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Riassunto 

 

L’intrusione salina interessa molte zone costiere del mondo con effetti negativi sulla qualità 

dell’acqua di falda e del suolo. Per gestire i problemi di salinità è necessario capirne le 

dinamiche temporali a livello di profilo di suolo e la variabilità spaziale a scala di 

campo. Tecniche geofisiche, in particolare l’utilizzo della conducibilità elettrica 

apparente (ECa), sono state utilizzate negli ultimi decenni per stimare la salinità del 

suolo e della soluzione circolante. A scala puntuale la bontà delle misure di salinità della 

soluzione circolante è legata alla giusta interpretazione del rapporto che la lega ad ECa, 

alle caratteristiche del suolo e al contenuto idrico. Inoltre, i sensori che misurano 

l’umidità del suolo spesso forniscono misure falsate in suoli salini e con alto contenuto 

di argilla e/o sostanza organica. A scala di campo il proximal-sensing può essere utile 

per caratterizzare vaste porzioni di territorio a partire da un numero relativamente ridotto 

di campioni di suolo. Spesso la caratterizzazione della salinità non è sufficiente per 

capire la variabilità spaziale delle rese colturali, che può essere influenzata da altre 

caratteristiche del suolo. Capendo come la salinità e altre proprietà del suolo influenzano 

la produttività agraria può essere utile per identificare delle aree in cui apportare 

interventi agronomici sito-specifici. 

L’obiettivo generale di questo lavoro è valutare delle metodologie per monitorare e 

caratterizzare la salinità del suolo ed altri parametri chimico-fisici del suolo ad essa 

legati, con l’ausilio di sensori, sia a scala puntuale che di campo. In particolare a scala 

puntuale si affrontano le problematiche relative all’utilizzo di sensoristica capacitivo-

resistiva per stimare il contenuto volumetrico e la salinità della soluzione circolante. 

Mentre a scala di campo si propongono delle metodologie per caratterizzare la 

variabilità spaziale della salinità del suolo e di altre proprietà che influenzano la resa di 

Zea mais L. con l’utilizzo di tecniche di proximal-sensing del suolo. Questa tesi riguarda 

i suoli di un’area di studio interessata da intrusione salina, al margine meridionale della 

Laguna di Venezia. 

La tesi è strutturata in cinque capitoli. Il primo include una review sulla metodologia 

comunemente usata per caratterizzare la salinità del suolo con metodi geofisici sia a 

scala puntuale che di campo. È inoltre presentata una panoramica introduttiva sulle 
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problematiche ambientali relative alla zona a sud della Laguna di Venezia. Il secondo 

capitolo si concentra sulla calibrazione di una sonda (low-cost) capacitivo-resistiva da 

utilizzare per stime in continuo di contenuto idrico volumetrico e salinità della soluzione 

circolante. Il terzo capitolo propone una metodologia per ottimizzare schemi di 

campionamento del suolo sulla base della variabilità spaziale di misure geofisiche. Il 

quarto capitolo analizza la variabilità spaziale della resa colturale in funzione delle 

proprietà chimico-fisiche del suolo e propone l’utilizzo di dati di proximal-sensing del 

suolo ad esse correlati per identificare delle aree di gestione omogenee. Infine, l’ultimo 

capitolo riporta le conclusioni generali e delle note conclusive sui lavori presentati nella 

tesi. 

 

 



3 

 

Summary 

 

Saltwater intrusion affects many coastlands around the world contaminating fresh-

groundwater and decreasing soil quality. In order to manage saline soils one should 

understand the spatiotemporal dynamics of salinity in the soil profile and its spatial 

variability at field scale. In the last decades, soil and pore-water salinity have been 

assessed using geophysical techniques, most commonly with the use of apparent 

electrical conductivity (ECa) measurements. At point-scale, pore-water salinity can be 

estimated once its relationship with ECa, soil properties, and water content is 

understood. Moreover, most sensors for water content estimation normally provide 

biased readings in saline conditions and in soil with high clay and organic carbon 

contents. At field-scale proximal-sensing can be used to characterize large portions of 

land from a relatively small number of soil samples. Sometimes, characterizing salinity 

is however not sufficient to understand crop yield spatial variability, which can be also 

influenced by other soil properties. Understanding the influence of salinity and other soil 

properties on crop productivity can be useful in the identification of areas that can be 

managed site-specifically. 

The general aim of this dissertation is to evaluate some sensor-based methodologies for 

monitoring and characterizing salinity and other related soil properties both at point- and 

field-scale. In particular, at point-scale the dissertation will deal with the issues 

regarding the use of capacitive-resistive technology for water content and pore-water 

salinity estimation. At field-scale some methodologies will be proposed in order to 

characterize the spatial variability of salinity and other soil properties influencing maize 

(Zea mais L.) yield using soil proximal-sensing. All the material presented in this 

manuscript regard the soils of an area affected by saltwater intrusion located at the 

southern edge of the Venice Lagoon (Italy). 

The dissertation is structured in five chapters. The first one includes a review on commonly 

used methodologies for point- and field-scale salinity assessment. An overview on the 

environmental issues concerning the coastland at the southern margin of the Venice 

Lagoon is also presented. The second chapter deals with the calibration of a low-cost 

capacitance-resistance probe for simultaneous monitoring of soil water content and 
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salinity. In the third chapter an ECa-directed soil sampling scheme optimization 

procedure is proposed. The forth chapter analyzes maize yield as a function of soil 

chemical and physical properties and investigates on the use of soil-proximal sensing 

correlated to soil spatial variability for site-specific management units. The final chapter 

presents the general conclusions of the work. 
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1. Soil salinity, salt water intrusion and field scale assessment of soil salinity 

 

The term salinity refers to the presence of the major dissolved inorganic solutes (basically 

Na
+
, Mg

2+
, Ca

2+
, K

+
, Cl

-
, SO4

2-
, HCO3

-
, NO3

-
, and CO3

2-
) in the soil (Rhoades et al., 

1999). The salinity of a solution can be quantified in terms of its electrical conductivity 

(EC; dS m
-1

), which is strictly related to the total concentration of dissolved salts, with 1 

dS m
-1

 being approximately equivalent to 10 meq L
-1

 at 25°C (Richards and US Salinity 

Laboratory Staff, 1954). 

High soil salinity values can result in plant stress which, in severe cases, could even lead to 

crop failure. When soil solution is too concentrated in salts, the osmotic potential is 

reduced, and it becomes harder for plants to extract water from the soil-matrix. Specific-

ion toxicity could also occur (e.g. Na
+
 toxicity). Moreover, soil salinity can unbalance 

the nutritional equilibrium of plants. Finally, soil salinity may in certain cases influence 

soil structure: high levels of sodium can cause soil deflocculation of soil colloids (i.e. 

clays and soil organic matter), which influences soil permeability and tilth. 

Salinity accumulates in soils as a consequence of various processes, which take place 

according to geomorphological settings and local climate (Corwin et al., 2012). In arid 

and semi-arid environments, where precipitation is minimal, salts accumulate as a 

consequence of the evapotranspiration process (ET): when soil-water flows upwards, 

salts are transported from the groundwater to the rootzone. The shallower the 

groundwater, then the closer to the soil surface salts can accumulate. Irrigation and 

precipitation can, however, leach down salts. Specifically, in environments (e.g. the one 

discussed in this dissertation) where yearly precipitations are larger than the amount of 

water lost by ET, salts accumulate during dry and semi-dry summers and then leach 

down during rainy fall and spring seasons. Nevertheless, when water table is very 

shallow, considerable amounts of salts can be transported to the rootzone by the ET 

process during summer, limiting therefore plant production (Corwin et al., 2012). The 

amount of salts that are transported into the rootzone depends much on the salinity of the 

groundwater, soil type (e.g. texture), and plant type.  

Salts found in groundwater are generally originated by dissolution from rocks. The spatial 

distribution of saline groundwater is however dependent on many factors: it could be 
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either originated locally or be transported into a place via several processes, such as 

irrigation, excessive fertilization, and, along the coastlines, by saltwater intrusion.  

Saltwater intrusion is a common process along coastlands. As reported by (Tóth et al., 

2008), the coastland around the Venice Lagoon, is particularly affected by this 

phenomenon. Saltwater intrusion acts according to the Ghyben-Herzberg relation (Bear, 

1988). In areas below sea level, where land is continuously drained by pumping stations, 

the situation resembles what shown in Fig. 1.1: the fresh-groundwater / saline-

groundwater interface upshifts towards the soil surface (Bear, 1988). 

 

 

Figure 1.1. Upshift of the freshwater / saltwater interface in a coastal area lying below sea level and in need of 

continuous draining. Modified after Bear (1988). 

 

Soil salinity is generally determined measuring the electrical conductivity of aqueous 

extracts of saturated soil-pastes (ECe) or of other soil to water ratios extracts (e.g. 1:2 

and 1:5 ratios, as advised in (Ministero delle Politiche Agricole e Forestali, 1998)). 

However, such determination methods are destructive, time-consuming, and not 

representative of the real salinity status of soils at actual field conditions (Rhoades et al., 

1999). To determine the real state (i.e. at actual soil water contents) of stress affecting 

crops and to monitor fluxes of salts (e.g. upward fluxes through the soil profile) the 

electrical conductivity of the pore-water (ECp) should be measured. Although such piece 

of information is very important it has not been frequently used as unpractical to assess 

at point scale and nearly impossible at field scale. Soil water can be extracted with 

microlysimeters, which are generally installed through the soil profile. With such 

implementation, pore-water is extracted whenever negative pressure is forced into the 

microlysimeters. This procedure is quite reliable at medium to high soil water contents, 

but clearly cannot provide continuous measures, as it would be too time-expensive. 

Sensors directly measuring ECp are available, (i.e. the one described by (Rhoades and 
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Oster, 1986) ), but not reliable, as they are not accurate in time, and sensitivity when 

changes in ECp are small. Sensors that indirectly estimate ECp with continuous 

measurements are also available. These types of sensors provide readings of the bulk (or 

apparent) soil electrical conductivity (ECa), which varies according to ECp, soil 

moisture, and soil type. Therefore, soil solution, solid soil particles, and chargeable 

surface of soil colloids, all contribute to the conductance measured as ECa (Corwin, 

2003). According to (Rhoades et al., 1989), three pathways of current flow contribute to 

the ECa measurement (Fig. 1.2): current through the soil solution in the large pores (the 

liquid phase pathway); current through the soil particles that are in continuous and direct 

contact with one another (the solid pathway); and current through exchange complexes 

on the surface of soil colloids (the soil-liquid phase pathway). Rhoades et al. (Rhoades 

et al., 1989) showed positive significant correlations between ECa with soil water 

content, ECp, and clay content.  

As consequence of such complexity, ECa values are not only a function of pore-water 

salinity but of several other soil physical and chemical properties, including soil water 

content, texture, organic carbon content, and bulk density (Corwin and Lesch, 2005). 

 

 

Figure 1.2. Schematic representation of the three conductance pathways of apparent soil electrical 

conductivity in an unsaturated soil: 1, the liquid phase pathway; 2, the soil pathway; 3, the soil-liquid phase 

pathway. Modified from Rhoades et al. (1989). 
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Several models have been developed to estimate ECp from ECa readings, at known water 

contents. A comparison between various models to determine ECp can be found in 

(Amente et al., 2000; Friedman, 2005; Hamed and Magnus Berndtsson, 2003; Persson, 

2002). At point scale, ECa is commonly monitored either with time domain 

reflectometry (TDR) (Dalton et al., 1984) or electrical resistivity (ER) (Rhoades et al., 

1999) techniques. The recent development of inexpensive multisensor probes, providing 

soil moisture and ECa data, has contributed on making easy to continuously assess ECp. 
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2. Implementing field-scale ECa surveys in precision agriculture  

 

Field surveys of ECa have been used in the last 25 years, to assess the spatial distribution of 

soil salinity. Mobile ER and electromagnetic induction (EMI) are most commonly used 

techniques (Corwin and Lesch, 2005). However, as mentioned earlier, salinity is not the 

only soil property contributing to the spreading of electrical current through soil. ECa 

values have in fact been correlated to many soil properties. The kinds of correlations that 

can be highlighted depend much on the type of soil sensed and on its location. Corwin 

and Lesch (Corwin and Lesch, 2005) propose a list of studies in which ECa 

measurements were used to directly or indirectly assess the spatial distribution of 

specific soil properties (Table 1.1). 

 

Table 1.1. List of the soil properties assessed by ECa measurements as reported by Corwin and Lesch (2005). 

Directly measured soil properties Indirectly measured soil properties 

Salinity (and nutrients, e.g. NO3
−
) 

Organic matter related (including soil organic 

carbon, and organic chemical plumes) 

Water content Cation exchange capacity 

Texture-related (e.g. sand, clay, depth to claypans or 

sand layers) 
Leaching 

Bulk density related (e.g. compaction) Groundwater recharge 

 
Herbicide partition coefficients 

 
Soil map unit boundaries 

 
Corn rootworm distributions 

  Soil drainage classes 

 

In precision agriculture, ECa is often used in order to describe the spatial distribution of soil 

properties influencing yield. Unfortunately, yield inconsistently correlates with ECa 

because it is influenced by soil factors other than those characterizing the ECa values; 

and because of a temporal component of yield variability that is inefficiently represented 

by a state variable such as ECa (Corwin and Lesch, 2003). 

Typical implementations of ECa in precision agriculture include (Corwin, 2008): a) ECa 

directed soil sampling schemes optimizations and b) delineation of Site-Specific 

Management Units (SSMUs). 

As stated by (Corwin et al., 2010), ECa-directed soil sampling is advised for characterizing 

spatial variability on the basis that when ECa correlates with soil properties, then a field-
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scale ECa surveys can be used to identify locations that represent the range and the 

variability of those soil properties in the area considered. Some examples of ECa-

directed soil sampling scheme delineation can be found in (Castrignanò et al., 2008), 

(Corwin et al., 2003b), (Lesch, 2005), and (Corwin et al., 2010).  

 

The use of Site-Specific Management Units could help on improving the soil quality in 

those areas in which crop production is limited by adverse levels of several edaphic 

factors (e.g. salinity, pH, texture, etc.) (Robert, 2002). In fact, site-specific crop 

management aims to manage the soil, pests and crops based upon spatial variation 

within a field (Larson and Robert, 1991; Van Uffelen et al., 1997) by applying resources 

(water, fertilizers, etc.) when, where, and in the needed amount (Corwin and Lesch, 

2010). Therefore a SSMU can be defined as a portion of land that is managed the same 

in order to achieve the same goal (Corwin et al., 2008). It could seem legitimate to 

delineate SSMUs on the base of yield maps or estimates. However, yield spatial 

variation is affected by a large range of factors, such as topographic, edaphic, biological, 

meteorological, and anthropogenic factors. For practical reasons, only a limited portion 

of these factors can be managed in order to increase crop productivity. Therefore, as 

suggested by (Corwin and Lesch, 2010), a simplified and effective way of designing 

SSMUs is to analyze the effect of a single factor class on yield spatial variability. As a 

matter of fact, the extent of yield variation related to edaphic properties can be 

considerably large (Corwin et al., 2003a; Vitharana et al., 2008). Furthermore, relatively 

non-expensive interventions (e.g. fertilization, controlled leaching, use of soil improvers, 

etc.) can be carried out on soil properties to improve soil productivity and/or quality.  

As seen earlier, the spatial characterization of edaphic properties can be achieved with 

spatial ECa measurements (Corwin and Lesch, 2005). When ECa does not fully describe 

the soil variability which influences yield, other types of proximal sensors could be 

complementarily used. Proximal sensors are very popular in soil science as they allow 

gaining a very large amount of information on study areas with little time and cost. 

Moreover, such measures are nondestructive and the sensors are generally easy to 

operate. Indeed, several types of sensors have recently been used to provide ancillary 

data in order to characterize large areas on the basis of a limited number of soil samples 
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(Adamchuk et al., 2004; Mulder et al., 2011; Viscarra Rossel et al., 2011), including 

optical sensors (Ben-Dor et al., 2009), radiometric sensors (Lunt et al., 2005), 

mechanical sensors (Hemmat and Adamchuk, 2008), acoustic and pneumatic sensors 

(Adamo et al., 2004; Clement and Stombaugh, 2000; Liu et al., 1993), and 

electrochemical sensors (Sethuramasamyraja et al., 2008; Viscarra Rossel and Walter, 

2004).  

