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Abstract

Life insurance products are usually equipped with minimum guarantee and bonus provision options. The pricing of such claims is of vital
importance for the insurance industry. Risk management, strategic asset allocation, and product design depend on the correct evaluation of the
written options. Also regulators are interested in such issues since they have to be aware of the possible scenarios that the overall industry will
face. Pricing techniques based on the Black & Scholes paradigm are often used, however, the hypotheses underneath this model are rarely met.

To overcome Black & Scholes limitations, we develop a stochastic programming model to determine the fair price of the minimum guarantee
and bonus provision options. We show that such a model covers the most relevant sources of incompleteness accounted in the financial and
insurance literature. We provide extensive empirical analyses to highlight the effect of incompleteness on the fair value of the option, and show
how the whole framework can be used as a valuable normative tool for insurance companies and regulators.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, embedded options in life insurance contracts
became subject to increasing concern for the academic world
as well as for practitioners. The consequences of failing to
properly price the embedded options in insurance contracts
became evident after the case “Equitable Life vs Hyman”,
where the insurance company had to close its funds after
suffering substantial losses due to a decision of the House
of Lords interpreting negatively the discretion with which
Equitable had structured the bonus to the policyholders. In
order to avoid such occurrences, the new International Financial
Reporting Standards for insurance contracts (IFRS 4) and
Solvency II now require insurance companies to measure and
price embedded derivatives in insurance contracts at a fair
value.

In this paper we focus on the evaluation of life insurance
products with embedded options originated by minimum
guarantee returns and bonus provision. The option pricing
approach has been widely used to determine the fair price of
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a large range of products marketed by life insurance companies
and pension funds (see Babbel and Merril (1998), Boyle
and Hardy (1997), Brennan and Schwartz (1979), Embrechts
(2000), Vanderhoof and Altman (1998)).

The advance in this field has yielded numerous studies
whose primary goal is to properly evaluate complex bonus
mechanism, introducing surrender options (turning the option
to an American-type), and refining the stochastic framework
(see Bacinello (2003), Giraldi et al. (2003), Grosen and
Jørgensen (2000, 2002), Miltersen and Persson (1999)).

All these authors develop their models within the framework
outlined by the main assumptions of the option pricing theory,
i.e., no-arbitrage, dynamic hedging, and market completeness.
Of these three hypotheses, the least realistic one is that of
market completeness, namely, it is possible to replicate the
payoff of any claim in the market by means of a self-financing
strategy.

There are manifold sources of market incompleteness. For
example:

1. Jumps in the underlying stochastic process due to bubbles-
economy crash, nature/weather-catastrophic large claim;

2. Heteroscedasticity of the processes for the underlying assets;
3. Market frictions: short sales, transaction costs, operational

constraints;
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4. Non-tradeability of the underlying asset due to the absence
or lack of liquidity of the reference market. This is especially
true when the reference fund is an internal portfolio of the
insurance company;

5. Discrete hedging, given that continuous rebalancing is
unrealistic and expensive;

6. Mortality risk, that is, the risk associated with not knowing
how many of the policyholders will survive.

With regard to the insurance field, only few authors
concentrate their studies on the issue of market incompleteness.
Møller (2001) determines risk-minimizing hedging strategies
for equity-linked pure endowment contracts. In this case,
the incompleteness arises from mortality risk, that is an
additional risk factor, independent of the financial market risk.
The financial market itself is assumed to be complete, and
the guaranteed option written in the insurance contract is
hedged as in the Black & Scholes model. Further extensions
can be found in Møller (2002), where the author compares
results obtained with super-replication (El Karoui and Quenez,
1995), mean–variance hedging (Duffie and Richardson, 1991),
risk minimization (Föllmer and Sondermann, 1986), and
indifference pricing. The latter approach is related to the
indifference price of the contract under different filtrations,
which are associated to different information sets (see Møller,
2003).

Moore and Young (2003) employ a utility method to
determine the price of endowment contracts linked to risky
index. In this case too, the source of incompleteness is the
mortality risk. Under the principle of equivalent utility, the
premium is that price which leaves the insurer indifferent
between writing and not writing the endowment contract. They
prove that, under the assumption of exponential utility, the
indifference premium solves a nonlinear partial differential
equation, where the nonlinear term reflects the additional
mortality risk and the exponential risk preferences of the model.

