while having extremely different body and 

brain sizes—remains a largely unexplored area of investigation (Kotrschal et al., 1990).  

From an experimental point of view, working with newborns that lead an 

independent life allows for easy manipulation of environmental factors that might affect 

cognitive development, such as experience. This experimental intervention is extremely 

problematic in species such as mammals and birds that are characterized by a prolonged 

association with the parents (Bisazza et al., 2010, Freire et al., 2004).  

Training procedures represent one of the main tools for studying cognitive capacities 

in animals. Existing training paradigms normally require that subjects be maintained in 

social isolation for prolonged periods; however, isolation may represent an unnatural 

condition for social species, especially when research focuses on newborns and young 

individuals. Social isolation could be a source of distress, interfering with cognitive 

functioning and negatively affecting the normal development of the nervous system 

(Frisone et al., 2002; Lu et al., 2003; Tsoory et al, 2007).  

Most teleost species are social and live in aggregates. There are several possible 

advantages associated with living in groups. Individuals in shoals can be safer than 

solitary fish (Hager & Helfman, 1991), have more opportunity to access mates (Agrillo 

et al., 2008b), or enjoy hydrodynamic advantages during locomotion (Barber & Folstad, 
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2000). As group size increases, however, some disadvantages might arise, such as an 

increased competition for food or increased risk of disease transmission. Due to this 

trade-off, shoaling behavior is often context dependent. Hoare et al. (2004), for 

example, found that banded killifish (Fundulus diaphanus) formed larger groups in the 

presence of predators but increased inter-individual distance when competing for food.  

Little is known about social behavior in early stages of development in fish. In some 

species, newborns appear to be solitary and their social behavior tends to increase 

across development. In silversides (Menidia menidia), schooling behavior starts when 

they are about twenty days old and develops gradually (Shaw, 1960, Shaw, 1961). In 

anchovy larvae (Engraulis mordax), schooling becomes clearly established when they 

are about thirty days old (Hunter & Coyne, 1982). Recently, Buske and Gerlai (2011) 

performed a laboratory study of the development of shoaling behavior in zebrafish 

(Danio rerio) from day seven post-fertilization to over five months of age, reporting 

that a few days after hatching fish do not form cohesive shoals, but shoaling tendency 

increases during development. 

Observations made in a laboratory suggest that unmanipulated newborn guppies 

show little tendency to aggregate (Bisazza, personal observation). On the other hand, 

several studies reported that when newborn guppies are placed in an unfamiliar 

environment or are exposed to predation risk, they gather and form schools (Bisazza et 

al., 2010; Evans et al., 2004) a tendency that appears to be greater for guppies from 

high-predation sites (Magurran & Seghers, 1990). Therefore, while it seems established 

that young guppies become gregarious in potentially hazardous situations, it is not clear 

how they behave when the environment poses no immediate threat.  

The present study aimed to investigate early social development in guppies and 

design new learning procedures for young fish that minimize stress from social 

deprivation. To achieve our goal, in the first part of the study (Experiments 1 and 2), we 

analyzed the development of social behavior in newborn guppies. Experiment 1 was 

designed to measure the gregarious tendency of guppies from birth for two weeks in a 

three-compartment choice apparatus in which subjects could choose between a 

compartment containing three stimulus fish and an identical but empty compartment. 

Experiment 2 investigated the preference for either real conspecifics or their own mirror 

image in guppies from birth to sixteen days of age to assess the possibility of using 
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mirrors as a substitute for social companions. Based on the findings of these 

experiments, in the second part of the work, we designed a procedure for studying 

learning which took into account the social needs of young fish (Experiments 3–4). 

Experiment 3 tested whether young fish could be trained to associate a stimulus with a 

food reward. Experiment 4 was set up to test whether young fish can discriminate 

between two different geometric figures to get a food reward. 

 

 

 

6.1.1. Experiment 1: Ontogeny of gregarious behavior 

In the first experiment, we measured the gregarious tendency of guppies in a familiar 

environment from birth for two weeks in a three-compartment choice apparatus in 

which they could choose between a compartment containing three stimulus fish and an 

identical but empty compartment. 

 

Subjects 

The fish used in this experiment were descendants of wild-caught fish from the 

Lower Tacarigua River (Trinidad), a high-predation location. A total of six newborn 

guppies were tested and eighteen newborn guppies were used as stimuli. As reference, 

we used a sample of eight adult females (twenty-four social stimuli). Female guppies 

are highly social and commonly form shoals of variable sizes in their natural 

environment.  

To collect newborn individuals, we placed females close to parturition alone in 

nursery tanks (50 cm x 18 cm x 32 cm). After parturition, newborns were transferred to 

the apparatus for the habituation phase. 
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Apparatus   

The apparatus consisted of a tank (50 cm x 18 cm x 32 cm) divided into three 

compartments by two transparent plastic partitions (Fig. 31). The central one, the 

“subject compartment” (28 cm x 18 cm x 32 cm) housed the test fish. At the two ends, 

two smaller “stimulus compartments” (11 cm x 18 cm x 32 cm) faced the subject 

compartment. Two small holes (1 cm Ø) in the lower part of each transparent plastic 

partition allowed water to flow between compartments. There was a plant as shelter for 

the test fish in the center of the subject compartment. Two green tiles (16 cm x 10 cm), 

placed adjacent to the stimulus compartment, delimited the “preference area”. The walls 

of the tank were externally covered with green plastic to prevent stimulus fish and 

subjects from seeing outside. The bottom of the tank was covered with natural gravel, 

and the water was maintained at a temperature of 25 ± 2 °C. Each stimulus 

compartment was lit by a 15 W fluorescent light, and the subject compartment received 

light indirectly from them. We placed the apparatus in a darkened room, and placed a 

transparent glass above the subject compartment to prevent the fish from seeing outside. 

We suspended a video camera about one meter above the apparatus and used it to record 

the position of the subjects during the test. The apparatus for adult females was similar 

Fig. 31: Schematic representation of the experimental apparatus. To measure their 

gregariousness, newborn guppies were singly inserted in the middle of the tank and 

observed in a free choice between a compartment containing three conspecifics and 

an identical but empty one. 
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to the one used for newborns, but larger in size (90 cm x 40 cm x 34 cm) and with larger 

preference areas (19 cm x 15.5  cm). 

 

Procedure  

At birth, one newborn guppy was introduced in the subject compartment and three 

conspecifics were introduced in one of the two lateral stimulus compartments. The other 

compartment remained empty. In half of the trials, the stimuli were on the left and in the 

other half, they were on the right. Observations started the next morning and were 

repeated for fifteen consecutive days. Each day, the subject was video recorded for a 

total of 6 h, subdivided into three sessions. Each session consisted of two periods of 60 

min each, one preceding feeding (pre-feeding phase) and one (post-feeding phase) 20 

min after each of three daily meals, consisting of a drop of live brine shrimp (Artemia 

salina). There was a 1-h interval between each session. The same procedure was used 

with adult females; the only difference was that they were introduced in the apparatus 

24 h before the test and were tested only for one day.  

From the video recordings, we scored the time spent by the subject in the preference 

areas near the compartment containing social stimuli and near the empty compartment. 