Some recent studies on the delineation of SSMUs guided by ancillary data from proximal 

sensors can be found in (Corwin et al., 2003a), (Li et al., 2007a; Li et al., 2007b), 

(Vitharana et al., 2008), (Johnson et al., 2008), and (Morari et al., 2009). Generally 

SSMUs are designed on the basis of a single soil sensor type data, which generally 

correlates only to a limited amount of soil properties. 

 

In this dissertation, along with ECa, bare-soil reflectance will be considered as 

complementary ancillary information, both in the visible (400-700 nm) and near-infrared 

(700-2500 nm) regions. Sensors measuring reflectance emit radiation directed toward 

the soil. A portion of that radiation is reflected back to the sensor. The remaining portion 

of the radiation is mainly adsorbed by the components of the soil (e.g. soil water, 

chemical bounds of the soil particles, etc.).  

Soil reflectance in the visible range is closely related to soil color and water content (Post et 

al., 2000). As a matter of fact, high water content will increase the color intensity (Ellis 

and Mellor, 1995; Post et al., 2000). Soil color has been widely studied in the past and 

been connected to many soil properties (Torrent and Barron, 1993). Dark soils are 

generally characterized by high organic matter content and/or iron oxides (FitzPatrick, 

1986; Leone and Escadafal, 2001). A lighter color, on the other side, can be used to 

identify areas rich in carbonate (Ellis and Mellor, 1995), or areas affected by high 

salinity (Metternicht and Zinck, 2003), or sandy areas (Goovaerts and Kerry, 2010; 

Rizzetto et al., 2002). 

The near-infrared reflectance of soil is primarily related to the presence of OH, CH, and 

NH groups (Gomez et al., 2008). Nevertheless, near-infrared reflectance has been 

correlated with a wide range of soil properties, including total C, total N, water content, 

and texture (Chang et al., 2001; Viscarra Rossel et al., 2006). An improved benefit on 
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describing soil properties comes when visible and near-infrared data are joined. The use 

of these two ranges of wavelengths allowed predicting the spatial distribution of soil 

organic carbon (Gomez et al., 2008; Zhang et al., 2012) as well as soil color (Singh et 

al., 2004). 
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3. The southern margin of the Venice Lagoon: an endangered delta plain environment 

 

Alike many delta plains around the world, the area south of the Venice Lagoon (Italy) is a 

precarious environment subject to both natural changes and anthropogenic pressure. 

Previous studies highlighted a number of critical problems affecting this low-lying area, 

including land subsidence, periodic flooding during severe winter storms, and saltwater 

intrusion (Carbognin et al., 2005a; Carbognin et al., 2006; Gambolati et al., 2005; 

Teatini et al., 2005; Tosi et al., 2009). The area is part of the greater Po and Adige rivers 

delta plain. The Po used to flow in the area but migrated down south as the shoreline 

moved eastward in the last 6000 years (Fig. 1.3) leaving behind many highly permeable 

sandy drifts consisting on ancient river forks (i.e. paleochannels). These paleochannels 

are generally orientated towards the Lagoon (Carbognin and Tosi, 2003; Rizzetto et al., 

2002; Rizzetto et al., 2003).  

 

 

Figure 1.3. Map of the southern catchment of the Venice Lagoon. The coastline headway around (1) 5-6000 

years B.P., (2) 4500 years B.P., and (3) 500 years B.P. The (4) past and (5) current locations of the larger 

rivers flowing in the area are highlighted. Modified after Rizzetto et al. (2002). 
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Saltwater intrusion and related soil salinization are potentially a major threat for 

agriculture. Such risk could be amplified by the combined future effects of land 

subsidence and sea-level rise. (Carbognin and Tosi, 2003; Carbognin et al., 2005b; De 

Franco et al., 2009; Rizzetto et al., 2003) showed that saline water may extend inshore 

up to 20 km far from the Adriatic Sea coastline, and that the saltwater plume is observed 

from the near ground surface down to 100 m depth. Moreover, the presence of the 

paleochannels could serve as preferential flow for the saltwater to intrude into the 

agricultural lands from the Venice Lagoon, the Adriatic Sea, and the various rivers and 

canals flowing in the area as reported by (Abarca et al., 2006) for the Llobregat delta 

plain in Spain. 

Great portions of the Po and Adige delta plains were reclaimed from the 1890s to the 1960s 

and are nowadays kept constantly drained by the activity of several pumping stations 

allocated in the area. At the southern margin of the Lagoon, pumps control the height of 

the water table generally maintaining it very shallow (<1 m) in order to make rainfed 

farming possible. However being the area characterized by high spatial variability in 

both elevation and texture/water retention capacity, it is likely that water stress may 

occur in crops, in areas characterized by sandy soils and deep water table. 
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4. An introductory note on the study site 

 

The study site (Fig. 1.4) was located at Ca’ Bianca, Chioggia, Venice, Italy (45°10'57"N; 

12°13'55"E; UTM, WGS84). The site is located at the southern margins of the Lagoon 

of Venice, North-East of Italy; in proximity to the Brenta and Bacchiglione Rivers; and 

approximately 7 km afar the Adriatic Sea shoreline. A draining house operates at the 

NW corner of the study area keeping it reclaimed; and reversing the drainage water into 

the Morto Canal, which then discharges its waters into the Bacchiglione River.  

The original size of the study site was ca. 28 ha; however, even if the preliminary studies of 

this dissertation regarded the entire site (see Chapter 3), ca. 7 ha in the South Eastern 

corner were not sowed in 2010 and were thus removed from subsequent research (see 

Chapter 4). The field is cropped on maize (Zea mais L.) and harvested for grain. 

 

 

Figure 1.4. Aerial image of the study area at the southern margin of the Venice Lagoon, Italy; with a highlight 

on the paleochannels crossing it. The dashed line represents the portion of the study site that was not sowed in 

2010. 
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Previous research conducted at the southern margin of the Venice Lagoon (Viezzoli et al., 

2010) showed low bulk resistance values (Ωm = S m
-1

) in the 0-5m soil increment in the 

study site, suggesting that this particular portion of land could be heavily affected by 

saltwater intrusion (Fig. 1.5). This evidence confirms the values displayed on the Venice 

Province salinity map (Vitturi et al., 2008) which indicates the study area as “very 

saline”. 

 

 

Figure 1.5. Airborne electromagnetics measuring soil apparent resistance (Ω m) in the 0-5 m soil increment; 

modified from (Viezzoli et al., 2010). The study area is highlighted. 
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5. Objectives 

 

This dissertation aims to propose a set of tools and methodological approaches for salinity 

assessment at point- and field-scale, in a site characterized by a high heterogeneity of the 

geomorphological settings, typical of southern margin of the Venice Lagoon, Italy.  

 

Firstly, the point-scale objectives of this work were to: 

i) Investigate the relation between bulk electrical conductivity (ECa) vs. pore-water 

electrical conductivity (ECp), water content, and soil properties. In particular this work 

will focus on the interpretation of ECa readings made with a two-array ER probe over a 

wide range of soil water contents and ECp values on a set of five contrasting soil. 

Moreover, soil water content will be estimated from dielectric readings made with a 

capacitance probe. Capacitance probes are known for being very low-cost systems to 

determine the soil complex permittivity. However their readings are often biased by the 

high electrical conductivity of saline soils, or soils containing large amounts of colloids 

(i.e. clay and organic matter with chargeable surfaces) (Pardossi et al., 2009). 

ii) Develop a reliable methodology for sensor-based continuous ECp monitoring. In 

particular, some models found in the literature were tested. The fitting parameters of 

these models will be related to soil properties in order to reformulate each model with a 

“general” equation, applicable to a wide range of soils. 

 

Secondly, the field-scale objectives of this work were to: 

iii) Characterize the spatial distribution of soil salinity (and other relevant soil properties) 

using soil proximal-sensing methods. In the study site, the soil sampling scheme will be 

optimized according to the spatial measurements of ECa, to ease the spatial 

characterization of salinity and the other soil properties commonly influencing the 

electrical conduction through the soil.  

iv) Quantify the influence of salinity and other soil properties on maize yield. Especially in 

areas characterized by contrasting geomorphological settings, several soil characteristics 

are likely to influence crop yield at once. Moreover, Site-Specific Management Units 

(SSMUs) will be delineated and validated according to soil spatial variability and yield 
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spatio-temporal variability. The SSMU delineation methodology that will be proposed 

could be used both to identify areas of interest (e.g. saline areas) and to plan sustainable 

and profitable site-specific managing strategies.  
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Simultaneous Monitoring of Soil Water Content and 

Salinity with a Low-Cost Capacitance-Resistance 

Probe 
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Frequently Used Symbols  

 

θ volumetric water content 

εr soil complex permittivity 

ECa bulk electrical conductivity 

ECp pore-water electrical conductivity 

ECw electrical conductivity of the solution used to wet the soil 

ECs electrical conductivity of the solid phase 

ECe electrical conductivity of aqueous extract of saturated soil-paste 

 

 

1. Introduction 

 

Coastal farmlands are often threatened by saltwater contamination that poses a serious risk 

for drinking water quality and agricultural activities. To control and evaluate the hazard 

of soil salinity, accurate measurements of soil water content and solute concentrations 

are needed. The term salinity refers to the presence of the major dissolved inorganic 

solutes (basically Na
+
, Mg

2+
, Ca

2+
, K

+
, Cl

−
, SO4

2−
, HCO3

−
, NO3

−
, and CO3

2−
 ions) in the 

soil(Rhoades et al., 1999). The salinity of a solution can be quantified in terms of its 

electrical conductivity (EC; dS·m
−1

), which is strictly related to the total concentration 

of dissolved salts, with 1 dS m
-1

 being approximately equivalent to 10 meq·L
−1

 at 25 °C 

(Richards and US Salinity Laboratory Staff, 1954). Soil salinity is generally determined 

by measuring the electrical conductivity of aqueous extracts of saturated soil-pastes 

(ECe) or of other soil to water ratio extracts. However, such methods of investigation are 

destructive, time-consuming, and usually not representative of the real salinity status of 

soils in field conditions (Rhoades et al., 1999). To determine the real (i.e., at actual soil 

water contents) stress conditions affecting crops and to monitor fluxes of salts (e.g., 

upward fluxes in the vadose zone) the electrical conductivity of the pore-water (ECp) 

should be measured instead. Multi-sensor probes have recently been developed in order 

to assess water content and electrical conductivity with continuous and non-destructive 

measurements.
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2. Materials and Methods 

 

2.1. The study site 

 

The capacitance (dielectric) technique has been widely used to estimate soil volumetric 

water content (θ) (Fares and Polyakov, 2006). Capacitance sensors induce an alternating 

electric field in the surrounding medium. The total complex impedance is obtained by 

quantifying the voltage and the current induced by the electric field on the sensor 

electrodes. The impedance is related to the complex permittivity (or dielectric constant; 

εr) of the surrounding medium. The volume of the induced electric field depends mainly 

on the size and shape of the sensor electrodes. Moreover, the electric field decays 

rapidly, being inversely proportional to the square of the distance. Topp et al. (1980) 

noticed a strict correlation between εr measured by time domain reflectometry (TDR) 

and soil water content. They therefore proposed an empirical third-degree polynomial in 

εr to calculate θ. The complex permittivity of the soil measured by dielectric sensors is 

the sum of soil real (ε’) and imaginary (ε’’) permittivity (dielectric loss): 

 (2.1) 

where j
2
 = −1. The value of θ is related to ε’ only. On the other hand, ε’’ changes 

according to soil salinity, soil temperature (T), and the operating frequency of the sensor 

(Friedman, 2005; Kelleners et al., 2004a; Kelleners et al., 2004b; Rosenbaum et al., 

2011; Saito et al., 2008; Wilczek et al., 2012). Especially in low-cost sensors working at 

low frequencies (<1 GHz), the contribution of ε’’ in saline soils cannot be ignored (Fares 

and Polyakov, 2006; Pardossi et al., 2009; Schwank and Green, 2007). It is therefore 

essential to consider the influence of ε’’ in εr measurements in order to gain correct θ 

estimations. 

 

 

2.2. Pore-Water Electrical Conductivity Assessment 

 

The determination of the pore-water electrical conductivity is a difficult task as it cannot be 

directly related to any sensor output. Typically sensors measure soil bulk (or apparent) 

'ε'ε'-jεr ×=
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electrical conductivity (ECa), which is the combination of the contributions of the three 

phases constituting soils: solid, water and air (Allred et al., 2008; Friedman, 2005). 

According to Corwin (2008), three pathways of current flow contribute to the ECa 

measurement: current through the pore water solution (the liquid phase pathway); 

current through exchange complexes on the surface of soil colloids (the soil-liquid phase 

pathway); and current through the soil particles that are in direct contact (the solid 

pathway). ECa can be estimated from εr readings (Dalton et al., 1984) or from the 

electrical resistance that soil opposes to an alternating electric current (Allred et al., 

2008; Corwin, 2008). ECp and ECa are strictly correlated, indeed an increase of ions in 

the matrix solution leads to an increase of ECa values (Rhoades et al., 1976; Rhoades et 

al., 1989b; Saito et al., 2008).  

Several models to estimate ECp from ECa have been developed in the last sixty years, based 

on empirical relations as well as on theoretical assumptions. Models are usually based 

on the empirical relationship between ECa and θ at constant ECp values, where the 

magnitude of ECa varies according to the tortuosity of the electrical current paths 

(depending on soil texture, density and particle geometry, particle pore distribution, and 

organic matter content). Tortuosity can be expressed in terms of a soil transmission 

factor (π) (Heimovaara et al., 1995; Mualem and Friedman, 1991; Rhoades et al., 1976) 

or soil-type-related parameters (Archie, 1942; Hilhorst, 2000; Malicki and Walczak, 

1999). 

Recent development of low-cost multi-sensor probes could make such ECp models 

implementable for continuous monitoring purposes. However, since most of the ECp 

models are calibrated in limited soil conditions (Friedman, 2005; Hamed and Magnus 

Berndtsson, 2003; Persson, 2002), new relationships between variables and soil 

properties must be defined to extend their applicability to a wider range of soils. 

The general aim of this study was to calibrate a multi-sensor probe for monitoring soil 

volumetric water content and soil water electrical conductivity in a heterogeneous saline 

coastal area. The specific objectives were: (i) to develop a procedure to simultaneously 

calibrate θ and ECp; (ii) to test different models for ECp; and (iii) to develop general 

functions to extend ECp model application to a wide range of soils, even in critical saline 

conditions. 
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3. Materials and Methods  

 

3.1. Decagon ECH2O-5TE Probe  

 

The sensor used in this experiment was an ECH2O-5TE probe (hereafter simply referred to 

as 5TE). 5TE is a multifunction sensor measuring εr, ECa, and T (Decagon Devices Inc., 

Pullman, WA, USA). A detailed description of the 5TE can be found in Bogena et al. 

(2010) and Campbell and Greenway (2005). The probe is a fork-type sensor (0.1 m in 

length, 0.032 m in height). Two of the three tines host the dielectric sensor. The 

capacitance sensor supplies a 70 MHz electromagnetic wave to the prongs that charge 

according to the dielectric of the soil surrounding the sensor. The reference soil volume 

is ca. 3  10
−4

·m
3
. A charge is consequently stored in the prongs and it is proportional to 

the soil dielectric. Previous versions of dielectric sensors by Decagon Devices operate at 

lower frequencies (e.g., ECHO10 probe, 5 MHz). The increase of operating frequency 

has led to a higher salinity tolerance (Kelleners et al., 2004b; Pardossi et al., 2009; Saito 

et al., 2008). In fact εr measurement with 5TE should not be affected by soil salinity up 

to ECe values of 10 dS·m
−1

 (Kizito et al., 2008).  

The bulk electrical conductivity is measured with a two-sensor array. The array consists of 

two screws placed on two of the sensor tines. An alternating electrical current is applied 

on the two screws and the resistance between them is measured. The sensor measures 

electrical conductivity up to 23.1 dS m
−1

 with 10% accuracy; however a user calibration 

is suggested above 7 dS·m
−1

. Temperature is measured with a surface-mounted 

thermistor reading the temperature on the surface of one of the prongs. 

