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A B S T R A C T

This work covers many research aspects of anisotropic synchronous
motors, which are synchronous reluctance (SyR), permanent magnet
assisted synchronous reluctance (PMaSyR) and interior permanent
magnet (IPM) machines. In fact, all these kinds of machines exhibit
quite a strong reluctance torque component, hence the name anisotropic.

From the early 2000s, the design of electric machines started to
deeply rely on finite element analysis (FEA) coupled to automatic
optimization algorithms. This workflow enabled the machine designer
to make fewer initial sizing hypotheses and to explore a wider design
space. The drawbacks of this approach are that the time required is
long and that the computational resources needed are quite large.
However, the computing performances have always been improving
over the years, especially when multi-processor architectures became
widespread. Therefore nowadays it is common to employ tens or even
hundreds of cores on cluster PCs to perform FEA during optimization
runs.

The thesis is structured as follows. The first part gives the background
knowledge needed to develop the topics covered in the following. This
comprehends an introduction to the machines studied, some general
knowledge about magnetic materials, some basic concepts about the
differential evolution (DE) algorithm, and the drawing of fluid rotor
flux-barriers.

The second part deals with the analytical modeling of SyR and
PMaSyR machines. The complete model is nonlinear and may become
convoluted to develop especially in an industrial environment. There-
fore, using simplifying assumptions, a handful of simple equations can
be derived. This simple model is also extended and applied to asym-
metric rotor structures, which try to compensate torque harmonics.

The third part focuses on applied multi-objective optimizations cou-
pled to FEA for many different case studies. In particular, a SyR motor
(SyRM) for pumping applications is optimized, prototyped and tested.
Then, a feasibility study on a very low speed PMaSyR motor is carried
out through multi-objective optimization. After that, high speed SyRMs
are studied and optimized to understand the power limits of this kind
of machine. Finally, the DE multi-objective optimization algorithm is
also applied to improve the sensorless-control capabilities of anisotropic
machines by design.
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S O M M A R I O

Questo lavoro analizza molti aspetti di ricerca dei motori sincroni
anisotropi, che includono le macchine sincrone a riluttanza pura (SyR),
a riluttanza assistita da magneti (PMaSyR) e le macchine a magneti
permanenti interni (IPM). Infatti, tutte queste macchine esibiscono una
forte componente di riluttanza, da cui il nome anisotrope.

Dai primi anni 2000, la progettazione di macchine elettriche ha co-
minciato a basarsi in modo consistente sull’analisi agli elementi finiti
(FEA) accoppiata ad algoritmi di ottimizzazione automatici. Questo
flusso di lavoro permette al progettista di fare un minor numero di
ipotesi preliminari e di esplorare uno spazio di progetto più ampio.
Gli svantaggi di questo approccio sono che il tempo richiesto è lungo
e che le risorse computazionali richieste possono essere elevate. Tut-
tavia, le prestazioni dei computer migliorano di anno in anno, e in
particolar modo con la diffusione delle architetture a multi-processore.
Pertanto oggigiorno è comune impiegare decine o persino centinaia di
core su cluster di PC per effettuare analisi agli elementi finiti durante
un’ottimizzazione.

La tesi è strutturata nel seguente modo. La prima parte copre le cono-
scenze di base necessarie a sviluppare gli argomenti trattati nel seguito.
C’è quindi un’introduzione alle macchine studiate, delle conoscenze
generali sui materiali magnetici e ferromagnetici, alcuni concetti di base
sull’algoritmo di ottimizzazione differential evolution (DE) utilizzato, e il
disegno delle barriere fluide dei rotori di macchine a riluttanza.

Nella seconda parte si sono sviluppati modelli analitici di macchine
SyR e PMaSyR. Il modello completo è non lineare e può diventare
abbastanza complesso da sviluppare, specialmente in un contesto in-
dustriale. Pertanto, usando alcune ipotesi semplificative, si possono
derivare alcune semplici equazioni di progetto. Questo modello sem-
plice è anche esteso e applicato a strutture di rotore asimmetriche, che
tentano di compensare alcune armoniche di coppia.

La terza parte si concentra sull’applicazioni di ottimizzazioni multi-
obiettivo accoppiate a FEA per alcuni casi di studio. In particolare, si è
ottimizzato, prototipato e testato un motore SyRper pompe centrifughe.
Poi, è stato condotto uno studio di fattibilità per un motore PMaSyR
attraverso ottimizzazioni multi-obiettivo. Dopodiché si sono studiati
motori SyRper alte velocità e si sono dedotti i limiti di potenza di
questa macchina. Infine l’ottimizzazione DE multi-obiettivo è stata
anche applicata per migliorare le capacità di controllo sensorless delle
macchine anisotrope già in fase di progetto.
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Part I

B A C K G R O U N D K N O W L E D G E





1
I N T R O D U C T I O N

The use of synchronous electric machines is becoming more and more
widespread thanks to their numerous advantages: high efficiency over
a wide range of operation, high power factor, constant torque up to the
base speed, high torque density, quick dynamics, simple control laws,
and so on.

Among them, the anisotropic synchronous machines are even better
in almost every regard: higher torque density for Interior Permanent
Magnet (IPM) motors, wide region of high efficiency operation, wide
Constant Power Speed Range (CPSR), intrinsic sensorless-control capa-
bility, rectangular magnets in lower amount, cheaper ferrite magnets if
the reluctance torque component is sufficiently strong.

When compared to Induction Motors (IMs), synchronous machines
appear more expensive if rare-earth (re) magnets are employed, they
require the inverter, they may present some additional issues when a
fault occurs, they are susceptible to demagnetization if not properly de-
signed, and so on. However, synchronous motors do not only represent
alternatives to IM but, thanks to their performance, they are also valid
alternatives for many mechanical, pneumatic or hydraulic actuators
that are very common in a plethora of applications: among these, two
notable examples are aircrafts and ground vehicles.

The interest in Synchronous Reluctance (SyR) and Permanent Mag-
net assisted Synchronous Reluctance (PMaSyR) machines is growing
up in recent years. They have been proposed as valid alternatives to
permanent magnet and induction machines in both constant-speed and
variable-speed applications (Moghaddam et al., 2012b; Barcaro et al.,
2014a; Fratta et al., 1992; Barcaro, 2011; Taghavi et al., 2017; Vagati et al.,
1998; Miller et al., 1991; Lipo, 1991; Lipo et al., 1994; Kamper, 2013).
These machines exhibit several advantages (Jahns et al., 1996; Wang
et al., 2000). Among the others, they are:

• low cost,

• high torque density,

• overall good efficiency (Boglietti et al., 2005),

• wide flux-weakening capability (Chalmers et al., 1998),

• good fault-tolerance,

• sensorless rotor position detection capability,

• robust structure.
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4 introduction

Figure 1.1
Cross section of one rotor pole of the
SyR machine.

rotor islands or flux-carriers

flux-barrier ends

flux-barriers

iron rib

Although the intrinsic advantages of these machines, a thoughtful
design is key to reach the goals of good performance and high effi-
ciency (Staton et al., 1993; Matsuo et al., 1994; Zhao et al., 2015). In
fact, these machines have quite a complex rotor structure. The sketch of
one rotor pole of a Synchronous Reluctance Machine (SyRM) is shown
in Figure 1.1. The flux lines are deflected by the rotor geometry which
guides them along preferential paths. To obtain proper performance,
the rotor anisotropy (i.e. the ratio between the d-axis and q-axis in-
ductance) has to be necessarily high (Staton et al., 1993; Lipo et al.,
1994; Moghaddam et al., 2014; Moghaddam et al., 2010). In particular,
one of the most important design step is the choice of the number
of flux-barriers and their end-angles (Vagati et al., 1992; Bianchi et al.,
2009b; Pellegrino et al., 2013). The torque ripple, which characterizes the
torque waveform (Moghaddam et al., 2012b), is due to the interaction
between the stator space harmonics and the rotor anisotropy. A wrong
rotor design may cause a decrease of the average torque but also very
high torque ripple. The peak-to-peak ripple can even reach 100% the
average value if the rotor flux-barriers are incorrectly designed. In the
past, such an issue has been highlighted in various works. Different
approaches have been adopted so as to minimize the torque ripple.

Differently from other machine topologies, rotor skewing is not
enough to minimize the torque ripple (Fratta et al., 1993; Jahns et al.,
1996; Bianchi et al., 2008b; Bacco et al., 2017). In fact, the skewing
modifies the d- and q-axis with respect to the stator, so that it modifies
the torque contribution, along the rotor axisl length. The SyR machines
are mainly analyzed using Finite Element Analysis (FEA) (Kamper
et al., 1996; Miller et al., 2000; Vagati et al., 2000; Alotto et al., 2011).
The results are precise and useful for achieving a specific geometry
to be prototyped, but they only refer to particular solutions. In other
words, it is difficult to find general design rules, since the analysis is
focused on a single objective. For instance, information of the harmonic
impact, caused by the stator magnetomotive force (mmf) or the rotor
geometry, is lost. In addition, it is more difficult to quantify the impact
of the stator slot number, or the number of rotor flux-barriers, or the
winding displacement, and so forth.
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A strategy that is often applied has been proposed in (Fratta et al.,
1993; Vagati et al., 1998). Starting from an analytical model, the elec-
tromagnetic torque is computed after deriving the magnetic quantities.
The model is based on the assumption that the rotor flux-barrier ends
are evenly spaced. In other words, there is the same angle between
adjacent flux-barrier ends. From this analysis, a guideline to select
the number of rotor segments (and so flux-barriers) per pole pair is
obtained according to the stator slots Q and the number of pole pairs p,
i.e. nr = Q/p± 4. The FEA results and the tests are in good agreement
with the analytical predictions. However, these works strictly depend
on the assumption above and do not consider the iron saturation.

In (Moghaddam et al., 2012a) it is shown that a better torque ripple
is obtained when the angle of the first (the smaller) flux-barrier-end is
increased with respect to the others. In other words, the flux-barrier
ends are all evenly spaced but the first one, whose angle has to be
optimized. This result has been obtained by means of a parametric
analysis based on finite element simulations. Then, the results depend
on the particular number of slots, air gap thickness, electric loading, et
cetera.

A different approach has been adopted in (Barcaro et al., 2009; Bianchi
et al., 2008b; Bianchi et al., 2006). An analytical model has been de-
veloped so as to consider all the mmf space harmonics produced by
the stator winding and their interaction with the rotor anisotropy. The
advantage of the analytical model is that the impact of each harmonic
is considered separately, to evaluate which is the most critical. The
model allows plotting the average torque and the torque harmonics
as functions of the rotor barrier-end positions, obtaining some maps,
which are used as guidelines for a proper design. In particular, the best
angles which minimize the torque ripple are clearly individuated. In
(Barcaro et al., 2010) the model has been extended to consider the iron
losses in the stator teeth.

An interesting application of such maps is the combination of the
flux-barrier angles in the same rotor, to obtain a sort of compensation
of the torque harmonics. According to the results drawn in these torque
maps (Bianchi et al., 2006), rotor using laminations with different flux-
barriers are proposed (solution referred to as “Romeo and Juliet”), or
laminations with different flux-barrier shapes in north and south poles
(solution referred to as “Machaon”).

A completely different approach is proposed in (Kano et al., 2004;
Lopez-Torres et al., 2018), which is based on a lumped-parameter
magnetic network. The model considers the saturation of the magnetic
parts of the machine by means of nonlinear reluctances in the circuit.
The authors show satisfactory results and claim that they are achieved
in a reasonably short time. Anyway, even if this approach is different
from FEA, it bears the same drawback of the lack of generality, since
the network is built on the basis of a given geometry and, therefore, the
results refer to that specific machine.
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In this work, a nonlinear analytical model for SyR and PMaSyR is
derived in Chapter 5, which is later simplified in Chapter 6 to highlight
the real source of the torque ripple.

In a lot of applications, the recent trend is to couple the electric
machine directly to the mechanical shaft, to avoid the use of a gearbox.
This is due to a number of reasons:

• increased overall efficiency

• increased system reliability

• reduced weight

• reduced overall footprint of the system

• reduced maintenance cost

• reduced noise

This trend affects low-speed as well as high-speed applications. In
fact, most of the presented advantages are shared by both categories.
But the most prominent advantage is certainly the higher reliability
of the overall system. This is a very important requirement when the
machine is installed in harsh environments (Grauers, 1996; Lampola,
1998; Popescu et al., 2013; Zhou et al., 2017).

Low speed machines find applications in energy production, electrical
propulsion, industrial automation, pumps and so on. They typically
employs strong re magnets with high pole numbers. A feasibility study
on a high-torque low-speed PMaSyR motor is shown in Chapter 7.

On the other hand, high-speed electric machines are more and more
used in many applications, such as turbochargers, racing engines and
fuel pumps (Gerada et al., 2014; Zhu et al., 1997; Castagnini et al.,
2002). The additional advantage that they have is the higher power
density. Among the others, Permanent Magnet (PM) machines are an
attractive solution for high-speed applications. They have reduced size,
high power density and high efficiency. On the other hand, due to the
high-speed of rotation and high rated frequency, high-speed PM ma-
chine design requires to take into account different problems. Surface-
mounted Permanent Magnet (SPM) machines are usually adopted in
such systems for their high torque density thanks to rare-earth PMs.
Rare-earth PMs creates the flux density at the air-gap, which induces
the electro-motive force in the stator winding. No magnetizing current
is necessary, reducing the total current amplitude and the Joule losses.
A retaining sleeve is necessary to keep PMs on the rotor against the
centrifugal force, though. Sleeve material must be non-conductive in
order to avoid additional rotor losses. For this purpose, a carbon fiber
sleeve is usually adopted for its low conductivity and high tensile
strength (Binder et al., 2006; Zhang et al., 2015). However, the carbon
fiber exhibits a low thermal conductivity, reducing the heat transfer
from the rotor to the air-gap (Howey et al., 2012). This involves a diffi-
cult rotor cooling so rotor losses have to be minimized. In fact, the main
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issue for magnets at high-speed, in addition to the mechanical stress,
is the internally generated heat caused by flux pulsation due to stator
slotting (Alberti et al., 2008; Boules, 1981), air-gap space harmonics
(Bianchi et al., 2009c; Boules, 1981), and asynchronous fields due to
time harmonics in the current waveforms (Lu et al., 2002; Mecrow et al.,
1993; Van der Veen et al., 1997).

The cost of rare-earth PMs, the risk of their demagnetization and
the necessary sleeve adoption require to consider other alternatives
such as the SyR machine. The SyR motor has not been deeply studied
for high speed applications (Ikäheimo, J. and Kolehmainen, J. and
Känsäkangas, T. and Kivelä V. and Moghaddam, Reza Rajabi, 2014),
where permanent magnet machines are mainly considered (Boules,
1981; Zhu et al., 1997; Castagnini et al., 2002; Bianchi et al., 2004). The
design of SyR machines for high-speed applications has to be carried
out considering both magnetic and mechanical aspects. In particular,
the iron ribs must be accurately designed with the aim of achieving the
minimum flux leakage in the ribs and ensuring the structural integrity.
All these aspects are shown explained in Chapter 9, where the design
of this kind of machines is carried out starting from analytical models
and continuing with advanced optimization techniques that consider
mechanical issues during the run.

As mentioned, SyR machines have an intrinsic saliency which allows
for sensorless position estimation at low speeds using high-frequency
(hf) voltage injection (Corley et al., 1998; Jeong et al., 2005; Yang et al.,
2017). However, iron cross-saturation reduces the effectiveness of this
position estimation algorithm creating an estimation error (Guglielmi et
al., 2006; Bianchi et al., 2013; Barcaro et al., 2016). The typical solution for
this problem is to add a compensation angle or equivalently tilt the high-
frequency voltage vector to correct the estimated position (Zhu et al.,
2007; Kuehl et al., 2012). In case of heavily saturated machines, this kind
of strategy is not enough, though. In fact, the algorithm could even not
converge. This aspect has been analyzed in (Kwon et al., 2017; Manzolini
et al., 2018), where different kind of compensations were proposed to
extend the self-sensing feasibility torque range. Even though these
compensation techniques proved to be effective, they require additional
effort for their implementation and also some information about the
machine magnetic behavior. In Chapter 10 this issue has been tackle at
an early design phase, embedding proper self-sensing capabilities into
the design optimization of the motor.
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1.1 synchronous machines voltage equations

The general equations of passive-rotor synchronous machines are ba-
sically the voltage-balance due to the resistive voltage drop and the
induced back electromotive force in the winding.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ua = Ria +
dλa

dt

ub = Rib +
dλb
dt

uc = Ric +
dλc

dt

C
=⇒ us = Ris +

dλs

dt

P
=⇒ ur = Rir +

dλr

dt
+ jωrλr

The phase voltage equations can be transformed in the equivalent two-
phase αβ stationary reference frame using the Clarke’s transformation
(C), or in the equivalent two-phase dq rotating synchronous reference
frame using the Park’s transformation (P). This last voltage equation
is the most useful for modeling and analyzing synchronous machines,
and it can also be written in matrix form

u = Ri +
dλ

dt
+ ωJλ{︄

ud

uq

}︄
= R

{︄
id

iq

}︄
+

d
dt

{︄
λd

λq

}︄
+ ω

[︄
0 −1

1 0

]︄{︄
λd

λq

}︄

From this matrix equation, the input active power can be determined,
pre-multiplying by iT

iTu⏞⏟⏟⏞
Input power

= iTRi⏞⏟⏟⏞
Joule losses

+ iT dλ

dt⏞ ⏟⏟ ⏞
Magn. energy variation

p. unit of time

+ ω iT Jλ⏞ ⏟⏟ ⏞
Output power

(1.1)

This expression is valid as long as any dissipative phenomena in the
ferromagnetic material is neglected. In the previous transformation, the
power-invariant version was used, but it is more usual to adopt the
amplitude-invariant (power-variant) space vector transformations. In
that case, (1.1) becomes

3
2

iTu =
3
2

iTRi +
3
2

iT dλ

dt
+

3
2

ωiT Jλ (1.2)

And the electromagnetic torque expression can be determined from the
last term of (1.2) as

Tem =
3
2

p iT Jλ =
3
2

p
(︁
λdiq − λqid

)︁
(1.3)

where p is the number of pole pairs. The second term of (1.1) is the
stored magnetic energy variation per unit of time. This can be verified
remembering the magnetic energy expression

Wm =
∫︂ λ

0
i(λ′)dλ (1.4)
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and taking the derivative with respect to time

dWm

dt
=

dWm

dλ

dλ

dt
= i

dλ

dt

Actually, (1.2) expresses only the active power balance happening inside
the machine during the electromechanical energy conversion. However,
starting from the space vector expression in complex form

u = Ri +
dλ

dt
+ jωλ

and multiplying it by i∗, it is possible to obtain both the active and
reactive power balance

ui∗ = Rii∗ +
dλ

dt
i∗ + jωλi∗ (1.5)

and splitting the real and imaginary part⎧⎪⎪⎨⎪⎪⎩
udid + uqiq = R

(︁
i2d + i2q

)︁
+

dλd
dt

id +
dλq

dt
iq + ω

(︁
λdiq − λqid

)︁
uqid − udiq =

dλd
dt

iq −
dλq

dt
id + ω

(︁
λdid + λqiq

)︁ (1.6)

Let us analyze each term individually. udid + uqiq represents the input
active power at the electrical terminals of the electric machine. R

(︁
i2d + i2q

)︁
are the stator winding Joule losses. dλd

dt id +
dλq
dt iq represents the change

in the stored magnetic energy in a unit of time. ω
(︁
λdiq − λqid

)︁
is the

output electromechanical power.
Now, looking at the reactive power balance, there is uqid− udiq, which

is the input reactive power. ω
(︁
λdid + λqiq

)︁
is the reactive power used to

keep the machine rotating magnetization. The last term is dλd
dt iq −

dλq
dt id,

and it requires some additional steps for the full comprehension.

dλd
dt

iq −
dλq

dt
id =

d(λdiq)
dt

−
d(λqid)

dt
− λd

diq

dt
+ λq

did
dt

=
d(λdiq − λqid)

dt⏞ ⏟⏟ ⏞
dTm

dt

−λd
diq

dt
+ λq

did
dt

So the first term of the last row is the derivative of the electromagnetic
torque, and it is somehow related to the torque ripple of the machine. It
is also very reasonable for the ripple to be associated with the reactive
power, since it has zero average torque and it causes only oscillations.
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M A G N E T I C M AT E R I A L S

All materials can be classified in terms of their magnetic behavior falling
into one of five categories, depending on their magnetic susceptibility.

The two most common types of magnetism are diamagnetism and
paramagnetism, which account for most of the periodic table of ele-
ments at room temperature (see Figure 2.1). These elements are usually
referred to as nonmagnetic, whereas those which are referred to as
magnetic are actually classified as ferromagnetic. The only other type
of magnetism observed in pure elements at room temperature is anti-
ferromagnetism. Finally, magnetic materials can also be classified as
ferrimagnetic although this is not observed in any pure element but
can only be found in compounds, such as the mixed oxides, known as
ferrites, from which ferrimagnetism derives its name (Rawlings, 2009).

When a field, H is applied to a material, it responds by producing
a magnetic field, called magnetization and referred to as M. This
magnetization is a measure of the magnetic moment per unit volume of
material. The applied field is the one that would be present if the field
were applied to a vacuum. However, due to magnetization, the total flux
of magnetic field lines is taken into account by the magnetic induction,
B, also called magnetic flux density. It counts exactly the magnetic flux
crossing a unit area of the material. The flux is produced by both the
external applied field and the internal reaction field. Therefore these
quantities are related through

B = µ0(H + M) (2.1)

Then the magnetic susceptibility, χm, can be defined, measuring this
reaction and identifying the type of magnetic material:

χm =
M
H

The other parameter which relates the magnetic induction and the
magnetic field is the permeability of the material

µ =
B
H

All these relationships are summarized in the following equations:

B = µH = µ0µrH = µ0H + J = µ0(H + M) = µ0(1 + χm)H (2.2)

where

µr =
µ

µ0
= χm + 1

and J is the magnetic polarization, also referred to as the intensity of
magnetization.

11
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Figure 2.1
Periodic table. Elements are classified according to their magnetic behavior.

2.1 ferromagnetic materials

Ferromagnetic materials are magnetic even without the external applied
field. They exhibit spontaneous magnetization as a result of the ordered
internal magnetic moments.

Ferromagnetism is only possible when atoms are arranged in a lat-
tice and the atomic magnetic moments can interact to align parallel to
each other. In 1907 Weiss postulated the presence of magnetic domains
within the material, which are regions where the atomic magnetic mo-
ments are aligned. The movement of these domains determines how
the material responds to a magnetic field. Consequently the susceptibil-
ity is a function of applied magnetic field and usually ferromagnetic

Table 2.1
Susceptibility reference value at room
temperature for each type of mag-
netic material (Rawlings, 2009).

Type of magnetism Susceptibility Example

Diamagnetism Small and negative Cu −0.77 · 10−6

Paramagnetism Small and positive Mn 66.10 · 10−6

Ferromagnetism Large and positive,
function of the ap-
plied field

Fe Up to ∼ 100 000

Antiferromagnetism Small and positive Cr

Ferrimagnetism Large and positive,
function of the ap-
plied field

Ba Ferrite Up to ∼ 3
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Figure 2.2
Example of a ferromagnetic material
B-H curve.

materials are compared in terms of saturation magnetization rather
than susceptibility.

In Figure 2.1 it can be seen that the only ferromagnetic materials at
room temperature are Iron, Cobalt and Nickel.

The relation between the magnetizing force H and the flux density or
magnetic induction B which it produces in a ferromagnetic material is
of considerable importance. It is most conveniently expressed by means
of characteristic curves.

For purposes of explanation, a ferromagnetic material is considered
to be placed in a region where the magnetic field intensity can be
varied. The magnetization force is varied through changing the current
in the coil. The material is originally demagnetized. If the flux density
is measured as a function of the magnetizing force, and the relation
is plotted, the first magnetization curve is obtained (the path 0-1 in
Figure 2.2).

This curve is sometimes referred to as the rising magnetization curve.
If H is now decreased, a different relation between B and H is found,
as is shown by the curve 1-2, which lies above the rising curve. A flux
density, given by the 1-2 on the plot, remains when H is made zero. This
flux density is called the remanence or remanent magnetism. To reduce
the flux density to zero, a magnetizing force 2-3 must be applied in
the direction opposite to that of the force formerly applied. For certain
conditions of magnetization, as discussed below, this magnetizing force
is called the coercive force.

As H becomes more negative until it reaches the minimum value, the
relation between B and H follows the curve 3-4. Then if H is increased
from the minimum value through 0, to the maximum value, the curve
follows a path such as 4-5-6-1.

The points does not coincide exactly after the first turns but, after
many cycles, the path becomes a closed loop.

So the values of B on the falling curve are greater than those on the
rising curve. Thus the material has the property of tending to oppose
a change in the value of the flux density. This property is known as
hysteresis, which is a term meaning a lagging behind. The obtained closed
loop is known as a hysteresis loop.

When the properties of different magnetic materials are compared,
some of the properties are denoted by special terms. Those of major
interest are:
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remanence is the flux density, or magnetic induction, which remains
in a magnetic material after the removal of an applied magnetizing
force

coercive force Hc for a magnetic material is the magnitude of the
magnetizing force at which the flux density is zero when the
material is being symmetrically magnetized

In many magnetic problems, the history of the material is unknown.
Many magnetic calculations are therefore performed using a magneti-
zation curve, called the normal magnetization curve, which is obtained by
drawing a single-valued curve through the tips of a series of increas-
ingly larger symmetrical hysteresis loops.

diamagnetic materials Diamagnetism is present in every mate-
rial but empty space. The materials opposes the external magnetic field.
Generally other magnetic properties hide it due to their greater effect.

paramagnetic materials Paramagnetic materials are nonmag-
netic without an applied field, while they are magnetic once the field is
applied. The susceptibility is positive but small.

2.2 permanent magnets

The sustained success of permanent-magnet use in industry was leaded
by the improved magnetic characteristics in terms of energy, remanence
and coercivity, which permitted marked reductions in motor framesize
for the same output compraed with motors using ferrite (ceramic) mag-
nets. However, ceramic magnets are considerably cheaper. Both ceramic
and NdFeB (Neodymium, Iron and Boron) magnets are sensitive to
temperature and special care must be taken in design for working tem-
perature above 100

◦C. For very high temperature applications Alnico
or rare-earth cobalt magnets must be used (Samarium-Cobalt is usable
up to 200

◦C or even more).
For lowest cost, ferrite or ceramic magnets are the universal choice.

This class of magnet materials has been steadily improved and is
now available with remanence of 0.38 T or more and almost straight
demagnetization characteristic throughout the second quadrant. The
temperature characteristics of ferrite magnets can be tailored to the
application requirements so that maximum performance is obtained at
the normal operating temperature, which may be as high as 100

◦C.

2.2.1 B-H loop and magnetization characteristic

The starting-point for understanding magnet characteristics is the B-H
loop or ‘hysteresis loop’, report in Figure 2.3(a). The x-axis measures
the magnetizing force or field intensity H in the material. The y-axis
is the magnetic flux-density in the material. An unmagnetized sample
has B = 0 and H = 0 and therefore starts out at the origin. If it is
subjected to a magnetic field, as for example in a magnetizing fixture
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Property Unit Alnico 5-7 Ceramic Sm2Co17 NdFeB

Br T 1.35 0.405 1.06 1.12

µ0 Hc T 0.074 0.37 0.94 1.06

(BH)max MGOe 7.5 3.84 26.0 30.0

µrec 1.9 1.1 1.03 1.1

Specific gravity 7.31 4.8 8.2 7.4

Resistivity µΩ cm 47 >1 · 104 86 150

Thermal expansion 10−6/◦C 11.3 13 9 3.4

Br temp. coeff. %/◦C −0.02 −0.2 −0.025 −0.1

Saturation H kOe 3.5 14.0 >40 >30

Table 2.2
Magnetic, mechanical and thermal
properties of magnetic materials
(Miller, 1989).

(an electromagnet with specially shaped pole pieces to focus flux into
the magnet), then B and H in the magnet will follow the curve OA as
the external ampere-turns are increased. If the external ampere-turns
are switched off, the magnet relaxes along AB. Its operating point
(H, B) will depend on the shape of the magnet and the permeance of
the surrounding ‘magnetic circuit’. If the magnet is surrounded by a
highly permeable magnetic circuit, that is, if it is ‘keepered’, then its
poles are effectively shorted together so that H = 0 and the flux-density
is then the value at point B, the remanence Br. The remanence is the
maximum flux-density that can be retained by the magnet at a specified
temperature after being magnetized to saturation. External ampere-
turns applied in the opposite direction cause the magnet’s operating
point to follow the curve from B through the second quadrant to C.

A hard PM material is one in which the hysteresis loop is straight
throughout the second quadrant, where the magnet normally operates
in service. In this case the recoil line is coincident with the second-
quadrant section of the hysteresis loop. This is characteristic of ceramic,
rare-earth/cobalt, and NdFeB magnets, and the recoil permeability is
usually between 1.0 and 1.1. Soft PM materials are those with a ‘knee’
in the second quadrant, such as Alnico. While Alnico magnets have
very high remanence and excellent mechanical and thermal properties,
they are limited in the demagnetizing field they can withstand. It
should be noted that compared with lamination steels even the soft PM
materials are very hard: in other words, the hysteresis loop of a typical
nonoriented electrical steel is very narrow compared with that of even
the Alnico magnets.

The most important part of the B-H loop is the second quadrant. This
is called the demagnetization curve. In the absence of externally applied
ampere-turns the magnet’s operating point is at the intersection of the
demagnetization curve and the load line, whose slope is the product of
µ0 and the permeance coefficient of the external circuit.

Recalling equation (2.2), the first term is the flux-density that would
exist if the magnet were removed and the magnetizing force remained
at the value H. Therefore the second term can be regarded as the
contribution of the magnet to the flux-density within its own volume.
Clearly if the demagnetization curve is straight, and if its relative slope
and therefore the recoil permeability are both unity, then J is constant.
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Figure 2.3
Permanent magnet characteristic B-
H curves (Miller, 1989).

(a) Example of a magnet B-H curve. (b) Example of a magnet second quadrant char-
acteristic with load lines.

In most hard magnets the recoil permeability is slightly greater than
1 and there is a slight decrease of J as the negative magnetizing force
increases, but this is reversible down to the ‘knee’ of the B-H loop
(which may be in either the second or the third quadrant, depending
on the material and its grade.

Evidently the magnet can recover or recoil back to its original flux-
density as long as the magnetization is constant. The coercive force
required to permanently demagnetize the magnet is called the intrinsic
coercivity and this is shown as HcJ .

Another parameter often calculated is the magnet energy product,
which is simply the product of B and H in the magnet. This is not the
actual stored magnet energy, which depends on the history or trajectory
by which the magnet arrived at its operating point and usually cannot
be calculated except under very artificial conditions. The energy product
is a measure of the stored energy but, more importantly, it gauges how
hard the magnet is working to provide flux against the demagnetizing
influence of the external circuit.

2.2.2 Temperature effects

2.2.2.1 High-temperature effects

Exposure to sufficiently high temperatures for long enough periods
produces metallurgical changes which may impair the ability of the
material to be magnetized and may even render it nonmagnetic. There
is also a temperature, called the Curie temperature, at which all magne-
tization is reduced to zero. After a magnet has been raised above the
Curie temperature it can be remagnetized to its prior condition pro-
vided that no metallurgical changes have taken place. The temperature
at which significant metallurgical changes begin is lower than the Curie
temperature in the case of the rare-earth/cobalt magnets, NdFeB, and
Alnico; but in ceramic ferrite magnets it is the other way round. There-
fore ceramic magnets can be safely demagnetized by heating them just
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above the Curie point for a short time. This is useful if it is required to
demagnetize them for handling or finishing purposes. Table 2.3 shows
these temperatures for some of the important magnets used in motors.

Metallurgical
change [◦C]

Curie
temperature [◦C]

Alnico 5 550 890

Ceramics 1080 450

SmCo5 300 700

Sm2Co17 350 800

NdFeB 200 310

Table 2.3
Metallurgical change and Curie tem-
perature.

2.2.2.2 Reversible losses

The B-H loop changes shape with temperature. Over a limited range the
changes are reversible and approximately linear, so that temperature
coefficients for the remanence and coercivity can be used. Table 2.4
gives some typical data.

Br Hc HcJ

Alnico 5-7 −0.02

Ceramics −0.19 0.20

SmCo5 −0.04 −0.25

Sm2Co17 −0.02 −0.20

NdFeB −0.11 −0.60

Table 2.4
Reversible temperature coefficients
[%/◦C].

Ceramic magnets have a positive coefficient of Hc, whereas the high-
energy magnets lose coercivity as temperature increases. In ceramic
magnets the knee in the demagnetization curve moves down towards
the third quadrant, and the permeance coefficient at the knee decreases.
Thus ceramic magnets become better able to resist demagnetization
as the temperature increases up to about 120

◦C. The greatest risk of
demagnetization is at low temperatures when the remanent flux den-
sity is high and the coercivity is low; in a motor, this results in the
highest short-circuit current when the magnet is least able to resist the
demagnetizing ampere-turns.

All the magnets lose remanence as temperature increases. For a
working temperature of 50

◦C above an ambient of 20
◦C, for instance, a

ceramic magnet will have lost about 10 per cent. This is spontaneously
recovered as the temperature falls back to ambient.

2.2.3 Simple magnetic circuits

Consider the example of Figure 2.4(a): let the iron be ideal, and let the
magnet and the gap have the same section area:

Sm = Sg = S
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Figure 2.4
Examples of simple magnetic circuits
and magnet characteristic.

(a) Simple magnetic circuit
with the inset of a PM.

(b) Simple magnetic circuit
with a PM and a coil.

PM
cu
rv
e

load

(c) Magnet characteristic
at load.