The observer of this video was blind with respect to the aim of the experiment. As 

measure of gregariousness, we computed the proportion of time spent near social 

stimuli in the preference area. As the data from this and subsequent experiments did not 

significantly deviate from normality (Kolmogorov–Smirnov test, p > 0.05) we used 

parametric statistics. Statistical tests were carried out using SPSS 18.0. 

 

Results 

Adult females spent significantly more time near conspecifics than near the empty 

compartment (mean ± SD: 0.715 ± 0.097; one-sample t-test, t(7) = 6.25, p < 0.001; Fig. 

32). Young fish also spent more time near conspecifics (mean ± SD: 0.60 ± 0.063; one 

sample t-test, t(5) = 3.87, p = 0.012), although they were, on average, less gregarious 

than adults (independent t-test, t(12) = 2.51, p = 0.027). The two conditions were not 

fully comparable, since adults were tested after 24 h of acclimation to the apparatus, 
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while young fish stayed for fifteen days. However, the same difference was found 

comparing adults with one-day olds (i.e. fish with the same acclimation time) 

(independent t-test, t(12) = 4.91, p < 0.001). A 2 x 15 repeated measure ANOVA with 

feeding condition (pre-feeding and post-feeding phase) and age (from one- to sixteen-

day-old) as within-subject factors showed that the gregariousness of young guppies 

varied during the experiment and they were significantly more gregarious after meal 

(feeding condition: F(1,5) = 8.03, p = 0.037; age: F(14,70) = 1.96, p = 0.034, 

interaction: F(14,70) = 0.80, p = 0.663; Fig. 33). No difference in gregarious tendency 

was found in adult guppies before and after meals (paired t-test, t(7) = 1.66, p = 0.141). 

The results were not affected by the left or right position of the stimuli (independent t-

test, t(4) = 1.59, p = 0.186). 

 

 

 

 

 

 

Figure 32: Preference for conspecifics vs. an empty compartment in one- to fifteen-

day-old fish and in adults. On the whole, young guppies were significantly less 

gregarious than adult fish.  
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Fig. 33: Preference for conspecifics vs. an empty compartment before and after a 

meal. Satiation tended to increase gregariousness. Bars in this and in the following 

graphs represent the standard error. 
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6.1.2. Experiment 2: Preference between mirror image and real conspecifics 

 

Previous studies have shown that mirror images can be used as a substitute for 

conspecific in adult fish in different teleost species (Milinski, 1988; Meliska et al., 

1980; Dugatkin & Alfieri, 1991; Sovrano et al., 2001; Bisazza & De Santi, 2003; Dadda 

et al., 2010). No data are available for young fish. In the second experiment, we 

investigated the preference for either real conspecifics or their own mirror image in 

guppies from birth to sixteen days of age to assess the possibility of using mirrors as a 

substitute for social companions for newborns and young individuals. 

 

Subjects and apparatus 

 A total of fifty fish were used as subjects of this experiment. Fish were tested at one, 

four, eight, and sixteen days of age and as adults (five- to eight-month-old guppies). 

Each age group consisted of ten fish. One hundred additional fish were used as stimuli. 

The apparatus was similar to that used in Experiment 1; it differed from the previous 

apparatus since there was no plant in the middle subject compartment, and the tank was 

lit by a single 15 W fluorescent light above the subject compartment. Furthermore, one 

of the two stimulus compartments was substituted by a mirror so the fish could choose 

between one compartment with two conspecifics and one with its own mirror image. In 

addition, we placed two small mirrors (29 cm x 5 cm) at the sides of the main mirror to 

partly compensate for the fact that the subject chose between two real fish and a single 

virtual one (Fig. 34). In this way, when the subject was near the corner, it saw two 

virtual fish. Adult females were tested in an apparatus similar to the one used for new-

borns but larger in size (90 cm x 40 cm x 34 cm) and with larger preference areas (19 

cm x 15.5 cm). We placed the tanks in a dark room to eliminate extra-tank cues. 
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Procedure  

Two fish were introduced into the stimulus compartment to habituate for 1 h. A 

subject was then introduced by a green net into the subject compartment so that the fish 

was approximately halfway between the stimulus fish and the apparent mirror image 

position. It was allowed to familiarize for 10 min, and then its behavior was recorded 

for 50 min. From video recordings, we calculated social tendency as the proportion of 

time spent near the two social stimuli (conspecifics or mirror image); whereas, as 

measure of preference, we computed the proportion of time spent near real conspecifics. 

 

 

 

Fig. 34: The apparatus was the same used as in Experiment 1, but the empty 

compartment was replaced by a mirror to test whether mirrors can be used as 

a substitute for conspecifics. 
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Results  

Overall, the subjects of all age groups spent more than 80% of their time near one of 

the two social stimuli (average; mean ± SD: 0.892 ± 0.088). No significant difference in 

social tendency was found among age groups (ANOVA F(4,49) = 2.04, p = 0.105). No 

preference for either the mirror image or real conspecifics was observed in adults (one 

sample t-test, t(9) = 0.93, p = 0.375) and young fish, either when considering the young 

group as a whole (one sample t-test, t(39) = 1.95, p = 0.058) or taking into account each 

age group separately (one-sample t-test; one day old: t(9) = 0.98, p = 0.351; four days 

old: t(9) = 1.78, p = 0.108; eight days old: t(9) = 1.01, p = 0.338; six-teen days old: t(9) 

= 0.11, p = 0.915; Fig. 35). We found no side bias (left vs. right end of the tank, 

independent t-test, t(38) = 1.28, p = 0.210). There was no difference among groups in 

the preference for the mirror image (ANOVA F(4,49) = 0.26, p = 0.901). Analysis of 

trend also evidenced no age-related variation in preference (trend analysis F(1,49) = 

0.06, p = 0.8 

 

Fig. 35 : Results of Experiment 2. Preference for real conspecifics vs. 

mirror image at different ages. No significant difference was found among 

the five age groups and no group showed a significant preference for one 

stimulus type. 
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6.1.3. Experiment 3: Learning the association between a stimulus and food 

reinforcement 

 

The aim of this experiment was to determine if young fish could be trained to 

associate a stimulus to a food reward. We adapted the procedure set up for adult fish 

(see Section 4.1) Subjects were repeatedly fed in the proximity of a stimulus placed at 

one of the two ends of the tank. As measure of the capacity to associate the stimulus 

with food reinforcement, we computed the proportion of time spent near the stimulus 

during probe trials in which no reward was provided. To reduce stress from social 

deprivation to a minimum, we accustomed fish to the apparatus and initially trained 

them in a group. In addition, we placed two mirrors in the middle of the tank as a 

substitute for social mates. 