Coleman et al. (2006) cope with the same problem and
solve it in a more general setting by addressing market
incompleteness in the many facets summarized above. They
model the dynamics of the objective price measure by merging
the traditional Black & Scholes price process with the Merton’s
jump diffusion process. They then hedge the insurance claim
using the underlying asset and a set of standard options
expiring before the maturity of the claim. The hedging
strategy is determined by applying the minimum local hedging
risk principle by Föllmer and Schweizer (1989). Through a
Montecarlo simulation, they show that the risk-minimization
hedging strategy delivers better performances with respect to
the Black & Scholes delta hedging.

The main contribution of our paper is to extend the analysis
developed in Briys and de Varenne (2001), and nailed down
in Grosen and Jørgensen (2002), to encompass the sources of
market incompleteness listed above. We assume that the equity
holders of the insurance company have limited liability, and
thus we properly model the issue of insolvency risk due to the
bankruptcy event.

We use a stochastic programming model (King, 2002) to
super-replicate the payoff generated by the bonus distribution
scheme. As we will show, the model is general enough to
deal with any complex final payoff generated by European
path-dependent options. We account for the bankruptcy event
by considering the liabilities of the company as a risky
(defaultable) bond. Following Grosen and Jørgensen (2002), we
introduce regulatory restrictions assuming that the solvency of
the company is monitored at discrete points in time.

The paper is organized as follows: Section 2 defines the basic
framework and the specifications of the insurance contract.
Section 3 shows how stochastic programming models can
handle option pricing in incomplete markets, and provides a
framework to hedge the payoff generated by the insurance
bonus scheme. Section 4 describes the experimental setting
used to implement the model and discusses the results obtained.
The final section contains our conclusions as well as some
suggestions for future research.

2. Insurance products with guarantee

We assume that an insurance company issues contracts that
promise to pay some benefits, at the end of a specified maturity
time T , contingent to the value of a reference fund IT . More
general payout schedules can be introduced without changing
the main body of the model and its tractability.

We denote by I0 the value of the fund at the inception of
the contract, and we let L0 ≡ α I0 be the premium paid by the
policyholders to enter the contract; the initial investment by the
equityholders is then given by E0 ≡ (1 − α) I0.

Note that, unlike Briys and de Varenne (2001) and Grosen
and Jørgensen (2002), the reference fund could be any index
used to determine the contractual obligations of the company.
Broadly speaking, what matters for the company are the
liabilities generated by the final payoff, and its main concern
is the hedging of such a claim.

As stated above, a major source of incompleteness is the
non-tradeability of the underlying asset or liquidity restrictions
on it. For this reason, the hedging portfolio will, in general,
consist of liquid assets (stock, bonds, options or futures)
other than the underlying asset. In case of illiquidity or non-
tradeability of the underlying, this hypothesis is more realistic
than assuming that the hedging is performed by trading the
underlying and the risk-free.

The insurance contract is equipped with a minimum
guarantee provision. In particular, at maturity, the policyholder
will receive an amount of money, LG

T , obtained by
compounding the initial premium, L0, at the rate rG ,

LG
T = L0 erG T . (1)

Besides the final maturity guarantee, a bonus provision
entitles policyholders to receive a share of the upside potential
over the guarantee payment. The payoff of the bonus option is
given by

δ
[
α IT − LG

T

]+
, (2)

where δ is the participation coefficient and [·]
+ indicates the

positive part of its content.
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Since we are assuming that the equityholders have limited
liability, in the event that at maturity the level of the fund is
lower than the guaranteed payment, namely IT < LG

T , the
equityholders will declare bankruptcy and the policyholders
will walk away with the remaining assets. As we will show
in Section 3, since the company invests the premium received
in the hedging portfolio, and given that the latter is a super-
replicating portfolio, in case of defaults, its value will be worth
at least IT .

In summary, the payoff of the policyholder is

Φ(IT ) =


IT IT ≤ LG

T
LG

T LG
T ≤ IT ≤ LG

T /α

LG
T + δ

[
α IT − LG

T

]
IT > LG

T /α.

(3)

In a more compact form we have that

Φ(IT ) = δ
[
α IT − LG

T

]+
︸ ︷︷ ︸

Bonus option

+ LG
T −

[
LG

T − IT

]+
︸ ︷︷ ︸
Defaultable bond payoff

. (4)

Thus, purchasing an insurance policy with minimum
guarantee and bonus provision is equivalent to taking a long
position on the bonus option, to benefit of the potential upsides
over the final maturity guarantee, and a long position on a
defaultable bond.

We do not discuss here whether policyholders have enough
information to properly price the default option. We align
with the premises advanced in Briys and de Varenne (2001)
and Grosen and Jørgensen (2002), and claim that our
methodology is able to encompass their propositions and others
proposed in literature.