Then we can write⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Hm tm + Hg g = 0 Ampère’s Law

Bm Sm = Bg Sg Gauss’s Law

Bg = µ0 Hg

Bm = Brem + µrecµ0Hm magnet 2nd quadrant characteristic

Substituting the second and the third equations into the first one

Hm tm +
Bg

µ0
g = 0 =⇒ Bm = −µ0

tm

g
Hm

This equation expresses the load line of the magnetic circuit. Moving
on to the last equation of the system

Bm = Brem − µrecµ0
g

µ0tm
Bm

Bm =
Brem

1 + µrec
g

tm

(2.3)

So, through this equation, one can see the effect of changing the air-gap
length or the magnet thickness.

If we add a coil around the ferromagnetic core, like shown in Fig-
ure 2.4(b), Ampère’s Law becomes

Hm tm + Hg g = Nt I =⇒ Bm = −µ0
tm

g
Hm + µ0

Nt I
g

This causes a shift of the load line rightwards or leftwards, depending
on the sign of the current. A high-valued positive current could saturate
the iron while a negative one could demagnetize the magnet. It is impor-
tant to stay sufficiently far away from the knee of the demagnetization
curve.

2.2.4 Finite Element simulations of PM

As explained in Subsection 2.2.1 and shown in Figure 2.3(a), a hard
magnet characteristic is almost a straight line in the second quadrant.
This feature simplifies their simulation in Finite Element (FE) programs.

Typically, the magnet supplier makes available
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@20°C

(a) Demagnetization characteristic at
standard room temperature.

@120°C

(b) Demagnetization characteristic at
120
◦C.

Figure 2.5
Illustration of the effect of tempera-
ture on the demagnetization charac-
teristic of hard magnetic material.

• remanence at 20
◦C

• recoil permeability

• coercive field at 20
◦C

Furthermore, for simulations at a higher temperature, we also require:

• temperature coefficient for Brem

• temperature coefficient for HcJ

The recoil permeability could be obtained through

µrec =
Brem

µ0|HcB|

Thanks to the temperature coefficients, it is possible to get the residual
flux density B@T

rem and the coercive force H@T
cJ at the required temper-

ature T. Then the value of the coercivity to use for the FE program
is

H∗c =
−B@T

rem
µrecµ0

At this point, we have to verify where the knee of the curve is. If it is
below the x-axis (which means |H∗c | < |HcJ |), the coercivity H∗c can be
safely used. Otherwise, the magnet flux density should be checked in
order not to irreversibly damage the magnet. In fact, it has to be true

Bm > Bknee

where

Bknee = Brem + µrecµ0Hknee

2.3 losses in magnetic materials

The iron losses in the magnetic parts of rotating electrical machines are
also referred to as core losses or magnetic losses. They are generated by
the changing magnetic field in the stator and in the rotor cores. They
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are usually divided in two components: hysteresis and eddy currents
losses.

It should be kept in mind that the engineering approach of iron
loss separation into different loss types (hysteresis losses and eddy
current losses for example) and related models represents an empirical
approach which tries to separate the different physical influences due
to frequency and flux density variations in electromagnetic systems into
different components. However, it does not explain the real physical
phenomena of the iron losses directly. From a physical point of view,
both the hysteresis losses and the eddy current losses in the conducting
ferromagnetic materials are based on Joule heating. They are caused by
the same physical phenomena: every change in magnetization (which
also occurs at DC magnetization) is a movement of magnetic domain
walls and creates (microscopic and macroscopic) eddy currents which,
in turn, create Joule heating. The fact that hysteresis losses also arise at
almost zero frequency is due to the fact that even if the macroscopic
magnetization change is very slow, the local magnetization inside the
domains is changing rapidly and discrete in time, which generates eddy
current losses. Nevertheless, the loss separation shows in most cases
good correlation with measurements and has therefore its justification
in the engineering science.

2.3.1 Hysteresis losses

The hysteresis cycle explained in Section 2.1 causes an effective dissi-
pation of energy, called hysteresis loss, within the material when cyclic
variations of magnetizing force are considered. The area enclosed by
the hysteresis loop is equal to the energy loss density (expressed in
[J/m3]). The power loss density can be determined by

phy = f
∮︂

H(B)dB [W/m3]

where f is the frequency of the magnetic field H. From now on, the
subscript hy denotes the quantity related to hysteresis effect.

2.3.2 Eddy current losses

Eddy currents are created by the induced voltages in the conducting
magnetic materials due to the changing magnetic flux, leading to dy-
namic iron losses. These eddy currents counteract the variations (time
and direction) of the magnetic fields. They lead to a broadening of the
hysteresis curve and thus increase the magnetic coercivity Hc, as it can
be seen in Figure 2.6.

2.3.3 Measuring the iron losses

There are several international standards (e.g. IEC 60404-1, ASTM
A677 , etc.) describing magnetic materials for electrical machines. In
these standards, the materials are usually classified by their lamination
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Figure 2.6
B-H hysteresis curve of a ferromag-
netic material at 10 Hz (red) and
200 Hz (blue) (Krings, 2014).

Figure 2.7
Influencing factors of the manufac-
turing process of electrical machine
cores on the iron losses (Krings,
2014).

thickness and iron losses. The typical material M800-50A e.g. is a non-
oriented 0.5 mm thick lamination sheet with maximum iron losses of
8 W/kg at 1.5 T and 50 Hz sinusoidal flux density excitation. However,
these values are only the maximum guaranteed values of the iron losses.
Therefore, manufacturers provide often also typical average values in
their catalogues, which are closer to the real and expected values, and
thus more suitable to use in iron loss calculations.

However, the manufacturing process of the magnetic machine parts
is usually the main reason for discrepancies between the data sheet
values and measurement results of the final assembled machine.

The challenging point about determining the value of iron losses is
that it is not possible to measure them directly. Indirect thermal mea-
surements (inverse thermal models and calorimetric measurements),
magnetic field measurements (search coil windings, hall sensors, etc.)
or loss separation calculations (subtracting all known other losses from
the total losses) are the applied possibilities to determine indirectly iron
losses in ferromagnetic materials for electrical machines.

2.3.3.1 Mathematical formulation

The most used mathematical formulation of iron losses is an extension
of the classical Steinmetz equation, made by Jordan. One term depends
linearly on the variation of the frequency, the other one depends on the
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Table 2.5
Influence factors on SiFe steel sheets
properties (Krings, 2014).

Factor phy pec pex Js Hc

Grain size (+) − + −
Impurities (+) + − +

Thickness (t+) − + −
Internal stress (+) + +

Cutting/Punching process + −
Pressing process +

Welding process +

Alloy content (%Si+) − −

frequency squared. This means that the losses are separated into (static)
hysteresis losses and (dynamic) eddy current losses:

pFe = phy + pec = chy f B̂2
+ cec f 2B̂2 (2.4)

In Equation 2.4, chy and cec are the hysteresis and eddy currents coeffi-
cient, respectively. In Jordan’s approach, it is assumed that the hysteresis
losses are proportional to the hysteresis loop area of the material at low
frequencies ( f → 0 Hz).

One of the approaches to improve Equation 2.4 is to introduce an
additional loss term pex to take into account the excess losses as a
function of the flux density and frequency. It separates the iron loss
formula pFe into three terms, the static hysteresis losses phy, dynamic
eddy current losses pec, and the excess losses pex:

pFe = phy + pec + pex = ghy f B̂2
+ gec f 2B̂2

+ gex f 1.5B̂1.5 (2.5)

It has to be noted that the presented loss separation approaches
do not hold if the skin effect is not negligible, which means at high
frequency.

2.3.3.2 Determination of the coefficients

The Steinmetz formulation described by (2.4) needs only two coeffi-
cients to approximate the iron losses. And since both terms depends on
B2, we need to change the frequency to obtain the coefficients. So chy
and cec could be obtained in many ways, the two most common being
interpolation through two points and least squares method. Here, the
former is described. The data points may be obtained from the material
datasheet, or through experimental measurements on a sample of the
ferromagnetic material.

Let us pick two pairs of flux density and frequency (Bi, fi)i={1,2},
and their respective power loss density pi. The following system can be
written:{︄

p1 = chyB2
1 f1 + cecB2

1 f 2
1

p2 = chyB2
2 f2 + cecB2

2 f 2
2

(2.6)
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Since all the terms but chy, cec are known, this system can be solved
directly.

chy =
p1

B2
1 f1
− cec f1 [W/(kg T2 Hz)]

p2 = p1
B2

2
B2

1

f2

f1
− cecB2

2 f1 f2 + cecB2
2 f 2

2

cec =
p2 − p1

B2
2

B2
1

f2
f1

B2
2 f2( f2 − f1)

=
p2B2

1 f1 − p1B2
2 f2

B2
1 f1B2

2 f2( f2 − f1)
[W/(kg T2 Hz2)]

Alternatively, one cold use Bertotti’s formulation, shown in (2.5). In
this equation, gec is computed directly from the material properties,
according to1

gec =
π2t2

6ργ
[W/(kg T2 Hz2)] (2.7)

where t is the thickness of the lamination material, ρ is the material
electrical resistivity and γ is the material density. After that, only the
two coefficients ghy and gex are unknown, so a system of two equations
is needed, similarly to before. That is:

p1 = ghyB2
1 f1 + gecB2

1 f 2
1 + gexB1.5

1 f 1.5
1

p2 = ghyB2
2 f2 + gecB2

2 f 2
2 + gexB1.5

2 f 1.5
2

(2.8)

And so

gex =
p1 − ghyB2

1 f1 − gecB2
1 f 2

1

B1.5
1 f 1.5

1
[W/(kg T1.5 Hz1.5)]

p2 = ghyB2
2 f2 + gecB2

2 f 2
2 +

p1 − ghyB2
1 f1 − gecB2

1 f 2
1

B1.5
1 f 1.5

1
B1.5

2 f 1.5
2

p2

B2
2 f2

= ghy + gec f2 + p1
B−0.5

2 f 0.5
2

B1.5
1 f 1.5

1
− ghy

B2
1 f1B−0.5

2 f 0.5
2

B1.5
1 f 1.5

1
− gec

B2
1 f 2

1 B−0.5
2 f 0.5

2

B1.5
1 f 1.5

1

With some more algebraic steps

ghy

(︄
1−

B2
1 f1B−0.5

2 f 0.5
2

B1.5
1 f 1.5

1

)︄
=

p2

B2
2 f2
− p1

B−0.5
2 f 0.5

2

B1.5
1 f 1.5

1
− gec f2 + gec

B2
1 f 2

1 B−0.5
2 f 0.5

2

B1.5
1 f 1.5

1

ghy =

p2
B2

2 f2
− p1

B−0.5
2 f 0.5

2
B1.5

1 f 1.5
1

+ gec

(︃
B2

1 f 2
1 B−0.5

2 f 0.5
2

B1.5
1 f 1.5

1
− f2

)︃
1− B2

1 f1B−0.5
2 f 0.5

2
B1.5

1 f 1.5
1

[W/(kg T2 Hz)]

1 For the derivation of this coefficient, see Appendix D.
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M U LT I - O B J E C T I V E O P T I M I Z AT I O N

This chapter presents a very brief introduction to multi-objective opti-
mization algorithms, in particular focusing on the Differential Evolution
(DE) algorithm.

3.1 problem statement

The design of electric machines is an inverse problem, it is a synthesis.
These are among the most difficult problems to solve, because there is
no direct way to go through it. But all these kinds of problems can be
formulated in terms of minimizing an objective function:

min
x∈X

f (x)

Actually, we search for the value of x, within a certain interval X, which
gives the global minimum of the function f . So what we are really
looking forward to solve is

arg min
x∈X

f (x) (3.1)

Even though the problem is rather simple to state, there is actually
no meaning in minimum of a vector function, so when we have more
than one objective. And the variable x, is often a vector variable, so
a set of parameters (which may be diameters, lengths, number of
poles, et cetera). Then, the subspace (subdomain) X can be defined by
simple bounds, but also by some functional relationships among some
quantities. This is not such an uncommon thing, because often there
are some feasibility checks on dependent variables, such as the slot
opening width, or the yoke height, and so on. For all these reasons,
the most simple way to solve this problem is to employ an automatic
algorithm, namely an optimizer. In fact, global optimization has become
widespread in solving problems in many fields of science, engineering,
economics, and more. Many practical problems have objective functions
which are non-differentiable, non-continuous, non-linear, noisy, with
many local minima, et cetera. While this kind of problem are very
difficult to solve analytically, if not impossible, they can be quite easily
implemented into an optimization routine.

A very successful type of optimization algorithms is the evolutionary
algorithm class. This class tries to find the minimum of a function bor-
rowing ideas from natural evolution (reproduction, mutation, recombi-
nation and selection). Evolutionary algorithms belong to a broader class
of optimizers, called stochastic, where there is a substantial amount of
randomness in the search process. This family is set against the deter-
ministic algorithms. Among the stochastic optimization algorithms, we
may have (Cavazzuti, 2013):
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Figure 3.1
Flowchart of the optimization scheme
employed by the DE.

DE Mutation Recombination f (·) Selection Conv.? End
xk v u xk+1

• Simulated Annealing (SA): aims at emulating the annealing heat
treatment process of steel.

• Particle Swarm Optimization (PSO): aims at emulating the social
behavior of birds flocking.

• Game Theory–based Optimization (GT): aims at emulating the
evolution of a game in which different players try to fulfill their
own objectives. They are based on the game theory from Nash.

• Evolutionary Algorithms (EAs): aim at emulating the evolution
of species by natural selection according to Darwin’s theory. It is
the most important category of stochastic optimization together
with genetic algorithms.

• Genetic Algorithms (GAs): alike EAs, aim at emulating the evo-
lution of species. For this reason at times they are considered a
subcategory of EAs. However, EAs and GAs, in practice, have
different approaches to the emulation of evolution and can also
be considered two different categories of stochastic optimization
algorithms.

The source of inspiration of many randomized search methods comes
from the observation of nature. Concepts from biology, physics, geology,
or some other field of investigation, are borrowed and implemented in
a simplified model of some natural phenomena. Most of these meth-
ods are population-based algorithms, in which a set of initial samples
evolves (or moves) up to convergence. Stochastic optimization meth-
ods are the most innovative and advanced approaches to optimization.
Compared to deterministic optimization methods, they have both ad-
vantages and drawbacks (Cavazzuti, 2013):

• simpler mathematical background

• randomness included in the algorithm

• slower convergence towards the optimum

• wider search in the design space, so less chance to get stuck at a
local minimum

• adaptable to any kind of function

One of the most effective optimization algorithm for engineering
problems is the DE. The flowchart of the optimization scheme is re-
ported in Figure 3.1. Its algorithm works through three basic principles:

1. mutation: expands the search space

2. recombination: reuses previously successful individuals

3. selection: mimics survival-of-the-fittest
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3.1.1 Mutation

There may be many ways to perform mutation on an individual, and
here are some examples:

• DE/rand/1 vi = xr1 + F(xr2 − xr3)

• DE/best/1 vi = xbest + F(xr2 − xr3)

• DE/rand2best/1 vi = xr1 + F1(xr2 − xr3) + F2(xbest − xr1)

• DE/curr2best/1 vi = xi + F1(xr2 − xr3) + F2(xbest − xi)

• DE/rand/2 vi = xr1 + F(xr2 − xr3 + xr4 − xr5)

• DE/best/2 vi = xbest + F(xr2 − xr3 + xr4 − xr5)

• . . .

What is common among these techniques is that we add one (or more)
difference vector(s) to a base individual in order to move the individual
and explore more the design space. xi is the ith individual of the current
population. After a mutation happens, we have a new individual re-
ferred to as v, called donor. The factors Fx are called mutation factors,
and they can be constants chosen at the beginning of the optimization,
or they can change their value during the optimization run, either
deterministically (according to a certain law) or stochastically (included
among the optimization parameters).

3.1.2 Recombination

The recombination step mixes successful individuals from the previous
generation with current donors, to try to keep the best features.

ui,j =

{︄
vi,j if randi,j ≤ CR ∨ j = irand

xi,j otherwise
(3.2)

The individual ui is called trial, CR is the crossover ratio, and with j we
are referring to the jth parameter of the considered individual.

3.1.3 Selection

The selection block is what makes the DE really effective, since it mimics
a “greedy” natural selection where only the fittest can “survive”. In
fact, the objective function is evaluated on the trials and, if the objective
value results better than the previous generation individual, the trial
survives and becomes the new generation individual. Mathematically,
it translated to:

xk+1
i =

{︄
uk

i if f (uk
i ) < f (xk

i )

xk
i otherwise

(3.3)
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3.2 missing pieces

There are a lot of other missing details which have not been described in
this chapter and are essential to perform a proper optimization, though.
Nonetheless, they are out of scope of the thesis, so in the following
there will be only a brief reference to these aspects.

• how to choose the population size?

• how to choose the total number of generations?

• how to choose the mutation factor and the crossover ratio?

• which is the best mutation strategy?

• how to deal with stagnation?

• how to handle constraints?

• how to deal with multi-objective optimization?

Some possible enhancements:

• asynchronous strategy: use good solutions immediately without
waiting for the next generation to be created

• elitism: compare trial not only with target, but also with the worst
individual, therefore keeping the most promising

• coevolution: use several populations, each working on a different
subset of the design space

Some of these items are explained and developed in (Storn et al., 1997;
Cavazzuti, 2013; Narzisi, 2008), where a more thorough bibliographic
section is also present.

Some applications and recent advancements about optimization in
electric machine can be found in (Bramerdorfer et al., 2018; Mohammadi,
2015).
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F L U I D : F R E E F L U I D F L U X - B A R R I E R S R O T O R F O R
S Y N C H R O N O U S R E L U C TA N C E M O T O R D R AW I N G

The work done in this chapter can be cited if it has been used in a
project or in a program (Bacco, 2018).1

The goal of this chapter is to provide a ready-to-use fully parametric
drawing of the Synchronous Reluctance rotor with fluid flux-barriers.

requirements

Matlab or Octave or Python (NumPy + SciPy) to compute the points.
The points calculation is general, so it could be implemented in any
language, but Matlab/Octave were chosen here.

The calculation can bo ported to any Computer-Aided Design (CAD)
engine or FEA software.

4.1 files needed

For Matlab/Octave, the files needed for the computation are
calc_fluid_barrier.m, GetFSolveOptions.m, isOctave.m

while for Python it is
fluid_functions.py.

4.2 how to use

Open the file fluid and run it.
Change the machine data in the data section. All the variables have a

comment next to them.
There are some “hidden” options which should be explained.

1. personal flux-barrier angles can be provided, or the program will
compute them. This means that flux-barrier thicknesses and flux-
carrier widths must always be provided. Optionally, the electrical
flux-barrier angles can also be provided.

1 rotor.barrier_angles_el = [14,26,38]*2;

2. if the program computes them, they will result the average of the
final points C′ and D′ at the rotor periphery. Alternatively, some
weights can be defined which determine how close E should be
to C′ or D′.

rotor.barrier_end_wf = [20,50,80]/100;

1 Giacomo Bacco (2018). fluid: Free Fluid Flux-Barriers Rotor for Synchronous Reluctance Motor
Drawing. doi: 10.5281/zenodo.1214465. url: https://github.com/gbacco5/fluid
(visited on 05/11/2019)
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3. by default, the flux-barrier-end is round, so the code solves an
additional system to determine the correct locations of the fillet
points. Such system can be skipped declaring

rotor.barrier_end = ’rect’;

and so selecting “rectangular” flux-barrier-end.

4. the inner radial iron ribs are optional, but you are free to provide
different widths can be provided for every flux-barrier.

rotor.wrib = [1,2,4]*mm;

5. if you also input magnet widths, the rib is automatically enlarged
to accommodate the magnet, similarly to an IPM (Interior Perma-
nent Magnet) machine.

rotor.wm = [10,20,40]*mm;

In this case, the output structure barrier also contains the loca-
tion of the magnet base center point.

4.3 examples

Here are some finished examples based on the output. The drawings
are for demonstration purposes only.
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χ

η

ρ0

ρ
ξ

Figure 4.1
Sketch of fluid flow past a cylinder.

4.4 theory

4.4.1 Flow past a cylinder

Let ρ0 be the radius of the cylinder, (ρ, ξ) the polar coordinate system
in use (Figure 4.1). One possible solution of this problem have these
potential and streamline functions:

ϕ(ρ, ξ) =

(︄
ρ +

ρ2
0

ρ

)︄
cos ξ (4.1)

ψ(ρ, ξ) =

(︄
ρ−

ρ2
0

ρ

)︄
sin ξ (4.2)

Although these equations are deeply coupled, the radius ρ and the
phase ξ can be obtained as a function of the other quantities. For our
purposes, we use ψ.

ρ(ψ, ξ) =
ψ +

√︂
ψ2 + 4ρ2

0 sin2 ξ

2 sin ξ

ξ(ψ, ρ) = arcsin

(︄
ρ ψ

ρ2 − ρ2
0

)︄

The velocity field can also be derived through

vρ(ρ, ξ) =
∂ϕ

∂ρ
=

(︄
1−

ρ2
0

ρ2

)︄
cos ξ

vξ(ρ, ξ) =
1
ρ

∂ϕ

∂ξ
= −

(︄
1 +

ρ2
0

ρ2

)︄
sin ξ
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4.4.2 Conformal mapping

From the reference plane, which is equivalent to a two-pole machine,
we use a complex map to obtain the quantities in the actual plane. Let
p be the number of pole pairs. Then:

ζ
M−−→ z = p

√︁
ζ

ρ ejξ M−−→ r ejϑ = p
√

ρ ejξ/p

χ + jη M−−→ x + jy

It is easy to find the inverse map:

M : p
√
· M−1 : (.)p

In the transformed plane, the velocities have a different expression:

vr(r, ϑ) =
∂ϕ

∂r
=

∂ϕ

∂ρ

∂ρ

∂r
= p

(︄
rp−1 −

R2p
0

rp+1

)︄
cos pϑ

vϑ(r, ϑ) =
1
r

∂ϕ

∂θ
=

1
r

∂ϕ

∂ρ

∂ρ

∂θ
= −p

(︄
rp−1 +

R2p
0

rp+1

)︄
sin pϑ

(4.3)

This vector field is tangent to the streamlines in every point in the
transformed plane. In order to work with this field in (x, y) coordinates,
we need a rotational map:

vx(r, ϑ) = vr cos ϑ− vϑ sin ϑ

vy(r, ϑ) = vr sin ϑ + vϑ cos ϑ
(4.4)

4.4.3 Computation of flux-barrier base points

Refer to Figure 4.2 for the points naming scheme. Keep in mind that
A′ is not simply the projection of A onto the q-axis, but it represents
the original starting point for the barrier sideline, so it lies on the
flux-barrier streamline. The same is true for points B′,B, C′,C, and
D′,D.

Let the flux-barrier and flux-carrier thicknesses and widths be given.
Then the base points for the flux-barriers can be computed easily. Let
Dr be the rotor outer diameter, wrib,t the tangential iron rib width, wck
the kth flux-carrier width, and tbk the kth flux-barrier thickness.2 Then

Rrib =
Dr

2
− wrib,t

RA′1
= Rrib − wc1

RB′1
= RA′1

− tb1

...

2 The main dimensions of the flux-carrier and flux-barrier differ in the names (width versus
thickness). This is because we refer to width when the flux flows perpendicularly to the
dimension, and to thickness when it flows in parallel.
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B'

Figure 4.2
Flux-barrier base points description.

where R represents the radius from the origin. So, in general:

RA′k
= RB′k−1

− wck

RB′k
= RA′k−1

− tbk

with the exception RB′0
= Rrib.

Now we know both the radii and the angle—always π/(2p)—of
the flux-barrier internal points. So we can compute their respective
streamline value.

4.4.3.1 Magnet insertion

wrib,k ← wrib,k + wpm,k

where wpm,k is the kth magnet width.

4.4.3.2 Central base points

We refer to points A and B. If the rib width is zero A ≡ A′ and B ≡ B′.
The line describing the q-axis is

y = mx + q

m = tan
π

2p

q =
wrib

2 cos π
2p

and the following system can be set up to find point A⎧⎪⎨⎪⎩
yA −mxA − q = 0

xA − rA(ψA′ , ϑA) cos ϑA = 0

yA − rA(ψA′ , ϑA) sin ϑA = 0

where ϑA is used as the third degree of freedom and rA is then a
function of it. The solution of such system can be determined solving
the single equation

rA(ψA′ , ϑA)
(︁
sin ϑA −m cos ϑA

)︁
− q = 0
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in the unknown ϑA. The function r(ψ, ϑ) is simply

r(ψ, ϑ) = p
√︂

ρ(ψ, ϑ/p)
)︁

The same equation can be written for point B with the proper substi-
tutions and repeated for all the flux-barriers.

4.4.4 Outer base points

We refer to points C, D, and E of Figure 4.2. If the flux-barrier angle, ϑb,
is given, then

xE = Rrib cos( π
2p − ϑb)

yE = Rrib sin( π
2p − ϑb)

Points C and D results from the connection of the flux-barrier sidelines
and point E. This connection should be as smooth as possible in order
to avoid dangerous mechanical stress concentrations. We are going to
use circular arcs to make this connection. So we impose the tangency
between the flux-barrier sideline and the arc, between the arc and the
radius through point E. The tangent to the sideline can be obtained
through the velocity field described with (4.3) and (4.4).

Then we want point C to lay on the flux-barrier sideline. These
conditions represent a nonlinear system of 4 equations, in 6 unknowns.
So we need two more equations, which are that points C and E belong
to the fillet circle with radius R.3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xC − rC(ψC, ϑC) cos ϑC = 0

yC − rC(ψC, ϑC) sin ϑC = 0

(xC − xOC
)2 + (yC − yOC

)2 − R2
EC = 0

(xE − xOC
)2 + (yE − yOC

)2 − R2
EC = 0

(xOC
− xE)yE − (yOC

− yE)xE = 0

(xOC
− xC)vx(rC, ϑC) + (yOC

− yC)vy(rC, ϑC) = 0

The very same system can be written and solved for point D.

4.4.4.1 Choice of initial position

For the good convergence of the nonlinear system, we have to choose a
proper initial position for the points of interest, namely C and OC for
the top part of the flux-barrier.

Since point C should be close to E and C′, a good initial guess could
be

xC(0) =
xE + xC′

2
, yC(0) =

yE + yC′
2

A slightly better guess shifts the points a bit to the left, in this way:

xC(0) =
xE + xC′ + 0.1xA

2.1
, yC(0) =

yE + yC′
2

3 Actually a system of 5 equations and 5 unknowns may be written but the simpler solution
was preferred.
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On the other hand, point OC lies on one edge of the triangle of
vertices E,C,O, where O represents the origin and where we are going
to use C(0) instead of C because it is still unknown. Then:

x(0)OC
=

xE + xC(0) + 0
3

, y(0)OC
=

yE + yC(0) + 0
3

Similar considerations can be made for point D, with slight changes:

xD(0) =
xE + xD′

2
, yD(0) =

yE + yD′
2

x(0)OD
=

xE + xD(0) + xC
3

, y(0)OD
=

yE + yD(0) + xC
3

Notice that here we use point C which has already been found.

4.4.5 Flux-barrier sideline points

Let us consider the top flux-barrier sideline, so the one going from point
A to point C. We want to create such sideline using a predetermined
number of steps, Nstep. From now on, let us call this Nk for the kth

flux-barrier.
One of the best way to distribute the points along the streamline is to

use the potential function, ϕ, defined in (4.1). We start computing the
potential for points A and C:

ϕA = ϕ(ρA, ξA)

ϕC = ϕ(ρC, ξC)

Then, we want to find N− 1 points along the streamline between points
A and C with a uniform distribution of the potential function. We define

∆ϕAC =
ϕC − ϕA

N

So we can compute the potentials we are looking for

ϕi = ϕA + i∆ϕAC , i = 1, . . . , N − 1

and finally the location of the point with this potential value and the
streamline function value required to lie on the flux-barrier sideline.
This translates to the following system of equations:{︄

ψAC − ψ(ρ, ξ) = 0

ϕi − ϕ(ρ, ξ) = 0

The system is well-defined because there are two unknowns and two
independent equations. This system must be solved for every flux-
barrier sideline point, for the two sides, and for every flux-barrier.4

4 In Matlab/Octave, the “for every flux-barrier sideline point” loop has been vectorized,
while the two sides has been manually split.
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Figure 4.3
Example of the Matlab/Octave out-
put plot.
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4.4.6 Output

The output of the computation function in Matlab/Octave is one vector
of structures (barrier(:)) which contains at least two fields (X and Y).
The X vector is made in this way:

X =

⎡⎣xE xOC
xC xACNstep−1

· · · xAC1
xA ↘

xB xBD1
· · · xBDNstep−1

xD xOD
xE

⎤⎦T

and similarly the Y vector. So the points are ordered starting from the
point E and then moving counter-clockwise until E is reached again.

4.4.7 Example of Matlab/Octave plot

Figure 4.3 reports an example of a Matlab/Octave output plot. The
V-shaped lines represent the radii of the fillet arcs.
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A N O N L I N E A R A N A LY T I C A L M O D E L F O R T H E
R A P I D P R E D I C T I O N O F T H E T O R Q U E O F
S Y N C H R O N O U S R E L U C TA N C E M A C H I N E S

This chapter presents a nonlinear analytical model of the synchronous
reluctance machine, used to derive both average and torque harmonics
as a function of the rotor geometry.

At first, the model with linear B-H characteristic is described. Then
the model is extended to include the saturation of some parts of the
machine. Conversely to previous models, the saturation is taken into
account following all the main flux lines paths inside the machine.
Then a proper saturation coefficient is assigned to each of this path and
applied at the air-gap. The analytical model proves to be fast and fairly
accurate in any calculation. Therefore it is quick and easy to obtain the
behavior of the average torque and torque ripple as a function of the
rotor flux-barrier geometry. The result is presented using maps, which
are essential for finding a proper combination of barrier angles that
gives maximum average torque and minimum torque ripple. The torque
maps are compared with those obtained from both linear analytical
and finite element models. The maps computed analytically show good
agreement with those derived by means of finite element analysis, and
they are obtained in a much smaller computational time.

5.1 development of the analytical model

Suppose to distribute a single-turn, non-chorded infinitesimal coil
inside the slots of a given stator lamination stack (Figure 5.1). The
conductor distribution function is equal to

nd(ϑ
e) = n̂

[︂
δ
(︁
ϑe − π

2
)︁
− δ
(︁
ϑe − π

2 − π
)︁]︂

, ϑe ∈ [0, 2π]

where δ(.) is the Dirac delta impulse and ϑe is the electrical angular
coordinate whose origin is along the magnetic axis of this coil.

It has to result one conductor from the integration of nd in one
semi-period1∫︂ π

0
nd(ϑ

e)Ds
2 dϑe =

∫︂ π

0
n̂ δ
(︁
ϑe − π

2
)︁Ds

2 dϑe = 1 =⇒ n̂ = 2
Ds

so

nd(ϑ
e) =

2
Ds

[︂
δ
(︁
ϑe − π

2
)︁
− δ
(︁
ϑe − π

2 − π
)︁]︂

(5.1)

1 Remember that the integral of the Dirac delta function is 1 and the property∫︂
R

δ(aτ) dτ =
1
|a|

39
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Figure 5.1
Sketch of a stator lamination with
one infinitesimal coil and relative con-
ductor distribution function plot.
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where the value 2 represents the total number of conductors in one
electrical period. Note that this result is valid for any number of poles
and conductors. In fact defining

nd(ϑ) =
Ns

Ds

[︂
δ
(︁

pϑ− π
2
)︁
− δ
(︁

pϑ− π
2 − π

)︁]︂
, ϑ ∈

[︂
0, 2π

p

]︂
(5.2)

and integrating over a mechanical semi-period, it results∫︂ π/p

0

Ns

Ds
δ
(︁

pϑ− π
2
)︁Ds

2
dϑ =

NsDs

2pDs
=

Ns

2p

which is exactly the number of series conductors per phase in one pole.
Note that Equations (5.1),(5.2) represent just the first pole pair, so they
have to be repeated through the operator

repT{g(t)} =
+∞

∑
k=−∞

g(t− kT)

Then

nd(ϑ
e) =

2
Ds

rep2π

[︂
δ
(︁
ϑe − π

2
)︁
− δ
(︁
ϑe − π

2 − π
)︁]︂

(5.3)

The conductor distribution function (5.3) is now periodic, odd and
owns half-wave symmetry, so its Fourier series coefficients are

bk =
1
π

∫︂ 2π

0
nd(ϑ

e) sin kϑe dϑe

=
2
π

∫︂ π

0

2
Ds

δ
(︁
ϑe − π

2
)︁

sin kϑe dϑe

=
4

πDs
sin k π

2

and the series is

nd(ϑ
e) =

4
πDs

+∞

∑
k=1

k odd

sin k π
2 sin kϑe
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Similarly, it can be written the conductor distribution function for the
other phases, specifically b and c for a three-phase machine.

nda(ϑ
e) =

4
πDs

∑
k

sin k π
2 sin kϑe

ndb(ϑ
e) =

4
πDs

∑
k

sin k π
2 sin k

(︁
ϑe − 2π

3
)︁

ndc(ϑ
e) =

4
πDs

∑
k

sin k π
2 sin k

(︁
ϑe − 4π

3
)︁

Usually these windings are fed by a system of symmetric sinusoidal
currents

ia(t) = Î cos
(︁
ωt + αe

i
)︁

ib(t) = Î cos
(︁
ωt + αe

i − 2π
3
)︁

ic(t) = Î cos
(︁
ωt + αe

i − 4π
3
)︁

such that the electric loading of the machine is

Ks(ϑ
e, t) = nda(ϑ

e)ia(t) + ndb(ϑ
e)ib(t) + ndc(ϑ

e)ic(t)

The sinusoidal functions products result in

sin kϑe cos
(︁
ωt + αe

i
)︁

+ sin k
(︁
ϑe − 2π

3
)︁

cos
(︁
ωt + αe

i − 2π
3
)︁

+ sin k
(︁
ϑe − 4π

3
)︁

cos
(︁
ωt + αe

i − 4π
3
)︁
=

= sin kϑe cos
(︁
ωt + αe

i
)︁

+
(︂

sin kϑe cos k 2π
3 − cos kϑe sin k 2π

3

)︂
·
(︂

cos(ωt + αe
i ) cos 2π

3 + sin(ωt + αe
i ) sin 2π

3

)︂
+
(︂

sin kϑe cos k 4π
3 − cos kϑe sin k 4π

3

)︂
·
(︂

cos(ωt + αe
i ) cos 4π

3 + sin(ωt + αe
i ) sin 4π

3

)︂
= sin νϑe cos

(︁
ωt + αe

i
)︁

+ 1
2 sin νϑe cos

(︁
ωt + αe

i
)︁
− 3

2 cos νϑe sin
(︁
ωt + αe

i
)︁

where ν = 6k + 1, k ∈ Z (see Appendix A for further insights). The
final result is

Ks(ϑ
e
s , t) =

6
πDs

Î
∞

∑
ν=6k+1

k∈Z

sin ν π
2 sin

(︁
νϑe

s −ωt− αe
i
)︁

where ϑe
s is the electrical angular coordinate fixed with the stator and

with the origin on the magnetic axis of the first phase (a). Now it is pos-
sible to substitute the previous single-turn winding (with 2 conductors)
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with the single-coil equivalent winding of a distributed and chorded
one. This equivalent winding has Ns series conductors per phase and
its winding factor is kν

w. Then it is possible to define

K̂s =
3Ns Î
πDs

and

Kν = kν
w K̂s sin ν π

2 =
3 Î kν

wNs

πDs
sin ν π

2

so the electric loading of a symmetric three-phase winding is (Bianchi
et al., 2009b; Bianchi et al., 2007; Barcaro, 2011):

Ks(ϑs, t) =
∞

∑
ν=6k+1

k∈Z

Kν sin
(︁
νpϑs −ωt− αe

i
)︁

(5.4)

This is the starting point of the following analysis thanks to the fact
that (5.4) contains all the harmonics generated by the discretized wind-
ing.

