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Abstract 

I 

Abstract 

 

 

The present work falls within a wider framework concerning the prediction of the mechanical 

response of short glass fiber-reinforced thermoplastics (SFRT), which are commonly em-

ployed in the automotive industry to reduce the overall weight of the components. 

More in detail, the main objective of the thesis is to develop a fatigue criterion for predicting 

the effect of different factors affecting the fatigue strength of such materials. In this interest, 

the influence of the composite complex morphology (local fiber orientation and fiber content) 

and of notches giving rise to stress concentrations is taken into account. 

In the present thesis, an experimental activity related to plain and notched specimens is firstly 

presented. In this context, data resulting from computed tomography (CT) analyses are 

shown. The latter serve to evaluate the specimens’ fiber orientation distributions, which are 

quantified by means of fiber orientation tensors (FOT). Furthermore, fatigue test data on the 

considered coupons, in the absence and in the presence of notches (with radii of 0.1 mm, 0.2 

mm, 2 mm and 5 mm), are presented for different fiber orientations and weight fractions (15 

wt%, 25 wt%, 35 wt% and 50 wt%). 

Secondly, being aware of the fact that the onset of a macroscopic crack is driven by the 

evolution of damage at the matrix level, a multiscale fatigue model relying on matrix stress 

distributions is presented.  

The calculation of the matrix stress cumulative distribution functions is achieved by formu-

lating an analytical numerical pseudo-grain approach (i) permitting to avoid the generation, 

mesh and solution of complex microstructures, but only relying on the solution of simple 

unidirectional cells. The pseudo-grain method is subsequently included in the formulation of 

a fatigue criterion, for plain (ii), at first, and for notched specimens (iii), subsequently. 

The proposed fatigue criterion is eventually validated with a bulk of experimental data, par-

tially presented in this work. Namely, fiber orientation tensors are used to properly assign the 

anisotropic elastic properties to the developed numerical models and the presented fatigue 

data are employed to assess the efficacy of the model in terms of fatigue strength prediction. 
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Sommario 

 

 

Questa tesi di dottorato di ricerca si inserisce all’interno di un quadro più ampio relativo alla 

previsione del comportamento meccanico di materie termoplastiche rinforzate con fibre corte 

di vetro. Tali materiali compositi sono spesso impiegati nell’industria automobilistica per 

ridurre il peso complessivo della componentistica coinvolta.  

L’obbiettivo principale di questo lavoro è legato alla necessità di sviluppare criteri di cedi-

mento che prevedano l’influenza di diversi fattori sulla resistenza a fatica di tali materiali. In 

particolar modo, si è scelto di focalizzarsi sull’effetto della morfologia (orientazione locale e 

contenuto di fibre) e della presenza di intagli, che a loro volta danno luogo a concentrazioni 

tensionali. 

In questa tesi viene presentata innanzitutto l’attività sperimentale svolta. Ovvero si riportano 

dati relativi ad analisi ottenute tramite tomografia computerizzata (CT). Quest’ultima ha il 

ruolo di fornire informazioni sulle distribuzioni locali dell’orientazione delle fibre, le quali 

vengono quantificate tramite il tensore di orientazione delle fibre (FOT). Inoltre, si presen-

tano dati relativi al comportamento a fatica di provini con e senza intagli (di raggio pari a 0.1 

mm, 0.2 mm, 2 mm e 5 mm), considerando contemporaneamente l’effetto dell’orientazione 

delle fibre e delle loro frazioni di peso (15 wt%, 25 wt%, 35 wt% e 50 wt%). 

In secondo luogo, consapevoli del fatto che l’origine di cricche macroscopiche può essere 

imputata all’evoluzione del danneggiamento nella matrice, si propone un modello multiscala 

per la previsione della vita a fatica di tali compositi, basandosi sul calcolo delle distribuzioni 

tensionali locali. 

Il calcolo delle funzioni cumulate delle tensioni matriciali è ottenuto tramite la formulazione 

di un approccio analitico-numerico di tipo pseudo-grain (i). Quest’ultimo permette quindi di 

evitare la generazione, mesh e risoluzione di microstrutture complesse e di ottenere i risultati 

desiderati tramite semplici modelli numerici unidirezionali. Tale approccio viene poi inserito 

nella formulazione di un criterio di fatica per provini lisci (ii) e intagliati (iii). 
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Il criterio proposto è poi validato con un numero consistente di dati sperimentali, parte dei 

quali è presentata in questo lavoro. In particolare, i tensori di orientazione delle fibre sono 

impiegati per assegnare le proprietà elastiche anisotrope ai modelli numerici.  I dati di fatica 

sono invece utilizzati per verificare l’efficacia del modello in termini di previsione della re-

sistenza a fatica di provini lisci e intagliati. 
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Introduction and outline 

 

 

The use of fiber reinforced polymers (FRP) provides today an alternative to the commonly 

diffused materials, such as metal, aluminum and wood. The role of FRPs is to contribute to 

the enhancement of the lightweight of the part of interest, without affecting negatively the 

required material properties (e.g. mechanical strength, stiffness, resistance to chemicals, ther-

mal or electrical insulation). In fact, the efficacy of using FRPs derives from the advantage 

of possessing different properties that cannot be usually found in one single material. In this 

interest, fibers contribute to improve the composite mechanical properties, while the poly-

meric matrix is by nature a low-density material, favoring in turn weight savings.  

This topic is of particular interest for the automotive industry due to different aspects. One 

reason related to the component’s weight reduction is certainly connected to the improvement 

of the car performances. On the other hand, the main motivation can be attributed to the 

necessity of decreasing the gas emissions.  In 1992, the Kyoto protocol committed the state 

parties to reduce the emissions of greenhouse gases, such as Carbon dioxide (CO2) that has 

been significantly increasing in the last decades (Fig. I.1). The CO2 is mainly released by 

fossil fuels and industrial processes (Fig. I.2). 

 

 

Figure I.1. CO2 global emissions’ trend (WEB1). 

3

3.5

4

4.5

5

5.5

1960 1970 1980 1990 2000 2010 2020C
O

2
e
m

is
si

o
n

s 
[t

o
n

 p
e
r 

c
a
p
it

a
]

Year

Global CO2 emission



Introduction and outline 

2 

 

                                      

Figure I.2. Global greenhouse gas emissions statistics (WEB1). 

 

In particular, the thesis work has been developed in collaboration with the Plastic Engineer-

ing Department of the research division of Robert Bosch GmbH (Germany). The company 

has demonstrated to be very active in the research field related to the use of short fiber-rein-

forced thermoplastics, which are nowadays part of the automotive components and constitute 

an essential contribute to the car weight reduction. 

To better understand the framework which the thesis work falls in, the simulation chain usu-

ally adopted for the fatigue lifetime prediction of SFRTs is depicted in Fig. I.3. Referring to 

an actual component undergoing cyclic loadings (i), the composite morphology is character-

ized by spatially varying fiber orientation distributions. For this reason, it is common practice 

to firstly perform process simulation analyses (ii) to estimate the local fiber orientations, 

which are quantified by means of a second-order fiber orientation tensor (FOT). This type of 

simulation makes use of inputs  that must be accurately chosen to have an optimal prediction 

of the FOTs, i.e. fiber aspect ratio (AR), fiber diameter (df), fiber volume fraction (vf) and 

other process parameters, such as pressure, temperature etc. Once FOT components are com-

puted, the elastic properties that have to be assigned to the structural model can be calculated 

by means of homogenization schemes (iii). The required inputs for this step are fiber param-

eters, FOTs and the constituents’ elastic properties. A homogenized model subjected to ex-
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ternal loads (F) can now be numerically solved (iv) and the stress/strain field read. Eventu-

ally, the fatigue failure criterion must be applied to the solved model and the predicted life 

of the part of interest can be evaluated (v). 

By reference to Fig. I.3, the scope of the Ph.D. work can be represented by the aforemen-

tioned point (v). Namely, the main goal consists in the development of a reliable and robust 

fatigue criterion for the prediction of the fatigue strength of short fiber-reinforced thermo-

plastics (SFRT). Since such materials are often in contact with dangerous liquids, the present 

work aims at developing models for the prediction of the fatigue lifetime up to crack initia-

tion, in order to avoid possible leakage phenomena due to the crack propagation phase. 

In comparison to the world of continuous fiber-reinforced composites, in the literature only 

few works proposed damage-based criteria for predicting the fatigue response of SFRTs.  

Short fiber reinforced-thermoplastics are characterized by extremely complex morphologies 

as a consequence of the fiber arrangement induced by the production process (injection mold-

ing). The latter influences significantly the local material fatigue strength, but there is is still 

a lack of models enabling to take into account the actual spatially varying fiber arrangement.  

Therefore, among all possible factors affecting the fatigue response of SFRTs, the effect of 

the fiber content (identified as fiber volume fraction or weight fraction) and of the local fiber 

orientation distribution are taken into account in the present work.  

Additionally, due to the non-brittle nature of the thermoplastic matrix, this type of composite 

is sensitive to the presence of notches and, therefore, a model also capable of accounting for 

stress concentrations induced by notches is proposed. 

The fatigue damage occurring in the material while cyclically loaded is by nature a hierar-

chical process and can be mainly attributed to the formation of micro-scale cracks in the 

matrix. For this reason, a multiscale model is hereby proposed, which aims at predicting the 

formation of a macroscopic crack, based on the matrix stress distributions assumed to be 

responsible for the evolution of the damage at the micro-scale, among fibers. 
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Figure I.3. Schematic simulation chain for failure assessment of real parts. 
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The thesis work can be subdivided into two major activities: 

a) Experimental activity: studies on the morphology and fatigue behavior of short glass 

fiber-reinforced polyamides 6.6. 

b) Modeling activity: development of multiscale fatigue criteria accounting for the effect 

of fiber orientation, fiber volume fraction and notch geometry. 

