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Mighty oaks from little acorns grow
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A B S T R A C T

In the last decades we are assisting to a shift of the space propulsion segment from a

public business aiming at the highest performances to a privately funded one aiming to

affordability. In this scenario hybrid rocket propulsive technology is very attractive and

hence the interest around it is growing consistently. The characteristics that make hybrid

rocket motors so attractive are simplicity, safety, low cost and reliability. Another charac-

teristic that is often lauded when discussing hybrid rockets advantages is throttleability:

the ability to modulate the performed thrust on demand, but as a matter of fact there is

very little work published about it among the scientific community.

A throttleable rocket motor allows to increase trajectory efficiency (by reducing the

required transfer ∆v) and to perform some particular mission profiles such as soft land-

ing. Current applications of hybrid technology are very peculiar. Among them there are

sounding rockets, flying test beds, space tourism and speed world record automobiles.

Most of them require throttling. Furthermore throttleability could be an interesting

feature to implement on possible future applications such as launchers and in-orbit

manoeuvre engines. Without throttleability hybrid rocket applications could be very

limited, consequently it is paramount for a group who performs end-of-application

research to have the capability to develop and investigate hybrid rockets motor throttling.

Currently researchers are focused on solving the problems correlated with hybrids in-

herent disadvantages, maturing new methods of investigations and developing systems

that rarely perform a variable thrust on demand. But in my opinion when the hybrid

technology readiness will increase throttleability will be a paramount feature, if it is not

already.

Hybrid rocket engines throttleability is the topic of the present research activity. This

work is focused on the investigation and development of a general purpose throttleable

hybrid rocket motor, in particular a 1 kN-class motor with a throttling ratio of 5:1. The

engine will use high test peroxide as an oxidizer which will flow to the combustion

chamber in a pressure fed fashion. The injection type will be gaseous and the hydrogen

peroxide will be decomposed by means of a catalyst pack situated directly above the

injection plate. The configuration downstream of the injection plate was not fixed at the

beginning of the project, but it had to be a high performance and high regression rate

configuration between two possible one: paraffin fuel grain and mixing post combustion

chamber or swirled injection (vortex engine) and long chain hydrocarbons fuel grain.

However the final dynamic throttling fire test campaign has been carried out with the

second motor configuration.
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In the past at University of Padova hybrid propulsion group other members studied

throttleability both from a theoretical and experimental point of view, but this is the first

time that dynamic throttling fire tests are carried out with a continuous thrust levels

control, performed with an in house developed flow control valve. The recent availability

of funds at the group gave us the possibility to develop and characterize new equipment.

The tools employed during this doctoral research work are mainly experimental, the ob-

tained results are then compared with the predictions from simplified analytical models.

Because throttling may induce moderate to severe performance losses, the first part

of this thesis describes the losses associated with throttling. These considerations are

made for a single circular port fuel grain that follow the Marxman power law regression

rate model that is presented in chapter 2 as well. The entity of the losses depend on the

throttling requirements, engine configuration and propellant formulation.

The pressure fed system is controlled by means of a flow control valve, this is a fun-

damental component in the feeding line of a throttleable hybrid rocket motor. The flow

control valve was developed as part of the doctoral activities during this doctoral research

period. The detailed design phase is discussed in chapter 3. The flow control valve is

composed by valve body and actuation. The variable area cavitating venturi principle

was selected for the valve body. Inside the valve a conical pointed pintle alters the throat

area of a conventional venturi tube. The variable area cavitating venturi presents different

advantages such as independence of the flow from the downstream pressure, uncoupling

of tank and combustion chamber environments and precise flow control. The actuation

controls the pintle axial position with respect to the venturi throat, an active closed

control loop with a feedback on the pintle stroke guarantees the precise positioning. It

is possible to implement the system with a control loop closed on the thrust but this

strategy was not followed during this thesis.

The flow control valve underwent a complete characterization aimed to fully under-

stand its behaviour and limits. The outcomes of this characterization are: characteristic

curve, discharge coefficient trend, maximum allowed back pressure, cavitation instabili-

ties peak frequencies, system rise and fall time and some transfer function points.

The flow control valve then has been integrated with the test motor, starting a series

of fire test campaigns. The first step was to determine the motor behaviour for a series

of discrete thrust levels in order to ascertain the motor regression rate power law and

combustion chamber efficiency for a constant oxidizer mass flow. This preliminary fire

test campaign was carried out for both the proposed motor configurations. Afterwards

the dynamic throttling fire test campaign started, four tests were carried out. Three of

them consisted in a sinusoidal wave thrust command profile to evaluate the dynamic

motor behaviour with respect to a zero order model. The fourth test was the response

to an impulse to evaluate the step response of the system. The experimental results are

reported in chapter 4.
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S O M M A R I O

Negli ultimi decenni stiamo assistendo ad un cambiamento di trend nel settore dei

sistemi a razzo per lo spazio. Da essere finanziato esclusivamente da organi governativi e

alla ricerca delle massime performance a essere finanziato da società private che mirano

a sostenibilità e convenienza. In questo scenario si inserisce agevolmente la tecnologia

propulsiva ibrida e di conseguenza negli ultimi anni sta riscuotendo un rinnovato

interesse. Le caratteristiche che rendono i motori a razzo ibridi così interessanti e attraenti

sono semplicità, sicurezza d’ utilizzo, basso costo e affidabilità. Un’altra caratteristica

spesso decantata dei motori ibridi è la possibilità di modulare la spinta erogata dal

motore (throttleabilità), ma di fatto il lavoro pubblicato sull’argomento è veramente

limitato.

Un motore ibrido a spinta regolabile permette di aumentare l’efficienza della traiettoria

di trasferimento, riducendo il salto di velocità totale richiesto (∆v), e di eseguire dei

profili di missione molto particolari come per esempio il soft landing. Le applicazioni

correnti della tecnologia proupulsiva ibrida sono peculiari di per se, tra loro ci sono razzi

sonda, banchi di prova volanti, navicelle per il turismo spaziale e macchine da record

di velocità. Molte di loro ad oggi sono dotate di controllo della spinta. Inoltre anche

possibili applicazioni future come lanciatori e motori di manovra d’orbita potrebbero

beneficiare della throttleabilità. Senza modulazione di spinta il range di applicazioni

della tecnologia propulsiva ibrida è molto limitato, di conseguenza è fondamentale, per

un gruppo di ricerca finalizzata all’applicazione, avere le capacità di sviluppare e studiare

motori ibridi a spinta variabile. Attualmente i ricercatori sono focalizzati a risolvere i

problemi intrinseci della tecnologia, creare nuovi metodi di analisi e misura e sviluppare

sistemi che di rado richiedono una spinta modulabile. Ma nella mia personale opinione

quando la maturità della tecnologia ibrida aumenterà la modulazione della spinta sarà

una funzionalità fondamentale qualora non lo fosse già.

La modulazione della spinta nei motori ibridi è l’argomento principale della presente

attività di ricerca. Questo lavoro è focalizzato nello studio e sviluppo di un motore

ibrido multiuso a spinta variabile, in particolare questo avrà una spinta massima di 1

kN e un rapporto di spinta 5:1. Il motore utilizzerà una miscela acquosa di perossido di

idrogeno ad alto titolo come ossidante, che sarà spinto verso la camera di combustione

con un sistema di pressurizzazione a monte. L’iniezione nella camera di combustione

sarà di tipo gassoso, l’ossidante viene decomposto cataliticamente per mezzo di un letto

catalitico situato immediatamente a monte della piastra d’iniezione. A valle dell’iniettore

la configurazione non è fissata, ne verranno studiate due con le quali è possibile ottenere
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un’elevata efficienza e un alto regression rate: la prima consiste in un grano combustibile

di paraffina e una post camera dotata di mixer, la seconda consiste in un’iniezione

elicoidale che instaura un vortice all’interno della camera di combustione e un grano in

idrocarburi a lunga catena, possibilmente polietilene ad alta densità. Ad ogni modo la

campagna di test a spinta modulabile di continuo è stata effettuata con la sola seconda

configurazione.

In passato al gruppo di propulsione ibrida dell’Università degli Studi di Padova

altri ricercatori hanno studiato la throttleabilità sia da un punto di vista teorico che

sperimentale, ma questa è la prima volta che dei test dinamici a spinta variabile con

un livello continuo di discretizzazione vengono effettuati, e sono effettuati grazie ad

una valvola che è stata sviluppata interamente ”in casa” durante questa tesi. Questo

è anche merito della recente disponibilità di fondi presso il gruppo per lo sviluppo

di nuovo equipaggiamento. I metodi utilizzati in questo progetto di dottorato sono

prevalentemente sperimentali, i risultati ottenuti sono ad ogni modo comparati con quelli

provenienti da modelli analitici semplificati.

Poiché la modulazione della spinta potrebbe introdurre nei motori ibridi una più o

meno grave riduzione delle performance, la prima parte della tesi analizza queste penalità.

Le considerazioni fatte ipotizzano un grano combustibile a porta singola e circolare i cui

consumo segue la legge esponenziale di Marxman per la regressione superficiale. Questo

modello è presentato nel capitolo 2. La gravità delle perdite di performance dipende dal

rapporto di spinta richiesto, dalla configurazione della camera di combustione e dalla

formulazione propellente adottata.

Il sistema di alimentazione ossidante è controllato grazie ad una valvola di controllo

di flusso, componente fondamentale in una linea fluidica per motori ibridi a spinta

modulabile. Questa valvola è stata sviluppata interamente come parte del progetto di

dottorato. I dettagli del design sono presentati nel capitolo 3. La valvola di controllo di

flusso è costituita da corpo valvola e attuazione. Per la realizzazione del corpo valvola è

stato sfruttato il principio del venturi cavitante ad area variabile, questo consiste in un

classico tubo di venturi in cui l’area di gola è variata grazie ad una spina a punta conica

a posizione regolabile. Il venturi cavitante ad area variabile presenta molti vantaggi tra

cui l’indipendenza della portata dalla pressione a valle, il disaccoppiamento della camera

di combustione dal serbatoio e la precisione di controllo della portata. L’attuazione

della valvola controlla la posizione della spina rispetto alla gola del venturi. Un loop

di controllo chiuso con un feedback sulla posizione permette il posizionamento preciso

della spina. É possibile effettuare una chiusura del loop di controllo anche sulla spinta,

tuttavia questa strategia non viene seguita nel presente lavoro.

La valvola di controllo di flusso è stata sottoposta ad una completa caratterizzazione.

I risultati ottenuti con la caratterizzazione sono: la curva caratteristica, l’andamento

del coefficiente di scarica, la contropressione massima accettabile, l’andamento delle
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frequenze di picco della cavitazione con la pressione operativa e alcuni punti della

funzione di trasferimento tra portata richiesta e portata ottenuta.

Successivamente all’integrazione della valvola col motore una serie di campagne

sperimentali cominciò. Il primo passo è stato caratterizzare il comportamento del motore

per le due configurazioni proposte per diversi livelli di spinta, mantenuta costante

durante i singoli test in modo da poter stabilire la legge di regressione del combustibile e

l’efficienza del motore. Successivamente la campagna di test di modulazione di spinta

dinamica è stata condotta. Questa consisteva in quattro test, i primi tre rappresentano la

risposta del sistema ad un comando ad onda sinusoidale, in modo tale da comparare i

risultati con quelli aspettati da un modello di ordine zero. Il quarto test rappresentava

la risposta del sistema ad un impulso rettangolare per determinare il tempo di salita

e discesa della risposta. I risultati di queste campagne sperimentali sono riportati nel

capitolo 4.
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1
I N T R O D U C T I O N

Hybrid rocket motors are one of the three existent chemical rocket propulsive technolo-

gies: solid, liquid and hybrid. This classification type is defined by the physical phase

to which the chemical reactants are stored in the rocket motor. In a solid rocket motor

(SRM1) the fuel and oxidizer are in a solid form, usually an ammonium perchlorate based

oxidizer is finely mixed along with aluminium powder in a polymeric matrix (generally

HTPB2). This mixture is cast inside the combustion chamber to form the propellant grain.

In a liquid rocket motor (LRM3) both fuel and oxidizer are in liquid form. But in general

it is possible to include in this category also those motors which use gaseous and gelled

reactants. With LRMs there are many possible fuel and oxidizer combinations which lead

to a different propellant formulation. The reactants are generally stored in separate tanks

and are injected in the combustion chamber using a feeding system. A hybrid rocket

motor HRM4 is defined as a rocket engine having one of the reactants stored in the liquid

form inside a tank and the other reactant stored in solid phase inside the combustion

chamber. The most common HRM configuration employs a liquid oxidizer and a solid

fuel. This is particularly true since it led to define ”reverse hybrids” those motors that

employ a liquid fuel and a solid oxidizer. Reverse hybrids are not commonly used because

the available solid oxidizers are fare less energetic than the liquid ones. An exception

to this are the cryogenic solid oxidizers which in turn represent an intense technical

challenge because of the storage inside of the combustion chamber. Moreover the range

of available liquid oxidizers is much wider then the one fore the solid ones. Because of

technical challenges, availability and poorer performances no particular advantage comes

from the use of reverse hybrids. Figure 1.1 shows a typical HRM configuration. Here the

Figure 1.1: A typical hybrid rocket motor configuration: it consists of pressurized tank, flow

control valve, combustion chamber and nozzle.

liquid oxidizer is stored in a pressurized oxidizer tank. Oxidizer tank and combustion

chamber are connected by means of a fluidic line, which in this case consists of a valve

1 Solid rocket motor
2 Hydroxyl-terminated polybutadiene
3 Liquid rocket motor
4 Hybrid rocket motor
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2 introduction

and an injection plate. The fuel grain is stored inside the combustion chamber and the

motor case walls are protected by means of ablative thermal protections (ATP5). At the

aft end of the combustion chamber the nozzle converts the propellant enthalpy inside the

combustion chamber to kinetic energy which generates the thrust.

The three above described chemical propulsive technologies (hybrids, solids and liq-

uids) have been experimentally implemented about the same time at the beginning of the

twentieth century. But because hybrids represented at the time a somehow more complex,

scientific and technical challenge, liquids and solids advanced in their development to

the point of reaching a well consolidated technology level with their relative applications,

while HRMs development was limited for most part of this time. To this day hybrid

rocket motors have a technology readiness level far lower that their liquid and solid

counterparts. As a consequence of this, SRM and LRM have monopolized the rocket

market leaving some niece applications for hybrids.

Solid rocket motors are very simple in design, compact, require small to none launch

procedures and have the highest volumetric specific impulse achievable, because of the

reactants density. This makes them ideal for the realization of military weapons, sounding

rockets and boosters all applications where a high volumetric specific impulse is desired.

Liquid rocket motors reach the highest achievable specific impulses, their thrust can

be controlled and interrupted, making them the ideal solution for launchers and high

required ∆v missions in general. Hybrid rocket motors are somehow an intermediate

solution between liquids and solids but without having the very high volumetric specific

impulse required for military applications and the high specific impulse required for

a space launcher. Furthermore hybrid rocket motors were disadvantaged by the time

and the political-economical scene during which the greatest advancement of rocket

propulsion were carried out. This is the 50s and the 60s. In that period there was no time

to deeply analyse and study the inherent problems of hybrid rocket motors an hence the

other two, most promising, propulsive technologies were chosen for extensive studies

and development. Hybrid technology readiness has been strongly affected by its inherent

problems and the cold war political-economical scene. However the space market is

changed from the cold war. Today more attention is paid toward safety, reliability, cost

and greenness (environmental friendliness). Many of this aspects are covered by the

hybrid technology. This led to a renewed interest in hybrid rocket propulsion because of

its peculiarities and inherent characteristics.

The peculiarities of hybrid rocket propulsion lay on the diffusive flame mechanism that

dominates hybrid combustion. This combustion mechanism is quite different from the

solid and liquid motors mechanisms. As previously noted in a solid rocket motor, oxidizer

and fuel are finely mixed, during the mixing and casting process, the relative amount

between oxidizer and fuel is controlled and set to the desired value. After ignition the

5 Ablative thermal protections



introduction 3

propellant grain burns with a flame very close to the grain surface6. Since both oxidizer

and fuel are readily available to the flame the reaction between the two is kinetically

limited, i.e. it is dependent on the chemical kinetic of the reaction. With these motors the

oxidizer to fuel ratio o/ f is fixed and the amount of propellant mass flow depends on the

combustion chambers pressure. On the other hand in a liquid rocket motor the oxidizer

and fuel are injected in the combustion chamber. An injector design normally forces the

two reactants together in order to maximize mixing and atomization, the oxidizer to

fuel ratio o/ f depends on the relative amount of reactants that enter the combustion

chamber. These are controlled using a set of flow control valves (FCV7) that regulates the

reactant flow to the combustion chamber. Once again the reactants are forced together

(this time by the injection plate). With both these technologies oxidizer to fuel ratio and

propellant mass flow are independent variables and can be controlled. This is no longer

true for HRMs. In this case only the oxidizer mass flow to the combustion chamber can

be directly controlled.

(a) Schematic from [4]

(b) Slab test from [42]

(c) Slab test from [28]

Figure 1.2: Diffusive flame mechanism (a) and visualizzation (b) & (c)

In the diffusive flame mechanism which develops inside the hybrid combustion cham-

ber, the flame heats the surface of the fuel grain in order to sustain fuel decomposition.

The sublimated fuel migrates from the surface toward the flame, on the other side of the

flame oxidizing species move from the undisturbed layer region (combustion port) to the

flame. When vaporized oxidizer and fuel mix an active combustion zone forms, this is

the flame. Since the reactants are not premixed or forced together the reaction is limited

by transport phenomena that govern the reactant migrating to the surface: diffusion.

The fuel mass flow and hence the o/ f , is dependent on the complex internal ballistic

and combustion dynamic inside the combustion chamber. This correlation is difficult

6 The flame is so close to the grain surface that solid rocket motor experts, in particular at the Politechnic of

Milan, speak of conductive heat when referring to the heat from the flame to the grain
7 Flow control valve



4 introduction

to predict and is also dependant on the motor size (including purposes of scalability)8.

The diffusive flame mechanism is an added complexity with respect of the other two

propulsive technologies. The diffusive flame mechanism is also responsible for HRMs

lower performances because in many configurations reactant mixing is far from optimal.

However the separation of the reactants implies also a series of intrinsic advantages. This

is a description of hybrid rocket motors advantages:

safety This advantage derives from the physical separation of the reactants and has

many implications in terms of cost and operations. The fuel is made of inert

material and unlike solid rocket grains it can be manufactured, shipped, and

handled in a completely safe way. The system can be completely non-explosive if a

non-explosive oxidizer is employed. Liquid oxygen (LOX9) is one of these. Some

oxidizers classified as explosives are used in HRMs, mostly monopropellant as

hydrogen peroxide solution (HTP10) and nitrous oxide N2O. But it must be noted

that in this case the reaction of the sole oxidizer is far less energetic than the one in

which both the reactants are involved such as a SRM propellant grain. If a fuel grain

cracks the combustion chamber pressure doesn’t rise excessively, the oxidizer must

infiltrate into the crack. On the other hand if a solid rocket grain cracks the pressure

increase proportionally with the increase of the burning area, the cracked grain

pressure can easily reach the MEOP11. If the grain cracks HRMs are less prone to

catastrophic events. Much of the experimental research work that is carried out

by the many universities involved in HRM development would not be possible if

hybrid rocket motors were not so intrinsically safe. Let us just think of the solid

rocket motors industry, most of the motor scale experimental activities are carried

out by big companies with a long going history in developing this kind of engines.

reliability For what concerns the feeding section, a HRM requires just half of the

components with respect to a LRM. This makes them less prone to fail and more

reliable. A not perfectly cast grain, a grain with defects or a grain that cracks will be

less liable to generate some unpleasant conditions inside the combustion chamber

with respect to SRMs. For the reaction inside the combustion chamber is diffusion

controlled, hybrid rockets are more tolerant to injection and manufacturing errors

than liquids and solids. Additionally hybrid rocket designs are kept often as lean as

possible in order to reduce the complexity of the system and increase reliability. It

is hard to see a HRM with a complex regenerative system around the combustion

chamber and fed by turbo-pumps.

8 The other two propulsive technologies are less prone to problem due to motor size scalability since o/ f and

propellant mass flow can be easily predicted.
9 Liquid oxygen

10 High test peroxide
11 Maximum estimated operative pressure
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controllable oxidizer mass flow It is possible, if desired, to control the oxidizer

mass flow to the combustion chamber. Controlling the oxidizer mass flow have two

major implications: firstly it is possible to command the thrust of the engine on

demand, hence achieving throttling; Secondly the thrust can be terminated (the

mission can be aborted) and, if a suitable ignition system is employed, the motor

can be restarted and stopped several times. Throttleability and restartability can

be achieved with a liquid system as well but, as already mentioned, the control

system in a liquid motor is twice as mechanically complicate than in a hybrid

system. These characteristics are difficult to reach in a solid rocket motors. SRM

thrust termination systems are quite complex and the thrust can only be controlled

by varying the combustion chamber pressure.

propellant versatility There are many propellant formulations available. The se-

lection of liquid oxidizers and solid fuels accessible to a HRM designer is much

wider then the one possible with solids and liquids. However the research com-

munity focuses its effort on few, selected, propellant formulations. Moreover it

is possible to add to the fuel grain, high energetic particles, in order to increase

flame temperature and the achievable specific impulse. This strategy is adopted

commonly in solid rockets where aluminium nano-sized particles are added to the

propellant grain in order to enhance the otherwise poor specific impulse. A direct

advantage of propellant versatility is the possibility to tailor the fuel regression rate

by using a mix of two hydrocarbons. This enables to have a fuel which is designed

specifically for the application or mission.

temperature sensitivity The temperature effect on the fuel grain regression rate

is small. This implies that the effects of ambient temperature on the operative

combustion chamber pressure are negligible. The dependence between combustion

chamber pressure and grain temperature is a concern among SRM designers

because of the increase of pressure that could lead to overreach the MEOP. However

there are some HRM configurations that are referred to as self pressurized that are

highly sensible to a temperature variation, for the oxidizer is stored in the tank as

a saturated liquid, the equilibrium pressure depends on the storage temperature.