We also extend our analysis to comprise regulatory
restrictions. These are made explicit by imposing a barrier that
forces the option to expire if It touches the barrier,

It ≤ λL0erG t
≡ Bt t ∈ [0, T [. (5)

As explained in Grosen and Jørgensen (2002), this is equivalent
to the monitoring, on the regulators’ side, of the insurance
assets value. Only in case that It is above the barrier, the option
will be allowed to expire at maturity.

The parameter λ controls the sensitivity of the regulators
to the risk of defaults. If λ > 1, the regulatory authorities
prevent defaults imposing a buffer between the market value of
company’s assets and the nominal obligations to policyholders.
If λ < 1, the regulators allow temporary and limited deficits.
Clearly, in case of defaults, the recovered assets will not be
sufficient to cover the policyholders’ initial investments plus the
minimum guarantee interests matured up to the date of defaults.

An alternative crediting scheme is to distribute the bonus at
multiple periods until maturity. We denote by t = 1, 2, . . . , T,

discrete points in time from today (t = 0) until maturity T , and
by Rt the rate of return of It during the period t − 1 to t . The
liability at each point in time is given by the following dynamic
equation (see Consiglio et al. (2001))

LG
t = LG

t−1e[δRt −rG ]++rG , (6)
where L0 ≡ αA0. Broadly speaking, at each anniversary date,
the rate of return of the policy is the maximum between the
risky rate, δRt , and the minimum guarantee rate, rG . The initial
capital, A0 = L0 + E0, is invested in the risky fund to back the
final liability, LG

T . The dynamics of the asset fund is given by

At = At−1eRt . (7)

The final payoff of the policyholder is

Φ(AT ) =

{
LG

T AT ≥ LG
T

AT AT < LG
T

(8)

or more compactly,

Φ(AT ) = AT −

[
AT − LG

T

]+
. (9)

In this case the policyholder is short of a call option on
the potential upside over the liability. This is justified by
the fact that the surplus, AT − LG

T , is the reward for the
equityholders and it must be passed to them. Note that, given
the crediting scheme (6), the bonus for the policyholders is
already accounted in LG

T , provided that the asset value is
sufficient to back it.

Alternative schemes that use a combination of distribution
plans can be implemented as well. See for details Consiglio
et al. (2006), Grosen and Jørgensen (2000).

3. Super-replication via stochastic programming

We describe here a stochastic programming model to price
the bonus and default option discussed in the previous section.
Details about the model and its use for option pricing can be
found in King (2002), King et al. (2005).

A European contingent claim (ECC) is a security associated
to the stochastic process S = (St )

T
t=0, that gives to its

owner a stochastic cashflow F = (Ft )
T
t=0. This definition is

quite general to include put and call options with barriers,
lookback and Asian payoff, futures and any derivatives whose
cashflow does not depend on decisions taken before the final
maturity. Note that such definition covers claims written on
multiple underlyings or non-tradeable instruments, and claims
whose payouts depend on risk factors independent of financial
markets. With regard to insurance products, a cashflow F =

(Ft )
T
t=0, which is nonzero for some t < T , embraces features

such as mortality risk or lapse. Both events generate payouts
during the life of the contract that are not related to the
movements of the underlying, or at least, not directly. In detail,
lapses are due to the surrender of the policy because of better
returns offered by comparable investments. It is possible to
study a statistical model that relates the lapse rate to some
reference index, and adapt the cashflow to the stochastic
process generated by the chosen index (see Consiglio and
Zenios (2001)). In this case, the relation with the underlying
is mediated through the estimated lapse function. Note that the
decision to surrender the policy is exogenous to the pricing
model, and therefore it is not necessary to model the claim as
an American option (see Bacinello (2003)).
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Fig. 1. A graphic representation of a non-recombinant tree.
As far as mortality risk is concerned, this is a phenomenon
associated to the change of the mortality intensity over time.
As a consequence, the payouts generated by the attached
policy claim will not depend on a deterministic function any
longer. Following Dahl and Møller (2005), one could model
a stochastic process capturing the random dynamics of the
mortality intensity, and then adapt the cashflow F = (Ft )

T
t=0

to the stochastic process describing the new mortality law.
We base our computational machinery on a finite-

dimensional market model. Following King’s notation, the
market consists of J securities with prices St =

(
S1

t , . . . , S J
t

)
;

security prices and other payments are discrete random
variables supported on a finite probability space (Ω ,F, P)

whose atoms ω are sequences of real-valued vectors (asset
values) over the discrete time periods t = 0, 1, . . . , T . The path
histories of the security prices up to time t correspond one-to-
one with nodes n ∈ Nt . The set N0 consists of the root node
n = 0, and the leaf nodes n ∈ NT correspond one-to-one with
the probability atoms ω ∈ Ω . In the tree, every node n ∈ Nt ,
t = 1, . . . , T , has a unique ancestor node a(n) ∈ Nt−1, and
every node n ∈ Nt , t = 0, . . . , T − 1, has a non-empty set
of child nodes C(n) ⊂ Nt . The collection of all the nodes is
denoted by N ≡

⋃T
t=0Nt .