The thesis chapters are presented here below: 

 Chapter 1 is dedicated to provide a broad overview of the mechanical behavior (static 

and fatigue) of short fiber-reinforced thermoplastics, focusing on different factors af-

fecting it. 

 Chapter 2 presents the carried out and employed experimental data, quantifying the 

variation of the fiber orientation tensor components by means of the X-ray computed 

tomography (CT). Furthermore, experimental fatigue data are presented for plain and 

notched SFRT specimens. 

 Chapter 3 deals with the formulation and validation of a numerical analytical pseudo-

grain method, which enables the computation of the matrix stress distributions of a 

complex microstructure, without generating and solving onerous models with misa-

ligned fibers.  

 Chapter 4 makes use of the model presented in chapter 3 for the development and 

validation of a multiscale criterion aiming at predicting the effect of fiber orientation 

and volume fraction on the fatigue strength of SFRT plain specimens. 

 Chapter 5 applies the model proposed in chapter 4 to notched specimens and includes 

the effect of notch geometry among the factors affecting the fatigue strength of 

SFRTs.  

A schematic overview of the structure of the work is depicted in Fig. I.4. It can be seen that 

chapter 2 contains blocks Fiber orientation analyses on specimens and Fatigue tests on spec-

imens, while chapter 3 corresponds to block Model for matrix stress distribution, chapter 4 

to Fatigue model in the absence of notches and chapter 5 to Fatigue model in the presence 

of notches. 
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Figure I.4. Structure of the thesis’ work. 
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Chapter 1 

 

Fundamentals and preliminary remarks 

 

1.1  Composite materials 

 

By definition, a composite material (TSA80, BIE16) is made of two or more constituents 

having significantly different mechanical properties. These materials can be classified ac-

cording to the following main categories: 

 Ceramic matrix composites (CMC); 

 Metal matrix composites (MMC); 

 Fiber-reinforced plastics (FRP). 

The first listed group finds its application in those products undergoing very high tempera-

tures, but still requiring lightweights. This is, for instance, the case of brake disks, rocket 

nozzles, etc. Nevertheless, this type of matrix is normally reinforced with carbon, silicon 

carbide alumina of mullite fibers, which in turns help the material improve its mechanical 

properties (fracture toughness) in comparison with the neat matrix. 

The second mentioned group of composites are characterized by a metallic matrix. The latter 

must additionally have a low specific weight in order to guarantee efficient performance in 

the automotive industries and in other fields of application. Light metal alloys are rarely used 

for this application, but the union with other reinforcements (continuous, long and short fi-

bers, particles, etc.) can significantly enhance the mechanical properties. In this interest, short 

fibers are the most commonly used fillers, also due to the advantages deriving from the pro-

duction process, contrary to the use of long/continuous fibers. 

The last mentioned type of composite consists in fiber-reinforced plastics. This kind of com-

posite is widely used in the aerospace, wind energy and automotive industry. The main reason 

of adopting such composites comes from the need of significantly reducing the weight of the 

entire product. The plastic matrix is usually a thermoplastic or a thermoset. The employed 
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fibers can be made of glass, carbon or aramid and they are essential to improve the overall 

material stiffness and strength. Also in this case, fibers can be continuous or discontinuous 

(long or short), depending on the order of magnitude of the filler with respect the part size. 

Due to their geometrical nature (long and narrow), fibers cannot resist to shear or compres-

sion loads and, therefore, the production process (thence, the fiber orientation) must be opti-

mized as much as possible to maximize the composite strength under well-defined loads.  

 

 

1.2  Short fiber-reinforced thermoplastics 

 

In this work, only short fiber-reinforced polymers will be adopted to validate the proposed 

fatigue criteria. In particular, two-phase-composites will be considered, namely those com-

posed of a thermoplastic matrix and short glass fibers. In this section, more details related to 

the used materials will be provided, giving a brief overview on the chemical and mechanical 

properties of such composites. 

 

1.2.1  Matrix 

 

As mentioned above, the employed matrix of the composite is a polyamide 6.6, namely a 

thermoplastic polymer. Thermoplastics differ from thermosets for various aspects. The latter 

can be solidified only once through a chemical reaction that makes the molecules cross-link. 

On the other hand, thermoplastic materials are remeltable and this enables their storage in 

the form of small pallets (GOO07).  

The polyamide 6.6, which is also called nylon 6.6, is obtained by polycondensation of hexa-

methylendediamine and apidic acid. The structural unit (i.e. monomer) of this material is 

depicted in Fig. 1.1.  

 

– CO – [CH2]4 – CO – NH – [CH2]6 – NH – 

Figure 1.1. Structural unit of the polyamide 6.6 (OSS12). 
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This type of thermoplastic is characterized by a semi-crystalline structure (Fig. 1.2), i.e. some 

molecules are aligned with their neighbor and the rest presents an amorphous structure. For 

the sake of clarity, in an amorphous polymer, molecules are randomly arranged. 

 

 

Figure 1.2. Schematic representation of a semi-crystalline structure. 

 

Concerning the mechanical behavior of the polyamide 6.6, an example is reported in Fig. 1.3, 

where the material clearly shows a ductile behavior and sensitivity to the load rate. 

 

 

Figure 1.3. Tensile response of PA66 for different strain rates (MOU06). 

 

With regard to other properties relevant to the modeling activity (formalized later), the reader 

can refer to Tab. 1.1.  

 

Table 1.1. Properties of a PA66 material (BAS1). 

Density [kg/m³] Young’s modulus [MPa] Poisson’s ratio [-] 

1130 3000 0.39 
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1.2.2  Filler 

 

Different types of fillers, in particular fibers, might be used to reinforce the thermoplastic 

matrix (e.g. steel, glass, carbon and natural fibers). Especially, in this work short fibers have 

been employed. It has been reported by many authors that such fillers get broken during the 

production process and their length is significantly reduced and can be described by means 

of a fiber-length distribution (FU00, FU01, MOR15, HAS12, KÖP13, MAS16, LEE18).  

The SFRTs adopted in this work contain short E-glass fibers. Typical values for the fiber 

properties that will be used in the next chapters are reported in Tab. 1.2. 

 

Table 1.2. Glass fibers’ properties. 

Density [kg/m³] Young’s modulus [MPa] Poisson’s ratio [-] 

2540 72000 0.22 

 
 

1.2.3  Useful parameters 

 

Some parameters that will be used later on are hereby described. 

 

Fiber aspect ratio:  

Referring to short fibers, their geometry is normally described as a cylinder, as it is depicted 

in Fig. 1.4. 

 

 

Figure 1.4. Schematic representation of a short fiber and significant dimensions. 

df 

lf 
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In Fig. 1.4, symbols lf and df denote the fiber’s length and diamater. These two paramters 

can also be combined and the fiber aspect ratio (Ar) can be defined thus: 

 

Ar =
lf
df

 (1.1) 

 

Fiber volume fraction: 

While talking about composite materials, terms fiber volume fraction (vf) and fiber weight 

fraction (ωf) are commonly adopted to quantify the content of fibers inside the composite.  

The correlation between ωf and vf reads: 

 

ωf =
ρf vf

ρf vf + ρm (1 − vf)
 (1.2) 

 

where subscripts f and m respectively denote fibers and matrix and symbols ω, v and ρ indi-

cate the constituent’s weight fraction, volume fraction and density. 

As it will be discussed in detail later on, this entity has a significant influence on the compo-

site mechanical properties. 

 

Fiber orientation tensor: 

While modeling short glass fiber-reinforced polymers, the involved constituents may be nor-

mally considered as isotropic, but the union of matrix and fillers (i.e. short fibers) usually 

gives rise to an intrinsic composite anisotropy, which makes the material mechanical re-

sponse depend on the applied load direction.  

Nevertheless, the anisotropy of such materials generally varies within the considered part. 

The local material anisotropic response is a consequence of the complex arrangement that 

fibers assume while settling inside the mold. In particular, the anisotropy can beattributed to 

the orientation of fibers or, rather, to their orientation distribution. It is common practice to 

derive the latter from the fiber orientation tensors (FOT) that can be estimated numerically 
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(i.e. by means of process simulations) of experimentally (through optical observations or 

computed tomography). 

The formulation of the FOT has been extensively treated in the work of Advani and Tucker 

in 1987 (ADV87) to describe and predict the fiber orientation distributions in composite ma-

terials. More precisely, the authors dealt with the placement of short stiff fibers while being 

carried by the flow of a viscous material.  

In ADV87, the formulation of the FOT for the orientation state estimation of a generic point 

is provided and the single fiber is ideally modelled as a rigid cylinder, the orientation of 

which is described by two angles (ϕ and θ) identifying a unit vector 𝐩, as Fig. 1.5 shows. 

The fiber orientation tensor has been subsequently used by many other authors (ADV87, 

DOG05, DOG06) for describing the orientation assumed by short fibers and developing fail-

ure criteria. According to Fig. 1.5, the expressions of the vector 𝐩 components (px, py, pz) 

is: 

 

px = sin θ cosϕ 

py = sin θ sin ϕ 

pz = cos θ 

(1.3) 

 

The FOT will be used in this work to compute the fiber orientation probability density func-

tion (FOPDF) denoted by ψ(θ,ϕ) or equivalently by ψ(𝐩). The latter expresses the proba-

bility (P) of finding a fiber within a sufficiently small interval described by a predefined 

vector 𝐩k, according to the following equation: 

 

P(𝐩k < 𝐩 < 𝐩k + d𝐩) = ψ(𝐩k)d𝐩 (1.4) 

 

As it will be detailed later on, the FOPDF can be expressed as a function of the second and 

the forth order FOT, respectively indicated by 𝐀 and 𝔸 according to Eq. (1.5). 

 



Fundamentals and preliminary remarks 

13 

ψ(𝐩) ≈ f(𝐀,𝔸) (1.5) 

 

 

Figure 1.5. Unit vector and its describing angles. 