This problem can be controlled, if desired by using an in line flow control valve.

specific impulse and volumetric specific impulse The theoretical specific im-

pulse achievable with an hybrid rocket is higher than the solid rocket one and it is

extremely close to the one achievable with a LRM (Figure 1.3). It is worth to note

that the maximum specific impulses are achieved when energy enhancing additives

are included in the propellant formulation. In terms of volumetric specific impulse

(ρ Isp) the solid technology dominates the field, but with HRMs it is possible to

have much higher ρ Isp than the one obtained with LRM. For what concern specific
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Figure 1.3: Comparison between theoretical specific impulses achievable with the three chemical

propulsive technologies. [40]

impulse and volumetric specific impulse the hybrid propulsive technology is an

intermediate configuration gathering together the advantages of both the traditional

propulsive technologies.

low cost Hybrid rockets can be less expensive than traditional propulsive technologies

for many reasons. Firstly, let us consider the mechanical parts composing hybrid

rocket motors: the cost of an hybrid rocket must lay between the cost of a solid and

of a liquid one. Secondly, the hybrid rocket present several advantages in terms

of storability, handling and development. The operational costs benefits from the

already discussed safety characteristics of hybrid rocket motors. A system that

is non explosive and in which the reactants are hard to be put together is surely

advantageous to handle during ground operations. Furthermore, the fuel grain

being inert implies that the manufacturing cost are lower if compared to solid

propellant manufacture. Since we do not cast an explosive mixture we do not

require an ATEX manufacturing facility supplied with the proper equipment. The

same concept applies, in a smaller scale, during development. It is possible to safely

manufacture, assemble and test an HRM in an University environment, because

of the contained safety requirements. Hybrid rocket motors reduced cost has been

discussed by many authors, Matthias Grosse in [41] created a model to evaluate

the manufacturing cost of a HRM, while Boardman et al. in [55] pointed out the

reduced cost of the hybrid rocket booster development campaign carried out by

AMROC12.

environmental friendliness Of the many available propellant formulation that

make HRM so versatile several are green: they are friendly to the environment,

12 American Rocket Company
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meaning no hazardous and toxic reactants and products are involved in the reaction

process. In SRM ammonium perchlorate is the most used oxidizer, because it contain

chloride, the fumes are not exactly green. It is true that the most green rocket

propellant formulation is O2/H2 used in LRMs but it is not a storable formulation.

One storable alternative used in liquid is hydrazine which in its undecomposed

form is harmful. Hybrid rockets can be a green alternative in those applications

were currently hazardous reactants are employed. At University of Padova we

are proud to use hydrogen peroxide/hydrocarbons as a storable green propellant

formulation.

Reactants separation and diffusive flame that make HRMs safer and cheaper, with respect

to the other propulsive technologies, are also the cause for hybrids major disadvantages:

low regression rate The surface regression rates found in hybrids are far lower

than the ones found in solids. This is because the diffusive flame is more detached

from the burning surface than the conductive flame in a SRM. A large burning area

is required to achieve the desired fuel mass flow from the grain. The desired burning

area with this characteristic of low regression rate often requires extreme fuel grain

aspect ratios and designs. On the other hand the required web thickness is quite

low, resulting in a very low fuel loading13. Adding up to the problem of scaling, in

some hybrids configurations the regression rate decreases when the motor is scaled

up. Many solutions to overcome this major problem have been proposed in the last

decades and some of them are, as a matter of fact, very promising. Multiport grains

Figure 1.4: Multiport grain used in Lookheed Martin DARPA Falcon hybrid rocket

were the first solution used to overcome the extremely low regression rates. But

this configuration comes several other problems like: high fuel residuals, different

regression rates from port to port and structural issues requiring a structural web to

hold the residual fuel slivers that forms near the end of the burn. Of course a multi

13 the fuel loading is defined as the portion of volume inside the combustion chamber occupied by the fuel

grain
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port grain is much more expensive to manufacture than a single port one. Another

solution for the low regression rate problem introduced by Stanford University is

the use of liquefying fuels to manufacture the fuel grain. Because of the low melting

temperature a liquid layer is formed on the burning surface. Part of this layer

is entrained in the main oxidizer flow due to the elevated mass fluxes. With the

entrainment the inward fuel mass transfer is enhanced. Using liquefying fuels it is

possible to manufacture single port grains with a reasonable aspect ratio. Moreover

this fuels are less sensitive to the problems of scaling. A comprehensive review of

this problematic and the proposed solutions is presented in [21].

volumetric efficiency and packaging issues Hybrid rocket motors are less

flexible to be configured with respect to liquids and solids. Most part of the volume

of a LRM is occupied by the propellant. This being liquid in nature can be shaped

as pleased, with the proper tank design, in order to fill the required volume. The

combustion chamber is relatively small. In a solid rocket the combustion chamber

makes up most of the system. Since the regression rate is dependent on the combus-

tion chamber pressure it is possible to have many propellant grain configurations

with the same impulse requirements. This implying many different geometries and

aspect ratios, the solid rocket is a flexible configuration as well when it comes to

packaging. In a hybrid rocket the oxidizer is liquid, hence it can be stored with a

packaging flexibility analogous to the liquid rocket one. The packaging issues arise

when the combustion chamber design is considered. Because of the correlation

between regression rate and oxidizer mass flux it is not possible to design many

different fuel grain geometries that satisfy the same total impulse requirement

[23]. Moreover this correlation is valid in a determined oxidizer flux range, outside

which the regression rate start to be pressure dependant and far more difficult to

predict. A constraint on the usable oxidizer mass flux implies that there is a limit

between initial and final diameters which implies a further geometrical constraint.

Normally hybrid rocket combustion chambers tend to be slender with a limit on

the minimum aspect ratio achievable. This limitation goes against the possibilities

unlocked by the fuel regression rate tailoring (which is possible by using a mixture

of hydrocarbons). With this methodology it is possible, to some extent, to control

the aspect ratio of the combustion chamber. As already noted, the dependency

between oxidizer flux and regression rate also affects the volumetric efficiency of

the combustion chamber. This result in a more cumbersome combustion chamber

design, hence less prone to packaging flexibility. All the presented aspects lead to

the conclusion that HRMs are less flexible in terms of packaging, and less prone to

be integrated in a satellite system. This reduced flexibility leads to the impossibility
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to design a propulsive unit that can be used on several systems, which is possible

with both liquid and solid motors.

combustion efficiency and o/ f shift Unlike in solids and liquids, reactants are

not intimately mixed or forced together in a hybrid rocket. This doesn’t preclude

the possibility to find, at the aft end of the combustion chamber, some unreacted

oxidizer and fuel. Because of this incomplete diffusive combustion the achieved

characteristic velocity (c∗) is quite lower than the theoretical one. Several techniques

are used to complete the combustion. Between the most worth of note are the use of

diaphragms, mixing plates and swirled injection [36], [16], [17]. Another cause for

loss of combustion efficiency is the dependency of the oxidizer to fuel ratio from

many combustion variables such as the port diameter and the oxidizer mass flow.

As a consequence the o/ f will shift with the burning time. Because there is only

one o/ f value corresponding to the maximum characteristic velocity, the maximum

achievable theoretical c∗ is always lower than the maximum one. This impossibility

to maintain the o/ f constant at the optimal value induce a loss in the combustion

efficiency. The o/ f shift losses can be reduced with a proper motor design.

slower transients The combustion chamber of a hybrid rocket is much bigger

than the one of a liquid rocket with the same thrust, because it hosts the fuel

grain. The internal gas volume also changes with the burning time because of fuel

grain regression. This implies that the filling/emptying characteristic time is much

higher with respect to LRMs. Ignition and throttling transients are slower. The

slow transient nature of hybrids inhibit their use on some applications where a

accurate, fast and repeatable response of the motor is required. For example motors

operating in multipulse mode. Furthermore, because of flame propagation, the

ignition time is lower with respect of SRMs which combustion chamber is bigger.

Another problem that affects both hybrid and solid rocket motors with respect to

LRMs and reduces response of the system is thermal lag[31].

Because hybrid rocket motors performances in term of specific impulse (Isp) and volu-

metric specific impulse (ρIsp) lay between solids and liquids, and because of the extensive

amount of disadvantages, HRMs entry and spread in the rocket market was strongly

limited. Performance penalties and low regression rate play a major role among negative

attributes. As mentioned during this brief description of pros and cons there are many

solutions that have been proposed by the scientific community in order to solve problem.

But it must be noted that it is difficult to find a motor configuration to which each

solution applies. It is equally true that all the claimed advantages are not likely possible

for a single motor design. There are two promising configurations thanks to which it is

possible to have a performing hybrid motor: the first one consists of an axial injection

toward a high regression rate fuel and a mixing plate in the aft chamber; the second
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one exploit a vortex injection and a low regression rate fuels. It is important to note,

when discussing advantages and disadvantages, that some comparisons between HRMs

and LRMs are overstated. It is possible to realize a regenerative cooling in a hybrid as

well as it is possible to manufacture a liquid combustion chamber that is protected with

ablative thermal protections. However because the fuel grain is of the same nature of

an ATP, it is reasonable for the hybrid combustion chamber to be protected with this

technology which will result in an overall cheaper combustion chamber. Another example

of overstatement: HRMs are cheaper, simpler with respect to LRMs. Hybrids can be as

complicated and expensive as they get. When designing a hybrid rocket system, it is

important to consider that by introducing a new component, or an exotic solution to a

disadvantage, the output design may result less reliable, complicated, less safe than a

basic configuration.14 In order to be competitive HRMs do not require any intricacy[32].

Safety, simplicity and low cost are the main advantages of an hybrid rocket motor. Such

a system can be tested many times, because it is less expensive, with an higher test rate,

because of the lower safety requirements, and because it is easier to test some upgrades

and improvements can be made during the system commercial life. This characteristic is

particularly important when the funding are limited. Because public funds are becoming

meagre with time and because private funds are finalized to maximize the income,

hybrid propulsive technology is becoming more and more popular for conventional

space applications.

1.1 the importance of throttleability

Throttleability is the ability to control, or throttle, the provided motor thrust on demand.

Throttleability is an aspect of hybrid rocket propulsion that is often cited when describing

the propulsive technology advantages but rather present in terms of published works.

Attending at the 7th European Conference for Aeronautics and Space Sciences, I had

the pleasure to understand that this lack of publications about hybrid rocket motor

throttleability was not a personal feeling but a generalized one. ”Everyone says that

hybrid rockets are throttleable but little published work can be found about it” was

the expression used by a researcher during a presentation. The reason for this is that

most researchers are focused on investigating the inherent problems of hybrid rocket

technology (instabilities, poor performances, low regression rates, high throat erosion

rates) or proposing new methods and models to aid the investigation and design of

hybrid propulsive technology.

14 Adding an amount of oxidizer to the fuel grain formulation in order to increase the regression rate is not an

appropriate solution to keep the system safe, low cost and simple because along with the regression rate the

explosive class of the rocket is increased as well.
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Rocket motor throttleability has a long history. In the beginning this characteristic

was required by military systems in order to minimize the flight time from launcher to

target or evade some defensive controls: a typical example is the boost sustain thrust

profile. But an event caused throttling to move from trajectory performance enhancer

to a method required to perform a peculiar mission profile: this is lunar soft landing.

With the Apollo space program, which was finalized to land and return the first man to

the Moon, the problem of landing on an atmosphere-less astronomical body arouse. In

fact by then landings were performed by atmospheric entry which exploited the drag

resistance of a blunt body (frontal heat shield) and parachute systems. Both systems

exploit the atmospheric drag to decelerate the spacecraft to an acceptable impact velocity.

The absence of atmosphere on the moon and the fact that the Apollo missions were

manned, required the development of a new landing system: rocket powered soft landing.

Figure 1.5: LMDE15 flow control assembly.

The lunar module of Apollo missions used a descent engine (LMDE) [39], [13]. This is

a bipropellant liquid rocket motor with a 45 kN maximum thrust and a throttling ratio of

10:1. The liquid engine employed Aerozine 5016 and N2O4, this is an hypergolic mixture

that was suited for a restartable low lagtime system.

Figure 1.5 shows the LMDE and in particular, on the right, the flow control assembly.

This engine which is the highest example of throttleable engine, used two flow control

valves (one for the fuel one for the oxidizer) and a variable area pintle injector. This

throttling method that use flow control valves as well as variable area injection, as it will

be explained later, is used when the pressure drop due to a fixed area injection plate

cannot be accepted. The two identical valves are controlled with a single electromagnetic

linear actuator, the different positioning of the FCV sleeve is realized with a crossbeam

positioning link.

16 Aerozine 50 is a mixture of hydrazine and unsymmetrical dimethylhydrazine, the two components are

present in equal concentration by weight.



12 introduction

Figure 1.6: LMDE flow control scheme. [39]

For what concern hybrid rocket motors throttleability, it dates back to 1960s during

studies for using hybrids rocket motors for sounding rockets, aerial target drones and

tactical missiles. The first example of throttleable hybrid rocket is ONERA’s LEX (Lithergol

EXperimental) sounding rocket. The motor used a RFNA17/ metatoluene diamine-nylon

propellant formulation[53]. This rocket provided a boost-sustain like thrust profile, by

means of a pneumatic solenoid which was actuated with a programmable timer. The

achieved throttling ratio was 5:1 with a maximum thrust of 10 kN. Eight LEX sounding

rockets where successfully launched, reaching an apogee of 100 km. Another relevant

system that was developed in the same years is the Sandpiper aerial target drone. It

used a hybrid rocket motor propelled with a mixture of nitric acid (25%) and nitrogen

tetroxide (75%) for the oxidizer and a PMMA18 fuel grain loaded with 10% of powdered

magnesium. The motor was throttleable with a 8:1 throttling ratio and had a peak thrust

of 2.3 kN[29],[5]. The throttling methodology used in the Sandpiper is the parallel feeding

line, during the boost phase both feeding lines are open, while in the sustain phase only

one feeding line provides the required oxidizer mass flow for the cruise flight. The

amount of oxidizer flowing through each line is regulated by means of fixed cross-section

orifices. The Sandpiper target drone flew successfully in 1968. Following the Sandpiper

another aerial drone employing hybrid propulsion was developed in the USA. This was

HAST19. This drone was an evolution of the Sandpiper, employing IRFNA20 as oxidizer

and a mixture of 80% polybutadiene-20% PMMA as fuel[18]. In this case the oxidizer

flow to the combustion chamber was regulated by means of a FCV using a pintle actuated

by means of a torque motor and a drivescrew. This valve was employed to have a ramp

up boost phase starting from 50% of the thrust and reaching the 100% in 20 seconds.

After the boost phase the valve position could be controlled manually via remote by

an operator. HAST had a throttling ratio of 10:1 and a peak thrust of 5.3 kN. Program

HAST concluded with a series of static fire tests but the developed propulsive system has

17 Red fuming nitric acid
18 Polymethyl methacrylate
19 High Altitude Supersonic Target
20 Inhibited red fuming nitric acid
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been employed again in the new aerial target drone Firebolt [19]. Throttling has been a

secondary features on other development program carried out by NASA and Lookheed

Martin[10]. Recently hybrid rockets throttleability was developed and studied by several

academic institutions. In 2010 Purdue University demonstrated:

• Throttle-down tests analogous to a powered vertical landing exhibited a 10:1

throttling ratio (see LMDE) with stable combustion across the entire range;

• Boost/Sustain/Boost thrust profiles representative of tactical solid rocket motors

were tested with 75%, 50%, and lower sustain-to-boost chamber pressure ratios

with rapid throttle-up achieved following the sustain period.

Their engine used 90% HP21 and a wide range of fuels: PMMA, HTPB and their speciality

CFG22, which are fuel grains loaded with a catalytic material[22]. In 2010 the European

funded program FP7 SPARTAN Project started [57]. This program was focused on the

development of an ascending an descending vehicle that employed four hybrid rocket

motors in parallel, in a clustering fashion. The motor used 87.5% HTP and HTPB, had a

10:1 throttling ratio and a maximum thrust of 1.6 kN. As an European funded program

the project was a collaboration between industries and Universities coordinated by Thales

Alenia-Space. The motor was manufactured by NAMMO23,[34] the flow control valve

was based on a variable area cavitating venturi and was developed by MOOG-Bradford.

Both the engine and the flow control valve were tested and characterized by University of

Padova’s hybrid propulsion group [47],[15]. The program officially ended in 2012. In 2012

Utah State University developed and tested a closed loop controlled throttleable rocket

setup using an off the shelf valve[56]. Their rocket employed N2O-HTPB propellant

formulation. Other than using N2O as an oxidizer, which is not very common for a

throttleable rocket motor they achieved stable combustion for a thrust range from 800

to 12 N. They also developed a concept for throttleable launch vehicle using the same

technology[20]. Shortly after the end of SPARTAN project, the Beihang University started

to develop a flow control valve that used the variable area cavitating venturi[50]. This

valve is used in their experimental setup to characterize throttleable hybrid rocket motors

[49]. Their engine employ 90% HTP and polyethylene as fuel. During their experimental

test campaign they reached a throttling ratio of 5.32:1 and a maximum thrust of 1251 N.

For what concern our research group, until this PhD work, the only dynamic throttling

fire tests that were performed employed parallel feeding lines, in which the flow through

each line is controlled by means of conventional cavitating venturi. This parallel feeding

lines system allowed to have a boost-sustain like thrust profile.

Hybrid rocket motors throttleability advantages are:

21 Hydrogen peroxide
22 Catalytic Fuel Grains
23 NAMMO stands for Norwegian ammunition and is a Norwegian industry specialized in defence systems

and the European leading expert in hybrid propulsive technology.
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(a) (b)

(c) (d)

Figure 1.7: Some hybrid rocket motor applications: (a) ONERA’s LEX hybrid sounding rocket, (b)

Virgin Galactic’s Space Ship One, (c) Bloodhound SSC and (d) Thales Alenia Space’s

SPARTAN Project during testing at NAMMO’s.

increase trajectory efficiency During ascending trajectories it is possible to

use throttling to reduce the maximum dynamic pressure and also the maximum

longitudinal acceleration. These requirement may be driven by the necessity to

reduce the drag force and the mechanical stresses to the payload. Because the thrust

can be modulated it is possible to perform a different trajectory with respect to the

one that would be achieved for a fixed thrust system. This way it is possible also to

reduce the drag forces hence reducing the ascending required ∆v.

peculiar mission profiles Thanks to throttling it is possible to perform some very

peculiar mission profiles. The first striking example is the Lunar Module soft land-

ing. Then also an ascending and descending vehicle would require such capability.

A flying test beds such as Mighty Eagle and Project Morpheus use throttling in

order to test some experiment and innovative navigation systems. Another relevant

example of throttling is the recent reusable launching strategy used by SpaceX.
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It would not be possible to vertical land a launcher without on-demand thrust

modulation. Implementing throttleability can increase consistently the range of

applications for hybrid propulsive technology.

Unfortunately, because of hybrids peculiar diffusive flame mechanism, the throttleability

dose not come without disadvantages:

o/ f shift Because the fuel mass flow in the combustion chamber is correlated with the

oxidizer mass flow to it, the system is harder to control. In conventional hybrid

rocket motors the o/ f is affected by a change of the oxidizer mass flow, the oxidizer

to fuel ratio shifts. This shift brings some loss of performances. This aspect will be

discussed in detail in the next chapter.

increase in system complexity Hybrid rocket motors are simple and as long as

they are kept simple it is possible to maintain their characteristics of reliability,

safety and low cost, which are much appreciated by many people. By adding the

flow control valve required to perform throttling, the system increases in complexity.

It is a possible part of the motor that can fail. This is not seen with good eyes from

some hybrid rocket motor designers according to whom the hybrid rocket design

must be kept as simple as possible, without intricacies.