 

Subjects and apparatus 

We used twelve four-day-old fish in this experiment. The apparatus consisted of a 

tank (28 cm x 18.5 cm x 32 cm) filled with 17 cm of water and lit by a 15 W fluorescent 

light (Fig. 36). Two green plastic panels on each short side of the tank delimitated the 

area where the stimulus was introduced. Two green tiles (16 cm x 10 cm) placed 

adjacent to each short side delimited the “preference area”. The bottom of the tank was 

covered with natural gravel, and the water was maintained at a temperature of 25 ± 2 

◦C. The stimulus was a black cross (3 cm x 3 cm) on a white background (6 cm x 29 

cm). We used two Pasteur pipettes to provide both a drop of live brine shrimp (Artemia 

salina) and a drop of water at the two ends of the apparatus. We placed the tank in a 

dark room. We video recorded the experiment. 
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Procedure 

We introduced four fish in a group into the apparatus the day before the test and 

allowed them to familiarize for 15 h. The training phase began when fish were four days 

old. It consisted of four daily reinforced trials for four consecutive days, for a total of 

sixteen trials. On days 1–2, fish were tested in a group (four individuals). On the 

evening of day 2, each fish was placed individually in an apparatus identical to the one 

used for training in a group. On days 3–4, fish were tested singly. To avoid the 

possibility of fish using the local/spatial cues of their tank, at the end of each day, each 

subject was moved from one tank to another. This also served to expose subjects to the 

social odour of the fish previously occupying the tank.  

At the beginning of each reinforced trial, we introduced the stimulus at one of the 

two ends of the tank. Two Pasteur pipettes were simultaneously introduced: one 

released a drop of A. salina near the stimulus, the other a drop of water at the opposite 

Fig. 36: Schematic representation of the experimental apparatus. In 

Experiments 3 and 4 subjects were required to learn an association between a 

stimulus (a two-dimensional geometric figure) and a food reward (Experiment 

3), or learn to discriminate between two geometric figures placed at the two 

ends of their apparatus (Experiment 4). 
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side. After 6 min, a second reinforcement was given. Each trial lasted 12 min and the 

inter-trial interval lasted 3 h.  

On day 5, fish were subjected to three probe trials, alternated with two rein-forced 

trials to avoid a decrease in their motivation. There was a 1-h interval between the probe 

trial and the reinforced trial and then a 3-h interval before the successive probe trial. In 

the probe trial, the stimulus was introduced at one end of the tank with no reinforcement 

provided. The probe trial lasted 6 min and was video recorded. The position of the 

stimulus was counterbalanced over trials, both in reinforced and in probe trials. As 

measure of preference, we calculated the proportion of time spent near the stimulus in 

the preference area during probe trials. 

 

Results 

Fish spent significantly more time near the stimulus in each probe trial (one sample t-

test, respectively: t(10) = 3.93, p = 0.003; t(10) = 3.44, p = 0.006; t(11) = 4.29, p = 

0.001). On the whole, the preference for the side with the stimulus was significant 

(mean ± SD: 0.660 ± 0.101, one sample t-test, t(11) = 5.48, p < 0.001, Fig. 38). We 

found no side bias (left vs. right end of the tank) (paired t-test, t(10) = 0.20, p = 0.846). 
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6.1.4. Experiment 4: Learning to discriminate between two stimuli 

 

This experiment aimed to verify whether young fish could be trained to discriminate 

two stimuli. The procedure was similar to the one used in Experiment 3, but here two 

stimuli were simultaneously inserted at the two ends of the tank, and only one was 

reinforced. To study learning in the shortest possible time interval, training was 

preceded by a two-day pre-treatment phase in which fish learned in a group to receive 

food near an introduced stimulus. 

 

Subjects and apparatus  

A sample of ten four-day-old fish was used in this experiment. The apparatus was the 

same as in Experiment 4 (Fig. 37). The two stimuli to discriminate were a circle (3 cm x 

3 cm) and a triangle (3 cm x 3 cm) of the same colour (black) and on the same white 

background (6 cm x 29 cm). For the pre-treatment phase we used a black cross, the 

same stimulus used in Experiment 3. 

 

Procedure  

In a pre-treatment phase lasting two days, we used an identical procedure to the one 

used in the previous experiment. We trained fish in a group of five individuals to 

receive food in the proximity of a stimulus (cross). At the end of day 2, we placed the 

fish individually in an apparatus equal to the one used for training in group. On days 3–

5, fish were trained singly to discriminate between two new stimuli (circle and triangle) 

for four daily trials for three consecutive days (for a total of twelve trials). On day 6, 

fish were subjected to three probe trials alternated with two reinforced trials to avoid a 

decrease in their motivation. In probe trials, we introduced stimuli at the two ends of the 

tank for 6 minutes and provided no reinforcement. The position of the stimuli was 

counterbalanced over the trials, both in reinforced and in probe trials. Half of the fish 

were trained with the circle, and the other half were trained with the triangle as positive. 
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As measure of preference, we calculated the proportion of time spent near the reinforced 

stimulus in the preference area. 

 

Results  

Fish spent significantly more time near the reinforced stimulus in the third probe trial 

(mean ± SD: 0.797 ± 0.142, one sample t-test, t(8) = 6.25, p < 0.001) but not in the 

other two (p > 0.05). A repeated measure ANOVA with Trial (1st/2nd/3rd probe trial) 

as within factor showed that fish performance increased in precision across trials 

(F(2,16) = 8.36, p = 0.003; linear trend, F(1,8) = 7.62, p = 0.025). On the whole, the 

preference for the side with the stimulus was significant (mean ± SD: 0.624 ± 0.076, 

one sample t-test, t(9) = 5.10, p = 0.001, Fig. 37). 

 

 

Fig. 37:  Results of Experiments 3 and 4. Time spent near the reinforced stimulus in 

probe trials was used to demonstrate the ability of young guppies to learn the 

association between one stimulus and food reward (Experiment 3), and the 

discrimination between two stimuli (a circle and a triangle) (Experiment 4). 
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6.1.5. Discussion  

 

In the first two weeks of their life, guppies spent significantly more time near a 

compartment containing a group of same-age conspecifics than near an empty 

compartment. However, the preference was small, and young guppies were found to be 

significantly less gregarious than adults tested in a similar condition. One could argue 

that this difference in gregariousness may derive from the fact that adults were essayed 

after 24 h of acclimation, while young stayed in the apparatus for two weeks. Yet the 

significant results found comparing adults with young fish in their first day of 

experiment (i.e. having had the same acclimation time as adults) indicated the diversity 

was real. Interestingly, a recent investigation on the ontogeny of shoaling behavior in 

zebrafish reported that these fish also showed very little tendency to shoal in their first 

week of life and that shoal cohesion progressively increased in successive weeks, 

reaching its maximum value in adulthood (Buske & Gerlai, 2011).  

Although group living provides several benefits, competition for food increases with 

increasing shoal size (Bertram, 1978). As a consequence, fish increase inter-individual 

distances (Morgan, 1988; Robinson & Pitcher, 1989) or prefer foraging alone or in 

small groups when hungry (Hoare et al., 2004). A similar effect was observed in our 

experiment: when we compared pre-feeding and post-feeding observations, we found 

that juvenile guppies increased their proximity to conspecifics after they had consumed 

a meal. Interestingly, this behavior was not observed in adults. It might be that 

competition for food is higher in young individuals due to their need to allocate 

considerable resources for somatic growth. However, it is also possible that a prolonged 

experience of “ad libitum” feeding in the laboratory had led adults to reduce their 

response to food competition.  