 

As it can be read in ADV87, Eq. (1.5) can be expressed as a Fourier series expansion and 

reduces the information concerning the fiber orientation to the identification of a scalar value, 

i.e. ψ(𝐩). 

Only the second-order tensor is often available and the estimation of 𝔸 will be performed by 

means of the closure approximation expressions provided in ADV87, which permits the for-

mulation of the fourth-order FOT as a function of the second-order one. However, the ex-

pressions of 𝐀 and 𝔸 read: 

 

Aij = ∮pi pj ψ(𝐩) d𝐩 (1.6) 

 

Aijkl = ∮pi pj pk pl ψ(𝐩) d𝐩 (1.7) 

 

where Aij and Aijkl respectively denote 𝐀 and 𝔸 by means of the Einstein’s notation and pi 

is a generic component of the unit vector 𝐩.  

Some characteristics of the second-order FOT are additionally expressed by means of the 

following equalities: 

x 

y 

z 

𝐩 

θ 

ϕ 
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Aij = Aji 

0 < Aii < 1     and    ∑ Aii = 1𝑧
𝑥             ∀i  in  [x, y, z] 

−
1

2
< Aij < −

1

2
           ∀i, j   in  [x, y, z]    with     i ≠ j  

(1.8) 

 

Eq. (1.6) and (1.7) are valid in ideal situations in which angles θ and ϕ have no discontinuities 

while ranging, respectively, within [0, π] and [0, 2π]. Indeed, while dealing with discrete 

fiber orientations, the second-order FOT is computed by means of the following equation: 

 

Aij =
1

N
∑ pi,k pj,k

N

k=0

 (1.9) 

 

where pi,k can is obtained by substituting θk and ϕk in Eq. (1.3). Term N of Eq. (1.9) denotes 

the amount of fibers enclosed in the observation volume. Therefore, the formulation of term 

pi,k pj,k yields: 

 

pi,k pj,k = [

sin2θk cos2ϕk sin2θk cosϕk sinϕk sinθk cosϕk sinϕk

sin2θk cosϕk sinϕk sin2θk sin
2ϕk sinθk cosϕk sinϕk

sinθk cosϕk sinϕk sinθk cosϕk sinϕk cos2θk

] (1.10) 

 

 

1.3  Injection molding process 

 

The injection molding (ROS12, BIR13, WEB2) is a process commonly adopted for the pro-

duction of plastic parts and, in particular, has been used for the fabrication of all SFRT spec-

imens that will be presented in this work.  

In the practice, this process is used for producing thin-walled parts that might be character-

ized by complex shapes, generally difficult to achieve with other methods. Furthermore, in-

jection molding guarantees excellent fine details and very high production rates. 
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1.3.1  Machine modules 

 

The part production requires: the injection molding machine, the raw plastic material (in this 

case, the short glass fiber-reinforced thermoplastic) and the mold.  

A schematic representation of the injection molding machine is reported in Fig. 1.6.  

 

 

Figure 1.6. Schematic scheme of an injection molding machine (PAT06). 

 

The latter can be schematically subdivided into two units: 

 Injection unit: the raw material is introduced into the barrel by means of the hopper. 

Inside the barrel, a reciprocating screw rotates and slides, making the material ad-

vance forward. In parallel, the heating generated externally, together with the friction 

and the pressure produced among the screw grooves, makes the material melt.  

 Clamping unit: in this unit, a half of the mold (front) is fixed to a stationary large 

plate, called platen.  The rear half of the mold is instead connected to a moving platen, 

which enables the extraction of the part once the injection is over. A clamping motor 

drive controls the positioning of the moving platen. 
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1.3.2  Process phases 

 

The phases, which this process method is composed of, can be summarized as follows: 

1. Clamping: the mold has to be secured to the clamping system. Both halves of the mold 

are connected to the clamps, but only one is allowed to slide while the other is fixed. 

The system is normally controlled by a hydraulic system. 

2. Injection: the material (in the form of pellets) is fed into the injection unit and is molten 

thanks to the very high temperature and pressure. 

3. Cooling: as the material gets in contact with the mold walls, this step begins and the 

part starts to assume the desired shape. Shrinkage deformations are also possible be-

cause of this stage and they can be less visible whether the material is efficiently 

packed. 

4. Ejection: one half of the mold is firstly ejected and the produced part is pushed out of 

the front half of the mold. 

5. Post-processing: some excess material that have solidified during the process can be 

eventually removed. 

 

 

1.4  Computed tomography  

 

The term tomography (KRE17) refers to a technique that allows the gathering, in a non-

destructive way, of sectional images of an entire body part that can be passed through by a 

certain radiation. This methodology is adopted in different fields, such as radiology, biology, 

material science (LAP16), etc.  

The conventional computed tomography (CT) makes use of the X-rays for scanning the part 

of interest. The beam source (or alternatively the object) moves in multiple directions during 

the exposure time of the observation and enables to obtain images of the inside of the ana-

lyzed volume. The geometry reconstruction relies on the mathematical principle that an infi-

nite amount of projections permits to entirely replicate an object geometry (HSI09). This step 
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usually takes place in a software collecting data from the analyses. Eventually, a post-process 

can be performed to carry out three-dimensional images and to extract useful information.  

A schematic representation of a CT machine is depicted in Fig. 1.7. 

 

 

Figure 1.7. Schematic representation of a CT scan. 

 

Concerning the working principle of the CT, the X-rays are emitted by a tube (source) and 

hit the detector positioned on the other side of the object. This operation is repeated from 

different angulations of the part in order to have a fully 3D image. As the geometry is elabo-

rated with the software, it is discretized in small voxels, each of them containing a grey-scale 

value. The latter depends on the absorption properties of the investigated constituents and, 

by properly choosing a grey-scale threshold, the different phases can be thus separated. 

In particular, this work deals with SFRTs, where fibers and matrix possess different X-ray 

absorption properties, this leading to a clear graphical separation of the constituents. Once 

the CT data are transferred to the post-processing software, it is possible to extract some local 

information, i.e. fiber orientation tensor, fiber volume fraction, etc.  

Referring to SFRTs, the CT has been adopted in this work for evaluating the FOT variation 

within volumes considered as critical in terms of fatigue resistance of the component. In order 

to evaluate the FOTs, a volume discretization in elements has to be performed with the soft-

ware, as it is schematically shown in Fig. 1.8. 

X-ray source 

X-ray detector 

Rotary axis 

Object 

X-ray beams 
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Figure 1.8. Schematic representation of a volume discretization for CT analyses. 

 

As the grid schematically shown in Fig. 1.8 is created, the evaluation of the fiber orientation 

tensor is now possible for each element. 

 

 

1.5  Quasi-static behavior of SFRTs 

 

This section aims at the giving an overview on the quasi-static behavior (σ-ε curves), as well 

as the elastic properties, of short fiber reinforced thermoplastics. Similarly to those SFRTs 

undergoing fatigue loading, such composites yield different responses depending on the pa-

rameters characterizing the material and the external factors to which it is subjected. 

The effect of fiber volume fraction, fiber orientation, temperature and moisture will be here-

inafter briefly discussed. 

 

1.5.1  Fiber volume fraction 

 

The choice of the fiber volume fraction while creating a SFRT part plays an important role 

with regard to the material mechanical response while subjected to mechanical loadings. In 

the literature, different authors have investigated how the fiber content affects the quasi-static 

behavior of SFRTs. It can be generally stated that, by increasing the amount of fillers (i.e. 

fibers), the composite ultimate tensile strength (UTS) is enhanced. The same observation can 

be furthermore done for the elastic response of the tested material. 

It must be remarked that the fiber volume fraction can be directly correlated to the fiber 

weight fraction, once the constituents’ density is available.  

Element Fiber 

Matrix 
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Fu et al. (FU00) focused on the effect of fiber volume fraction on the quasi-static response 

of a polypropylene (PP) reinforced with short glass fibers Fig. 1.9. 

 

 

Figure 1.9. Quasi-static curves for a PP reinforced with short glass fibers (FU00). 

 

By focusing on the effect of fiber volume fraction on UTS (Fig. 1.10a) and on the tensile 

elastic response (Fig. 1.10b) of the material, an improvement in terms of mechanical proper-

ties can be observed.  

Further details related to this PP matrix composite can be found in FU00. 

In the present work, fatigue criteria for SFRTs will be later proposed and formulated and, in 

particular, all proposed and used data refer to short fiber-reinforced polyamides 6.6 (PA66). 

In Fig. 1.11, the UTS and elastic modulus variations are reported for short fiber composites 

with PA66 matrix.  
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Figure 1.10. UTS (a) and tensile modulus (b) vs. fiber volume fraction for a short glass fiber-rein-

forced PP (FU00). 
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Figure 1.11. UTS (a) and tensile modulus (b) vs. fiber volume fraction for a short glass fiber-rein-

forced PA66 (BAS2, BAS3, BAS4, BAS5). 

 

1.5.2  Fiber orientation 

 

Dealing with short fibers, their orientation is an issue that many authors face while trying to 

properly describe the mechanical behavior of SFRTs. In this paragraph, the actual local fiber 

orientation variation is not taken into account, but, rather, the angle at which specimens have 

been extracted from injection-molded plates. Because of the material anisotropy induced by 

fibers, the composite mechanical properties reveal to depend on the extraction angle, identi-

fied by angle θ.  

De Monte et al. (DEM10) investigated the variation of the UTS (Fig. 1.12a) and tensile mod-

ulus (Fig. 1.12b) for a polyamide 6.6 reinforced with the 35 wt% of fibers (PA66-GF35). 

From Fig. 1.12 it is clear that the specimens do not possess perfectly aligned fibers that are 

oriented with the extraction angle. Indeed, a different mechanical behavior is encountered for 

different thicknesses, this meaning, in turn, that fibers are differently oriented with the three 

different specimen geometries. For this reason, more effort will be put on the investigation 

of the actual fiber orientation within the next chapters. 
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Figure 1.12. Regression of tensile modulus (a) and UTS (b) variation as a function of the specimen 

extraction angle, for three different thicknesses. 