Beside the advantages and disadvantages related to the implementation of throttling,

some considerations related to the possible applications of hybrid technology must be

taken into account. The argued applications of hybrids are many: launchers, apogee kick

motor, sounding rockets, VTVL24 ADV25, flying test beds and many others. But at today

the real ”flight” application of the hybrid rocket technology are very limited. Figure

1.7 shows some of the actual applications of HRM, among them there are: ONERA’s

LEX hybrid sounding rocket (Figure 1.7(a)), Virgin Galactic’s Space Ship One (Figure

1.7(b)), Bloodhound SSC (Figure 1.7(c)) and Thales Alenia Space’s SPARTAN Project

(Figure 1.7(d)). These are peculiar applications: space tourism launchers, flying test

beds and, unexpectedly, world record speed cars. Some of these applications require

throttling. As already mentioned sounding rockets often used throttling to increase the

trajectory efficiency, for ascending and descending vehicles throttling is a must. The

only application of the four exposed that do not use throttling is Space Ship One, but

it is not such a remote hypothesis that future versions of tourism space ships could

be implement with throttling feature. Among the other potential space applications,

launchers and in orbit transfer engine throttling could be a required feature as well,

but because of the c∗ penalties involved there must be a case to case analysis for this

implementation. Bellomo discussed the importance of throttleability and the application

24 Vertical take-off vertical landing
25 Ascending and descending vehicle
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of hybrid technology for formation flight in his PhD thesis [52]. Schmierer studied a

hybrid rocket motor demonstrator concept for moon sample return mission requiring

throttling for soft landing purposes[35].

As it should be clear from this short HRM applications overview, throttleability is an

important and required feature for current and future hybrid rocket engine applications.

A consistent part of the work we carry out at the University of Padova Hybrid Propul-

sion Group is end-of-application research and because throttling is quite a requested

feature our group must increase his knowledge and capability in designing and testing

throttleable hybrid systems.

Up to now our group was able to test hybrid rocket motors with parallel feeding lines

finalized in achieving a boost-sustain like thrust profile, in a fashion similar to the first

hybrid sounding rockets. The group also participated actively to the SPARTAN project in

the testing phase of the throttleable motor, but previously to this PhD research project it

was not possible to independently test a HRM with a continuous and not discrete thrust

profile.

1.2 project objectives and thesis outline

The current research project is focused on the investigation of throttleability on hy-

brid rocket motors. The hybrid rocket motor configuration was not determined at the

beginning of the project, two options were possible:

• axial gaseous oxidizer injection, paraffin fuel grain and a mixer in the post combus-

tion chamber.

• gaseous swirled injection, HDPE26 fuel grain, conventional post combustion cham-

ber design.

These two configuration were proved to be high performance and high regression rate

within the research group at a oxidizer thrust class of 300 and 7 kN. The test motor will

have the following characteristics:

• 1 kN maximum thrust (vacuum equivalent thrust);

• HTP as an oxidizer which is injected in the combustion chamber in the decomposed

gaseous form;

• a catalyst pack will be used to decompose the HTP flow;

• the engine will be self ignited by means of the decomposed hot gasses from the

catalyst pack;

26 High density polyethylene
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• continuous throttling capability with a throttling ratio of 10:1;

• pressure fed system.

The throttleability will be implemented by means of a flow control valve. The FCV will

be developed in house and will have the following characteristics:

• it will be safe to operate in an experimental environment;

• its design will be solid and robust, i.e. not flight-weight;

• the rise and fall time over the range of throttleability will be 1.2 seconds.

The developed flow control valve will be statically and dynamically characterized and

its suitability for throttling purposes will be investigated. This characterization will be

aimed to:

• determine the valve characteristic curve;

• determine the valve dynamic behaviour;

• determine the valve application limits;

• evaluate possible valve insertion effects on the combustion chamber.

The investigation methods used during this research are mainly experimental although

the experimental results are compared with the ones coming from simplified analytical

models.

The experimental test setup used to evaluate the motor performances, throttling

capabilities and characterize the flow control valve will have to:

• be safe to operate;

• provide accurate measurements of the appropriate physical quantities;

• allow to perform several tests per day;

The work performed during the last three years is reported in this thesis which follows

this outline:

• Chapter 2 describes a simplified combustion model that is used intensively to

interpolate experimental data and evaluate the penalties due to throttleability. A

thorough description of the c∗ related penalties is made, and the possible alternative

are taken into account.

• Chapter 3 describes the flow control valve design and characterization phase. Both

valve body and actuation are described. The valve is is based on the variable area

cavitating venturi principle the control loop is open on the thrust but closed on the

pintle position.
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• Chapter 4 describes the test motor, experimental setup and the performed fire

test campaigns. Two preliminary fire test campaign with two different motor

configurations are described, only one is used to perform the presented dynamic

throttling fire tests. The obtained results are compared with the command reference

and the expected from a theoretical model.



2
T H R O T T L I N G O F H R M S

In this chapter the implications of hybrid rocket throttleability are discussed. An ana-

lytical model that describes the hybrid combustion is presented in order to draw some

conclusions about the penalties that are due to throttling. These penalties are mainly due

to a combustion chamber characteristic velocity reduction caused by an oxidizer to fuel

ratio shifting that in turn is generated by the diffusive flame mechanism.

2.1 hybrid rocket steady state combustion

In order to understand the implications of hybrid rocket throttleability it is necessary to

introduce the physics of steady hybrid combustion. The fundamental theory of hybrid

combustion and fuel regression has been proposed by Marxman and co-workers; it will

be described briefly in this section. In a typical hybrid rocket the oxidizer enters the

combustion chamber from the fore end and flows over the solid surface of the fuel grain.

After motor ignition a macroscopic diffusion flame develops above the grain. This same

heats up the grain surface until the solid fuel decomposes. The vaporized fuel mixes with

the incoming oxidizer sustaining the combustion.

Figure 2.1: Diffusion limited flame mechanism

These phenomena take place inside the boundary layer. The boundary layer is the

region that is affected by the presence of the wall. It is possible to define multiple

boundary layers, each one related to a specific variable. The thermal boundary layer

19
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is defined as the zone where the temperature changes from the value of the incoming

flow to the wall temperature. The species boundary layer is the zone where the chemical

concentration changes from the value of the incoming flow to the value at the wall. The

momentum boundary layer is defined as the region where the velocity is affected by

friction and the fluid has to slow down in order to meet the no slip boundary condition at

the wall. In the boundary layer large gradients of the fluid variables occur. Let’s consider

the general conservation equation for a fluid quantity in the Eulerian form (with respect

to a fixed reference frame):

δΦ

δt
+~v · ∇Φ = DΦ ∇2

Φ + SΦ (2.1)

The first term on the left hand size is the time variation of the generic property Φ the

second one is the convective transport of Φ. On the right hand side we have the diffusion

of Φ (DΦ is the diffusion coefficient) and the source or sink term for Φ. Outside the

boundary layer the fluid flow can be assumed as inviscid. Temperature, momentum

and chemical concentration follow equation 2.1 suggesting a similar behaviour. This

is the basis for the Reynolds analogy. The Reynolds analogy states that under specific

conditions the solutions of equations 2.1 should be similar, hence the different properties

Φ follow the same profile. These profiles can be related each other by adimensional

parameters defined as the ratio between the diffusive transport of Φ1 and the diffusive

transport of Φ2. Some parameters of interest for next discussions are the following:

Prandtl number Pr =
v

k
=

µ cp

λ
(2.2)

Lewis number Le =
k

D
=

λ

ρ cp D
(2.3)

Schmidt number Sc =
v

D
=

µ

ρ D
= Le · Pr (2.4)

In the Reynolds analogy these numbers represent the ratio between the thickness of

several boundary layers. The most important consequence of Reynolds analogy is that

only one profile need to be known, the others can be scaled from the latter by knowing

the relative adimensional number. Similar profiles imply similar derivatives of those

profiles. This similitude is particular relevant, the convective heat flux proportional to

the temperature gradient and is equal to q̇ = −λ δT
δy . This heat can be determined from

the shear stress that is proportional to the velocity gradient and equal to τ = µ δv
δy . This

analogy is widely used to solve heat transfer problems by knowing the solution of

the momentum equation. Marxman used this analogy to determine a regression rate

correlation in hybrid rocket motors.

Inside the boundary layer the oxidizer diffuses from the external flow toward the

solid surface, while the fuel diffuses from the fuel grain surface outward. Oxidizer and

fuel mix to generate the flame region. The concentration profile that forms is the result
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of the balance between diffusion and convection. The flame is established inside the

boundary layer at a position where the concentration between the reactants is favourable.

On normal hybrid the rate at which the flame reaction occurs is much higher than the rate

at which the reactants reach the flame region. The Damkohler number (Da) is defined

as the ratio between the fluid dynamic time scale and the chemical reaction time scale.

For conventional hybrid combustion Da >> 1, the combustion is then defined diffusion

controlled or diffusion limited. Under these circumstances it is possible to neglect the

combustion rate. It is possible to divide the boundary layer in two regions separated

by the flame. In the upper part the oxidizer diffuses through the combustion products

that generates in the flame toward the flame position. The remaining part which ranges

from the flame to the fuel surface is composed by decomposed fuel vapours that migrate

from the surface to the flame. Marxman considered the steady state heat balance at the

wall: the heat at the wall is the one required to vaporize the fuel plus the heat conducted

inside the fuel grain:

q̇wall = ṙ ρ f uel Lv + q̇cond (2.5)

It can be easily demonstrated that for a quasi steady state regression rate of the fuel

surface, in which there are no in depth heat absorbing mechanism, the heat loss for

conduction is equal to the heat required to warm up the eroded amount of base material

from the initial temperature to the wall temperature. The surface heat balance becomes

then:

q̇wall = ṙ ρ f uel Lv + ṙ ρ f uel c (Twall − Tin) (2.6)

= ṙ ρ f uel ( Lv + c (Twall − Tin)) = ṙ ρ f uel hv. (2.7)

The wall heat flux qw is composed by two terms: convective and radiative heat flux. The

radiative heat is not taken into account in the classic hybrid theory also if a correction

was subsequently introduced. The reason for this is that in normal operative regimes

the convective heat flux is several times greater than the radiative one. The key element

in Marxman theory is the correlation of the convective wall heat flux with wall shear

stress. The first assumption is to consider the Prandtl and Lewis numbers equal to

one. This is a frequently made hypothesis for a turbulent boundary layer of a gaseous

mixture, the implication for this is that all the boundary layers have the same height.

Another hypothesis made by Marxman is that the fluid is incompressible. This is an

incorrect hypothesis that is necessary in order to come to understand hybrid combustion

behaviour.

q̇wall = −
λ

cp

δh

δy

Pr≈1
= −µ

δh

δy
(2.8)
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By applying the Reynolds analogy between the fuel surface and the flame it is possible

to linearly correlate the enthalpy gradient to the velocity gradient:

q̇wall

h f lame − hwall
=

τwall

v f lame − vwall
(2.9)

because the speed at the wall is zero (vwall = 0) the wall flux is equal to:

q̇wall = τwall

h f lame − hwall

v f lame
(2.10)

In this equation the wall friction can be determined using the friction coefficient definition

τwall =
1
2 ρe v2

e C f :

q̇wall =
1
2

ρe veC f
ve

v f lame

(

h f lame − hwall

)

(2.11)

By using equation 2.7 we have:

ṙ ρ f uel hv =
1
2

ρe veC f
ve

v f lame

(

h f lame − hwall

)

(2.12)

In this equation the unknown variables are the friction coefficient (C f ) and the ratio be-

tween the speed at the edge of the boundary layer and the speed at the flame (ve/v f lame).

It must be noted now that there is a presence of blowing due to fuel gaseous decom-

position and reaction. The blowing is that phenomena in which the boundary layer is

inflated by the presence of a vertical speed component at the wall. This inflation of the

boundary layer reduces the wall gradients reducing in turn the shear stress and heat flux.

The blowing parameter describes the flow over a blowing surface and is defined as:

B =
ṁ f uel

1
2 ρe ve C f

(2.13)

This parameter represents the adimensional form of the vertical mass flow. In an hybrid

motor the vertical mass flow is determined by the amount of decomposed fuel that enters

the boundary layer. In hybrid physics B it is not a free parameter. Using the definition of

blowing parameter in equation 2.12 we have:

B =
ve

v f lame

h f lame − hwall

hv
(2.14)

Hence substituting the latter equation in equation 2.12 we have:

ṙ ρ f uel =
1
2

ρe ve C f B (2.15)

Marxman was also able to determine the ratio between flame and boundary layer edge

velocities based on the position of the flame:

v f lame

ve
=

O/Ff lame
h f lame−hwall

hv

Koxe + (O/F + Koxe)
h f lame−hwall

hv

(2.16)
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The velocity ratio v f lame/ve is dependent only on the enthalpy ratio
(

h f lame − hwall

)

/hv

and the oxidizer to fuel ratio O/F at the location of the flame. Now that the blowing

parameter B, and the ratio ve/v f lame have been determined the only quantity left to

determine of equation 2.12 is the friction coefficient C f . The value friction coefficient

under blowing conditions (C f ) is not the same one for the friction coefficient in absence

of blowing (C f 0), but the two can be related:

C f

C f 0
=

[

ln (1 + B)

B

]0.8 [1 + 13 B/10 + 4 B2/11
(1 + B) (1 + B/2)

]0.2

(2.17)

Note that this equation meet the following conditions: C f /C f 0 = 1 for B = 0 and

C f /C f 0 → 0 for B → inf. A good interpolation for equation 2.17 for a wide range of

blowing parameters is the following:

C f /C f 0 = 1.2 B−0.77 for (5 ≤ B ≤ 100) (2.18)

Later Altman in [14] proposed a new interpolation model that is more accurate in the

typical hybrid rocket motor range:

C f /C f 0 = B−0.68 for (5 ≤ B ≤ 20) (2.19)

It must be kept well in mind that the later equations are interpolation fit and hence their

application is limited to their range.

In the classic hybrid combustion theory the friction coefficient in absence of blowing is

determined from the one of the flat plate:

C f 0

2
= 0.03 Re−0.2

x (2.20)

Where Rex is equal to:

Rex =
ρe ve x

µe
(2.21)

The use of the flat plate theory is, of course, a simplification and a strong hypothesis in

the classic theory, however this equation leads to draw some important conclusions on

hybrid rocket steady state combustion. Substituting equations 2.19, 2.20 in equation 4.1

we get:

ṙ ρ f uel = 0.03
(µe

x

)0.2
(ρe ve)

0.8 B0.32 (2.22)

The product between density and velocity at the edge of the boundary layer (ρe ve) is

approximated to the local mass flux (G).

ṙ ρ f uel = 0.03
(µe

x

)0.2
G0.8B0.32 (2.23)

Rearranging the latter and combining the nearly constant terms we get:

ṙ = aI G0.8x−0.2 (2.24)
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This is the important result of Marxman theory, an analytical equations that correlates

the fuel grain regression rate with the local mass flux. It must be noted that even if this

equation was derived by imposing some strong hypothesis (incompressible flow, flat plate

friction, flux approximation, etcetera...) it is a good mean to understand which are the

parameters involved. Some alternate forms of equation 2.24 are used to fit experimental

data. Normally the experimental results are spatially and temporally averaged. Following

the procedure in [30] it is possible to obtain the following averaged forms of equation

2.24:

ṙ = aI I (O/F) G0.8
tot L−0.2 or ṙ = aI I I (O/F) G0.8

ox L−0.2 (2.25)

The second one leads the famous general expression that is used to interpolate experi-

mental results:

ṙ = aIV (O/F) Gn
ox Lm (2.26)

Normally the values for a, n and m obtained from experimental tests are different from the

ones predicted by Marxman theory. This is expected given the amount of approximations

and hypothesis done during the Marxman theory demonstration. Many times from an

experimental point of view, the effect of the fuel grain length (Lm) is included in the

a coefficient and also the dependence of a from the o/ f is forgotten, leading to the

following expression:

ṙ = a Gn
ox (2.27)

Since the contribution to the regression rate of L is included in a the reported Marxman

law coefficients are dependent on the fuel grain length. In order to have a complete

understanding of the involved phenomena the length of the fuel grain should be de-

clared. However the scale of the motors used in hybrid propellant characterization are

similar (even from different research groups) leading to comparable results. The term

Lm represents the scale effect, for an increase of the fuel grain length, if m is negative,

the regression rate is reduced. Normally the length averaged form of the regression rate

equation is more accurate than the punctual one. In fact the regression rate law along the

fuel grain does not follow the power law in equation 2.24 for the initial values because

the regression rate in the fore-end of the grain depends on the type of injection, the pre

combustion chamber design and the flame holding mechanism [38],[11],[12]. This effects

are particularly relevant for low aspect ratio fuel grains.

Marxman power laws are valid only for a determinate range of oxidizer fluxes Gox.

For low fluxes the radiative heat flux overcomes the convective one, hence it is no more

negligible. Marxman introduced a radiative heat correction to his theory that is not here

reported. The factors that influence the effect of radiation are: flame emission coefficient

(metal particles1) and fuel grain absorption (fuel grain soot and dye). For high oxidizer

1 Metallized fuel grains and flames highly increase the emissivity ǫ
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Figure 2.2: Example of a logarithmic trend of the fuel regression rate with the mass flux and

effects for very high and low fluxes.

fluxes, the Marxman power law is not valid for a different reason: the reactants residence

time through the boundary layer and flame is so small that Da >> 1 hypothesis fades.

The chemical kinetic effect can not be neglected, and it will play an important part in

limiting the reaction. Analogously to what happens in solid rocket motors, the regression

rate is dependent on the local pressure, this is because pressure plays an important

part on chemical kinetic. Figure 2.2 summarizes the last considerations about hybrid

combustion regression rate on a logarithmic plot of the regression rate ṙ versus the mass

flux G. In a logarithmic plot the Marxman power law appears as a straight line with

a slope equal to the power law exponent n. For high mass fluxes the slope decreases

because of the chemical kinetic limitation. On the other end, for low fluxes the slope

decreases as well because of the increasing effects of the radiative heat. Moreover, outside

of the diffusion dominated ”linear” region a family of curves appears on both ends, these

represents the effect of pressure on the regression rate outside the diffusion dominated

region. For conventional fuels like paraffin, HDPE, HTPB the diffusion limited region is

quite wide. This region tends to shrink, on the left hand size when temperature enhancing

metal particles are added to the propellant formulation or the fuel grain is dyed. The

reduction of the diffusion dominated region is reduced on the right hand side as well

when a low combustion chamber pressure is employed. It is evident that the complex
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correlation between fuel regression rate and fluxes becomes even more complicated when

operating outside the diffusion controlled region. Normally, for sake of simplicity and

control, a hybrid rocket motor operates within a predetermined oxidizer mass flux range.

The theory presented until now describes only the steady state combustion modeling

for a hybrid rocket motor. The motor respond differently in a dynamic situation. Stanford

University[6][31], Arif Karabeyoglu[46] and Francesco Barato[25] studied in detail the

dynamic behavior of an hybrid rocket motor. The combustion chamber is characterized

by a characteristic filling and emptying time τf ill which is dependent on the combustion

chamber volume, throat area and chemical composition of the gas. In a simplified 0-D

model, this characteristic time governs how the combustion chamber pressure respond

with a variation of the incoming propellant flux. The fuel production depends on the

thermal lag in the solid fuel grain and the relation between incoming heat flux and

oxidizer mass flow[46][24]. Because of thermal lag there can be also an overshoot on the

fuel production. The oxidizer flow to the combustion chamber depends on the feeding

line and flow control mechanism. In many instances the transient period of the feeding

system is higher than the fuel grain one. In this work only the macroscopic effects that

throttling have on the combustion are considered.

2.2 hrms throttling behaviour and c∗ penalties

The experimental results reported in this work are often compared with the form of

Marxman power law in equation 2.27, the same law is used as a regression rate model.

The implications of the dependency between fuel regression rate and oxidizer mass

flux have already been qualitatively discussed in the introduction; these being a major

disadvantage of the hybrid propulsive technology. Because of the potential implication

that throttling can have on the motor performances, in this section the impact of throttling

is quantitatively presented with a simplified model.

2.2.1 o/ f shift

If we consider a single circular port fuel grain, with a port diameter Dp and a port length

Lp, in which only the fuel in the port take part to the combustion, i.e. the only regressing

surface of the fuel grain is the port (no face effect), we have that the fuel mass flow

coming from the fuel grain is equal to:

ṁ f = ṙ A f uel = ṙ π Dp Lp (2.28)
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Now let’s suppose that the fuel in the port burns following the Marxman power law:

ṁ f = a Gn
ox Lm

p π Dp Lp = a Gn
ox π Dp L1+m

p (2.29)

= a

(

ṁox

π D2
p/4

)n

π Dp L1+m
p (2.30)

The instantaneous oxidizer to fuel ratio is defined as the ratio between injected oxidizer

and injected fuel. It follows that the oxidizer to fuel ratio is:

o/ f =
ṁox

ṁ f
=

ṁox

a
(

ṁox

π D2
p/4

)n
π Dp L1+m

p

=
ṁ1−n

ox D2n−1
p

a π1−n 4n ρ f L1+m
p

(2.31)

We must remember that the latter equation has been determined introducing the following

hypothesis:

• circular port fuel grain

• no fuel grain faces contribute to the combustion (only the fuel grain port burns)

• the fuel port burns uniformly following the length averaged Marxman power law

ṙ = a Gn
ox Lm

p

Nevertheless, from equation 2.31 it is possible to draw some important conclusions about

the parameters that influence the o/ f and lead to the o/ f shift. Three are the variables

involved in the combustion that influence the oxidizer to fuel ratio: port diameter Dp,

oxidizer mass flow ṁox and fuel port length Lp. The latter doesn’t varies much in normal

hybrid rocket motor conditions, and its effect could be however negligible because of

HRMs high aspect ratio. Therefore the two major players in o/ f shifting are oxidizer mass

flow and port diameter. It is possible to note from equation 2.31 that the Marxman power

law exponent n plays a important part on the effect of the above mentioned variables. The

effects of the port diameter is null for an exponent n equal to 0.5. This is a condition that

is very looked after in conventional hybrid rocket designs. Because some applications of

hybrid rocket motors require a constant thrust and hence constant oxidizer mass flow,

there would be no o/ f shift if a particular propellant formulation with n as close as

possible to 0.5 could be employed. Such power law exponents were reported for paraffin

based fuels and N2O or HTP. Another example of near 0.5 power law exponent, but for

low regression rates, is the recent use at the JPL2 of SP-7/MON3. They look to use this

performing propellant formulation in their Mars ascending vehicle project [37],[8]. With

respect to equation 2.31, the oxidizer mass flow effect is null if the power law exponent

is equal to 1. Unfortunately Marxman theory does not take into account for such high

exponents, and among all the experimental results available in literature there are hardly

2 Jet Propulsion Laboratory
3 Mixed oxides of nitrogen
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values higher than 0.85 reported. It is not possible to void the effects of both port diameter

and oxidizer mass flow at the same time. For a throttleable hybrid rocket, which requires

oxidizer flow control in order to modulate the thrust, it is not possible to avoid o/ f shift.