The reasons underlying the change of gregariousness between early life and 

adulthood are not clear. It is possible that adult and newborn fish are subjected to 

differential selection pressure. Some predators prefer to attack a single prey when it is 

large, but they attempt to catch a group of individuals when they are small (Anderson, 

2010; Holmes & McCormick, 2009). In such cases, forming a cohesive group might be 

more advantageous for adult fish than for newborns. There is no information about the 

importance of predation on young guppies in our population. The Lower Tacarigua is a 
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high-predation site where guppies coexist with large predators, including the pike 

cichlid, Crenicichla alta (Magurran & Seghers, 1994). However, predation risk of the 

newborns does not necessarily reflect that of adult fish. Indeed, in poeciliids, 

cannibalism often represents the major cause of mortality of larval fish (Loeckle, 1982; 

Nilsson et al., 2011); hence, high predation pressure on adults, by reducing population 

densities and competition for resources, might actually release immature fish from 

intraspecific predation. 

Social tendency was not uniform throughout the first two weeks of life. In particular, 

there appeared to be less tendency to aggregate with other fish in the first days of life, 

but due to our experimental design it was impossible to determine whether this 

difference was due to development or to habituation to the experimental condition. 

Despite some sociability differences related to age and satiation levels, it was evident 

from our experiment that newly born guppies did not exhibit a clear solitary tendency 

even when they were observed undisturbed in a familiar environment. Based on these 

results we cannot exclude that isolation of young guppies for a prolonged period might 

represent a stressful condition, negatively affect learning, or even interfere with normal 

development of their behavior. Further experiments (e.g. measuring cortisol levels, 

assessing behavioral development, etc.) are needed to unravel this point.  

Mirror images have often been employed to simulate conspecific fish in studies on 

cooperation (Milinski, 1988; Dugatkin & Alfieri, 1991), aggression (Meliska, 1980; 

Bisazza & De Santi, 2003), and schooling (Sovrano et al., 2001; Dadda et al., 2010). 

These studies have generally assumed that no difference occurred between virtual and 

real fish. A notable exception was a recent work in African cichlid fish (Desjardins & 

Fernald, 2010) reporting that, in spite of no evident behavioral difference, distinct brain 

gene expression levels were observed when fish fight a mirror image or a real 

conspecific. In Experiment 2, when given the choice between conspecifics and their 

own mirror images, young guppies and adult females showed no preference for real fish 

over virtual ones. If anything, there was a slight preference for the mirror side that 

appeared more evident in younger fish. This finding opens the possibility of using 

mirrors as a substitute for social companions to avoid social deprivation during 

experiments that require individual housing of the subject.  
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In the second part of this study, we designed a procedure to study discrimination 

learning in newborn and young fish, taking into account the results of Experiments 1 

and 2 to develop protocols to minimize potential stress deriving from social isolation. 

We reduced to a minimum the time spent in isolation by keeping the subjects in a group 

during the period of habituation to the new apparatus. We placed two mirrors in each 

tank to provide social stimulation. There is now increasing evidence that conspecific 

odour is an important social cue in guppies (Brown & Godin, 1999, Griffiths & 

Magurran, 1999; Shohet & Watt, 2004). Consequently, we decided to provide some 

olfactory stimulation during all the trials.  

The aim of Experiments 3 and 4 was to determine whether fish could be trained at 

early stage of development. In Experiment 3, we trained fish to associate a stimulus 

with a food reward and found that eight-day-old fish can learn to go to the side of the 

apparatus where the stimulus appears after only sixteen reinforced trials. In Experiment 

4, we modified this procedure to determine if fish could discriminate between two 

geometric figures, a triangle and a circle. In this task, nine-day-old guppies showed a 

significant selection of the reinforced stimulus after only twelve reinforced trials. Shape 

discrimination has been previously studied in adult fish (Hemmings & Matthew, 1963; 

Hemmings, 1965: Sutherland, 1969; Sovrano & Bisazza, 2008; Siebeck et al., 2009) but 

no data are available in young individuals. Here, we provide the first evidence of 

geometric figure discrimination in newborn guppies using a training procedure. The 

demonstration that very young fish can discriminate two geometric figures after only a 

few reinforced trials paves the way for future studies on inborn cognitive abilities of 

fish as well as the possibility to study the roles that experience, maturation, and increase 

in relative brain size have on their development. In particular, it would be interesting to 

investigate whether young fish exhibit the same cognitive abilities of adults with regard 

to other visual capacities such as colour discrimination (Muntz & Cronly, 1966; Colwill 

et al., 2005), shape discrimination (Siebeck et al., 2009, Mackintosh & Sutherland, 

1963), illusory contour perception (Sovrano & Bisazza, 2009), and numerical abilities 

(Agrillo et al., 2009; Agrillo et al., 2010). 
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6.2. Ontogeny of the capacity to compare discrete quantities in fish* 

 

* This research is a modified version of “Miletto Petrazzini, M. E., Agrillo, C., Piffer, L., & 

Bisazza, A. (2013). Online first” 

 

Developmental and comparative studies suggest that our complex mathematical 

capabilities are rooted in foundational non-symbolic numerical systems that are present 

well before the acquisition of language (Izard et al., 2009; Xu & Spelke, 2000) and that 

we share with non-human primates (Cantlon & Brannon, 2007b; Nieder, 2013).  

Over the last few decades, basic numerical abilities have been demonstrated for 

several other vertebrates but results across studies are not entirely consistent. It is 

unclear whether these differences are related to the species investigated or rather they 

are due to the context in which they are investigated, the type of task presented or the 

sensory modality involved. In particular, since very few studies have examined 

numerical abilities in the same species across different contexts, it is not clear whether 

animals are equipped with a single system of numerical representation, or rather possess 

domain-specific numerical systems with distinct characteristics. Some studies support 

the existence of a single supramodal and domain-independent numerical system in 

newborns and infants (Izard et al., 2009; Starkey et al., 1990) and in non-human 

primates (Jordan et al., 2005). Other authors however have suggested the existence of 

multiple core number systems which serve to solve a limited set of problems (Feigenson 

et al., 2004; Spelke, 2000).  

Exploring the development of numerical abilities in different contexts may provide 

important insights into the nature of these capacities and help us to assess whether the 

same or distinct numerical systems are used in the different tasks. If a species is 

endowed with a single system of numerical representation, one would expect to observe 

the same developmental trajectories for all numerical tasks. Conversely, a difference in 

the onset of numerical abilities would suggest the existence of domain-specific systems 

for numerical processing. 

In laboratory, fish placed in a novel place readily choose the more numerous of two 

social groups (mosquitofish: Agrillo, et al., 2008a; guppies: Agrillo, et al., 2012; 

zebrafish: Pritchard et al., 2001; angelfish: Gómez-Laplaza & Gerlai, 2011a, b). Fish are 
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very efficient at this task, showing numerical abilities comparable or even superior to 

those of many mammals and birds. When confronted with small numerosities, 

mosquitofish can discriminate 3 from 4 fish. When the number of fish to discriminate 

exceeds four, they require a numerical ratio of approximately 1:2, but apparently with 

no set size effect, at least up to 8 versus 16 fish (Agrillo et al., 2008a). Although they 

spontaneously make use of continuous quantities that co-vary with number, they are 

able to choose the larger group even when they see one fish at time, a condition that is 

assumed to prevent the estimate of these continuous variables (Dadda et al., 2009).  