 

1.5.3  Temperature 

 

The effect of temperature on the mechanical behavior of such materials cannot be neglected. 

Also in this case, test results for different temperature have been reported by different au-

thors. 

Once again, in DEM10 data points carried out at 130°C are reported for different extraction 

angles in case of a PA66-GF35. Furthermore, after summarizing data of BAS4, the effect of 

temperature on the quasi-static response of such materials tested at different temperatures is 

shown in Fig. 1.13.  

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60 70 80 90

T
en

si
le

 m
o

d
u

lu
s 

[G
P

a]

θ [°]

1 mm

2 mm

3 mm

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90

U
T

S
 [

M
P

a]

θ [°]

1 mm

2 mm

3 mm

(a) 

(b) 



Fundamentals and preliminary remarks 

23 

 

Figure 1.13. Quasi-static tensile curves for a PA66-GF35 at different temperatures. 

 

1.5.4  Moisture 

 

As reported in different works, the mechanical properties of thermoplastics may be affected 

by the humidity absorbed by the composite matrix (BAS90, MOH94, ISH94, LYO98, 

PAN07, HAS12, ARI13). Fig. 1.14 reports the differences in terms of UTS and tensile mod-

ulus for a PA66-GF35, both for dry-as-molded and conditioned (i.e. after humidity absorp-

tion) specimens. Thence, it can be stated that the presence of water in the matrix significantly 

affects the composite properties, decreasing the material strength and making it more com-

pliant with respect to the dry-as-molded state. 

 

 

Figure 1.14. UTS (a) and tensile modulus (b) for a dry-as-molded and conditioned PA66-GF35. 
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1.6  Fatigue behavior of SFRTs 

 

The principal causes affecting the fatigue life of short fiber reinforced thermoplastics are 

hereby presented and discussed. Namely, the effects of the following factors/parameters will 

be treated: 

 Fiber volume fraction; 

 Fiber orientation; 

 Temperature; 

 Humidity; 

 Mean stress; 

 Frequency; 

 Notch geometry. 

 

1.6.1  Preliminary remarks 

 

Before focusing on the fatigue response of SFRTs, some preliminary remarks concerning the 

basic concepts of the fatigue theory are hereby recalled. 

Fatigue data can be normally reported with different plot types, but in this work only Wöhler-

curves will be treated. The latter, can also be named S-N curve and are generally displayed 

in a bi-logarithmic scale. Referring to Fig. 1.15, the x axis consists in the number of cycles 

N spent up to a desired moment of the part fatigue lifetime. Namely, either cycles up to crack 

initiation either up to failure will be discussed later on. 

On the other hand, the y axis corresponds to the nominal stress applied to the specimen of 

interest. As shown in Fig. 1.15, in the literature either the stress amplitude or the maximum 

applied stress can be used for the parts’ design. The meaning of these two types of stresses 

can be better understood by referring to Fig. 1.16, where a schematic constant amplitude load 

history is depicted. 
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Figure 1.15. Schematic example of Wöhler-curve in bi-logarithmic scale. 

 

Referring to Fig. 1.16, the load ratio (R) of a generic applied cyclic load is defined as follows: 

 

R =
σmin

σmin
 (1.11) 

 

As it is clear from Fig. 1.16, symbols σa, σmin, σmax and σm respectively denote the ampli-

tude, the maximum, the minimum and the mean value of the stress-time curve. 

 

 

Figure 1.16. Schematic representation of a constant amplitude cyclic load history. 
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1.6.2  Fiber volume fraction 

 

As anticipated in case of quasi-static loadings, the amount of fillers is crucial to determine 

the mechanical properties of SFRTs. This statement is also valid for parts or specimens un-

dergoing mechanical fatigue loadings. 

It must be additionally highlighted that the effect of fiber volume fraction and orientation on 

the fatigue strength of such materials cannot be separated a-priori and, therefore, the trends 

of the fatigue strengths reported in this paragraph must not be considered as always valid. 

The aim of this section is indeed to give a qualitative overview about the effect of fiber con-

tent on the fatigue strength of SFRTs. However, chapter 2 will show how the fatigue strength 

of 90°-oriented specimens is not very sensitive to the fiber volume fraction.  

Only few works in the literature has dealt with the effect of the filler content on the fatigue 

strength of a SFRT. For example, Zago et al. (ZAG01) investigated the effect of fiber content 

(30 wt% and 50 wt%) for short glass and carbon fiber reinforced thermoplastics showing an 

enhancement of the mechanical properties by increasing the amount of fillers. 

Belmonte et al. (BEL17) studied the influence of fiber volume fraction on the fatigue life of  

a short glass fiber-reinforced PA66. Neglecting the fiber orientation differences among the 

analyzed specimens, the authors of BEL17 showed that a significant strength increase is ob-

served by sequentially considering PA66-GF15, PA6625 and PA66-GF3. Only a slight im-

provement of the fatigue properties can be seen when moving to the PA66-GF50. Since the 

authors dealt with sharply notched specimens, they also quantified the cycles to crack initia-

tion and to failure. Focusing on the lifetime spent up to 105 cycles, the fatigue strength values 

(referred to the crack initiation phase) can be plotted as in Fig. 1.17. More details regarding 

the used geometries and test conditions can be furthermore found in BEL17. 
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Figure 1.17. Effect of short glass fiber content on the fatigue strength of a PA66 (BEL17). 

 

1.6.3  Fiber orientation 

 

The effect of fiber the orientation on the fatigue life of SFRTs would require detailed studies 

at the micro-scale, since the fiber cannot be considered as perfectly aligned along one com-

mon direction. Nevertheless, different authors have quantified the fatigue strength of SFRT 

plain specimens, stating that not only the extraction angle influences the fatigue behavior of 

such materials, but also the profile of the through-the-thickness fiber orientation tensor too 

(BER07, DEM10, KLI11, LUN13, TAN14, ARI14, JAI16). 

Bernasconi at al. (BER07) employed a PA6-GF30 for investigating the effect of the extrac-

tion angle on a plain specimen. They decided to cut coupons at four different angles, showing 

that, as expected, the fatigue strength of the treated SFRT is highly sensitive to the extraction 

angle and, therefore, to the fiber orientation. The obtained regression values for the material 

fatigue strength chosen at 105 cycles (specimen failure) are summarized in Fig. 1.18. In the 

latter, a neat decrease of the specimen fatigue strength is observed. This is a consequence of 

the fact that fibers have a good degree of alignment within the skin layers of the specimen, 

as it is shown in BER07.  
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Differently from BER07, De Monte et al. (DEM10) investigated the effect of the plate thick-

ness and, implicitly, of the fiber orientation along the thickness direction. The authors ob-

served that, by increasing the thickness, a lower sensitivity to the extraction angle is encoun-

tered. 

 

 

Figure 1.18. Effect of extraction angle (θ) on the fatigue life of a PA6-GF30 (BER07). 

 

In this context, Fig. 1.19 reports the differences in terms of fatigue strength for a 1 mm and 

a 3 mm thickness specimen as a function of the cut-out angle.  

 

 

Figure 1.19. Effect of extraction angle (θ) on the fatigue life of a PA66-GF35 (DEM10). 
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1.6.4  Temperature 

 

Also the effect of temperature on the fatigue behavior of SFRTs has been often treated in the 

literature showing that, by significantly increasing the service temperature, the material be-

comes more compliant and less resistant. 

As an example of the fatigue behavior of a PA66-GF30 undergoing high temperatures, Eftek-

hari and Fatemi (EFT16) reported data shown in Fig. 1.20 for temperatures of 85° and 120°C. 

 

 

Figure 1.20. Fatigue behavior of a PA66-GF30 at different temperatures (EFT16). 

 

With regard to the specimens of Fig. 1.19, the effect of temperature is also reported in 

(DEM10) and shown in Fig. 1.21.  

 

      

Figure 1.21. Fatigue behavior of a PA66-GF35 at different temperatures (DEM10). 
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1.6.5  Moisture 

 

Similarly to the effect of temperature on the fatigue repose of SFRTs, as the composite ab-

sorbs water and, thence, the matrix cannot be considered dry anymore, a change in terms of 

fatigue strength occurs (HOP92, BAR07, MOR15_2, FAT15 ). 

In MOR15_2, fatigue curves have been obtained for a PA6-GF30 in both dry and wet condi-

tions. These data are reported in Fig. 1.22 and show how the presence of water within the 

composite thermoplastic matrix reduce the fatigue strength of the composite. 

 

 

Figure 1.22. Moisture effect on the fatigue behavior of a PA6-GF30 extracted longitudinally (L) 

and transversally (T) from injection-molded plates (MOR15_2). 

 

1.6.6  Mean stress 

 

Another parameter affecting the fatigue lifetime duration of SFRTs can be attributed to the 

mean stress at which tests are performed (MAL04, SON08, KLI11, KRA16, EFT16, 

KAW17). 

In their work, Mallick and Zhou (MAL04) performed fatigue curves at different load ratios 

for tension-tension tests.  

Fig. 1.23 shows that the higher the load ratio is, the lower the fatigue strength is. 
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Figure 1.23. Effect of load ratio on the fatigue response of a PA66-GF30 (MAL04). 

 

1.6.7  Frequency 

 

In the work of Eftekhari and Fatemi (EFT16), some investigations on the effect of loading 

frequencies are provided (Fig. 1.24). The authors quantified the cycles spent up to failure for 

a chosen load, after performing tests at different frequencies. For instance, they observed that 

in case of a short fiber-reinforced polypropylene (PP-GF30), the amount of cycles up to fail-

ure increases while increasing the test frequency until a certain value, after which self-heating 

effects becomes predominant with respect to the beneficial frequency effect. 