5.2 analytical model

The analytical model considers SyR machines with transversally lam-
inated rotor. Furthermore, only integral-slot winding are considered.
The electric loading of a symmetric three-phase distributed winding is:

Ks(ϑs, ϑm) =
∞

∑
ν=6k+1

k∈Z

K̂ν sin
(︁
νpϑs − pϑm − αe

i
)︁

(5.5)

where ν is the space harmonic order whose value belong to the set
{1,−5, 7,−11, 13, . . .}, K̂ν is the amplitude of the electric loading ν-th
harmonic, p is the number of pole pairs, ϑs is the angular coordinate
fixed to the stator, ϑm is the rotor angular position, and αe

i is the current
electric angle. It is worth noticing that (5.5) reproduces every space
harmonic generated by the discretized winding.

The electric loading gives rise to the stator magnetic scalar potential,
which is simply its integral, given by

Us(ϑs, ϑm) =
∫︂
Ks(ϑs, ϑm)

Ds

2
dϑs (5.6)

where Ds is the stator diameter at the air-gap. For a three-phase machine
it is

Us(ϑs, ϑm) = −Ds

2 ∑
ν=6k+1

k∈Z

K̂ν

pν
cos(νpϑs − pϑm − αe

i ) (5.7)

Similarly, the rotor magnetic scalar potential, which reacts to the
stator potential, can also be expressed by means of its Fourier series
expansion

Ur(ϑr, t) =
+∞

∑
ξ=1

Ûξ sin(ξ pϑr) (5.8)
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Figure 5.2
Sketch of a SyR motor with two flux-
barriers per pole together with the
reference axes and the barrier angle
quotes. The colored area on top of
the flux-barriers represents the rotor
magnetic scalar potential distribution
for half the machine.

It is different from zero when the flux flows in the q-axis direction,
crossing the flux-barriers. The rotor magnetic scalar potentials and the
rotor barrier angles are grouped in vectors:

ur = {Ur1, Ur2, . . . , Urn}T , (5.9)

ϑb = {ϑb1, ϑb2, . . . , ϑbn}T (5.10)

A quasi-diagonal matrix G can be built, given by

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1

+1 −1
. . . . . .

+1 −1

+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.11)

with +1 in the main diagonal and −1 in the second right-hand diagonal,
such that

Ûξ =
4

πξ
sin
(︁
ξ π

2
)︁ [︁

sin(ξ pϑT
b)Gur

]︁
(5.12)

where sin(ξϑT
b) is a row vector of sines, Gur is the product of the matrix

(5.11) and the vector ur, defined in (5.9). The magnetic potentials of the
islands can be calculated as the solution of the magnetic circuit shown
in Figure 5.3.

5.3 rotor magnetic potentials computation

Figure 5.3 represents the magnetic circuit of a SyR motor with Nb flux
barriers. There are Nb nodes, each one at its own magnetic potential Urj.
The mmf generators are defined between two distinct barrier angles,
and so are their reluctances. The remaining reluctances are the barriers’
one.



44 analytical model for synchronous reluctance machines

Figure 5.3
Magnetic circuit of one pole of the ro-
tor of a SyR machine. Circled labels
represent nodes while underlined la-
bels represent edges of the circuit.
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The first Nb + 1 edges connects node 0 to the nodes of the islands, so
the partial incidence matrix is

A′ =

1 2 · · · Nb Nb+1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+1 +1 · · · +1 +1 0

−1 1

−1 2

. . .
...

−1 Nb

−1 Nb+1

In these edges there are non-ideal (real) mmf generator, so an ideal
generator in series with a reluctance. In the following Nb + 1 nodes
there are the very same elements and structure, so the matrix A′ is
repeated.

The last part of the incidence matrix connects the following nodes
between flux barrier reluctances, so it is the path followed by the flux
that crosses all the barriers.

A′′ =

2Nb+3 2Nb+4 · · · 3Nb+1 3Nb+2⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
+1 1

−1 +1 2
...

. . .
...

...
−1 +1 Nb

−1 Nb+1
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Ac =

⎡⎣A′(Nb+2,Nb+1) A′(Nb+2,Nb+1)

0(1,Nb)

A′′(Nb+1,Nb)

⎤⎦
This is the scheme of the incidence matrix. To obtain the reduced

one, we drop the first and last rows, the ones at “ground” potential.
The remaining nodes are located inside the rotor island. Note that
some columns are filled with zeros now, and they are the extreme
edges corresponding to the main channel. This means that they are not
dependent on the quantities of the grid and their fluxes can be solved
immediately. Thanks to the order of construction, active components
are present only in the first 2Nb + 2 edges; the rest of the circuit is made
of passive components. So the circuit can be solved with the tableau
method, which is (Chua et al., 1987)⎡⎢⎢⎣A 0 0

0 −I AT

R G 0

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

M

·

⎛⎜⎜⎝φ

ψ

u

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

x

=

⎛⎜⎜⎝0

0

s

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

g

(5.13)

5.3.1 Reluctance of the flux barriers

The reluctance of the H-th flux barrier is given by

RbH =
tbH

µ0Lstk lbH

5.3.2 Reluctance of partial air-gap

There are 2Nb + 2 reluctances in front of each generator, representing
part of the air-gap reluctance

RgH =
2g

µ0LstkDs
[︁
ϑbH − ϑb(H − 1)

]︁
5.3.3 mmf generator expression

The first mmf generator comprehends the angles between
(︁

π
2 − ϑe

b1

)︁
and π

2 .

f1 =
1

ϑe
b1

∫︂ π
2

π
2 −ϑe

b1

Us(ϑ
e
r ) dϑe

r

= −∑
ν,k

KνDs

2pϑe
b1 ν2

[︂
sin λν

(︁
1− cos νϑe

b1) + cos λν sin νϑe
b1

]︂
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In general, given θH and θH−1:2

fH =
1

θH − θH−1

∫︂ π
2 −θH−1

π
2 −θH

Us(ϑ
e
r ) dϑe

r

=
−1

θH − θH−1
∑
ν,k

KνDs

2pν2

[︂
sin λν

(︁
cos νθH−1 − cos νθH

)︁
− cos λν

(︁
sin νθH−1 − sin νθH

)︁]︂
Vice versa, for the other half pole, it results

fH =
1

θH − θH−1

∫︂ π
2 +θH

π
2 +θH−1

Us(ϑ
e
r ) dϑe

r

=
−1

θH − θH−1
∑
ν,k

KνDs

2pν2

[︂
sin λν

(︁
cos νθH − cos νθH−1

)︁
+ cos λν

(︁
sin νθH − sin νθH−1

)︁]︂
5.3.4 Air-gap flux density

The stator magnetic scalar potential, given in (5.7), can be expressed in
the rotor reference frame. Since

ϑs = ϑr + ϑm

it results in

Us(ϑr, ϑm) = − ∑
ν=6k+1

k∈Z

K̂νDs

2pν
cos
[︁
νpϑr + (ν− 1)pϑm − αe

i
]︁

It is split using sine and cosine as:

Us(ϑr, ϑm) = − ∑
ν=6k+1

k∈Z

K̂νDs

2pν

[︂
cos(νpϑr) cos

(︁
(ν− 1)pϑm − αe

i
)︁
+

− sin(νpϑr) sin
(︁
(ν− 1)pϑm − αe

i
)︁]︂ (5.14)

Ur(ϑr, ϑm) also contains harmonics multiple of three and they can be
grouped apart. Then, it is easy to verify that Ur is an even function with
respect to the harmonic order ξ, so positive or negative indexes can be
used indifferently.

Ur(ϑr, ϑm) = ∑
ν=6k+1

k∈Z

Ûν sin(νpϑr) + ∑
µ=6h+3

h∈Z+

Ûµ sin(µpϑr) (5.15)

The air-gap flux density can be expressed as the difference of the two
magnetic scalar potentials (Bianchi et al., 2009b; Bianchi, 2006):

Bg(ϑr, ϑm) = µ0
−Us(ϑr, ϑm) + Ur(ϑr, ϑm)

g
(5.16)

2 For convenience of notation, let θH = ϑe
bH .
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Air-gap flux density and magnetic
scalar potentials of a 2-barrier SyR
machine without saturation at t = 0.

Introducing (5.14) and (5.15) in (5.16), the air-gap flux density results in

Bg = ∑
ν=6k+1

k∈Z

µ0Ds K̂ν

2gp ν

[︃ stator even part⏟ ⏞⏞ ⏟
cos
(︁
(ν− 1)ωt− αe

i
)︁

cos(νpϑr)

− sin
(︁
(ν− 1)ωt− αe

i ) sin(νpϑr)⏞ ⏟⏟ ⏞
stator odd part

]︃
+

+ ∑
ν=6k+1

k∈Z

µ0

gν
νÛν sin(νpϑr)

⏞ ⏟⏟ ⏞
rotor without triplen harmonics

+ ∑
µ=6h+3

h∈Z+

µ0

gµ
µÛµ sin(µpϑr)

⏞ ⏟⏟ ⏞
rotor triplen harmonics

and reordering

Bg(ϑr, ϑm) =∑
ν

[︃
αν

ν
cos(νpϑr) +

βν

ν
sin(νpϑr)

]︃
+

+∑
µ

γµ

µ
sin(µpϑr)

(5.17)

where αν, βν derives from the coefficients which multiply the cosine
and sine functions under the summations in ν, while γµ = µ0µÛµ/g.

An example of the magnetic potentials and the flux density is re-
ported in Figure 5.4.

5.3.5 Torque derivation

The torque is obtained integrating the Lorentz’s force density KsBg,
both function of ϑr and ϑm, along the air-gap surface and multiplying
the result by the lever-arm Ds/2 (Bianchi et al., 2009b):

Tm(ϑm) = −Ds

2

∫︂ 2π

0
Bg(ϑr, ϑm)Ks(ϑr, ϑm)

DsLstk
2

dϑr

Remembering (5.16), it can be derived

Tm =
µ0D2

s Lstk
4g

[︃∫︂ 2π

0
UsKs dϑr⏞ ⏟⏟ ⏞

A

−
∫︂ 2π

0
UrKs dϑr⏞ ⏟⏟ ⏞

B

]︃
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The first integral, labeled as A, is zero since Us and Ks are orthogonal
functions. Therefore the torque is only due to the interaction of electric
loading Ks and the magnetic scalar potential of the rotor Ur.

The final expression of the torque is

Tm(ϑm) =− µ0D2
s Lstk
g ∑

ν,k

K̂ν

ν
sin ν π

2 ·

· cos
(︁
(ν− 1)pϑm − αe

i
)︁[︁

sin(νϑT)Gur
]︁

5.3.6 Tooth flux density

To compute the stator tooth flux density, the air-gap flux density
Bg(ϑr, ϑm) in (5.17) has to be referred to the stator reference frame.
It is

Bg(ϑs, ϑm) = ∑
ν

[︃
αν

ν
cos(νpϑs − νpϑm) +

βν

ν
sin(νpϑs − νpϑm)

]︃
+ ∑

µ

γµ

µ
sin(µpϑs − µpϑm) (5.18)

The stator tooth flux density can be obtained through the scaled aver-
age of the air-gap flux density (Bianchi et al., 2008a; Han et al., 2007;
Pellegrino et al., 2010):

Bt(ϑm) =
ps

αswtkpack

∫︂ ϑd+αs

ϑd

Bg(ϑs, ϑm) dϑs (5.19)

where ps is the slot pitch, αs the slot angle, wt the tooth width, and
kpack is the ratio between the total effective iron and the stack length.

It can be demonstrated that the tooth flux density assumes q different
behaviors, q being the number of slots per pole and per phase, defined
as q = Q/(m 2p). Thus the integration extremes can be expressed as

ϑd = (d− 1)αs − γa , d = 1, . . . , q (5.20)

where γa identifies the angular position of the magnetic axis of phase a
with respect to the first slot (see Figure 5.2).

5.3.7 Stator yoke flux density

The flux in the stator yoke—also referred to as back-iron—is obtained
integrating the air-gap flux density over a pole pitch, then the flux
density is

By(ϑm) =
1

2hykpack

∫︂ π
p −γa

−γa
Bg(ϑs, ϑm)

Ds

2
dϑs

=
↑

q integer

wt

2hy

Q/2p

∑
i=1

Bt,i(ϑm) (5.21)

where hy = (Dse − Ds)/2 is the stator yoke height.



5.3 rotor magnetic potentials computation 49

channel

1st island

Nb
th island

1

Nb

...

...

......

Figure 5.5
Sketch of the main parts of the rotor
structure and rotor fluxes direction.

5.3.8 Rotor fluxes

In the linear case, the fluxes entering the rotor are directly obtained
from the solution of the magnetic circuit in Figure 5.3. Both the island
and the barrier fluxes are computed. The iron path closer to the shaft
is referred to as channel. The remaining iron paths for the d-axis flux
are referred to as islands. They assume a different potential, due to
the q-axis flux, and they are numbered accordingly to the number of
the barrier beneath them. The barrier fluxes are obtained solving the
magnetic network depicted in Figure 5.3. The d-axis channel flux comes
from ϕcd = φNb+1− φ2Nb+2 which simply sums the two fluxes to obtain
the whole direct flux of the channel. Then

Bcd =
ϕcd

wch kpackLstk
(5.22)

where wch ≈ (1− kair)Dr sin
(︁

π
2p − ϑbNb

)︁
is an approximation of the

minimum width of the channel.
For the q-axis flux of the main channel, just half of the last barrier

flux can be considered, with ϕcq = ϕb,Nb
/2. Thus

Bcq =
ϕcq

lch kpackLstk
(5.23)

where lch = (Dr − Dsh)/2. Then, it is

|Bc| =
√︂

B2
cd + B2

cq (5.24)

The d-axis fluxes of the islands result directly from the magnetic
circuit fluxes, as

Bid,j =
φj

kpackLstkwisl,j
(5.25)
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Figure 5.6
Magnetization curve of the ferromag-
netic material used.
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Regarding the q-axis fluxes of the islands, the average of the fluxes
above and beneath each island is computed. An average cross-section
area of each island is considered, so that

ϑisl,j =
ϑb, j + ϑb, j− 1

2
(5.26)

lisl,j = ϑisl,jDs (5.27)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϕiq,1

ϕiq,2

ϕiq,3
...

ϕiq,Nb

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

1 1

1 1
. . . . . .

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϕb1

ϕb2

ϕb3
...

ϕbNb

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.28)

Biq,j =
ϕiq,j

kpackLstklisl,j
(5.29)

|Bi,j| =
√︂

B2
id,j + B2

iq,j (5.30)

5.4 analytical model with saturation

The previous analytical model works properly in case of linear behavior
of ferromagnetic material, that is, in the first part of the iron B-H curve
(the curve is reported in Figure 5.6). However, this condition is barely
met. In SyR motors the rotor iron paths are saturated to achieve a quite
high torque density and power factor. Thus, in practice, the saturation
of the machine has to be taken into account.

Hereafter, the saturation is taken into account through a discretization
of the flux line paths into sections. In particular, a section can be a stator
tooth, a stator yoke sector, or a rotor half iron path. The path of a flux
line results a succession of these sections. Therefore a magnetic voltage
drop and a saturation factor are associated with each flux line and
referred to the air-gap. At first the rotor iron paths are considered, and
then the stator teeth and yoke.
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5.4.1 Rotor channel and islands magnetic voltage drop

The magnetic voltage drop of the rotor channel is estimated from (5.24).
Since the flux density is computed in the smallest cross-section, it
is the maximum value of the channel. The average is estimated as
B⋆

c = 0.85 |Bc| and, from the iron B-H curve, the magnetic field Hc
is obtained (in the following, it is indicated as B → H). Then the
magnetic voltage drop results ψc = Hc lch. Similarly, the islands have
a complex geometry and a different flux density in every point. The
middle section of the island is considered, where the width is precisely
known. It should be noted that the two half-island paths have different
voltage drops due to part of the entering elementary flux that crosses
the barrier and does not reclose on the other side. To recover this
difference, a magnetic voltage drop is computed for every half island
using the elementary flux.The procedure is sketched as follows:

|Bi,j| −→ Hi,j then ψi,j = Hi,j
lisl,j

2
(5.31)

The same procedure is carried out for the second (south) half pole.
The vector of rotor magnetic voltage drops, corresponding to the

sequence of channel and islands starting from the origin of ϑr, is:

ψrp = {ψc, ψi,Nb , . . . , ψi,1⏞ ⏟⏟ ⏞
ψN

i

ψi,Nb + 2, . . . , ψi,2Nb + 2⏞ ⏟⏟ ⏞
ψS

i

, ψc}T

where ψN
i and ψS

i are the vectors of the first half pole (identified by the
superscript N meaning North) and the second half pole (identified by
the superscript S meaning South) voltage drops, respectively.

Numerically, this vector is distributed into a number of points ac-
cordingly to the angle spanned. In the end, the distribution of the rotor
magnetic voltage drops is equivalent to the distribution of the scalar
magnetic potentials along the air-gap.

ψr =
{︁

ψc, . . . , ψc⏞ ⏟⏟ ⏞
NNb + 1

, ψi,Nb , . . . , ψi,Nb⏞ ⏟⏟ ⏞
NNb

, . . . , ψi,1, . . . , ψi,1⏞ ⏟⏟ ⏞
N1

, . . .

⏞ ⏟⏟ ⏞
Res/2p

}︁T

where Res is the number of points used for discretizing the space [0, 2π]
along the air-gap, and the subscript of N refers to the corresponding
island.

5.4.2 Stator teeth and yoke magnetic voltage drops

The instantaneous tooth flux density in the saturation case is obtained
through the numerical integration of (5.19). Once the flux density for
every tooth of interest (typically Q/p teeth for an integer-slot winding)
is computed, the magnetic voltage drops are derived, as follows:

|Bt, j| −→ Ht,j then ψt,j = Ht,j hs (5.32)
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Figure 5.7
Real flux lines and main integration
paths (Q = 36, 2p = 4).

∆l
y

ψy

ψy(1)

ψy(2)

ψy(9)

ψy(5)

path 5-14

path
1-10

(13)

where hs is the tooth height.
The back-iron corresponding to a pole pair is split into Q/p parts,

each one covering a slot angle, as illustrated in Figure 5.7 (dotted lines).
The flux density can be derived for each part, as

ϕ̃y(k) = wtLstk

k

∑
j=1

Bt, j k = 1, . . . , Q/p (5.33)

ϕy(k) = ϕ̃y(k)−
1

Q/p

Q/p

∑
j=1

ϕ̃y(j) (5.34)

By(k) =
|ϕy(k)|
hyLstk

−→ Hy(k) , ψy(k) = Hy(k)∆l (5.35)

where ∆l = π(Dse − hy)/Q is the average length of one back-iron part.
Once the stator yoke voltage drops are computed in any section, the
flux path for all flux lines of interest have to be correctly identified.
Two of these lines are shown in Figure 5.7. Summing the voltage drops
along these lines is equivalent to consider that each flux line flows for
a full pole and it encounters Q/2p voltage drops along its path. The
voltage drops are summed with the sign of the corresponding flux in
the same part. Finally, every flux line has gathered the same overall
magnetic voltage drop of the actual flux line of that particular tooth.
Therefore, it is

ψyt(n) =

⃓⃓⃓⃓
⃓12

n+ Q
2p−1

∑
k=n

ψy(k) sign ϕy(k)

⃓⃓⃓⃓
⃓ , n = 1, . . . , Q/2p (5.36)

where the double subscript ‘yt’ indicates that the yoke drop is referred
to the tooth. The 1

2 occurs since half the path is counted. For example,
let us consider the path 1-10 shown in Figure 5.7, which covers ψy(1)
to ψy(9): it starts from tooth number 1 (below the first slot) and it ends
in tooth 10. The total magnetic voltage drop associated to this line is

2ψyt(1) = ψy(1) + ψy(2) + . . . + ψy(9) (5.37)
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On the other hand, along the path 5-14 it is

2ψyt(5) = ψy(5) + . . . + ψy(9)− ψy(10)− . . .− ψy(13)

∼= ψy(5) (5.38)

The last equivalence is the main assumption of this computation. In fact
it implies that ψy(6) is equal to ψy(13) and so on, and the remaining
term is just ψy(5). Even if the machine is not symmetrically magnetized,
this is a fairly good approximation thanks to the lower value of the
q-axis flux with respect to the d-axis flux. Even with high values of αe

i
it can be shown that this approximation is good enough.

Similarly to the rotor, the stator magnetic voltage drops can be col-
lected and distributed along the discretization of the angular coordinate
at the air-gap.

5.4.3 Total magnetic voltage drop and saturation factor

In order to combine the rotor and stator magnetic voltage drop distri-
butions, the rotor position and the first tooth displacement have to be
taken into account through the shift of one of the two distributions,
according to the adopted reference frame. The air-gap magnetic voltage
drop can be easily computed from the flux density obtained in the
previous iteration.

Ψg = Hg g =
Bg

µ0
g (5.39)

All the magnetic voltage drops are summed to obtain the total voltage
drop, which is again referred to the air-gap.

Ψtot = Ψg + Ψr
s + Ψr (5.40)

where Ψr
s is the vector of stator voltage drops in the rotor reference

frame. Then

ksat =
Ψtot

Ψg
(5.41)

This saturation factor is different from the usually adopted factor. In
fact (5.41) is a distribution of saturation factors along the air-gap that
better represents the saturation of the machine.

The adopted iteration scheme is fixed-point like, with a random
relaxation to improve the stability of the convergence:

k(m + 1)
sat ← k(m)

sat + 0.5 rand
(︂

k(m + 1)
sat − k(m)

sat

)︂
(5.42)

For the next iteration the updated air-gap flux density is simply

B(m + 1)
g = µ0

−Us + Ur

k(m + 1)
sat g

(5.43)

and the iteration cycle restarts. The error of the method was evaluated
through

ϵsat =
⃦⃦⃦

k(m + 1)
sat − k(m)

sat

⃦⃦⃦
(5.44)
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Table 5.1
Parameters of the reference motor. Q = 36 number of slots

2p = 4 number of poles

yq = 9 coil pitch

De = 200 mm stator outer diameter

Ds = 125 mm stator inner diameter

Lstk = 40 mm lamination stack length

g = 0.35 mm air-gap thickness

Sslot = 100 mm2 slot section area

J = 3 A/mm2 conductor current density

kfill = 0.45 slot fill factor

kpack = 0.95 lamination pack factor

kair = 0.35 ratio of rotor magnetic insulation

5.5 torque maps

The nonlinear model is used to compute the impact of the rotor ge-
ometry on both the average torque and torque ripple. In particular,
the impact of the flux-barrier-end angles is analyzed, since they heav-
ily affect the torque ripple (Bianchi et al., 2009b). The average torque
and some torque ripple harmonics are computed as a function of the
flux-barrier angles, (ϑb1, ϑb2), and their amplitude is shown graphically
by using maps. Figure 5.8 reports such torque maps, computed for
a reference motor with two flux barriers whose data is reported in
Table 5.1.

For the sake of an easy comparison, Figure 5.8 reports three columns,
which refer to the results obtained by means of:

i. the analytical linear model (Bianchi et al., 2009b),

ii. the nonlinear model, described above,

iii. the FE method applied on the same motor geometries (Silvester
et al., 1996; Bianchi, 2005; Salon, 2012).

The results on SyR motor achieved through FE analysis have been
compared with experimental test several times by the authors, obtain-
ing satisfactory agreements (Bianchi et al., 2009b; Bianchi et al., 2014;
Bianchi et al., 2016; Ferrari et al., 2015) but also in other works (Vagati
et al., 1998; Moghaddam, 2011; Gamba, 2017). For this reason, in the
following comparison, the results computed analytically are considered
to be valid if they agree with the FE results.

The first row reports the comparison among average torque maps.
The map computed with the linear model shows higher average torques
with respect to the other two maps. This is obvious since the model
does not take into account the iron saturation. However, it is worth
noticing that the behavior of the torque curves is almost identical.

Comparing the maps of the second and third column, it is possible to
note that the nonlinear analytical model predicts correctly not only the
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behavior of the torque maps as a function of ϑb1 and ϑb2, but also its
amplitude. Therefore, the nonlinear model can be used as an alternative
to FE simulation to derive such a map.

For this machine configuration, the average torque is almost indepen-
dent of the first barrier angle. It can be noted that the average torque
reaches its maximum in a wide region. For instance, for ϑe

b2 > 60° the
maps are quite flat. Thus the designer is free to move within this space
looking for torque ripple minima. This behaviour is reflected also by
the FE map.

The second row shows the maps of the torque harmonic of order 6,
which is the lowest order one. Independently from the model used, it
appears that there is an evident minimum—highlighted by the black
dot—corresponding to the angle combination (ϑe

b1, ϑe
b2) = (36°, 72°).

Such a point is coincident in the maps obtained from the linear and
nonlinear analytical models, while it is a bit shifted when FE is used.
This is caused by the local saturation of tooth tips and iron parts, which
is not considered in the analytical models. In addition, it can be noted
that the torque ripple contours obtained by the three models are in a
satisfactory agreement in the whole region.

The same considerations can be made comparing the maps for the
third row, which report the torque harmonic of order 18. Such a torque
harmonic corresponds to the first magnetic scalar potential (also re-
ferred to as mmf) slot harmonic. They are the mmf harmonics produced
by the winding discretized inside the slots (18 = 36 slots/2 pole pairs),
which are characterized by a winding factor equal to the fundamental
one. They typically cause the highest ripple. It can be noted that the
number of peaks and valleys is increased with respect to the sixth
torque harmonic. This trend is general: the higher the harmonic order,
the higher the number of maxima and minima. Once more, peaks and
valleys predicted by the linear analytical model and nonlinear analytical
models are in a good agreement with those found by FE.

Finally, in the last row the maps compare the torque total harmonic
distortion (THD), defined as

THD =

√︂
∑h ̸=0 τ̂2

h

τ0
(5.45)

where τ0 is the average torque. The filled map shows THD contours,
while the white superimposed contours refer to the average torque
map. The brighter the color, the higher the THD. Thus, as far as the
torque ripple is concerned, the better combinations of (ϑe

b1, ϑe
b2) are

those corresponding to the darker areas.
Furthermore, by comparing the results of the third and fourth rows,

it can be observed that bright colors correspond to the peaks of torque
harmonic of 18

th order, which is due to the mmf slot harmonics. This
highlights the heavy impact of the mmf slot harmonics on the overall
torque ripple.

Finally, as an overall conclusion, the linear and nonlinear analytical
models produce a behavior of average torque map very similar to that
obtained through FE, with the difference that the linear map has higher
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Figure 5.8
Main torque maps of the 2-barrier rotor. The darker and cooler colors represent the valleys of the corresponding quantity.
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values than the other two models. Therefore, the nonlinear analytical
model has to be adopted to predict the average torque. On the other
hand, both the analytical models are able to find the position of maxima
and minima of the torque THD. Thus, it can be stated that even the
linear model can be used in spite of the nonlinear one when searching
for the flux-barrier angle combinations exhibiting a minimum torque
ripple, with the advantage of a higher speed and similar accuracy. The
slight shifts of maxima and minima found by the FE maps are mainly
due to the local saturation of iron, which is not taken into account in
the linear analytical model.

5.6 discussion

This chapter has shown an accurate nonlinear analytical model for the
synchronous reluctance machine. A good agreement between analyt-
ical and FE simulations has been achieved, even in highly saturated
machines.

Thanks to the speed of the analytical model, it is possible to quickly
obtain some maps of torque harmonics as a function of the flux-barrier-
end angles. These maps can be a useful design tool for the design
of a SyR machine. Overall, the analytical maps are able to properly
approximate the FE maps.

The average torque behavior is correctly predicted by the nonlinear
analytical model, while the linear model overestimates it, obviously.
However, even if there are some differences in the amplitude prediction,
the flux-barrier angle combinations corresponding to the minima and
maxima are estimated well, by means of both the linear and nonlinear
models. This fact is quite significant because it suggests that the ana-
lytical linear model can be employed to get good design points in the
flux-barrier-angle plane for a specific motor in a small amount of time
(some minutes). On the other hand, the nonlinear analytical model can
be used to properly predict the average torque.





6
D E S I G N C R I T E R I A O F F L U X - B A R R I E R S I N
S Y N C H R O N O U S R E L U C TA N C E M A C H I N E S

In this chapter, a criteria to design the rotor of multi flux-barrier syn-
chronous reluctance machines is proposed. In particular, the focus will
be on the proper design of flux-barriers geometry (Bacco et al., 2017).
An analytical model is adopted to compute the impact of the rotor
flux-barriers on the torque, focusing on the torque ripple.

Contrary to the model proposed in (Bianchi et al., 2006) and further
extended in Chapter 5, not all the mmf harmonics are considered, but
only those which cause the highest torque ripple. As a consequence, the
analytical model becomes lighter and it is possible to derive a simple
equation to predict the suitable geometry of the rotor flux-barriers.
The above simplification can be verified in many publications, such as
(Bianchi et al., 2009b) where the 12

th torque harmonic is dominant, and
in (Vagati et al., 1998) where the main source of torque ripple is the
18

th harmonic.
Rotors with one, two and three flux-barriers per rotor pole are taken

into account. Some examples referring to 4-pole synchronous reluctance
machines with different numbers of stator slots are investigated and
illustrated. The results are compared with a full-featured analytical
model and validated through finite element simulations.

6.1 the simplified analytical model

The analytical model presented hereafter is derived from the model
that was proposed in (Bianchi et al., 2009b) and further developed in
Chapter 5, and used to determine the geometry of a SyR motor with
one, two or three flux-barriers per pole. The assumptions considered in
the analytical model are:

1. to neglect the stator and rotor magnetic voltage drops,

2. to neglect the stator slotting effect, and

3. to neglect the rotor iron ribs.

Quantity Symbol Value u.m.

Stack length Lstk 40 mm

Outer stator diameter Ds 200 mm

Inner stator diameter De 125 mm

Air-gap length g 0.35 mm

Number of pole pairs p 2

Table 6.1
Geometrical data of the SyR machine.
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Figure 6.1
Sketch of the fundamental stator
magnetic scalar potential and rotor
reaction magnetic scalar potential.

Ur1

Us d-axis
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For a given stator winding and rotor geometry, the aim of the model is
to correctly predict the combinations of flux-barrier angles which lead
to the lower (and higher too) torque ripples.

6.1.1 Application of a nonlinear model

An objection that might be raised to the model above is that it is
basically a simple linear model, which does not consider the actual
iron B-H characteristic while usually the saturation is quite high in SyR
machines. Consequently, the model should not be able to predict the
proper torque waveform (and consequently design the proper rotor
geometry) when the SyR machine is strongly saturated.

This remark is only partially true. Experimental results shown in (Bar-
caro et al., 2009; Bianchi et al., 2008b; Bianchi et al., 2006) highlight that
the optimal solutions of the rotor flux-barrier angles found through
the linear model are effective to achieve a machine exhibiting smooth
torque even at high load. The percentage of torque ripple, due to the
interaction between electromagnetic fields, is properly predicted (Vagati
et al., 1998; Barcaro et al., 2011; Bianchi et al., 2009b).

6.1.2 Simplification of the model

It can be demonstrated that electromagnetic torque is produced by
the interaction between the electric loading, Ks(ϑr, ϑm), and the rotor
magnetic potential, Ur(ϑr, ϑm).1 The electric loading contains many
space harmonics, produced by the arrangement of the winding within
the stator slots. The electric loading gives rise to a stator magnetic scalar
potential, whose fundamental moves synchronous with the rotor while
the other harmonics move asynchronous.

The rotor magnetic potential, Ur1, is caused by the flux crossing the
flux-barrier. It is mainly produced by the electric loading fundamental,
while the harmonics cause slight oscillations of Ur1.