Good numerical abilities were found also by training fish to discriminate between 

two-dimensional patterns of geometric figures with stimuli controlled for non-numerical 

continuous quantities (Agrillo et al., 2009, 2010). When numbers differ by one unit, fish 

discriminate up to 2 versus 3 items (see Section 4.1). For larger numbers in all studied 

species (mosquitofish, guppies, redtail splitfin, zebrafish, and Siamese fighting fish) the 

upper ratio appears to be 2:3, for example, 8 versus 12 dots (see Section 4.1 and 4.2); 

there seems to be no total set size limit, since discriminating 100 from 200 items seems 

equally easy than discriminating eight from sixteen items (see Section 4.1). Some 

differences emerged between results obtained with spontaneous shoal choice tests and 

training procedure. Fish for example are more precise in shoal choice with small 

numbers and with discrimination learning in large numerosities. It is not clear at the 

present whether these differences are due to one or more factors that differentiate the 

two tasks, to the nature of stimuli (live 3D moving stimuli vs. 2D static figures) or 

rather they reflect the existence of distinct numerical systems operating in two contexts.  

A recent study investigated the development of the ability to discriminate number of 

peers from birth to adulthood in the guppy, a popular model species in behavioral 

research. One-day-old guppies proved able to discriminate between shoals when the 

choice involved small quantities (1-4) not when larger groups were presented (4 vs. 5, 4 

vs. 8 or even 4 vs. 12). Such abilities seem to emerge only later, between 20 and 40 

days of age, as result of maturation and social experience (Bisazza, et al., 2010). As in 

adults, the capacity to select the larger group was preserved when newborn and young 

fish were tested under a condition that strongly reduced their possibility to use non-

numerical continuous quantities, such as total area or density of conspecifics, suggesting 

that the capacity to discriminate small quantities of conspecifics at birth might be based 
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on a true numerical process (Bisazza et al., 2010). In the previous study it was shown 

that guppies can be trained, starting from the fourth day of age, to discriminate between 

two stimuli in only 12 reinforced trials (see Section 6.1). The method diverges from a 

standard operant conditioning procedure; in this method discrimination is inferred from 

the fraction of time spent near the trained stimulus during final probe trials instead of 

from individual learning criterion. However the procedure is very rapid and allows to 

study age-specific cognitive abilities even in a rapidly growing species. 

Here we applied this method to investigate the numerical abilities of young guppies. 

In the first experiment, 4-day-old guppies were trained to discriminate between two 

groups of two-dimensional geometric figures (1 vs. 4, 2 vs. 4, and 2 vs. 3 black dots) 

under a condition in which they could use both numbers and continuous quantities that 

co-varied with numerosity (e.g., area). In a second experiment they were trained on the 

same quantities when only numerical information was available. In experiment 3 they 

had to discriminate between stimuli that differed in area but not in number. 

 
 

6.2.1. Experiment 1: Number and continuous quantities 

 

This experiment investigated whether young guppies can learn to discriminate between 

two sets of dots in the range 1–4. Stimuli were not controlled for the continuous 

quantities that co-vary with number and thus fish of this experiment could use both 

number and continuous quantities to solve the task. 

 

Subjects, apparatus and stimuli 

Thirty 4-day-old fish were used as subjects. Gravid females were singly placed in 

nursery tanks (50 cm x 18 cm x 32 cm). The fry were removed at birth and kept in 

groups until the experiment.  

Apparatus and procedure were the same as described in Section 6.1.3. Each subject 

was tested in a 28 cm x 18 x 32 cm tank filled with 17 cm of water maintained at a 

temperature of 25 ± 2°C and lit by a 15 W fluorescent light. To minimize the potential 

stress from social isolation two mirrors (6 cm x 29 cm) were placed in front of each 

other in the middle of the tank. The tanks were placed in a dark room. A video camera 
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was suspended about 1 m above the experimental tanks and used to record the position 

of the subjects during the tests. 

Stimuli were black dots (diameter 0.29–0.61 cm) on a white background (6 cm x 29 

cm) distributed in a 5.5 cm x 5.5 cm central area. There were three ratio conditions (n = 

10 each), presenting contrasts of 1 versus 4, 2 versus 4, and 2 versus 3 (respectively, 

0.25, 0.50, and 0.67 ratios). Dots have different sizes within each array; however, as 

stimuli were not controlled for continuous quantities, in 2 versus 3 condition, for 

example, the total area occupied by the smaller stimulus was 2/3 of the larger stimulus 

and could cue the larger quantity. 

 

Procedure 

Five 3-day-old fish were placed together into the apparatus 15 hours before the 

beginning of the training in order to familiarize them with the novel environment. 

The fish were trained for 5 consecutive days (from the 4th to 8th days of age), in four 

trials per day. On days 1–2, the fish were trained in groups of five; at the end of day 2, 

each fish was singly housed and individually tested for the remaining 3 days. To avoid 

the use of local cues in the tank, at the end of each day, subjects were gently moved by a 

green net from one tank to another. Fish were moved only in the late evening, after the 

daily session and trained or tested the following morning (at least 13 hours after being 

transferred from one tank to another). In this way the potential stress due to the daily 

transfer was minimized during the experiments as a previous study (see Section 4.1) 

showed that the daily transfer does not affect discriminative learning.  

In each trial, the two stimuli for discrimination were introduced at the two ends of 

the apparatus immediately followed by the release of a drop of water containing live 

brine shrimps near the reinforced stimulus and a control water drop near the other. A 

second food reinforcement was given after 6 min. Each trial lasted 12 min with a 3-hour 

inter-trial interval. The left/right position of the stimuli was counterbalanced over trials. 

All subjects were reinforced with respect to the larger quantity and tested only once. On 

day 6 (9 days of age) subjects received a probe trial followed by three reinforced trials. 

A second probe trial was administered on day 7, swapping the position of the stimuli. 

During the probe trials, stimuli were introduced into the tank but no food was provided. 
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Only drops of waters were inserted in both sides. Probe trials lasted 6 min and were 

video-recorded. As dependent variable, we computed the proportion of time (accuracy) 

spent in the preference area (white rectangles covered by a green net, 16 cm x 10 cm) 

adjacent to the larger stimulus in the average of the two probe trials.  

One-way analyses of variance (ANOVA) were performed to compare potential 

proportion differences among the three ratios; for each ratio, one sample t-tests were 

used to compare the proportion of time in the preference area against a chance value of 

.5 (null hypothesis of  no preference). Independent t-tests and two-way ANOVAs were 

performed to assess whether accuracy differed in the three experiments. Data were 

arcsine (square root)-transformed (Sokal & Rohlf, 1995). The mean ± SD are provided. 

Statistical tests were carried out using SPSS 18.0. 

 

Results 

Fish spent 59% of time in the two preference areas. No significant difference in 

accuracy was observed among the three ratios (F(2, 27) = 1.01, p = 0.376). Overall a 

significant preference was found for the trained numerosity (t(29) = 3.60, p = 0.001). 

When the three ratios were examined separately a significant result was found for ratios 

0.25 (t(9) = 4.13, p = 0.003) and 0.5 (t(9) = 2.33, p = 0.045), but not for 0.67 ratio (t(9) 

= 1.23, p = 0.250, Fig. 39). 
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6.2.2. Experiment 2: Number only 

 

This experiment investigated whether young guppies can learn to discriminate 

between two sets of dots when stimuli are controlled for the continuous quantities that 

co-vary with number and thus they can use only numerical information to solve the task. 