 

 

3.2. Soil Sampling  

 

Soil samples from a coastal farmland affected by saltwater intrusion (Keesstra et al., 2012) 

were cored for the calibration of the 5TE probe. The site is located at Ca’ Bianca, 

Chioggia (12°13'55.218"E; 45°10'57.862"N), just south of the Venice Lagoon, North-
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Eastern Italy. The area has high spatial variability in soil characteristics due to its deltaic 

origins (Fig. 2.1). 

Three sampling locations were chosen in the basin (sites A, B, and C, Fig. 2.1). At sites A 

and B both topsoil (0 to 0.4 m depth) and subsoil (0.4 to 0.8 m depth) were collected, 

while only the topsoil was cored at site C since the profile is uniform. The main physical 

and chemical properties of the samples were characterized. Soil texture was determined 

with a laser particle size analyzer (Mastersizer 2000, Malvern Instruments Ltd., Great 

Malvern, UK). Soil total carbon content and soil organic carbon (SOC) content were 

analyzed with a Vario Macro Cube CNS analyzer (Elementar Analysensysteme GmbH, 

Hanau, Germany). Cation exchange capacity (CEC) was measured at a pH value of 8.2 

according to the BaCl extraction method (Sumner et al., 1996). Soil pH was measured 

with a 1:2 soil to water ratio with a pH-meter (S47K, Mettler Toledo, Greifensee, 

Switzerland). Particle density (ρr) was measured with an ethanol pycnometer (Blake and 

Hartge, 1986). Bulk density (ρb) was determined from undisturbed core samples. ECe 

was measured according to Rhoades et al. (1999).  

Soil samples show high variability in sand (from 174.7 to 905.2 g·kg
−1

), organic carbon 

content (from 15.4 to 147.8 g·kg
−1

), and ECe values (from 0.61 to 6.38 dS·m
−1

). Five 

soil types were selected: a sandy soil with low SOC content and low ECe, a silty-clay-

loam with low SOC content and high ECe, two loam and one clay-loam with medium-

high SOC content. Main soil properties are listed in Table 2.1. 
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Figure 2.1. Aerial image of the study area at the southern edge of the Venice Lagoon, Italy. The sampling 

sites A, B, and C are marked.  
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Table 2.1. Texture, total and organic carbon content, cation exchange capacity, pH, particle density, bulk density, and conductivity of the saturated paste extract 

for the five soil samples collected in the Ca’ Bianca sites and used in this study. 

Soil Sample 
Sand  

(%) 

Silt  

(%) 

Clay  

(%) 

Total C  

(%) 

SOC  

(%) 

CEC  

(meq·g
−1

)  
pH 

ρr  

(g·cm
−3

) 

ρb  

(g·cm
−3

) 

ECe  

(dS·m
−1

) 

A Topsoil 40.92 41.31 17.77 15.50 14.78 0.57 5.60 1.90 0.87 0.61 

A Subsoil 17.47 52.66 29.87 4.30 3.96 0.12 5.89 2.28 1.08 6.38 

B Topsoil 50.54 37.61 11.85 6.64 5.78 0.33 7.23 2.32 1.07 1.42 

B Subsoil 90.52 7.71 1.77 4.26 1.54 0.05 7.68 2.62 1.29 2.26 

C Topsoil 29.61 48.46 21.93 9.84 8.36 0.45 7.58 2.21 0.93 2.05 
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3.3. Experimental Settings  

 

The 5TE probe was used in a mixture of soil (preliminarily air-dried and sifted at 2 mm) 

and saline solution (54.92% Cl
−
; 30.82% Na

+
; 7.68% SO4

2−
; 3.81% Mg

2+
; 1.21% Ca

2+
; 

1.12% K
+
; 0.44% NaHCO4) to reproduce saline groundwater of the experimental site 

(Gattacceca et al., 2009). Soil samples were moistened to a relative saturation (S) of about 

0, 0.35, 0.75, and 1.00 with a saline solution of 0, 5, 10, and 15 dS·m
−1

 (at 25 °C). The 

mixtures were prepared in a plastic container and then sealed and kept in a dark place at 

constant temperature 22 ± 1 °C for 48 hours. The soil was then packed uniformly in  a 6  

10
−4

·m
3
 beaker to reproduce the field bulk density. Output values for εr, ECa, and T were 

recorded by a datalogger (Em50, Decagon Devices) connected to the 5TE probe.  

Electrical conductivity of the wetting solution (ECw) differs from the electrical conductivity 

of the pore-water (ECp) (Malicki and Walczak, 1999). Pore-water solution was extracted 

from a portion of the soil sample by vacuum displacement (Wolt and John, 1986) at −90 

kPa and ECp was measured with a S47K conductivity meter. ECe was then measured on the 

remaining soil sample. Water content was determined gravimetrically (at 105 °C for 24 

hours). Measures were replicated 3 times. 

 

 

3.4. Calibration Procedure  

 

A three-step procedure was implemented to calibrate the sensor output for the collected 

samples: (1) model calibration to convert εr and ECa readings to θ or ECp; (2) 

comparison and selection of the best models; (3) simultaneous calibration of the selected 

models for θ and ECp and evaluation of their robustness by applying a bootstrap 

procedure. 
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3.4.1. Models to Convert εr Readings to θ 

 

Dielectric permittivity can be converted to volumetric water content using empirical models 

(e.g., Topp et al., 1980). However temperature and soil electrical conductivity affect the 

dielectric permittivity measurements of ECH2O sensors (Jones et al., 2005; Rosenbaum 

et al., 2011; Saito et al., 2009). In one of their latest studies, Rosenbaum et al. (2011) 

developed an empirical calibration to correct the temperature effect on εr measurements 

which performed very well in both liquid and soil media. Investigating the effect of 

temperature on εr, Bogena et al. (2010) concluded that in a T range from 5 °C and 40 °C, 

εr varies up to 8% with respect to the reference liquid used (εr = 40 at 25 °C). As all the 

calibration experiments presented in this work took place at a controlled temperature of 

22 ± 1 °C, the effect of T on εr was considered negligible. On the other hand, εr is much 

more sensitive to electrical conductivity changes (Blonquist Jr. et al., 2005).  

Polynomial model-types as that proposed by Topp et al. (1980) do not provide satisfactory 

 estimates in the presence of high clay and organic contents or in saline soils, especially 

using sensors operating at low frequencies (Pardossi et al., 2009; Seyfried and Murdock, 

2001). Indeed, application of the Topp model to the experimental data of Ca' Bianca 

provided a large average error (0.11 m
3
·m

−3
). 

Three models were tested to find a satisfactory empirical relationship between εr and θ data 

for each soil at different ECw values, namely:  

(a) logistic model: 

 (2.2) 

(b) hyperbolic model: 

 (2.3) 

(c) logarithmic model: 

 (2.4) 

where θMAX  is the volumetric content at saturation, a, b, and U are fitting parameters. 

The three models were compared with the Akaike Information Criterion (AIC) (Akaike, 

1974) and the one with the higher Akaike weight (WAIC) (Burnham and Anderson, 2002) 
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was selected for the subsequent simultaneous calibration of θ and ECp. The Akaike 

Information Criterion (AIC) is a measure of the goodness of fit of a specific model. It 

allows the direct comparison of different concurrent equations for model selection 

purposes. AIC accounts for the risk of over-parameterization as well as for the goodness 

of fit; several models can be ranked according to their AIC, with the one having the 

lower value being the best. From the AIC, the Akaike weight (WAIC = 1) can be 

computed, which represents the probability that a specific model is the best, given the 

data and the set of candidate models. Note that the fitting parameters showed a high 

dependence on ECa and physico-chemical soil characteristics. To take this effect into 

account, the fitting parameters were expressed as a linear function of ECa and other 

selected soil properties yielding a “general” calibration equation usable on the various 

soils of the study site. 

 

 

3.4.2. Models to Convert εr and ECa Readings to ECp 

 

Four models were tested: the first is the Malicki and Walczak (1999) model. They found 

that, when εr is higher than 6.2, the slope ∂ECa/∂εr depends only on salinity but not on 

water content, nor bulk density, nor dielectric permittivity. They developed an empirical 

relationship linearly linking ECa to εr for various values of ECw, i.e., ECa(εr,ECw). The 

validity of the linear relationships holds above a “converging point” characterized by εr0 

= 6.2 and ECa0 = 0.08 dS·m
−1

. ECp was consequently defined as a function of 

ECa(εr,ECw) and soil texture:  

 (2.5) 

where l is the slope of the relation between ∂ECa/∂εr and ECw. This parameter depends 

on the sand content of the sample through the relation l = l’+ l’’  sand(%), with l’ = 5.7 

 10
−3

 and l’’ = 7.1  10
−5

. 

On the basis of Equation (2.5), Hilhorst (2000) developed the following theoretical model: 

 (2.6) 
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where εp is the real portion of the dielectric permittivity of the soil pore-water and 

       is the real portion of the dielectric permittivity of the soil when bulk electrical 

conductivity is 0.        is a soil-type dependent variable, even if Hilhorst 

recommended a value equal to 4.1 as a generic offset. Moreover, εp was calculated as 

(Hilhorst, 2000): 

 (2.7) 

where T is the soil temperature in degrees Celsius, 80.3 is the real part of the complex 

permittivity of the pore-water at 20 °C, and 0.37 is a temperature correction factor. 

Hilhorst considers the imaginary part of εr to be negligible, hence in his model εr = ε’. 

The Hilhorst model was proved to perform correctly only for low ECp values. Hilhorst 

himself indicated an ECp value of 3 dS·m
−1

 as the upper limit for the validity of his 

model when a capacitance sensor operating at 30 MHz is used.  

The third tested model is the one proposed by Rhoades et al. (1989a) (hereafter simply 

referred as Rhoades). They expressed the pore-water electrical conductivity as: 

 (2.8) 

where ECs (the electrical conductivity of the solid phase) was shown to be dependent on 

soil texture and through a linear correlation with clay content (Amente et al., 2000; 

Rhoades et al., 1989a); π is a tortuosity factor that mainly depends on soil hydraulic 

properties and was defined by Rhoades et al. as: 

 (2.9) 

where the constants c and d can be estimated from the regression between ECa and θ at 

constant ECp (Rhoades et al., 1976). 

Archie’s law (1942) (hereafter simply referred as Archie) was developed to assess the 

conductivity of pore-water in clay-free rocks and sediments, and it has been therefore 

used in soils containing neither clay minerals nor organic matter. According to Archie 

ECp can be derived as follows: 

 (2.10) 

where Φ is the porosity (defined as Φ = 1 − ρb × ρr
−1

 = θMAX), S the relative saturation 

(defined as S = θ × Φ
−1

), and k, m and n are fitting parameters. Allred et al. (2008) 
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showed that typical values of these three constants range from 0.5 to 2.5, from 1.3 to 2.5, 

and ~2 for k, m, and n, respectively. 

Archie has been modified in order to be used also in soils containing clay minerals 

(Waxman and Smits, 1968) by simply considering the contribution of ECs in Equation 

(2.10). Hence, ECp was defined as: 

 (2.11) 

Despite the fact that Archie was originally developed for deep sediments in oil research, it 

has been successfully applied in shallow groundwater systems to trace salinity. An 

example of such implementation is given by Monego et al. (2010). It is worth noticing 

that Archie and Rhoades show a similar formulation, being equal when m = 1 and n = 1 

(then k = 1/π). 

The four models apply for θ > 0.1 m
3
·m

−3
 (for Rhoades and Hilhorst), θ > 0.2 m

3
·m

−3
 (for 

Malicki and Walczak), and S > 0.3 (for Archie).  

The models were tested with the experimental (ECa,εr) values and the chemical and 

physical properties of the five soil samples collected at Ca' Bianca. In a first step, the 

original formulations were tested by calculating the parameters according to the 

methodologies proposed by the authors. Next, the models were optimized by relating the 

calibration parameters to the physical and chemical characteristics of the soils. ECp data 

at S ≈ 0.35 were excluded from the optimization as it was impossible to collect a 

sufficient amount of solution with the extraction method used in this experiment. ECp 

data at S ≈ 0 were assumed equal to 0 dS·m
−1

 (Saito et al., 2008). 
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3.4.3. Simultaneous Calibration of Models for θ and ECp 

 

The model parameters for the simultaneous quantification of θ and ECp were calibrated by 

minimizing the following objective function: 

 (2.12) 

where RSStot is the cumulative residual sum of squares, M and N are the total number of 

observed volumetric water content and pore-water electrical conductivity data, 

respectively,       and   ̂   , θj and  ̂j are the observed and fitted ECp and θ values, 

respectively, W1 and W2 are two weighting factors. The parameter W1 allows more 

weight to be given to one of the two variables. The parameter W2 ensures that a 

proportional weight is given to the two residual sums of squares (RSS), and that the 

effect of having different units for θ and ECp is canceled. W2 was calculated as suggested 

by Van Genuchten et al. (1991): 

 (2.13) 

This weighted procedure prevents one data type (i.e., ECp or θ) from dominating the other, 

solely because of its higher numerical values. 

In this study the limited dataset size (M = 80 and N = 55) did not allow a validation to be 

performed on an independent set of data. The models were thus validated through a 

bootstrap procedure (Efron, 1979).  A Y number of iterations were carried out. At each 

iteration, a subset of 60 points out of 80 for θ and 42 out of 55 for ECp were extracted, 

forming the calibration dataset. The remaining points were retained for validation.  

At the end of the iterations, the root mean square error (RMSE=√∑      ̂   
 
    ⁄ ), 

which provides the goodness of fit, the median, and the 5th and 95th percentiles of the 

distribution of each parameter were retained for further analysis. The probability 

distribution function of RMSE was compared using the Kolmogorov-Smirnov (KS) test 

to assess the significance of difference in the model predictions.  
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The calibration procedure described above was performed using the Generalized Reduced 

Gradient (GRG) Nonlinear Solving Method (Frontline Systems, Inc., Incline Village, 

NV, USA). 
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4. Results and Discussion 

 

4.1. Converting εr Readings to θ 

 

Dependence of 5TE on bulk electrical conductivity was observed to be similar in all the 

tested soil samples. εr readings were greatly affected by ECa: especially for high  

values, a small increase in ECw significantly raised the dielectric output of the probe, 

indicating that dielectric readings carried out in highly conductive media must be 

corrected. This finding confirms the results by Rosenbaum et al. (2011) on the same 

probe and by Saito et al. (2008) on other Decagon dielectric probes operating at lower 

frequencies. An example of the non-linear response of εr at different ECw and  values is 

presented in Fig. 2.2(a). Starting from a relative saturation of 0.75, the response of the 

probe significantly diverged at salinity solution with ECw>10 dS m
−1

. Fig. 2.2(b) 

evidences also the direct effect of the ECw on ECa readings and how the effect was 

amplified at higher water content. This observation, confirmed by Schwank and Green 

(2007) and Rosenbaum et al. (2011), suggests investigating the effect of ECa on  

estimation. 
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Figure 2.2. Site A, topsoil: (a) relative saturation vs. measured complex permittivity for four ECw values of the wetting solution; (b) influence of ECw on 

bulk electrical conductivity at various relative saturation levels.  
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Between the tested θ models, Equation (2.4) showed the best performances, with an Akaike 

weight WAIC close to 1 (Table 2.2). 

 

Table 2.2. Outcome of the  model comparison according to Akaike information criterion (Burnham and 

Anderson, 2002): residual mean squares (RMS), total number of parameters (K—number of parameters of 

the model including the variance of the estimated residuals), Akaike Information Criterion (AIC), AIC 

differences (Di), and Akaike weights (WAIC). 

Model RMS K AIC  Di WAIC 

Hyperbolic 0.015 21 −301.61 104 2.11 × 10
−23

 

Logistic 0.002 42 −391.41 15 6.69 × 10
−4

 

Logarithmic  0.001 41 −406.03 0 1.000 

 

 

Parameters a and b of the logarithmic model were found to be significantly correlated with 

the ECa values at different water contents. Therefore the logarithmic model was 

reformulated as: 

 (2.14) 

where a’, a’’, b’, and b’’ are empirical parameters. Calibration of Equation (2.14) 

highlighted a strong correlation between the terms a’  ECa + a’’ and b’ ECa + b’’. 