1 See Chapter 5.
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Us1 sin(αi
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q-axis
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Us(ϑr)
ϑr

ϑr

ϑb ϑb

Figure 6.2
Sketch of a linearized one flux-barrier
SyR rotor, with the stator and rotor
scalar magnetic potentials shown.

The torque expression can be split into two terms:

Tm(ϑm) = kT

∫︂ 2π

0
Ks(ϑr, ϑm)Ur(ϑr, ϑm) dϑr

= ⟨Tm⟩+ ∆Tm(ϑm)

(6.1)

where kT is a factor depending on the motor geometry. The first term,
⟨Tm⟩, is constant and corresponds to the average torque while the
second term, ∆Tm, represents the torque ripple, which is a function
of the rotor position, ϑm. All the harmonics of electric loading cause
torque oscillations, but the highest ripple is due to the slot harmonics
(i.e., those characterized by a winding factor equal to the fundamental
one). In the following, the focus is on the first two slot harmonics,
with order ν = 1±Q/p, which are responsible for the highest torque
ripple. As an example, a machine with a combination of 24 slots and 4

poles has the highest ripple component which oscillates 12 times the
frequency of the fundamental, caused by the electric loading harmonics
of order 11 and 13.

6.2 one flux-barrier rotor

At first, a rotor with one flux-barrier has been studied. The complete
expression of the rotor magnetic scalar potential is

Ur1 = a
∫︂ ϑb

−ϑb

Us(ϑr, ϑm) dϑr

= −aDs ∑
ν

K̂ν

(νp)2 cos(λν) sin(νpϑb)

(6.2)

where

a =

Ds
2g

tb
lb

1 + Ds
2g

tb
lb

2ϑb
, λν =

νπ

2
+ (ν− 1)pϑm − αe

i

By assumption, any variation of the rotor magnetic potential is ne-
glected. Ur1 is assumed to be independent on the rotor position and
due to the fundamental of Ks only. Thanks to such hypothesis, its
expression becomes

Ur1 = − aDsK̂1

p2 cos
(︁

π
2 − αe

i
)︁

sin(pϑb)
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(a) Sine electric loading harmonic waveform.
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ϑr

ϑr Ur1

(b) Cosine electric loading harmonic waveform.

Figure 6.3
Electric loading harmonic waveform (moving at ων) with respect to the rotor flux-barrier (fixed) in two different rotor positions.

The torque is computed integrating the product between electric and
magnetic loadings over the flux-barrier:

Tm(ϑm) = kT2p
∫︂ ϑb

−ϑb

Ur1Ks(ϑr, ϑm) dϑr (6.3)

Let us consider the electric loading harmonic of order ν which travels
asynchronous with respect to the rotor. It is

K(ν)
s (ϑr, ϑm) = K̂ν sin[νpϑr + (ν− 1)pϑm − αe

i ]

Such electric loading harmonic produces a torque contribution ex-
pressed as

Tν = kT 2p
∫︂ ϑb

−ϑb

Ur1K
(ν)
s (ϑr, ϑm) dϑr (6.4)

Regardless of the rotor position, the torque ripple produced by this
harmonic can be simply evaluated considering two opposite situations,
according to the waveform of the K(ν)

s harmonic with respect to the
q-axis: (a) when it is odd and (b) when it is even. The two situations are
sketched in Figure 6.3.

In the time instant when the waveform is odd (sine waveform in
Figure 6.3(a)) the torque contribution resulting from (6.4) is zero. On
the contrary, in the time instant when the waveform is even (cosine
waveform in Figure 6.3(b)), there is either a positive or negative in-
stantaneous torque contribution. The resulting torque ripple due to
the considered harmonic is estimated by the amplitude found when
the waveform is even with respect to the barrier. Therefore, the torque
contribution becomes

Tν ∝ K̂ν

∫︂ ϑb

−ϑb

cos(νpϑr) dϑr

∝ 2K̂ν
sin(νpϑb)

pν
(6.5)
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However, each torque harmonic is produced by a pair of electric loading
harmonics. For a better understanding, let us consider the complete
torque expression given in (Barcaro, 2011) by

Tm(ϑm) = −µ0

g
D2

s Lstk Ur1

2
·

·∑
ν

K̂ν

ν
sin(νpϑb) sin ν π

2 cos
[︁
(ν− 1)pϑm − αe

i
]︁ (6.6)

The torque ripple of order h is due to two electric loading harmonics,
namely ν1 = (1− h) and ν2 = (1 + h), where h = 6n, n ∈ N. The
torque contributions of these two harmonics are

Tm, ν1(ϑm) = Tν1 cos[(ν1 − 1)pϑm − αe
i ]

Tm, ν2(ϑm) = Tν2 cos[(ν2 − 1)pϑm − αe
i ]

After some computations, the torque amplitude due to the considered
harmonic results:

Tν = k∗TUr1
K̂ν

ν
sin(ν π

2 ) sin(νpϑb) (6.7)

k∗T = −µ0D2
s Lstk
g

and it can be either positive or negative. It is then possible to compute
amplitude and phase of the torque harmonic of order h. Referring to
the current vector angle αe

i = 45°, they are

Th =
√︂

T2
ν1
+ T2

ν2
(6.8)

ϕh = arctan
(︃

Tν2 − Tν1

Tν2 + Tν1

)︃
(6.9)

From (6.5), the torque ripple expression for the two harmonics becomes

T2
h ∝

[︃
sin ν1ϑe

b
ν1

]︃2

+

[︃
sin ν2ϑe

b
ν2

]︃2

employing electrical angles, ϑe
b = pϑb. In general

d
dϑe

b

{︄[︃
sin ν1ϑe

b
ν1

]︃2

+

[︃
sin ν2ϑe

b
ν2

]︃2
}︄

= 0

2
ν1

sin ν1ϑe
b cos ν1ϑe

b +
2
ν2

sin ν2ϑe
b cos ν2ϑe

b = 0

ν2 sin(2ν1ϑe
b) + ν1 sin(2ν2ϑe

b) = 0

Imposing to zero the derivative of the torque ripple with respect to ϑe
b,

it results

ν2 sin(2ν1ϑe
b) + ν1 sin(2ν2ϑe

b) = 0 (6.10)

This transcendental equation can be solved numerically for the flux-
barrier angle ϑe

b. The solutions found through (6.10) are the minima
and maxima of the torque ripple.
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(c) Q = 36, 2p = 4, ν1 = −17, ν2 = 19

Figure 6.4
Analytical torque maps of the first slot harmonics for different number of slots Q and number of poles 2p combinations in
one-barrier machines. The vertical lines represent the positions of the torque ripple minima found by means of (6.10).

Figure 6.5
Geometries of two one flux-barrier
solutions with different flux-barrier
angles.

37.475°

(a) Low torque ripple geometry.

34.965°

(b) High torque ripple geometry.

6.2.1 Practical results

To validate the model previously derived, Figure 6.4 reports the torque
behaviors due to the first two slot harmonics (ν = 1± Q/p) versus
the electrical flux-barrier angle, ϑe

b. For a 4-pole machine (2p = 4),
they are the 5

th and 7
th order harmonics for the machine with Q =

12, the 11
th and 13

th for Q = 24, and the 17
th and 19

th for Q = 36.
These waveforms are obtained through the complete model of the SyR
machine expressed by (6.6) as in (Bianchi et al., 2009b; Barcaro, 2011).
In addition, the vertical lines identify the flux-barrier angles found by
the simple formulation derived in (6.10).

The perfect prediction of the torque minima by (6.10) can be noted:
they correspond to the minima computed by means of the complete
analytical magnetic model of the machine. Furthermore, this occurs for
different combinations of slots per pole.

6.2.2 FE validation

To support the previous results, two rotors with different flux-barrier
angles are selected from Figure 9.3(a) and the corresponding motor
features are compared. A low torque ripple and a high torque ripple
points have been chosen for some FE simulations. The considered motor
has Q = 36 and 2p = 4, so that it refers to Figure 9.3(a). An RMS current
density of about 6.3 A/mm2 is imposed. The magnetic insulation ratio,
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(a) Comparison of the torque waveforms with linear iron.
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(b) Comparison of the torque spectra with linear iron.
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(c) Comparison of the waveforms spectra with nonlinear iron.
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(d) Comparison of the torque spectra with nonlinear iron.

Figure 6.6
Torque waveforms and spectra of one flux-barrier solutions with different flux-barrier angles.

kair (which accounts for the air length along the q-axis with respect to
the total available length), is set to 0.3. The flux-barrier electrical angle,
ϑe

b, is set as follows:

1. ϑe
b = 74.95° for the low torque ripple solution

2. ϑe
b = 69.93° for the high torque ripple solution

The corresponding mechanical angles result 37.48° and 34.97°, respec-
tively, so that the difference is 2.5° only. However, it does not represent a
problem since common manufacturing tolerances are well below these
values. With one flux-barrier per pole, the chosen flux-barrier angle
is quite large because it generally leads to a higher average torque. In
fact, it can be demonstrated that the average torque of one flux-barrier
SyR motor is proportional to sin2 ϑe

b/ϑe
b. Such a function exhibits a

maximum at ϑe
b = 66.7° (that is ϑb = 33.35°). The geometries and the

results are reported in Figure 6.5 and Figure 6.6. It can be seen that
the two geometries are practically identical in the middle of the rotor,
and their only difference lies in the flux-barrier-end position. At first,
the simulations are carried out with a linear ferromagnetic material in
order to obtain a fair comparison with the analytical model.

Figure 6.6 reports the harmonic content of the torque behavior
achieved from FE simulations. Black bars correspond to the low ∆Tm so-
lution, and white bars correspond to the high ∆Tm solution. To achieve
accurate torque results with FEA, it is mandatory to design a proper
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mesh at the air-gap of the machine. Typically, three to four elements
along the radial direction are sufficient.

Figure 6.6(b) highlights that the correct choice of the flux-barrier-
end position heavily affects the 18

th harmonic amplitude and its odd
multiple harmonics. In this particular case, the overall torque ripple
results 53.5% for the low ripple geometry and 106.7% for the high
ripple one. This results remarks that such a notable improvement is
due to the proper choice of flux-barrier angle ϑb so as to minimize the
torque ripple contribution due to the first two slot harmonics.

Figure 6.6(d) reports the torque harmonic content achieved consider-
ing a nonlinear ferromagnetic material. Obviously, the resulting average
torque and torque harmonic amplitudes are quite lower with respect to
the linear iron case. Also the overall torque ripple results to be lower,
being 37.6% and 67.9% for the low ∆Tm and high ∆Tm solutions, re-
spectively. However, the choice of the flux-barrier-end angle, ϑb, still
affects the torque ripple caused by the slot harmonics.

Other simulations have been performed varying the magnetic in-
sulation coefficient (i.e. the coefficient kair) of the flux-barriers to the
aim of showing the effect of a higher ratio on the low ripple geometry.
While the average torque results lower (due to increased saturation),
the torque ripple remains the same.

At last, it was also observed that, in case of nonlinear iron, the
shape of the flux-barrier-end affects the torque harmonic content. In
fact, they affect the distribution of the flux entering the rotor. This
effect, particularly evident in one flux-barrier rotors, may change the
effective position of the flux-barrier-end, leading to a different torque
spectrum. This is why the analyzed motors shown in Figure 6.5(a) and
Figure 6.5(b) exhibit a quite sharp flux-barrier-end.

6.3 two flux-barrier rotor

Also in this case the two magnetic scalar potentials of the rotor islands,
Ur1 and Ur2, are assumed to be constant (as depicted in Figure 6.1). As
said above, this means that the machine is considered to be magnetized
only by the fundamental harmonic of the stator magnetic scalar poten-
tial, Us1. The resulting complete torque expression is given by (Bianchi
et al., 2009b; Barcaro, 2011):

Tm(ϑm) = −µ0D2
s Lstk

4g

[︄
Ur2 ∑

ν

Kν

ν
sin ν π

2 sin νϑe
b2 +

+ (Ur1 −Ur2)∑
ν

Kν

ν
sin ν π

2 sin νϑe
b1

]︄
·

· cos
[︁
(ν− 1)pϑm − αe

i
]︁

(6.11)

Therefore, the torque produced by a single harmonic is proportional to

Tν ∝ (Ur1 −Ur2)
sin νϑe

b1
ν

+ Ur2
sin νϑe

b2
ν

(6.12)
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Figure 6.7
Analytical torque maps of the first slot harmonics for different slots and poles combinations in a two flux-barrier machine. The
black dots show the minima found by means of the model proposed here. Contour lines are obtained by means of the complete
model.

A further assumption can be made: the rotor magnetic voltage drops
are considered to be equal (as depicted in Figure 6.1), such that

∆Ur = Ur1 −Ur2 = Ur2

This assumption is often verified, thanks to the choice of the magnetic
insulation (i.e. the flux-barrier thicknesses) distribution in the rotor.
Thus, (6.12) becomes

Tν ∝
sin νϑe

b1
ν

+
sin νϑe

b2
ν

As above, the actual torque ripple harmonic amplitude is obtained
by considering a couple of harmonics. As usual, the first two slot
harmonics are considered, which means h = Q/p and ν1 = 1 − h,
ν2 = 1 + h, so that:

T2
h ∝

[︃
sin ν1ϑe

b1
ν1

+
sin ν1ϑe

b2
ν1

]︃2

+

+

[︃
sin ν2ϑe

b1
ν2

+
sin ν2ϑe

b2
ν2

]︃2
(6.13)

In order to get the minima, (6.13) is derived by the first barrier angle,
ϑe

b1, and then by the second one, ϑe
b2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2
[︃

sin ν1ϑe
b1

ν1
+

sin ν1ϑe
b2

ν1

]︃
cos ν1ϑe

b1 + 2
[︃

sin ν2ϑe
b1

ν2
+

sin ν2ϑe
b2

ν2

]︃
cos ν2ϑe

b1 = 0

2
[︃

sin ν1ϑe
b1

ν1
+

sin ν1ϑe
b2

ν1

]︃
cos ν1ϑe

b2 + 2
[︃

sin ν2ϑe
b1

ν2
+

sin ν2ϑe
b2

ν2

]︃
cos ν2ϑe

b2 = 0

(6.14)

It results as in (6.14). This represents a transcendental system of two
equations in two variables, (ϑe

b1, ϑe
b2), and it is solved numerically, both

searching for minima and maxima.
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Figure 6.8
Low and high ripple geometries with
two flux-barriers. 24.75°

39°

(a) Low torque ripple geometry.

40°

20.25°

(b) High torque ripple geometry.

6.3.1 Practical results

Again, to validate the model, Figure 6.7 reports the torque behaviors
due to the first two slot harmonics in the plane of the two electrical
flux-barrier angles ϑe

b1 and ϑe
b2. These harmonics are of the same order

of the previous ones. The 2D torque harmonic maps are again ob-
tained through a complete model of the two flux-barrier SyR machine,
from (6.11).

Then the points marked by black dots and blue crosses are found by
means of the model proposed in (6.14). They identify the flux-barrier
angles which correspond to the torque ripple minima and maxima,
respectively. Once again, this model is able to predict these points with
satisfactory precision, despite the additional assumption of constant
magnetic voltage drop across each flux-barrier.

6.3.2 FE validation

Also in this case a low torque ripple and two high torque ripple points
have been chosen for FE simulations. The main data of the considered
motor are the same, so Q = 36 and 2p = 4, with an RMS current
density equal to 6.3 A/mm2, and it refers to Figure 9.3(b). The flux-
barrier electrical angles, (ϑe

b1, ϑe
b2), are set to

1. (49.5°, 78°) for the low torque ripple solution

2. (49.5°, 70°) for the first high torque ripple solution

3. (40.5°, 80°) for the second high torque ripple solution

Figure 6.9(c) reports the comparison between the torque versus rotor
position behaviors of the low and high torque ripple solutions with
nonlinear ferromagnetic material. It can be observed how the different
choice of just one flux-barrier angle (between the first two solutions)
greatly affects the resulting torque waveform and the relative harmonic
content. This is highlighted in Figure 6.9(d) which reports the low ∆Tm
solution torque spectrum with black bars, and the high ∆Tm solutions
torque spectra in gray and white. The saturation of the ferromagnetic
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⟨Tm⟩ ∆Tm

[N m] [%]

Linear case

Low ripple sol. 27.39 42.66

1
st high ripple sol. 27.24 103.64

2
nd high ripple sol. 27.57 99.06

Nonlinear case

Low ripple sol. 13.50 38.41

1
st high ripple sol. 13.52 76.23

2
nd high ripple sol. 13.63 68.34

Table 6.2
Comparison of average torque and
torque ripple for low and high ripple
solutions.

material affects the shape of all the torque waveforms, which appear
smoother, so all the ripples result to be lower.

A final comparison between the average torques and ripples is re-
ported in Table 6.2 in both linear and nonlinear case. As expected, the
average torque and ripple are higher with linear ferromagnetic material,
but the gap among low and high ripple solutions remains.

6.4 three flux-barriers rotor

At this point, the model can be easily extended to three flux-barriers
rotors. In fact, using the same assumptions as before

∆Ur = Ur1 −Ur2 = Ur2 −Ur3 = Ur3

the torque harmonic expression due the electric loading harmonic
becomes

Tν ∝
sin νϑe

b1
ν

+
sin νϑe

b2
ν

+
sin νϑe

b3
ν

and, therefore, the actual torque ripple harmonic results in

T2
h ∝

[︃
sin ν1ϑe

b1
ν1

+
sin ν1ϑe

b2
ν1

+
sin ν1ϑe

b3
ν1

]︃2

+

+

[︃
sin ν2ϑe

b1
ν2

+
sin ν2ϑe

b2
ν2

+
sin ν2ϑe

b3
ν2

]︃2
(6.15)

Once again, this equation can be minimized numerically to find suitable
flux-barrier angles. In this case, the number of minima far exceeds the
number of maxima. In particular, the maxima are either degenerated
three flux-barriers rotors, or the flux-barrier angles are displaced by a
stator slot angle.

On the other hand, the minima can be found on some lines in the
3D space created by the three flux-barrier angles and so they are very
numerous.
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(a) Comparison of the torque spectra with linear iron.

 2
7.

39
1

  0
.7

54

  3
.7

40

  2
.4

21

  0
.4

62

 2
7.

23
8

  7
.9

08

  6
.0

31

  4
.0

30

  2
.2

46

 2
7.

56
8

  7
.4

93

  5
.7

82

  3
.9

18

  2
.2

75

0 6 12 18 24 30 36 42 48 54 60 66 72

Harmonic order

0

10

20

30

T
or

qu
e 

ha
rm

on
ic

 [N
m

]

Low 
m

High 
m

 1

High 
m

 2

(b) Comparison of the torque spectra with linear iron.
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(c) Comparison of the torque spectra with nonlinear iron.
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(d) Comparison of the torque spectra with nonlinear iron.

Figure 6.9
Torque waveforms and spectra of two flux-barriers solutions with different flux-barrier angles.

6.4.1 FE validation

One low and one high torque ripple geometries have been chosen for
FE validation. The respecting flux-barrier angles (ϑe

b1, ϑe
b2, ϑe

b3) are:

• (21.67°, 51.31°, 76.34°) for low torque ripple solution

• (19.89°, 59.98°, 79.99°) for high torque ripple solution

It can be noted that the high ripple solution is characterized by flux-
barrier angles which are multiples of the slot angle, while the low ripple
solution does not have evenly spaced angles.

Figure 6.10 shows the comparison between the low and the high
torque ripple geometries. As expected, the high torque ripple geometry
exhibits high torque harmonics, in particular the first slot harmonic (the
18

th). Overall, the torque ripple results to be 17.9% for the low ripple
geometry while it is 72.9%.

6.5 design of asymmetric flux-barriers in syrm

In this section, the previous simple model is extended to asymmetric
synchronous reluctance machines, so machines with different flux-
barriers between adjacent rotor poles, so as to obtain a sort of compen-
sation of the torque harmonics. This time a different machine is studied,
and its data are reported in Table 6.3.
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Figure 6.10
Geometries and spectra of three flux-barriers solutions with different flux-barrier angles.
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Figure 6.11
Low and high ripple geometries with
three flux-barriers.

6.5.1 Determination of solutions getting minimum torque harmonic

Equation (6.8) can be minimized numerically for the barrier angle
ϑe

b = pϑb. It allows to determine the flux-barrier angles ϑe
b which

minimize the torque oscillations due to the harmonics of electric loading
of order ν1 and ν2.

Figure 6.12 reports the torque behaviors of the first two slot harmonics
versus the electrical flux-barrier angle, ϑe

b. Referring to a machine with
Q = 24 slots and 2p = 4 poles, they are the harmonics of 11

th and
13

th order and 23
rd and 25

th order (which are the first two and the
second two electric loading slot harmonics). The black dots identify the

Quantity Symbol Value u.m.

Stack length Lstk 40 mm

Outer stator diameter De 120 mm

Inner stator diameter Ds 70 mm

Air-gap length g 0.4 mm

Number of stator poles 2p 4

Number of stator slots Q 24

Table 6.3
Geometrical data of the SyR machine
used as an example in the analysis.



72 design of flux-barriers in syrm

0 10 20 30 40 50 60 70 80 90

b1
e

0

0.5

1

1.5

12
th

 to
rq

ue
 h

ar
m

.

(a) ν1 = 11, ν2 = 13.

0 10 20 30 40 50 60 70 80 90

b1
e

0

0.2

0.4

0.6

0.8

24
th

 to
rq

ue
 h

ar
m

.

(b) ν1 = 23, ν2 = 25.

Figure 6.12
Analytical torque maps of the first four slot harmonics for a motor with Q = 24, 2p = 4 with one-barrier per pole. Black dots
corresponds to angles of minimum torque harmonic.
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Figure 6.13
Torque maps of the first four slot harmonics for a motor with Q = 24, 2p = 4 with one-barrier per pole for different current
angles. Black dots corresponds to angles of minimum torque harmonic at αe

i = 67.5°.

flux-barrier angles found by the minimization of (6.8). Comparing with
the waveforms obtained through a complete model of the SyR machine,
the vertical lines starting from the dots show that the position of the
minima are properly predicted.

Both the simple and the complete analytical model (Bianchi et al.,
2009b; Bacco et al., 2017) considered the current vector angle to be
αe

i = 45°. On the other hand, rarely a SyR machine works at 45° in
Maximum Torque Per Ampere (MTPA) because of saturation. It works
at higher angles and even up to 80° or more when flux-weakening.
More generally, instead of (6.8) and (6.9), the actual hth torque harmonic
amplitude and phase are

Th =
√︂

T2
ν1
+ T2

ν2
+ 2Tν1 Tν2 cos 2αe

i (6.16)

ϕh = arctan
(︃

Tν2 − Tν1

Tν1 + Tν2

tan αe
i

)︃
(6.17)

It can be noted that the final amplitude of the torque harmonic depends
on the amplitudes of the two components of torque harmonic and also
on the current vector angle. The choice of such angle could lead to quite
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# 1 2 3 4 5 6

ϑe
b [°] 7.5 15.0 25.4 33.5 41.1 48.6

# 7 8 9 10 11

ϑe
b [°] 56.2 63.7 71.2 78.7 86.2

Table 6.4
Set Sh = {ϑe

bi}
n
i=1 of flux-barrier an-

gles corresponding to minima of the
24th torque harmonic (Figure 6.13(b)).

different results, especially for small flux-barrier angles, as it can be
seen in Figure 6.13. However, high flux-barrier angles (typically greater
than ϑe

b = 60°) are of interest, since they generally lead to a higher
average torque and, hence, better performance.

In order to consider a general case, the torque function (6.16) can
be tested at 67.5°, which is halfway from 45° through 90°. In this way,
(6.16) and (6.17) are simplified to

Th =
√︂

T2
ν1
+ T2

ν2
−
√

2Tν1 Tν2 (6.18)

ϕh = arctan
(︃

Tν2 − Tν1

Tν1 + Tν2

(︁
1 +
√

2
)︁)︃

Depending on the sign of the two torque functions, using equation
(6.18) or (6.8) could lead to different results varying the current angle.
The results are reported in Figure 6.13 with a red line. The blue dash-
dotted line is the function given by (6.8), whose minima and maxima
perfectly correspond to the one of Figure 6.12. It is evident that for
small flux-barrier angles, the two functions minima match perfectly for
flux-barrier angles greater than 45°. The list of the minima found for
the 24th harmonic is reported in Table 6.4.

6.5.2 Combination of minima solutions

The previous analysis allowed to find those flux-barrier angles, ϑe
b,

yielding a minimum of a fixed harmonic of the torque. A pair of
such solutions can be adopted and combined together in the same
rotor obtaining an asymmetric rotor (Bianchi et al., 2009b). It exhibits
different flux-barrier geometries that are alternated between the poles.
In this way:

1. the torque harmonic that has been minimized as described above
remains of low value, and

2. a sort of compensation of the other torque harmonics is achieved.

This means that two torque harmonics can be minimized: one through
the choice of flux-barrier angles and the other one through an asymmet-
ric rotor. The two harmonics are referred to as h and k in the following.

The easiest way to make the compensation of torque harmonics is to
use phasors. Let T′k be the kth torque harmonic produced by the first
pole, with phase ϕ′k, and T′′k be the kth torque harmonic produced by
the second pole (different from the first), with phase ϕ′′k . Both poles
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have flux-barrier angles that minimize the hth torque harmonic. Then
their vector sum results in

T′kejϕ′k + T′′k ejϕ′′k

and so the problem to solve is as follows:

min
i ̸=j

⃓⃓⃓⃓
T(i)

k ejϕ(i)
k + T(j)

k ejϕ(j)
k

⃓⃓⃓⃓
(6.19)

where i and j are the indexes of the set Sh = {ϑe
bi}

n
i=1 of flux-barrier

angles that already minimize the hth torque harmonic.
For the combination in pairs with (6.19) there are two options:

1. find flux-barrier angles that minimize the hth torque harmonic,
and find the minimum of the kth torque harmonic using optimal
combination of the angles previously found;

2. find flux-barrier angles that minimize the kth torque harmonic,
and find the minimum of the hth torque harmonic using optimal
combination of the angles previously found.

Since most of the ripple is due to the first four slot harmonics of the
electric loading, which cause the first two slot harmonics of the torque,
it is advisable to take k as the first torque slot harmonic, and h = 2k
as the second one, or vice versa. Note, however, that the two criteria
differ greatly. In fact, the number of 2k-combinations is higher than
the k-ones due to the higher number of minima found minimizing 2kth

torque harmonics. So the first criteria leads to a higher probability of
finding proper combinations, and it is the one which is adopted in the
following.

6.5.3 Combinations for one flux-barrier rotor and validation

The combinations in pairs of the angles in Table 6.4 could be ranked
based on the predicted 12th torque harmonic by (6.19). The result of
such procedure is reported in the first column of Table 6.5. Since there
were 66 combinations, only the first 10 are reported.

Many of these combinations were tested by FEA to see whether the
ripple is lower than in the respective symmetric rotors, and to check if
the ranking is effectively sorted.

The FEA results are reported in Table 6.5. It can be noticed that
the ranking is not perfectly sorted. This is due to the effect of local
saturation which virtually changes the position of the flux-barrier end,
hence it changes the flux-barrier angle. However, some results are
excellent because the ripple is less than half the original one (the
improvement can be seen from the example of Figure 6.14(a) and
from (Bacco et al., 2017)).

Figure 6.14 shows the torque waveforms and spectra of one suitable
combination of the flux-barrier angles found above. The chosen com-
bination is the fourth of Table 6.5. labeled as ‘10 and 8’, whose pair
of flux-barrier angles is ϑe

b = 78.7° and ϑe
b = 63.7° (see Table 6.4). The
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i and j Torque Ripple 12th harm. 24th harm.

[N m] [%] [N m] [N m]

11 and 9 1.54 26.1 0.095 0.140

11 and 10 1.50 41.8 0.289 0.007

9 and 7 1.56 36.9 0.234 0.068

10 and 8 1.56 21.7 0.035 0.124

8 and 6 1.52 47.5 0.281 0.087

7 and 5 1.44 28.4 0.112 0.097

6 and 4 1.31 21.3 0.024 0.107

5 and 3 1.11 29.1 0.084 0.089

10 and 7 1.54 25.3 0.048 0.132

9 and 8 1.55 38.4 0.258 0.036

Table 6.5
FEA results of average torque and rip-
ple achieved adopting the predicted
combinations of flux-barrier angles
(first column). Rotor with one flux-
barrier per pole.
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(b) Torque spectra.

Figure 6.14
FE torque waveforms and spectra of the two single one-barrier rotors and their combination.

expected average torque is about 1.56 N m while the torque ripple is
21.7%. It can be noted that the two torque waveforms combine and tend
to lower the first torque slot harmonic. In fact, the second harmonic
visible in Figure 6.14(a) corresponds to the first torque slot harmonic
(Q/p = 24/2 = 12) since only a sixth of electrical period is shown. The
compensation of this harmonic is evident also from the spectrum in
Figure 6.14(b).

6.6 rotor with two flux-barriers per pole

The torque harmonic equation (6.7) is slightly modified. In particular,
there is an additional term which depends on the second flux-barrier
angle. Hence the torque contribution of the electric loading harmonic ν
results in

Tν = k∗T∆Ur
K̂ν

ν
sin(ν π

2 )
[︁
sin νϑe

b1 + sin νϑe
b2
]︁

(6.20)

The amplitude of the torque harmonic of order h is still obtained
through (6.8) or (6.18), taking into account the corresponding electric
loading harmonics.
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Figure 6.15
Analytical torque maps of the first slot harmonics for a motor with Q = 24, 2p = 4 in a two-barriers machine. Black dots show
the minima found through the proposed model.

Figure 6.16
Tested two flux-barriers geometries.

33+26

(a) First geometry.

28+23

(b) Second geometry.

Figure 6.15 reports the torque behaviors due to the first four slot har-
monics versus the two electrical barrier angles, (ϑe

b1, ϑe
b2). The 2D maps

are again obtained through a complete model of the two flux-barriers
SyR machine. On the other hand, The black dots and the magenta
crosses identify the barrier angles which corresponds to minima and
maxima, respectively, found by the simple model. This model is well
suited to predict these points with great precision.

In the following, the minima found through (6.18) are used to com-
bine the rotor poles. Similarly to the single flux-barrier rotor, the minima
obtained through (6.18) are the same of (6.8) for large angles, while they
could be different for small angles. Such angles are reported in Table 6.6.
The combination procedure for a two flux-barriers rotor is exactly the
same as that previously developed, so the problem to solve is again ex-
pressed by (6.19). Since now there are 35 solutions of minima, about 600

asymmetric combinations are available to be tested. They were sorted
based on the predicted 12th order harmonic and then the first solutions
were further analyzed. Table 6.7 reports the first ten combinations. It
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# 1 2 3 4 5 6 7 8

ϑe
b1 [°] 24.9 24.3 27.7 28.3 29.0 30.2 30.8 29.6

ϑe
b2 [°] 32.7 47.7 34.9 49.9 65.0 85.0 70.0 80.0

# 9 10 11 12 13 14 15 16

ϑe
b1 [°] 32.1 31.5 36.8 35.5 36.2 38.0 37.4 39.3

ϑe
b2 [°] 39.9 54.9 72.8 42.7 57.8 77.1 87.8 47.1

# 17 18 19 20 21 22 23 24

ϑe
b1 [°] 38.7 43.4 44.0 45.2 46.5 44.6 45.9 51.2

ϑe
b2 [°] 62.1 50.6 65.6 84.4 54.3 80.6 69.3 58.4

# 25 26 27 28 29 30 31 32

ϑe
b1 [°] 51.8 53.7 53.1 60.3 59.0 59.6 60.9 66.8

ϑe
b2 [°] 73.4 61.5 76.5 83.7 66.2 81.2 68.7 74.0

# 33 34 35

ϑe
b1 [°] 68.1 74.7 75.3

ϑe
b2 [°] 75.9 81.9 83.1

Table 6.6
Set Sh = {(ϑe

b1, ϑe
b2)i}n

i=1 of flux-
barrier angles corresponding to min-
ima of the 24th torque harmonic (Fig-
ure 6.13(b)) for a rotor with two flux-
barriers per pole.
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(b) Torque spectra.

Figure 6.17
FE torque waveforms and spectra of the first combination (‘33 and 26’) of two single rotors and their combination.

can be observed again that the ranking is not perfectly sorted when
they are analyzed by means of FEA. In addition, the achievable torque
ripple results almost always lower than that of one flux-barrier rotors.

6.6.1 Validations

As an example, two combinations minimizing (6.19) are studied. They
are the ‘33 and 26’ and the ‘28 and 23’ combinations. The first one
corresponds to the two pairs of barrier angles ϑe

b1 = 68.1°, ϑe
b2 = 75.9°

and ϑe
b1 = 53.7°, ϑe

b2 = 61.5°. The geometry is shown in Figure 6.16(a).
The second combination corresponds to the two pairs of barrier

angles ϑe
b1 = 60.3°, ϑe

b2 = 83.7° and ϑe
b1 = 45.9°, ϑe

b2 = 69.3°. The
relative geometry is reported in Figure 6.16(b).
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Table 6.7
FEA result of the predicted combina-
tions of two flux-barriers rotors.

i and j Torque Ripple 12th harm. 24th harm.

[N m] [%] [N m] [N m]

33 and 26 1.61 12.1 0.031 0.031

18 and 5 1.52 23.2 0.092 0.096

34 and 29 1.56 20.1 0.074 0.081

28 and 23 1.61 12.0 0.059 0.022

16 and 10 1.43 24.7 0.118 0.014

29 and 22 1.63 20.5 0.152 0.045

27 and 15 1.63 22.4 0.144 0.050

22 and 6 1.62 23.0 0.174 0.029

28 and 22 1.62 19.0 0.134 0.023

26 and 23 1.59 21.9 0.122 0.022

22 and 10 1.53 13.5 0.089 0.021
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(a) Torque waveforms.
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(b) Torque spectra.