Figure 2.3(a) shows the effects of a variation of the port diameter adimensionalized with

(a) (b)

Figure 2.3: Examples of adimensional o/f shif for hybrid rocket motors. On the left the effect of

port diameter. On the right the effet of a variation of oxidizer mass flow.

the initial one on the oxidizer to fuel ratio, for various power low exponents. Figure 2.3(b)

shows the effect of a variation of the oxidizer mass flow with respect to the nominal one.

Selecting the most suitable power law exponent for a throttleable hybrid rocket motor is

a case dependant choice. It must be weighted over the different conditions. For example

given a final to initial port diameter and a required throttling ratio a suitable n value

could be the one which gives an evenly distributed o/ f shift over the two effects. Another

aspect that can be kept into account is the expected thrust profile. If most part of the

time is spent at a fixed thrust and the throttling capability is exploited only occasionally,

the weight of the throttling losses could be negligible with respect to the losses induced

with the variation of the port diameter. Another thing to take into account about near

0.5 power law exponents (and direct consequence of o/ f shift absence with the port

diameter) is this: after a temporary variation of the oxidizer mass flow the return to the

previous combustion chamber pressure and thrust is granted. Because the performances

are not affected by a variation of the port diameter. For sake of clarity let’s consider the

following example:

Figure 2.4 shows the results of a simplified quasi-stationary numerical simulation

using a lumped parameter zero-order model. In figure 2.4a the three different normalized

oxidizer mass flow profiles are presented, these curves are input for the simulations.

The results reported in figure 2.4b and figure 2.4c show the difference in the output

normalized pressure profiles. In particular after a variation from the nominal oxidizer

mass flow and the consequent restore of the nominal conditions there is a difference in

the restored pressure, which is also dependent on duration and intensity of the throttle
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Figure 2.4: Difference between pressure profiles after an arbitrary variation of the oxidizer mass

flow for n = 0.5 and n = 0.8

down. Figure 2.4b shows how this is not the case with an n exponent equal to 0.5. Of

course this simplifies a lot the thrust control, because it guarantees a one-to-one relation

between oxidizer mass flow and pressure. Therefore the 0.5 exponent provides the best

accuracy for a throttleable hybrid in open loop, accepting, anyway, a slightly higher c∗

penalty compared to a higher n. If the propellant formulation and motor design power

law exponent differs significantly from 0.5 the thrust control algorithm must take into

account for the port diameter variation in order to precisely know the performed thrust.

2.2.2 c∗ penalties

Until now we discussed the effects of throttling and port diameter variation on the o/ f .

These are worth of note for mainly one reason: the motor performances are dependent

on the oxidizer to fuel ratio. The combustion chamber characteristic velocity strongly

depends on the oxidizer to fuel ratio. The optimal c∗ can be achieved only for a limited

o/ f range span. There are two important thing to during c∗ penalties evaluation: the first

is how a variation of oxidizer mass flow affects the o/ f the other is how the characteristic

velocity is affected by a o/ f variation. Figure 2.5 shows three trends of the characteristic



30 throttling of hrms

2 4 6 8 10 12 14 16 18 20 22

o/f []

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

C
h

a
ra

c
te

ri
s
ti
c
 v

e
lo

c
it
y
 [

m
/s

]

HTP

N
2
O

LOX

Figure 2.5: Characteristic velocity trends with the oxidizer to fuel ratio for paraffin and LOX,

nitrous oxide and 90% high test peroxide.

velocity with the oxidizer mass flow for three different propellant formulations, paraffin

as a fuel and various oxidizers: LOX, N2O and 90% HTP. This trends were obtained

using NASA’s CEA4 computer program[26]. It is possible to note that the c∗ peak for

N2O and HTP is quite flatter than the one for LOX. Also the characteristic velocity for

N2O and HTP on the oxidizer rich side (high o/ f ) tends to an asymptotic value, this is

because hydrogen peroxide and nitrous oxide are both oxidizers and monopropellants,

they exothermically decompose into a stable gas mixture. These aspects must be taken

into account when evaluating throttling performances. Once again the expected thrust

profile plays an important role, this time in the choice of which part of the presented

diagram use to operate the engine. If the thrust profile is not known and there is equal

probability to perform the maximum and minimum thrust, then the the operative region

should be the one that allow equal characteristic velocity losses for both thrusts, i.e. a

balanced region around the maximum c∗. But if we consider a thrust profile coherent

with the one that was predicted for the LMDE, visible in figure 2.6, it is evident that the

average thrust is shifted toward the higher values. In this case it is convenient for the

motor to operate in a fuel rich region in order to have the average thrust o/ f close to the

optimal one.

Table 2.1 reports the maximum values of c∗ and c∗ sensitivity 5 as well as two infor-

mation about the c∗ penalty which incur with a throttling ratio of 5 and 10. In the first

case (balanced), the throttling takes place around the o/ f at which the maximum c∗ is

achieved and ranges in both the oxidizer rich and fuel rich regions. In the second case

the motor operates only in the fuel rich region, starting from the optimal mixture ratio.

4 Chemical Equilibrium and Applications
5 Where c∗ sensitivity means the second derivative of the trends in figure 2.5 around the c∗ maximum point.
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Figure 2.6: The thrust profile that was expected for the lunar module descent engine during the

design phase.

There are two main reasons why the second c∗ penalty is reported, first the quantity of

total impulse associated with the low thrust could be smaller if compared with the high

thrust, and considering LMDE duty cycle (applicable for a soft landing ADV in general)

the motor spend less time at the lower thrust. Secondly, in the fuel rich region the drop

in c∗ is partially compensated by the relative increase of consumed fuel mass and so the

motor behaviour results more linear than the one achieved in the oxidizer rich region. A

linear motor behaviour would facilitate the throttling control loop, especially if open.

HTP N2O LOX

Maximum c∗ [m/s] 1598 1559 1773

c∗ Sensitivity [m/s] −22.4 −16.3 −369.9

c∗ Penalty TR=5 (balanced) 95.3% 95.9% 96.2%

c∗ Penalty TR=5 (fuel rich) 88.0% 84.5% 82.7%

c∗ Penalty TR=10 (balanced) 91.6% 92.8% 93.2%

c∗ Penalty TR=10 (fuel rich) 78.3% 78.5% 75.4%

Table 2.1: Characteristic velocity maximum, sensitivity and losses

The c⋆ sensitivity has been computed as a discrete numerical second derivative using

three equally spaced o/ f points. The mid point is the point of maximum characteristic

velocity. The interval that defined the second derivative varied with the propellant

formulation, it was set to 0.2 for HTP, and it was reduced for N2O and LOX taking into

account that the point of maximum characteristic velocity is actually at a lower oxidizer

to fuel ratio. The thermochemical data used for these considerations were obtained using

CEA computer program. For the balanced case the reported penalties were computed
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using an iterative procedure in which at the beginning a throttling ratio is set, from this

an initial ratio between maximum and minimum oxidizer mass flow is determined. With

a variation of the oxidizer mass flow comes and alteration of the oxidizer to fuel ratio

as expected by equation 2.31. With this data an initial characteristic velocity penalty is

computed using the c⋆ (o/ f ) function from CEA. But since the thermochemical properties

affects the value of the force coefficient, another couple of value for the minimum and

maximum oxidizer mass flow are determined, and hence the iterative procedure is

repeated until convergence of the obtained c⋆ penalties. The procedure for the balanced

case penalties is very similar, with the difference that the operative o/ f for the maximum

thrust is known. The power law exponents n used to obtain the data presented in table 2.1

are 0.5, 0.5 and 0.65 for HTP, N2O and LOX respectively. As we can see the advantage

of having an higher exponent for the paraffin-LOX formulation and hence a lower o/ f

shift associated with throttling is compensated by the high sensitivity of the propellant,

for the maximum achievable characteristic velocity efficiency is comparable with the one

for HTP and N2O.

It is important to remember that all this considerations were made under the assump-

tion of cylindrical fuel grain which is consumed exclusively in the port following the

simplified Marxman power law. This model does not take into account for the face

consumption and the contribution of thermal protection which could also represent an ef-

fective manner to reduce or mitigate the negative effects of throttling on the characteristic

velocity.
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F L O W C O N T R O L VA LV E D E S I G N

The flow control valve development process started during the first Ph.D. year and

ended at the beginning of the third year. The aim was to design, develop and realize an

prototype flow control valve to be used on the hybrid rocket motors under development

at the hybrid propulsion group. The design procedure for the development of the FCV

was subject to changes during these three years to what was expected at the beginning of

the first year.

A flow control valve is a device that is used to control the oxidizer mass flow to the

hybrid combustion chamber, in order to achieve a variable rocket thrust. A flow control

valve is not the only way to throttle a motor but we find it a suitable solution for our

particular motor configuration.

3.1 throttling methods

There are many methods to achieve throttling. Casiano, Hulka and Yang presented a

comprehensive review on LRM throttling[54]. Because of the peculiar nature of liquid

rockets many of the throttling methods presented are coupled with injector design. Figure

3.1 represents a chart of the possible throttling methods for a LRM investigated by NASA

during project MX-794.

The final throttling method used in this PhD work differs from the ones exposed in

this chart. However a general introduction of the most used throttling method is here

presented:

• The first method consist in using a flow control valve, but because of injection

atomization requirements the pressure drop in the injection plate can be excessive

for high mass flows limiting the effective throttling ratio.

• The second method uses a variation of the injection area to control the mass flow

through it and reduce the pressure losses due to atomization. Examples for this

method are the pintle injector and the dual manifold injection plate.

• The third method uses both a variable injection and a flow control valve. This

method was used for the LMDE where a variable area cavitating venturi based flow

control valve was used with a pintle injector. The cavitating venturi had a beneficial

effect on controlling the system over the wide range of operative thrust.

• The fourth method consisted in on parallel feeding, a pilot one and one actuated

with an on-off valve. With this method it is possible to realize a boost-sustain like

33
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Figure 3.1: Chart of throttling techniques investigated by NASA during project MX-794. [54]

thrust profile or obtain an intermediate thrust level by operating the secondary

valve in PWM1 mode. Usually a dual manifold injection plate is employed.

• The fifth and sixth presented methods are analogous to the second and first one

respectively, beside the fact that this time also the nozzle throat area is controlled.

This allows to effectively use a single set of injector when a single FCV is employed.

The ability to control the nozzle throat area also influence the thrust coefficient

efficiency. Of course this technique is quite complicated because of the high tem-

perature nozzle environment. Presently variable area nozzles applications are very

limited.

• In the last presented method, the thrust is controlled by varying the nozzle throat

area, here the flow to the combustion chamber is reduced because of an increase of

injection ∆p.

The method presented in this thesis is similar to the first one with two exceptions: the

flow control valve used is based on a variable area cavitating venturi and the injection

is gaseous. The injection pressure drop is comprehensive of the catalyst pack pressure

drop which is the main contributor to these losses. The motor configuration currently

1 Pulse width modulation
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under study at the hybrid propulsion group is particularly suitable to be implemented

with such a method. Firstly by using hydrogen peroxide, which is a storable oxidizer,

a cavitating venturi can be employed. This is hardly possible with nitrous oxide and

liquid oxygen since a cavitating venturi would be an excessively limiting element for a

saturated fluid. 2. Secondly the use of a catalyst pack to decompose the HTP flowing to

the combustion chambers enables to achieve many features:

• With a gaseous injection it is possible to introduce a swirled injector and so achieve

a vortex motor which is one of the peculiar high efficiency high regression rate

configurations presented in the introduction;

• A gaseous injection in general tends to have a very stable behaviour, there are

no droplet evaporation lag instabilities. This is true as long as the catalytic bed

performs correctly;

• HTP decomposition temperature reaches temperatures around 1000 K, this temper-

ature is high enough to thermally decompose and ignite the commonly used fuels.

This make the motor self ignitable and restartable: no pyrogenerators are required

and the system can be stopped and started several times.

The coupling between a FCV based on a cavitating venturi with a gaseous injection of a

decomposed monopropellant is a favourable configuration to realize a throttleable and

restartable HRM.

In this chapter the design of the developed FCV is presented.

3.2 cavitating venturi characteristic

A cavitating venturi is a venturi tube in which the throat pressure corresponds to the

vapour pressure of the fluid transiting through the venturi. This device has been long

credited for being a simple and accurate means for controlling the flow of an incom-

pressible fluid. The phenomena happens as the pressure drop through a conventional

venturi increases the upstream pressure head is converted into velocity, at some point the

residual pressure head is equal to the vapour pressure of the liquid.

The cavitating venturi characteristic equation can be derived from the Bernoulli’s

equation considering the head balance between an upstream point and the throat:

p0,up = pth + ρ
v2

th

2
+ ∆ploss

2 Since nitrous oxide, liquid oxygen and hydrogen peroxide are the most commonly used oxidizers when

talking about hybrids this makes the use of a CV3 peculiar to the hydrogen peroxide application
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For cavitating venturi the throat pressure is equal to vapour pressure of the operating

fluid. By neglecting the losses on the convergent section of the venturi the throat speed

can be rewritten as follow:

vth =

√

2
p0,up − psat

ρ

The media mass flow through the cavitating venturi can be determined using continuity

at the throat:

ṁ = ρ Ath vth

= Athρ

√

2
p0,up − psat

ρ

= Ath

√

2 ρ
(

p0,up − psat

)

Experimentally the measured mass flow through the cavitating venturi is lower than

the one computed using the previous equation. To take into account of this difference

a coefficient (CD) is introduced on the mass flow equation resulting in the well known

cavitating venturi characteristic equation:

ṁ = CD Ath

√

2 ρ
(

p0,up − psat

)

(3.1)

In this work CD is referred to as discharge coefficient, in literature CD can be called

orifice coefficient or flow coefficient. Beside being a variable introduced to take into

account of the difference between theory and reality, the discharge coefficient considers

many flow effects:

• Because of the vapour formation at the venturi throat, the liquid passage area is

often reduce, resulting in a smaller equivalent throat area. This effect is commonly

referred to as vena contracta.

• The neglected losses on the Bernoulli’s equation can have a relevant effect on the

mass flow. Experimentally these are taken into account in the discharge coefficient.

There are instances in which these two effects are related. One example are the drilled

injection holes of a cavitating injection plate, where the convergent is normally absent

and it is replaced by a sharp edge entrance: the convergent efficiency is very poor and

the sharp entrance affects the vena contracta, reducing consistently the throat area. In

this case the discharge coefficient can have values as low as 0.6.

Equation 3.1 describes the mass flow through the cavitating venturi when the liquid

at the throat cavitates. In this instance the flow through the cavitating venturi does not

depend on the downstream pressure. Because of the analogy with the sonic flow through

a rocket nozzle, the flow is said choked. When this condition no longer occurs the flow

is said unchoked. The main reason why the cavitating venturi is a simple and accurate
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method to control the flow is that when the venturi is choked there is no dependence

between mass flow and downstream pressure. Of course a determinate pressure drop

must be accepted in order to choke the flow. This aspect is particularly important in

hybrid rocket motor testing. Normally, when testing a HRM the oxidizer tank and

pressurization system are not the same of the flight model, as a consequence any possible

coupled instabilities that can rise are not of interest for the test and could be potentially

dangerous. Another aspect highlighted by equation 3.1 is that the cavitating venturi can

be hardly used when the operating fluid is saturated or near saturation. Because the

driving potential of 3.1 is the difference between the total upstream pressure p0,up and

the saturated fluid or vapour pressure psat the required throat area would be excessive,

resulting in a device that is heavy and cumbersome.

Normally the limit to which the characteristic equation is applicable is defined using

the ratio between the maximum downstream pressure at which the flow is still choked

and upstream pressure. This ratio is here defined as maximum allowed back pressure

(MABP4) ratio, and it is a characteristic of the cavitating venturi. The MABP ratio depends

on many aspects, the most important one is the divergent efficiency. On VACV5s an

important part is played by the method used to alter the venturi throat.

Determining the discharge coefficient CD and the MABP ratio can be performed

experimentally or numerically. Numerical simulations supported by CFD6 methods can

aid the design of the flow control valve itself. Such a method has been attempted in this

work, but because of the lack of time necessary to carry out all the required numerical

simulations this approach was later abandoned. The obtained partial results are presented

in the next session.

3.3 fixed throat cavitating venturi

Many reasons led to the design and testing of a fixed area cavitating venturi before the

realization of a variable area cavitating venturi to be used as a flow control valve:

• It served as a benchmark for the design of the variable area cavitating venturi.

The initial idea was to perform a series of experimental tests to characterize the

fixed throat cavitating venturi discharge coefficient and maximum allowed back

pressure ratio. Then carry out a numerical simulation campaign to obtain a suitable

CFD model able to predict correctly the desired characteristics and in the end use

the CFD model to carry out a series numerical simulations to support the VACV

design.

4 Maximum allowed back pressure
5 Variable area cavitating venturi
6 Computational fluid dynamic
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• At the time a new, large scale, hybrid rocket motor was being designed at the

hybrid propulsion group. The experimental set up needed a cavitating venturi to

perform constant thrust fire tests. This created a good opportunity to validate the

foreseen numerical model.

3.3.1 Design

The designed fixed throat cavitating venturi consisted in a four pieces assembly: two

inserts that fixed the venturi internal geometry and a two piece shell to act as an insert

holder. This configuration that is shown in figure 3.2, is a flexible configuration that

allowed to test many different internal geometries, and in particular allow to use various

throat diameter venturi inserts.

Figure 3.2: CAD model crossection of the fixed throat, four piece, cavitating venturi.

Moreover the venturi was realized in two inserts in order to enable the precise measure-

ment of the throat diameter. Of course a frontal cut at the throat required some precise

manufacturing, with reduced clearance between insert and holder. A conventional frontal

O-ring sealing was placed between the two inserts while two reduced room frontal O-ring

sealing avoided leakage between inserts and holder. The divergent insert was realized

with a divergence angle of 14◦, the convergent one with a convergence angle of 30◦. These

geometrical parameters were set following the good practise design for cavitating venturi

presented by Randall in [48]. Because the required oxidizer mass flow was 2.2 kg/s and

a maximum operative combustion chamber pressure equal to 25 bar a venturi throat

diameter of 6 mm was selected. The discharge coefficent using in the determination of the

throat diameter is 0.9. The upstream operative pressure was selected starting from the

downstream operative pressure and taking into account for a ratio between downstream
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and upstream pressure of 0.85.7 The venturi was manufactured and integrated with the

fluidic line for the large scale test motor.

3.3.2 Steady state experimental characterization

A set of cold tests were carried out, these were aimed to characterize the cavitating

venturi. Because the time for this characterization was limited, in the results that follows

are reported also mass flow data from fire tests.

Figure 3.3: The scheme of the experimental set up used during the fixed throat cavtating venturi

characterization.

Figure 3.3 represents the experimental setup used to characterize the fixed throat

cavitating venturi. It consists of a pressurized oxidizer tank, which pressurization take

into account for the pressure losses in the fluidic line, a ultrasound flowmeter which

outcome is used to verify the oxidizer mass flow through the venturi, the cavitating

venturi to be characterized and then a pneumatically actuated ball valve used to start

and stop the test. During this experimental characterization a set of 8 useful test were

performed, the results obtained and the relative uncertainty due to measurement errors

are reported in table 3.1. The maximum allowed back pressure ratio for the cavitating

venturi was determined and equal to 0.82. This characteristic was possible to obtain

thanks to a set of experimental fire test. The amount of back pressure was controlled by

setting the combustion chamber pressure. This was achieved by setting the appropriate

nozzle throat diameter.

3.3.3 Numerical simulations

A series of numerical simulations was performed on the fixed throat cavitating venturi.