Consequently this latter term was assumed equal to q (a’ECa + a’’), where q is a 

proportionality constant. Equation (2.14) could thus be reformulated as: 

 (2.15) 

Equations (2.14) and (2.15) were compared with the AIC test. A WAIC = 0.99 was obtained 

for Equation (2.15), indicating that this formulation of the logarithmic model is to be 

preferred over Equation (2.14), mainly for the reduced number of parameters. 

To identify a “general” equation, q was set as a constant (=−0.766), whereas parameters a’ 

and a’’ were related to soil properties (Table 2.3). Parameters a’ and a’’ were estimated 

according to the following empirical equations: 

(%)006.0352.0' SOCa   (2.16) 
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Equation (2.15) allows correcting of the effect of dielectric losses due to the high electrical 

conductivity of the medium (Fares and Polyakov, 2006) due to high organic carbon 

content, salinity, and clay/sand ratio. The RMSE of Equation (2.15) was 0.038 m
3
·m

−3
. 

 

 

4.2. Converting εr and ECa Readings to ECp 

 

The parameters of models (2.5), (2.6), (2.8), and (2.11) showed significant correlations with 

soil properties (Table 2.3). 

 

Table 2.3. Pearson linear correlation coefficients for some soil properties and the parameters in Equations 

(2.15) (logarithmic model), (2.5) (Malicki and Walczak), (2.6) (Hilhorst), (2.19) (Rhoades tortuosity), and 

(2.10) (Archie). Bold numbers indicate a significant linear relationship. 

 

Equation (2.15) Equation (2.5) Equation (2.6) Equation (2.19) Equation (2.10) 

a’ a’’ l εECa = 0 e f m n 

Sand 0.25 0.76 1.00 −0.60 −0.68 0.73 −0.79 1.00 

Clay −0.14 −0.8 −0.98 0.51 0.59 −0.62 0.66 −0.97 

Clay/Sand 0.23 −0.89 −0.82 0.20 0.45 −0.43 0.31 −0.79 

SOC −0.98 0.30 −0.40 0.94 0.36 −0.48 0.78 −0.46 

CaCO3 0.26 0.58 0.85 −0.73 −0.95 0.96 −0.75 0.84 

 

 

The parameter l by Malicki and Walczak was confirmed to be mainly correlated to sand 

content. The calibrated parameters for Equation (2.5) are: ECa0 = 0.06 dS·m
−1

; εr0 = 7.1; 

l = 0.012 + 10
−6 

× sand(%) yielding RMSE = 2.52 dS·m
−1

. In the original paper by 

Malicki and Walczak l varied from 0.0083 to 0.0127 while in this experiment the range 

was narrower, from 0.0117 to 0.0124.  

The ε(ECa = 0) parameter by Hilhorst was expressed as a function of soil organic carbon 

content: 

 (2.18) 

According to Equation (2.18), εECa = 0 ranged from 5.16 to 7.85, values close to the interval 

found by Hilhorst (from 3.76 to 7.6 in soils and synthetic media). The calibrated model 

yielded RMSE = 2.34 dS m
−1

.  

(%)203.0851.40 SOCEC 
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Concerning the Rhoades and Archie models, the term ECs was neglected as the 5TE probe 

registered ECa = 0 in dry soil conditions. Please note that even if ECs could sometimes 

be neglected (Corwin, 2008), other Authors demonstrated that it could assume a certain 

magnitude (Rhoades et al., 1989a).  

In contrast to Equation (2.9) by Rhoades et al. (1976),  was found to be uncorrelated with 

soil water content. Nevertheless,  showed a linear correlation with soil porosity ( = e 

+ f × ), with e and f depending on CaCO3 as follows: 

 (2.19) 

In the tested samples  ranged from 0.22 to 0.71, whereas Rhoades et al. (1976) found a 

variation from 0.01 to 0.6. The inverse correlation of CaCO3 with the tortuosity factor 

evidenced in the Ca' Bianca soils can be explained by the fact that here a low CaCO3 

content corresponds to high clay and SOC percentages. Indeed, the higher clay and SOC 

contents (more complicated geometric arrangement), the higher is soil tortuosity 

(Rhoades et al., 1989a). The “general” formulation of the Rhoades model provided 

RMSE = 0.90 dS m
−1

.  

Several formulations were attempted for Archie in order to decrease the number of 

parameters related to soil properties. Here, the parameters k, m, and n were alternately 

fixed and kept independent from the soil type. The formulation with k = 0.487 provided 

the best fitting according to the AIC test. With fixed k, n showed a significant correlation 

with sand content: 

 (2.20) 

It is worth noticing that with higher sand contents (Fig. 2.3(a)) n ≅ 2.5, which is close to n 

values suggested for sandy media (Allred et al., 2008). As shown in Table 2.3, n 

decreases with increasing clay values. For given S and ECa values, it is clearly derived 

from Equation (2.10) that the smaller the n the higher is ECp, i.e., with a large 

percentage of clay the influence of “the liquid phase pathway” on the ECa reading is 

reduced (Corwin, 2008; Rhoades et al., 1989a). A non-linear relationship was detected 

between m and soil organic carbon (Fig. 2.3(b)): 

 (2.21) 
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Values of m between 2.65 and 3.82 were derived. As reported by Archie, m becomes larger 

as the permeability of the porous medium decreases (increasing tortuosity). As shown in 

Fig. 2.3(b) the magnitude of m rises with SOC. High organic contents decrease soil bulk 

density, possibly increasing soil tortuosity (Barber, 1995). Archie calibration returned 

RMSE = 0.65 dS m
−1

. 

Comparison between the RMSE values computed for the four ECp models showed that the 

“general” formulation of Archie provided the best estimates. Archie also had the highest 

WAIC (~1.00). For the Malicki and Walczak, Hilhorst, and Rhoades models the WAIC 

were close to zero. 
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Figure 2.3. Archie model: relationships (a) n vs. sand content and (b) m vs. soil organic carbon. The dotted line represents the fit described by Equations 

(2.20) and (2.21), respectively. For the latter, RSS = 2.46 × 10
−3

 and RMSE = 0.04.  
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These results are also confirmed by the linear regressions between measured and estimated 

ECp (Fig. 2.4). As displayed in this figure the models by Malicki and Walczak, and by 

Hilhorst did not show a good fitting, especially at high ECp values, as already observed 

by (Hamed and Magnus Berndtsson, 2003; Persson, 2002). 

The different performances of the four models at various salinity ranges were tested 

resampling observed and estimated ECp 2,000 times, to compute average RMSEs and 

their confidence intervals at p = 0.05 as previously done by Giardini et al. (1998). The 

selected ranges were: (a) the 0–3 dS·m
−1

 and >3 dS·m
−1

; and (b) the 0–10 dS·m
−1

 and 

>10 dS·m
−1

.  

At low ECp range (i.e., ECp < 3 dS·m
−1

) Rhoades showed the smallest RMSE (0.57 dS·m
−1

), 

nevertheless its performance was not significantly different from those by Hilhorst (RMSE 

= 0.93 dS·m
−1

) and Archie (RMSE = 0.72 dS·m
−1

). On the contrary, the model by 

Malicki and Walczak provided significantly higher errors (RMSE = 1.69 dS·m
−1

).  

Above 3 dS·m
−1

, the models by Malicki and Walczak and by Hilhorst significantly 

differentiated from the other two. In fact they generally overestimated ECp in the range 

from 3 to 10 dS·m
−1

 with RMSE equal to 2.16 and 1.43 dS·m
−1

, respectively. On the 

other hand they underestimated ECp when the pore-water was very conductive (i.e., ECp 

> 10 dS·m
−1

), with RMSE = 3.28 dS·m
−1

 and RMSE = 3.83 dS·m
−1

, respectively.  

In their work, Malicki and Walczak used TDR probes at fairly high frequencies, reducing 

the influence of ECa on εr. Moreover, their study was conducted using a wetting solution 

with a maximum conductivity of 11.7 dS·m
−1

. In the present work, calibrating the 

Malicki and Walczak model only for ECp < 10 dS·m
−1

 would provide satisfactory 

estimations (RMSE = 1.00 dS·m
−1

). Moreover, the metrics of fitting regression would 

have shown a slope and intercept of 0.837 and 0.680, yielding very similar results to 

those obtained by Malicki and Walczak in their work. With some limitations, the model 

by Malicki and Walczak might therefore be used in capacitance applications as well as 

TDR (Malicki and Walczak, 1999) and frequency-domain reflectometry (Wilczek et al., 

2012). 

Hilhorst validated his model in a much lower ECp range than the one used in this work. 

Hilhorst actually indicated the validity upper bound for the probe used in his work as 3 

dS·m
−1

. Indeed, in the present study the model showed good performances in the 0–3 
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dS·m
−1

 range. Moreover, calibrating the model for ECp <10 dS·m
−1

 would suitably yield 

a RMSE of 0.68 dS·m
−1

 with an observed-estimated relationship having a slope and an 

intercept of 0.957 and 0.127, respectively. Most likely, the higher operating frequency of 

5TE compared to the capacitive probe used by Hilhorst (i.e., 30 MHz) could have 

increased the range of model validity. However, as stated by Hilhorst, the model 

assumptions cease to be valid at higher salt concentrations as εp significantly deviates 

from that of free water (Equation (2.7)). From the experiment presented here this limit 

seems to be ECp ~ 10 dS·m
−1

.  

The comparison of the error distribution at different ECp ranges showed that Rhoades and 

Archie did not give significantly different performances. Nevertheless, the Rhoades 

model showed a larger RMSE at high ECp values than at low ones (ECp < 10 dS·m
−1

: 

RMSE = 0.78 dS·m
−1

; ECp > 10 dS·m
−1

: RMSE = 1.17 dS·m
−1

). On the other hand, the 

Archie model showed a greater consistency over the two salinity ranges (ECp < 10 

dS·m
−1

: RMSE = 0.69 dS·m
−1

; ECp > 10 dS·m
−1

: RMSE = 0.54 dS·m
−1

). 
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Figure 2.4. Comparison of calculated vs. reference pore-water electrical conductivity for the five soil 

samples using the “general” (a) Malicki and Walczak, (b) Hilhorst, (c) Rhoades, and (d) Archie models.; The 

symbols refer to: □ site A, topsoil; ◊ site A, subsoil; ○ site B, topsoil;  site B, subsoil; and ∆ site C, topsoil. 

 

 

4.3. Simultaneous Calibration of Models for θ and ECp 

 

As reported above, the “general” formulations of Rhoades and Archie showed overall 

similar performances. As already stated experimental  values were used in the two 

equations. A simultaneous calibration was then done estimating ECp and  from ECa and 

εr readings by substituting the “general” logarithmic  model (Equation (2.15)) within 

Rhoades and Archie “general” models. The W1 weight (Equation (2.12)) was set to 0.5, 

thus improving the ECp estimation without notably worsening the  evaluation.  

The combined logarithmic  model and Rhoades reads: 
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 (2.22) 

with: 

 (2.23) 

 (2.24) 

 (2.25) 

where a’Rhoades, a’’Rhoades, and Rhoades are the fitting parameters defined in Equations 

(2.16), (2.17), and (2.19) during the independent calibration of  and ECp.  

 

Similarly, the combined logarithmic  model and Archie becomes: 

 
(2.26) 

with: 

 (2.27) 

 (2.28) 

 (2.29) 

 (2.30) 

where a’Archie, a’’Archie, mArchie, and nArchie are the fitting parameters originally defined in 

Equations (2.16), (2.17), (2.21), and (2.20). 

The calibration of Equation (2.22) yielded RSME values for  and ECp of 0.048 m
3
·m

−3
 

and 0.77 dS·m
−1

, respectively. Better overall results were obtained by Equation (2.26): 

RMSE = 0.046 m
3
·m

−3
 and RMSE = 0.63 dS·m

−1
 for   and ECp, respectively. It is worth 

noting that the simultaneously calibrated parameters were very close to the 

independently calibrated ones. 

A bootstrap validation was done on the simultaneous calibrations. A total of 5,000 

iterations were operated for both Equations (2.22) and (2.26). Table 2.4 shows the 

variations of the slope and intercept of the fitting linear regression between observed and 
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predicted values. Soil water content was correctly predicted by both the equations: the 

slope and intercept medians of the observed-estimated relationships were fairly close to 

1 and 0, respectively. ECp predictions were less accurate, generally overestimated by 

Equation (2.22) and underestimated by Equation (2.26) (Table 2.4).  
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Table 2.4. Statistical analysis of the bootstrap validation outcome: median, 5th, and 95th percentile of slope 

and intercept distributions of the observed-predicted relationships for volumetric water content and pore-

water electrical conductivity using Equations (2.22) and (2.26). 

 
Slope Intercept 

 
Median 5% Limit 95% Limit Median 5% Limit 95% Limit 


      

Rhoades (Equation (2.22)) 0.97 0.89 1.02 0.01 −0.01 0.04 

Archie (Equation (2.26)) 0.98 0.91 1.04 0.01 −0.01 0.03 

ECp 
      

Rhoades (Equation (2.22)) 1.15 0.98 1.31 0.13 −0.13 0.39 

Archie (Equation (2.26)) 0.93 0.88 1.03 0.32 0.11 0.53 

 

 

 

  

Figure 2.5. Comparison between the prediction performance of Equations (2.22) and (2.26) according to the 

Kolmogorov-Smirnov test. Boxplot for the RMSE values of (a) volumetric water content and (b) pore-water 

electrical conductivity. The letters A and B in the boxes indicate a significant difference (p < 0.01) between 

the RMSE distributions. 
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According to the Kolmogorov-Smirnov test, significant differences were observed between 

the two equations. The Archie-based model provided significantly lower RMSE values 

on the validation sets for both  (p < 0.01) and ECp (p < 0.01) (Fig. 2.5(a,b)). Equations 

(2.22) or (2.26) provided similar maximum errors for water content, with maximum 

RMSE of 0.08 m
3
·m

−3
 and 0.09 m

3
·m

−3
, respectively. On the other hand, Equation 

(2.22) produced a maximum ECp error higher than that of Equation (2.26) (451.42 

dS·m
−1

 vs. 211.26 dS·m
−1

). The overall more accurate prediction of the system 

implementing Archie can be justified by the more flexible functional form of the ECp 

model allowed by the two exponential parameters. 
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5. Summary and Conclusions 

 

Low-cost capacitance-resistance multiprobe sensors are becoming popular for agro-

environmental studies. In order to obtain reliable results, robust models for soil water 

content and pore-water electrical conductivity must be calibrated in different soil and 

climatic conditions, especially when these instruments are used in coastal areas with 

contrasting soils and affected by saltwater contamination.  

This experiment verifies the possibility of simultaneously quantifying water content and 

pore-water electrical conductivity from complex permittivity, bulk electrical 

conductivity, and soil temperature measurements performed by the ECH2O-5TE 

(Decagon Devices, Inc.) probe. This result was achieved by improving 

empirical/theoretical reference models with the use of parameters dependent on physical 

and chemical soil properties, such as texture, soil organic carbon and soil carbonates. 

The improved models, in particular the one developed starting from Archie’s law, prove 

to be reliable and robust over a wide range of water content (from dry to saturated 

conditions), salinity conditions (pore-water electrical conductivity from 0 to 20 

dS·m
−1

), and soil types (from sand with low SOC to clay-loam with high SOC). 

Further studies performed in different soil and climatic environment coupled with improved 

dielectric sensors (e.g., with higher operating frequencies) will allow the accuracy of soil 

water content and pore-water salinity determination to be increased. 
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Chapter 3 

Constrained Optimization of Spatial Sampling in a 

Salt-Contaminated Coastal Farmland Using EMI and 

Continuous Simulated Annealing 
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1. Introduction 

 

The Venice Lagoon watershed is located in the eastern part of the Po river delta plain, Italy, 

and includes a very precarious coastal environment subject to both natural and 

anthropogenic changes with a significant and economically important fraction of the 

coastal farmland presently below the mean sea level. In the hydrogeological context of 

the Venice Lagoon coastland, a large risk of saltwater contamination characterizes the 

southernmost area because of the geomorphological setting of the coastal plain. 