 

Subjects, apparatus, and stimuli 

Thirty 4-day-old fish were used as subjects. The procedure was the same described in 

Experiment 1. 

As in Experiment 1 stimuli were black dots on a white background. There were the 

same three ratio conditions of Experiment 1 (n = 10 each; 1 vs. 4, 2 vs. 4, and 2 vs. 3 

contrasts). Stimuli were controlled for the three most important continuous quantities 

that co-vary with number (Agrillo et al., 2009, 2010; Gómez-Laplaza & Gerlai, 2011b; 

Durgin, 1995): cumulative surface area, the density of elements and the overall space 

occupied by the arrays. Stimuli were controlled for continuous quantities using the 

procedure described in Section 4.1. In the stimuli used in the probe trials, cumulative 

surface area was equated to 100%.  

 

Results 

One fish in the condition 0.67 ratio was excluded during the training due to poor 

health.  

Fish spent 57% of time in the two preference areas. No significant difference in 

accuracy was observed among the three ratios (F(2, 26) = 1.21, p = 0.314). Overall, no 

significant departure from chance level was found for the trained numerosity (one 

sample t-test, t(28) = 0.32, p = 0.749). When the three ratios were examined separately, 

no ratio was significant (0.25: t(9) = 0.88, p = 0.404; 0.50: t(9) = 1.16, p = 0.275; 0.67: 

t(8) = 0.75 p = 0.476).  

Results of Experiments 1 and 2 were compared with a 2 x 3 ANOVA, with Stimulus 

(Number and continuous quantities/Number only) and Ratio (0.25/0.50/0.67) as 
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between-subject factors. A main effect of Stimulus was found (F(1, 53) = 9.37, p = 

0.003), no other factor was significant (Ratio, F(2, 53) = 2.09, p = 0.134; Interaction, 

F(2, 53) = 0.05, p = 0.949, Fig. 38). 

 

 

 

 

 

 

 

 

FIGURE 38: Accuracy in discrimination of two quantities is plotted against 

numerical ratio when both number and continuous quantities were simultaneously 

available and when only numerical information was available. A significant 

preference for the reinforced numerosity was found only in the former condition and 

no ratio effect was observed. Asterisks denote a significant departure from chance 

level (P<0.05). Bars represent the standard error. 
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6.2.3. Experiment 3: Continuous quantities only 

 

Comparison of Experiment 1 and 2 indicates that fish were unable to discriminate 

quantities using solely numerical information, while they accomplished the task in the 

“number and continuous quantities” condition. There are two possible explanations for 

this finding. The first is that newborns are able to use continuous quantities but not able 

to represent numbers. Alternatively, as in Experiment 1 both number and continuous 

quantities were available, it is possible that a better performance might be due to the 

possibility of accessing multiple cues (Agrillo et al., 2011). 

To unravel the question, in the third experiment, we tested fifteen young guppies 

under a condition in which stimuli differed in area but always maintaining a 0.5 ratio, 

while the numerical information was made irrelevant (3 vs. 3). As a reference, we 

compared the performance of fish with that of subjects of Experiment 1 and 2. 

 

Results 

Fish spent 53% of time in the two preference areas. Fish were unable to discriminate 

when only continuous quantities were available (0.53 ± 0.14, t(14) = 0.84, p = 0.416). 

This condition significantly differed from the condition of Experiment 1, either 

considering the whole sample or the sole elements of the 0.5 ratio (t(43) = 2.1, p = 0.042 

and t(23) = 2.1, p = 0.047, respectively). No difference was found between “number 

only” condition of Experiment 2 and this experiment (whole sample, t(42) = 0.82, p = 

0.420; ratio 0.5: t(23) = 0.39, p = 0.698). 
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6.2.4. Discussion 

In Experiment 1 we found that 1-week-old guppies can be trained to discriminate 

between two sets containing different numbers of objects in just 20 reinforced trials. 

However, in the second experiment, when trained in the same condition using stimuli 

that have been paired for continuous quantities that co-vary with number (the 

cumulative surface area, the density of elements and the overall space occupied by the 

arrays), their performance dropped to chance level with all tested ratios. This suggests 

that young guppies can discriminate stimuli when they differ for both number and 

continuous quantities but they are unable to discriminate quantities using the sole 

numerical information. Adult guppies as well as several other fish species can easily 

learn a pure numerical discrimination even in experiments that adopted the procedure 

we have used here (Agrillo et al., 2011; see Section 4.1 and 4.2) The results of 

Experiment 2 indicate that this capacity is not inborn in guppies and must therefore 

appear after the second week of life. 

The capacity to discriminate stimuli when non-numerical information, such as total 

area, is available but the failure when using the sole numerical information was 

previously reported for other species (infants: Feigenson et al., 2002b; cats: Pisa & 

Agrillo, 2009; dolphins: Kilian et al., 2003) and has been generally considered as 

evidence that numerical information is more complex to process than the continuous 

quantities that co-vary with number, such as area. Yet the results of the third experiment 

evidence that, for a newborn guppy, discriminating stimuli that differ solely for area is 

equally difficult to discriminating solely based on number, and that they can 

successfully discriminate between two sets only when both types of information are 

available. A somehow similar effect has been recently reported for numerical 

discrimination by adult fish that learned much faster to discriminate stimuli that differed 

for both number and area (Agrillo et al., 2011).  

This phenomenon is probably not confined to fish. Redundant information is known 

to facilitate learning and memory in adult humans (Armelius & Armelius, 1974; Neil et 

al., 2006). As regards numerical abilities, multiple visual cues facilitated quantity 

estimation both in adults (Gebuis & Reynvoet, 2012)  and infants (Iuculano et al., 

2008).   
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In the natural world, numerosity co-varies with several non-numerical continuous 

quantities. The methods that are generally used in laboratory experiments to control for 

the non-numerical continuous quantities break down this natural association and may 

provide conflicting information that deteriorates the performance (Gebuis & Reynvoet, 

2012).  

The lack of discrimination in the contrast of 2 versus 3 when continuous quantities 

were available may appear surprising. However it is worth noting that quantity abilities 

increase in precision over development in human infants. As adult fish can discriminate 

2 versus 3 even when the stimuli are controlled for continuous quantities (Agrillo et al., 

2011), it is possible that also the quantity systems of guppies increase in precision over 

development. 

The method we used here differs from a standard operant conditioning procedure. 

The capacity to discriminate was inferred from the time spent near the 

trained stimulus during final probe trials. This limits the possibility to obtain detailed 

information of the learning process instead examining individual learning 

curves in the standard procedure. However, with usual protocols, reaching a learning 

criterion on numerical discrimination normally requires several dozen or even hundreds 

of reinforced trials (Agrillo et al., 2009; Cantlon & Brannon, 2006), which is clearly 

ineffectual if the aim is to study age specific cognitive abilities in a fast growing 

species.  

The results of this study largely differ from those obtained in guppies of similar age 

using the shoal choice paradigm (Bisazza et al., 2010). One-day-old fish were in fact 

observed to select the larger shoal for contrasts of 1 versus 2, 2 versus 3, and 3 versus 4 

(but not 4 vs. 5, or 5 vs. 6). In that experiment there was no control of the continuous 

quantities and therefore newborns could have used these cues or a combination of 

continuous and numerical cues to identify the larger shoal. However in another 

experiment of the same study we showed that, at least for the 2 versus 3 contrast, 

newborns were able to select the larger group even when they could only see one 

stimulus fish at time, a procedure that makes extremely difficult or impossible to use 

continuous quantities such as the total area occupied by the shoal (Bisazza et al., 2010). 