Figure 6.18
FE torque waveforms and spectra of the second combination (‘28 and 23’) of two single rotors and their combination.

The FEA results are reported in Figure 6.17 and Figure 6.18 for both
combinations. In Figure 6.17(a) and Figure 6.18(a) dashed line refers
to the torque behavior of a rotor with the first pair of angles, and
dash-dotted line refers to the second pair. It is evident that the torque
oscillations are out of phase, even though they are not perfectly equal
in amplitude. This results from the minimization of (6.19). When the
two flux-barrier geometries are combined in the same rotor (Figure 6.16

shows the resulting rotors), the torque behavior is smoother as observed
in Figure 6.17(a) and Figure 6.18(a), with the solid lines. Furthermore,
Figure 6.17(b) and Figure 6.18(b) highlights the reduction of the torque
harmonic, especially the 12

th one which is the highest.

6.7 experimental measurements

The results of a symmetric and an asymmetric two flux-barriers IPM
prototypes were previously available (Bianchi et al., 2009b). The asym-
metric geometry was designed with a different technique, searching
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Figure 6.19
Comparison of FE torque waveforms and spectra of the available IPM and Machaon prototypes.

Figure 6.20
Magnetostatic solution of the Ma-
chaon two flux-barriers rotor.

for flux-barrier angles which minimize and compensate two torque
harmonics, as described in (Bianchi et al., 2009b). The angles of the
flux-barrier ends are ϑe

b1 = 29.6° and ϑe
b2 = 54.8° for the even poles,

ϑe
b1 = 44.4° and ϑe

b2 = 80.4° for the odd poles. It should be highlighted
that the first two flux-barrier angles are very close to the 10

th solution
of the set reported in Table 6.6, while the other one is close to the 22

nd

reported solution. Furthermore, the combinations of such solutions
appear in the complete list in position 44, so within the first 10% of all
the possible combinations, and it corresponds to the one labeled ‘22

and 10’ in Table 6.7.
The FEA results are shown in Figure 6.19. They confirm that the

asymmetric rotor (also referred to as “Machaon” in (Bianchi et al.,
2009b)) is able to generate a smoother torque waveform. It is also
evident from Figure 6.19(b) that the harmonic content of the Machaon
rotor is very low. In particular its average torque results 2.14 N m, with a
ripple of 4.57%, while the IPM motor has an average torque of 1.97 N m
with a ripple of 14.7%. A magnetostatic FEA solution of the Machaon
IPM is also reported in Figure 6.20.

Some measured results are reported in Table 6.8. The torque harmon-
ics are referred to the average torque. From this results it is evident
that the asymmetric rotor allows to minimize the torque oscillations.
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Table 6.8
Measured torque harmonics in the
two prototypes.

harmonic symmetric asymmetric

order rotor rotor

12 5.36 1.61

24 1.56 0.44

total 13.1 4.76

In particular the study has been carried out focusing on the higher
torque harmonic components (related to the slot harmonics), which
are of 12th and 24th order. It is worth noting that both harmonics are
strongly reduced. As a consequence the total torque ripple is reduced
to one third with respect that of a machine with symmetric rotor.

6.8 discussion

This chapter dealt with the design procedure for a quick and prac-
tical choice of flux-barriers in SyR machines. In particular, a simple
but effective model has been derived, useful to select the flux-barrier
angles in order to minimize the highest torque harmonics. The adopted
assumptions are:

1. only the first two electric loading slot harmonics are considered
because they produce the majority of torque ripple,

2. the rotor magnetic scalar potentials are considered constant.

According to that, the model reduces to the numerical solution of
a single equation (or system of equations). This fact ensures a great
convenience of the presented model, so the designer can opt for the
minimization of any torque harmonic of interest.

The results have been compared with the full torque harmonic func-
tions, derived by a complete analytical model. It has been shown a
perfect match between the minima, for many combinations of number
of flux-barriers and slots per pole.

Furthermore, the combination of proper flux-barrier angles into an
asymmetric rotor structure has been presented. This strategy is based
on the following two-step design procedure.

1. At first, a set of flux-barrier angles is identified so as to minimize
a torque harmonic of given order.

2. Then, pairs of geometries belonging to this set are combined
together so that a specific torque harmonic is compensated.

After that, many combinations of these minima have been tried to
compensate the first, and highest, slot harmonics. One of these com-
binations corresponds to an available prototype previously optimized
by a series of FEA simulations, which effectively compensated the first
slot harmonic. Therefore, this model becomes a practical tool for the
design of SyR motors.
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H I G H - T O R Q U E L O W- S P E E D P E R M A N E N T M A G N E T
A S S I S T E D S Y N C H R O N O U S R E L U C TA N C E M O T O R
D E S I G N

Direct-drive electric machines represent a valid solution for low-speed
applications thanks to the absence of the gear-box. This ensures lower
weight, noise, axial length and lower mechanical losses. Furthermore, a
higher reliability of the overall system is guaranteed, and this is a very
important requirement when the machine is installed in harsh environ-
ments (Grauers, 1996; Lampola, 1998; Popescu et al., 2013; Zhou et al.,
2017). Such machines find applications in energy production, electrical
propulsion, industrial automation, low-head pumps and so on. They
typically employs strong re magnets with high pole numbers. However,
in this application ferrite magnets have to be preferred, because of the
high cost of re magnets. This means that the machine should exploit
the reluctance torque component as much as possible. Therefore, a
PMaSyR machine is the topology of choice.

The structure of the chapter is as follows: at first the specifications and
constraints are listed; after that, some parametric analyses are carried
out (Wang et al., 2017). Then, a multi-objective optimization coupled
to finite element analysis is performed to find the best possible design
solutions. Finally, a thorough electromagnetic analysis is performed on
one possible design solution.

7.1 specifications , requirements and hypothesis

The motor outer dimensions are the constraints of the application and
they are reported in Table 10.1. In particular, they are 2500 mm for the
outer diameter, and 1500 mm for the stack length. The power require-
ment is 1 MW at 22 rpm, which results in a torque of about 434 kN m.
To achieve such performance, a machine with a high pole number is
required. Furthermore, a modular machine has to be preferred, where
all the machine sectors are independent. This limits the choice of the
winding arrangement and the number of poles. In fact, either two or
three three-phase systems has to be employed for supplying the ma-
chine. This means that the number of pole pairs (one sector) should be
a multiple of two, three or both.

The slot shape is rectangular to ease the manufacturing of the ma-
chine, and the conductors are chosen to be rectangular too. Such con-
ductors do not represent a problem for skin and proximity effects since
the supply frequency is extremely low. Iron losses are negligible too, so
the iron flux densities could be increased to higher values.

To start with an initial design, some hypotheses and choices have
been made. They are reported in Table 10.1. In particular, a high split
ratio is chosen since the machine has large external diameter and high

83
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Table 7.1
Motor specifications, constraints and
hypothesis.
* Efficiency requirement not realistic.

Quantity Value u.m.

Power 1 MW

Speed 22 rpm

DC bus voltage 690 V

Air-gap 2 mm

Outer diameter 2500 mm

Stack length 1500 mm

Efficiency* 96 %

Torque ripple 1 %

Hypothesis

Split ratio 0.92

Slot p. pole p. phase 4

Power factor 0.875

Estimated fill factor 0.6

Packing factor 0.97

Current density 6 A/mm2

Air-gap flux density 1.1 T

Yoke flux density 1.6 T

Tooth flux density 1.8 T

poles number. In order to improve the mmf waveform and reduce
torque ripple, the number of slots per pole and per phase is selected to
be four.

The choice of the pole number results from a compromise between the
minimum slot width (which should not be too small for manufacturing
issues), and the iron weight. The reduction of the iron weight obviously
implies an overall weight and material cost reductions, as the iron
losses do not represent an issue (Vagati et al., 2012). On the other hand,
the slot width is mainly due to the number of slots per pole per phase,
which should be relatively high to reduce the torque ripple (Bacco et al.,
2017; Bianchi et al., 2009b; Mohanarajah et al., 2018). Thus, for the initial
design, 36 poles and 4 slots per pole per phase are adopted. Through
a preliminary design it has been found that the efficiency target is too
high, because it would require a high amount of copper and a low
current density. So a more realistic target, equal to 93%, has been set.

7.2 parametric analyses

At first, some parametric analyses have been carried out in order to
better understand the dependency of the performance factors on the
design variables.
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Machine geometrical parameters.
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Figure 7.2
Torque and efficiency parametric
analysis varying the air-gap thick-
ness.

7.2.1 Air-gap thickness

The first one is the variation of the air-gap thickness. Since the torque
depends on the air-gap flux density, which is almost inversely pro-
portional to the air-gap thickness with the same PM and currents, an
increase in the air-gap reduces the available torque. The results of the
parametric analysis are shown in Figure 7.2, while a comparison of the
actual flux density maps is reported in Figure 7.3.

As expected, the available torque increases with the decrease of the
air-gap. This could potentially reduce the current needed to reach the
desired torque and, thus, increase the efficiency. However, the minimum
air-gap has been set to 2 mm according to mechanical constraints, given
the large stator diameter. From Figure 7.3 it is evident that a smaller air-
gap results in a more magnetized machine, with all the other parameters
constant.
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(a) g = 1 mm (b) g = 2 mm (c) g = 3 mm

Figure 7.3
Parametric analysis varying air-gap.

Figure 7.4
Torque and torque ripple parametric
analysis varying kair.
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7.2.2 Magnetic insulation ratio

Another parametric analysis deals with the magnetic insulation ratio,
kair. This factor determines how much space is reserved for flux-barriers
in the rotor. Generally speaking, this parameter strongly affects the
reluctance torque, but less the ripple. These aspects can be observed
from Figure 7.4, where the average torque and torque ripple are plotted
against this factor. The initial choice of kair = 0.5 (so as much air as
iron) represents the best compromise for this kind of machine. At
this stage of the design, the thickness of the magnets is the same as
the one of the corresponding barrier. It can also be noted that the
torque ripple remains almost constant up to a value of kair equal to
0.6. After this value, the ripple increases. This is due to the fact that
the large flux-barrier thicknesses compromise the actual position of
the flux-barrier-end angle, leading to a different air-gap flux density
distribution and to a different torque behavior.

7.2.3 Magnets dimensions

Another parametric analysis that has been carried out deals with the
variation of the magnets dimensions. The response variable is the
average torque. Since only one rotor position was evaluated, the dq
torque was used as the best estimate of the average torque.
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geometry after the magnet dimensions parametric
analysis.

Figure 7.5
Results of the parametric analysis changing the magnet dimensions.

The results are reported in Figure 7.5(a). The magnet thickness, on
the x-axis, is varied between 10 and 100% with respect to the relative
flux-barrier thickness, while the magnet width, on the y-axis, between
10 and 90% of the flux-barrier projection on the rotor periphery. It
can be seen that there exists a maximum for the torque at a specific
combination of magnets thickness and width, and it exhibits a torque
about 6% higher than the initial design.

Such a geometry and a magnetostatic simulation is reported in Fig-
ure 7.5(b). It can be noted that the magnets are really wide and they
cover almost all of the available space, especially comparing it to the
initial design of Figure 7.2. Despite the great increase in the magnet
size, the torque increase is modest. This is due to the use of ferrite and
probably such a solution is not reasonable when the magnet cost is
considered.

7.2.4 Number of poles and slots

The most defining parametric analysis is the variation of the number
of poles and the number of slots per pole per phase, though. In this
case, the geometry and the current change accordingly to the following
constraints:

• output torque equal to 440 kN m,

• current density equal to 6 A/mm2,

• flux-barrier electrical angles equal to {28°, 52°, 76°},

• maximum tooth flux density equal to 1.8 T and stator yoke flux
density equal to 1.6 T,



88 ht ls pmasyr motor design

Table 7.2
Slots and pole combinations ana-
lyzed in the parametric analysis.
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Figure 7.6
Results of the parametric analysis varying the number of pole pairs p and the number of slots per pole per phase q.

• magnetic insulation ratio, kair, equal to 0.5,

• equal magnet volume.

As it can be seen from Figure 7.6(a), the required slot current de-
creases as the number of poles increases, as expected. In fact, the electric
loading can be defined as

K̂s =
kw Îslot

ps
(7.1)

where kw is the winding factor, Îslot the peak slot current, and ps the slot
pitch. It is evident that as the number of poles increases, the slot pitch
decreases and so does the current to keep the same electric loading, thus
the same torque. Furthermore, the current required decreases as the
number of slots increases. However, the overall efficiency of the motor
decreases as the number of poles increases, because of the increase
of the copper quantity. Since the current density is kept constant, the
overall Joule losses increase. On the other hand, the rotor diameter
increases and the iron volume decreases. From these analyses, it is clear
that the efficiency requirement cannot be met with such current density.
This is also highlighted in Figure 7.6(b), where the maximum achievable
efficiency is 90.4% for the machine with the lowest pole pairs number.
Therefore, the supply condition of the machine should be modified to
better approach the efficiency requirement.
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Symb. Value u.m. Symb. Value u.m.

hy 50± 50% mm kb 0.1÷ 0.7 1

hs 45± 50% mm wpm1 45± 25% mm

ws 5.7± 50% mm wpm2 85± 25% mm

ϑe
b1 30± 10% ° wpm3 125± 25% mm

ϑe
b2 50± 10% ° tpm1 8± 25% mm

ϑe
b3 70± 10% ° tpm2 18± 25% mm

kair 0.4÷ 0.7 1 tpm3 28± 25% mm

Table 7.3
Optimization parameters and ranges.

7.3 optimization

Geometries with 30 poles will be optimized, to not penalize the effi-
ciency too much and to guarantee the feasibility of three three-phase
systems. Only 4 slots per pole per phase are considered in the following
since this combination achieved the best torque ripple results and it
allows a wide enough slot. A multi-objective optimization has been
carried out, with 14 parameters and 3 objectives.1 The parameters, to-
gether with their limits, are reported in Table 7.3. They are: the yoke
height hy, the slot height hs, the slot width ws, the three flux-barrier
angles ϑe

b1, ϑe
b2, ϑe

b3, the magnetic insulation ratio kair, the flux-barrier-
end shape factor kb, the three magnets width wpm1, wpm2, wpm3, and
the three magnets height tpm1, tpm2, tpm3.

70 individuals over 120 generations were evaluated, so a total of 8470

function evaluations have been performed. Each evaluation lasts for
about 150 s, meaning an optimization time of about 6 days with parallel
computations. The current was adjusted so as to always reach the target
torque.

The three objectives are the active material cost, the torque ripple and
the efficiency. One of the possible results plot is shown in Figure 7.7(a).
This represents a common and expected result, which highlights the
relationship between efficiency and cost. It is evident that newer gen-
erations are closer to the Pareto front, shown with black diamonds,
so newer generations have better efficiency for the same cost, and it
means that the optimizer is actually improving the objective functions.
Furthermore, efficiency equal to the target can be reached, but only at
higher costs, which means with a heavier machine, generally speaking.

Figure 7.7(b) reports the torque ripple versus the cost. The dimension
of the markers is proportional to the efficiency. It can be noted that
the torque ripple is basically independent of the cost of the machine,
proving once again that it is mostly due to the rotor geometry. In
addition, the achievable torque ripple is lower than 5%, which is a
remarkable result for this kind of machine. The target was 1%, but that
was very ambitious for a machine relying heavily on the reluctance
torque.

1 See Chapter 3.
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(a) Efficiency versus cost plane (b) Torque ripple versus cost plane

Figure 7.7
Optimization objectives planes. Lighter colors represent newer generations, while black diamonds are the points belonging to the
Pareto front. The size of the markers is proportional to the objective not shown.

Figure 7.8 reports a summary of the optimization results, where each
objective is plotted against each parameter. This kind of plot enables
the designer to understand the relationships existing between different
quantities. The first thing that is evident is that the cost has a linear
relationship with the slot height and width (hs and ws), due to the
amount of copper needed. Also the Pareto points creates a sort of
straight line in those planes. As a consequence, as already seen from
Figure 7.7(a), the efficiency is proportional to these two parameters, but
less than linearly. Furthermore, there is an upper and lower bound for
the cost as function of these two parameters.

Another thing that can be noted is that solutions with small second
and third magnets are preferred, thanks to the decrease in cost. In fact,
newer generations and Pareto points are close the the lower bound of
that quantity, meaning that it is convenient to keep these magnets small,
both from a performance and from a cost point of view.

At last, low torque ripple can be achieved only with certain com-
binations of flux-barrier angles. This can be deduced easily from Fig-
ure 7.9(a), where the leftmost points appear only at specific combina-
tions of the three angles (for instance, the one with ϑe

b1 ≃ 30°, ϑe
b2 ≃ 56°,

ϑe
b3 ≃ 68°).
One of the optimal solutions belonging to the Pareto front was

selected for deeper electromagnetic and thermal investigations. Fig-
ure 7.9(b) reports the geometry and the magnetostatic solution of this
optimum. It can be noticed that the yoke height is quite large, and the
slot is tall and narrow. This would imply a high slot leakage inductance
but, thanks to the low frequency, the voltage drop due to it is still
quite low. The magnets dimensions were changed as little as possible in
order to obtain their widths and heights proportional and so decreasing
supply and manufacturing costs.
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Figure 7.8
Summary of the optimization. Lighter colors represent newer generations, while black diamonds are Pareto points.

The main performance of this machine are reported in Table 7.4.
The motor is able to almost reach the efficiency target, reducing the
conductor current density, though. It can be noted that iron losses are
negligible, thanks to the very low frequency. The power factor is also
quite low, which may result in inverter oversizing. Finally, the torque
ripple is very good for this kind of machine. The corresponding torque
waveform is reported in Figure 7.10(a). Here, a sixth of an electrical
period is shown. It is immediate to notice a first harmonic, which
corresponds to the sixth harmonic of torque. After that, the highest
visible harmonic is the eighth, which corresponds to the 24

th in a full
electrical period. This is the second slot harmonic (2Q/p), while the

Quantity Value u.m.

Current 2905 A

Current Density 4.4 A/mm2

Average torque 446.5 kN m

Torque ripple 3.7 %

Joule losses 69.9 kW

Iron losses 4897 W

Efficiency 92.6 %

Power factor 0.741 1

Material weight 25.5 t

Material cost 45.9 ke

Torque density 17.5 N m/kg

Table 7.4
Chosen optimal motor performance,
weight and cost results.
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(a) Flux-barrier angles versus torque ripple. (b) Magnetostatic solution of one optimum.

Figure 7.9
Optimization results.

0 10 20 30 40 50 60
Rotor position [el.deg]

440

445

450

455

460

T
or

qu
e 

[k
N

 m
]

T
MST

T
dq

 + dW
mc

/d

(a) Torque waveform

0 50 100 150 200 250 300 350
Rotor position [el.deg]

-400

-200

0

200

400

B
ac

k 
em

f [
V

]

e
a

e
b

e
c

(b) bemf waveforms

Figure 7.10
Simulation results for the chosen optimum.

first slot harmonic (Q/p) has been minimized during the optimization.
Figure 7.10(b) also reports the resulting phase back electromotive force
(bemf). On top of the desired sinusoidal waveform there are some
higher order harmonics. This aspect is quite typical for synchronous
reluctance and permanent magnet assisted synchronous reluctance
machines.

A thermal analysis has also been carried out to estimate whether
the selected cooling system meets the requirement. In particular, the
conductor temperature should not exceed 120

◦C, which is the supposed
temperature for the electromagnetic computations. The ambient temper-
ature is 25

◦C, and the machine is water-cooled on the outer surface. An
equivalent air region has been added between the stator iron and the
frame to model the non-ideal contact between the two parts. The rotor
is virtually without losses, so it is not necessary to model it. Figure 7.11



7.4 discussion 93

0 41.8 43.0 44.1 45.3 46.5 47.6 48.8 50.0 51.1 52.3 53.4 54.6 55.8 56.9 58.1 59.3 60.4 61.6 62.740.6

Temperature [K]

Figure 7.11
Thermal simulation of one stator slot.

shows the temperature distribution in one stator slot when the machine
is on full load. The conductor relative temperature reaches 62

◦C, so
87
◦C absolute, which is far below the supposed one. This means that

the Joule losses could be lower, and the efficiency higher. Alternatively,
the cooling system could be made smaller. The absolute rotor temper-
ature results about 86

◦C, which means that a slightly higher PM flux
density may be expected.

7.4 discussion

In this chapter, a comprehensive feasibility study of a permanent mag-
net assisted synchronous reluctance motor for direct-drive cableway
application has been done. The overall performance and limits of this
kind of machine have been highlighted. In particular, the motor is
able to exhibit good performance, compromising slightly some of the
requirements (in particular torque ripple, which was very ambitious).
Parametric analysis and multi-objective optimization coupled to finite
element analysis have proven to be fundamental tools in the design of
these machines, in particular when the design space is wide. In conclu-
sion, the permanent magnet assisted synchronous reluctance machine
is suitable to reach the given targets and dimensions constraints.
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S Y N C H R O N O U S R E L U C TA N C E M O T O R
O P T I M I Z AT I O N F O R P U M P I N G A P P L I C AT I O N

A multi-objective optimization of a synchronous reluctance motor is
carried out in this chapter. This work has been done in collaboration
with a company, which wanted to substitute some PM servomotors with
SyR motors for variable-speed pumping applications. The requirements
are listed in Table 8.2(a). In particular, a torque of at least 90 N m
was required at 2000 rpm. The overload torque is double the rated
one, which represents quite a demanding requirement for this kind of
machine. Lastly, a flux-weakening speed range of at least two to one
was required.

8.1 rotor optimization

The optimization has been performed using the provided stator. The
most common way to optimize the SyR machine is to maximize the
average torque and minimize the torque ripple. Since the stator is fixed,
the efficiency is directly proportional to the average torque, so it is not
necessary to include it among the optimization objectives.

The optimization parameters were the three flux-barrier angles, and
the magnetic insulation ratio kair.

8.1.1 Optimization Results

The objectives plane is reported in Figure 8.1(a). This is the plane made
by the first two objectives (average torque and torque ripple), while the
dots dimension is proportional to the efficiency.

Obviously, being the stator fixed (constant Joule and stator iron
losses), the higher the average torque, the higher the efficiency. It can
be seen that all the Pareto individuals are able to reach and exceed the
required torque, but a clear conflicting relationship between the average
torque and the torque ripple can be observed. The lowest achievable
ripple is about 8%, and the individual with the lowest ripple on the
Pareto front is selected for further investigations.

8.2 chosen motor for prototype

As written above, the selected individual is the one showing the lowest
ripple belonging to the Pareto front. The parameters and the expected
results of the selected individual are reported in Table 8.2(b). The results
are referred to as expected because during the optimization run the
electromagnetic analysis was made quick with a coarser mesh and
fewer rotor rotation.

95
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Table 8.1
Specifications, requirements and first
results of the motor under investiga-
tion.

(a) Specifications and requirements of the motor.

Quantity Symbol Value u.m.

Rated torque TB 90 N m

Overload torque Tmax 180 N m

Rated speed nB 2000 rpm

Maximum speed nmax 4000 rpm

Supply voltage Un 380 V

Low torque ripple

Stator outer diameter De 180 mm

Stator inner diameter Ds 110 mm

Rotor shaft diameter Dsh 40 mm

Stack length Lstk 288 mm

Air-gap thickness g 0.4 mm

Number of slots Q 36

Number of poles 2p 4

Iron ribs thickness trib, 0.8 mm

Forced air cooling

(b) Parameters and expected re-
sults of the selected individual
in the first optimization.

Par. Value u.m.

ϑb1 18.813 °

ϑb2 27.953 °

ϑb3 35.568 °

kair 0.516

Obj. Value u.m.

⟨Tm⟩ 92.305 N m

∆Tm 8.07 %

η 93.12 %

Table 8.3
Results of the detailed simulation on
the selected individual.

Peak slot current Îslot 575 A

Current angle αe
i 68 °

Conductor current density J 7.025 A/mm2

Flux link./conductor Λ/ncs 0.0745 V s

Average torque ⟨Tm⟩ 92.195 N m

Torque ripple ∆Tm 10.06 %

Joule losses pCu 1093.6 W

Iron losses pFe 198.19 W

Efficiency η 93.14 %

A more detailed electromagnetic finite element simulation have then
been performed, and the final results are reported in Table 8.3. Compar-
ing it with Table 8.2(b), it can be seen that the average torque prediction
is quite close to the final result, while the torque ripple is slightly
higher than expected (due to the aforementioned simplifications). The
efficiency is just a little bit higher than 93%.

The detailed electromagnetic torque behavior for a sixth of electrical
period is shown in Figure 8.2(a), while the spectrum in Figure 8.2(b).
Since the motor has 36 slots and 2 pole pairs, the highest torque har-
monic is expected to be the first slot harmonic, which is the 18

th in this
case. It can be seen from Figure 8.2(b) that this torque harmonic has
been properly minimized during the optimization. In addition, the 36

th

torque slot harmonic is lower than the 54
th, which is unusual, meaning

that also this torque harmonic has been minimized by the automatic
algorithm.
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Figure 8.1
Optimization result. The colors show the evolution of the individuals, which try to reach the Pareto front, represented with black
diamonds. In the first plot the size of the points is directly proportional to the efficiency, while in the second one it is inversely
proportional to the magnetic insulation ratio.

Figure 8.3 reports the final geometry. The only notable things are
that the first flux-barrier angle is quite large, and then the angular step
between one flux-barrier and the other is quite small. The second thing
is that there is more air than iron along the rotor q-axis, even though
it is still larger than the stator back-iron. So a higher iron saturation is
expected to be found in the stator rather than in the rotor.

8.2.1 Winding design

Starting from the steady-state on-load simulation it is possible to design
the winding. The winding is star-connected, therefore the RMS available
phase voltage results

Uw = 220 V

Supposing a voltage drop on the winding resistance and end-winding
reactance of about 10%, the bemf should result about

Ew = 200 V

Knowing that

Êw = ωΛ̂ = 2π f Λ̂

and using the computed value of λ/ncs it results that ncs should be 9.
Now it is also possible to compute the winding resistance.

Lstk = 288 mm

Lew = 138 mm

Lc = 426 mm

Sslot = 145 mm2
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(b) Torque waveform.

Figure 8.2
Torque waveform and spectrum of the selected candidate.

Figure 8.3
Geometry of the optimized selected
individual.

The number of parallel paths is chosen equal to npp = 2, so that

nc = 18

Sc = 3.2 mm2

The closest commercial conductor size is the one with diameter equal to
2 mm. Therefore the conductor cross-section area should be recomputed
accordingly, and so the slot fill factor:

dc = 2 mm

S⋆
c = 3.14 mm2

Sc,eq = 6.28 mm2

R =
ρ@T

Cu NcLc

Sc,eq
= 138 mΩ

k⋆fill = 0.39
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Flux link./conductor Λ̂/ncs 0.0745 V s

N. series cond./slot ncs 9 1

N. cond./phase Nc 108 1

N. parallel paths npp to be decided 1

Flux linkage Λ̂ 0.6705 V s

Peak bemf Ê 281 V

RMS bemf E 199 V

Winding Current Iw 45.2 A

Table 8.4
Winding quantities for the selected
motor after the winding design.
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Figure 8.4
Vector diagram in the base point.

Once the winding resistance is known, the vector diagram of the
motor can be drawn (Figure 8.4). Thus, it is possible to derive the value
of the external power factor, equal to

cos φ = 0.732

8.2.2 Motor mapping

The selected motor has been further simulated mapping the (Id, Iq)-
plane. The map is reported in Figure 8.5(a). The black circle represents
the rated torque limit. The highlighted green torque contour is the
rated torque (90 N m). The red curve represents the MTPA trajectory,
which continues along the green Maximum Torque Per Volt-Ampere
(MTPVA) region, and it ends finally with the Maximum Torque Per
Voltage (MTPV) trajectory, which is basically a straight line.

The base point is the point lying on the MTPA at the rated current.
It can be noted that the corresponding current angle is quite high,
meaning that the motor is working under heavy saturation. This is
also evident from the shape of the MTPA trajectory: it starts from the
origin along a line at 45° and then it curves at low current values and it
continues in a straight line.
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(b) Power-vs-speed limit curve.

Figure 8.5
Map of the (Id, Iq)-plane and rated power-vs-speed limit curve for the chosen motor geometry.

8.2.3 Structural Analysis

The selected geometry has also been analyzed mechanically under cen-
trifugal load. The speed was set to 8000 rpm, well above the operating
speed. Despite this fact, the maximum Von Mises stress is found in the
last radial iron rib, and it results about 85 MPa. This is quite a low stress
value for iron alloys, whose ultimate tensile strength usually starts at
around 400 MPa. Of course, the corners of the flux-barriers should
be properly rounded to avoid stress concentrations. In addition, the
maximum deformation of the rotor at the air-gap results about 18 µm,
which is very small compared to the air-gap thickness (g = 0.4 mm).

8.3 experimental measurements

The prototyped motor is a scaled down version of the actual machine. In
particular, the rated torque of the prototype is 20 N m, so 4.5 times lower
than the original torque. This results in a 4.5 times lower stack length of
the prototype. In addition, to overcome the limitation of the test bench
DC bus voltage, current supply and maximum speed, the winding has
been rearranged to reach 500 rpm as the rated speed, and 1000 rpm as
the desired flux-weakening high-speed operation. Magnetically, if the
supplied current is scaled accordingly, nothing changes. A summary of
the specifications for the prototype is given in Table 8.5.

Typically, two kind of test can be conducted on synchronous ma-
chines:

• low-speed rotation to acquire the torque waveform and measure
the torque map in the (Id, Iq)-plane

• high-speed rotation to acquire the flux linkages and measure the
respective maps in the (Id, Iq)-plane
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Figure 8.6
Von Mises stress plot at 8000 rpm
of the optimized rotor. The maxi-
mum displacement at the air-gap is
17.7 µm, while the maximum Von
Mises stress in the innermost rib is
85.1 MPa.

Quantity Symbol Value u.m.

Rated torque TB 20 N m

Overload torque Tmax 40 N m

Rated speed nB 500 rpm

Maximum speed nmax 1000 rpm

Stack length Lstk 64.5 mm

Table 8.5
Specifications of the scaled down pro-
totype.

These kinds of measurements are performed in two different test
benches.

In addition, MTPA and MTPVA operations for a specific current
amplitude at the respective speed may be done, to measure external
performance indexes as efficiency and power factor.

8.3.1 Torque waveform

The first test is the rotation of the rotor at low-speed with the many
current amplitudes and the correct MTPA current angle for each ampli-
tude.

Figure 8.7 report the torque waveforms obtained during this test. It
can be noted that the motor is able to reach the target torque, both at
rated and at overload condition. However, the torque waveforms show
a higher harmonic content than predicted by FEA. In particular, the
torque ripple results about 14%, and the waveform shows a distinctive
18

th harmonic, which was not found in FEA. The torque ripple value
is consistent for different current values, as it can be verified from the
overload current.
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Figure 8.7
Torque waveforms versus the rotor position for two different current levels.

Figure 8.8
Flux linkages behavior as functions
of the two axes currents.
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8.3.2 Flux maps

The second test, the one done at relatively high-speeds, is used to
determine the flux linkage maps versus the d- and q-axis currents.
Their behavior is reported in Figure 8.8. As expected for this kind of
machine, the d-axis flux linkage is always higher than the q-axis one.
There two families of curves due to the cross-saturation effect: the
higher flux linkage is obtained with the respective axis current when
the other axis current is kept to zero; as soon as there is also the other
axis current, the flux linkage decreases. While a q-axis flux decrease
is beneficial, typically the decrease of the d-axis flux linkage is higher
than the decrease of the q-axis, leading to worse performance. Another
interesting fact that can be appreciated from Figure 8.8 is that the slope
of q-axis flux linkage near the origin is quite similar to the q-axis one.
This is due to the presence of the iron ribs, which must be saturated for
the machine to shown appreciable saliency.

The behavior of the flux linkages can be plotted also in the (Id, Iq)-
plane as contours. They are shown in Figure 8.9. The effect of cross-
saturation is evident from the curvature of the isolines.
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Figure 8.9
Flux linkages maps in the (Id, Iq)-
plane.

0 0 0 0

0

2

2 2

4

4 4

6

6 6

8
8 8

10
10

12

12
14

14
16

16

18

20

0 2 4 6 8

I
d
 [A]

0

1

2

3

4

5

6

7

8

I q
 [A

]

T
dq

Curr. limit

Figure 8.10
Torque map in the (Id, Iq)-plane.

Even though the torque has been measured during the low-speed
test of the motor, it is possible to estimate its value in the (Id, Iq)-plane
using the well-known relationship

Tm =
3
2

p
(︁
λdiq − λqid

)︁
as done in FEA. The results are shown in Figure 8.10. This map can
be directly compared with the one obtained through FEA (considering
the scaling factor, of course). As long as the rotational speed is low
(therefore iron losses are negligible), there should be good accuracy
between the measurements and finite elements.

8.3.3 Flux-Weakening and MTPV

Using the high-speed test bench and imposing the appropriate Id and Iq,
it is possible to reconstruct the whole Flux-Weakening (FW) operation,
so moving along the MTPVA and MTPV trajectory. The torque and
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Figure 8.11
Torque and power versus speed characteristics of the prototype at rated current.

Figure 8.12
Efficiency plot along the power ver-
sus speed curve.
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power versus speed characteristics of the prototype at the rated current
are reported in Figure 8.11. It is noticeable that the torque is decreasing
with the speed, despite the fact that the motor is working in MTPA
operation. This may be due to the friction and ventilation losses. The
corner speed is just above 500 rpm. At this point the machine has to be
flux-weakened. The peak power is reached at about 650 rpm, and after
that point the power rapidly decreases.

The rated output power of the prototype is about 1.1 kW, and con-
sidering the scaling factor for the stack length (4.5) and the base speed
ratio (4), the actual motor power should result 18 times higher.