Saltwater intrusion is connected to the natural geomorphological features of this area, 

i.e. the presence of sandy paleochannels. The time and space behavior of salt 

contamination is influenced by other anthropogenic factors, such as the activity of 

several pumping stations used to keep the area drained, groundwater withdrawals, 

irrigation and freshwater releases during the summer dry months (De Franco et al., 

2009). Due to its deltaic origins the Venice Lagoon coastland is characterized by a high 

soil spatial variability, having a profound influence on a variety of issues such as soil 

quality assessment, solute transport in the vadose zone, and site-specific crop 

management (Corwin et al., 2010). If the sparsely sampled primary soil variables (e.g. 

soil salinity, texture) and more intensive ancillary data are spatially correlated, then the 

additional information from the ancillary data can be used to improve the estimate 

precision of the primary variable (Morari et al., 2009). Intensive grids of ancillary data, 

including ground penetrating radar, aerial photography, and apparent soil electrical 

conductivity (ECa), can be used to characterize soil spatial variability. In agricultural 

studies ECa is by far the most commonly used ancillary data (Corwin and Lesch, 2005). 

This is because ECa measurements are reliable, fairly easy to take, and relatively 

inexpensive (Blackmer et al., 1995; Mulla, 1997). ECa intensive surveys have been used 

to characterize salinity (Rhoades et al., 1999b), nutrients (Kaffka et al., 2005), texture 

(Triantafilis and Lesch, 2005), bulk density related (Rhoades et al., 1999a), and many 

other soil properties (Corwin and Lesch, 2005).  

The optimization of soil sampling schemes based on spatial measurements of ECa has 

proven to facilitate modeling the relationships between primary soil variables and ECa 

(Corwin et al., 2010).  
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The objective of this chapter is to optimize a soil sampling scheme according to field 

geometry and ECa spatial variability. 
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2. Materials and Methods 

 

2.1. The study site 

 

The site is located at Ca’ Bianca (12°13'55.218"E; 45°10'57.862"N), right south of the 

Venice Lagoon, approximately 5 km from the Adriatic Sea (Fig. 3.1). The area was 

occupied in the 19th century by swamps and was reclaimed at the beginning of the past 

century. At present it lies entirely below mean sea level, mostly between 2 and 4 m 

below asl, and is mainly cultivated with maize. Geomorphological investigations at the 

basin scale have shown that fluvial and deltaic sedimentations constitute the outcropping 

deposits. The area is well known to be affected by saltwater contamination down to 

about 20 m depth with the presence of a first confined fresh-water aquifer 45-50 m 

below asl (Viezzoli et al., 2010). 

 

 

Figure 3.1. The study area: a) location with respect to the Venice Lagoon; b) the mobile EMI equipment used 

in this study; c) transects (dots) of the measurements of electro-magnetic induction. 
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2.2. ECa Survey 

 

Apparent electrical conductivity (ECa) at three different investigation depths was measured 

in April 2010 with two electromagnetic conductivity-meters (CMD-1 and CMD-4. GF 

Instruments, Brno, Czech Republic) (Fig. 3.1.c).  

Alike all EMI instruments, the CMD probes are equipped with two coils, one at each end of 

the instrument (Fig. 3.2.a). The head coil produces a (primary) local electromagnetic 

field (Hp) by inducing circular eddy-current loops in the soil. The electrical conductivity 

in the vicinity of the loops is proportional to the magnitude of these loops. A second 

electromagnetic field (Hi) is consequently generated by each current loop. The 

magnitude of such field is proportional to the value of the current that generated it. The 

tail coil then intercepts a fraction of the induced electromagnetic field (Ha) from each 

loop. The sum of these induced signals is then amplified and transformed into a voltage 

output, which is related to a depth-weighted ECa. The secondary field will differ from 

the primary field in terms of amplitude and phase, as an effect of soil properties, spacing 

and orientation of the coils, frequency of the primary field (i.e. 10 KHz in the CMD 

probes), and distance from the soil surface (Hendrickx and Kachanoski, 2002). 

Normally, EMI equipment can measure ECa at two configurations, one with the coils 

parallel (“low” or “horizontal”) and one with the coils perpendicular (“high” or 

“vertical”) to the soil surface. As shown in Fig. 3.2.b, when EMI are used in the low 

configurations, the readings mainly refer to a less deep soil increment than when used in 

the high configuration. Depth range and resolution are closely related: the increasing 

depth range decreases resolution and vice versa. 

The CMD-1 probe, in continuous measurement mode with GPS on a mobile platform (Fig. 

3.1.b), was used in both Low and High configurations with 0.5 s time acquisition 

interval, respectively with 0-0.75 m (ECa Low) and 0-1.5 m (ECa High) investigation 

depth. The CMD-4 probe was only used in the High position allowing measuring ECa in 

the 0 - 6.00 m soil increment (ECa 6). 

 



71 

 

 

Figure 3.2. a) schematic of the operation of the CMD probes. Modified from Corwin et al. (2012); b) relative 

contribution of the secondary magnetic field for high/vertical (Φ(h)) and low/horizontal (Φ(l)) coils as a 

function of soil depth (s = intercoil spacing). Modified from McNeill (1980). 

 

 

ECa surveys were conducted prior to maize sowing when volumetric water content in the 

first 0.4 m profile was on average 35% and water table was approximately at 0.75-0.8 m. 

Negative values of ECa Low were observed in the north-eastern corner of area probably 

due to electromagnetic disturbance of a nearby military base. These values were masked 

and not considered for spatial analyses. In total 17321, 20710 and 11608 data were 

recorded for ECa Low, ECa High, and ECa 6 respectively. 

 

 

2.3. Spatial Simulated Annealing and Geostatistical Procedures 

 

Spatial simulated annealing (SSA) (Van Groenigen and Stein, 1998; Van Groenigen et al., 

1999; Van Groenigen et al., 2000) was applied to optimize the sampling scheme of the 

study area in regard of its irregular shape and its unevenly distributed soil properties. A 

central concept in spatial SSA is the fitness function Φ(S) which has to be optimized to a 

global minimum. SSA proceeds by random perturbation of an initial set of those 

parameters (x and y coordinates) which describe Φ(S). Perturbations with a better fitness 

for Φ(S) are all accepted. To avoid local minimums of Φ(S), those perturbations that 

don’t improve the function are also accepted with a probability of acceptance described 

by the Metropolis-criterion (Metropolis et al., 1953).As the optimization process 
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evolves, the maximum perturbation decreases, forcing the sampling scheme to “freeze” 

in its optimal configuration. The approach shows a wide flexibility in defining several 

optimization criteria with their corresponding fitness functions because different surveys 

may have different purposes (Castrignanò et al., 2008). The so-called MMSD 

(Minimization of the Means of the Shortest Distances)-criterion, which minimizes the 

expectation of the distance of an arbitrary point to its nearest observation point, has 

frequently been used in the past (Van Groenigen et al., 1999; Van Groenigen et al., 

2000).  

To densify the sampling scheme in areas with high heterogeneity, MWMSD (Minimization 

of the Weighted Means of the Shortest Distances)-criterion can be used. The MWMSD-

criterion, a weighted version of the MMSD-criterion, introduces a location-dependent 

weighting function in Φ(S) as follows: 

xdxVxxwS s

A

MWMSD


)()()( ∫

 
(3.1) 

where: x


 denotes a two-dimensional coordinate vector; w( x


) weighting function; V( x


) 

the coordinate vector of the sampling point nearest to x


. The symbol  is used as 

distance vector.  

 

EMI surveys showed a high heterogeneity in ECa values, which is accountable on both soil 

chemical and physical properties. The gradient of ECa was chosen as weight to increase 

the sampling intensity in the areas of expected maximum variation. A multi-stage 

sampling design was applied to define the sampling scheme Two optimization criteria 

were used. The first (Minimization of the Mean of the Shortest Distance - MMSD) aims 

for an even distribution of sampling points over the entire survey area by minimizing the 

expectation of the distance between an arbitrarily chosen point and its nearest 

observation. Moreover, the preliminary creation of a sampling grid constrained on the 

sole field shape and boundaries aimed to create a basic sampling scheme that could 

cover for the spatial variability of many soil characteristics, even those not influencing 

ECa readings. A number of 40 points were distributed according to MMSD. The second 

criterion (MWMSD) is a weighted version of the MMSD and uses the digital gradient of 

the grid-interpolated ECa to calculate the optimal sampling density. Because the weights 
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are defined as the ECa gradient, the method places more observations in the area of 

expected maximum variation. To take into account the variability along the soil profile, 

40 points were distributed according to ECa Low and the remaining to ECa High. The 

sampling procedure used in this work was implemented in the free software SANOS 

(Van Groenigen and Stein, 1998). To be sure the absolute minimum in annealing 

simulation had been reached; the procedure was repeated seven times with a different 

initial seed, verifying that the point distributions on the maps actually remained the 

same.  

Ordinary kriging was applied to interpolate ECa data and reduce spike values due to 

measurement errors. The variogram study allowed also retrieving important information 

on the spatial structure of the soil parameter. Before applying univariate analysis, ECa 

values were transformed and standardized into Gaussian values Y(x) using an expansion 

into Hermite polynomials (Wackernagel, 2003). After variogram modeling, ordinary 

kriging was applied and then the estimates were then back transformed to the raw 

variables. 
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3. Results and Discussion 

 

Anisotropic variograms were observed for all the three EC measurements (Fig. 3.3). In 

particular, non-stationary variograms were shown along N0 and N45 directions, most 

likely due to the salinity intrusion from the rivers and cost. ECa 6 was spatially 

correlated with both ECa Low and ECa High, approximately up to 25 m and 70 m 

respectively. Conversely ECa Low and ECa High resulted no spatially correlated.  

 

 

 

Figure 3.3. Direct variograms and cross-variograms between electrical conductivity at 0-0.75m, 0-1.50m, 0-

6.00m in four different directions: N (N0), NE (N45), E (N45) and SE (N135) 
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Therefore, in order to represent the different structures of variability along the soil profile, 

sampling was optimized according to the gradient estimated in the kriging maps of ECa 

Low and ECa High. The ECa Low variogram was fitted by a directional nested model 

including a nugget effect, a directional spherical model along N45 direction with a short-

range of 150 m and a long-range of 1500 m and a directional spherical model along 

N135 direction with a short-range of 90 m and a long-range of 151 m. Also in the case 

of ECa High a directional nested model was fitted including a directional spherical 

model along N10 direction with a short-range of 235 m and a long-range of 3300 m and 

a directional spherical model along N100 direction with a short-range of 120 m and a 

long-range to “infinity” (zonal anisotropy). Cross-correlation test was performed to 

evaluate the consistency of the variogram models. For both the variables R
2
 > 0.98. 

ECa krigged maps show a large variability (Fig. 4) ranging from 0.04 to 2.06 dS m
-1

 and 

from 0.32 to 3.38 dS m
-1

 in the ECa Low and ECa High respectively. ECa High map is 

characterized by higher values in the northern part with a positive gradient toward the 

rivers and lagoon. This trend suggests a direct effect of the saline intrusion on ECa soil 

profiles. Both the maps show also a NW-SE band with low ECa values that corresponds 

to one of the sandy paleochannels crossing the site. 
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Figure 3.4. Kriging estimation maps for ECa Low and ECa High 
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Figure 3.5. The optimized sampling scheme: (a) the 120 points altogether, (b) the 40 points found using the 

digital gradient of the grid-interpolated ECa Low; (c) the 40 points found using the digital gradient of the grid-

interpolated ECa High.  
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Gradients maps (Figs. 3.5.b and 3.5.c) exhibit higher values along the boundaries of the 

paleochannels, especially in the northern part where soil salinity is expected to be 

higher. Conversely the SW area shows a low gradient in both of the maps. ECa Low 

gradient could not be calculated in NW corner of the study site due to electromagnetic 

disturbance occurred during acquisition, nevertheless the same area showed in general a 

low gradient in ECa High. A continuous NW-SE oriented line of filling subsoil added 

over a deep gas pipeline is also visible in the northern part of the maps. Fig. 3.5.a shows 

the optimized sampling scheme. The use of the MMSD-criterion to set 40 preliminary 

sampling points ensured a good coverage of the area. The first 40 points were placed in a 

grid-like design where the only irregularities of the grid are caused by the irregular 

shape of the site. MWMSD-criterion allowed allocating the remaining 80 points in areas 

with higher gradient. In particular the transaction zone along the paleochannels was 

sampled with higher density in both the ECa gradient maps. Moreover few points were 

placed along the gas pipeline. The multistep approach allowed also covering even the 

NW corner where ECa Low was not available placing 7 and 11 points according to 

MMSD and MWMSD criteria, respectively. It is clear that MWMSD-criterion cause the 

number of samples to increase in the sub-regions with higher priority (greater gradient). 
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4. Conclusions 

 

The study site was characterized by a high degree of variability due to natural and anthropic 

phenomena. Characterizing soil properties would be particularly difficult in the site 

without the help of intensively surveyed ancillary data. As a matter of fact, the ECa maps 

helped describing the site with high resolution, showing a wide range of apparent 

electrical conductivity values. The proposed multistep approach allowed considering this 

particular condition and optimizing the sampling scheme. ECa maps have proven very 

effectively to drive the optimization procedure of sampling location, distinguishing 

between areas with different priority levels. Moreover, the selection of a first set of 

sampling locations on the base of the sole geometry of the study site should help 

minimizing biases due to those soil properties not correlated with ECa. 

In areas characterized by high soil spatial variability, the proposed methodology should 

help defining the relationship between intensively surveyed sensor data and soil 

properties. 
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1. Introduction 

 

The southern margin of the Venice lagoon is nowadays a highly heterogeneous and 

precarious environment subject to both natural changes and anthropogenic pressure 

(Carbognin et al., 2006; De Franco et al., 2009).The area is part of the greater Po River 

alluvial delta plain, which is characterized by high spatial geomorphologic variability. 

The area is featured with highly permeable sandy drifts consisting on ancient river forks 

(i.e. paleochannels) (Carbognin and Tosi, 2003; Rizzetto et al., 2002; Rizzetto et al., 

2003). Due to the presence of peat, the area has been subsiding remarkably since it was 

reclaimed for agricultural purposes at the beginning of the 20
th

 century (Carbognin et al., 

2005a; Gambolati et al., 2005; Teatini et al., 2007). Furthermore, saltwater intrusion 

represents here one of the main threats to crop production (Carbognin et al., 2005b; De 

Franco et al., 2009; Viezzoli et al., 2010) because this area lies well below sea level and 

the continuous drainage helps raising the saltwater-freshwater interface close to the soil 

surface (Bear, 1988). 

Contrasting soil scenarios can lead to very different production outputs, in particular 

originating specific kinds of crop stress that are impractical to be effectively managed 

with a unique strategy (Robert, 2002). On the other hand, site-specific crop management 

(i.e. application of resources when, where, and in the amount needed) could be the best 

option in order to manage crops and soils according to field spatial variability (Larson 

and Robert, 1991; Van Uffelen et al., 1997). In particular, the use of Site-Specific 

Management Units (SSMUs, i.e. portions of field that is managed the same in order to 

achieve the same goal) has proved to be a reliable solution for the management issues in 

many heterogeneous farmlands (Robert, 2002). 

Yield spatial variation is affected by a large range of factors, such as topographic, edaphic, 

biological, meteorological, and anthropogenic factors. For practical reasons, only a 

limited portion of these factors can be managed in order to increase crop productivity. 

Indeed, as suggested by (Corwin and Lesch, 2010), a simplified and effective way of 

designing SSMUs is to analyze the effect of a single factor class (e.g. edaphic factors) on 

yield spatial variability. As a matter of fact, the extent of yield variation specifically 
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related to changes in soil properties can be considerably large (Corwin et al., 2003; 

Vitharana et al., 2008).  

In order to characterize the spatial variability of a vast group of soil properties (Corwin and 

Lesch, 2005) intensive and relatively inexpensive spatial measurements of soil apparent 

electrical conductivity (ECa) are commonly used. ECa can in fact be correlated to many 

soil properties, including soil salinity, water content, texture, organic carbon content, 

and bulk density (Corwin and Lesch, 2005). Unfortunately, in many cases ECa 

measurements cannot sufficiently describe the spatial distribution of all the soil 

properties influencing yield: often a singular or a small group of soil properties are 

“dominant” in the contribution to the conduction of electricity in the soil (Corwin, 2008; 

Johnson et al., 2005). In such cases other types of ancillary data could be used to 

complement the ECa survey data. Several types of sensors have recently been used to 

provide ancillary data in order to characterize large areas on the basis of a limited 

number of soil samples (Adamchuk et al., 2004; Mulder et al., 2011; Viscarra Rossel et 

al., 2011), including optical and radiometric sensors, which are closely related to soil 

color and water content (Post et al., 2000). 