Here young fish failed to discriminate between the controlled sets even when the 

discrimination task was very easy for a fish such as in the 1 versus 4 items. A 
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comparison of the two studies thus seems to suggest that at birth guppies possess a 

sophisticated mechanism to enumerate and compare small groups of peers, but that this 

system is specific to the social domain and cannot be used to represent numbers in other 

contexts. This developmental dissociation speaks in favour of the existence of distinct 

quantification systems in fish that are characterized by domain and task specificity, each 

system operating largely independently from the others. The mechanism for comparing 

shoal size needs not to be specifically a numerical system. Specialized systems for 

processing biological stimuli have been often described in the literature, for example 

face-processing neural circuits in primates (Farah Wilson et al., 1998; Pascalis & 

Bachevalier, 1998) or systems for discrimination of biological motion in birds 

(Vallortigara et al., 2005). The innate ability to count peers may for example depend on 

a broader processing system for conspecific inputs which makes these information 

available also for estimating and comparing the size of social groups. Obviously, the 

possibility exists that item by item presentation used in previous study was less effective 

in controlling continuous quantities compared with the method used in the present study 

and further controls with the shoal choice paradigm are necessary, for example using 

computer animated stimuli, in which continuous quantities can be controlled in a way 

similar to that used in the present study. 

From an evolutionary point of view the early appearance in fish of the ability to 

precisely estimate shoal size makes sense. The main tactics that fish have evolved to 

escape their predators is shoaling. In large aggregates, the risk of being captured by a 

predator is reduced (Krause & Ruxton, 2002). As guppies show no parental care, 

newborns are particularly vulnerable to predation and it is not difficult to envisage that 

selection has favoured a precocious development of an 

efficient system for assessing and comparing the size of social groups. 

The use of numerical information to estimate the size of a social group could also be 

explained by the nature of the stimulus to be processed. Peers move incessantly in a 

three-dimensional space modifying their inter-individual distance. They frequently 

change orientation and hence the visible area, and can temporarily disappear behind 

solid objects or occlude each other. These characteristics of the stimuli may promote a 

system capable of keeping track of single items even when they change size and 

position or temporarily disappear from sight. This does not need to be specifically a 
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numerical system. At birth, fish need to track live objects such as conspecifics, 

predators, and small live prey. They could thus be equipped with an object tracking 

system with characteristics similar to those described for humans (Trick & Pylyshyn, 

1994). As a by-product of tracking multiple objects, this system could record their 

numerosity, although it is expected to allow handling a limited number of objects at 

once, around four in humans and non-human primates (Pylyshyn & Storm, 1988).  

Further investigation is still required. For instance, there is an open debate as to 

whether non-human species (including fish) have two distinct numerical systems: a 

precise system for small numbers (1–4) and an approximate one for larger numbers 

(Agrillo, et al., 2012; Bonanni et al., 2011; Xu & Spelke, 2000). For a better 

comprehension of the quantification systems of young guppies, future studies 

comparing spontaneous choice tests and training procedure in the large number range (≥ 

4) are also needed. 
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7. CONCLUSION 

 

In the last decades, many studies have documented numerical abilities in non-human 

animals and increasing evidence suggests that the numerical systems of non-human 

animals may be the same as the pre-verbal numerical systems described in humans. In 

particular, the discovery in recent years that even simple organisms, such as fish, are 

capable of numerical abilities similar to primates has made possible the use of fish as an 

animal model to study numerical abilities in the absence of language. 

However several questions about numerical capacities in fish remained unanswered 

and the present thesis aimed to fill this gap.   

First of all, a novel procedure for training fish to discriminate between sets of stimuli 

differing in numerosity was set up as the previous methodology used to train fish was 

time-consuming, suitable only for social species and potentially stressful for fish 

(Section 4.1). The new procedure here described coped with these problems proving to 

be rapid, applicable to different fish species and efficient to study discrimination 

learning in fish in tasks requiring visual stimuli. As a consequence, the novel protocol 

was adopted in all the training studies here presented. 

The question of whether all vertebrates share the same numerical systems, or rather 

numerical abilities have appeared multiple times during evolution in response to 

specific selective pressures imposed by the environment, represents one of the main 

issues of animal cognition. Despite the large amount of published data, mixed results 

have been reported in literature and the answer is still unclear. Part of the 

inconsistencies might be ascribed to the different methodologies adopted, making 

difficult any inter-specific comparison. Here the first inter-specific study using the same 

methodology in fish was presented (Section 4.2). When numerical abilities among five 

fish species as diverse as guppies, zebrafish, angelfish, redtail splitfin and Siamese 

fighting fish were compared, results showed interesting similarities opening the 

possibility of shared numerical systems among distantly related species. Hence, these 

results are more in accord with the existence of ancient quantification systems inherited 

from a common ancestor than with an independent evolution of numerical abilities in 

different species.  
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Another important question in the study of numerical cognition concerns the 

influence of contextual factors on the numerical capacities of a species. It is possible 

that the performance observed in a numerical task is limited to the specific context in 

which such abilities are observed rather than reflecting the full numerical competence of 

a species. This highlights the importance of using multiple experimental strategies 

before drawing firm conclusions about the ability of a species. To this purpose, Section 

5.1 and Section 5.2 focused on the potential influence on fish numerical acuity of 

factors that normally occur in nature, namely the cooperative behavior within group and 

the perception of abstract items in motion.   

Collective animal behavior, such as schooling fish or flocking birds, has attracted 

much attention as recent studies have provided evidence that group living can help to 

solve problems that are difficult or even impossible for single individuals. In the last 

decade, many studies have also shown that animals as diverse as mammals, birds and 

fish are capable of solving numerical tasks. However, all numerical cognition studies 

have tested subjects individually and it is not known whether collective behavior can 

enhance the capacity to solve numerical tasks in non-human animals. The comparison 

between the performance of individuals and dyads of guppies in two different numerical 

discrimination tasks showed that dyads performed better than singletons in selecting the 

larger group of social companions and also made better numerical discriminations of 

arrays of dots (Section 5.1). In addition, in both conditions, the better individual of the 

dyad spontaneously emerged as the leader. These results suggest a mechanism for the 

ecological advantage of schooling in fish: working together provides better information 

about shoal selection since individuals will follow leaders with better discrimination 

into larger shoals. Dyads performed better than singletons even when abstract stimuli 

were presented highlighting that collective behavior yields benefits that go beyond the 

single ecological context. Interestingly, the results here obtained aligned with data 

collected in adult humans where dyadic performance was superior than individual in a 

collective enumeration task (Baharami et al., 2013), thus suggesting that cooperation 

similarly increase numerical acuity in two distantly related species, such as humans and 

fish. 

Another factor that might potentially affect numerical abilities is the motion of items. 

It is known that small and large number discrimination of groups of conspecifics in fish 
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are differently affected by the quantity of movement whereas it is still unexplored 

whether fish can discriminate between two-dimensional figures in motion and whether 

the accuracy is the same in the small and large number range. 