Using a wattmeter during this test, it is possible also to compute
the efficiency of the motor. The plot is reported as a colored contour
in Figure 8.12. Since smaller motors are intrinsically less efficient than
large ones, the efficiency values of the prototype are not a good per-
formance index for the actual machine. However, the variation of this
quantity in that plane is still a good metric to check the progress of the
measurement and a proper motor operation.
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8.4 discussion

In this chapter a multi-objective optimization has been done to design
a synchronous reluctance motor within a defined size. Due to time
constraints, the automatic optimization represents the best tool to reach
a sound design in the shortest time. The chosen design was able to
reach all the requirements, in terms of torque, power and efficiency.
The torque ripple was the most critical aspect, though. In fact, the
prototyped scaled down motor displayed higher harmonic content than
the expected simulation result.

Anyway, the motor performance in MTPA and FW operations were
properly satisfied, so the design was a suitable candidate for the appli-
cation under investigation. In particular, no new stator lamination was
required, minimizing the fixed manufacturing cost.





9
H I G H - S P E E D S Y N C H R O N O U S R E L U C TA N C E
M A C H I N E S

This chapter describes a guideline to properly design synchronous
reluctance machines suitable for high-speed applications. The main
target is to give some guidelines for an accurate design of the rotor
geometry to obtain a robust mechanical structure, a quite high torque
density and a low torque ripple. A particular care is paid to the rotor
rib thicknesses, designed to guarantee the structural integrity of the
rotor (Barcaro et al., 2014b) and to minimize the q-axis magnetic flux.
In fact, the thickness of these iron ribs has to be wide enough to
mechanically sustain the rotor and it increases as the design speed
increases (Babetto et al., 2017). This is a significant drawback, since a
quite large part of the magnetic flux flows through them, reducing the
available saliency and, consequently, the machine torque.

9.1 design methodology for high-speed synchronous re-
luctance machines

In this section, an analytical model is first adopted to derive a prelim-
inary geometry (Bianchi et al., 2009b). The stator geometry is fixed
and the focus is on the rotor structure. The effect of iron ribs and their
influence on the increase of q-axis flux is taken into account. The flux-
barrier-end angles are selected so as to minimize the torque oscillation
(Bacco et al., 2017; Bianchi et al., 2009b; Jahns et al., 1996; Vagati et al.,
1998). Then, the purpose is to maximize the average electromagnetic
torque, according to a fixed speed. This is done through adjusting the
quantity of air present in the rotor.

A FE analysis is carried out to validate the results obtained by means
of the analytical approach. Then, an optimization is employed to op-

d-axis

q-axis

flux-barriers

radial rib

tangential rib

(a) Example of one rotor pole with two flux-
barriers per pole.

centrifugal 
forces

trib

air barriers

radial ribs

tangential ribs

q

d

(b) Sketch of one pole with three flux-
barriers. Distinction between the tangential
and the radial ribs is made.

Figure 9.1
Sketches of synchronous reluctance
machines for high-speed applications
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(b) Analytical torque maps of the first slot harmonic in
a two flux-barriers machine. The black dots show the
minima found through model presented in Chapter 6.

Figure 9.3
Analytical torque maps of the first slot harmonic as a function of the design flux-barrier angles for a 36-slot 4-pole machine. The
continuous lines are computed through the complex analytical model presented in Chapter 5, while the lines and the markers
are obtained with the model described in Chapter 6.

timize the position of the flux-barrier in the rotor, with the purpose
of reducing the q-axis flux through the iron bridges (which causes
the decrease of rotor anisotropy and average torque), and the torque
ripple. The Pareto front is reported highlighting the potentials and the
drawback of the optimal solutions. Finally, a thorough analysis of one
optimal solution has been performed. It includes a full electromagnetic
analysis to determine also accurate iron losses and a mechanical analy-
sis under centrifugal stress to determine local stresses on the rotor and
to verify the integrity of the structure.

9.1.1 Analytical approach

9.1.1.1 Choice of flux-barrier angles

Thanks to the model presented in Chapter 6, it is possible to easily
predict the combinations of flux-barrier angles which lead to the lower
torque ripples.

one flux-barrier rotor Figure 9.3(a) reports the torque behavior
due to the first two slot harmonics as a function of the electrical flux-
barrier angle, ϑe

b. According to a 4-pole machine (2p = 4), they are
the 17

th and 19
th for the machine with Q = 36. These waveforms are

obtained through the complete model of the SyR machine, shown in
Chapter 5. This figure shows how much the choice of the flux-barrier
angle affects the torque ripple resulting from the harmonic under study.
In addition, the vertical lines identify the flux-barrier angles found by
the simple formulation derived in Chapter 6. It can be noted that the
prediction of the torque minima and maxima perfectly corresponds to
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the minima computed by means of the complete analytical magnetic
model of the machine. As an example, a proper choice of the flux-barrier
angle would be about 75° and not 70°.

two flux-barriers rotor Figure 9.3(b) reports the torque behav-
iors due to the first two slot harmonics in the plane of the two electrical
flux-barrier angles ϑe

b1 and ϑe
b2. These harmonics are of the same order

of the previous ones. The two-dimensional maps are again obtained
through a complete model of the two flux-barrier SyR machine, shown
in Chapter 5 Then the points marked by black dots and magenta crosses
are found by means of the model proposed in (6). They identify the
flux-barrier angles which correspond to the torque ripple minima and
maxima, respectively. Once again this model is able to predict these
points with satisfactory precision, despite additional assumptions.

9.1.1.2 Flux-barriers and flux-carriers design

While the choice of the flux-barrier-ends mainly affects the torque ripple,
the selection of the magnetic insulation quantity along the q-axis mainly
affect the average torque capability of the machine. The thickness of
the flux-barriers is an important design parameter in order to achieve a
good rotor saliency and, therefore, high performance. However, their
thicknesses are limited by the level of saturation desired in the rotor
iron. This is also the common guideline to choose a proper insulation
ratio, kair. In fact it is often desirable to let the rotor saturate more than
the stator teeth, in order to reduce teeth iron losses. The coefficient kair
can be computed through the following equation:

kair = 1−
Bg

Br
· Dr

p(Dr − Dsh)
(9.1)

where Bg is the peak air-gap flux density, Br is the desired rotor flux
density, Dr the rotor diameter, Dsh the shaft diameter and p the number
of pole pairs. It represents the sum of the flux-barrier thicknesses along
the q-axis, that means

kair =
lair

ltot
(9.2)

where lair = tb1 + tb2 is the amount of magnetic insulation along
the q-axis, tb1, tb2 the thickness of the first and second flux-barriers,
respectively, and ltot is the available space given by (Dr − Dsh)/2. Its
value typically ranges between 0.4 and 0.6.

flux-barrier thicknesses Once the total amount of air is chosen
through the coefficient kair, the individual thickness of the flux-barriers
is chosen according to the stator mmf in front of each flux-barrier:
the higher the mmf step between two flux-barriers, the thicker the
flux-barrier.

Figure 9.4(a) shows a sketch of a two flux-barrier rotor with a sinu-
soidal q-axis magnetization. Us(ϑr) and Ur(ϑr) represent the stator and
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(b) d-axis magnetization. The the flux-carrier widths are also
indicated.

Figure 9.4
Sketches of a two flux-barriers per pole rotor with different stator magnetization.

the rotor scalar magnetic potentials, respectively. The mean value of
Us(ϑr) computed between the flux-barrier end angle ϑe

b(j− 1) and ϑe
bj is

f j. For a rotor with two flux-barriers they are:

f1 =
sin ϑe

b1
ϑe

b1
∆ f1 = f1 − f2

f2 =
sin ϑe

b2 − sin ϑe
b1

ϑe
b2 − ϑe

b1
∆ f2 = f2

(9.3)

A common design rule adopted for the flux-barrier thickness ratio
is (Vagati et al., 1998)

tb2
tb1

=
∆ f2

∆ f1

√︄
ϑe

b2
ϑe

b1
(9.4)

and then (Wang et al., 2017)

tb1 =
kairltot

1 + ∆ f2
∆ f1

√︃
ϑe

b2
ϑe

b1

(9.5)

so that tb2 can be easily obtained through (9.4). The thickness of each
flux-barrier is computed with respect to the q-axis as shown in Fig-
ure 9.4(a).

flux-carrier widths The flux-carrier widths are designed assign-
ing a width proportional to the mmf at the air-gap. Figure 9.4(b) shows
a sketch of a two flux-barrier rotor with a sinusoidal d-axis magnetiza-
tion. The meaning of f j is the same of the previous subsection and the
flux-carrier widths are computed with respect the q-axis.

The flux-carrier width ratio is defined as

wcj

wck
=

f j

fk
, j, k = 1, 2, 3 (9.6)
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where

f1 =
1− cos ϑe

b1
ϑe

b1

f2 =
cos ϑe

b1 − cos ϑe
b2

ϑe
b2 − ϑe

b1

f3 =
cos ϑe

b2
π
2 − ϑe

b2

(9.7)

Then

wc1 =
(1− kair)ltot

1 + f1
f2
+ f1

f3

(9.8)

and the remaining flux-carrier widths can be determined from (9.6).

9.1.1.3 Iron ribs computation

The thickness of the tangential iron bridges near the air-gap are set
equal to the minimum manufacturing length or to the lamination width.
Their effect on the structural integrity is negligible.

The radial iron ribs, in the middle of the flux-barriers, are properly
designed at the rated speed of the motor with the aim of containing
the centrifugal stress due to the rotation. A simple analytical method to
design the radial rib of each flux-barrier has been described in (Babetto
et al., 2017). Once the flux-barrier-end angles are known it is possible
to compute the thickness of the jth flux-barrier as follows:

trib,j =
νσ(1− kair)γLamω2

mD3
r
(︁
2ϑbj − sin 2ϑbj

)︁
cos ϑbj

8σr
(9.9)

where νσ is a safety factor, γLam is the lamination mass density, Dr is the
rotor diameter, ωm is the mechanical rotor speed and σr is the tensile
strength of the lamination. ωm is often selected slightly higher than the
nominal one and νσ is set in the range between 2 and 3 (Barcaro et al.,
2014b).

9.1.2 Optimization approach

For synchronous reluctance machines, an optimization of the rotor
is almost always necessary to obtain a good design. This statement
is reinforced when dealing with high-speed synchronous reluctance
machines. In fact the presence of iron ribs along the q-axis greatly affects
the performance of the machine.

One of the most used optimization algorithms in electromagnetic de-
signs is DE.1 Typically it guarantees good performance and convergence
in a reasonable amount of time.

Typical objectives for high-speed machines include the maximization
of average torque (or power), of the saliency, of the power factor, the

1 see Chapter 3
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Figure 9.5
Flowchart of the objectives evaluation
done by the optimizer.

Optimizer

Geometrical param-
eters ϑb1, ϑb2, . . . , kair

Feasible?
⟨Tm⟩ = 0 N m,
∆Tm = 106%

NO

YES

Computation of
trib,1, trib,2, . . .

MTPA
T

FE analysis

⟨Tm⟩, ∆Tm

minimization of the torque ripple, of the losses or of the cost. The
solutions found should also exhibit a proper robustness against slight
variations of the design parameters. It is evident that the optimization
of such machines is multi-objective from the start. Therefore there will
not be a single optimum, but many optimal solutions which are called
Pareto solutions. In fact they have at least one of their objectives which
is the best among all the solutions.

Figure 9.5 shows the flowchart of the evaluation procedure performed
for each individual. The geometrical feasibility is evaluated considering
the optimizer input parameters. The unfeasible individuals are dis-
carded setting zero average torque and a high torque ripple. For the
feasible individuals the algorithm computes the radial rib thicknesses,
finds the MTPA current angle and evaluates the average torque, its
oscillation and the motor losses in a sixth of electrical period.

9.1.3 Sensitivity analysis

To estimate the robustness of good candidates (high average torque and
low torque ripple), a sensitivity analysis on the results has been carried
out. The dimensions of the parameter space is equal to the number of
parameters, four in the considered optimization. Furthermore all the
parameters are normalized within the interval 0 and 1.

It is useful to consider a 3-dimensional space first. In the case study,
the parameters can be the flux-barrier end angles as shown qualitatively
in Figure 9.6. Each dot in the space corresponds to an individual with
an associated average torque and a torque ripple. For example, the
point j in Figure 9.6 is characterized by the objectives (Tm j, ∆Tm j).
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Figure 9.6
Space of parameters. Meaning of
the hypersphere and distance dij be-
tween the points i and j. Tmk and
∆Tmk are the average torque and the
torque ripple of the kth individual.

The sensitivity analysis is carried out for each point in the parameter
space. The distance between two points is computed with the euclidean
norm. It is verified that dij = dji since the distance is a symmetric
property. The matrix of the distances, D, is symmetric and its order is
the number of the individuals N. The element in the ith row and in the
jth column is the distance dij defined above. Obviously the matrix has
all the diagonal elements equal to zero.

D =

⎡⎢⎢⎢⎢⎢⎣
0 d12 · · · d1N

. . .

di1 · · · 0 diN

dN1 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎦ (9.10)

To the purpose of analyzing a restricted volume around each single
point, it is useful to define a radius R of an hypersphere. The sensitivity
can be computed locally in each point. In the normalized research space,
the maximum normalized radius of the hypersphere, that includes all
the individuals from each one of them, is equal to

√︁
Npar where Npar

is the number of parameters.
Referring to Figure 9.6, the hypersphere around the individual i

includes only the points j, k and m. The other ones are not considered.
This means that a restricted number of elements of the ith row of the
matrix D are useful. Among these remaining individuals the maximum
and the minimum torque ripple are researched. The figure reports
that the maximum and the minimum torque ripple correspond to the
individual k and j respectively.

The sensitivity of the ith individual is finally given by:

si =
max(∆Tm)

⃓⃓
i −min(∆Tm)

⃓⃓
i

∆Tmi
(9.11)

where the subscripts at the numerator indicates the maximum and the
minimum torque ripple among the individuals inside the hypersphere
centered on the individual i. The result of (9.11) is obviously a function
of the hypersphere radius.
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Table 9.1
Main motor data for the first high-
speed (hs) application.

Motor output

Rated voltage (RMS) VN 400 V

Number of poles 2p 4 1

Mechanical speed n 30 000 rpm

Geometrical data

Outer diameter De 152 mm

Inner diameter Ds 90 mm

Stack length Lstk 100 mm

Number of poles 2p 4 1

Number of slots Q 36 1

Slot height hs 16.3 mm

Tooth width wt 4.14 mm

Mechanical Air-gap g 0.7 mm

Winding

Conductors in slot nc 6 1

Number of parallel paths npp 2 1

Coil pitch yq 8 1

Materials

Iron Lamination N020

9.2 first application example

An example of a high-speed synchronous reluctance motor design is
presented hereafter. Two different design methods are used: a Semi-
Analytical Design Approach (SADA) and Finite-Element-based Ap-
proach (FEO). In the former, the analytical method is used to select
the proper flux-barrier angles combination and to compute the radial
rib thicknesses while the FE analysis is used to determine the best
insulation ratio and the motor outputs (i.e. average torque, inductances)
(Meeker, 2015). The latter needs an optimization algorithm and FE
simulations only. The SADA procedure is faster since it does not re-
quire an optimization. However, the iron saturation is not considered
in the flux-barrier angle choice. On the contrary, the total FE procedure
requires a higher computational time, but it is more accurate since it
takes into account the iron saturation.

The design only deals with the rotor geometry. The stator, the wind-
ing and the materials are given and reported in Table 9.1. Through
(9.9) it is possible to estimate if a design for such speed is feasible. In
particular, an estimation of the required maximum rib thickness can
be made based on the desired design speed. It is sufficient to select
ϑb equal to the maximum allowable one, which is π

2p . Then, the rib
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Rotor ϑe
b1 ϑe

b2 ϑb1 ϑb2

[°] [°] [°] [°]

A 29.25 76.63 14.63 38.32

B 31.49 63.25 15.75 31.63

C 40.96 72.73 20.48 36.37

D 61.02 71.61 30.51 35.81

Table 9.2
Flux-barrier-end angles combinations
that exhibit the lowest torque ripple
found through Figure 9.3(b).
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Figure 9.7
Average torque versus magnetic insu-
lation ratio for different flux-barrier
angles.

thickness will be a fraction of the maximum space available, which
means trib, = c Dr sin ϑb, where c measures the fraction. So

c =
νσ (1− kair)γLamω2

mD2
r
(︁

π
p − sin π

p
)︁

8σr tan π
2p

(9.12)

In the present case, considering kair = 0.5, σr = 500 MPa, νσ = 2.5,
γLam = 7650 kg/m3, it results c = 0.1.

9.2.1 Analytical design

In Table 9.2 some flux-barrier angle combinations, which exhibit the
lowest torque ripple, are reported. They are selected from the map in
Figure 9.3(b).

The magnetic insulation ratio, kair, can be selected trough (9.1), which
gives a value around 0.55 for this machine. However, in this case the
optimal kair has been selected by means of a parametric FE analysis
for each considered solution. The results are shown in Figure 9.7. The
figure also shows the rotor geometry variations with the insulation
ratio. It is evident that kair strongly affects the flux-barrier shape and
the radial rib thicknesses. In fact, as the coefficient increases, the amount
of rotor iron is lower and so, the radial ribs become thinner.

It can be noted that the maximum average torque is achieved with
a kair between 0.4 and 0.55. The motor C exhibits the highest average
torque among the selected ones. The main motor outputs are reported
in Table 9.3(a).
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Figure 9.8
Simulated individuals in the objec-
tives plane and Pareto front (black
diamonds) at 30 000 rpm.
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9.2.2 Finite Element optimization

The FE optimization is carried out with an RMS current density equal to
5.6 A/mm2. The selection of the current density is based on an a-priori
thermal analysis of the machine.

In this case, the chosen objectives are the average torque, ⟨Tm⟩, and
the torque ripple, ∆Tm. The geometrical parameters are the two flux-
barrier angles, ϑb1, ϑb2, and the magnetic insulation ratio, kair, while the
other geometrical quantities are derived from these parameters (Wang
et al., 2017).

The optimization has been carried out with a population size of 25

individuals and 80 generations and it took about two days. The final
objectives plane is shown in Figure 9.8. The black diamonds represent
the Pareto front. For high-speed applications it is mandatory to limit
the torque oscillation that causes dangerous mechanical vibrations and
acoustic noise. For this reason, the individual with the lowest torque
ripple has been selected. The average torque is about 6 N m while
the torque ripple is about 9% with respect to the average torque. The
relative flux-barrier angles are ϑb1 = 20.70° and ϑb2 = 31.81° while
the insulation ratio is kair = 0.429. With respect to the flux-barrier-
end angles analytically predicted, the first one is practically the same
while the second one is 9.12° (electrical) smaller. The different rotor
configurations justifies the mismatch of the torque ripple obtained with
the two methods.
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Table 9.3
Main electromagnetic results of the motors analyzed.

(a) Results obtained through FEA of the machines designed with SADA
and FEO.

Design
Method

αe
i ⟨Tm⟩ ∆Tm Ld Lq ξ cos φ

[°] [N m] [%] [mH] [mH] 1 1

SADA 52.5 5.83 17.6 0.896 0.344 2.61 0.43

FEO 47.5 5.91 9.16 0.910 0.367 2.48 0.40

(b) Motor losses in different parts.

Losses [W]

Part Fund.
Harm.

Space
Harm.

Total

Copper 194 0 194

Stator iron 479 100 579

Rotor iron 0 159 159

Total 673 259 932

9.2.3 Electromagnetic Analysis

After the selection of the most promising solution, an in-depth elec-
tromagnetic analysis is required to precisely evaluate the machine
performance. In particular the average torque and the torque ripple
found through the optimization are confirmed and better estimated, as
reported in Figure 9.10(a). The numerical results are also reported in
Table 9.3(a).

The flux density plot of the FE optimal motor is shown in Fig-
ure 9.9(a). It can be noted that the iron saturation within the tangential
ribs covers a larger area and the iron saturation of channels is not
negligible. These aspects highly affect the analytical model hypothesis
and explains the different torque ripple predicted by the approaches.

The high-speed of rotation involves high frequency for the current
supply. Even though thin lamination sheets have been considered, iron
losses may play an important role in the overall machine performance.
So, to accurately estimate the losses, the flux density for every mesh
element has been recorded in both x and y directions for a complete
electrical rotation. This allows to split the flux density fluctuations in
Fourier series and, thus, to find the losses for all the harmonics involved.
The harmonic losses are caused by the staircase mmf waveform and by
the effect of stator slots. Current distortion may introduce additional
losses, but it is not considered in this study.

The loss density map is reported Figure 9.9(b). It can be noted that
the maximum loss density appears near the rotor periphery and near
sharp corners. However the volumes involved are rather small. On the
other hand, stator teeth and back-iron see lower loss densities but they
are diffused, filling almost the entire volume. In fact, the stator iron is
subjected also to the fundamental harmonic of the flux density, which
is obviously the highest harmonic.

The comparison among the losses is reported in Table 9.3(b). The
majority of losses is due to the iron losses in the stator caused by the
fundamental of the flux density. Joule losses in the stator winding are
the second main cause. Then it can also be seen that the additional
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(a) Flux density plot. (b) Loss density map at the MTPA operating point.

Figure 9.9
Plots of the rotor designed with the FEO approach.

losses introduced by the harmonics are not negligible at this speed, as
they represent almost 30% of the total electromagnetic losses.

9.2.4 Structural Analysis

Lastly, a structural FE analysis has to be performed to verify whether
the radial iron ribs are able to sustain the centrifugal load of the rotor
iron paths (Dular et al., n.d.; Geuzaine et al., 1998). In the present study,
only the rotor design with the FE optimizations is considered since it
achieves better performance. Furthermore, the two rotor geometry are
similar from the mechanical point of view.

The rotor sharp corners have been smoothed out in order to avoid
dangerous stress concentrations. The von Mises stress and the displace-
ment plots are shown in Figure 9.10(b). The ultimate tensile strength of
the selected material is 500 MPa, while the chosen safety factor is 2.5
(Barcaro et al., 2014b). The scale of the von Mises stress has been set
to the desired stress value, which is 200 MPa for this study. It can be
observed that the target stress value is never reached within the radial
iron ribs. Stress concentration is present near corners, but it will lead
only to some yielding.

9.2.5 Discussion

The aim of this section was to propose a design procedure for high-
speed synchronous reluctance motors. Only the rotor geometry has
been properly designed while the stator and the winding have been
kept fixed. The goals of the rotor design were to achieve the maxi-
mum torque density with the lowest torque ripple and to ensure the
structural integrity against the high centrifugal force. To do that, the
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(b) Plot of von Mises stress of the optimized rotor for
30 krpm.

Figure 9.10
Plots resulting from the electromagnetic and mechanical FE analyses.

flux-barrier geometries (i.e. angles, thicknesses) and the radial ribs have
been designed. Two design approaches have been proposed: one is
semi-analytical while the other is based on FE optimization. The former
is faster and finds suitable flux-barrier angles by means of a simple
analytical model. The motor performance is then precisely evaluated
through FE analysis. The latter is more accurate since it considers the
iron saturation but requires more time because of the optimization
algorithm. The comparison between the two methods revealed that
the non-localized saturation of the tangential ribs and the radial rib
thicknesses strongly affect the torque ripple estimation of the analytical
model. For this reason, the torque oscillation obtained by means of the
FE optimization is about 52% of that resulting from the semi-analytical
approach.

The losses computation has shown that rotor losses have to be taken
into account for an accurate efficiency prediction, especially at such
high speeds. In fact, the rotor losses represent about 30% of the total.
The structural analysis confirmed the validity of the radial ribs design
method giving a suitable stress distribution within the rotor.

In conclusion, the semi-analytical method is a quick procedure that
allows to obtain a good initial design of a synchronous reluctance rotor.
However, to get more sound designs, a multi-objective optimization
algorithm should be employed.

9.3 second application example

The aim of this section is to investigate the potential of high-speed
synchronous reluctance machines. An optimization is carried out so
as to maximize the machine performance (high power, proper power
factor, low vibration) at a given speed. The machine size is fixed and
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Table 9.4
Main data of the machine under op-
timization for the second hs applica-
tion

Motor part Symbol Value

Outer diameter De 240 mm

Inner diameter Ds 140 mm

Stack length Lstk 140 mm

Pole number 2p 4

Slot number Q 48

Slot height hs 25 mm

Tooth width wt 5 mm

Air-gap g 1 mm

Iron lamination NO20

the focus is on the rotor geometry, with the purpose of maximizing
the electromagnetic torque, according to the necessary thickness of
the ribs. It is shown that, even if the ribs are thick, it is possible to
reach a proper torque density. However, the optimal solutions are
quite sensitive to the geometrical variations, so that a particular care is
required in the manufacturing of the machine. Finally, the power limit
of the synchronous reluctance motor with barrier rotor is found.

A sketch of a 4-pole synchronous reluctance rotor with three flux-
barriers per pole is shown in Figure 9.2(b). It also distinguishes the
radial iron ribs (in the middle of the barrier) from the tangential iron
bridge (near the air-gap). The radial bold arrows represent qualitatively
the centrifugal force that acts on the rotor lamination.

To the purpose of investigating the potentials of high-speed syn-
chronous reluctance machines, some optimizations are carried out. The
objective is to maximize the machine performance, expressed as electric
power, power factor, and low vibration at a given high-speed, which is
set to be equal to 20 000 rpm.

The dimensions of the stator are fixed and reported in Table 9.4. The
optimizations are focused on the rotor geometry. The position of the
flux-barriers is quite important to reduce the centrifugal forces, while
the position of the ends of the flux-barriers is important to reduce
the torque oscillation (Jahns et al., 1996; Sanada et al., 2004; Bianchi
et al., 2009b). The purpose is to maximize the electromagnetic torque,
according to the necessary thickness of the ribs.

9.3.1 Choice of the optimization parameters and iron ribs computation

9.3.1.1 Optimization parameters and objectives

The selected rotor parameters are the flux-barrier angles shown in
Figure 9.11 and the magnetic insulation ratio kair defined as:

kair =
lair

lair + lfe
(9.13)

where lair = ∑j tbj and lfe = ∑i wci are the total central thickness of the
flux-barriers and of the iron, respectively. Usually three flux-barriers
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wfe1
wfe2

wfe3

wfe4tb3

tb2

tb1

A3

A2

A1 Figure 9.11
Sketch of a one pole REL rotor with
three flux-barriers per pole. The flux-
carrier widths and the flux-barrier
thickness are also marked.

per pole are employed because they lead to a higher and smoother
torque. The shape of such flux-barriers derives from the magnetic flux
lines which would flow if the rotor were solid (see Chapter 4). As
reported in Figure 9.11 the flux-barrier angles are sorted in ascending
order from the outer flux-barrier to the inner one. The objectives of the
optimizations are the average torque and the torque ripple, computed
as

⟨Tm⟩ =
1

2π

∫︂ 2π

0
Tm(ϑm) dϑm (9.14)

and

∆Tm =
max [Tm(ϑm)]−min [Tm(ϑm)]

⟨Tm⟩
(9.15)

respectively, where Tm(ϑm) is the torque computed with the Maxwell
stress tensor (see Appendix B). The agreement between this torque
computation and experimental tests have been proven in numerous
works, such as (Bianchi et al., 2009b; Bianchi et al., 2016).

9.3.1.2 Computations of the radial iron bridges

At high-speed operation the rotor structure has to sustain high centrifu-
gal stresses that may cause rotor deformations and mechanical issues.
In order to improve the rotor integrity, the following two solutions are
evaluated:

i. use of radial iron ribs;

ii. addition of a containing sleeve with high tensile strength.

The design of the radial ribs is carried out with the following safety
precautions. The ultimate tensile strength of the rotor lamination is
set to σR = 500 MPa while the safety factor is νσ = 2.5 (Barcaro et
al., 2014a). This is a proper choice to guarantee an infinite lifetime.
Furthermore the structural contribution of the tangential iron ribs is
neglected.

The mass and the center of gravity of each island are directly com-
puted from the actual geometry, and they are referred to as mi and RG,i,
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Figure 9.12
Scheme of the computation of the
sleeve thickness.

uniform pressure, P

Fc,sleeve/2 Fc,sleeve/2

sleeve

respectively, for the ith island. The jth rib has to sustain the centrifugal
load due to the mass Mj given by:

Mj =
j

∑
i=1

mi RG,j =
∑

j
i=1 miRG,i

∑
j
i=1 mi

(9.16)

It follows that, the centrifugal force of the jth mass is:

Fj = Mj ω2
mRG,j (9.17)

where RG,j is the radius of the center of gravity of the jth mass while
ωm is the mechanical angular speed. From (9.17) the rib thickness can
be derived as (Babetto et al., 2017):

trib,j = νσ
Fj

σRLstk
(9.18)

9.3.1.3 Computation of the sleeve thickness

The sleeve counteracts the centrifugal force through a uniform ra-
dial pressure sketched in Figure 9.12. The chosen sleeve material is
a carbon fiber composite with an ultimate tensile strength equal to
σCF = 2000 MPa and safety factor νCF = 2.

The formulation comes from the membrane theory since the sleeve
thickness, tsleeve, is much smaller than the rotor radius. Hence the
relationship between the centrifugal force and the radial pressure is the
following:

Fc,sleeve =
∫︂ π/2

−π/2
P cos ϑ

DrLstk
2

dϑ = PDrLstk (9.19)

where P is the pressure at the air-gap and ϑ is the angular coordinate.
The pressure is assumed to be uniformly distributed along the rotor
periphery so as to link the centrifugal force and the sleeve thickness
through:

tsleeve = νCF
Fc,sleeve

2σCFLstk
(9.20)
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The sleeve allows to reduce the stress on the radial ribs, hence their
thickness. However, the air-gap length is kept constant whilst the rotor
diameter is decreased to include the sleeve. So the equivalent gap
becomes geq = g + tsleeve.

Both solutions affects negatively the average torque because the iron
ribs increase the q-axis flux while the sleeve increases the effective
air-gap. Thus a comprise between the two solutions could exploit better
performances and it will be evaluated later on.

9.3.2 Optimization

The optimization procedure used in the present section implements a
multi-objective DE algorithm.2

The analysis optimization is carried out with an electrical loading of
about 47 000 A/m, which corresponds to an RMS current density equal
to 7.15 A/mm2.

The chosen objectives have been defined above and they are the
average torque, ⟨Tm⟩, and the torque ripple, ∆Tm. The geometrical
parameters are the flux-barrier angles, ϑb1, ϑb2, ϑb3, and the magnetic
insulation ratio, kair. The remaining geometrical quantities are derived
from these four parameters. The choice of such parameters greatly
affects the final performance of the machine. The FE-aided design has
been validated in previous works (Bianchi et al., 2009b; Bianchi et al.,
2016) for lower speeds. The experimental results have confirmed the
ones found by means of simulations, in particular for the objectives of
interest.

The optimization flowchart, without computation of the sleeve, is
shown in Figure 9.5. At first, the input parameters defined above are
selected and the feasibility of the rotor geometry is evaluated. If it is
not realizable, the individual is discarded setting zero average torque
(i.e. ⟨Tm⟩ = 0) and a high torque ripple (i.e. 106%). Otherwise, the
algorithm computes the radial rib thicknesses according to (9.17) and
the FE motor model is built.

For each individual, the MTPA point at rated current is found varying
the current angle αe

i . This requires about four additional simulations.
The objectives are thus evaluated using the actual MTPA angle. Fi-
nally the optimizer processes the outputs and proceeds with the next
individual.

9.3.3 First optimization

9.3.3.1 Results

The first optimization is performed with 1-mm air-gap and no sleeve,
at the speed of 20 000 rpm. The optimization is carried out with 80

generations constituted by 40 individuals. The results of the whole
optimization is reported in the objectives plane in Figure 9.13, together

2 see Chapter 3
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Figure 9.13
Simulated motors in the objectives
plane and Pareto front at 20 krpm.
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with the Pareto front. On the x-axis there is the opposite of the average
torque, ⟨Tm⟩, while on the y-axis the torque ripple, ∆Tm, is reported.

It can be observed that the solutions converges to the optimal ones,
located near the bottom left corner of the plot. The resulting Pareto
front is steep, since the torque ripple has high variations around similar
average torque values. Nonetheless the results show that the rotor with
three flux-barriers is able to reach a proper average torque with many
combinations of the input parameters.

In order to highlight the dependence of the torque ripple on the
flux-barrier angles, Figure 9.14(a) shows the barrier angles sorted
by the relative torque ripple. The points lying on the Pareto front
are highlighted by black dots. Many of them are near the angles
(ϑb1, ϑb2, ϑb3) = (17°, 29°, 34°). The value of the fourth parameter, kair,
is close to 0.42. The Pareto points are all close to the aforementioned
angles, slight deviations from these values cause an increase in the
torque ripple and/or the leaving of the front.

Moreover, Figure 9.14(a) shows that the flux-barrier angles are not
evenly spaced since the third flux-barrier angle is close to the second
one. In fact, the third angle is directly related to the average torque so,
generally, the greater the third flux-barrier angle the higher the torque.
However, the decrease of such an angle permits to reduce the respective
island mass and, as a consequence, the rib thickness. It is clear that a
compromise solution has been found by the optimizer.

9.3.3.2 Sensitivity analysis of the results

Figure 9.14(b) shows the sensitivity of the optimization results for two
different radii, R1 = 0.1 and R2 = 0.3. The radius has to be sufficiently
small to correctly evaluate the sensitivity of each point, but also suffi-
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(a) Angles of flux-barrier-ends versus torque ripple at
20 000 rpm.
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Figure 9.14
Plots resulting from the multi-objective optimization procedure.

ciently large to find other points around each one. Figure 9.14(b) also
reports the tendency lines of the sensitivity, which would otherwise
be very scattered. These lines clearly point out how the lower torque
ripple values are more sensible to geometric variations of the chosen
parameters. Additionally the larger the variation—so the larger R—the
higher the torque ripple change. This fact highlights the importance of
good manufacture of the rotor, which therefore needs small tolerances.