 

 

Figure 1.24. Fatigue cycles to failure vs. load frequency for a PP-GF30 (EFT16). 
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1.6.8  Notch geometry 

 

SFRT materials are often employed thanks to the possibility of filling complex cavities dur-

ing the injection molding process. Mold geometries might give rise to strong geometrical 

variations which in turns can be identified as notches contributing to local stress concentra-

tions. 

The effect of notches on the fatigue behavior of SFRPs has not been widely covered in the 

literature yet. The definition of the notch geometry and the creation of it is a crucial stage, 

since the local fiber orientation is strongly affected by the notch generation method. In this 

context, Belmonte et al. (BEL16, BEL17. BEL17_2) and Bernasconi et al. (BER15) innova-

tively proposed to include the notch geometry in the mold, without machining it. Indeed, they 

demonstrated how local fiber orientation does not appear similar to the one obtained in in-

jection-molded plates.  

In the work of Zhou and Mallick (ZHO06), notches were obtained by drilling holes of dif-

ferent sizes at the mid-length of a plain specimen. The authors showed how the fatigue 

strength of PA66-GF33 is lowered by increasing the holes diameter (Fig. 1.25). 

 

 

Figure 1.25. Effect of hole-size on the fatigue response of a PA66-GF33 (ZHO06). 
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For the sake of completeness, the fatigue curves are also reported in case a sharply notch was 

obtained by means of a metallic slit generating a 0.2 mm radius notch (BEL17_2). The com-

parison with a plain specimen is therefore shown in Fig. 1.26. 

 

 

Figure 1.26. Fatigue curves for a plain and a sharply notched PA66-GF35 (BEL17_2). 
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Chapter 2 

 

Materials and experiments 

 

2.1  Introduction 

 

The aim of the present chapter is to present new experimental data enabling a comprehensive 

characterization of the considered materials (short glass fiber-reinforced thermoplastics) and 

to supply further information related to the analyzed microstructures (local fiber orientation 

distributions) at the most critical sites. The attention is mainly focused on the effect of fiber 

volume fraction and fiber orientation on the fatigue life of plain and notched specimens made 

of a polyamide 6.6 (PA66) reinforced with short glass fibers. Additionally, fatigue tests on 

coupons in the presence of notches (sharp and mild) are presented in order to evaluate the 

effect of the notch geometry, combined to the intrinsic material anisotropy. 

Furthermore, computed tomography (CT) scans have been performed for most of the pre-

sented specimens and, additionally, the fiber orientation tensors (FOT) have been evaluated 

for some of them, the fatigue data of which are already present in the literature. This has been 

done in order to provide the developed fatigue models with the proper inputs (FOTs and 

fatigue S-N curves) in order to robustly verify the applicability of the fatigue criteria that will 

be treated within the next chapters, either for plain either for notched coupons,. 

It has been observed and stated by different authors (DEM10, BER07, ARI14) that short 

fiber-reinforced composites possess anisotropic properties, which in turn cannot be generally 

considered uniform along the three directions of the Cartesian reference system within an 

injection-molded specimen (BEL17) or plate. Thence, analyses on the locally varying fiber 

distributions are needed to properly build up finite element (FE) models capable of predicting 

the fatigue strength of the considered geometries. 
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Differently from continuous fiber-reinforced polymers, where the fiber orientation recon-

struction reveals to be sufficiently straightforward thanks to the ease of setting the fiber ori-

entations within the plies of the produced specimens, in case of SFRTs the injection molding 

process increases the difficulty of controlling the local fiber orientations at the most critical 

sites (e.g. close to strong geometrical variations). As a matter of fact, not only the molds’ 

geometry might affect the local fiber placement, and therefore the part’s fatigue strength, but 

also the process parameters (e.g. pressure and temperature) play an important role in the fiber 

orientation predictability. 

In the literature, the correlation between the fatigue response of SFRTs and the fibers’ orien-

tation has been not deeply investigated yet. Indeed, only a few works showing the fatigue 

behavior of such materials associated to studies on the actual microstructures are available. 

In this context, Bernasconi et al. (BER15) investigated the effect of V-notch radius size and 

local fiber orientation of a glass fiber reinforced polyamide 6 (PA6-GF30). Furthermore, they 

optically observed the cross sectional area and quantified the FOT components variation. 

De Monte et al. (DEM10_3) dealt with injection-molded tubes (PA66-GF35) undergoing 

multiaxial external fatigue loadings. The authors also performed 2D analyses on the net sec-

tion and evaluated the first component of the FOT. They found a non-negligible fiber orien-

tation gradient along the specimen thickness. The authors of DEM10 performed process sim-

ulations, as well, which revealed to be too optimistic in terms of fiber alignment. Further-

more, in DEM10 the effect of temperature, load ratio and applied biaxiality ratio was inves-

tigated by performing S-N curves. 

In BEL17, the specimen characterization has been performed in the presence of sharp 

notches. In particular, the authors aimed at quantifying the effect of the filler content on the 

fatigue strength of the proposed specimens geometries. Similarly to BER15, the authors in-

novatively did not created the notch geometry by machining injected plates, but inserted a 

metallic slit during the molding process in order to emulate a real part fabrication. They also 

gave an insight about the local fiber arrangement at the notch root, pointing out that a fiber 

orientation distribution gradient might be normally encountered along the 3D directions in 

such a scenario. 

Nevertheless, many works in the literature rely on qualitative analyses of the microstructure 

or on the fiber orientations carried out by performing process simulations. As previously 
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mentioned, in order provide the developed models with reliable inputs, fatigue data and FOTs 

(obtained with CT scans) of plain and notches specimens are hereby presented.  

One more remark concerns the number of cycles employed for displaying S-N curves. In this 

context, the present work aims at providing a fatigue criterion enabling the specimens’ life-

time prediction up to crack initiation. According to (BEL17_2), plain coupons do not nor-

mally undergo extended crack propagation phases because of the absence of stress concen-

trations that usually localize the crack initiation within limited volumes. For the previously 

mentioned reasons, the number of cycles up to failure will be employed in the absence of 

notches. On the other hand, while considering notched specimens, depending on the notch 

radius and the specimen size, the crack onset phase might interest only a reduced percentage 

of the material life.  

According the previous observations, the following data will be presented in this chapter: 

 FOT components evaluation by means of the X-ray computed tomography; 

 Fatigue curves up to failure in the absence of notches; 

 Fatigue curves up to crack initiation in the presence of notches. 

 

 

2.2  Specimens’ geometry 

 

Different specimen geometries will be hereinafter involved to verify the robustness of the 

fatigue criterion that will be detailed within the next chapters. In this interest, not always the 

same coupons’ geometry is considered. Indeed, the fatigue strength and the fibers’ orientation 

of specimens characterized by different thicknesses (1 mm, 2 mm and 3 mm), lengths (80 

mm and 250 mm) and notch radii (0.1 mm, 0.2 mm, 2.0 mm and 5 mm) are investigated. 

Nevertheless, all data here presented and those obtained from the literature are characterized 

by the same constituents, i.e. a PA66 matrix reinforced with a certain fiber weight fraction 

(GF15, GF25, GF35 and GF50). No particular attention is given to the possible local fiber 

volume fraction variations, since the proposed fatigue models will assume a uniform distri-

bution of the fiber content within the analyzed part.  
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The effect of the material anisotropy is also of particular concern. Therefore, in different 

occasions, the influence of the angle between the main flow direction (MFD) and the loading 

direction is accounted for. In fact, specimens nominally oriented at 0°, 30° and 90° are also 

used for the sake of completeness. 

The geometries of specimens, as well as of the injection-molded plates, are described below. 

With regard to the specimens extracted form plates, it must be highlighted that only one 

coupon is obtained from each plate by means of the end mill process (cylindrical tool) and 

the specimen lateral surfaces have not been polished after the extraction. 

 

2.2.1  Plain specimens 

 

In this section, an overview of the considered plain specimens is given. The location at which 

CT scans have been performed is moreover marked by means of blue dots. Eventually, sym-

bol t will be used in this chapter to denote the thickness of the geometry of interest. 

Firstly, the dimensions of the specimens presented by De Monte et al. (DEM10_2) are re-

ported in Fig. 2.1. The reason why such a geometry is depicted is due to the fact that values 

of the significant FOTs will be presented later on. This geometry is furthermore denoted in 

this work by P/A, meaning P plain and indicating A the type of geometry.  

 

  

Figure 2.1. Geometry P/A (DEM10_2). Specimen and plate dimensions.  
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More details related to the coupons of Fig. 2.1 can be found in DEM10_2. 

The next geometry called P/B has been extracted from a plate, the size of which is 120x80x2 

mm3. 

 

 

Figure 2.2. Gemetry P/B. Specimen and plate dimensions. 

 

The reason of choosing such a geometry is due to the fact that more control related to the 

crack onset site was required. Indeed, it was demonstrated by De Monte et al. (DEM08) that 

geometry P/A might have the cracks arising at the different locations along the gauge length. 

On the other hand, specimens P/B always yield cracks at the smallest cross-sectional area. 

The third adopted plain geometry (P/C) is shown in Fig. 2.3. Contrary to the previous ones, 

the latter has been obtained without machining plates. In fact, the mold corresponds to the 

coupon and the only performed mechanical finish served to remove the injection gate.  

 

 

Figure 2.3. Geometry P/C. Specimen dimensions. 
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2.2.2  Notched specimens 

 

Beside tests on plain specimens, coupons in the presence of notches will be also taken into 

account. The reason of this choice derives from the fact that real SFRT parts produced in the 

industry are mostly characterized by sudden geometrical variations raising strong stress con-

centrations. Later, a model for the prediction of the notch effect on the fatigue life of SFRTs 

will be presented. In order to extensively validate the given approach, data related to the 

FOTs will be reported in this paragraph. 