A commercial solver ANSYS fluent was used to perform the CFD simulations. The mesh

for the fluid domain was realized using ICEM, this was a structured mesh with quad-

rangular elements. The analysed domain contained was bidimensional axialsymmetric

7 This ratio will be explained later in this work, but it is known as back pressure ratio and it is an important

operative parameter for the cavitating venturi.
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and representative of the the region upstream and downstream of the throat with an

area ratio of 9 with respect to the throat. The mesh used normally have a number of

nodes around 400k. The model used to simulate the cavitation and biphase flow was

a 2 parameters Schnerr-Sauer model[27]. The parameters that fluent allows to modify

are the fluid vapour pressure and the bubble density number. The vapour pressure for

an hydrogen peroxide acqueous solution was determined in literature, the value used

during the numerical simulations is 305 Pa, which is the vapour pressure of 90% HTP at

20◦C. For what concern the bubble density number, at the beginning the default value

preset in fluent was used, afterwards the number was increased in order to have a good

correlation for the discharge coefficient with the experimental one. The results presented

are relative to simulations with a ratio between downstream and upstream pressure of

0.7. A 2 equations k − ǫ, non equilibrium wall function model was used to simulate the

internal fluid dynamic. A mass flow boundary condition was imposed to the inlet and a

pressure boundary condition to the outlet.

(a)

(b)

Figure 3.4: Results of a CFD numerical simulation of the cavitating venturi: on top vapour title

contour and on bottom total pressure distribution.

Figure 3.4 shows the results of one of the performed CFD simulations with the afore

described numerical model. The first one represents the vapour title in the fluid domain. It

is possible to see the cavitation region inside at the throat and the relative vena contracta.

Cavitation starts at the throat but then it continues further in the downstream region

where it reaches a maximum. The second figure is the total pressure contour. Beside the

cavitation region being characterized by a very low total pressure it is possible to see that

the core region conserves a higher amount of total pressure, this is compatible with the

high speed jet type of cavitation presented in [48].
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test n◦ 1 2 3 4 5 6 7 8

ṁox [kg/s] 2.347 2.182 2.288 2.319 2.053 1.978 2.068 1.968

p◦up [bar] 29.15 26.76 28.64 28.87 23.17 21.89 23.37 22.30

exp. CD [] 0.9185 0.8912 0.9046 0.9132 0.9026 0.8933 0.9038 0.8850

unc. CD [] 0.0266 0.0257 0.0271 0.0283 0.0275 0.0307 0.0269 0.0273

num1 CD [] 0.9544 0.9491 0.9398 0.9473 0.9588 0.9456 0.9544 0.9360

num2 CD [] 0.9125 0.9088 0.9138 0.8953 0.9047 0.9047 0.9082 0.8968

Table 3.1: Experimantal and numerical results of the preliminary cavitating venturi characteriza-

tion.

Table 3.1 shows the experimental and numerical results obtained during this cavitating

venturi characterization. The first and second lines represent the measured oxidizer mass

flow and upstream total pressure. The experimental computed discharge coefficient and

respective uncertainty follows on the third and fourth rows. The fifth row (num1 CD)

is the obtained numerical discharge coefficient when the default fluent bubble number

density was employed. It is possible to note that the numerical CD is quite higher than

the experimental one. In order to have a good correlation between the experimental and

numerical results, the bubble density number was raised. The bubble density number

affects the numerical value for the discharge coefficent. For the geometry is always the

same this implies a change of the size of the vena contracta. Once a good correlation was

found the numerical simulations were repeated to see if the trend was still respected. The

CFD results for the second series of numerical simulations are reported in the last row of

table 3.1.

It is important to note now that the initial strategy to aid the design of the VACV by

employing numerical simulations was not pursued for the following reasons:

• As a part of PhD Students formation plan, we must follow some interdisciplinary

seminars. In one of these I had the pleasure to discuss about the application of

RANS models on CFD numerical simulations with Professor Francesco Picano,

one of the major experts in biphasic numerical simulations in Europe. During this

seminar Professor Picano pointed out how the solution obtained with RANS models

are extremely limited, it is true that their accuracy can be improved by handling

the model parameters, but it is equally true that the obtained parameters could not

possibly be used in a numerical simulation with a different fluid domain. Hence

neglecting the effectiveness of the desired initial strategy.
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• At this point the end of the first year was approaching. Numerical simulations

would have drained essential time to be dedicated to other activities involved in

the project.

The design of the flow control valve based on the variable area cavitating venturi followed,

but instead of being supported by numerical simulations a flexible design was adopted,

in order to enable the system to be modified if needed.

3.4 variable area cavitating venturi

As previously declared, the flow control valve developed during this thesis work is based

on the variable area cavitating venturi (VACV). With a VACV it is possible to control

precisely the choked flow through the venturi. This is achieved by varying the venturi

throat area. There is an almost linear dependence between throat area and oxidizer

mass flow as it can be seen from the cavitating venturi characteristic equation (Eq. 3.1).

This dependence is almost linear because the discharge coefficient CD slightly varies

for a variation of the venturi throat area. It is worth to note that among the involved

variables in equation 3.1 two can be used to control the oxidizer mass flow through

the cavitating venturi: throat area and upstream total pressure. Because of the linear

dependence the throat area is a good candidate to be used as control variable: it simplifies

the control algorithm. But it is equally possible to use a fixed throat cavitating venturi

with a variable upstream pressure. Other than being non linear, using the upstream

total pressure as control variable presents some technical difficulties. In most HRM

applications the feeding system is pressure fed. With this configuration it is difficult

to vary the tank pressure on demand, and the involved volume is quite consistent

which suggests a poor reaction time. Varying the upstream pressure would possible

if a pump fed feeding system is employed. Coupling a CV with a pump would bring

some advantages in terms of feeding stability, but however we must remember of the

non-linear dependency between flow and upstream pressure and how the the venturi

characteristic curve will couple with the feeding pump one. Since at University of Padova

we use mostly pressure fed system, the use of throat are as control variable is the best

choice, hence the development of a variable area cavitating venturi. The most commonly

used method to realize a VACV consists in a pointed shaped spike, or pintle, that enters

the throat of a traditional venturi. When the pintle advances toward the venturi, the

portion of throat area occupied by the pintle increases, which means that the effective

throat area is reduced. It is common to identify a linear coordinate defined as pintle

stroke to evaluate the position of the pintle with respect of the venturi. The pintle stroke

is defined as the distance between the pintle actual position and the closed position in

which the pintle touches the venturi throat wall. This distance must be projected on the
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pintle actuation axis which is commonly aligned with the venturi bore axis. It is assumed

that the pintle stroke increases when the spike moves outward and it has zero value

when pintle and throat are in contact. The pintle can have many shapes. Generally it is

axialsymmetric and with a conical point. As it will be shown soon, a conical pointed

pintle implies a quadratic trend of the throat area with pintle stroke. However this kind

of point is the most used because it is easy to manufacture and verify. For a conical

Figure 3.5: Crossection schematic of the throat area for a conical shaped pintle.

shaped pintle the throat area can be assumed as the lateral area of the truncated cone

which generatrix is perpendicular to the pintle surface at the frustum. This definition is

here explained with reference to figure 3.5.

The throat area is assumed to be the minimum passage area. In the conical spike

configuration this is equal to the lateral area of the truncated cone that is generated by

the rotation of segment AB around the axis (centerline). In this case the passage area

cone has an apex angle equal to (π − 2 α).

The lateral area of a cone is equal to

Alateral = π r a

And since the relation between frustum (a) and base radius (r) is known (a = r/ cos α)

the lateral area can be rewrote as:

Alateral = π r2/ cos α

The throat area is the difference of the lateral area of two cones which share vertex and

apex angle (π − 2 α). With reference to figure 3.5 the larger cone has a base radius equal

to rA and the smaller one rB. Where:

rX is the radial coordinate of a given point X with respect to centerline axis;

A is the venturi wall reference point upstream of the throat where the sloop of the

rounded edge is equal to α (pintle half apex angle);

B is the pintle wall reference point which is defined as the point of minimum distance

from A on the actual pintle frustum.
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Hence the throat area as difference of the defined cones lateral area is:

Ath =
π

cos α

(

r2
A − r2

B

)

The radial coordinate of point A is computed from the throat radius incremented by a

portion of the throat sagittal radius:

rA = Rth + Rup (1 − cos α)

The radial coordinate of point B is computed from rA decreased by radial component of

segment AB:

rB = rA − AB cos α = rA − x sin α cos α

Introducing the derivation of rB in the definition of Ath we have

Ath =
π

cos α

(

r2
A − (rA − x sin α cos α)2

)

=
π

cos α

(

r2
A − r2

A + 2 rA x sin α cos α − x2 sin2 α cos2 α
)

=
π

cos α

(

2 r2
A sin α x − sin2 α cos α x2)

So to conclude the venturi throat area for a conical pintle is described by the following

equation:

Ath (x) = π
(

2
(

Rth + Rup (1 − cos α)
)

sin α x − sin2 α cos α x2) (3.2)

where α is the apex half angle, Rth is the throat radius, Rup is the upstream throat radius

(in the sagittal plane) and x is the pintle stroke, from the position in which the pintle

touches the venturi.

Equation 3.2 shows how for a conical shaped pintle the throat area function is non

linear with the stroke, in particular it is quadratic. The non-linearity term can be reduced,

two methods are here analysed:

reduce the pintle apex angle since sin2 α cos α cos α tends toward 0 faster than

sin α for α → 0, by decreasing the apex angle (2α) it is possible to increase the

linearity of equation 3.2 over the same range of pintle stroke. This strategy has a

major drawback. There are mechanical/structural limits to how far the apex angle

can be reduced. Furthermore these limits are met not only during the operational

life of the VACV but also during manufacturing. For the most common method to

manufacture a pintle is turning, the structural abovementioned mechanical limits

are often met during the manufacturing phase.

oversize the vacv An increase of the term
(

Rth + Rup (1 − cos α)
)

of equation 3.2

implies a higher weight of the linear term. This from the practical point of view

means to realize a oversized VACV and reduce the operative pintle stroke.
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During the design phase of the VACV both the presented methods were used. The pintle

cone apex angle was reduced to the minimum guaranteed by the manufacturer, and the

venturi throat area was slightly oversized in order to reduce the effects of non linearity

over the operative mass flow range. Hence reducing the operative pintle stroke.

Figure 3.6: MOOG-Bradford FCV developed during FP7 SPARTAN project. To mitigate non

linearity effect between oxidizer mass flow and pintle stroke this VACV employ a

paraboloid pointed pintle.

If the non linearity implied by the use of a conical pointed pintle is unbearable and

oversizing the system is not an option, it is possible to use a differently shaped pintle. In

particular a paraboloid shape will increase the linearity of the throat area with the pintle

stroke. MOOG-Bradford developed a FCV based on a variable area cavitating venturi [15]

on the frame of EU FP7 SPARTAN Project (a project funded by the European Union)[57].

In their device they characterized both a conical and paraboloid pointed pintle. With

the paraboloid pintle they found a linear relationship between oxidizer mass flow and

pintle position when the flow is chocked. Another advantage of the paraboloid pointed

spike is that it is more robust that a conical one. On the other hand it requires a higher

manufacturing level and it is very difficult to verify the manufacturing accuracy.

3.4.1 Design

The design phase of the VACV started with the definition of the operative requirements

defined on table 3.2.
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Minimum oxidizer mass flow 30 [g/s]

Maximum oxidizer mass flow 300 [g/s]

Nominal operative pressure range 50 ÷ 80 [bar]

Maximum operating pressure 90 [bar]

Table 3.2: Table of requirements for the variable area cavitating venturi design

The maximum operative oxidizer mass flow is set to 300 g/s for two reasons: firstly

this mass flow corresponds to a thrust of nearly 1 kN in vacuum at the optimal o/ f , this

thrust level is reasonable for a lab-scale test motor; secondly it is a reasonable HTP mass

flow that can be processed by the catalytic bed that is currently used for the test of small

(up to 1kN) hybrid rocket motors at the University of Padova Hybrid Propulsion Group.

The minimum oxidizer mass flow was derived from the maximum one knowing that

the desired throttling ratio was about 10:1. For what concern the operative pressure, this

requirement was set starting from the required maximum combustion chamber pressure

between 35 and 40 bar. Now if we analyse the fluidic line pressure drop upstream of the

combustion chamber we have the following contributes:

• Injection plate pressure drop (gasseous injection). This term is particularly relevant

if a swirled injector is employed;

• Catalyst pack pressure drop. This fundamental component that is employed to

decompose the incoming peroxide implies a pressure drop.

• Downstream to upstream pressure ratio. Normally VACV can operate with a

maximum value of such a ratio after which the flow is unchocked.

So starting from the combustion chamber pressure the injection plate and catalyst pack

pressure drops are added and the achieved pressure is divided by the maximum allowed

back pressure.

p0,up,nom =
(

pcc + ∆pinj + ∆pcat

)

/MABP

It must be noted that, at this point of the flow control valve development, not all the

terms required to fully evaluate the nominal venturi upstream pressure were known.

In particular the catalytic pressure drop (∆pcat), which is strongly dependent from the

oxidizer mass flow through it, was determined only for an oxidizer mass flow range from

40 to 110 g/s. A semi-empirical model has been developed within our research group to

determine some operative parameters of the catalyst pack employed, among them the

catalyst pressure drop. Unfortunately this model was not available when the requirements

for the VACV were defined, hence the required maximum pressure drop was determined

with a linear extrapolation of the available experimental data. The injector pressure drop
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has been determined using gas dynamic equations and considering that the acquired

kinetic energy is dissipated. Experimental data on swirled injectors show a very good

correlation with theoretical model. The maximum allowed back pressure ratio used

during the requirement definition is 0.8 which was a conservative value generated from

an analysis of the values reported in literature and the experimental ones that were

determined for the fixed area cavitating venturi previously described.

As many other components that build up the fluidic line, the maximum operating

pressure (last requirement for the VACV) was set to 90 bar. This is normal for all the

components that are designed in-house and integrated to the oxidizer line. It is also a

pressure level that we can easily reach with our experimental pressurization system in

order to qualify the components. The oxidizer tank integrated in the experimental set

up is equipped with a 100 bar bursting disk. The VACV configuration adopted for the

(a) (b)

Figure 3.7: Variable area cavitating venturi scheme on the left and photo of the VACV and the

spare conical pionted pintle on the right. This figures are the first version of the VACV.

Some improvements were apported to the final design particularly for what concern

the venturi.

realization of the flow control valve is experimental, i.e. heavy, not structurally optimized,

flexible in order to allow some design change. Figure 3.7 shows the first version VACV

configuration and assembly. It consists of three parts: pintle, main body and venturi.

main body The main body consists in most part of the valve. Its goals are to connect the

pintle with the venturi, allow the pintle actuation with specific assembly tolerances,

host flow inlet and venturi. On the fore face of the main body is also present the

interface for the actuation, which consist of four threaded holes.

pintle The pintle is the body that enters the venturi throat in order to reduce or

vary the throat area and allow the flow to be controlled. For sake of simplicity

in manufacturing and quality control the pintle was designed to have a conical

shaped point. The pintle is helically moved toward the venturi throat by mean of

a drivescrew machined in the main body. An O-ring sealing is used to separate
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the wet region of the flow control valve from the drivescrew, and in order to relief

the pressure caused by a movement of the pintle a venting hole is machined in the

main body.

venturi The venturi is a venturi shaped channel carved inside an appropriate fitting

and connected to the main body via a screw connection, the sealing is granted

by an O-ring placed in a groove at the end of the thread. This type of connection

aside from providing an effective sealing also grants the precise and reproducible

positioning of the venturi in the main body, which is necessary in order to reduce

position uncertainties. The venturi first version resembled a nipple like fitting with

BSPP screw connections on both ends. The second version have a smaller venturi

divergence angle and allowed it to be connected to the fluidic line with a Let-Lok

fitting.

The oxidizer flow enters with an angle of 90◦ with respect to the pintle axis and

venturi port. On the opposite side of the entering bore there is a pressure tap to be used

with a pressure transducer. This structurally robust and configuration flexible design

allows, if necessary, to test many different pintle and venturi configurations. During the

development phase of the venturi a second venturi configuration was realized.

Figure 3.7 shows also a rigid coupling that is connected to the pintle. This part served

as a handle/knob during the FCV static characterization. An indicator was added to the

handle and a goniometer was attached to the fore face of the main body in order to know

pintle stroke. This was the VACV situation at the end of the PhD course second year[44].

The venturi throat diameter was computed from equations 3.1 and (3.2). It was assumed

for the maximum throat area to be 3/2 of the throat area at which the maximum oxidizer

mass flow is achieved. This oversizing was introduced to limit the nonlinearity of the

oxidizer mass flow with the pintle stroke. The computed venturi throat diameter is

equal to 2.2 mm. The pintle apex angle was set to 10◦, this was the minimum angle the

manufactured guaranteed. With such geometry definitions the maximum oxidizer mass

flow pintle stroke is reached at about 5 mm over a 11 mm maximum pintle stroke. The

maximum pintle stroke was computed as the stroke at which the above-defined truncated

cone area is equal to the venturi throat area. Of course the upstream pressure plays an

important part in determining the intensity of oxidizer mass flow through the VACV.

The throat upstream sagittal radius was set equal to three times the throat radius.

Table 3.3 reports the geometrical parameters for the variable area cavitating venturi.

These are outputs of the geometrical design that allow to compute the throat area function

with the pintle stroke. Figure 3.8 shows the throat area function with the pintle stroke.

Another aspect that influences the design is the maximum operative pressure. Fortu-

nately this basic structural design is quite robust. Because of the dimensions required

to host the fittings and because the geometry was not structurally optimized, the maxi-
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Venturi throat diameter 2.2 [mm]

Venturi upstream radius 3.3 [mm]

Venturi divergence angle 10 [deg]

Pintle apex angle 10 [deg]

Maximum pintle stroke 11 [mm]

Useful pintle stroke 7 [mm]

Table 3.3: Output design parameters for the VACV

mum pressure does not represent a problem for the structure itself. The major design

limitation to the maximum operative pressure is the clearance between pintle and main

body. In fact the sealing between these two components is realized with an O-ring. An

excessive combination of clearance, pressure and relative movement between the two

components leads to the extrusion of the O-ring sealing from its grove and consequently

to a boundless leakage of oxidizer from the FCV. Parker O-ring sealing handbook is a

useful tool to design O-ring sealing. For a maximum operating pressure of 90 bar and a

polymer hardness of 75 § (shore hardness) the handbook defines the clearance extrusion

limit to 0.24 mm. As a consequence to this limit the manufacturing clearance must lay

between 0.11 and 0.13 mm.

0 2 4 6 8 10

Pintle stroke [mm]

0

0.5

1

1.5

2

2.5

3

3.5

4

C
V

 t
h

ro
a

t 
a

re
a

 [
m

2
]

×10
-6

Figure 3.8: VACV throat area with the pintle stroke.

Other aspects relative to the design are the used materials. Hydrogen peroxide is

safe to use as long as it is in contact with compatible materials. The manufactured
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components are made of AISI 316 L stainless steel, while the O-ring sealing are made

of fluoroelastomer (FKM8) also known with registered name of Viton. Both this two

material are long term compatible if properly cleaned and passivated.

3.4.2 Pintle positioning errors and manufacturing tolerances

Figure 3.8 represent the theoretical throat area function, but there are some aspects that

must be taken into account: manufacturing tolerances and relative uncertainty of pintle

positioning. Because of these two conditions it is possible to know the actual throat area

with a relative confidence margin.

Let us analyse the design presented in figure 3.7, we can see that there is a relative

positioning between pintle and main body, and there is a connection between venturi and

main body as well. This two relative positions build up to create relative positioning error

between pintle tip and venturi throat. On the venturi side, the position uncertainty is

defined by the thread tolerance and relative position in the main body of the VACV. The

thread is a 1/2” BSPP with a manufacturing class A, which implies an axial uncertainty

of 22µm But because the venturi is tightened to the main body as long as the bolting

preload occur this axial position uncertainty can be neglected. On the pintle side of the

main body the drivescrew is realized with a M8x1 metric thread connection with a class

g6 for the pintle H6 for the main body. Because the pintle-main body coupling is liable,

the overall connection axial clearance must be taken into account when considering the

pintle axial position uncertainty. With these two thread classes the overall pintle axial

uncertainty is equal to 34µm. This is an effect that must be considered when analysing the

VACV throat area uncertainty. Another source of uncertainty on the pintle axial position

is the accuracy to which the pintle rotation angle is known and this is directly correlated

with the feedback sensor accuracy.

Other aspects that influence the accuracy of the throat area function are the manufac-

turing tolerances, in particular the one related to the driving geometrical parameters:

pintle apex angle, venturi throat diameter and throat upstream sagittal radius. All these

sources have their way to influence the combined throat area uncertainty.

Figure 3.9a shows the contribution of every source to the combined throat area uncer-

tainty with the pintle stroke. It is worth noting that the contribution on the pintle position

(x) is dominant for low pintle strokes, while the most contributing source for high pintle

strokes is the vernturi throat diameter uncertainty. The manufacturing tolerance on the

pintle apex angle plays a moderate role reaching a 10% top influence for the intermediate

strokes. The contribution of the throat upstream sagittal radius is almost negligible.

8 Fluorocarbon monomer
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Figure 3.9: Throat area uncertainty due to pintle positioning errors and manufacturing tollerances.

On the left the uncertainty contribution for every single source with the pintle stroke.

On the right the influence of throat area uncertainty over the throat area with the

pintle stroke.

Overal uncertainty and contributions have been computed with the error propagation or

Kline-McClintock formula [33].