9.3.3.3 Structural analysis of the optimized rotor

The structural integrity of one optimal individual has been verified
with finite element using GetDP (Dular et al., n.d.; Geuzaine, 2008).
The von Mises stress map is shown in Figure 9.15. The full-scale value
is set to 200 MPa that represents the acceptable rib stress limit. It can
be noted that the average iron rib stress is always lower than the
maximum limit according to the preliminary design. Higher stress
values are concentrated in the proximity of the edges.

The tangential iron ribs of the first flux-barrier (the outer one) are not
stressed while the other ones presents values higher than 200 MPa. This
is due to the local deformation of these ribs, which do not participate
in counteracting the centrifugal force, though.

The maximum displacement is about 83 µm, and it has been observed
in the third island, while close to the air-gap the value is about 70 µm.
This results in a 7% variation of the air-gap thickness, which is quite
negligible.

http://www.getdp.info/
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Figure 9.15
Map of the von Mises stress of the
optimized rotor for 20 000 rpm.

0 1e8 Pa2e8

Table 9.5
Average torque for different thick-
nesses of the sleeve at 20 krpm.

tsleeve [mm] 0 0.25 0.5

⟨Tm⟩ [N m] 46.3 43.9 42.1

9.3.3.4 Optimizations with sleeve

The same optimization has been carried out with the following sleeve
thicknesses: 0.25 mm and 0.5 mm. Hence the effective gaps are 1.25 mm
and 1.5 mm, respectively.

The corresponding sleeve force is obtained through (9.20). The force
that the jth radial rib has to sustain is decreased by Fc,sleeve. If such a
difference is negative, the thickness of the jth rib is set equal to the
lamination width. Finally, the radial iron ribs are computed from (9.18),
neglecting the tangential rib contribution as well.

The results, reported in Table 9.5, show that the adoption of the sleeve
greatly reduces the available torque. This aspect has been verified with
the optimistic assumption of no sleeve precompression. In fact, the rotor
iron ribs should be designed according to the precompression stress at
zero speed, otherwise lateral deflection of radial ribs might occur. This
requires thicker radial ribs, decreasing the machine anisotropy hence
the average torque. Therefore, a rotor with a precompressed sleeve
would have an worst reduced performance.

9.3.3.5 Salient pole comparison

The performance of a synchronous salient-pole rotor with the same
stator has also been investigated. This structure allows to avoid the
mechanical constraints of the flux-barrier geometry. The pole shoe spans
50% of the pole pitch. The average torque results about 42 N m with a
torque ripple higher than 78% so that a rotor skewing is mandatory.
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Figure 9.16
Simulated individuals in the objectives plane (average torque and torque ripple) and Pareto front. Two different speeds have
been considered.

With a skewed rotor, the torque oscillation has been reduced to 4.1%
with an average torque of about 40 N m.

Even if the salient pole is mechanically robust, for the rated speed it
does not represent a valid alternative to the flux-barrier rotor since the
average torque is lower.

9.3.4 Optimization at higher speeds

Further optimizations at different speeds are presented hereafter. The
aim of these investigations is to determine the influence of the speed on
the overall performance and on the rotor flux-barriers shape. The stator
geometry is kept fixed with and the same slot current is imposed. As
in the previous case, the optimization is focused on the rotor geometry.

The objectives plane of the optimization at 30 000 rpm is reported in
Figure 9.16(a). It can be noted that the average torque is lower than
before and it is around 36 N m. In addition the minimum torque ripple
achievable is slightly higher than the one at 20 000 rpm. The Pareto front
is very steep and different from the front obtained above (Figure 9.13).

The optimization has been repeated for a speed of 40 000 rpm. The
objective plane is reported in Figure 9.16(b). As expected, the average
torque, which results about 26 N m and is lower than the previous
optimizations since the leakage flux of the radial iron ribs is higher.

9.3.5 Comparison of the optimization results

Figure 9.17 shows the flux density plots of the selected individuals
at the speeds 20 krpm, 30 krpm and 40 krpm. It is worth noticing that
the radial iron ribs increase as the speed increases because of the
higher centrifugal load. Furthermore, the magnetic insulation ratio, kair,
increases too. This effect is because the optimizer finds the compromise
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Figure 9.17
Comparison of the flux density plots
of the optimized motors for different
speeds.

20000 rpm 30000 rpm

40000 rpm

between wider ribs and lighter islands. It can also be noted that the
saturation of the radial iron ribs decreases as the speed increases.
On the contrary, the iron paths between the flux-barriers becomes
more and more saturated. The behaviors of the torque versus the rotor
position of the optimal individuals are reported in Figure 9.18 for the
different speeds. For each plot, the average torque and the ripple are
also reported. It can be noted that the average torque at 20 000 rpm
is higher than the other ones. In particular, at 30 000 rpm the average
torque is about 21% lower while at 40 000 rpm the decrease is about
43%. Furthermore it can be observed that the torque ripple tends to
increase with the speed. In fact, at the lower speed it is 4.77% while
at 40 000 rpm it is 12.88%. In Table 9.6 the d- and q-axis inductances,
the saliency ratio (ξ), the difference between the inductances and the
power factor are reported for motors designed for different speeds. All
values are expressed in per unit, referring to the direct axis inductance
obtained with the lowest radial rib thicknesses, i.e. for motor running
at 1500 rpm. It is possible to observe that at the highest speed the d-axis
inductance is 30% lower than the reference one. The q-axis inductance
increases of about 120%, this is essentially due to the larger radial ribs
thicknesses. The reduction of rotor anisotropy related to the speed is
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Figure 9.18
Torque versus rotor position wave-
forms for the motors optimized at
different speeds.

n Ld Lq ξ Ld − Lq PF

[rpm] [p.u.] [p.u.] [1] [p.u.] [1]

1500 1 0.157 6.38 0.843 0.652

20 000 0.937 0.267 3.50 0.670 0.542

30 000 0.810 0.313 2.59 0.497 0.427

40 000 0.708 0.348 2.03 0.359 0.339

Table 9.6
Per-unit d- and q-axes inductances
and saliency ratios for different rated
speeds. The reference value is the d-
axis inductance at 1500 rpm.

evident considering both the saliency ratio and, mainly, the difference
between d- and q-axis inductances. With respect to the reference one,
the former parameter decreases of about 68% while the latter of 57%.
The power factor worsens with the speed decreasing from 0.652 to
0.339.

This aspect can be explained considering the flux density plots at
different speeds reported in Figure 9.17. It is evident that, at low speed,
the radial ribs are saturated and so the iron islands can be consid-
ered magnetically isolated from each other. Conversely, as the speed
increases, the radial ribs are no more saturated and so the islands are
far from being magnetically isolated.

The results of all the optimizations at different speeds are summa-
rized in Figure 9.19. It can be noted that the maximum output power is
a function of the speed.

It increases up to the speed 37 500 rpm, then it decreases for higher
speeds. This aspect represents a limit of the transverse-laminated reluc-
tance machines for the geometry under investigation.

Another interesting aspect that can be deduced from Figure 9.19 is
that the magnetic insulation, measured by kair, increases as the speed
increases. Clearly, such increase leads to a decrease of the overall iron
mass and, consequently, a decrease of the rib thicknesses.

9.3.6 Discussion

This section dealt with the investigation of the potential and the opti-
mization of the geometry of high-speed synchronous reluctance motors.
The optimization was focused on the rotor geometrical parameters,
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Figure 9.19
Maximum output power versus mechanical speed. For each speed the rotor geometry is different, as obtained by a specific
optimization.

such as flux-barrier angles and insulation ratio. The goals were high
power and low torque ripple.

It has been verified that, at rated speed of 20 000 rpm, the flux-barrier
geometry is the most suitable solution. Alternative solutions, such as
the use of a retaining sleeve and a salient pole rotor, do not meet the
requirements. A sensitivity analysis on the optimization results has also
been carried out. It has been observed that low-ripple solutions have a
high sensitivity and thus require a high manufacturing precision.

To the aim of investigating the potential of the flux-barrier syn-
chronous reluctance motor, the analysis has been carried out for high-
speeds. Because of the increase of the rib thicknesses with the speed,
the motor with flux-barrier rotor presents a power limit, corresponding
to a speed close to 37 500 rpm. Furthermore the higher rib thickness
worsens the rotor anisotropy and consequently the power factor.
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S E L F - S E N S I N G - O R I E N T E D O P T I M I Z AT I O N O F
S Y N C H R O N O U S R E L U C TA N C E M A C H I N E D E S I G N

This chapter deals with self-sensing-oriented optimization of syn-
chronous reluctance machines. This kind of machine is among the
most challenging to control without the position sensor at low speed. In
fact, typical position estimations adopt high-frequency voltage injection
which heavily relies on the intrinsic machine saliency. However, both
at low and high currents, such a saliency is not guaranteed due to
the presence of the iron ribs and to the saturation of the iron material,
respectively. Furthermore, the estimation algorithm could also become
unstable due to the absence of convergence points. The aim of the
chapter is to tackle this issue, embedding proper sensorless-control
capability into the design through multi-objective optimizations.

Several works in the past tried to enhance the self-sensing capability
of IPM motors (Bianchi et al., 2009a; Bianchi et al., 2013; Kano, 2014),
focusing on avoiding that the MTPA trajectory crosses the point where
the current error signal is zero. Despite that, few or no research is
available for SyRM, where the convergence issue is different in na-
ture. In this chapter, the non-convergence issue is tackled from early
electromagnetic design phase, trying to embed the solution into a com-
plete optimization of the motor. The sensorless technique considered
hereafter is the injection of high-frequency pulsating voltage along the
estimated d-axis, referred to as d̃, and the response is the q̃-axis current
(Figure 10.1(a)). A scheme of the electric drive with the hf injection is
shown in Figure 10.1(b). So the applied hf voltage vector is:

ud̃h(t) = Ud̃h cos ωht , uq̃h(t) = 0 (10.1)

where ωh is the hf signal angular frequency and Ud̃h is the injected
voltage amplitude. The resulting current error signal is

iq̃h(t) = Iq̃h sin ωht

Iq̃h =
−Ud̃h

ωh[ℓdℓq − ℓ2
dq]

[︁
ℓ∆ sin 2∆ϑ + ℓdq cos 2∆ϑ

]︁ (10.2)

where ∆ϑ is the electrical position estimation error, and ℓx are the
differential inductances.1 If there was no ℓdq, such a response would be
zero when the position estimation error is zero. Figure 10.2 reports the
ideal error signal, Γq̃d̃. It is a pure sinusoid, which crosses zero twice in
a semi-period. One of the zeros is stable, the green one, while the other
one is unstable, the red one. The stable convergence point is slightly
leading the correct rotor position (zero estimating error ∆ϑ) due to the
presence of the cross-saturation differential inductance, ℓdq.

1 See Appendix E for the derivation.
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Figure 10.1
Operating principle and control scheme implementation of the high-frequency signal injection for sensorless rotor position
estimation.

Figure 10.2
Ideal error signal, Γq̃d̃, with constant
differential inductances.
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The chapter is organized as follows: at first, a classical optimization
is performed on the rotor of the machine to maximize the output
torque and minimize the torque ripple. One optimal geometry is then
investigated to determine its hf sensorless control capability through
error signal maps. Next, the stator and rotor are optimized jointly with
the additional objective of minimizing the cross-saturation differential
inductance. Finally, one more objective is added to the multi-objective
optimization to further improve the self-sensing capability of the motor.

10.1 example of a typical optimization

The specifications and the constraints of the machine under analysis are
reported in Table 10.1. In particular, the requirement is to obtain about
90 N m with the highest possible efficiency within the given dimensions.
At first, also the stator geometry is a constraint, and its data is also
reported in Table 10.1.

A state-of-the-art optimization coupled to FEA has been performed
in order to assess the feasibility of the design and to get the overall
machine performance. The main objectives for synchronous reluctance
machines are average torque and torque ripple. Since most of the losses
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Quantity Value u.m.

Torque 90 N m

Speed 2000 rpm

Efficiency 92 %

Stator outer diameter 180 mm

Stack length 288 mm

Number of slots 36

Number of poles 4

Stator inner diameter 110 mm

Tooth width 4.83 mm

Slot height 22.4 mm

Slot opening width 2.5 mm

Slot opening height 1 mm

Slot wedge height 0.5 mm

Table 10.1
Specifications of the motor.

are located in the stator and in this optimization the stator is kept the
same, the efficiency depends only upon the average torque.

The objectives plane is reported in Figure 10.3. Every dot represents
a simulated individual. Each evaluation took about 150 seconds. The
color of the dot represents the age of the individual, while the black
diamonds are the Pareto points, which are those individuals that are
not dominated by others: this means that no other individual has
both objectives better. Thanks to the fact that almost all Pareto points
exhibit proper average torque, the individual with the lowest ripple at
92.3 N m has been selected for further investigations. The corresponding
efficiency is 93.1%.

A complete mapping of the (id, iq) plane has been carried out on
this individual with FEA. In particular, the flux linkages λd(id, iq) and
λq(id, iq) are computed and they are reported in Figure 10.4. These two
maps are the fundamental elements for the following analysis. In fact,
the electromagnetic torque can be readily computed, neglecting the
dependence on the rotor position, through

Tm(id, iq) =
3
2

p
[︂
λd(id, iq)iq − λq(id, iq)id

]︂
(10.3)

Then, the differential inductances are defined as:

ℓd =
∂λd
∂id

, ℓdq =
∂λd
∂iq

=
∂λq

∂id
= ℓqd, ℓq =

∂λq

∂iq
(10.4)

These inductances are defined locally and strongly depends on the
machine saturation. The half difference between ℓq and ℓd is defined as
ℓ∆ = (ℓq− ℓd)/2 and this quantity displays the available saliency for hf

signals. Also ℓ∆ results to be a map of the (id, iq) plane. In Figure 10.5
such a map is reported. The contour ℓ∆ = 0 is highlighted in red, the
MTPA trajectory with black dots, while the rated current circle is the
black line.
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Figure 10.3
Objectives plane for the first rotor op-
timization.
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Figure 10.4
Flux linkages as functions of the two
axes currents.

0 100 200 300 400 500 600

Current [A]

0

0.02

0.04

0.06

0.08

0.1

F
lu

x 
lin

ka
ge

s 
[V

 s
] d(id)

q(iq)

iq

id

Often in literature the region where ℓ∆ = 0 has been reported as an
unfeasible region for hf-injection sensorless control due to the loss of
error signal proportional to ℓ∆. However, thanks to the presence of ℓdq,
the sensorless estimation would still converge to a value of ∆ϑ = π

2 . In
the specific machine under analysis, the MTPA trajectory is quite far
from the problematic ℓ∆ = 0 contour. Even though this fact seems to
guarantee proper convergence of the estimating algorithm, when the
position is not known the control may apply a current vector which
is very different from the desired one. For instance, let us consider
the base point, which is the MTPA point at the rated current. That
point will be the reference from which the estimation error ∆ϑ will be
measured. And since the control may apply any current vector with
that amplitude, the estimation error signal is a complicated function of
∆ϑ (the dependency of the quantities on the current references (i∗d , i∗q )
is omitted for convenience):

Iq̃h(∆ϑ) =
Ud̃h
ωh

[︄
−
ℓ∆(∆ϑ) sin 2∆ϑ + ℓdq(∆ϑ) cos 2∆ϑ

ℓd(∆ϑ)ℓq(∆ϑ)− ℓ2
dq(∆ϑ)

]︄
⏞ ⏟⏟ ⏞

Γq̃d̃

(10.5)
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Figure 10.5
Map of the differential inductance ℓ∆
in the (id, iq) plane.

The term between brackets in (10.5) is referred to as Γq̃d̃ in the following,
because it acts like the inverse of an inductance.

In Figure 10.6(a) the behavior of Γq̃d̃ as a function of ∆ϑ is reported.
The most notable thing is that this waveform does not cross the x-axis,
which means that the observer would not be able to converge to any
working point, not even a wrong one. Recent works tried to tackle
this issue with a current, angle, or current and angle compensations
(Kwon et al., 2017; Manzolini et al., 2018). The scheme of the drive
with the hf sensorless rotor position estimation with current and angle
compensations is shown in Figure 10.7.

Repeating the same computation of Γq̃d̃ for all the possible working
points along the MTPA, a map of Γq̃d̃ as a function of the output torque
and estimation error can be obtained. The map for the motor under
analysis is shown in Figure 10.6(b). The contour Γq̃d̃ = 0 identifies the
operational limit of the hf-injection sensorless control. In fact, each
horizontal slice of the map in Figure 10.6(b) is the estimation error
signal (Figure 10.6(a)) used by the observer for the selected torque level.
It can be noted that for this machine the last achievable torque level
without any compensation is at about 45 N m (49% of the rated one).

Since Γq̃d̃(∆ϑ) stays always positive when convergence problems
appear (see Figure 10.6(a)), the convergence region can also be found in
the whole (id, iq) plane for every working point looking at the minimum
value of the Γq̃d̃ waveform: if this value is lower than zero, then there is
a zero-crossing and therefore the estimating algorithm converges. Thus,
the contour min Γq̃d̃ = 0 delimits the unfeasible region. In Figure 10.8 it
can be observed that such a region is quite wide. The cause of this issue
is the presence of harmonics in both ℓ∆ and ℓdq along the current circles.
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(b) Γq̃d̃ as a function of the output torque and position estimation
error.

Figure 10.6
Γq̃d̃ plots for the base point and for every point along the MTPA trajectory.

The ℓ∆ and ℓdq behaviors are reported in Figure 10.9 as functions of the
position estimation error ∆ϑ for αe

i = αe
i MTPA.

The presence of a second order harmonic is evident (in the figure only
a semi-period is shown). The error signal can be computed substituting
ℓ∆ and ℓdq harmonics into the numerator of (10.5). Defining ϑi the
angle starting from the d-axis, the error angle ∆ϑ is defined through
ϑi = αe

i + ∆ϑ, where αe
i is the reference current angle. So

ℓ∆(ϑi) ≈ ℓ
(0)
∆ + ℓ

(2)
∆ cos 2ϑi

≈ ℓ
(0)
∆ + ℓ

(2)
∆ cos 2αe

i cos 2∆ϑ− ℓ
(2)
∆ sin 2αe

i sin 2∆ϑ

ℓdq(ϑi) ≈ ℓ
(2)
dq sin 2ϑi

≈ ℓ
(2)
dq sin 2αe

i cos 2∆ϑ + ℓ
(2)
dq cos 2αe

i sin 2∆ϑ

(10.6)

and then

Γq̃d̃ ∼

⎛⎝ ℓ
(2)
dq − ℓ

(2)
∆

2

⎞⎠ sin 2αe
i⏞ ⏟⏟ ⏞

bias

+ ℓ
(0)
∆ sin 2∆ϑ⏞ ⏟⏟ ⏞
useful signal

+

+

⎛⎝ ℓ
(2)
∆ + ℓ

(2)
dq

2

⎞⎠[︁cos 2αe
i sin 4∆ϑ + sin 2αe

i cos 4∆ϑ
]︁

(10.7)

It can be seen that the second order harmonics in ℓ∆ and ℓdq are
responsible for a bias that shifts vertically the Γq̃d̃ waveform. It should
be noted that ℓdq is also the source of steady-state position estimation
error, which is defined as

ϵ =
1
2

arctan2(ℓdq,−ℓ∆) (10.8)
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Figure 10.7
Control scheme of the electric drive
with high-frequency signal injection
and current and angle compensation.

In fact, if there was no ℓdq, the estimation error signal Γq̃d̃ would always
go to zero when ∆ϑ = 0, regardless of the ℓ∆ behavior. On the other
hand, a large ℓ∆ value is desirable to get a high hf current.

10.2 self-sensing-oriented optimization

Two different optimizations have been carried out, with the aim of
extending the hf-injection self-sensing torque range. The first optimiza-
tion tried to minimize the cross-saturation differential inductance ℓdq
for an intermediate current angle αe

i = 45° at the rated current. The
second optimization aims at minimizing also the ratio R∆, defined as

R∆ =
ℓ
(0)
∆

|ℓ(2)∆ |
≈ 2⟨ℓ∆⟩⃓⃓

ℓ90°
∆ − ℓ0°

∆

⃓⃓ (10.9)

which is equal to maximize the absolute value of the average of ℓ∆
(numerator) along the rated current circle and, at the same time, to
minimize its second order harmonic (denominator). To compute all
these quantities, some linearized incremental permeability simulations
are performed, which do not add too much computational load to the
optimization procedure.

10.2.1 First self-sensing-oriented optimization

In this optimization there were three objectives: torque ripple, efficiency
and cross-saturation differential inductance. The parameters (degrees
of freedom) were the three flux-barrier angles, the magnetic insulation
ratio, the stator split ratio, the stator tooth width and slot height.

The results of the first optimization are reported in Figure 10.10.
It can be observed that the cross-saturation differential inductance
ℓ∆ is proportional to the efficiency. So the higher the efficiency, the
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Figure 10.8
min Γq̃d̃(∆ϑ) map in the (id, iq) plane
for every working point.
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Figure 10.9
The differential inductances ℓ∆ and ℓdq as functions of position estimation error at rated current.

higher ℓdq. Such a quantity strongly depends on the saturation of the
machine, which is affected by the geometrical parameters (and so is the
torque, thus the efficiency). Larger iron areas improve ℓdq but negatively
affects the motor torque and so the efficiency. In fact the rotor diameter
decreases to leave more space for the stator yoke, and the slots shrink
to obtain larger teeth. As a consequence the slot area has to decrease,
and so the copper losses increase.

In this optimization the Pareto front is a 3D surface. In Figure 10.10

the efficiency and ℓdq are reported in the two axes, while the torque
ripple is displayed through the size of the markers: the bigger the
marker, the lower the ripple. The average torque is not an objective now,
but it is implicitly taken into account in the torque ripple and in the
efficiency. Some individuals on the Pareto front were selected for the
complete mapping of the (id, iq) plane to test their hf sensorless control
capabilities.

The map of Γq̃d̃ for one individual is shown in Figure 10.11. It can be
seen that the highest torque which guarantees the convergence of the
observer is now about 58 N m. So the minimization of ℓdq improved the
torque range of the sensorless control, even though the error signal still
has a large negative bias: the negative values of the map are larger than
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Figure 10.10
Objectives plane for the first self-
sensing-oriented optimization. The
dimension of the marker is inversely
proportional to the torque ripple. The
black diamonds are the Pareto points.

the positive ones in absolute value. Also the Γq̃d̃ behavior at high torque
for position error values between −90° and 0° is improved (Figure 10.11),
because now the highest values are closer to zero (the x-axis), requiring
a lower current amplitude compensation (Manzolini et al., 2018).

10.2.2 Second self-sensing-oriented optimization

This time two cascaded optimizations were performed: the first one
considered three objectives (efficiency, cross-saturation differential in-
ductance and the ratio R∆ introduced in (10.9)), while the second one
focused on the torque ripple and average torque only. This is due to the
fact that the torque ripple is mainly due to the rotor geometry, while the
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Figure 10.11
Γq̃d̃ as a function of the output torque
and estimation error.
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Figure 10.12
Objectives plane for the second self-
sensing-oriented optimization. The
color is proportional to the efficiency.
The diamonds are the Pareto points,
the star the solution which has been
further investigated.
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Figure 10.13
Objectives versus parameters plots
for the third self-sensing-oriented op-
timization.
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self-sensing capability mainly depends on the stator parameters. The
R∆ numerator, ⟨ℓ∆⟩, is computed using four samples along the current
limit circle: at 0°, 45°, 90° and at 67.5°, where also ℓdq was sampled. So
the R∆ numerator results

⟨ℓ∆⟩ =
2ℓ0°

∆ + 3ℓ45°
∆ + 2ℓ67.5°

∆ + ℓ90°
∆

8
(10.10)

from a stepped average of the quantity.
The results of the second self-sensing-oriented optimization are sum-

marized in Figure 10.12. The figure displays ℓdq and R∆ of the simulated
motors along the two axes, while the color is proportional to the value
of the efficiency, so a darker color means a higher efficiency. The dia-
mond are the individual on the Pareto front. A very clear relationship
between ℓdq and R∆ can be noticed, since there seems to be a linear
limit on the values that these quantities may assume. In addition, the
efficiency increases on a direction almost perpendicular to this fictitious



10.2 self-sensing-oriented optimization 141

-90 -45 0 45 90

Position error  [deg]

0

10

20

30

40

50

60

70

80

90

T
or

qu
e 

[N
 m

]

-2

-2

-2

0

0

0

2

2

2

2

2

4

4

4
4

6

6

6

8

8

Figure 10.14
Γq̃d̃ as a function of the output torque
and estimation error.

(a) Typical optimization with
given stator.

(b) Second self-sensing-oriented optimiza-
tion.

Figure 10.15
Investigated geometries resulting
from the two optimizations.

line, and this proves that efficiency is conflicting with the other two
objectives.

The reason why ℓdq and R∆ are conflicting objectives can be under-
stood from Figure 10.13, looking at the second and third plots in the first
column. In fact, there is a lower limit on the value of R∆ as a function of
kair, and this limit increases with the increase of kair. On the other hand,
ℓdq decreases with the increase of kair, which is beneficial. This means
that increasing the amount of air in the rotor increases the saturation
of the rotor iron, obviously, and improves the cross-saturation, which
is mostly due to the saturation of the stator yoke. But it also leads to
a lower differential saliency, so a lower difference between the d- and
q-axes inductances, and therefore to a lower absolute value of R∆.

Also in this case some individuals on the Pareto front have been
selected for the complete mapping of the currents plane. In particular,
the one marked by the star in Figure 10.12 is the most promising one,
because it exhibits high R∆ ratio and proper efficiency. In Figure 10.14

the corresponding Γq̃d̃ map is shown. It can be observed that the maxi-
mum torque which guarantees the convergence is about 80 N m, which
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Figure 10.16
Γq̃d̃ plots for the selected individual of the second self-sensing oriented optimization.

corresponds to 87% of the rated torque. This has been possible only
thanks to the combined optimization of the stator and rotor geometries.
Of course, this improvement comes at a cost: the efficiency drops to
about 91.4%. The torque ripple has been minimized through a second
optimization to a value of about 5%. It has been found that a low torque
ripple is fundamental to maintain the same self-sensing performance
during the rotor rotation. The extension of the self-sensing range is
evident also looking at Figure 10.16(b) and comparing it to Figure 10.8.
The unfeasible region now is greatly reduced and it presents lower
absolute values.

In Figure 10.15 the geometry analyzed is shown and compared to the
one first studied. The differences are evident. In particular, the rotor
diameter is smaller, but that does not affect the torque capability of
the machine. Overall, there is now more iron in the stator, both in the
yoke and in the teeth. As a result, the slot area becomes smaller, which
explains the decrease in the efficiency.

Finally, Figure 10.16(a) reports the waveform of Γq̃d̃ as a function of
the estimation error for the base point. Comparing it with Figure 10.6(a),
it can be noted that the behavior is improved even though it still does
not cross the x-axis. In fact, it has less negative offset, and also the peak
before ∆ϑ = 0° is more pronounced and closer to zero. This means that
smaller current and angle compensations are needed.

10.3 discussion

In this chapter a hf-injection self-sensing-oriented optimization scheme
has been presented. A heavily saturated synchronous reluctance motor
has been selected as a case study. At first, a typical optimization has
been performed on the rotor of the machine. The torque range for
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sensorless control was rather limited. After that, the source of the issue
has been highlighted, together with the possible mitigating solutions.
These solutions were embedded into the optimization algorithm, in two
different ways. Even though the solution found was not able to exhibit
self-sensing capability at the maximum torque, the torque range has
been greatly extended to about 87% of the rated torque.

It has been demonstrated that the factor that affects the converge of
the observer the most is R∆, which is mainly due to the stator saturation.
However, the rotor should be designed accordingly to guarantee a high
average torque, high efficiency and low torque ripple. Finally, it has
been deduced that a better self-sensing capability comes at the cost
of lower efficiency. This fact highlights the importance of considering
hf-injection sensorless control at early design phases.





C O N C L U S I O N S

The research carried out in this thesis covered many aspect of passive-
rotor anisotropic synchronous machines. A lot of emphasis has been
given on the design of machines using advanced optimization algo-
rithms coupled to finite element analysis, which nowadays is the most
effective tool for electric machines design.

At first, a nonlinear analytical model of synchronous reluctance
machines have been developed, and it has been applied to estimate
the motor performance in terms of average torque and torque ripple.
In particular, some torque design maps have been presented, which
allow the designer to properly pick good flux-barrier combinations
at early design phases. This aspect has been further developed trying
to simplify the previous model to only look at the main causes of
torque ripple: slot harmonics. In fact, a simple transcendental system
of equations has been derived, and it can be easily solved numerically.
In addition, the simple model has also been applied to the design of
asymmetric rotors of synchronous reluctance machines.

The third part of this thesis focused on multi-objective optimization
applied to the design of electric machines. It represents the state-of-the-
art tool for designing machines. The first example is the feasibility study
of a high-torque low-speed permanent magnet assisted synchronous
reluctance motor, and it resulted that this kind of machine was able to
reach the target specifications. The second one is a pure synchronous
reluctance motor for pumping applications. The scaled-down prototype
of this motor has been manufactured and tested. The third example
dealt with high-speed synchronous reluctance motors. At first, some
design guidelines have been formulated based on electromagnetic and
mechanical analytical models. After that, the optimization algorithm has
been applied to design some machines and to investigate the potential
of this kind of machines for high-speed applications.

Lastly, multi-objective optimization has also been applied for self-
sensing-oriented design of SyRM, that is designed the motor consider-
ing sensorless-control issues early on in the design phase.
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Part IV

A P P E N D I X





A
M M F D I S T R I B U T I O N A L O N G T H E S TAT O R
P E R I P H E RY

Suppose to modulate a spatial sinusoid

f (ϑ) = sin ϑ (A.1)

with a cosinusoidal time signal of angular frequency ω

f̃ (ϑ, t) = sin ϑ cos ωt = 1
2
(︁
sin(ϑ + ωt) + sin(ϑ−ωt)

)︁
(A.2)

The obtained signal is a spatial sinusoid which oscillates in time with
frequency ω, just like a standing wave in a stretched rope. Moreover this
very same signal can be reproduced by superposition of two traveling
waves, as shown in the right-hand side (rhs) term of equation (A.2).

In order to better understand the characteristics of these traveling
waves, let us consider just the second addendum of the rhs.

sin(ϑ−ωt) = sin
(︃

2π

λ
x−ωt

)︃
= sin (k (x− ct))

Here λ is the wavelength of the wave, equal to twice the pole pitch in
an electrical machine

2τ =
πD

p

k is the wavenumber, spatial analogous to the angular frequency

k =
2π

λ

and c = λ f is the speed of propagation. The speed c can be derived
also considering to “ride the wave”, so to move synchronously with the
wave on top of the same point. So

2π

λ
x−ωt = const.

and taking the derivative and expliciting the speed

c =
dx
dt

=
ω
2π
λ

=
2π f
2π

λ = f λ

a.1 spatial harmonic

Let us suppose now that the spatial sinusoid has higher wavenumber,
so smaller wavelength.

f̃ ν
= sin νϑ cos ωt , kν = νk λν =

λ

ν
, ν ∈ Z0 (A.3)
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150 mmf distribution along the stator periphery

Repeating the same step as before, we can easily find out that the
speed of the associated waves must be lower than before and it is

cν =
c
ν

(A.4)

This is especially true if one thinks that in the same period (ω is the
same) the wave travels for one oscillation, the wavelength, which is
much smaller, so the speed must be smaller too.

In electrical machines we are interested in angular velocity, obtainable
through

Ων =
cν

D
2
=

f λν

D
2

=
2 f 2τ

D
=

2 f πD
νp D

=
2π f
νp

=
ωm

ν

so the angular velocity of the ν-th harmonic is 1/ν times the speed
of the fundamental. However the quantities shown before were all
mechanical quantities, and we are interested in the electrical ones. So
what happens is that every harmonic speed has to be multiplied by
the correct number of pole, which is pν = νp. For instance a fifth
harmonic has an equivalent number of poles which is 5p due to the
five wavelengths contained in one fundamental wavelength.

a.2 rotating mmf

Let us now suppose to have three balanced and symmetrical mmf waves,
displaced in space and time

f̃ 1(ϑ, t) = F sin ϑ cos ωt

f̃ 2(ϑ, t) = F sin
(︃

ϑ− 2
3

π

)︃
cos

(︃
ωt− 2

3
π

)︃
f̃ 3(ϑ, t) = F sin

(︃
ϑ− 4

3
π

)︃
cos

(︃
ωt− 4

3
π

)︃
Decomposing each of them in the same way as before, we can see that
they are sum of a progressive wave and a regressive one, just like before.
Summing them together though, the regressive terms cancel each other
and what we obtain is a progressive term equal to

f (ϑ, t) =
3
2

F sin (ϑ−ωt) (A.5)

This is the rotating fundamental mmf due to a three-phase system of
symmetrical currents flowing in three sets of coils displaced in space
by 120°. This mmf causes a rotating flux density distribution along the
airgap.

a.2.1 Rotating harmonics

Repeating the same steps we can find that for every harmonic one type
of traveling wave cancels and the other “survives”. For example, the
fifth harmonic travels in the opposite way of the fundamental, with
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the speed computed before. So it is convenient to assign the harmonic
order a sign to express the direction of motion of the associated mmf.
All the harmonics present in the described three-phase system are

ν = 6k + 1 , k ∈ Z (e.g. ν = +1,−5,+7,−11,+13, . . . ) (A.6)

In order to get the correct result one must remember that a spatial dis-
placement of a signal result in different displacement of the harmonics
proportional to the harmonic order.

y(ϑ)
FS←→ cν (A.7)

y(ϑ + β)
FS←→ ejνβ cν (A.8)

Resuming the fifth harmonic, the set of single phase mmf equations
is

f (−5)
1 (ϑ, t) = F(−5) sin[−5ϑ] cos(ωt)

f (−5)
2 (ϑ, t) = F(−5) sin

[︃
−5
(︃

ϑ− 2
3

π

)︃]︃
cos

(︃
ωt− 2

3
π

)︃
f (−5)
3 (ϑ, t) = F(−5) sin

[︃
−5
(︃

ϑ− 4
3

π

)︃]︃
cos

(︃
ωt− 4

3
π

)︃
Then the generic rotating mmf harmonic can be expressed as

f ν(ϑ, t) =
3
2

Fν sin(νϑ−ωt) (A.9)

Notice that if ν is negative, we can collect the minus sign and bring
it out of the sine, so what remains inside the operator is a regressive
wave with negative amplitude where the fundamental is positive.