The first employed geometry consists in a V-notched specimen machined out of the plates of 

the same series as the one depicted in Fig. 2.2. The specimen dimensions are therefore shown 

in Fig. 2.4.  

 

 

Figure 2.4. Geometry N/A. Specimen and plate dimensions.  

 

The specimen type shown in Fig. 2.4 has been chosen to have a good control of the FOTs 

characterizing the coupon. Namely, less variability with regard to the fiber orientation within 
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the notch shape. Thus, while assigning the elastic properties to the model, less effort can be 

put in this activity.  
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On the other hand, to complete the cases of study, a scenario in which the FOT at the notch 

root strongly depend on the material flow hitting a preexisting notch is required The notch is 

shaped during the injection molding process by means of a metallic slit inserted into the mold. 

According to the work of (BEL17_2), fatigue data presented by the authors will be adopted. 

In this interest, the FOTs have been evaluated by means of the X-ray computed tomography. 

Specimen geometry N/B is furthermore shown in Fig. 2.5.  

 

 

Figure 2.5. Geometry N/B (BEL17_2). Specimen dimensions. 

 

The previous coupons (N/A and N/B) can be classified as sharply notched specimens. Hence, 

the validation of a robust fatigue criterion requires mild notches as well, in order to under-
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ingly, the dimensions of a mild notched coupon, denominated N/C, are reported in Fig. 2.6. 

 

 

Figure 2.6. Geometry N/C. Specimen and plate dimensions. 
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Eventually, the notch geometry of specimen N/D (Fig. 2.7) has been obtained with a circular 

metallic insert. Therefore, fibers tend to settle according to the deviated material flow during 

the injection molding process. 

 

 

Figure 2.7. Geometry N/D. Specimen dimensions (DEM08). 

 

It must be noticed that Fig. 2.7 has no blue dot at the notch tip. Indeed, no CT scans have 

been performed and only FOT data resulting from Moldflow® simulations will be used. This 

can be justified by the notch shape. Indeed, no strong geometrical variations are induced by 

the large notch radius (i.e. 5 mm) and the material flow can be assumed not to undergo par-

ticular out-of-plane perturbations, whereas the same observations cannot be done for geom-

etry N/B. The central slot of the latter gives rise to an instable material flow that is expected 

not to be captured through process simulations efficiently. 

It is additionally remarked that the considered specimens are characterized by different sizes 

and notch shapes. Therefore, in order to develop reliable fatigue criteria to predict the speci-

men failure, proper information related to the fibers’ orientation must be chosen. In this in-

terest, the following paragraph report data of the FOTs evaluated for the previously described 

geometries. 

 

 

2.3  X-ray computed tomography analyses 

 

In this paragraph, results concerning the evaluation of the FOTs at the critical specimen lo-

cations are presented and discussed. Fiber orientation tensors have been obtained by perform-

ing CT scans at the sites of interest. 
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The choice of the analyzed volumes is a crucial operation for the model development process. 

In fact, the assignment of the elastic properties to the elements of the FE mesh highly affects 

the resulting stress fields, which in turn are responsible for defining the proper stress compo-

nent controlling the fatigue damage. Indeed, as it will be shown within the next paragraphs, 

FOTs are normally used as inputs for analytical homogenization schemes for the estimation 

of the elastic properties of an entire FE model. 

All CT analyses here presented have been performed in collaboration with the CR/ANA de-

partment of Robert Bosch GmbH. A phoenix v|tome|x m machine by the firm GE Sensing & 

Inspection Technologies has been used to evaluate the FOTs within the analyzed parts, the 

resolution of which is nominally beyond down to < 1 µm. 

 

2.3.1  Results 

 

In this section, the FOTs resulting from CT analyses on the specimens/plates that have been 

previously shown will be presented and discussed. All FOTs reported in this section have 

been evaluated by means of the orientation analysis module of the software VG Studio Max. 

The latter makes use of the grey-scale values resulting from the analysis of the part of interest. 

Indeed, thanks to their nature, fibers possess a stronger image contrast with respect to the 

matrix, enabling the software to distinguish whether the analyzed voxels belong to fibers or 

matrix. Once a grey-scale threshold is chosen by the operator, an average FOT can be eval-

uated for each grid element, according to Fig. 1.8. 

Before reporting CT data, it must be remarked that two different FOT evaluation techniques 

are here adopted, depending on the specimen nature. Namely, in case of coupons extracted 

from injection-molded plates, only the FOT variation along the through-the-thickness direc-

tion is taken into account. Diversely, whether the notch is obtained by means of a metallic 

insert, a finer discretization of the observed area has to be performed in order to better capture 

the FOT components’ gradient along the three directions of the reference Cartesian system. 

For the sake of completeness, the settings that have been used for the CT machine are listed 

in Tab. 2.1 

It must be furthermore remarked that geometries P/A and N/A have been obtained from the 

same series of plates and, therefore, the same CT data will be employed for both. 
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By reference to Tab. 2.1, the voxel stands for the resolution of the carried out analysis. These 

values can be considered acceptable for the case of SFRTs, since the smallest dimension of 

a fiber, i.e. its diameter, is around 10 µm. On the other hand, if fiber geometry reconstruction 

had to be performed, a higher resolution would be needed. 

 

Table 2.1. Adopted CT scan settings. 

Geometry 

 

Voxel size 

[µm] 

Tension 

[kV] 

Tube current 

[µA] 

Exposure time 

[ms] 

P/A and N/A 2.0 80 225 333 

P/B 2.3 80 225 333 

P/C 2.4 80 225 333 

N/B 2.4 80 225 333 

N/C 2.9 80 225 333 

 

Nonetheless, it is worth mentioning that the reached resolution, i.e. voxel dimension, does 

not correspond to the machine nominal one. This is a consequence of the size of the investi-

gated volume extracted from the plates/specimens. Indeed, the bigger the observed part is, 

lower the resolution is. 

As already said, CT data, expressed terms of FOTs, have been evaluated at the sites high-

lighted with a blue dot in sections 2.2.1 and 2.2.2. Since not only one fiber volume fraction 

has been generally tested, more CT scans have been therefore performed with regard to one 

plate geometry, but for different filler contents. Some coupons have been additionally ex-

tracted transversally to the main flow direction of the plate. There, no further analyses would 

be required, but the FOT components can be simply rotated mathematically. 

As mentioned above, in case of CT scans on plates, the FOT evaluation takes place along the 

through-the-thickness direction. The latter is normally discretized and a certain amount of 

layers are identified. By way of example, Fig. 2.8b reports the image reconstruction of a 

typical CT scan and Fig. 2.8a, 2.8c and 2.8d represent the discretization that might be done 

along the thickness direction. 

For the sake of clarity, be the following notation used to identify the reference systems: 
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 x = main flow direction; 

 y = plate/specimen width; 

 z = through-the-thickness direction. 

The first presented fiber orientation data concern geometry P/A of Fig. 2.1 and the analyzed 

material is a PA66-GF35. The FOT evaluation has been done choosing 15 layers along the 

thickness direction. The resulting FOT components are plotted in Fig. 2.9.  

 

 

Figure 2.8. Example of CT grid placement for analyses on plates. 

 

Without paying attention to the out-of-plane FOT component (azz), Fig. 2.9 presents the skin-

core effect, which is typical for injection-molded plates. Indeed, by observing the xx and yy 

components, it can be quantitatively stated that fibers possess a better alignment within the 

(a) (b) 

(c) (d) 
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regions close to the upper and lower model faces and roughly a transversal orientation within 

the central layers. 

 

  

 

Figure 2.9. FOT components for a plate of geometry P/A (PA66-GF35). Diagonal (a) and out-of-

diagonal (b) components. 
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through-the-thickness has been kept here too. The FOT components evaluated for this plate 

geometry are therefore reported in Fig. 2.10, 2.11, 2.12 and 2.13, respectively for PA66-

GF15, PA66-GF25, PA66-GF35 and PA66-GF50. Here again, the typical skin-core effect is 

encountered. By observing the differences among the investigated fiber weight fractions and 

focusing on the axx components, an improvement in terms of fiber alignment can be observed 

within the skin-layers. On the other hand, the PA66-GF50 plate is characterized by a core-

layer that is much wider than the other plates. 

It must be furthermore noticed that the zz component of the fiber orientations tensors shown 

until now might be also neglected during the modeling process, due to its low values. 

Similar analyses have been carried out for geometry P/C of Fig. 2.3. Having the latter dimen-

sions much bigger than to the previous geometries, more details concerning the crack onset 

critical site will be given. 

Indeed, no measurement has been performed in the center of the gauge length of the speci-

mens, but FOT components estimation has been carried out at the specimen shoulder, as 

highlighted by the blue dot in Fig. 2.5.  

Observing the FOT profiles through-the-thickness of specimens with geometry N/C (Fig. 

2.14-2.17), a better fiber alignment at the critical site is encountered. The reason of it may be 

attributed to the fact that the CT analyses have been performed close to the mold wall, which 

in turn induces a stronger surface tension allowing fibers to settle predominantly along the 

MFD.  

Additionally, the value of axx becomes more uniform along the thickness direction by in-

creasing the fiber volume fraction. 