On figure 3.9b the throat uncertainty over the throat area is reported. The uncertainty

explodes for pintle stroke tending toward zero and the major contributor is the pintle

stroke uncertainty. This effect implies that the VACV or the flow control valve should be

used for pintle strokes lower than 0.25 mm.

Figure 3.10 is an update of figure 3.8 with the added 3σ confidence uncertainty. It must

be noted that the throat area uncertainty is higher when the pintle is at a greater distance

from the closure position. Nevertheless, as it is above-mentioned the influence of this

uncertainty is higher for pintle strokes tending toward zero.

3.5 actuation & control

After the VACV was designed the design of the actuation followed. The actuation

configuration is flexible as well, there is a simple interface betweenVACV (the valve body)

and actuation[45]. The static part of the actuation can be linked to the four threaded holes

interface on the VACV main body while the rotor can be connected directly, or indirectly,

to the pintle.

Firstly let us consider the principle of pintle actuation: the drivescrew. This mechanism

allows the pintle to move axially, along the venturi bore axis, via a relative rotation

between pintle and VACV main body. As mentioned in the previous section the drive-
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Figure 3.10: VACV throat area and added uncertainty with 3σ confidence with the pintle stroke.

screw is realized with a M8 × 1 metric thread. This thread have a pitch of 1 mm which

implies a transmission ratio (H)between pintle rotation and pintle advancement of

1.59E − 04 m/rad.

H =
pitch

2π

This ratio is very low, drivescrews are mechanism known for their irreversibility meaning

that if a rotation implies a translation, the contrary in no longer true, because of the

simple presence of friction in the threaded connection. This irreversibility is a main

contributor to the safety of flow control valve in case of actuation fail, since, in such

an event, the pintle stroke would remain constant. With other type of actuation the

upstream pressure would cause the pintle stroke to increase, so that the oxidizer mass

flow increases, leading to an involuntary flooding of the combustion chamber, with the

consequences it may cause. Because this is the first time a FCV is being developed at

UniPD Hybrid Propulsion Group, the choice of using a drivescrew was legitimate by

safety requirements. Figure 3.11 shows the complete FCV schematic. On the left the last

version and ultimate VACV to be used as flow control valve on the right the actuation.

The adopted actuation configuration consists of a step motor connected with an absolute

encoder. The step motor is dual shaft. The back shaft of the engine is used to connect the

engine with the encoder via a flexible joint. The angular encoder is based on effect Hall

and allows to measure the angle of the shaft with an absolute value for 31 turns and a

precision of 2◦26′. Motor and encoder stators are connected with an aluminium flange.

For what concern the connection between actuation and valve, the front shaft of the step

motor is coupled with the pintle using a rigid joint. Step motor stator and valve main
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Figure 3.11: Crossection schematic of the complete flow control valve, VACV (valve) and actuation.

body are connected using four rectified bolts that allow the motion of the actuation along

the pintle axis while blocking any kind of torque and bending of the actuation.

3.5.1 Step motor

A step motor have a very peculiar characteristic curve, it advances of the set step rate

until the load torque reaches the pull-out torque. In this instance the motor starts to lose

steps, it may advance in rotation as well but the rotational speed is consistently lower

than the set one. The pull-out torque for the motor is a limiting parameter. The motor

selection started with the definition of the motor requirement torque and speed, then

the characteristic curves of the commercially available step motors are analysed and

hence motor and power are selected. To evaluate the required torque two different effects

must be taken into account: pressure and friction. The pressure force is generated by the

resultant of the pressure integral on the pintle surface portion exposed to the fluid, this

is equal to pressure times the area generated by the 6 mm bore. The work generated by

this force is positive when the pintle stroke increases and negative for a decreasing pintle

stroke. This force generates a torque on motor rotor proportional to the transmission

ratio:

Tpress = H Fpress = H MEOP
π d2

bore

4
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The pressure force is also the major contributor to the friction torque. This effect must be

evaluated because it is dominant if compared to the sole pressure torque:

Tf r = Fpress

µt f ,dry dthread

2 cos αthread

where αthread is the the thread angle, dthread is the thread diameter and µt f ,dry is the dry

friction coefficient between pintle and VACV main body. The dry friction coefficient was

taken into account in order to oversize the system.

With these considerations a total torque of 0.305 Nm is required for decreasing pintle

strokes while 0.228 Nm are required for increasing pintle strokes.

Another requirement to take into account during motor selection is the maximum

speed rate for the motor. This requirement was set from the objective of reaching a rise

time for a step command of 1.25 s. This led to select a motor able to generate a 0.305 Nm

torque at a 3.2 rps rotational speed.

Figure 3.12: NEMA 23 Step motor pullout torque characteristic curve for the selected model

A NEMA 23 step motor was selected. The characteristic curve for the selected motor

can be seen in figure 3.12. Among the available DC voltage supplies, 24 V was used. Even

if higher voltage supplies lead to better performing characteristic curves with the same

motor, 24 V is the limit, in our lab, to which it is possible to operate safely, on prototypes,

without too strict safety requirements. The selected motor has a 1.8◦ step angle, which

means 200 steps
turn . This is not a limitation in terms of angular resolution and hence pintle

stroke because a control unit that allows multistepping is used.

As already mentioned the stem motor is dual shaft in order to have a direct connection

between pintle, motor shaft and rotative encoder.



3.5 actuation & control 55

3.5.2 Feedback sensor

The pintle actual position is measured indirectly. It is derived from the knowledge of

the pintle axis rotation angle with respect of a unambiguous reference position. Many

rotation sensors are available, the most diffused ones being the relative encoders. The

selection of the rotation sensor was driven by two conditions:

• An absolute encoder was preferred with respect to a relative one for two reasons:

firstly in case of power supply interruption and system shut down the actual pintle

position is known after system restart. It is possible that this event occurs during a

fire test. Secondly we wanted to avoid to recalibrate and reset the system every time

the system was "handled improperly". This being the pintle was rotated without

power supply or the flow control valve was moved from the experimental set up to

storage.

• Because the maximum pintle stroke is 11 mm the pintle rotation angle must be de-

termined for 11 turns. This requirement restricted the gamma of choice consistently.

(a) (b)

Figure 3.13: The selected step motor and absolute encoder for the actuation of the FCV.

The ASM PH36 absolute encoder based on effect hall was selected for the application.

This sensor have a very good linearity over the whole operative range, a programmable

output and the possibility to measure a rotation angle for up to 31 turns and a good

resistance to a vibration intensive environment. Table 3.4 summarizes some of the

technical data for the selected encoder.

The overall feedback uncertainty derived by the use of this absolute encoder is 2.43◦ .

This amount was taken into account on the pintle positioning error analysis presented

previously and on the data reported in figures 3.9 and 3.10.
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Measure range 31 × 360◦

Output resolution 16 Bit

Repeatability 0.1◦

Linearity ± (2◦ + 0.015% f .s.)

Table 3.4: Specifications of the selected absolute encoder.

3.5.3 Controller

The flow control valve is controlled using a National Instrument myRIO 1900. This

controller is a portable reconfigurable input output device, with 10 analog input channels,

4 analog output and 40 configurable digital input/output. The analog to digital converter

resolution, for the analog channels, is 12 bit. This resolution suits the purpose the device

is used for: controlling the flow control valve. Of course we do not need all the channels

Figure 3.14: The configurable input-output myRIO-1900 device used to perform the closed loop

control of the flow control valve.

available in the device. We use a limited number of channels to acquire the involved

sensors signal, control the step motor and interface with the HRM acquisition system:

absolute encoder A 10 V analog input channel is used to acquire the signal from

the absolute encoder;

pressure sensor A 10 V analog input channel is used to acquire the signal from the

upstream pressure sensor;

step motor The step motor is controlled with a dedicated controller. This controller

requires three digital input to: enable the system, control the turning direction and
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control the step rate (clock). Three myRIO digital output channels are dedicated to

this task.

system interface outputs The FCV controller communicates some important pa-

rameters to the main acquisition system. This communication take place between

analog channel. For example a myRIO analog output channel communicates a

tension signal to an analog input of the main data logger proportional to the pintle

stroke.

system interface inputs Normally the pintle actuation is recorded in a program

on myRIO. This predefined sequence of commands is started by the use of a trigger

which uses a digital input channel.

The controller was programmed using LabVIEW, National Instrument native program-

ming language. NI myRIO-1900 has a field programmable gate array (FPGA9) processor.

With LabVIEW it is possible to directly program the FPGA. Normally only the task that

require a fast processing speed or true parallelism are programmed in FPGA, the other

tasks are performed with the real time processor. The communication between the two is

performed with the so called scan engine. In this case the motor control is performed

with the FPGA while the other tasks are performed with the real time.

3.6 experimental characterization

Four different types of characterization were performed on the valve: static, dynamic,

maximum allowed back pressure (MABP) and cavitation dynamic instabilities. The

experimental set-up used during these characterization is the same except for some

minor changes.

3.6.1 Experimental set-up

Figure 3.15 shows the experimental setup used to characterize the flow control valve.

From upstream to downstream the components are: a high pressure nitrogen tank, the

pressure regulation block (consisting of two pressure regulators serially connected), the

tank, a series of automated ball valves and, at the end, the variable area cavitating venturi.

Downstream of the cavitating venturi there is a needle valve, used during the MABP

characterization, and a pipe which connects the valve with a collector tank.

The oxidizer tank design is particular since it allows also to measure the mass flow.

It consists of a precisely manufactured cylindrical barrel with two flat bulkhead at its

ends. Inside the tank two rooms are separated by a piston the above volume host the

9 Field programmable gate array
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Figure 3.15: The experimental set-up used during the FCV characterization.

pressurant while the lower volume holds the oxidizer, the impermeability of the piston is

granted by specific sealing. Connected to the piston, directed upward, there is a stem

which crosses the uppermost bulkhead, the stem is connected to a linear potentiometer.

Thanks to the potentiometer output both the instantaneous mass flow and cumulative

mass are determined. In order to grant the accuracy of the measure, before each test

most of the gas and fluid in the lower volume is vacuum removed before filling up, so to

reduce the ullage volume during the test. The tank capacity is four litres.

There are three pressure sensors in the setup: ptank is screwed in the upper bulkhead

of the tank, and hence measure the pressurant pressure, pup and pdown are placed

immediately upstream and downstream of the cavitating venturi. A thermocouple,

placed at the tank outlet, measures the outflow temperature in order to compensate

the density data and for safety reasons, in case of dissociation, inside the tank. Valves

V05 and Vtank are manually actuated before loading the tank and pressurization. Valves

VC and Vtest are pneumatically and automatically actuated in this order during the test.

Valve Vpurge is pneumatically and remotely actuated, it allows low pressure nitrogen to

flow trough the last part of the line in order to purge this last volume from any residual

HTP, during fire test this valve can be used to purge the combustion chamber. The

downstream volume, between Vtest and the engine injection is kept to a minimum. Valve

Vdump is pneumatically and remotely actuated as well but its function is to empty and

depressurize the line volume between VC and Vtest. Vneedle is used to achieve a determinate

amount of back pressure with the mass flow during the MABP characterization.

3.6.2 Static characterization

The static characterization consists in a series of tests to determine the mass flowing

through the flow control valve for different values of pintle stroke and upstream pressure.

Three different upstream pressures were analysed: 30, 45, and 60bar. The pintle stroke

ranged from 0.5 to 10mm with a step of 0.25mm. The tests were performed using 91%HTP,
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this happened during the second semester when the actuation was not integrated with

the valve yet[44].

1 2 3 4 5 6 7 8 9 10

Pintle stroke [mm]

0

50

100

150

200

250

300

350

400

450

500

M
e
a
s
u
re

d
 m

a
s
s
 f
lo

w
 [
g
/s

]

30 bar

45 bar

60 bar

(a)

1 2 3 4 5 6 7 8 9 10

Pintle stroke [mm]

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

D
is

c
h

a
rg

e
 c

o
e

ff
ic

ie
n

t 
[]

30 bar

45 bar

60 bar

fit

(b)

Figure 3.16: Results achieved during the static characterization, on the left the oxidizer mass

flow for different valve apertures and operating pressures, on the right the relative

discharge coefficient and the fit proposed in eq.3.3

The direct results achieved with the static characterization are reported in Figure 3.16,

they are the trend of the oxidizer mass flow and discharge coefficient with the pintle

stroke, for the three different upstream pressures. The oxidizer mass flow uncertainty is

derived with the error propagation formula [33] from tank diameter, oxidizer density and

the potentiometer uncertainty; in most cases it is lower than 4.2 g/s. The values for the

discharge coefficient were obtained from the ones of the oxidizer mass flows assuming

a venturi throat area that follows equation 3.2. The trends for the discharge coefficient

displayed in figure 3.16b are similar for the three pressures even if they appear to be a

bit scattered. A fitting function for the discharge coefficient was obtained using the least

square method:

CD = 1.003 − 0.7345 x − 174.5 x2 − 3.086 · 10−5/x (3.3)

Compared to the experimental data this function has a coefficient of determination R2

equal to 0.84 indicating an appropriate goodness of fit.

3.6.3 Maximum allowed back pressure characterization

During the MABP characterization, the needle valve right downstream of the venturi

(Vneedle in Figure 3.15) was set to a determinate aperture. During the test the venturi

started from a position of low mass flow to a higher position with a ramp command. In
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this transition the mass flow reaches a level such that the pressure drop across the needle

valve is higher than the maximum allowed back pressure, and so the flow through the

venturi is no longer chocked, i.e. it doesn’t follow Equation 3.1.
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Figure 3.17: Oxidizer mass flow and pressure profiles during a typical maximum allowed back

pressure test.

Figure 3.17 shows the effects of reaching the MABP on oxidizer mass flow and up-

stream and downstream pressures. Figure 3.17a shows, when MABP is reached, how

the measured oxidizer mass flow (red line) start to differ from the one that is computed

using Equations 3.1, 3.2, 3.3, the measured upstream pressure and the effective pintle

stroke (blue line). Figure 3.17b reveal how the pressure oscillations propagates from

downstream to upstream when MABP is reached and the flow through the venturi is no

longer chocked.

A total of 13 tests where performed to determine what is the MABP, for a oxidizer

mass flow ranging form 30 to 300g/s. As for the static characterization, 91%HTP was

used. The MABP ratios10 measured during the 13 tests are displayed in Figure 3.18. The

points presented in Figure 3.18 where determined in a graphical way. With reference

to Figure 3.17b, the point at which the cavitatng venturi is supposed to be unchocked

correspond to the point at which the pressure oscillations intensity is nearly half the

final one. No automatic procedure was used in determining the MABP points. Because

of this an uncertainty analysis was not performed on these data. At the beginning we

believed that the MABP ratio was correlated with oxidizer mass flow (Figure 3.18a), but

at a closer analysis it looks closely related to the pintle stroke (Figure 3.18b). The ratio is

similar to the 0.8 − 0.9 value presented by other researchers [48],[50], [51] only for the

10 The maximum allowed back pressure ratio is the ratio between maximum allowed back pressure and

upstream pressure.
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Figure 3.18: MABP ratios with the oxidizer mass flow and pintle stroke for three different up-

stream pressures.

higher analysed pintle strokes, while for the lower pintle positions the ratio tends to

fall, reaching a minimum of 0.4. The trend for the MABP ratio reported in Figure 3.18b

differs from the one presented by other researchers [50], however it must be noted that

also the method used for the determination of these experimental points is different. The

obtained excessively low MABP ratio values could be a problem when the FCV is used

to perform static tests with high combustion chamber pressures and low oxidizer mass

flow (pintle strokes) since an excessive upstream pressure would be required. However,

the presented FCV is suited for throttling where for the higher oxidizer flows we need

the highest MABP ratio. The effective operative ratio between downstream and upstream

pressure then falls linearly of an amount proportional to the throttling ratio.

A piecewise polynomial that fits the obtained data is here proposed:

MABP ratio = 0.51649 − 184.95 x + 68677 x2 for x ∈
[

0.5 · 10−3, 3.2 · 10−3
[

m (3.4)

MABP ratio = −1.0871 − 813.24 x − 86658 x2 for x ∈
[

3.2 · 10−3, 4.5 · 10−3
]

m (3.5)

It must be noted that this is a fit of experimental data and does not come from a

theoretical model as previous fit presented in this work.

3.6.4 Cavitation dynamic instabilities

Since cavitation produces severe pressure oscillations one may be concerned by the effects

that the instabilities produced by cavitation could have on the behaviour of the HRM. In

order to properly evaluate this effect the cavitation peak frequencies were determined

for different operating conditions. The experimental setup and experiments for this
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characterization are analogous to the one performed during the MABP one. The needle

valve is set with a slightly bigger aperture in order to evaluate the pressure effect on the

bubble dynamic but not to reach the MABP ratio during the FCV ramp command. The

downstream pressure sensor used to analyse the effect of the cavitation was placed as

close as possible to the venturi exit to get the strongest signal.
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Figure 3.19: Fast Fourier transformation of the downstream pressure sensor signal: spectrum and

spectrogram.

Figure 3.19a shows the spectrum obtained from the fast Fourier transformation of

the downstream pressure, over the duration of a whole test. In this case a resonance

peak can be observed at 300Hz. Figure 3.19b display the spectrogram obtained during

the same test. There is a high spectral density for the lowest frequencies, this is due

mainly to actuation ramp command which varies the downstream pressure because of

the needle valve presence. But the important thing to note about the spectrogram is the

dense region that varies from 150 to 330Hz almost linearly with the time. This region is

the one associated with cavitation. We noticed during the MABP characterization that

this region fades away when the maximum allowed back pressure is reached. In both

figure the intensity is in bar for the input pressure signal was converted to bar.

The peak frequencies at which the cavitation is manifested are reported in Figure 3.20.

They are plotted with respect to the oxidizer mass flow in Figure 3.20a and with respect

to the downstream pressure in Figure 3.20b. As you can see there is a linear correlation

between the measured oscillation peak frequency and the downstream pressure.
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Figure 3.20: Cavitation peak frequencies plotted against oxidizer mass flow (left) and downstream

pressure (right)

Using this data an analysis of the effect of cavitation on the whole system can be

performed, based on the actual downstream pressure. A linear fit for the peak frequencies

with the downstream pressure is proposed:

fc = 105 + 1.529 · 10−4 p0,down (3.6)

The obtained coefficient of determination R2 is 0.96. It must be considered that for this

limited range of downstream pressures the behavior appears to be linear, but this could

be no longer true for lower or higher downstream pressures. Bubble natural frequency

can be evaluated [9] but it is dependent not only to the local pressure but also to the

bubble size at that pressure.

3.6.5 Dynamic characterization

The flow control valve is used to control the oxidizer flow to the combustion chamber.

It must handle the dynamic oxidizer mass flow at command. The aim of the dynamic

characterization is to determine the transfer function of the device. Here the output

and input signals for the transfer function are the measured and command mass flows

respectively.

In order to gather some information about the transfer function four tests were carried

out. The first three consist in a sinusoidal command to the valve, with a frequency of 0.2,

0.3 and 0.4Hz respectively, they are aimed to determine the transfer function for these

particular frequencies. During the fourth test the command mass flow was an impulse.

This has the dual function to determine the rise and fall time of the answer and to get
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some more information about the transfer function limitedly to the length of the impulse.

The command mass flows where aimed to reach a throttling level of 5 both on sinusoidal

and impulse tests.
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Figure 3.21: Transfer function obtained from the FFT of the impulse test.

Figure 3.22 shows the measured results from the four tests. It can be observed that

there are some alterations of the response of the system (delay and magnitude of the

oscillations). The fast Fourier transformation was computed for measured and command

oxidizer mass flows and for all four tests. From the FFT11 it was possible to obtain some

values of the device transfer function, the results are presented in table 3.5 and figure

3.21.

Transfer function at 0.2Hz 1.00

Transfer function at 0.3Hz 0.97

Transfer function at 0.4Hz 0.91

Rise time from 72 to 288g/s 1.16

Fall time from 288 to 72g/s 1.29

Table 3.5: Results from the FCV dynamic characterization.

In table 3.5 are reported the values of the transfer function for the three sinusoidal

tests, the one at 0.4Hz is quite lower if compared to the other two. Table 3.5 also report

the values of rise and fall time during the impulse test.

Figure 3.21 shows the transfer function that was obtained from the data transformation

of the impulse test. This transfer function has been determined by dividing the FFT

of the measured oxidizer mass flow by the FFT of the commanded oxidizer mass flow.

Unfortunately since the impulse is too wide12, the transfer function is well represented

11 Fast Fourier Transformation
12 The bandwidth for a rectangular impulse of length 4s is 0.25Hz.
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Figure 3.22: Oxidizer mass flows during four characterization tests.

only for the lower frequencies. You can see that the values starts to differ already at

0.4Hz.