B
M A X W E L L S T R E S S T E N S O R D E R I VAT I O N

First recall the set of differential Maxwell’s equations

∇ · D = ρ (B.1)

∇× E =
∂B
∂t

(B.2)

∇ · B = 0 (B.3)

∇× H = J +
∂D
∂t

(B.4)

and the equivalent integral formulation∮︂
∂Ω

D · n̂ dS =
∫︂

Ω
ρ dV (B.5)∮︂

∂Σ
E · t̂ dl =

d
dt

∫︂
Σ

B · n̂ dS (B.6)∮︂
∂Ω

B · n̂ dS = 0 (B.7)∮︂
∂Σ

H · t̂ dl =
∫︂

Σ
J · n̂ dS +

d
dt

∫︂
Σ

D · n̂ dS (B.8)

The most used ones in electrical machines are (B.6),(B.8), respectively
Faraday’s and Ampère’s laws. Usually the former is in the form

e =
dλ

dt

where e is the bemf while λ is the flux linkage of the considered
winding. In the latter, the time-derivative is usually neglected because
it has almost no effect at low frequencies.

In order to derive the force acting on bodies subjected to electro-
magnetic fields, we have to start from the Lorentz force on a charged
particle:

F = q (E + v× B) [N] (B.9)

where q is the charge of the particle and v is its speed. This formula
can be generalized to the force density on a continuum media, so

f = ρE + J × B [N/m3]

= (∇ · D) E + (∇× H)× B− ∂D
∂t
× B

The time derivative can be rewritten

∂

∂t
(D× B) =

∂D
∂t
× B + D× ∂B

∂t

Therefore

∂D
∂t
× B =

∂

∂t
(D× B) + D× (∇× E)
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f =
[︁
(∇ · D) E− D× (∇× E)

]︁
+
[︁
−B× (∇× H)

]︁
+

∂

∂t
(D× B)

=
[︁
(∇ · D) E− D× (∇× E)

]︁
+
[︁
(∇ · B) H − B× (∇× H)

]︁
− ∂

∂t
(D× B)

Through the vector calculus identity

A× (∇× A) = 1
2∇(A · A)− (A · ∇)A

f =
[︁
(∇ · D) E + (D · ∇) E

]︁
+
[︁
(∇ · B) H + (B · ∇) H

]︁
− 1

2 ∇(D · E + B · H)− ∂

∂t
(D× B)

= ∇ · (D⊗ E + B⊗ H)− 1
2∇(D · E + B · H)− ∂

∂t
(D× B)

where ⊗ is the dyadic product, or tensor product.1 It can be shown that

∇(D · E) = ∇ ·
(︁
(D · E) I

)︁
where I is the identity matrix. Therefore

f = ∇ ·
(︂

D⊗ E + B⊗ H − 1
2 (D · E + B · H) I⏞ ⏟⏟ ⏞
←→
M

)︂
− ∂

∂t

(︂
εµ E× H⏞ ⏟⏟ ⏞

S

)︂

f = ∇ ·←→M − εµ
∂S
∂t

This equation fully shows the force due to the presence of the elec-
tromagnetic fields.

←→
M is the Maxwell Stress Tensor (MST), while S

is the Poynting vector, representing either a sort of electromagnetic
momentum density or alternatively the directional energy flux density.
Noticing that the last term on the rhs derives from the rate of change
in time of the displacement field, in the quasi-magnetostatic case (usual
for electrical machines) it can be neglected. Thus

f = ∇ ·←→M (B.10)

In order to get the total force acting on a body contained in the volume
Ω, we integrate

F =
∫︂

Ω
∇ ·←→M dV =

∮︂
Σ

←→
M · n̂ dS (B.11)

1 Let a and b be two column vectors: the dot (scalar) product can be defined as

a · b = aTb = ∑
i

ai bi

while the dyadic product is defined as

a⊗ b = a bT =

⎡⎢⎢⎢⎣
a1b1 · · · a1bn

...
. . .

...

anb1 · · · anbn

⎤⎥⎥⎥⎦
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Therefore in order to compute the total electromagnetic force acting on
a body enclosed by the surface Σ (where Σ = ∂Ω is the boundary of
Ω), it is sufficient to compute the flux of the MST through it.

The MST can be written also as

σij = DiEj − 1
2 δij ∑

k
DkEk + Bi Hj − 1

2 δij ∑
k

Bk Hk

where δij is the Kronecker’s delta.2

Even though electrical machines have the adjective electrical, the
electromechanical energy conversion is realized through the interaction
of magnetic fields. So the electrical terms in the MST are not needed in
the following:

←→
M = B⊗ H − 1

2 (B · H)I (B.12)

The second term on the rhs resembles the magnetic pressure (which
is also the energy density), and it contributes to the MST only in the
diagonal terms. Hence in the cartesian coordinate system

←→
M =

⎡⎢⎣ 1
2 Bx Hx − 1

2 By Hy − 1
2 Bz Hz Bx Hy Bx Hz

By Hx
1
2 By Hy − 1

2 Bx Hx − 1
2 Bz Hz By Hz

Bz Hx Bz Hy
1
2 By Hy − 1

2 Bx Hx − 1
2 By Hy

⎤⎥⎦ (B.13)

However, typical electrical machines have a cylindrical rotor, so it is
rather convenient to express the MST in cylindrical coordinates and in
terms of stresses:

←→
M =

⎡⎢⎢⎣σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

⎤⎥⎥⎦ (B.14)

At this point, the electromagnetic torque generated by the machine
will be the electromagnetic torque times the lever arm. If R is the rotor
radius, the lever arm vector (in cylindrical coordinates) is

b = {R, 0, 0}T

and the torque

Tem = F × b

where × is the vector (cross) product of vectors. After some simple
steps, we would get

Tem = {0, RFz,−RFθ}T

2 It is simply

δij =

⎧⎨⎩1 if i = j

0 if i ̸= j
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What we are interested in is the last term, so Tm, z = RFθ , regardless of
the sign.

Since we are adopting cylindrical coordinates, the normal versor in
(B.11) is simply r̂ = {1, 0, 0}T, and so

←→
M · n̂ =

←→
M · r̂ =

⎡⎢⎢⎣σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

⎤⎥⎥⎦ ·
⎧⎪⎪⎨⎪⎪⎩

1

0

0

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
σrr

σθr

σzr

⎫⎪⎪⎬⎪⎪⎭
Therefore, choosing a cylinder as the integration surface right at the
rotor periphery, we can look at the tangential component of the force
only, expressed as

Fθ =
∮︂

Σ
σθr dS

= L
∮︂ 2π

0
σθrR dθ

= 2πRL⟨σθr⟩

(B.15)

where L is the active length of the machine, and ⟨σθr⟩ is the average
air-gap stress. So the torque results simply

Tem = 2πR2L⟨σθr⟩ = 2Vr⟨σθr⟩ (B.16)

where Vr is the rotor volume, and

⟨σθr⟩ = ⟨Bθ Hr⟩ = ⟨Br Hθ⟩ = ⟨σrθ⟩

because of the symmetry of the MST. If the stator current is distributed
on an infinitely thin sheet Hθ = Ks, where Ks is the electric loading.
If this quantity and the air-gap magnetic flux density are sinusoidally
distributed quantities

⟨σrθ⟩ =
B̂r Ĥθ

2
=

B̂gK̂s

2

Doing the last step

Tem = Vr B̂gK̂s (B.17)

we would get Esson’s rule.



C
R A D I A L B A S I S F U N C T I O N I N T E R P O L AT I O N

c.1 theory

A Radial Basis Function (RBF) is a real-valued function, ϕ, whose value
depends only on the distance from the origin. Any function that satisfies
the property ϕ(x) = ϕ(∥x∥) is a radial function.

RBFs are commonly used to build up function approximations of the
form

y(x) =
N

∑
j=1

wj ϕ(∥x− xj∥) (C.1)

where xj are the sampled data points. To find the best approximations,
we should tune the parameters (weights) wj.

RBFs are used to interpolate functions too, so the weights can be
found from the solution of the linear system

y(xi) =
N

∑
j=1

wj ϕ(∥xi − xj∥) ∀i (C.2)

Even though the RBFs may be nonlinear, this system is nonetheless
linear in the weights wj, which are our unknowns. In fact ϕ(∥xi− xj∥) =
ϕij which is just a number. Then

Φw = y ⇒ w = Φ−1y (C.3)

c.1.1 Types of Radial Basis Functions

Let r = ∥x− c∥, where c is the center of the RBF, and let ε be the inverse
of a critical radius, h. Some of the possible RBFs are:

gaussian

ϕ(r) = e−(εr)2

multiquadric

ϕ(r) =
√︂

1 + (εr)2

inverse quadratic

ϕ(r) =
1

1 + (εr)2

inverse multiquadric

ϕ(r) =
1√︁

1 + (εr)2
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158 rbf interpolation

linear

ϕ(r) = r

polyharmonic spline

ϕ(r) = rk , k = 1, 3, 5, . . .

ϕ(r) = rk ln r , k = 2, 4, 6, . . .

cubic spline

ϕ(r) = r3

multilog spline

ϕ(r) = ln[1 + (εr)2]

exponential

ϕ(r) = e−r

rational quadratic

r2(1 + r2)

thin plate spline

r2 ln r

c.2 tests

c.2.1 1D sinusoid

Let the real function be

y = f (x) = − sin 3x (C.4)

in the compact domain [−1, 1]. We are going to approximate the func-
tion through an RBF network. And we will try with a different number
of samples.

c.2.1.1 Gaussian RBF linear vs random distribution
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c.2.2 1D faster sinusoids

In the same domain, our function is now

f (x) = 1 + sin 2x cos 5x (C.5)

Intuitively, a good approximation of the function requires more sample
points.

c.2.2.1 Gaussian RBF linear vs random distribution
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c.2.3 2D sinusoids

f (x, y) = cos x sin 2y + 0.1y (C.6)



160 rbf interpolation

c.2.3.1 Gaussian RBF linear vs random distribution
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c.3 2d camel function

The 2D camel function is

z = f (x, y) = 4x2 − 2.1x4 +
1
3

x6 + xy− 4y2 + 4y4 (C.7)

This function is often used as an example for single objective optimiza-
tion due to the presence of two equal minima and to its flatness around
this area.
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c.3.1 Gaussian RBF linear vs random distribution
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c.4 error estimation

Since in general we do not know the function we are interpolating
and/or approximating, we need an estimation of the error based on
our observations only. The most commonly used method is the leave-
out-one (LOO) technique. It basically means to build the model N
times (where N is the number of samples), leaving out one sample at
a time. Let k be the sample that we drop from the training set, w(−k)

the weights computed without sample k, ỹ(−k) the function estimation
without such sample.

w(−k) = Φ−1
(−k) y(−k) (C.8)

ỹ(−k)
k = ỹ(−k)(xk) = ∑

j ̸=k
w(−k)

j ϕ(∥xk − xj∥) (C.9)
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Then our estimation error is the average of the errors we are making
each time we drop one sample:

EE =
1
N

N

∑
k=1

(︂
yk − ỹ(−k)

k

)︂2
(C.10)

We are going to define also the individual LOO errors, as

eek =
(︂

yk − ỹ(−k)
k

)︂2
(C.11)

EE =
1
N

N

∑
k=1

eek (C.12)

Since we would like to have these errors as relative quantities, we are
going to normalize them

ξk =

(︄
yk − ỹ(−k)

k
maxj yj −minj yj

)︄2

(C.13)

Ξ =
1
N

N

∑
k=1

ξk (C.14)

c.5 selection of the critical radius h

If the sample points are uniformly distributed, it is reasonable to assign
to each point a region of space proportional to the total amount of
space divided by the number of sample points. Let D be the domain
maximum dimension

D =
N

∏
l=1

[︃
max

i
x(i)l −min

i
x(i)l

]︃
(C.15)

then

h ∝ d

√︃
D
N

(C.16)

where d is the number of features of the inputs.1 A good guess could
be

h = 3 d

√︃
D
N

(C.17)

c.5.1 Normalization

In order to properly apply RBF interpolation, it is usually necessary
to normalize the parameters space to make the radial nature of the
function to be effective in every direction.

1 I am not really sure of d
√
· instead of simply

√
·.
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Alternatively, one could adopt a critical radius which is a vector,
which normalizes the parameters by itself. Therefore, defining

d = {dl}l =

{︃
max

i
x(i)l −min

i
x(i)l

}︃
l

(C.18)

and

c = d

√︃
1
N

the vector critical radius results proportional to h ∝ cd. Empirically, a
good value could be

h = ced (C.19)

c.6 regularization

Sometimes, the values of the weights can become very large, and
this generally leads to wrong approximation of the function in the
unsampled domain. The function approximating the true function is
now of the form:

y(x) =
N

∑
j=1

wj ϕ(∥x− xj∥) + xT p + a (C.20)

where p is a vector of “biases”, while a is a scalar bias. So we introduced
(d + 1) biases. Therefore, we need (d + 1) additional equations. Let us
rewrite the previous equation in a matrix form

y(x) = ϕ(∥x− C∥)w + {1 xT}b (C.21)

where C is a matrix containing all the samples along its columns and b
has been defined as

b =

{︄
a

p

}︄
Now, to find the weights and the biases we have to solve the following

system:⎧⎨⎩Φw + {1 XT}b = y

{1 XT}Tw = 0
(C.22)

Defining S = {1 XT}, we can have the same system in matrix form:[︄
Φ S

ST 0

]︄
⏞ ⏟⏟ ⏞

M

·
{︄

w

b

}︄
⏞ ⏟⏟ ⏞

z

=

{︄
y

0

}︄
⏞ ⏟⏟ ⏞

g

(C.23)

and finally

z = M−1g (C.24)
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I R O N L O S S E S I N S I G H T S

In this chapter, some insights on iron losses are investigated.

d.1 eddy currents iron losses coefficient

Consider an infinitely long conductive sheet of thickness d along the
y-axis, depicted in Figure D.1. Let B(t) be the forcing time-varying
magnetic flux density, parallel to the z-axis

B(t) = {0, 0, Bz(t)}T

BJ

t

x

y

z

Figure D.1
Conductive lamination sheet of thick-
ness d and chosen reference frame.

Recalling Faraday–Neumann–Henry–Lenz’s law

∇× E = −∂B
∂t

Since B has z-component only, ∇× E must be parallel to it.

(∇× E) · ẑ = ∂xEy − ∂yEx

Looking at Figure D.1, we can see that eddy currents are directed
along the x-axis only. And because of the constitutive equation (Ohm’s
law)1

J = σE

the E field must have x-component only. Therefore

−∂yEx = −∂tBz

∂Ex

∂y
=

∂Bz

∂t

(D.1)

This is a first order one-dimensional partial differential equation. Em-
ploying Steinmetz (or Fourier) transform, we can transform it into a
complex first order ordinary differential equation.2

dEx
dy

= jωBz (D.2)

1 Assuming a uniform, homogeneous and isotropic material.
2 With ‘ ’ we denote a phasor quantity. In this case, the phasor expresses the peak value of

the underlying quantity.
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Since Bz is supposed to be imposed and uniform, this differential
equation is trivial to solve, and thanks to the proper choice of the
reference frame, the integration constant is zero.

Ex = jωBzy

As shown in Figure D.1, both the electric field and the current density
field have a linear distribution along the y-coordinate. In fact:

Jx = jωσBzy (D.3)

Now we can compute the associated power losses due to eddy currents.
Also the losses will result a function of the y-coordinate3

pJ =
1
2

ρ|Jx|
2 =

1
2

ω2σB2
zy2

At this point we can compute the space average of these power losses,
doing

⟨pJ⟩ =
1
d

∫︂ d
2

− d
2

1
2

ω2σB2
zy2 dy

=
ω2σB2

z
2d

y3

3

⃓⃓⃓⃓ d
2

− d
2

=
ω2σB2

zd2

24
=

4π2 f 2σB2
zd2

24
=

π2σd2

6
B2

z f 2

At this point, we can define the eddy currents coefficient, gec, as

gec =
π2σd2

6γ
[W/(kg T2 Hz2)] (D.4)

where γ is the volumetric mass density of the material.

d.2 element-by-element iron losses

The partial differential equation which governs low frequency electro-
magnetic problems is the following:

∇× ν∇× A = J (D.5)

The current density vector may be due to many causes, in particular to
the supply or to eddy currents.

∇× ν∇× A = Js − σ∇V − σ
∂A
∂t

with e.c. and voltage supply

−∇ · ν∇Az = Js − σ
∂Az

∂t
in 2D

−∇ · ν∇Az = Js − jωσAz in 2D and in frequency

∇ · ν∇Az − jωσAz + Js = 0 standard form

3 We need the factor 1/2 because we are using phasors with peak values.
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d.2.1 Permanent Magnets eddy currents

In magnets we have to guarantee that only zero-sum currents flow.∫︂
ΩPM

Jeddy dS = 0 (D.6)

Jeddy(x, y, t) = −∂Az(x, y, t)
∂t

But if we were to compute the eddy currents with the derivative, errors
due to noise may occur. We want to show that imposing (D.6) in time
is the same as imposing it in frequency. In fact, we can write

Jeddy(x, y, t) =
+∞

∑
h=1

jh(x, y) ejhωt

and substitute in (D.6):∫︂
ΩPM

+∞

∑
h=1

jh(x, y) ejhωt dS = 0

+∞

∑
h=1

ejhωt
∫︂

ΩPM

jh(x, y)dS = 0

Since the basis functions ejhωt are never zero, we need∫︂
ΩPM

jh(x, y)dS = 0

which is valid for every time instant, as requested.

d.2.2 Harmonic iron losses

Iron losses in ferromagnetic material can be estimated knowing the
time variation of the flux density in each part of the machine. In FEA,
the flux density components (Bx(t), By(t)) are known in every mesh
element. Referring to them as (Be

x(t), Be
y(t)), we can express them in

Fourier series as

Be
x(t) =

∞

∑
h=0

Be
xh cos(hωt− ϕh)

Be
y(t) =

∞

∑
h=0

Be
yh cos(hωt− ψh)

Since iron losses depend on the square of the element flux densities,
we can write

B2
h,e = (Be

xh)
2 + (Be

yh)
2

Determining appropriately the hysteresis and iron losses coefficients,
one could express the iron losses due to all the harmonics as

pe
Fe =

+∞

∑
h=1

(︂
chyB2

h,eh f + cecB2
h,eh2 f 2

)︂
[W/kg]
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To get the total iron losses, we multiply the element iron losses with
the respective element weight:

PFe =
Ne

∑
e=1

+∞

∑
h=1

(︂
chyB2

h,eh f + cecB2
h,eh2 f 2

)︂
γVe [W] (D.7)

where Ne is the number of mesh elements of the iron, γ is the material
volumetric mass density and Ve is the volume of the element e.



E
H I G H - F R E Q U E N C Y S I G N A L I N J E C T I O N
M AT H E M AT I C A L M O D E L

Start from the general voltage equation of any passive-rotor1 syn-
chronous electric machine:⎧⎪⎪⎨⎪⎪⎩

ud = Rid +
dλd
dt
−ωmeλq

uq = Riq +
dλq

dt
+ ωmeλd

(E.1)

At low speed⎧⎪⎪⎨⎪⎪⎩
ud = Rid +

dλd
dt

uq = Riq +
dλq

dt

(E.2)

Neglecting the resistive terms, considering the small-signal model of
the motor and using phasors for these signals

U = jωLI (E.3)

Let T be the transformation matrix from the estimated reference frame
to the correct one, and ∆ϑ the estimation error angle:

T =

[︄
cos ∆ϑ − sin ∆ϑ

sin ∆ϑ cos ∆ϑ

]︄

Defining Γ = L−1, we could write:

I =
1

jω
ΓU

T Ĩ =
1

jω
ΓTŨ

T−1T Ĩ =
1

jω
T−1ΓTŨ

Ĩ =
1

jω
Γ̃Ũ

where

Γ =
1

ℓdℓq − ℓ2
dq

[︄
ℓq −ℓqd

−ℓdq ℓq

]︄
(E.4)

Γ̃ =
1

ℓdℓq − ℓ2
dq

[︄
ℓΣ + ℓ∆ cos 2∆ϑ− ℓdq sin 2∆ϑ −ℓ∆ sin 2∆ϑ− ℓdq cos 2∆ϑ

−ℓ∆ sin 2∆ϑ− ℓdq cos 2∆ϑ ℓΣ − ℓ∆ cos 2∆ϑ + ℓdq sin 2∆ϑ

]︄
(E.5)

1 no winding on the rotor

169



170 high-frequency signal injection mathematical model

e.1 induction motor

The induction motor requires double the voltage equations needed for
its mathematical model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

usd = Rsisd +
dλsd

dt
−ωsλsq

usq = Rsisq +
dλsq

dt
+ ωsλsd

0 = Rrird +
dλrd

dt
−ωslλrq

0 = Rrirq +
dλrq

dt
+ ωslλrd

(E.6)

At low speeds and slips⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

usd = Rsisd +
dλsd

dt

usq = Rsisq +
dλsq

dt

0 = Rrird +
dλrd

dt

0 = Rrirq +
dλrq

dt

(E.7)

The fluxes-currents relationships for the induction machine are more
complex, since we have more windings and mutual couplings. Let
us consider the small-signal model, so the linearized machine model
around a specific working point. We are going to refer to (differential)
inductances of the same set as ℓ, while to inductances of different set as
m. Then, the cause-effect relationship is going to be expressed as ℓcause

effect .
In general,

λ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λsd

λsq

λrd

λrq

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
ℓsd

sd ℓ
sq
sd mrd

sd mrq
sd

ℓsd
sq ℓ

sq
sq mrd

sq mrq
sq

msd
rd msq

rd ℓrd
rd ℓ

rq
rd

msd
rq msq

rq ℓrd
rq ℓ

rq
rq

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

isd

isq

ird

irq

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Li

{︄
λs

λr

}︄
=

[︄
ℓs

s mr
s

ms
r ℓr

r

]︄{︄
is

ir

}︄
(E.8)

Adopting the same hypotheses as before, we would end up with the
same expression of (E.3).
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I D E N T I F I C AT I O N O F T H E R O T O R D I R E C T A X I S

Let us consider the general torque expression in the synchronous refer-
ence frame

Tm =
3
2

p(λdiq − λqid) (F.1)

Now, using the fluxes-currents relationships of a linear machine⎧⎨⎩λd = λmg + Ldid

λq = Lqiq

the torque expression can be further developed

Tm =
3
2

p
(︁
λmgiq + Ldidiq − Lqiqid

)︁
=

3
2

p
(︁
λmgiq − (Lq − Ld)idiq

)︁
=

3
2

p
(︁
λmgiq − 2L∆idiq

)︁
Let ϑi be the current angle and ϑe

m the electrical angular position of the
rotor, in a generic reference frame. The current can be split in the two
components, id = i cos(ϑi − ϑe

m) and iq = i sin(ϑi − ϑe
m)

Tm =
3
2

p
[︂
λmgi sin(ϑi − ϑe

m)− 2L∆i2 sin(ϑi − ϑe
m) cos(ϑi − ϑe

m)
]︂

=
3
2

p
[︂
λmgi sin(ϑi − ϑe

m)− L∆i2 sin
(︁
2(ϑi − ϑe

m)
)︁]︂

It is evident the distinction between the permanent magnet torque and
the reluctance torque components. The periodicity of the reluctance
torque is twice the one of the PM torque. Defining the angle αe

i =
ϑi − ϑe

m, the curves can be easily analyzed.
Consider an SPM machine first:

Tm =
3
2

p
[︂
λmgi sin αe

i

]︂
(F.2)

2 4 6

−1

1

αe
i

Tm

SPM

The angle αe
i can be interpreted as the one that the rotor tends to

follow with its zero-torque stable points. Impose a certain angle αe
i
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2 4 6

−1

1

αe
i

Tm

SPM

2 4 6

−1

1

αe
i

Tm

SPM

So the current angle αe
i identifies the torque which pushes the character-

istic: if the torque is positive, it pushes it forward, otherwise the torque
pushes it backward. This happens until the zero-torque equilibrium
point coincides with the imposed angle. Therefore, for an SPM machine,
the d-axis is found imposing a DC current and saving the angle where
the rotor positions itself.

Now consider a SyR machine

Tm = −3
2

p
[︂

L∆i2 sin 2αe
i

]︂
(F.3)

2 4 6

−1

1

αe
i

Tm

SyR

2 4 6

−1

1

αe
i

Tm

SyR

2 4 6

−1

1

αe
i

Tm

SyR

The SyR motor presents the zero-torque stable point at 90° with
respect to the d-axis (IPM convention). So when a DC current is applied,
it tends to align the q-axis with the current vector. The d-axis position
is just 90 degrees in advance.

Some IPM configurations are reported hereafter. If the reluctance
torque is low (which means when the anisotropy of the rotor is weak,
or when the imposed current is small), the characteristic does not differ
much from the SPM one. The equilibrium point is again at 0°.

When the reluctance torque becomes significant, the stable position
is in between the stable positions of the SPM and SyR machines.
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i

Tm

IPM 20|80

Now, let us focus on the 50|50 IPM machine. Applying a DC current
we find the first stable point, located between 45 and 90°. The stable
points are the ones with positive derivative.

2 4 6

−1

−0.5

0.5

1

αe
i

Tm

IPM 50|50, i > 0

2 4 6

−1

−0.5

0.5

1

αe
i

Tm

IPM 50|50, i < 0

Suppose that the rotor is aligned with the first stable point. Now we
reverse the sign of the current (rhs characteristic). In that instant the
rotor is in the same position as before, but with a negative torque apply
to it. So the characteristic is pushed backward till the new stable point
is met. Taking the average between the previous position and the new
one, the q-axis can be found.



174 identification of the rotor direct axis

f.1 detection of the quadrature-axis position through

the supply of an alternating current

Reconsider the equation of the torque:

Tm =
3
2

p
[︂
λmgi sin αe

i − L∆i2 sin 2αe
i

]︂
and let the current be a sinusoidal waveform, with the form

i = I cos ωt

The torque becomes

Tm =
3
2

p
[︂
λmg I cos ωt sin αe

i − L∆ I2 cos2 ωt sin 2αe
i

]︂
=

3
2

p
[︂
λmg I cos ωt sin αe

i −
L∆ I2

2
sin 2αe

i −
L∆ I2

2
cos 2ωt sin 2αe

i

]︂
It is evident that the two side terms have a zero average torque, and

the resulting average torque is just the one due to the reluctance of the
machine.

⟨Tm⟩ = −
3
2

p
[︂ L∆ I2

2
sin 2αe

i

]︂
(F.4)

The characteristic simply becomes the one of a pure SyRM (with the
inconvenience that the torque is half of the full reluctance torque), and
the rotor tends to align the q-axis to the current vector.
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I N C R E M E N TA L P E R M E A B I L I T Y S I M U L AT I O N S F O R
D I F F E R E N T I A L I N D U C TA N C E S C O M P U TAT I O N

In this chapter incremental permeability simulations are used to es-
timate the differential inductances of the machine around a specific
working point.

The considered motor is a synchronous reluctance motor, and its
geometry is depicted in Figure G.1.

Figure G.1
Geometry of the SyR motor analyzed.

It resulted from a multi-objective optimization, aiming at a high
average torque and a low torque ripple. Only the rotor was modified
during the optimization.

g.1 differential inductance computation

The fluxes-currents relationships are the following:

δλd = ℓd δid + ℓdq δiq

δλq = ℓqd δid + ℓq δiq
(G.1)

and to get the differential inductance, we can just do

ℓd =
δλd
δid

⃓⃓⃓⃓
δiq=0

ℓqd =
δλq

δid

⃓⃓⃓⃓
δiq=0

ℓdq =
δλd
δiq

⃓⃓⃓⃓
δid=0

ℓq =
δλq

δiq

⃓⃓⃓⃓
δid=0

(G.2)

and for the reciprocity of the linear mutual inductor ℓdq = ℓqd.
To estimate these differential inductances we can do in two ways:
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• magneto-static nonlinear simulations around the working point

• magneto-static linear simulations around the working point using
the previous element permeability (incremental permeability)

In any case, the number of magneto-static simulations required are
three. However, for the former case, they are “full” nonlinear magneto-
static simulations, while for the latter only one “full” nonlinear simula-
tion is required, and the following increments are just linear simulations,
which are very quick.

In the following, we will compare the two methods.

g.2 plain magneto-static only simulations

The most basic idea to compute differential inductances is to look in the
neighborhood of the working point, slightly moving the d- and q-axes
currents individually.

Let IN and αe
i be the rated current vector amplitude and angle. Then

Id = IN cos αe
i

Iq = IN sin αe
i

The first simulations is done with these currents.
The second one:

Id = IN cos αe
i + δI

Iq = IN sin αe
i

and the third one

Id = IN cos αe
i

Iq = IN sin αe
i + δI

From the post-processed results, it is easy then to derive the increments
of the quantities (flux linkages, energies, et cetera) and the differential
inductances.

g.3 incremental permeability simulations

For this method, the first simulation required is the same as in the
previous case, because we have to extract the incremental and cross-
coupling permeability for every mesh element.

The following simulations are just incremental, in the sense that the
imposed currents are only the increments. So, for the second simulation

Id = δI

Iq = 0

while for the third

Id = 0

Iq = δI

The obtained flux linkages are then directly the incremental ones.
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g.4 results comparison

For the previous motor, considering ncs = 1, IN = 575 A, αe
i = 64° and

δI = IN/1000, the results are the following:

Nonlinear Incremental

T [s] 10.5 6.5

ℓd 6.9223 · 10−5 6.9359 · 10−5

ℓqd −1.4570 · 10−5 −1.4582 · 10−5

ℓdq −1.4578 · 10−5 −1.4582 · 10−5

ℓq 3.6114 · 10−5 3.6121 · 10−5

It can be noted that the “full” nonlinear simulation takes about 60%
longer time to complete. While this seems quite a lot, in an optimization
function evaluation, which lasts about 100 s for this motor example, it
reduces to a 3% saving time.

These results were obtained before the 21Apr2019 release of FEMM,
which introduced the possibility to start the linearized system from the
previous nonlinear solution. So the use of the incremental permeability
technique is less justified when computing the differential inductances
from a computational time point of view.

g.5 meaning of incremental permeability

At first, consider a unidimensional problem, where it is true that

B = µH

Taking the derivative with respect to H, we obtain the incremental
permeability definition

µinc(H) =
dB
dH

=
dµ

dH
H + µ (G.3)

In a 2-dimensional cartesian coordinate system we may write

B = µ(H)H = µ(|H|)H

where

|H| =
√︂

H2
x + H2

y

Explicitly, this means{︄
Bx

By

}︄
= µ(|H|)

{︄
Hx

Hy

}︄

provided that the material is isotropic in the considered plane. We could
write the linearized problem using Taylor first order approximation

http://www.femm.info/
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around a working point, identified by the magnetic field H0 and the
magnetic flux density B0:

B ≈ B0 +
∂B
∂H

⃓⃓⃓⃓
H0

· (H − H0) (G.4)

where · is the scalar product between the matrix and the vector. The
term ∂B/∂H is the 2-by-2 Jacobian matrix, and it is actually the def-
inition of the incremental permeability ←→µ tensor. In 2D cartesian
coordinates, it results

µxx =
∂Bx

∂Hx
=

∂µ

∂H
H2

x√︂
H2

x + H2
y

+ µ

µxy =
∂Bx

∂Hy
=

∂µ

∂H
Hx Hy√︂
H2

x + H2
y

µyy =
∂By

∂Hy
=

∂µ

∂H
H2

y√︂
H2

x + H2
y

+ µ

µyx =
∂By

∂Hx
= µxy

When we are interested in the increment of B, we may write (G.4)
simply with

δB =←→µ · δH

Now, let us consider the case of a horizontal magnetic field, H0, so

H0 =

{︄
H0

0

}︄
, B0 =

{︄
B0

0

}︄
=

{︄
µ(H0)H0

0

}︄
Then the incremental magnetic permeability tensor becomes

µxx =
∂Bx

∂Hx

⃓⃓⃓⃓
H0

=
∂µ

∂H

⃓⃓⃓⃓
H0

H0 + µ(H0)

µxy =
∂Bx

∂Hy

⃓⃓⃓⃓
H0

=
∂By

∂Hx

⃓⃓⃓⃓
H0

= µyx = 0

µyy =
∂By

∂Hy

⃓⃓⃓⃓
H0

= µ(H0)

Looking at the first of these equations, we see that the µxx expression
coincides with the definition of incremental permeability given in (G.3).

Expressing the increments of the quantities, we may write

δBx = µxx δHx = µinc(H0) δHx

δBy = µyy δHy = µ(H0) δHy

It can be noted that the magnetic permeability acting along the main
flux lines is the incremental one, while the apparent permeability is
acting on the perpendicular direction.1

1 The incremental permeability represents the slope of the tangent to the B-H characteristic.
The apparent permeability is the slope of the line connecting the working point along the
B-H curve to the origin.
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