The probabilistic structure implies that the market evolves as
a discrete, non-recombinant tree (hence, suitable for incomplete
markets). In this context, a European-style contingent claim is
represented by a stochastic cashflow F with payouts {Fn}n∈N
that depends on the underlying securities S. In the presence
of risk factors other than the traded securities, the process St

is augmented by K real-valued variables ξt =
(
ξ1

t , . . . , ξ K
t

)
whose path histories match the nodes n ∈ Nt , for each t =

0, 1, 2, . . . , T .
This is the case of mortality risk or surrender option when

adapted to the stochastic structure of the tree. For example, if
we denote by {qn}n∈N the process of the probability of death,
and by {ln}n∈N the process of the probability of lapse, the
liability process, {Ln}n∈N , is given by

Ln = (1 − Λn)La(n)e
rG , (10)

where, at the initial node, Ln = L0, and Λn = qn + ln is
the probability of “abandoning” the policy (we assume that the
death and lapse event are independent).

In Fig. 1, we show a graphic representation of a tree with
five arcs springing from each node.

When the markets are incomplete, an interval between
the buyer and writer’s prices describes the possible range
of arbitrage-free evaluations. Since we assume that the
policyholders are price-takers, we focus our attention on the
writer’s price, which will be greater than the buyer’s price (see
King (2002) for a formal proof of such statements).

We can define the writer’s price of the contingent claim
as the smallest amount of current cash, V , needed to start a
trading strategy to back the payout process {Fn}n∈N with no
risk.

The amount of cash V represents the initial cash infusion
needed to start the self-financing process that will deliver, for
each final node n ∈ NT , a set of portfolios whose values super-
replicates the final payout. Note that, since it is requested that
portfolios are self-financing, the super-replication property is
guaranteed by imposing that the portfolio value at the final
nodes is greater or equal to zero.

Let us denote by X j
n , Y j

n , and Z j
n , respectively, the amount

of share purchased, sold, and held at each node n ∈ N , and
for each security j = 1, 2, . . . , J . By definition, X j

n and Y j
n are

always greater than or equal to zero, while, if we allow for short
positions, Z j

n ∈ R.
By assuming that no holdings are available at the initial node

n = 0, the inventory constraints, for each j = 1, 2, . . . , J , are
given by

Z j
0 = X j

0 − Y j
0 . (11)
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To balance out, the value of the amount purchased plus any
payout must be equal to the value of the amount sold, that is,

J∑
j=1

S j
0 (1 − κ)Y j

0 = V +

J∑
j=1

S j
0 (1 + κ)X j

0 + F0, (12)

where κ is the proportional transaction cost for buying and
selling. Observe that, at the initial node, a nonzero value of Y j

n
is possible only if we allow for short positions. This is also due
to the presence of the transaction costs which avoid that buying
and selling of the same security occurs at each node.

At each node n ∈ Nk , k = 1, 2, . . . , T , and for each security
j = 1, 2, . . . , J , the inventory constraints will depend on the
holdings at the ancestor node a(n), plus any proceeds from
buying or selling securities. So we have that

Z j
n = Z j

a(n) + X j
n − Y j

n . (13)

The balance constraints follow consequently,

J∑
j=1

S j
n (1 − κ)Y j

n =

J∑
j=1

S j
n (1 + κ)X j

n + Fn . (14)

To sum up, the stochastic programming model for the
insurance evaluation problem can be written as follows

Minimize
X j

n ,Y j
n ,Z j

n

V (15)

s.t. Z j
0 = X j

0 − Y j
0 , for all j = 1, 2, . . . , J (16)

J∑
j=1

S j
0 (1 − κ)Y j

0 = V +

J∑
j=1

S j
0 (1 + κ)X j

0 + F0, (17)

Z j
n = Z j

a(n) + X j
n − Y j

n , for all n ∈ Nk,

k = 1, 2, . . . , T, j = 1, 2, . . . , J (18)

J∑
j=1

S j
n (1 − κ)Y j

n =

J∑
j=1

S j
n (1 + κ)X j

n + Fn,

for all n ∈ Nk, k = 1, 2, . . . , T (19)

J∑
j=1

S j
n Z j

n ≥ 0, for all n ∈ NT , (20)

X j
n , Y j

n ≥ 0, for all n ∈ N , j = 1, 2, . . . , J (21)

Z j
n ∈ R for all n ∈ N , j = 1, 2, . . . , J. (22)

We highlight here some important points:

1. Problem (15)–(22) is a linear programming model where
the objective function minimizes the value of the hedging
portfolio, or rather the cost of the option.