3.7 chapter conclusion

A flow control valve has been designed, manufactured and characterized. The presented

flow control valve is based on a variable area cavitating venturi and it is used to regulate

the oxidizer flow to the combustion chamber in order to throttle the hybrid rocket

engine. The presented design is robust and test-weight, however the performance of the

device are representative of the behaviour of a flight-weight valve. A VACV was used as

flow control principle because of the inherent advantages of the method: independence
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between downstream pressure and oxidizer mass flow (within a determinate limit),

linearity of the oxidizer mass flow with the throat area and protection of the system

upstream of the venturi in case of an explosive event in the combustion chamber. The

actuation of the pintle was achieved by using a drivescrew and a step motor. There is a

feedback control loop on the position of the pintle, however the control loop on the thrust

is open. Several type of characterization were performed on the flow control valve: static

characterization, finalized to determine the characteristic curve and discharge coefficient

of the VACV, MABP characterization, aimed to determine the maximum allowable back

pressure for the system, cavitation instabilities, to determine which is the peak instabilities

frequency due to cavitation and how it varied and, at last, dynamic characterization,

finalized to determine some point of the transfer function and the rise and fall time of

the system. The performed set of characterizations was aimed to determine how the flow

control valve would behave in a static and dynamic condition, what are the limits of its

application and what undesirable effects could it have on the rest of the system.



4
F I R E T E S T I N G

In this chapter the throttling-related fire test campaigns carried out at the hybrid propul-

sion laboratory are described. Three fire test campaigns where performed: two of them

were preliminary for the dynamic throttling fire test campaign. The first two consisted

in series of four steady state fire tests, meaning that the engine was not throttled, but a

nearly constant oxidizer mass flow was forced to the combustion chamber. The third fire

test campaign consisted in the dynamic throttling testing of the motor. The reason why

two preliminary fire test campaign occurred is that there was a shift of interest in the

hybrid engine configuration. During the first campaign a HTP-paraffin axial injection

motor was studied, while in the second campaign the configuration shifted toward a

HTP-HDPE engine with a swirled injection. The reason that led to this shift of motor

configuration are described in detain in this chapter.

4.1 first preliminary motor test campaign

The first preliminary fire test campaign was carried out during the second semester of

the second year. The motor configuration in this period is quite different from the final

one used to perform the throttling fire tests, in terms of internal configuration and motor

case design.

4.1.1 Motor design & test setup

Now, let us have a look at the hybrid motor design used in the tests. The combustion

chamber case, visible in Figure 4.1, is made of carbon steel and is composed by a

cylindrical section and two flanges, which are linked to the cylinder with two pairs

of clamps. This type of connection permits a quick assembly/disassembly procedure,

allowing an increase in the number of tests per day. A high temperature graphite packing

is employed to ensure proper sealing between cylindrical case and flanges. The upstream

or inlet flange is directly linked to the catalytic, while the downstream or outlet flange is

designed to enclose a graphite nozzle which is hold in place by a steel cap. The nozzle

employed in this preliminary fire test campaign is only convergent. At this time the

fire test bed was not equipped with a load cell, every performance considerations were

carried out by the analysis of the combustion chamber pressure signal. The combustion

chamber elements are all designed to withstand a MEOP of 40 bars with a safety factor of

4. One exception to this are the nozzle cap bolts. This are basically burst or rupture bolts

67
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designed to brake in case of a pressure higher than 60 bars. This choice has been made in

order to avoid damage to the motor and the experimental setup in the occurrence of an

unexpected overpressure event inside the combustion chamber.

Figure 4.1: A CAD model of the motor case used during the first preliminary campaign.

The combustion chamber presents twenty-two sensor ports allowing to install ther-

mocouples, pressure sensors or other instrumentation devices in order to take accurate

measurements inside the chamber during the burn. In particular, the thermocouples

cannot be used to monitor the chamber interior temperature because of the too high

temperature of the burnt gases; however, if placed inside the paraffin grain at different

radii, they can be used as a mean to measure the regression rate. This feature that is

included in the motor design is not used for this purpose on this preliminary fire test cam-

paign. Two of this sensor holes are used to determine the combustion chamber pressure

downstream of the fuel grain. This motor case configuration allows to insert a cartridge

like combustion chamber. It is not possible to present in this work the detailed internal

configuration of the combustion chamber because some parts, with particular reference

to the post combustion chamber, share some design elements with other motors that were

under development at the hybrid propulsion group at the time. However a description

is here provided. The cartridge is composed by a cylindrical backup shell that protects

the motor case if the fuel grain is totally consumed or if the sealing between the internal

components fail. This cylindrical backup shell is made of HDPE and is filled and sealed

with the consumables1. Starting from upstream to downstream we have: inlet flange

thermal protection, paraffin fuel grain, upstream mixer spacer, mixer, downstream mixer

spacer, downstream flange protection and in the end the nozzle. All this components,

with the exception of the paraffin fuel grain, are made of cotton reinforced phenolic resin

commonly known as cotton-phenolic. The use of cotton-phenolic for the realization of

the ablative thermal protection is a good compromise between performance and cost, in

1 The consumables consist of the ablative thermal protections and the fuel grain.
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fact this material has a regression rate three times the one of carbon-phenolic but it costs

a fourth. The fuel grain touches the inlet flange thermal protection meaning that during

this motor configuration has no prechamber. This choice is a direct consequence of the

post combustion chamber configuration. It is true that the mixing between oxidizer and

fuel along the grain will be poorer because of the absence of the pre combustion chamber,

but an efficient mixing is obtained by using the mixer on the post combustion chamber.

On the other hand a post combustion chamber will imply a higher amount of thermal

protections on the propellant with the negative effect that it could lead in terms of

combustion efficiency and motor performances. Another think to take into account is that

the presented design of the combustion chamber is not flexible in terms of combustion

chamber length. As a consequence of this fact, because the fuel grain length was longer

then the ones normally used with this motor case the post combustion chamber design

had to be condensed in the aft end of the motor, this have some consequences that will be

described on the testing section. The consumables composing the combustion chamber

were joined together using RTV2 silicones to prevent leakages between them.
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Figure 4.2: The fluidic line used during the three fire test campaigns.

The fluidic line experimental setup represented in figure 4.2 is similar to the one

presented during the FCV characterization. From upstream to downstream the compo-

nents are: a high pressure nitrogen tank, the pressure regulation block (consisting of

two pressure regulators serially connected), the oxidizer tank, a series of automated ball

valves and, at the end, the flow control valve. The needle valve downstream of the venturi

is no longer present because adding a pressure drop is no longer needed, but a ball valve

to start and stop the test has been integrated in the line instead.

The oxidizer tank is the same used during the cavitating venturi characterization, other

than storing the oxidizer it allows also to measure the oxidizer mass flow thanks to the

piston separator position.

2 Room temperature vulcanizing
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Figure 4.3: The rocket test bed during the first experimental campaign. The image was taken

during the fourth test at a high oxidizer mass flow As it can be seen from the fuel

rich flame part of the combustion take place outside of the combustion chamber. Plese

note the railing system that allows to measure the in axis thrust.

The test bed were the motor lays has two linear guides so that the hybrid motor is

mounted on slide units and is liable in the motor axial direction. With this test bed

configuration the motor thrust can be transferred to a load cell installed on the main

structure of the test bed enabling to measure the in-axis thrust. The complete experimental

apparatus is visible during a fire test in figure 4.3. The motor, in front, is connected to

the test bed by means of three sliding units, two for the combustion chamber one for the

catalytic packing. Figure 4.3 shows the steady state flame of the 300 g/s

When the test start valve opens, the oxidizer pressurized in the tank flows through

the fluidic line and the flow control valve, which is the major limiting element in the

line, until it reaches the catalytic pack. Here the HTP mass flow is decomposed into

gaseous O2 and H2O at about 1050 K. This hot and oxidizing gas mixture thermally

decomposes and ignite the fuel grain. The catalytic pack is initially pre-heated in order

to reduce the ignition time, particularly when the catalytic bed is near end of life. The

ignition process normally takes around 1.2 s. Another possible way to ignite an HRM

that employs hydrogen peroxide is the use of a catalytic hypergolic material or a catalytic

fuel grain [43], [22].

During the whole duration of the test the VACV pintle stroke is constant and set in a

predeterminate position.

There are several pressure sensors employed in the experimental setup. Both the

pressurant and oxidizer side pressures of the tank are monitored, a pressure sensor,

which is part of the FCV, is collocated upstream of the VACV. The pressure drop on

the catalyst is monitored with a doublet of sensors one upstream and one downstream

of the packing. The combustion chamber pressure is monitored in the post chamber,
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downstream of the mixing plate. Some important locations of fluidic line and motor are

temperature monitored as well using type J thermocouples. A thermocouple, placed at

the tank outlet, measures the outflow temperature in order to compensate the density

data and for safety reasons in case of dissociation inside the tank. Another thermocouple

is placed upstream of the catalytic pack to monitor any variation of the temperature along

the fluidic line. A thermocouple located directly downstream of the catalyst, monitors

the decomposition efficiency. A set of two thermocouples is placed in the external part

of the motor case to monitor if there is excessive heating of the motor case or flame

break through. Valves V05 and Vtank are manually actuated before loading the tank

and pressurization. Valves VC and Vtest are pneumatically and automatically actuated

in this order during the test. Valve Vpurge is pneumatically and remotely actuated, it

allows low pressure nitrogen to flow through the last part of the line in order to purge

this last volume of the line and the combustion chamber from any residual HTP . The

downstream volume, between Vtest and the engine injection is kept to a minimum. Valve

Vdump is pneumatically and remotely actuated as well but its function is to empty and

depressurize the line volume between VC and Vtest.

4.1.2 Fire tests

Before the static fire campaign started some preliminary test were performed on the cata-

lyst bed. In fact it is possible to test the catalyst pack in a monopropellant configuration,

in which a dedicated nozzle flange is applied directly downstream of the component,

reducing the filling volume. This tests were aimed to evaluate the suitability and steady

state performances of the catalyst pack currently employed for a wide range of operative

oxidizer mass flows and chamber pressures. The nozzle applied to the monopropellant

engine allowed to have nearly the same range of operative pressures with respect to the

one predicted for the static fire tests at the same oxidizer mass flow. What was found

from this tests is that for very low oxidizer mass flows, which unfortunately corresponds

to low combustion chamber pressures, the catalyst pack had a very unstable behaviour.

In particular, the pressure oscillations which intensity during a normal test is within

the 14% of the nominal pressure, reached an intensity of 40% with a very low frequen-

cies circa 7 Hz at 30 g/s. This was simply not acceptable for the purpose of throttling,

which require thrust control and not the introduction of severe instabilities. At 60 g/s

of oxidizer mass flow the catalytic pack had a radically different behaviour, stable with

significantly reduced instabilities. This behaviour continued for the other oxidizer mass

flows investigated up to 300 g/s. So the operative oxidizer mass flow range was set to 60

to 300 g/s with a reduction of the maximum achievable throttling ratio from 10:1 to 5:1.

Now this limitation is attributed to the poor catalytic performance at very low pressures
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(4 bar). There are several solutions to increase the range of throttleability of the motor

configuration under analysis:

• Increase the pressure operative range in order to raise the minimum operative

pressure is one possible solution. But this will imply also a raise in the maximum

operative pressure, which will result in a heavier combustion chamber, and taking

into account for the pressure drop chain of the feeding line and the MABP ratio

this will result in a further massive system.

• The catalyst bed behaviour depends much on the reactivity and density of active

sites. The low pressure stability would much benefit from a catalyst with a higher

amount of active sites per volume. This solution could increase the throttling ratio

maintaining the same low operative pressure range. In our group we have such

catalyst bed, but unfortunately for the activities described in this work, it was

available from the last semester of the third year.

• Another possible solution would be a variable throat nozzle. But few have investi-

gated this technology which application is very limited.

After this monopropellant behaviour assessment campaign the preliminary fire test

campaign started. A total of four static fire tests were carried out. This tests were aimed

to evaluate the motor behaviour for a wide range of oxidizer mass flows in terms of

regression rate and efficiency.
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Figure 4.4: Pre and post combustion chamber pressure profiles during the second test at 138g/s.

In figure 4.4 are reported the pressure plot of post and pre combustion chamber during

the second test. The flatness of the pressure profiles suggests that for paraffin-HTP

propellant formulation the Marxman power law exponent is 0.5. The ratio between final

and initial port diameter is nearly four.
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Figure 4.5: Average combustion chamber pressure versus oxidizer mass flow for the first prelimi-

nary fire test campaign.

Figure 4.5 represents the average motor combustion chamber pressure at different oxidizer

mass flows. The trend is particularly linear, part of this linearity is due to the fact that by

operating in the fuel rich region the increase of fuel mass flow compensate the decrease

of characteristic velocity due to o/ f shift. This is a very desirable characteristic in order

to simplify the control algorithm and improve the predictability of the thrust at various

levels. Here the combustion chamber pressure is assumed to be indicative of the achieved

thrust, for one reason: during this test campaign little throat erosion was detected, mainly

because of the extremely fuel rich environment. It is important to note that the obtained

linearity far exceed the one that was expected.

Reference test ṁox [g/s] tb [s] Dp, f in [mm] pcc [bar] o/ f

Test #1 | 60 57 25.0 80 8.62 2.9

Test #2 | 140 138 16.2 78.9 20.9 4.3

Test #3 | 220 219 7.6 68.3 33.1 4.2

Test #4 | 300 282 5.9 64 43.5 4.4

Table 4.1: Some results from the first preliminary fire test campaign.

Some relevant data from this preliminary fire test campaign are reported in table

4.1: oxidizer mass flow ṁox, burning time tb, final measured port diameter Dp f in, mean

combustion chamber pressure pcc and and oxidizer to fuel ratio. This last is intended as

the ratio between the used oxidizer mass flow and the fuel flow contributed exclusively by

the fuel grain. The contribution of thermal insulation is not taken into account. Oxidizer

mass flow and combustion chambers are variables that are acquired by our data logger,

these are then averaged with the burning time. The final port diameter is measured

directly on the fuel grain after the burn. The o/ f is derived by dividing the oxidizer mass
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consumed during the burning time (ignition excluded) by the burned fraction of the fuel

grain. By looking at table 4.1 a curious thing can be noted: there is o/f shift between

the first and second test with an oxidizer mass flow of 57 and 138 g/s respectively, but

increasing the oxidizer mass flow to 219 and 282 g/s doesn’t seem to affect the o/ f

with respect to the second test, or at least the o/ f is not even close to the expected one

by using a simple Marxman power law. An oxidizer to fuel ratio of 6.2 was wanted

for a oxidizer mass flow of 300 g/s. This deviation from the attended behaviour was

correlated to the consumption of the downstream face of the fuel grain. In fact in this

motor design this face is not protected or inhibited by using a liner of thermal protection.

During other fire test campaigns in which this fire test motor was involved, the oxidizer

mass flow and fluxes involved were lower than the one during this test campaign (60 to

100 g/s), the relative downstream face regression rate was assumed as nearly constant.

This is no longer the case for an engine in which the internal ballistic changes intensively.

Furthermore we believe that the downstream exposed face regression was higher than

usual because the mixing plate was closer to the fuel grain face. The reason for this

lays on the fact that a longer fuel grain was employed and as a consequence the room

for the post combustion chamber was reduced (since the combustion chamber available

does not allow to vary the combustion chamber length). The proximity of the mixing

plate also developed a flow recirculation between face and mixer, the higher the oxidizer

mass flux the intenser is the recirculation. What was observed experimentally is that the

downstream face was excessively consumed, for the high oxidizer mass flow tests.

Another think to note in table 4.1 are the test burning times. At the beginning these

were set to achieve an equal final port diameter around 80 mm, but during the second

test an excessive consumption of the mixing plate was observed. Because the failure of

the mixing plate could have some catastrophic consequences, the burning time for the

third and forth test were further reduced. This fact indicate that the fuel grain-mixer

coupling affects both ends. However the mixer erosion rate can be reduced significantly

with the appropriate mixing plate design.

During this fire test campaign the fuel grain-mixer correlation had some negative

implications, the o/ f was not the predicted one hence the performance were quite lower.

But it must be kept in mind that, ironically, there was no o/ f shift by doubling the

thrust during the second, third and fourth tests. And the absence or reduction of oxidizer

to fuel ratio shift for a throttleable hybrid rocket motor is a desireable characteristic.

Furthermore a compact post combustion chamber design is paramount for a flight motor,

and if a mixing plate is employed the downstream fuel grain face shall be protected in

order to mitigate this effect. This strategy could be necessary for a constant thrust hybrid

rocket were the face consumption could lead to undesired o/ f shift.
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Even if this motor configuration3 presented the peculiar characteristic of reduced o/ f

shift because of the fuel grain-mixer interaction, it was not carried on for the dynamic

throttling campaign for two reasons:

• It is true that the reduced o/ f shift is desireable but it must be kept in mind that

the achieved effect was unpredicted. In order to fully exploit this effect first it

must be fully understood, and for this some proper CFD numerical simulation and

experimental test campaigns must be performed. This task is demanding in terms

of consumables required for the testing and man hours required both for testing

and simulations.

• Because of the peculiar flow in the post combustion chamber an excessive amount

of decomposed thermal protection was introduced in the flow, further reducing

the maximum achievable characteristic velocity. In the worst case the paraffin fuel

grain made up only the 70% of the total amount of consumed fuel (intended as the

sum of the burned fuel grain and thermal protection).

4.2 second preliminary motor test campaign

About the same time the first preliminary motor test campaign was carried out, this is

the second semester of the second year of the Ph.D. course, some development test using

a vortex engine were carried out at the Hybrid Propulsion Group of University of Padova.

The so called vortex engine is distinguished by the fact that a vortex is established inside

the hybrid combustion chamber. This motion is strongly rotational, and thanks to this

there is a strong exchange of reactants and products between core and wall of the fuel

grain port favouring the combustion chamber efficiency and increasing the fuel grain

regression rate. Normally the vortex inside the combustion chamber is generated using

a swirled gaseous injection. Our research group studied this configuration of hybrid

combustion chambers for a long time [1],[2],[3], but recently it was reinvestigated to

evaluate scaling effects. Another advantage of vortex motor is that since the mixing

between reactants is favoured along the fuel grain, the size of the post combustion

chamber can be very limited if compared to the one required for a mixing plate. This in

turns results in a reduced amount of decomposed thermal protection that contribute to

the combustion, hence higher combustion efficiency.

The preliminary fire test campaign objectives are:

• determine a zero order regression rate law to be used for the estimate of the fuel

mass flow inside the combustion chamber during throttling fire tests;

3 The configuration under study during the first preliminary campaign had an axial gaseous injection, a

paraffin fuel grain and a mixer in the post combustion chamber.
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• measure the static thrust level and hence determine the achieved characteristic

velocity and efficiency reached with the various oxidizer mass flows;

• verify the robustness of the whole system which had to perform for a wider range of

oxidizer mass flow than the one normally used during previous characterizations.

Once again a series of four constant oxidizer mass flow tests was performed.

4.2.1 Motor design & test setup

The combustion chamber case is made of carbon steel and it is composed of a cylinder and

two flanges (oxidizer inlet and exhaust outlet). With respect to the previous configuration

represented in figure 4.1, this time the cylindrical section is not flanged, because clamps

are no longer needed to connect the flanges with the case. The two flanges are connected

by a set of eight rods, which also holds them in position against the cylinder. The sealing

between flanges and cylinder is granted by a graphite packing. The case was designed to

withstand a MEOP of 40bar with a safety factor of 4, the assembly was pressure tested

using nitrogen at 80bar with success.

Figure 4.6: A CAD model of the motor case used during second preliminary and throttling fire

test campaigns.

The cylinder is very simple if compared to the previous motor configuration. This

imply that different cylinder of various lengths can be manufactured without resulting

in a to excessive expense. This means that the combustion chamber length constrain of

the previous configuration no longer applies.

The inlet flange is directly connected with the catalytic bed and hosts the swirled

injector. The outlet flange accommodates the nozzle, which is hold in place by a smaller

flange connected to the main one by a set of four bursting bolts. The bursting bolts are

designed to crack at a combustion chamber pressure of 60bar. The nozzle is machined
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from a bulk graphite cylinder, it has a throat diameter of 13mm and an exit diameter

of 23.5mm. This implies an expansion ratio of 3.26 which is close to the optimal value,

considering that the engine operating pressure ranges from 8 to 37bar.

Inside the motor case a cartridge like combustion chamber is used analogously to what

has been described in section 4.1. A fuel grain made of high density polyethylene (HDPE)

with an initial port diameter of 20mm and length of 100mm is used. These consumable

parts are assembled in a cartridge like fashion that can be easily inserted in and extracted

from the motor case.

The cartridge is composed by a cylindrical backup shell that protects the motor case

if the fuel grain is totally consumed or if the sealing between the internal components

fail. This cylindrical backup shell is made of HDPE and is filled and sealed with the

consumables. Starting from upstream to downstream we have: inlet flange thermal

protection, HDPE fuel grain, downstream flange protection and in the end the nozzle.

All the thermal protections are made of cotton-phenolic, which erosion rate is fairly low

for this application4. The fuel grain touches the inlet flange thermal protection meaning

that during this motor configuration has no prechamber. On the other side the fuel grain

is directly connected with the downstream flange thermal protection. This component is

thicker then the upstream one and constitutes also the post combustion chamber. The

consumables composing the combustion chamber are joined together using RTV silicones

to prevent leakages between them. Part of the internal ballistic for this engine has been

developed by the Hybrid Rocket Group at University of Padova under commission from

a external investor, to many details on the internal ballistic of the engine can not be

disclosed.