Some recent studies on the delineation of SSMUs driven by ancillary data from soil-

proximal sensors can be found in (Corwin et al., 2003), (Li et al., 2007a; Li et al., 

2007b), (Vitharana et al., 2008), (Johnson et al., 2008), (Roberts et al., 2012), and 

(Morari et al., 2009).  

 

The objectives of this study were to: (i) investigate the effect of the spatial variability of 

soil salinity and other soil properties on maize yield in a field at the southern margin of 

the Lagoon of Venice; (ii) evaluate the use of proximal sensors for characterizing the 

spatial distribution of soil properties; and (iii) develop a protocol for SSMU delineation 

based on low-cost and intensively proximal sensed data. 
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2. Materials and Methods 

 

2.1. Study site description  

 

The study site (Fig. 4.1) was a ca. 21 ha field located at Chioggia, Venice, Italy 

(45°10'57"N; 12°13'55"E; -1 to -3.3 m below asl) along the southern edge of the Venice 

Lagoon. The soil at the study area is mainly silt-clay (Molli-Gleyic Cambisols) with the 

presence of peat and sandy drifts (i.e. paleochannels). In particular, two well preserved 

paleochannels (i.e. western and eastern) cross the study site (Fig. 4.1) and could 

potentially act as preferential pathway in saltwater intrusion (Donnici et al., 2011). A 

pumping station controls the water table level, which is generally maintained at <-0.6 m 

during the summer season in order to promote sub-irrigation. The experiment was 

carried out in 2010 and 2011. In the two years the same maize (Zea mais L.) variety 

(PR32P26, Pioneer Hi-Bred Italia, Gadesco Pieve Delmona, Italy) was cultivated. Soil 

tillage was an autumn ploughing at 30 cm, followed by standard seedbed preparation 

operations. Maize was fertilized with a base-dressing of 64 N kg ha
-1

 and 94 kg P2O5 ha
-1

 

and a top-dressing of 184 kg N ha
-1

 (urea).  

Meteorological data were recorded by a nearby automatic station (ARPAV, Regional 

Agency for Environmental Protection, Veneto). Rainfall was contrasting in the two 

cropping seasons:  2010 (April 22
nd

 – September 10
th

) was very rainy (total rainfall: 

0.539 m), whereas 2011 (April 4
th

 – September 2
nd

) was fairly dry (total rainfall: 0.200 

m). The two years were characterized by similar average temperature (2010, 21.12 °C; 

2011, 20.70 °C) and average daily relative humidity (2010, 76.03%; 2011, 72.41%). 

Potential evapotranspiration (ET0) was calculated with the Penmann-Monteith equation 

using the dual-crop coefficient approach (Allen et al., 1998). ET0 was higher in the 2011 

cropping season (total: 0.599 m; average: 3.7 mm day
-1

) than 2010 (total: 0.497 m; 

average: 3.5 mm day
-1

). 

 



88 

 

 

Figure 4.1. Map of the study area with highlights on local poorly and well preserved paleochannels (after 

(Donnici et al., 2011)), and soil sampling points location.  

 

 

2.2. ECa-directed soil sampling and soil analyses 

 

The ECa-directed soil sampling scheme discussed in chapter 3 was followed. Both 

undisturbed and disturbed soil samples were collected in May 2010 in 41 randomly 

selected points of the original sampling scheme. Disturbed samples were taken at 4 

depth increments: 0-0.15, 0.15-0.45, 0.45-0.8, and 0.8-1.2 m. Undisturbed cores were 

extracted with a hydraulic sampler from the first 1-m profile and then analyzed at 0-

0.15, 0.15-0.45, 0.45-0.8, and 0.8-1.00 m for bulk density (ρb, Mg m
-3

). Disturbed 
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samples were analyzed for several physical-chemical properties. Soil electrical 

conductivity (EC1:2, dS m
-1

) and pH of a soil-water extract (ratio 1:2) (Ministero delle 

Politiche Agricole e Forestali, 1998) with an EC-pH-meter (S47K SevenMulti, Mettler 

Toledo, Greifensee, Switzerland). EC1:2 measurements can be converted into the 

commonly used electrical conductivity of saturated paste extract (ECe) values according 

to the following equation, which was calibrated for a subset of the soil samples used in 

this study:  

ECe = 6.29 × EC1:2 -0.96 (4.1) 

Texture was determined with a laser particle size analyzer (Mastersizer 2000, Malvern 

Instruments Ltd, Great Malvern, United Kingdom). Total C, soil organic carbon (SOC), 

and total N and S (%) were determined using the Vario Macro Cube CNS analyzer 

(Elementar Analysensysteme GmbH, Hanau, Germany). Inorganic carbon was converted 

to percentage of CaCO3. The C:N ratio was calculated from SOC and total N.  

Furthermore, in spring 2012, a micro elevation (Z, m) survey was carried out with the 

Trimble FM 1000 CNH (Trimble Navigation Ltd., Sunnyvale, CA, USA) real time 

kinematic (RTK) system at 1147 locations across the study site with a vertical accuracy 

of ± 0.02 m.  

 

 

2.3. Apparent electrical conductivity and bare-soil reflectance data 

 

In spring 2011 ECa readings were acquired with an electromagnetic induction (EMI) sensor 

(CMD-1, GF Instruments, Brno, Czech Republic). According to the geometrical 

configuration of the probe the CMD-1 allows two depths of investigation, Low and High 

configurations, corresponding to 0-0.75 m (ECa Low) and 0-1.5 m (ECa High) soil 

depths, respectively. The CMD-1 probe was connected to a DGPS and mounted on a 

mobile platform, with 0.5 s time acquisition interval, collecting 18053 and 20470 

measures across the study site for ECa Low and ECa High. On the same day, gravimetric 

water content (θg) was also assessed in the soil profile at the 41 sampling locations. Even 

though θg is time dependent, its spatial patterns can be assumed fairly constant 
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throughout the growing seasons (Engman, 1999), thus θg data could represent the 

relative level of plant-available water (Corwin et al., 2003). 

The reflectance of bare-soil at 590 nm (VIS) and at 880 nm (NIR) was measured with a 

handheld active spectrometer (APS1-CropCircle, Holland Scientific, Lincoln, NE,  

USA) linked with a DGPS, with 1 s time acquisition interval, at 10214 locations across 

the site, in spring 2012. The well-known normalized difference vegetation index (NDVI) 

(Rouse et al., 1973) was calculated for bare-soil, as follows: 

VISNIR

VISNIR
NDVI




  (4.2) 

 

 

2.4. Yield data 

 

This study will discuss the 2010 and 2011 maize grain yield data. Maize yield (expressed as 

with 14% moisture) was measured with a combine harvester equipped with a yield 

monitor (Agrocom, Claas, Harsewinkel, Germany) and a DGPS. The harvester had an 8 

meters header and registered contiguous yield measurements every 5 m (i.e. yield data 

cells = 40 m
2
). Yield data were collected during the 2010 and 2011 harvests. Raw data 

were corrected setting a lower threshold of 2 Mg ha
-1

. The operation eliminated nearly 

all near-zero readings that were mainly due to field-edge effects.  

 

 

2.5. Data analysis and statistics 

 

Data analysis aimed to validate the SSMU delineation procedure (Fig. 4.2). Firstly, soil 

data was used to define a yield response model at the 41 locations according to (Corwin 

et al., 2003), allowing identifying those soil properties significantly influencing yield 

spatial variability. Secondly, soil proximal-sensing measurements were calibrated 

(Lesch and Corwin, 2008) against the selected soil properties. Finally proximal-sensing 

maps were used to delineate SSMUs (Fridgen et al., 2004), which were then validated 

according to soil and yield spatial variability. 
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Figure 4.2. Schematics of the workflow for the Site-Specific Management Units (SSMUs) delineation. 

 

 

2.5.1. Interpolation of elevation and proximal-sensing data 

 

Elevation and proximal-sensing data did not exactly overlay with the soil sampling 

locations; consequently, such data were interpolated in order to estimate their value at 

the 41 locations. The spatial correlation structure of each dataset (i) was modeled with 

isotropic exponential semivariograms: 



















r

h
v i exp1)()(  (4.3) 

where  represents the nugget variance,  the spatial variance component (partial sill), h 

the lag distance, and r the range parameter. The non-normally distributed datasets were 

normalized with the normal score transformation (Deutsch and Journel, 1992). The 

interpolations were made by Ordinary Kriging using ArcMap 10.0 (ESRI, Redlands, 

CA, USA). The goodness of the interpolations were tested with leave-one-out cross 

validations. 

 

2.5.2. Spatial linear models 

 

Ordinary least square (OLS) multiple linear regressions (MLRs) can reliably estimate a 

spatially distributed random variable when the regression residuals are spatially 

uncorrelated (Lesch et al., 1995; Lesch and Corwin, 2008; Schabenberger and Gotway, 
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2004). As a matter of fact MLRs represent a special case of models geostatistical mixed 

linear models; a more general family of models that include many well-known 

geostatistical techniques, such as universal kriging (Lesch and Corwin, 2008).  

The soil properties were preliminarily tested for multicollinearity, which was observed 

between clay and sand and silt, between total C and SOC and total S. The suitable 

explanatory variables for the yield model were therefore Z, EC1:2, θg, clay, ρb, pH, SOC, 

and CaCO3. The yield response model was calibrated, allowing both linear and quadratic 

relationships between yield and soil properties (Corwin et al., 2003). The above 

described approach was performed for each of the individual depth increments and for 

the weighted average of increasing-depth soil profiles. Best model performances were 

obtained considering the averaged 0-0.8 m profile, suggesting that such depth was the 

most representative of the maize root zone in the study site. Multiple linear regressions 

between proximal-sensing data (i.e. ECa and bare-soil reflectance) and the significant 

soil properties were then carried out. 

The MLR residuals were examined for outliers, normal distribution (Shapiro-Wilk 

Normality Test; (Shapiro and Wilk, 1965)) and spatial autocorrelation (Moran's I Test 

for Residual Spatial Autocorrelation; (Cliff and Ord, 1981)). The regression models 

showing a significant residual spatial autocorrelation were then recalculated using the 

“spdep” (Bivand et al., 2011) library in R (Team, 2012) with the maximum-likelihood 

approach (Lesch and Corwin, 2008), in order to avoid biased parameter estimates 

(Cressie, 1993).  

 

2.5.3. Delineation of the Site-Specific Management Units 

 

The SSMUs design was done according to the spatial variability of ECa and reflectance 

maps. The management units were delineated using a fuzzy c-means unsupervised 

clustering algorithm (Odeh et al., 1992) implemented in the Management Zone Analyst 

(MZA) software (Fridgen et al., 2004). The c-means algorithm aims to identify a 

continuous group of ancillary data values, minimizing the sum of square distances of all 

the data points from the cluster centroid. The fuzzy element allows one location to 

belong to different clusters at different degrees. This membership sharing is controlled 
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by a weighting exponent that is conventionally set to a value of 1.35 (Odeh et al., 1992). 

MZA was used with the same settings seen in (Morari et al., 2009), for a range of 

SSMUs between 4 and 7. The optimum number of SSMU was identified according to 

the minimization of the fuzziness performance index (FPI) and the normalized 

classification entropy index (NCE) (Odeh et al., 1992). FPI (0≤FPI≤1) is a measure of 

the amount of membership-sharing that occurs among management zones. The larger the 

FPI value, the strongest sharing of membership between the selected SSMUs. NCE 

(0≤NCE≤1) models the degree of disorganization created by dividing the data set into 

SSMUs. The lower the NCE value the higher the amount of organization between 

management zones. 

The SSMU delineation was finally validated comparing the differences in soil properties 

between management units, and the differences in maize production in the SSMUs in 

2010 and 2011. The comparison was done with the analysis of variance (ANOVA). 

Spatial correlations among the residuals were modeled using the “spdep” library in R 

with a generalized linear model approach. 
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3. Results and Discussion 

 

3.1. Elevation, soil proximal-sensing, and yield spatial characterization 

 

Elevation, soil-proximal sensing, and yield data showed high variability across the study 

site (Table 4.1). The semivariogram models specifications and cross-validation statistics 

for elevation and proximal-sensing data are shown in table 4.2. In general the 

semivariograms were characterized by very low nugget values. The cross-validations 

showed very low estimation errors, with slopes of the observed-predicted relationship 

very close to one and low root mean square errors. ECa Low showed very similar spatial 

patterns with ECa High. Analogously, VIS and NIR were comparable to NDVI. The 

maps for Z, ECa Low, NDVI and yield in the two years are reported in Figs. 4.3, 4.4, and 

4.5. 
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Table 4.1. Yield, proximal sensing, and elevation data† mean and range statistics. 

  
Number  

of sites 
Mean Minimum Maximum  

Standard 

deviation 

Standard 

error 

Coefficient 

of variation 
Skewness Kurtosis 

Z 1147 -2.52 -3.33 -1.01 0.50 0.015 -0.20 0.64‡ -0.54 

ECa Low 18053 0.65 0.12 1.75 0.32 0.002 0.49 0.66‡ -0.52 

ECa High 20470 1.07 0.31 2.78 0.43 0.003 0.40 0.54‡ -0.54 

NIR 10214 0.40 0.03 0.8 0.09 0.001 0.23 0.56‡ 0.61‡ 

VIS 10214 0.23 0.02 0.54 0.08 0.001 0.35 0.98‡ 0.65‡ 

NDVI 10214 0.28 0.15 0.42 0.07 0.001 0.23 0.04 -1.02 

Yield 2010 2896 5.78 2.00 11.97 2.40 0.045 0.42 0.38‡ -0.74 

Yield 2011 2973 8.76 2.00 14.99 3.28 0.060 0.37 -0.23 -0.85 

† ECa Low, apparent electrical conductivity for the 0-0.75 m increment; ECa High, apparent electrical conductivity for the 0-1.5 m increment; NIR, near infrared band reflectance; 

VIS, visible band reflectance; NDVI, normalized difference vegetative index; Z, elevation.  

‡ Significant. Skewness is significant if skewness divided by standard error of skewness (SES) > 2. Kurtosis is significant if kurtosis divided by standard error of kurtosis (SEK) > 2. 

SEK and KEW were calculated according to Tabachnick et al. (2001). 

 

Table 4.2. Semivariogram models specifications‡ and Kriging summary statistics for elevation and proximal-sensing data†. 

  Semivariogram model specifications Kriging statistics 

  2 2 h (m) r (m) Cross-validation RMSE 

Z 0.00 1.33 20.00 246.40 -0.03    0.99 × observed  0.078 

ECa Low 0.00 1.04 18.00 170.95 0.02 + 1.00 × observed  0.014 

ECa High 0.05 1.12 18.00 202.53 0.01 + 0.99 × observed  0.034 

VIS 0.34 0.80 18.00 203.38 0.01 + 0.94 × observed  0.017 

NIR 0.39 0.73 18.00 227.52 0.04 + 0.90 × observed  0.028 

NDVI 0.04 0.99 18.00 81.34 1.00 × observed  0.004 

† Z, elevation; ECa Low, apparent electrical conductivity for the 0-0.75 m increment; ECa High, apparent electrical conductivity for the 0-1.5 m increment; NIR, near infrared band 

reflectance; VIS, visible band reflectance; NDVI, normalized difference vegetative index.  

‡ 2, nugget variance; 2, spatial variance component (partial sill); h, lag; r, range. 
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Figure 4.3. a) Isotropic semivariogram and b) kriged map for Z. The dots in the maps represent the survey grids. 
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Figure 4.4. Isotropic semivariograms (a and c) and kriged maps (b and d) for ECa Low and NDVI. The dots in the maps represent the survey grids. 
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Figure 4.5. 2010 and 2011 yield points (a and c) and interpolated maps (b and d). 
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Elevation is highest in the northern part of the study area, ranging between ca. -2.5 and -1 

m asl, and gradually decreases towards the southern part, with a minimum of -3.3 m asl. 