For example, it has been reported in adult humans that faster and more accurate 

estimation occurred when small numerosities of dynamic items were presented, 

supporting the hypothesis of two distinct numerical systems (Trick et al., 2003, Alston 

& Humphreys, 2004). A similar effect of items in motion has been here observed in 

fish: while a 3:4 ratio was not discriminated with static stimuli in either numerical 

range, guppies were able to discriminate this ratio with items in motion but only in the 

small number range (Section 5.2). To date, comparative psychologists disagree as to 

whether in non-human species a single system, the ANS, accounts for discrimination 

over the whole numerical range, or a distinct system, the OTS, operates over the small 

number range. Although the results do not represent a direct evidence for the existence 

of the OTS, the differential effect of motion reported in guppies reinforces the idea of 

separate cognitive systems for small and large numbers, in line with data collected in 

humans. 

Despite no direct comparisons have been made between fish and humans in this 

thesis, the similarities between the two species are worth noting as they raise the 

intriguing possibility that the foundation of our numerical abilities might be 

evolutionarily more ancient than previously thought, dating back at least as far as the 

divergence between fish and land vertebrates, which occurred approximately 450 

million years ago. Obviously this is just a speculation and more studies are needed to 

confirm this hypothesis. 

The last part of the thesis focused on the development of numerical abilities using 

newborn guppies as a model species. Developmental studies can provide useful insights 

with respect to the existence of a single or multiple systems of numerical representation. 

For instance, exploring developmental trajectories of numerical skills in different 

contexts can help us to assess whether the same or distinct numerical systems are used 

in different tasks. Since an adequate method to study discrimination learning in 

newborn guppies was not available, the first step was to design a procedure by taking 

into account the social needs of young individuals in order to minimize potential stress 

due to social deprivation, without interfering with the normal development of their 
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behavioral repertoire (Section 6.1). Newborn guppies were capable to learn a simple 

shape discrimination after few trials and the training method was then used to 

investigate their numerical competence using sets of two-dimensional objects, as 

commonly done with adult fish. The result that fish discriminated only very easy 

numerical contrasts in the range 1-4 when both number and continuous variables were 

available was in contrast with the results of shoal discrimination experiments (Bisazza 

et al., 2010) suggesting that newborns’ capacity to use number is specific to social 

stimuli (Section 6.2).  

On the whole, data on guppies, both adult fish and newborns, are suggestive of the 

existence of multiple quantification mechanisms in fish which are domain-specific and 

serve to solve a limited set of problems in accordance with the hypothesis proposed by 

different authors (Feigenson et al., 2004; Spelke, 2000)  

The literature reported and the data collected in this thesis indicate that even fish, 

which are provided with a much smaller brain than warm-blooded vertebrates, can 

discriminate between quantities, process numerical information, and solve complex 

numerical tasks, in line with evidence in other research fields which suggest the 

possibility that processing numerical information might not require complex neural 

circuits. For example, a recent study using artificial neural networks (Hope et al., 2010) 

showed that fewer than 25-30 units may be sufficient for a system to represent 

numerosity, well below what traditionally believed until few years ago.  

This goes together with recent discovery that bony fish possess several other 

cognitive abilities that were previously believed to be uniquely present in species 

provided with large, complex brains (i.e. mammalian and avian species). For instance, 

teleost fish have been shown to recognize up to forty familiar individuals, cooperate to 

achieve a common goal, learn new habits from experienced conspecifics, use tools, and 

have cultural traditions (reviewed in Bisazza, 2010; Bshary et al 2002; Brown & 

Laland, 2003). For all these reasons, fish may become a proper model to study cognitive 

abilities and in particular numerical competence.   

Of course several topics need to be investigated yet. First of all, most of the studies 

on fish numerical abilities have investigated quantity discrimination in tasks where 

number and continuous quantities were simultaneously available. In this sense, further 

investigation is required to assess whether the capacity to use pure numerical 
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information is restricted to a few species or instead, as advanced in the inter-specific 

study (Section 4.2), is a cognitive skill shared by all fish. Also, research should be 

enlarged to encompass a wider range of species. To date only near-shore freshwater 

teleost fish have been investigated, while no study has been done in saltwater and 

pelagic teleosts nor in cartilagineous fish. Only by collecting information on more 

species we will better understand the evolution of the cognitive systems underlying 

numerical abilities of fish. 

It is worth noting that so far all fish studies have been restricted to the visual 

modality. In our own species, Tokita and colleagues (2013) reported a different 

performance in numerosity judgments tested in visual and auditory conditions, 

advancing the idea of multiple core number systems in which visual and auditory 

numerosities are mentally represented with different signal variabilities. The possibility 

exists that numerical acuity of fish is modality-dependent too. Future studies are needed 

to test this hypothesis. One possible way to investigate whether fish can elaborate 

numerical information in non-visual modalities could be testing blind fish that evolved 

for million of years in complete darkness, such as cavefish. Another possibilities is 

studying species that are active in both good and poor light conditions such as 

mormyrid fish to compare their numerical competence in the visual as well as in other 

sensory modalities. Partially related to this topic, also studies investigating cross-modal 

interaction of numerical information are needed, of the kind recently performed on 

primates (Jordan et al., 2005, 2008b). Again, no study investigated the relation between 

numerical and other magnitude abilities in fish. Several studies in humans (e.g., Agrillo 

& Piffer, 2012; Bueti & Walsh, 2009; Vicario, 2011) suggested the idea of a common 

magnitude system for non-symbolic estimation of time, space, and number, the so-

called ‘A Theory Of Magnitude’ (ATOM, Walsh, 2003). Recent evidence supports the 

existence of a single magnitude system also in non-human primates (Haun et al., 2010; 

Mendez et al., 2011; Merritt et al., 2010). Studies investigating the validity of ATOM in 

distantly related species, such as fish, may help us to assess whether this common 

magnitude system is a recent evolutionary development of the primate lineage or rather 

is a common feature among vertebrates. 

As a last note, the study of numerical abilities of fish might play a key role in the 

next future also to form a broader comprehension of the factors underlying the 
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acquisition of our mathematical abilities. Recently, correlational studies (Furman & 

Rubinstein, 2012; Piazza et al., 2010) found that non-symbolic numerical systems are 

less accurate in individuals with deficit in the study of mathematics, which is in 

agreement with the idea that the construction of symbolic numbers depends on 

processes that are culture-dependent but nevertheless rooted in non-symbolic numerical 

systems (Halberda et al., 2008). Non-symbolic and symbolic numerical abilities were 

also found to be causally related in a study by Park and Brannon (2013).  

As in other research fields, animal models may be fundamental in increasing our 

knowledge on human cognitive systems. For instance, the whole genome of zebrafish is 

already sequenced and several other species, guppies included, are currently being 

investigated. Considering the suggestion that vertebrates might share the same non-

symbolic numerical systems (Beran, 2008a; Feigenson et al., 2004) and that dyscalculia 

might have a genetic origin (Butterworth & Laurillard 2010), the use of a model such as 

zebrafish might help us to understand the genetic origin of non-symbolic numerical 

abilities. In this sense, fish may help us not only to assess the evolutionary origin of 

non-symbolic numerical abilities, but also to better understand the foundation of our 

mathematical skills. 
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