2. The payout process {Fn}n∈N is a parameter of the problems
(15)–(22). This implies that any complicated structure for Fn
does not change the complexity of the model. For example,
the option with payoff given by (4) corresponds to the
process Fn = 0, for all n ∈ Nk , k = 0, 1, 2, . . . , T − 1,
and Fn = δ

[
α In − LG

T

]+
+ LG

T −
[
LG

T − In
]+

, for all
n ∈ NT , where In is the reference fund process adapted to
the stochastic structure of the tree.
3. The payouts due to the change in the mortality intensity and
to the surrender option follow from Eq. (10). In particular,
the expected outflow due to such events is obtained by the
probability of abandoning the policy, Λn, times the liability
matured at the ancestor node, therefore, Fn = Λn La(n)erG ,
for all n ∈ Nk , k = 1, 2, . . . , T − 1.

4. Constraints (17) and (19) correspond to the self-financing
equations described in King (2002). They are easily obtained
by substituting the holding variables, Z j

n , defined by Eqs.
(16) and (18), in King’s model equations.

5. Constraints (20) ensure that at each final node the total
position of the hedging portfolio is not short. In other words,
if short positions are allowed, the portfolio process must end
up with enough long positions such that a positive portfolio
value is delivered. Note that transaction costs at the final
nodes n ∈ NT are accounted in the balance constraints (19).

4. Implementation notes and results

We run our experiments assuming a policy horizon T =

10 years. The time interval between two periods is set to
1.67 years, for a total of 6 time periods. To run our experiments
in a reasonable time, we assume that our market is made
up of 4 assets plus one risk-free (J = 4 + 1). Note that
the computational time depends on the number of assets,
the discretization adopted and the operational constraints. In
the worst case – the problem with transaction costs, that
basically tripled the number of variables – the computational
time amounts to approximately half an hour (CPU Pentium 4,
2.4 GHz).

To encompass the more general case, that is when the
underlying asset is not tradeable, the reference fund, I , is not
included among the J assets, therefore, the hedging portfolio is
formed by the four risky assets plus the risk-free.

We solve the optimization models using the algebraic
modelling language GAMS by Brooke et al. (1992). The
most complex task concerned the solution of the nonlinear
goal programming model to generate trees. Under the GAMS
platform, we use the CONOPT solver and, in case it failed to
converge to a solution, the SNOPT solver. We employ CPLEX
to solve the linear programming model to determine the price
of the option. The average problem had 130,000 rows, 290,000
columns and 660,000 nonzero entries.

4.1. The tree generation model

We generate the tree of the underlying price process S by
matching the first M moments of its unknown distribution.
Our approach is based on the model by Høyland and Wallace
(2001), where the user provides a set of moments, M, of the
underlying distribution (mean, variance, skewness, covariance,
or quantiles), and then, prices and probabilities are jointly
determined by solving either a nonlinear system of equations, or
a nonlinear optimization problem. The method also allows for
intertemporal dependencies, such as mean reverting or volatility
clumping effect.

Observe that, we do not sample from a distribution to
generate our tree, but we build a discrete probability distribution



A. Consiglio, D. De Giovanni / Insurance: Mathematics and Economics 42 (2008) 332–342 337
Table 1
Statistical properties of the securities used in the experiments. We built trees by matching means, variances and covariances shown in the table

Mean Variance–covariance matrix
RiskFree Asset-1 Asset-2 Asset-3 Asset-4 Reference fund

RiskFree 0.02 0.0001 – – – – –
Asset-1 0.03 0.5 0.04 – – – –
Asset-2 0.035 0.15 0.31 0.0484 – – –
Asset-3 0.04 0.2 0.21 0.021 0.0625 – –
Asset-4 0.045 0.25 0.12 0.19 0.31 0.0225 –
Reference fund 0.04 0.14 0.2 0.1 0.24 0.212 0.01
with given moments, and feed it to the stochastic programming
model. For this reason, the number of arcs from each node is
a matter related to the solvability of the matching problem. On
the contrary, when sampling from a distribution, the number of
scenarios and the tree structure contribute to the stability of the
solution, and a sensitivity analysis is necessary. In such cases, a
scenario reduction procedure can help to shrink the size of the
tree, while maintaining a reasonable accuracy (see Dupačová
et al. (2003)).