The ECa maps showed the lowest values in the paleochannels (<0.50 dS m
-1

), whereas 

higher ECa values were observed in the other zones, especially in the northern part, 

suggesting drastic differences in soil. The reflectance maps showed similar patterns with 

the DEM map. In particular NDVI generally ranged between 0.148 and 0.242 in the 

northern part of the study area, whereas it increased gradually in the southern area with a 

maximum of 0.418.  

Yield data in 2010 was considerably lower than in 2011 as it was compromised by a heavy 

wind-hail storm occurred on the 13
th

 of August (ca. 0.06 m of rainfall). Consequently the 

2010 yield data at the 41 sampling location was not used to fit the maize yield response 

model. However as the two yield maps showed similar spatial patterns, the 2010 yield 

data was anyway used for comparison at larger scale (i.e. comparison between SSMUs). 

In both years the highest yield values were observed in the paleochannels at the northern 

part of the study. Low yield was observed in the two years in areas either characterized 

by high ECa values (in the northern part) or high NDVI values (in the southern part). 

 

 

3.2. An overview on the soil data 

 

The data for tested soil properties in the 0-0.8m soil increment (table 4.3) will be briefly 

described in this section, with a particular attention to the soil properties considered for 

the yield response model (i.e. Z, EC1:2, θg, clay, ρb, pH, SOC, and CaCO3). Correlations 

between soil properties are shown in table 4.4. All properties were normally distributed, 

with exception of pH, total carbon, and SOC. 

Soil texture was very coarse in the paleochannels, except in the upper part of the eastern 

paleochannel where finer texture (loam) was observed. Outside the paleochannels, clay 

decreased gradually from high contents in the North (silty-clay loam) to lower values 

observed in the very South of the study area (sandy loam). On average, the soils were 

characterized by mid-high salinity (Abrol et al., 1988). Higher salinity values (>2 dS m
-

1
) were observed in correspondence of high ECa values. Soil pH values varied drastically 
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in the area, from < 5.5 in the southern part of the site, to slightly-medium alkaline 

(>7.5), associated with the well preserved paleochannels and with high clay contents. 

SOC content, which strongly influenced several physical properties, was generally very 

high (average: 9.8 %). In mineral soils, organic matter is generally found in higher 

quantities in soils with fine texture (Lugato et al., 2009). Nevertheless, in organic soils 

such the ones found in the study area spatial variability of SOC and texture can be 

unrelated (Shimada et al., 2001). The northern part of the study site, where clay content 

was the highest, was generally characterized by relatively low SOC content (< 4 %), 

whereas the well preserved paleochannels showed slightly larger content (<9%). The 

saline areas and most of the southern part were characterized by high SOC content, 

generally in the 11-22 % range. As a consequence, higher bulk density values (ρb>1.2 

Mg m
-3

) were observed in sandy soil, whereas low ρb values (ρb<0.7 Mg m
-3

) were 

observed in soils with high SOC and clay contents. 
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Table 4.3. Soil topographic and physicochemical properties mean and range statistics of the average over the 0 to 0.8 m depth increment at the 41 sampling 

locations. 

Soil properties† Mean Minimum Maximum 
Standard 

deviation 
Standard error 

Coefficient of 

variation 
Skewness Kurtosis 

Z, m -2.58 -3.15 -1.40 0.39 0.06 -0.15 0.96‡ 0.75 

EC1:2, dS m-1 1.14 0.21 3.30 0.72 0.11 0.63 1.05‡ 0.90 

θg, kg kg-1 0.27 0.08 0.44 0.09 0.01 0.31 -0.06 -0.15 

Sand, % 44.09 14.77 73.09 14.87 2.32 0.34 0.42 -0.49 

Silt, % 39.74 19.86 56.32 9.09 1.42 0.23 -0.72 -0.13 

Clay, % 16.17 6.03 31.38 6.43 1.00 0.40 0.22 -0.44 

ρb, Mg m-3 0.90 0.51 1.44 0.21 0.03 0.24 0.30 -0.48 

pH 7.04 4.45 7.99 0.85 0.13 0.12 -1.54 1.86‡ 

Total C, % 11.03 3.97 22.22 4.70 0.73 0.43 0.89‡ 0.36 

CaCO3, % 9.99 0.29 27.07 7.27 1.14 0.73 0.49 -0.79 

SOC, % 9.83 1.92 22.19 5.14 0.80 0.52 0.88‡ 0.57 

Total N, % 0.75 0.22 1.54 0.33 0.05 0.44 0.68 0.14 

C:N 12.49 6.26 16.72 2.04 0.32 0.16 -0.72 1.19 

Total S, % 0.52 0.11 1.20 0.26 0.04 0.51 0.64 -0.13 

† Z, elevation; EC1:2, electrical conductivity of a soil extract with a soil to water ratio of 1:2; θg, gravimetric water content; ρb, bulk density; SOC, soil organic carbon; C:N, SOC on 

total N ratio. 

‡ Significant. Skewness is significant if skewness divided by standard error of skewness (SES) > 2. Kurtosis is significant if kurtosis divided by standard error of kurtosis (SEK) > 2. 

SEK and KEW were calculated according to Tabachnick et al. (2001).  
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Table 4.4. Correlation matrix for the soil properties† considered in this study. Bold numbers are significant (test for |r|= 0) at the P ≤ 0.05 level; df=39. 

  Z EC1:2 θg Sand Silt Clay ρb pH Tot. C SOC CaCO3 Tot. N C:N Tot. S 

Z -- 
             

EC1:2 -0.09 -- 
            

θg -0.19 0.64 -- 
           

Sand -0.22 -0.23 -0.35 -- 
          

Silt 0.14 0.26 0.42 -0.97 -- 
         

Clay 0.32 0.16 0.21 -0.94 0.83 -- 
        

ρb 0.24 -0.36 -0.72 0.43 -0.50 -0.29 -- 
       

pH 0.57 -0.08 -0.36 0.11 -0.16 -0.04 0.38 -- 
      

Tot. C -0.34 0.20 0.31 0.04 -0.04 -0.05 -0.20 -0.67 -- 
     

SOC -0.40 0.21 0.40 0.01 0.01 -0.02 -0.28 -0.73 0.98 -- 
    

CaCO3 0.57 -0.17 -0.56 0.18 -0.22 -0.10 0.54 0.70 -0.49 -0.62 -- 
   

Tot. N -0.39 0.23 0.39 -0.03 0.04 0.00 -0.29 -0.72 0.98 0.98 -0.61 -- 
  

C:N -0.53 0.13 0.28 0.37 -0.32 -0.42 -0.18 -0.51 0.56 0.62 -0.65 0.56 -- 
 

Tot. S -0.29 0.20 0.29 -0.01 0.02 -0.01 -0.24 -0.61 0.95 0.93 -0.48 0.94 0.49 -- 

† Z, elevation; EC1:2, electrical conductivity of a soil extract with a soil to water ratio of 1:2;  θg, gravimetric water content; ρb, bulk density; SOC, soil organic carbon; C:N, SOC on 

total N ratio. 
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The relationships between soil properties, yield, and soil proximal-sensing data are shown 

in in table 4.5. No significant correlations were observed between soil properties and the 

2010 yield. Conversely the 2011 yield positively correlated with clay content and 

negatively with soil salinity and with all the soil properties related to organic matter 

content. Although soil organic matter is generally known to be beneficial for soil quality 

(Baldock and Nelson, 2000), high contents of acidic peat can represent a very 

inhospitable medium for most crops (Andriesse, 1988). Moreover, the organic soils in 

the study site lay very close to the saline groundwater as they are more affected by 

subsidation than the mineral soils (Gambolati et al., 2005; Schothorst, 1977). 

ECa Low and High showed similar correlations with soil properties. ECa was positively 

correlated with soil salinity and gravimetric water content, as commonly observed in 

similar studies (Corwin and Lesch, 2005). Soil bulk density and sand content were 

negatively correlated with ECa; confirming that soils with low SOC and clay contents 

exibit greater resistance to the electrical current (see chapter II).  

Significant correlations were observed also between elevation, texture, pH and properties 

related to organic matter content with optical properties in confirming results from other 

Authors (Chang et al., 2001; Gomez et al., 2008; Singh et al., 2004; Torrent and Barron, 

1993; Viscarra Rossel et al., 2006). Correlations coefficients between VIS and NIR with 

soil properties were of opposite sign than those (ordinarily of higher significance) of 

NDVI. 
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Table 4.5. Pearson correlation coefficients calculated for studied soil properties and average yield, with ancillary data§ and yield. 

Soil property† Yield 2010 Yield 2011 ECa Low ECa High VIS NIR NDVI 

Z -0.18 
 

0.24 
 

-0.12 
 

-0.12 
 

0.72 ** 0.61 ** -0.77 ** 

EC1:2 -0.19 
 

-0.34 * 0.52 ** 0.49 ** -0.18 
 

-0.27 
 

-0.06 
 

θg -0.29 
 

-0.16 
 

0.66 ** 0.64 ** -0.24 
 

-0.30 
 

0.05 
 

Sand -0.01 
 

-0.28 
 

-0.29 
 

-0.31 * -0.38 * -0.27 
 

0.43 ** 

Silt 0.03 
 

0.19 
 

0.30 
 

0.31 * 0.28 
 

0.17 
 

-0.35 * 

Clay -0.01 
 

0.36 * 0.24 
 

0.27 
 

0.48 ** 0.38 * -0.51 ** 

ρb -0.19 
 

-0.18 
 

-0.46 ** -0.53 ** 0.14 
 

0.15 
 

-0.12 
 

pH -0.29 
 

0.23 
 

-0.15 
 

-0.15 
 

0.55 ** 0.45 ** -0.66 ** 

Total C 0.22 
 

-0.38 * 0.09 
 

0.08 
 

-0.42 ** -0.36 * 0.45 ** 

CaCO3 -0.28 
 

0.01 
 

-0.40 ** -0.38 * 0.55 ** 0.48 ** -0.52 ** 

SOC 0.24 
 

-0.36 * 0.15 
 

0.12 
 

-0.51 ** -0.45 ** 0.52 ** 

Total N  0.24 
 

-0.33 * 0.20 
 

0.18 
 

-0.45 ** -0.38 * 0.46 ** 

C:N 0.20 
 

-0.33 * 0.15 
 

0.09 
 

-0.73 ** -0.65 ** 0.68 ** 

Total S 0.22 
 

-0.35 * 0.11 
 

0.08 
 

-0.38 * -0.33 * 0.40 * 

               
Yield 2010 --- 

 
0.10 

 
0.05 

 
0.13 

 
-0.18 

 
0.25 

 
-0.23 

 
Yield 2011 0.10   ---   0.01   0.11   0.48 ** -0.30   0.45 ** 

* Significant (test for |r|= 0) at the P ≤ 0.05 level; df=39 

** Significant (test for |r| = 0) at the P ≤ 0.01 level; df=39 

† Average over the root zone (0-0.8 m). Z, elevation; EC1:2, electrical conductivity of a soil extract with a soil to water ratio of 1:2;  θg, gravimetric water content; ρb, bulk density; 

SOC, soil organic carbon; C:N, SOC on total N ratio 
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3.3. Yield response model 

 

Equation (4.4) shows the OLS MLR yield response model that best described maize 

production spatial variability in the study site: 

 222
2:1 02.071.018.062.348.070.18 clayclaySOCECY b  (4.4) 

where Y is the estimated 2011 yield and ε is the random error component (Lesch and 

Corwin, 2008), which was confirmed to be normally distributed and spatially 

independent. Table 4.6 shows the regression summary for equation (4.4); all the soil 

parameters were significant (P<0.05). 

 

Table 4.6. Ordinary least-squares backward stepwise regression statistics for the yield response model 

(Equation (4.4))† 

Significant regressor variables‡ Coefficients Standard Error t  P > |t| 

Intercept 18.70 3.19 5.86 <0.001 

EC1:2 
2
 -0.48 0.18 -2.62 0.013 

ρb 
2
 -3.62 1.15 -3.15 0.003 

SOC -0.18 0.08 -2.24 0.032 

Clay -0.71 0.33 -2.14 0.039 

Clay 
2
 0.02 0.01 2.64 0.012 

Analysis of variance 

  Df Sum of Square Mean square F ratio P > F 

Model 5 228.45 45.69 7.88 <0.001 

Residual 35 202.84 5.80 
  

Corrected total 40 431.29       

† Dependent variable = average yield (Mg ha
-1

), number of data points 41, root mean square error = 2.22 Mg 

ha
-1

. R
2
=0.530, and adjusted R

2
=0.463 

‡ Average over the root zone (0-0.8 m). EC1:2, electrical conductivity of a soil extract with a soil to water ratio 

of 1:2; SOC, soil organic carbon; ρb, soil bulk density 

 

According to equation (4.4), increasing values of soil salinity, bulk density, and soil organic 

carbon content would decrease yield; on the other hand yield would increase with 

increasing clay content values. The one-at-a-time sensitivity analysis reported in table 

4.7 indicates clay as the most significant soil property influencing yield in 2011. The 

sensitivity analysis was carried out by calculating the yield variation due to an individual 

change of the mean value of the soil properties by 1 standard deviation. 
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Table 4.7. Degree of predicted yield sensitivity to 1 standard deviation (SD) change in each soil property of 

equation (4.4). 

Parameter 

sensitivity† 

Calculated  

yield 

Percentage  

change 
EC1:2 ρb SOC Clay 

 
Mg ha

-1
 % dS m

-1
 kg m

-3
 % % 

Baseline (Eq. 4.4) 8.43 --- 1.14 0.90 9.83 16.17 

EC1:2 + 1 SD 7.40 12.16 1.86 0.90 9.83 16.17 

ρb + 1 SD 6.87 18.50 1.14 1.11 9.83 16.17 

SOC + 1 SD 7.51 10.93 1.14 0.90 14.97 16.17 

Clay + 1 SD 10.03 19.05 1.14 0.90 9.83 22.60 

† Average over the root zone (0-0.8 m). EC1:2, electrical conductivity of a soil extract with a soil to water ratio 

of 1:2; ρb, soil bulk density; SOC, soil organic carbon. 

 

Fig. 4.6 compares the observed and predicted maize yield values. The model described 

about the 53% of the total yield variability, suggesting that other factors (other than the 

investigated soil properties) influenced yield in 2011. Moreover, the robustness of this 

type of yield response models is limited because of the noise in the yield data, which is 

commonly biased by combine dynamics (Corwin et al., 2003; Simbahan et al., 2004). In 

fact, the 8m-wide yield data cells (i.e. width of harvester header) often overlapped across 

the whole site, as the study area is crossed by N-S oriented draining canals, with a 

spacing of ca. 30 m. It is thus believed that the field layout biased the yield data, causing 

high differences between data points in neighboring harvest transect. 
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Figure 4.6. Observed vs. predicted maize yield estimates using equation (4.4). Dashed line is a 1:1 

relationship. 

 

 

3.4. Using ECa and reflectance data to delineate SSMUs  

 

The relations between EC1:2, ρb, SOC, and clay with the proximal-sensing data were 

investigated to test if the latters could be used to represent soil spatial variability at the 

study site.  

The sole ECa was not sufficient to characterize the spatial variability of the four tested soil 

properties. Indeed ECa readings could represent only EC1:2 and ρb variability. 

Conversely, bare-soil reflectance significantly described SOC and clay. The regressions 

were similar for VIS and NIR, whereas the regression of NDVI was of opposite sign. 

All the OLS MLRs were corrected using the maximum-likelihood approach as they showed 

spatial autocorrelation of the residuals. ECa Low and NDVI described the spatial 

variability of the four selected soil properties with the highest significance and R
2
. 

As commonly done with ECa data calibration (Lesch et al., 1992), the ECa Low 

measurements were normalized to their natural logarithm: 



108 

 

with a R
2
=0.415 (adjusted R

2
=0.385). EC1:2 and ρb were significant to the 0.004 and 

0.018, respectively, whereas the intercept resulted non-significant. According to 

equation (4.5), high values of soil salinity and low values of soil bulk density would lead 

to high ECa Low readings. Bulk density is known to correlate with ECa readings 

(Corwin, 2008; Rhoades et al., 1999). As a matter of fact, in the study area, low ρb 

values can be observed in areas rich in peat and/or clay, which are known to facilitate 

the conduction of electricity in the soil (Anderson-Cook et al., 2002; Corwin and Lesch, 

2005). 