In the presence of notches, the use of information deriving from CT scans are hereinafter 

treated in a different manner. Especially, the presented results and considerations are valid 

for those notches obtained by inserting metallic slits into the mold while fabricated.  
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Figure 2.10. FOT components for a plate of geometry P/B and N/A (PA66-GF15). Diagonal (a) and 

out-of-diagonal (b) components. 
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Figure 2.11. FOT components for a plate of geometry P/B and N/A (PA66-GF25). Diagonal (a) and 

out-of-diagonal (b) components. 
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Figure 2.12. FOT components for a plate of geometry P/B and N/A (PA66-GF35). Diagonal (a) and 

out-of-diagonal (b) components. 
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Figure 2.13. FOT components for a plate of geometry P/B and N/A (PA66-GF50). Diagonal (a) and 

out-of-diagonal (b) components. 
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Figure 2.14. FOT components for a plate of geometry P/C (PA66-GF15). Diagonal (a) and out-of-

diagonal (b) components. 
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Figure 2.15. FOT components for a plate of geometry P/C (PA66-GF25). Diagonal (a) and out-of-

diagonal (b) components. 
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Figure 2.16. FOT components for a plate of geometry P/C (PA66-GF35). Diagonal (a) and out-of-

diagonal (b) components. 
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Figure 2.17. FOT components for a plate of geometry P/C (PA66-GF50). Diagonal (a) and out-of-

diagonal (b) components. 
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Until now, only FOTs based on a layered discretization through-the-thickness have been pre-

sented. In the presence of metallic slits, the material flow is subjected to strong perturbations 

on the xy plane. Therefore, a fully 3D analysis of the FOTs around the notch tip is needed. 

The software and the method procedure employed for such an operation are the same as those 

used until now. The only difference consists in defining a finer grid of observation elements, 

within each an average FOT is estimated by means of the grey-scale values of the analyzed 

volumes. 

In order to optimally read the FOTs, cubic elements of 80 µm³ are adopted. This choice 

resulted to be a crucial step and difficult to achieve. Indeed, the following observations can 

be done: 

a) The smaller the grid-element size is, the higher the risk of reading volume with no 

fibers is; 

b) The bigger the grid-element size is, the more difficult to properly describe the notch 

edge shape is. 

The risk of point a) to occur is more likely in case of low fiber volume fractions because of 

the reduced amount of fibers within the analyzed volumes. 

In Fig. 2.18 an image acquisition obtained with the CT is shown. After importing all grey-

scale data, an observation grid has been placed at the notch root region, as it is shown in Fig. 

2.19. 

With regard to geometry N/B, in this section only results concerning PA66-GF15, PA66-

GF25 and PA66-GF50 will be shown and discussed, although the validation of the model 

that will be described later on will also involve the PA66-GF35. More details related to the 

latter can be however found in the work of Belmonte et al. (BEL17) who performed fatigue 

tests on specimens of Fig. 2.5 too. 

Because of the large amount of data that have been stored with the CT method applied to 

geometry N/B, only one layer of the specimen thickness will be shown in Fig. 2.20-2.22 to 

have an idea of the main differences in terms of FOTs between specimens with different fiber 

volume fractions. The corresponding out-of-diagonal FOT components are reported in the 

appendix A. 
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Figure 2.18. Notch detail of geometry N/B for a PA66-GF25. Image reconstructed by means of 

computed tomography. 

 

 

Figure 2.19. Grid placement for CT analyses. Specimen N/B made of PA66-GF25. 
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Figure 2.20. FOT components around the notch of specimen N/B made of PA66-GF15. 
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Figure 2.21. FOT components around the notch of specimen N/B made of PA66-GF25. 
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Figure 2.22. FOT components around the notch of specimen N/B made of PA66-GF50. 
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actually agrees with the studies of Belmonte et al. (BEL17_2), who performed several mi-

croscopies at the notch root of the N/B specimen for the fiber volume fractions that are here 

taken into account. Nonetheless, the FOT yy component seems to be relatively lower, this 

implying that fibers are not likely to be oriented along the specimen-width direction. 

Instead, Fig. 2.22 shows that for a PA66-GF50 fibers are better aligned with the main flow 

direction. In fact, higher values of the xx component of the FOT are encountered at the notch 

tip. Furthermore, the notch edges perpendicular to the MDF are characterized by large yy 

components. This highlights the main difference between this fiber volume fraction and the 

previous two. Namely, when the material is highly filled with short fibers, the latter keep 

their in-plane arrangement. Instead, by increasing the fiber volume fraction, fibers deviated 

along the specimen thickness while hitting the notch edges. 

During the modeling activity, the complete three-dimensional grid will be used to properly 

assign the elastic constants to the generated models, while in this chapter only one layer of 

elements isolated along the z axis has been shown for the sake of clarity. 

 

 

2.4  Experimental fatigue data 

 

In this section, fatigue data for short glass fiber-reinforced polyamides 6.6 are presented and 

discussed.  

Not all data that will be used for the validation of the proposed fatigue criteria are hereby 

shown, since part of them have been taken from the literature. The latter will be however 

reported within the next chapters for the sake of completeness while applying the developed 

fatigue models. 

All data hereinafter presented and discussed have been performed  with a load ratio equal to 

0 (R = 0) and at room temperature (RT). Therefore, no effect of temperature and mean stress 

has been investigated, in order to preferentially focus on the fatigue strength variations de-

riving from local fiber orientation distribution and fiber volume fraction. 
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2.4.1  Plain specimens 

 

Fatigue curves for plain specimens of type P/B are firstly presented, the dimensions of which 

are reported in Fig. 2.2. The tested coupons have been cut out of injection-molded plates, 

transversally to the main flow direction. The investigated fiber weight fractions are those of 

PA66-GF15, PA66-GF25, PA66-GF35 and PA66-GF50. These experiments have been done 

at the fatigue laboratory of the CR/APP2 department of Robert Bosch GmbH in Germany 

and are plotted in Fig. 2.23. 

 

  

Figure 2.23. Fatigue data for geometry P/B, transversally extracted from plates. 

 

Fatigue tests (6 tested specimens per curve) of Fig. 2.23 have done by means of a testing 
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served. This might be a consequence of the fact that fibers are mainly oriented transversally 

to the load direction. Indeed, they are not expected to efficiently carry the load while cycli-

cally stressed. Therefore, being the load bearing capability mainly attributed to the matrix, 

no particular differences between the plotted S-N curves of Fig. 2.23 is encountered. On the 

other hand, by referring to the FOTs of Fig. 2.13, a significant improvement of the fatigue 

strength of the PA66-GF50 (geometry P/B) would be expected since the core layer is much 
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wider than the other fiber volume fractions. Contrary, in Fig. 2.23 it can be observed that all 

fatigue curves lie very close to each other. This might be a consequence of the fact that, by 

increasing the amount of fibers within a specimen extracted at 90°, the fibers themselves 

would play a role of matrix stress concentrators when transversal to the load. This would 

limit therefore the beneficial effect of load-bearing capacity normally encountered with fibers 

oriented along the load direction. Therefore, it might be assumed that the possible fatigue 

strength enhancement caused by the large core layer could be weakened by the presence of 

zones with fibers oriented transversally to the loading direction, because of high local matrix 

stresses caused by such a large fiber content (50 wt%). 

The second proposed set of fatigue data has been carried out for plain specimens of type P/C. 

As mentioned above, these coupons have not been machined out of plates, but the specimen 

geometry corresponds to the mold shape. 

 

 

Figure 2.24. Fatigue data for geometry P/C, longitudinally injected. 

 

Once again, the effect of fiber content on the fatigue behavior of SFRTs has been investigated 

in Fig. 2.24. In this case, 9 specimens have been tested for the PA66-GF15, 8 for the PA66-

GF25, 12 for the PA66-GF35 and 8 for the PA66-GF50. The trend of the fatigue strength 

reveals to be different from the former fatigue data of Fig. 2.23. Indeed, a clear difference of 

the relative fatigue strength for the PA66-GF15 can be observed.  
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Nonetheless, it must be kept in mind that the two presented series of fatigue data cannot be 

compared straightforwardly, since specimens have been produced with different methods and 

the through-the-thickness values of the FOT components possess different profiles, as it is 

clear from Fig. 2.10-2.13 and Fig. 2.14-1.17.  

 

2.4.2  Notched specimens 

 

In order to comprehensively capture the effect of the notch geometry, beside the effect of 

fiber volume fraction and local fiber orientation, tests on sharply and mildly notched speci-

mens have been performed. 

Belmonte et al. (BEL17), who tested specimens of type N/B, observed that the crack propa-

gation phase within SFRTs is generally not negligible in the presence of sharp notches. Since 

fatigue criteria up to crack initiation will be later proposed, it is essential to estimate the 

number of cycles up to crack onset in order to get rid of the cycles interested by the crack 

propagation phase.  

Firstly, type N/A coupons are hereby considered and discussed. As reported within the pre-

vious paragraphs, these geometries have been obtained by machining injection-molded 

plates. The crack initiation system has been set up at the fatigue laboratory of Robert Bosch 

GmbH (CR/APP2) and it is depicted in Fig. 2.25. 

 

  

Figure 2.25. Experimental set-up for fatigue tests and crack detection at Bosch. 
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Two LED lamps have been placed in front of the tested specimen in order to light the crack 

up, as it arises. The use of such lamps revealed to make the temperature raise on the specimen 

surface and, therefore, all tests have been performed within a controlled temperature chamber 

(23°C) in order to avoid self-heating phenomena that might deteriorate the material mechan-

ical properties. Additionally, two 5 megapixel cameras have been placed in front of the cham-

ber to detect the crack initiating and growing. 

For some of the tested specimens, scanning electron microscopies (SEM) have been done to 

calibrate the crack detection system. In order to be consistent with the crack lengths detected 

in BEL17, crack lengths of 0-0.5 mm must be detected. In this context, Fig. 2.26 shows the 

notch of a N/A specimen reinforced with the 15 wt% of fibers, in the presence of a crack. 

 

 

Figure 2.26. SEM acquisition at the notch tip of geometry N/A made of PA66-GF15, extracted at 

90° from a plate. 

 

The same site has been furthermore observed by means of the system in Fig. 2.25, as it is 

shown in Fig. 2.26. In Fig. 2.27, the difference between a close (a) and an open (b) crack is 

visible. In Fig. 2.27b, the lighted up crack is the same as Fig. 2.25, but this time with an 

applied external load of 0.54 kN. The latter has been chosen because corresponding to the 

maximum applied stress of the fatigue test.  