For a review on alternative scenario generation methods, also
see Dupačová et al. (2000) and references therein.

We cast the tree generation model as a nonconvex weighted
least-squares minimization problem,

Minimize
S,p

J∑
j=1


∑
i∈M

αi

 ∑
m∈C(n)

pm

(
ln

S j
m

S j
n

)i

− µ
j
i

2


+

J∑
j

J∑
h

h> j

γ jh

 ∑
m∈C(n)

pm

(
ln

S j
m

S j
n

− µ
j
1

)

×

(
ln

Sh
m

Sh
n

− µh
1

)
− ρ

2
 . (23)

s.t.
∑

m∈C(n)

pm = 1 (24)

pm ≥ 0 m ∈ C(n). (25)

The goal programming model (23)–(25) is much more
flexible than solving a system of nonlinear equations matching
the moments of the unknown distribution. As underlined in
Høyland and Wallace (2001), the solvability of the nonlinear
system of equations increases with the number of arcs.
However, to be tractable, the set of arcs that springs out from
each node has to be of limited size. In fact, the size of the tree
grows exponentially with the number of branches springing out
from each node. In particular, if |C(n)| = ν, the total number of
nodes is

∑
t νt

+ 1.
Note, however, that infeasibility could also arise from an

inconsistency in the specification of the moments (see Høyland
and Wallace (2001) for a discussion on this topic).

In this paper we use the model (23)–(25) to match the
parameters of the price process. We restrict the matching
problem to means, variances and covariances, and we let them
be constant over time. Our decision is motivated by the need to
keep the experimental settings as simple as possible to highlight
the features of our model as an evaluation tool for insurance
policies.

In Table 1 we display the statistical properties for each of the
J assets and the reference fund.

4.2. Non-arbitrage constraints

To be consistent with financial asset pricing theory, the tree
has to exclude arbitrage opportunities. This is a very important
feature, since in the presence of arbitrage scenarios the model
(15)–(22) will end up with an unbounded solution.

Arbitrage opportunities can be avoided either by adding non-
arbitrage constraints or by increasing the number of arcs. The
latter solution is often impracticable due to the exponential
growth of the tree size.

Following Klaassen (2002), it is possible to prove that
arbitrage opportunities of the first type are prevented if and only
if,

πn S j
n −

∑
m∈C(n)

πm S j
m =

∑
m∈C(n)

pm S j
m for all j = 1, . . . J (26)

πm ≥ 0 m ∈ C(n) (27)

π0 ∈ R. (28)

Likewise, arbitrage opportunities of the second type are
excluded if and only if,∑
m∈C(n)

νm S j
m = S j

n for all j = 1, . . . J (29)

νm ≥ 0 m ∈ C(n). (30)

The set of Eqs. (26)–(28) and (29) and (30) can be added
as constraints to the goal programming model (23)–(25) to
preclude arbitrage opportunities of both types in the tree that is
generated. Note that Eqs. (26) and (29) are nonlinear constraints
and must be handled with care. In our experiments we added
only first type arbitrage constraints, and those were sufficient to
guarantee trees without arbitrage opportunities.

4.3. Fair contracts

The price of the insurance contract described in Section 2
depends on many parameters. The most important ones are:
the minimum guarantee rate (rG), the participation coefficient
(δ), the leverage (α), the barrier buffer parameter (λ). Not
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Fig. 2. The relationship between leverage and participation rate. The two curves are determined assuming that the market is complete. The minimum guarantee rate
is fixed at 2% per year, the time horizon is 10 years, and the volatility of the reference fund is 10% per year.
1 Note that in their experiments Briys and de Varenne assume that the time
horizon is one year. This is the reason why they obtain fair contracts with a
minimum guarantee between 8% and 11%.
all the combinations of these parameters determine a fair
value of the insurance contract. In particular, let us denote
by V (0, I0, rG , δ, α, λ) the value at time 0 of the insurance
contract. The latter is said to be fair if the initial policyholder’s
contribution, L0, is equal to the initial market value of the
purchased claim, that is,

L0 ≡ α I0 = V (0, I0, rG , δ, α, λ). (31)

We carry out our analysis by fixing all the parameters except
one, and by determining the value of the contract such that
Eq. (31) is satisfied. This is accomplished through a numerical
search procedure. If, for example, Eq. (31) has to be analyzed
as a function of the minimum guarantee rate, we reduce the
matching problem to finding zeros of the function Υ(rG) =

α I0 − V (rG). Using a secant rule, rG at iteration m + 1 is given
by the following formula,

rG,m+1 = rG,m − Υ(rG,m)

[
rG,m − rG,m−1

Υ(rG,m) − Υ(rG,m−1)

]
. (32)

Note that every step of the search procedure implies the solution
of a large linear programming model, as V (·) is the price of the
insurance claim.