The NDVI regression was characterized by R
2
=0.511 (adjusted R

2
=0.485): 

The intercept and SOC and clay contents terms were significant to the 2×10
-8

, 0.005, and 

0.001 respectively. High SOC contents and low clay contents would increase the NDVI 

readings of a soil. The observed relationships between VIS and NIR with SOC and clay 

confirmed results reported by other Authors (Chang et al., 2001; Gomez et al., 2008; 

Singh et al., 2004; Torrent and Barron, 1993; Uno et al., 2005; Viscarra Rossel et al., 

2006). Soil reflectance was in fact smaller for VIS than for NIR (Lillesand et al., 2004; 

Uno et al., 2005). Increasing SOC contents decreased both VIS and NIR reflectance 

(Uno et al., 2005). VIS decreased with a higher slope than NIR, increasing therefore 

NDVI.  

 

The NCE and FPI indices (tables 4.8 and 4.9) indicated that the study site should be divided 

into five management units. The indices were in general very low (Brock et al., 2005; 

Morari et al., 2009) confirming that ECa and bare-soil reflectance provide good ancillary 

information for SSMU delineation (Roberts et al., 2012). ECa Low and NDVI provided 

the best values for both NCE and FPI. The concordance of the two indices is an 

indication of the goodness of the classification (Fridgen et al., 2004; Morari et al., 2009). 

 

 

 

 ba ECLowEC 61.021.038.0)ln( 2:1  (4.5) 

 claySOCNDVI 003.0003.0251.0  (4.6) 
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Table 4.8. Normalized classification entropy (NCE) index for the fuzzy c-means unsupervised clustering of 

selected couple of ancillary data† 

Ancillary data 
Number of SSMUs 

4 5 6 7 

ECa Low NDVI 0.031 0.029 0.030 0.039 

ECa Low NIR 0.030 0.037 0.038 0.038 

ECa Low VIS 0.032 0.030 0.031 0.036 

ECa High NDVI 0.031 0.030 0.033 0.039 

ECa High NIR 0.032 0.036 0.037 0.038 

ECa High VIS 0.034 0.029 0.030 0.032 

† ECa Low, apparent electrical conductivity for the 0-0.75 m increment; ECa High, apparent electrical conductivity for the 

0-1.5 m increment; NIR, near infrared band reflectance; VIS, visible band reflectance ; NDVI, normalized difference 

vegetative index. 

 

 

Table 4.9. Fuzziness performance index (FPI) for the fuzzy c-means unsupervised clustering of selected 

couple of ancillary data†. 

Ancillary data 
Number of SSMUs 

4 5 6 7 

ECa Low NDVI 0.056 0.048 0.048 0.062 

ECa Low NIR 0.054 0.062 0.062 0.061 

ECa Low VIS 0.058 0.050 0.050 0.057 

ECa High NDVI 0.055 0.051 0.054 0.061 

ECa High NIR 0.058 0.060 0.061 0.059 

ECa High VIS 0.063 0.049 0.049 0.051 

† ECa Low, apparent electrical conductivity for the 0-0.75 m increment; ECa High, apparent electrical conductivity for the 

0-1.5 m increment; NIR, near infrared band reflectance; VIS, visible band reflectance ; NDVI, normalized difference 

vegetative index. 

 

 

The ECa Low and NDVI maps where therefore used to delineate five-SSMUs: hereafter 

named I, II, III, IV, and V (Fig. 4.7). With such design the forty-one soil sampling 

locations were grouped into subgroups of seven, nine, seven, nine, and nine points 

respectively for SSMU I, II, III, IV, and V.  

SSMU I was characterized by fairly low ECa Low (< 0.6 dS m
-1

) and high NDVI (> 0.30) 

values. SSMU II identified most part of the well-preserved paleochannels, where clay 

content was very low, with soil showing very low ECa Low (< 0.4 dS m
-1

) values and 

NDVI in the 0.19 - 0.26 range. SSMU III was characterized by the highest ECa Low 

values (> 0.8 dS m
-1

). SSMU IV was located in the areas with low ECa Low (< 0.6 dS m
-

1
) and low NDVI (< 0.1.9). Finally, fairly high ECa Low (>0.6) and NDVI (> 0.24) 

values delineated SSMU V. 
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Figure 4.7. Delineation of Site-specific management units (SSMUs) using the fuzzy c-means unsupervised 

clustering algorithm on ECa Low and NDVI; with sampling locations. 

 

 

Fig. 4.8 depicts the value distribution of the soil properties selected in equation (4.4). The 

proposed SSMU delineation methodology helped identifying a very saline area (SSMU 

II), where the average EC1:2=1.90 dS m
-1

 was almost twice as high as the average 

salinity observed in the other units (1.05, 0.64, 0.99, and 0.98 dS m
-1

 in SSMUs I, III, 

IV, and V, respectively). Maize is a crop moderately sensitive to soil salinity: according 

to the Maas and Hoffman salinity tolerance model (Maas and Hoffman, 1977) the 

threshold salinity value for optimal maize growth is 1.7 dS m
-1

 (measured as ECe). Over 

such threshold maize yield theoretically decreases of 7.4 % per ECe increment of 1 dS 

m
-1

. According to the Maas and Hoffman model (Fig. 4.9), the average salinity values in 

all SSMUs were however above the critical threshold (ECe, 1.7 dS m
-1

 ≈ EC1:2, 0.42 dS 

m
-1

) for maize. The model was recalculated converting ECe into EC1:2 after equation 

(4.1). For salinity over the threshold value, maize yield theoretically decreases of 46.6% 

per EC1:2 increment of 1 dS m
-1

. 
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Figure 4.8. Boxplots for: EC1:2, electrical conductivity of a soil extract with a soil to water ratio of 1:2; soil 

bulk density; soil organic carbon content; clay content; and the yield data of 2010 and 2011. The bold line 

crossing the rectangles represents the median value; circles represent outliers. Capital letters on top of the 

box-plots indicate a significant difference within SSMUs at the p<0.05 level. 

 

 

SSMU II was characterized by the highest observed ρb values (average=1.22 Mg m
-3

), the 

lowest observed clay content values (average=8.86 %), and low to mid-low soil salinity.  

SSMU IV was characterized by mid-low salinity and the lowest observed SOC (5.80%) and 

highest clay (22.53%) average contents. It is worth noticing that the northern part of the 

eastern paleochannel, where texture was finer, was mainly confined also within SSMU 

IV.  
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SSMUs I, III, and V were the units with the highest observed SOC average contents 

(~12%), in particular SSMUs I and V were characterized by very high maximum SOC 

contents (SOC > 20 %), which were associated with the lowest observed pH values. 

 

 

 

Figure 4.9. The average salinity values in the five management units over the (Maas and Hoffman, 1977) 

maize yield salinity response curve. 

 

 

The yield data of 2010 and 2011 were classified according to the five management units. 

SSMUs I, II, III, IV, and V had 555, 659, 510, 588, and 584 yield data points assigned in 

2010 and 595, 690, 506, 564, 618 in 2011.  

In 2010 the SSMUs III and IV were identified as the most productive zones in the study 

site, suggesting that the low salinity and SOC contents observed in the paleochannels 

were favorable for maize in 2010. SSMU II, SSMU I and V were characterized by a 

lower average yield. The very shallow water table and high SOC contents, which in the 

southern portion of the study site are associated with pH values generally in the 4.5 – 5.5 

range, could have increased the effect of soil salinity on yield reduction. 

In 2011, the yield in SSMU III was significantly smaller than SSMU IV, suggesting that the 

low rainfall occurred in that year significantly reduced the yield in the areas of the 
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paleochannels with low clay and high ρb. The effect of salinity (SSMU II) seemed to be 

confirmed in 2011. As a matter of fact SSMU II showed an average yield almost as low 

as observed in units I and V, which were confirmed as the areas with the lowest maize 

production also in 2011. 
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4. Summary and Conclusions 

 

Yield maps provide useful information on the spatial variability of crop productivity. Yield 

is affected by the combined effect of a large range of factors including edaphic, 

meteorological, biological, and anthropogenic factors. From a management point of 

view, many of these factors are unpractical to control and mitigate. Indeed, farmers 

generally limit their efforts trying to improve the sole effects of edaphic and biological 

(e.g. pests) factors. As edaphic factors are very consistent in time, long-term site-specific 

soil management is a reliable solution in areas characterized by high spatial variability 

(Corwin and Lesch, 2010; Hornung et al., 2006; Mzuku et al., 2005). Understanding 

which soil properties play a major role on limiting the spatial variability of yield is 

therefore essential. Soil salinity (EC1:2), bulk density (ρb), and organic carbon (SOC) and 

clay contents were identified as the soil properties significantly influencing the spatial 

variability of maize yield, in a study site affected by saltwater intrusion at the southern 

edge of the Venice Lagoon, Italy. The spatial distribution of these soil properties could 

be significantly represented with intensive surveys of apparent electrical conductivity 

(for EC1:2 and ρb) and bare-soil reflectance (for SOC and clay contents). Delineating 

Site-Specific Management Units (SSMUs) on the base of apparent electrical 

conductivity and bare-soil reflectance data allowed identifying areas of major agronomic 

interest: one homogeneous area with optimal maize yield and zones affected by high soil 

salinity, very coarse texture (i.e. sandy paleochannels), and two zones areas with both 

soil salinity and high organic carbon content. In particular, dry conditions led to a yield 

decrease in the very sandy portions of the paleochannels (SSMU III). This evidence 

suggests that water deficiency stress may occur in SSMU II in dry years.  

Site-specific irrigation could definitely be the ideal solution in sandy and saline SSMU 

(Corwin et al., 2006) in order to exploit the potential of each zone and carry out a more 

sustainable use of soil. 
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1. General Conclusions 

 

Soil quality preservation and improvement are primary goals for remunerative sustainable 

agriculture. The southern margin of the Venice Lagoon is one of the most important 

agricultural basins in Veneto Region. Most of the agriculture in the area is directed to 

support dairy and beef farms. Nevertheless, the area is home of many remunerative 

protected designation of origin (PDO) and protected geographical indication (PGI) 

horticultural species, including the Radicchio di Chioggia (radicchio of Chioggia, 

Cichorium intybus L.), the Cipolla Bianca di Chioggia (white onion of Chioggia, Allium 

cepa L.); the Carota di Chioggia (carrot of Chioggia, Daucus carota L.); and the 

Cicoria Catalogna Gigante di Chioggia (giant puntarelle of Chioggia, Cichorium 

intybus L.). Therefore, if the current soil-quality issues (e.g. soil salinity, land 

subsidence) were not properly dealt with, agricultural activities in the area might be 

subject to severe economic losses in the future. 

Conventional agricultural practices are not ideal at the southern edge of the Venice Lagoon 

as the area is characterized by high soil spatial heterogeneity. On the other hand, 

precision agriculture practices could be implemented allowing managing nutrients and 

water supply with a site-specific approach. Especially in areas affected by soil salinity or 

characterized very coarse texture the use of site-specific irrigation could increase soil 

quality and crop production: either applying enough water for salinity leaching, or for 

the plants to have optimal water content in the rootzone.  

Soil water content and pore-water salinity can be monitored using dielectric and apparent 

electrical conductivity (ECa) measures with low-cost capacitance-resistance sensors. 

Unfortunately, low-cost capacitance sensors are known to provide biased dielectric 

readings in conductive soils (e.g. saline soils, soils with high clay and organic carbon 

content). Moreover in order to estimate pore-water salinity from resistivity readings, its 

relationship with ECa, soil type, and water must be understood and characterized. As 

seen in chapter 2, sensor-specific calibrations can guarantee accurate soil water content 

and pore-water electrical conductivity (ECp) estimations even over contrasting soils and 

in very saline conditions. ECp as presented in this dissertation is to be interpreted more 

as a function of the contribution of the soil solution in the conduction of electricity 
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through soil, rather than as a measure of its salinity, especially at very low water 

contents. In fact when soil dries and the biggest pores are emptied, the concentration of 

salts in the pore-water has been proved to increase. Nevertheless when the water content 

is high enough for the liquid phase to create a continuum pathway for electricity then 

pore-water salinity should then generally coincide with ECp. Such limit has been pointed 

as roughly the 50% of the water content at field capacity (Corwin et al., 2012). 

Farmers could therefore create affordable and reliable networks of rootzone sensors 

monitoring water content and salinity at some selected locations. Ideally the monitoring 

sites of such kind of networks should be chosen in order to represent large areas sharing 

similar edaphic characteristics.  

In chapter 4 a methodology for Site-Specific Management Units delineation is presented 

and validated. Understanding soil spatial variability and identifying soil factors limiting 

crop production are key factors in the SSMU delineation. The only reasonable way of 

characterizing large areas is through the use of intensive proximal- and remote-sensing 

data surveys, which can be calibrated over a relative small number of soil samples. 

Spatial measures of ECa are very commonly used with such aim. In this dissertation they 

were confirmed to be nearly essential for soil characterization, especially under saline 

conditions. Nevertheless, the use of ECa could not be sufficient to represent a 

satisfactory number of soil properties. Therefore, the complementary use of other types 

of low-cost ancillary data (e.g. reflectance data or aerial imagery) should be common 

practice. This is particularly relevant in areas where the soil components influencing 

electricity conduction are not correlated as observed at the Ca’ Bianca study site (see 

chapter 4). 

ECa-directed soil sampling scheme optimizations are a suggested practice as ECa correlates 

to a large variety of soil properties. However, as seen in chapter 4, ECa measurements do 

not always correlate with a sufficient number of soil properties. In this dissertation bare-

soil reflectance was used to characterize the spatial variability of those soil properties 

not correlating with ECa. Therefore it would be ideal to optimize sampling schemes also 

according to other ancillary data rather than the sole ECa. In particular, as continuous 

simulated annealing allows multi-step scheme delineation, one step of the optimization 

could be carried out according to the spatial variability of complementary soil ancillary 
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data. Nevertheless, the selection of a first set of sampling locations on the base of the 

sole geometry of a study site should help minimizing biases due to those soil properties 

not correlated with ECa.  

The sampling scheme in chapter 3 was designed with the purpose of allocating a larger 

number of points were the spatial variability of ECa was higher using ECa-gradient maps 

as a weight for the optimizing criterion (i.e. Minimization of the Weighted Means of the 

Shortest Distances criterion) in the simulated annealing. As a consequence of that, many 

points were actually close or on the very borders of the SSMU delineated in chapter 4. 

The sampling scheme presented in chapter 3 was delineated in order to facilitate the 

kriging interpolations of soil properties (Van Groenigen and Stein, 1998). Different 

sampling scheme delineation criteria could be more effective for different porpoises, 

including representing at best the average values of soil properties within homogeneous 

areas. Indeed, other sampling scheme delineation techniques (i.e. response surface 

sampling design (Lesch, 2005)) allow selecting locations representing the centroid of 

zones sharing similar attributes. When using simulated annealing a similar approach 

could be followed substituting the ECa-gradient maps with ones of reverse (i.e. 

complementary) values. The use of such weighting map would in fact allow densifying 

the sampling scheme in areas showing small spatial heterogeneity. 

The area at the southern edge of the Venice Lagoon shares the same geomorphological 

settings characterizing the Ca’ Bianca site. The methodologies presented in this 

dissertation could therefore be easily applied to other fields in the area.  

The presence of large farms in this area should foster precision agriculture practices. 

Farmers are however missing the proper tools and knowledge to carry out accurate site-

specific management. As a matter of fact, the acquisition of mobile equipment for ECa 

surveys would be too expensive of an investment for a single farmer. As commonly 

done in other countries (e.g. USA) third-part professionals should offer the proximal-

sensing survey service to farmers. Unfortunately such kind of service is not provided 

nowadays.  

Site-specific irrigation may not however be the solution to all the issues affecting the land 

at the southern margin of the Venice Lagoon. Soil quality should be also preserved and 

improved carrying out less impacting agricultural practices, especially in the peaty areas. 
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Land subsidation is in fact going to be a major concern in the next decades, as peat is 

continuously oxidized because of heavy soil tillage. The consequent loss of soil organic 

matter decreases the depths of the vadose zone area, potentially magnifying the effects 

of salt accumulation in the soil profile. 
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