One particular feature of this hybrid combustion chamber is the swirled injector. The

one used during these experiments is an inward type manufactured by tangentially

drilling a cup-like shell. Figure 4.7 shows the cad model and the 3D printed swirled

injector. A common characteristic used to describe the type of injector is the geometrical

swirl number, for this injector the geometrical swirl number (SNg) is 3.3. This parameter

was computed using the formula:

SNg = (rint − rholes)
rint

nholes r2
holes

Where rint is the internal radius of the cup-like injector, rholes is the radius of the drilled

holes and nholes is the number of drilled holes. It must be kept well in mind that this value

is not the effective swirl number inside the combustion chamber, nor the swirl number at

the injection plate. Normally the internal swirl number is lower than the geometrical one

and it also decay along the motor length because of dissipations and axial fuel injection.

It is however true that a higher geometrical swirl number implies a higher initial swirl

number and hence it can be used as an easy-to-measure reference parameter.

4 The thermal protections contribution to the overall fuel mass flow hardly exceed the 15%.
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(a) (b)

Figure 4.7: The tangentially drilled cup-like design of the swirled injector. On the left the CAD5

model, on the right the 3D printed manufactured component, after the test campaign.

Figure 4.8: Small scale hybrid rocket motor under development at the University of Padova and

the used eperimental test bed. Note that the motor is now connected to a carbon steel

board (blue) that slides on the axial direction thanks to the railing system. Plese note

also the other components that make the experimental test bed and rocket motor.

For what concern the experimental set up, the fluidic line remains unchanged from

the one described in section 4.1. Also during this test campaign the catalytic pack was

pre-heated. The pressure drop on the catalyst is monitored with a doublet of sensors

one upstream and one downstream of the packing. The combustion chamber pressure is

monitored in the post chamber. A thermocouple is placed upstream of the catalytic pack
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to monitor any variation of the temperature along the fluidic line. Another thermocouple

located directly downstream of the catalyst, monitors the decomposition efficiency. A set

of two thermocouples is placed in the external part of the motor case to monitor if there

is excessive heating of the motor case and flame break through. The hybrid motor is

collocated on a thick board made of carbon steel that is allowed to move along the motor

axis with respect of the test bed thanks to the same railing system used in the previous

preliminary campaign. The board is connected to a load cell which is used to measure

the in axis thrust of the rocket engine.

The valve opening procedure is the same described in the previous section.

4.2.2 Fire tests

In order to demonstrate the feasibility of throttleability in a HRM configuration such as

the one described and to evaluate the motor performances, a series of four preliminary

fire test were carried out. These tests had an increasing oxidizer mass flow: 71, 147, 218

and 296g/s. The length of each test was selected in order to obtain a similar final port

diameter between tests, this was possible thanks to previous knowledge of the regression

rate power law.

Reference test ṁox [g/s] tb [s] Dp, f in [mm] pcc [bar] T [N] c∗ [m/s] η [%]∗

Test #1 | 60 71 12.4 46 9.86 153.3 1509 95.2

Test #2 | 140 147 10.3 50 19.96 347.0 1507 95.5

Test #3 | 220 218 8.4 55 30.90 536.3 1510 95.4

Test #4 | 300 296 6.5 54 36.44 722.3 1493 94.8

∗ The efficiency here reported includes both the contributions of characteristic velocity

and thrust coefficient efficiencies.

Table 4.2: Some results from the second preliminary fire test campaign.

Table 4.2 reports the results of the static fire campaign. During this tests an overall

throttling ratio of 4.7 was reached with a thrust ranging from 153 to 722N. The overall

efficiency value is steady over the range of flows analysed. The reduction of characteristic

velocity with the flow is extremely low. This is due to the particular behaviour of the swirl

injector coupled with the combustion chamber that allows us to get a high Marxman

power law exponent. Thrust is directly measured with a load cell, the sensor acquisition

uncertainty is 2.9 N. The load cell has been calibrated prior the test campaign. The

characteristic velocity has been computed with the Kline-McClintock formula from the

thrust and propellant flow: it ranges from 22 to 50 m/s depending on the test.
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Figure 4.9: Results of the second preliminary test campaign. On the left, regression rates with the

oxidizer mass fluxes. The data were fitted using a power law. On the right the thrust

level versus the input oxidizer mass flow.

Figure 4.9a shows the regression rates obtained during the static fire test campaign

as well as a power law fit which is represented by Equation 4.1. The coefficient of

determination R2 for this fitting function is equal to 0.97. The oxidizer flux has been

computed using the average port diameter over the burn. This is the traditional method

even if new methods were introduced to compute the experimental oxidizer flux, such

the one presented in [7].

ṙ = 3.384 · 10−2 · G0.78
ox (4.1)

Figure 4.9b presents the thrust during the four tests, the trend is quite linear as can be

seen from the fit. This is possible thanks to the low o/ f shift due to the high power law

exponent obtained with this configuration. As can be noted from Table 4.2 the behaviour

of the combustion chamber pressure is not as linear as the thrust, this is mainly due

to the effect of nozzle throat erosion. During the preliminary fire test campaign no

system failures or thermal problems were detected. For each static test the spectrogram

of the combustion chamber pressure was analyzed. No peak of intensity was detected

from the signal in the frequency range determined during the cavitation instabilities

characterization. This indicated that the cavitation in the venturi do not have a detectable

effect on the combustion chamber instabilities.
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4.3 dynamic throttling fire tests

With the throttling fire test campaign we want to demonstrate the throttling feasibility

for our hybrid rocket motor configuration. This is an engine that uses hydrogen peroxide

as an oxidizer, which is decomposed in a catalytic bed prior to the injection inside the

combustion chamber. This configuration does not require a variable area injection to

compensate the atomization defect with a non nominal oxidizer mass flow. A swirled

injector has been adopted, which is possible because of the gaseous injection. Another

objective of the throttling campaign is to understand the behaviour of the coupled FCV

and HRM, and in order to do this, some points of the system transfer function were

determined.

(a) (b)

Figure 4.10: Comparison between plumes from different operative regimes: On the left, the fuel

rich overexpanded flame at low thrust. On the right, the oxidizer rich underexpanded

flame at high thrust.

The campaign was carried out with four tests. Analogously to what happened during

the dynamic FCV characterization, three fire tests had a sinusoidal thrust command,

while the last one was commanded with an impulse. The overall burning time for each

test is around thirteen seconds, the first three are needed for the system ignition, while

the remaining ten are left for the throttling test. For all the tests the engine is ignited at

100g/s.

In figures 4.11, 4.12, 4.13 and 4.14 are reported the measured pressure and thrust plots

for the four tests. The left hand side of each series represents the pressure profile during

the tests, note that during the first test (0.2Hz figure 4.11a) are evident signs that indicate

the MABP was reached for high combustion chamber pressures. Another interesting

thing to note on the combustion chamber pressures is the effect of nozzle throat erosion:
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Figure 4.11: Pressure and thrust profiles for the first throttling test: two sine waves at 0.2 Hz.
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Figure 4.12: Pressure and thrust profiles for the second throttling test: three sine waves at 0.3 Hz.

the peak pressure tend to diminish with the burning time. This is particularly evident

in figures 4.12a 4.13a. The right hand side of each series represents the measured thrust

profiles for the tests. The blue line represents the unfiltered data, while the data associated

with the red line are filtered using a Butterworth digital filter with a 5Hz cut frequency.

You can notice that the thrust becomes noisier when it is lower. We believe that this is

due to the fact that the catalytic bed performs poorly when the pressure is lower.

Figure4.14 shows the pressure and thrust profiles for the rectangular impulse test.

Since to ignite the engine a 100g/s is required the rectangular impulse starts at a slightly

higher level than the minimum, which is achieved at 70g/s.
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Figure 4.13: Pressure and thrust profiles for the third throttling test: four sine waves at 0.4 Hz.
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Figure 4.14: Pressure and thrust profiles for the fourth throttling test: rectangular impulse.

The measured thrust data were compared to the command thrust profile given to the

FCV and the thrust profile that was expected from the measured oxidizer mass flow

combined with the power law determined in the preliminary test (equation 4.1). This last

profile was determined by considering that the oxidizer mass flow is instantaneously

decomposed and the response of the fuel grain is immediate with the change of regime.

This mean the system has an order zero with no delays. The comparison is presented in

Figure 4.15.

It must be noted that during these tests there was not a feedback loop on the thrust, but

only on the pintle stroke. The commanded thrust was actually converted in a preloaded
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pintle stroke sequence to be performed during the fire test. Because the oxidizer mass

flow is dependent on the upstream pressure and because the force coefficient depends on

throat erosion there is a slight shift of the command thrust profile from the desired one.

At this point, the tested fuel grains were measured to validate the simplified regression

rate model used. The measured final port diameter was compared with the one predicted

with the zero order model. Table 4.3 reports the measured and computed final port

diameter as well as the achieved thrust and throttling ratio for the throttling tests. The

results of this comparison are reported in Table 4.3.

Reference test Dp,in Dp, f in,m
∗ Dp, f in,c

† Tmin Tmax TR ‡

Test 025, 0.2Hz 20mm 55.6mm 57.9mm 149N 634N 4.26

Test 033, 0.3Hz 20mm 58.1mm 59.9mm 171N 712N 4.16

Test 034, 0.4Hz 20mm 57.7mm 59.8mm 202N 719N 3.56

∗ Measured final port diameter.
† Final port diameter computed by integrating the zero order model.
‡ Throttling ratio as the ratio between the maximum and minimum

achieved thrust.

Table 4.3: Results of the static fire test campaign

It should be noted that the diameter computed from the zero order model is bigger than

the measured one. This could be due to an approximation of the computed regression

rate power law during the static fire test campaign, but it is equally probable that the

dynamic response of the engine plays an important part on the regression rate. In table

4.3 are reported also the minimum and maximum thrusts reached during the sinusoidal

command fire tests as well as the throttling ratios. The throttling ratio for the 0.4 Hz test

is quite lower than the others, as it will be shown soon this is due the incorrect response

of the system to high frequency commands. A throttling ratio of 4.2 was reached during

these tests.

The measured thrust profile as well as the oxidizer mass flows, used in the computation

of the instantaneous system response, are filtered using a Butterworth digital filter with a

cut frequency of 5Hz. Along with the command thrust profile they are presented in figure

4.15. As you can see from figure 4.15a the exceeding of the MABP is confirmed for the first

test commanded with a sinewave of 0.2Hz frequency: the maximum thrust is not reached

because of a lack of oxidizer mass flow to the combustion chamber6. For the remaining

tests the upstream pressurization has been raised of 10bar and hence this problem was

no longer encountered. Let us consider the thrust profiles of the other two sinusoidal

6 The green line represents the thrust that it is expected from the measured oxidizer mass flow and zero order

response of the combustion chamber.
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Figure 4.15: Comparison between measured, command and predicted thrust profile for the four

throttling tests. Data are filtered at 5 Hz

command tests. For the 0.3Hz test it is possible to note that the computed thrust profile

follows the command one quite well. There is a little discrepancy between the measured

and zero order model thrust profiles, which is particularly evident when throttling down.

The thrust profiles for the 0.4Hz test present quite a peculiar behaviour, the zero order

model profile is delayed from the command one and its amplitude is attenuated as well.

The measured thrust profile follows an analogous trend with respect to the zero order

one. In all cases the major discrepancies can be observed during throttling down.

The last comparison shows the response of the system to a rectangular impulse with

a length of 4s. As you can see the response of the zero order model to the command is

analogous to the one presented during the FCV dynamic characterization, with similar
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rise and fall times: 1.09 and 1.24s respectively. In this case the rise time is lower because

of a lower initial oxidizer mass flow compared to the final one. But it is important to note

that the combustion chamber takes some time to reach the command both during rise

and fall. This is supposed to be caused by a non perfect catalytic bed response coupled

with the presence of the swirl injector7.
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Figure 4.16: Transfer function for the performed throttling tests. In red the data obtained for the

sinusoidal command tests.

Analogously to what happened during the FCV dynamic characterization, the transfer

function between command and measured thrusts was determined. In this case the

output for the transfer function is the measured thrust while the input is the command

thrust which is actually computed from the imposed pintle stroke. As expected the

transfer function for the higher frequency test (0.4Hz) is lower than the other two. In this

case the transfer function computed for the 0.2Hz sinusoidal test is incorrect because

the MABP was reached and hence the obtained thrust was considerably lower that the

required one. The numerical values of the transfer function for the sinusoidal command

tests are reported in Table 4.4.

Transfer function at 0.2Hz 0.849

Transfer function at 0.3Hz 0.876

Transfer function at 0.4Hz 0.779

Table 4.4: Coupled FCV-HRM transfer function data from the three sinewave command tests.

In Figure 4.16 is reported the transfer function obtained for the test with the impulse

command. It must be noted that since the impulse has a finite length the transfer function

7 A partially decomposed HTP flow is not swirled efficiently by the swirled injector and as a consequence the

whole system is affected by the catalytic response.
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loses resolution for the higher frequencies. In the figure are presented also the results

of the transfer function obtained with the sinusoidal tests. The value for the 0.2Hz test

is incorrect because the MABP was passed, however it is included in the plot. It can be

noted that the trend of the impulse transfer function follows the one obtained with the

sinusoidal test. Over 1Hz the measured thrust noise overcome the impulse command.

Even if the data presented in Figure 4.16 are limited, the obtained transfer function can

be used to understand the behaviour of the coupled FCV-HRM system, which starts to

be attenuated at a frequency of 0.4Hz. At this frequencies the response of the system is

strongly limited by the FCV. However further attenuation and delay is observed for the

hybrid rocket motor response.

4.4 chapter conclusions

After the FCV was implemented, dynamic throttling fire tests were carried out success-

fully. A maximum throttling ratio of 4.2 was achieved with thrusts up to 720N. The

motor used in this throttling tests was composed of a catalytic bed, for the hydrogen

peroxide decomposition to high temperature gas, a swirled injector, that impose an in

axis rotational motion to the oxidizer flow, and a combustion chamber, which embeds a

high density polyethylene fuel grain. The combustion chamber design is very compact.

We believe that this configuration is particularly suited for throttleability, because it does

not require a variable area injector, which would be necessary with a liquid oxidizer

injection. A transfer function of the FCV-HRM coupled system was determined and it

appears that the response of the system starts to attenuate at 0.4Hz. This limitation is

due both to the motor reaction with a variable oxidizer mass flow and the FCV dynamic

behaviour. The experimental results presented in this chapter proved the feasibility of

throttling for hybrid rocket motors. Furthermore throttleability was implemented in a

practical HRM configuration that uses flightworthy oxidizers and fuels, and with some

small modifications could be transformed in a ready to flight configuration.
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C O N C L U S I O N

Throttleability is an important feature for present and future hybrid rocket motor applica-

tions. This thesis has been focused on the development of a 1 kN class throttleable hybrid

rocket motor. This motor employed high test peroxide as oxidizer which is pressure

fed to the combustion chamber and is decomposed by means of a catalyst pack. This

configuration proved to be suitable for throttling purposes, since it does not require a

variable area injector nor to have excessive injection pressure losses. Furthermore the

propellant formulation used is among the green ones.

A steady state combustion model has been presented and the implication related to

throttling were discussed. Because of the diffusion flame mechanism and the dependence

between oxidizer and fuel mass flow an oxidizer to fuel ratio shift may occur. This in turns

affects the combustion chamber characteristic velocity, because of a variation from the

maximum one. This leads to some penalties in terms of performance that are not usually

present for the other two chemical propulsive technologies. The entity of the losses in

performance is dependent on throttling requirements, motor configuration, expected

thrust profile and propellant formulation. Correctly evaluate the characteristic velocity

penalties is case dependant, however some quantitative informations are presented in two

particular cases with for two different throttling ratios 5:1 and 10:1 for three propellant

formulations. In most cases, the losses determined during this analysis are lower than 9%.

Variations of the motor configurations and phenomena strongly dependent on internal

fluid dynamic were not taken into account.

Because part of this work consists in implementing throttleability in hybrid rocket

motors and performing dynamic throttling fire tests, a flow control valve has been de-

veloped and characterized. The flow control valve design is based on the variable area

cavitating venturi, in which the throat area of a conventional venturi tube is altered

by means of a conical pintle. The conical shaped pintle has been chosen for sake of

simplicity, manufacturing and control. On the other hand the use of a cavitating venturi

implies that when the flow is choked there is independence between the oxidizer flow

and downstream pressure; so that the tank and combustion chamber environments are

uncoupled and the flow can be controlled in a reliable and precise way. In fact once the

variable area cavitating venturi is characterized it can be used for flow measurements.

The pintle stroke has been controlled thanks to the actuation which is based on a

drivescrew, a stepper motor and an absolute angular encoder for the feedback on the

pintle position. The flow control valve control loop is closed on the pintle stroke but open

on the thrust or on the oxidizer mass flow. It is possible to close the control loop on these

89
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two variables and obtain the most precise control. However this would be easy to do in

an already equipped set-up, but maybe could not be possible on the flight system, hence

the most robust design solution has been used: open loop and precise flow control.

The characterization consisted in four different phases. During the first phase the

characteristic curve has been obtained. This is the most important information about

the flow control valve, it is not possible to perform a control loop which is open on the

mass flow or thrust without precisely knowing the flow control valve characteristic. The

characteristic curve is almost quadratic with the pintle stroke and the trend obtained for

the discharge coefficient had values higher than 0.92. On the second phase the maximum

back pressure that can be applied to the flow control valve without un-chocking the flow

has been determined. The trend showed a good correlation with the pintle stroke. For

high pintle strokes the obtained values are similar to the one reported by other researchers

(0.85), but the maximum allowed back pressure ratio decreases strongly for lower pintle

strokes reaching 0.42. This implies a higher required upstream operating pressure for

lower pintle strokes, however this is not a problem for throttling purposes, because for

lower oxidizer mass flows and hence pintle strokes, the combustion chamber pressures

decreases as well. The effects that the cavitation could have on the engine behavior rouse

some concerns among some of my colleagues as well as some engineers and researchers

I met attending at conferences. This was an aspect worth investigating and it is the aim

of the third phase of the flow control valve characterization, which outcome is a trend of

the cavitation peak frequencies downstream of the venturi. The most important variable

for the cavitation instability frequency is the local pressure. A trend between the two has

been determined and evidence of instabilities in the combustion chamber pressure at the

same frequency was investigated. No relevant instabilities at the cavitation frequency

were found inside the combustion chamber. The last phase for the flow control valve

characterization consisted in determining some dynamic characteristics: the mass flow

transfer function at 0.2, 0.3 and 0.4 Hz as well as the rise and fall time for a throttling

ratio of 1:5 have been determined. The answer of the flow control valve at frequencies

higher of 0.5 Hz are limited because of the actuation system. The rise and fall time from

an oxidizer mass flow of 60 g/s and 300 g/s are 1.2 and 1.3 second respectively.

Finally the flow control valve has been integrated with the engine and the fire test cam-

paign could start. Before the dynamic throttling tests could be performed two preliminary

fire test campaigns were carried out. For the first the combustion chamber configuration

had an axial gaseous injection and a paraffin fuel grain (a configuration with a power

law exponent near 0.5). A mixing plate was added in the post combustion chamber to

enhance the combustion between reactants. The results of this preliminary campaign

found a less severe o/f shift then expected and generally lower o/f. This effect has been

attributed to a correlation between mixer and fuel grain downstream face at different

oxidizer mass flow.
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A vortex engine configuration was used during the second preliminary fire test cam-

paign instead. This consisted in a swirled gaseous injection and a HDPE fuel grain.

Because the vorticity inside the fuel port enhance the mixing of the reactants, the post

combustion chamber design is more compact with respect of the previous configuration,

resulting in a reduced amount of thermal protection pyrolysis gasses in the propellant.

During this preliminary test campaign the vortex motor configuration proved efficient

with an Is p efficiency around 95% for the wide range of oxidizer mass flows investigated.

Also a good linearity of the thrust with the oxidizer flow has been observed and the o/ f

shift was as expected. For these reasons the vortex motor configuration has been used

during the dynamic throttling campaign.

The dynamic throttling fire test campaign consisted in four fire tests: three with a

sine-wave thrust command at 0.2, 0.3 and 0.4 Hz and the last one with a 4 s rectangular

impulse. With the three sine-wave tests it was possible to determine the transfer function

for the coupled FCV-HRM system. The three thrust trends were also compared with

the expected system response from a zero-order model. The response to the impulse

command was not as the expected one and it was not possible to obtain rise and fall time

for the whole system. During this dynamic throttling tests a maximum thrust of 720 N

and a throttling ratio of 4.2:1 has been achieved. The 720 N thrust is the equivalent of

1 kN in vacuum. The throttling ratio obtained was slightly lower than the 5:1 expected.

The throttling feature has been successfully integrated in a high efficiency hybrid

rocket motor configuration, which used hydrogen peroxide as oxidizer and HDPE as fuel,

the oxidizer is decomposed thanks to a catalyst pack. Other than being a green propellant

formulation this configuration is particularly suited for throttling and reignition purposes.

The developed flow control valve made this throttling implementation possible.

For the future it could be possible to reduce consistently the weight of the valve body,

maybe by using additive manufacturing techniques, in order to make it flight-weight.

Also the actuation could be rearranged, one particular promising solution could be the

use of an hydraulic cylinder like actuation in which the operative fluid is the oxidizer

itself. Now that a flow control valve has been developed for our 1 kN class motor the

same could be done for the 7 kN class test motor to study also how scaling effects affect

throttling.
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