4.4. The effect on regulatory requirements

We start our analyses by looking at the effect of market
incompleteness on the requirements imposed by the regulators.
As pointed out by Briys and de Varenne (2001), regulators
usually affect insurance design by imposing a minimum
capital requirement, by controlling the portfolio composition
to prevent investments in high-risk assets, and by introducing
a ceiling on the minimum guarantee rate. It is a common
standpoint that the risk of bankruptcy decreases as the level of
the capital to asset ratio (E0/A0 = 1 − α) increases. In such a
case, the policyholders carry less leverage risk (L0/A0 = α),
and require a lower participation rate (δ).

We check our results against a benchmark that is the pricing
model in complete markets. By assuming market completeness,
we determine the fair price of the insurance contract having
payoff specified by (4), and written on the underlying I . We
price the bonus and default options using a standard Montecarlo
approach, by simulating 100,000 trajectories from the risk-
neutral distribution of the reference fund, with volatility equal
to 10% per year. We then solve Eq. (31) as function of δ, for
fixed values of α ranging from 0.7 to 1, while keeping fixed
rG = 2% per year.

We expect that when the market is complete the super-
replication model delivers the same results. Hence, we build
a tree with the same number of branches as the number of
securities (ν = J = 5), and determine those values of δ such
that the contract is fair. As shown in Fig. 2, the two curves
almost overlap and we can attribute the difference to numerical
approximations. As observed by Briys and de Varenne (2001),1

the participation rate decreases as the leverage value is reduced,
due to the lower risk carried by the policyholder.

Observe that, in this case, we are not assuming that the
underlying is included in the set of assets. Therefore, the
hedging portfolio will consist of long and short positions of the
J assets spanning the market. In practice, if we have enough
liquid assets (stock, futures, options), we can super-replicate a
claim written on a non-tradeable reference funds. In this way,
we overcome one of the most controversial aspect of the Black
& Scholes model – non-tradeability of the reference fund –
when used for insurance pricing.

In Fig. 3, we display the hedging portfolios for different
levels of the leverage. For simplicity, we assume that at time t =

0 the value of the reference fund and the prices of the assets are
equal to 100. We note that the risk-free component decreases as
the leverage increases. This occurs because the final payoff is
an increasing function of the leverage, and therefore, the higher
the leverage the greater the payments due at maturity. We also
observe a stronger growth of the Asset-4 with respect to the
rest of the assets. This is a consequence of the fact that the
expected value and the volatility of Asset-4 are, among all
assets, the closest to those of the underlying asset. Recall that
these are fair contracts, and that to a higher value of the leverage
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Fig. 3. Hedging portfolios for different levels of the leverage. Higher values of the leverage imply higher values of the participation rate. In these cases, the bonus
provision will prevail on the minimum guarantee, and the hedging portfolios will be more shifted towards those assets with statistical properties more similar to the
underlying asset.

Fig. 4. The relationship between leverage and participation rate when transaction costs and borrowing constraints are introduced. The shaded area represents the
feasibility region where both leverage and participation rate are effective.
corresponds a higher value of the participation rate (see Fig. 3).
Hence, the payoff of the insurance policy is more affected by
the floating components (bonus provision), driven by I , than
the fixed component (the minimum guarantee).

Assuming the complete market model as benchmark, we
can now study how the relation leverage–participation rate
is affected by one or more sources of incompleteness. In
Fig. 4, we show such relation for the benchmark and the
super-replication model with transaction costs and borrowing
constraint. To this purpose, proportional transaction costs are
set to 0.3% and the spread between lending and borrowing rate
is set to 2%. The model with borrowing and lending rate is
obtained by slightly modifying model (15)–(22). We basically
split the variable concerning the risk-free, and then we constrain
these two variables – one carrying the amount to borrow, and
the other carrying the amount to lend – to take non-negative
values.

As it can be observed, the two curves are pushed downwards
with respect to the benchmark. This is caused by the increment
of the cost of the claim due to the transaction costs and to
the higher rate for borrowing. Given the augmented cost of the
claim, it will be that α I0 −V ∗(·) < 0, where V ∗(·) is the option
value in case of complete market. In other words, the cost of the
claim is greater than the premium received (α I0), and to restore
the equivalence, either the leverage has to be increased or the
participation rate has to be lowered.

Through this analysis, we can gauge the effect on regulatory
restrictions. If, for example, the maximum leverage allowed
is 95% and the minimum participation rate is 80% (these are
typical values in Europe), the shaded area in Fig. 4 delimits the
effectiveness of the insurance company for the class of policies
with a minimum guarantee rG = 2%, and a 10% volatility of
the reference fund. It is evident that the unrealistic hypothesis
of absence of transaction costs and borrowing at the risk-free
rate will deem as effective a wrong level of the participation
rate and of the leverage.

We believe that this is a valuable tool for regulators to
ascertain the fairness of the policies sold in the market, and
for insurance managers to optimally design their products.
However, as highlighted by Briys and de Varenne, it might
be also the case that the levels imposed by the regulators are
inconsistent.
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Fig. 5. The effect of market incompleteness on regulatory constraints. The insurance contract evaluated taking into account the transaction costs lies well below the
feasibility area. A possible solution would be to lower the minimum guarantee – from 2% to 1% – so that the curve moves upwards.

Fig. 6. The effect of market incompleteness and regulators’ intervention policy on contract value. The parameter λ measures the reactivity of the regulators to
downfalls of the insurance assets. The two contracts share the same parameters except δ. No significant changes can be observed when the policy is negotiated
taking into account the transaction costs.
In this example, a possible solution would be to lower the
minimum guarantee to push the curve upwards (See Fig. 5),
so as to restore a level of leverage and participation rate
compatible with the given regulation.

4.5. The effect on default barrier

As shown in Section 3, our model is flexible enough to
include the pricing of path-dependent options. In Section 2
we pointed out that regulators usually monitor insurance assets
during the life of the policy, and, prior to the maturity of
the policy, they might take their measures against possible
defaults. This is equivalent to introducing a barrier whose level
is controlled by the buffer parameter λ.

In Fig. 6 we show the relation between the buffer control
parameter, λ, and the value of the contract. The policy is
negotiated with α = 80%, rG = 2% and λ = 0.8. Recall
that we analyse only fair contracts, therefore, the two contracts
must differ from one parameter. In this case we choose δ as
free parameter, and we obtained a δC

= 0.46 for the complete
market, and a δ I

= 0.397 for the incomplete case.
We then change λ to show the effect of a possible revision of

the regulators’ intervention policy. We display the curve derived
assuming a complete market, and the curve relative to the case
of an incomplete market due to transaction costs. We observe
that the two curves follow the same trend found in Jørgensen
(2001).

The two curves almost overlap and this indicates that the
policy of the regulators has the same impact either when the
market is complete, or when frictions, like transaction costs,
are present. Note however, that the two contracts differ from the
parameter δ and the impact of incompleteness on this parameter
is significant, as already shown in Section 4.4.

4.6. The effect on policy design parameters

The analysis carried out so far can be extended to include
other combinations of the design parameters. Figs. 7 and 8
are useful aids to design insurance contracts according to the
company needs, ensuring, at the same time, that the value of the
embedded options are properly evaluated. In Fig. 7 we show the
relationship between the volatility and the participation level.
The minimum guarantee and the leverage are respectively set
to 2% and 0.95. An alternative view is the relationship between
the leverage and the minimum guarantee, while keeping fixed
the participation rate (δ = 0.6) and the volatility (σ = 10%).
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Fig. 7. The relationship between volatility and participation rate. Due to the long call position of the policyholders, the higher the volatility, the higher the
participation level allowed. In incomplete markets, a lower level of the participation level must be delivered to maintain the fairness of contract.

Fig. 8. The relationship between leverage and minimum guarantee rate. A higher minimum guarantee rate compensates for the higher financial risk due to the greater
leverage levels. However, in incomplete markets the true curve is the one that lies below, and therefore, the true compensation, in terms of minimum guarantee rate,
is relatively lower.
The same pattern as before applies here. Transaction costs
increase the cost of the option, and, to restore the fairness of
the contract, the policy designer has to cut down either the
participation level or the minimum guarantee rate.

5. Conclusions

We developed and tested a super-replication model for
evaluating insurance products with guarantee. We showed that
the stochastic programming model obtained is flexible enough
to encompass the most relevant sources of incompleteness
encountered in the financial and insurance literature. The
model improved upon the classical Black & Scholes model in
providing a valuable tool for designing insurance policies and
ascertaining their fair value under realistic hypotheses.

An interesting extension of the model would be to the
introduction of endogenous lapse decisions. As is known, a
surrender option of the policy can be modelled as an American
option. This implies that the stochastic programming model has
to take into account, at each rebalancing time, the so-called
continuation value.
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