136 µm 
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From Fig. 2.27b, it is clear that the detection of an existing crack would be a difficult opera-

tion with no applied load. Therefore, the use of lamps, combined with the external applied 

load, enables a visible crack detection resolving lengths smaller than 0.5 mm.  

The presented experimental set-up has been adopted for performing fatigue tests on speci-

mens of type N/A. The considered specimens are characterized by different fiber contents 

(15 wt%, 35 wt% and 50 wt%) and have been cut out at 0° and 90° with respect to the MFD 

of plate of Fig. 2.2.  

 

     

Figure 2.27. Example of close and open crack detected with the optical system at Bosch. 

 

By referring to Fig. 2.26 and 2.27, it must be highlighted that the visible material irregulari-

ties are not always present on the analyzed images and they only consist in flashes (on the 

specimen’s upper surface) that have remained after the milling process. Therefore, they must 

not be intended as representative for the notch surface roughness. In this context, no further 

studies have been carried in this work to investigate the effect of the notch roughness on the 

fatigue strength of the geometry of interest. On the other hand, poor surface qualities are 

expected to reduce the specimen strength. 

The resulting fatigue data are plotted in Fig. 2.28 and 2.29, respectively for 0°- and 90°-

oriented specimens. These fatigue points have been carried out on a servo-hydraulic testing 

machine with a 10 kN load cell. With referece to Fig. 2.28, 8 specimens for the PA66-GF15 

have been tested, 8 for the PA66-GF35 and 5 for the PA66-GF50. Concerning Fig. 2.29, 8 

specimens for the PA66-GF15 have been employed, 5 for the PA66-GF35 and 8 for the 

PA66-GF50. 
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Figure 2.28. Fatigue data for geometry N/A, longitudinally extracted from plates. 

 

With regard to mild notches, fatigue data obtained with specimens of Fig. 2.6 will be em-

ployed within the next paragraphs. In WIL16, the authors report data up to failure of this 

specimen type without evaluating the amount of cycles required for the crack initiation phase 

of geometry N/C. 

 

 

Figure 2.29. Fatigue data for geometry N/A, longitudinally extracted from plates. 
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The latter was extracted at 0° with respect to the MFD and it was made of PA66-GF35. The 

percentage of the lifetime of the mildly notched specimen N/C spent for the crack initiation 

and propagation phases has been quantified at the fatigue laboratory of DTG at the University 

of Padova. The experimental set-up can be observed in Fig. 2.30. It can be seen that two 

extensions have been used in order to create room for the lamp positioning. An example of 

propagating crack is reported in Fig. 2.31. 

The obtained comparison between fatigue data up to crack initiation and failure are reported 

in Fig. 2.32 for a PA66-GF35 extracted at 0° from the plate, according to Fig. 2.6.  

Relying on Fig. 2.32, it can be easily stated that the crack propagation phase of the N/C 

specimen can be neglected, as it will be done within the next chapters while applying the 

proposed fatigue criteria. 

Eventually, fatigue data for the notched specimen N/D (DEM08) of Fig. 2.7 are reported in 

Fig. 2.33, which will be used to validate the proposed fatigue model for notched specimens, 

also performing process simulation on it to have an estimation of the local fiber orientation 

tensors at the notch root. In this case, 12 specimens have been tested. 

Experimental data have been obtained up to failure without quantifying the crack initiation 

phase. Because of the large notch radius characterizing geometry N/D and being aware of 

the negligible crack propagation phase of specimen N/C, only data up to failure will be 

treated for geometry N/D. 
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Figure 2.30. Experimental set-up for fatigue test and crack detection at the DTG laboratory of the 

University of Padova. 

 

  

Figure 2.31. Example of crack detection at the DTG laboratory of the University of Padova. Geom-

etry N/C made of PA66-GF35. 
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Figure 2.32. Comparison between crack initiation and propagation cycles for geometry N/C made 

of PA66-GF35 with a 0° cut-out angle. 

 

 

Figure 2.33. Fatigue data for geometry N/D, longitudinally injected (DEM08). 

 

 

2.5  Conclusions 

 

The present chapter is the result of several experimental activities that have been done to 

provide the fatigue model of the next chapters with the proper inputs.  
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Some data that will be employed are already available in the literature and they have been 

integrated with the already present ones in order to supply reliable information in terms of 

fiber orientation distribution and fatigue behavior of a certain type of specimen. The experi-

mental activity has taken place on two different levels: on one hand, analyses of the local 

fiber orientation tensors have been done and, on the other hand, fatigue curves, i.e. S-N data, 

have been carried out. 

Firstly, FOT data resulting from injection-molded plates have been presented, which show 

the typical skin-core effect along the through-the-thickness direction. Secondly, a similar 

display method has been adopted for the case of plain specimens that have been longitudi-

nally injected and not extracted from plates. In this case, a different FOT profile has been 

observed, yielding a better fiber alignment with respect to the MFD.  

Subsequently, FOTs have been evaluated also in case of notched coupons, the notch of which 

was shaped during the injection molding process by placing a metallic slit in the mold. This 

time, more complex fiber orientations have been encountered because of the flow perturba-

tion caused by the metallic insert. 

Furthermore, fatigue tests have been performed for plain and notched specimens, investigat-

ing the effect of fiber volume fraction, local fiber orientation distribution in the presence and 

in the absence of notches.  

While treating plain specimens, it has been assumed that no crack propagation phase takes 

place, namely as the crack initiates, the failure of the specimen suddenly occurs. 

Referring to notched specimens, the difference between the amount of cycles spent up to 

crack onset and up to failure cannot be neglected. In this interest, an optical system has been 

set-up in collaboration with Robert Bosch GmbH to detect the early stages of the crack initi-

ation, in order to have a better estimation of the amount of fatigue cycles spent until a first 

crack appears.  Eventually, a study on the estimation of the fatigue life up to crack initiation 

for a mild notch has been carried out at the University of Padova (DTG), concluding that the 

propagation phase, here, is not relevant.
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Chapter 3 

 

Pseudo-grain approach for matrix stress distributions 

 

3.1  Introduction 

 

In the present chapter, an innovative method enabling the computation of the matrix stress 

distributions (PIE18) of short fiber microstructures is presented. This approach will be later 

on embedded in the fatigue models proposed within the next chapters.  

SFRP parts generally undergo a wide variety of loading and environmental conditions and, 

therefore, extensive and expensive testing campaigns are necessary to characterize the mate-

rial behavior (DEM10_2, DEM10_3, SCH14). To decrease the development cost of SFRP 

parts and achieve a more optimized design, reliable failure criteria are necessary to predict 

the damage initiation and evolution and the final failure under static and fatigue loadings. It 

is important to mention that the damage evolution in SFRPs is, by nature, a multiscale and 

hierarchical process (BEL17, BEL17_2, HOR97) that can be predicted on the basis of the 

local stresses in the constituents, which are strongly dependent on the microstructure. In sup-

port of this statement, several works report the fundamental role of the matrix in the micro-

scale damage initiation and evolution in composite materials under cyclic loadings 

(BEL17_2, HOR97, QUA16, CAR14, KAB06, LAR18).  

On the other hand, the development of criteria for predicting the crack initiation (BEL17_2, 

HOR97, QUA16, CAR14, KAB06) and the failure (JAI16, KLI11, KAM11, ARI14, 

JAI16_2) of SFRPs usually has to face different issues related to the microstructure for the 

analysis of the local stresses in the matrix (TIA14, TIA15, SCH17). In this regard, the adop-

tion of the representative volume element (RVE) strategy consisting in the generation of an 

equivalent microstructure has gained a widespread usage. This technique has been widely 

used by different authors aiming at describing the properties of the investigated materials 
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(TIA14, TIA15, SCH17, PON15).  As short fibers are employed, the following problems 

might arise: 

 The achievement of the desired fiber volume fraction (vf) requires the implementation 

of complex algorithms for fibers’ placement within the model.  From several works 

it can be deduced that fiber volume fractions that are typical of commercial materials 

are generally difficult to achieve for common fiber aspect ratios (> 15). 

In case of short fibers, the fiber volume fraction is not the only requirement for the 

RVE generation. In fact, also a given fiber orientation tensor (FOT) (ADV90, 

ADV90_2, ADV87, MOO11, GOL17) has to be achieved, which is mostly non-uni-

form within a specimen or a part (BEL17_2, KLI11, ARI14, BER07, FOS14, 

DEA17). Nevertheless, a recent work by Schneider (SCH17) provides a procedure 

for generating RVEs filled with high fiber volume fractions, e.g. up to 60%, simulta-

neously fulfilling the required FOT; 

 Once the problem of the geometry generation is overcome, the meshing activity may 

be an issue due to the internal complexity of the geometry. In fact, as a consequence 

of the misaligned fibers’ placement, locations where inclined fibers are cut by the 

RVE edges might be very difficult to mesh. In any case, given the large amount of 

elements involved, the computational cost in solving such RVEs could be very high; 

 In addition, boundary conditions for these FE models can be rather complex. Indeed, 

Nguyen and coauthors (NGU12) highlight that, concerning the classical application 

of periodic boundary conditions (PBCs), a periodic mesh should be, in principle, 

guaranteed, this representing another issue considering the complex geometries in-

volved. In NGU12, an enhanced method for applying PBCs in the presence of a non-

periodic mesh is therefore formulated.  

The present work aims at providing an innovative approach for the computation of the elastic 

stress distributions within the matrix of a SFRP, without going through the generation of 

complex FE models with misaligned fibers. This would make the stress analysis faster and 

more efficient, allowing to get results with a lower computational cost for the exact vf and 

FOT investigated . This has been achieved by adopting a pseudo-grain (PG) approach, which 
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has been extensively employed in the literature by several authors with the objective of com-

puting the homogenized macro-scale properties of FRPs (see, among the others, Refs. 

KAM11, MÜL15, CAM90, DOG05, DOG06, JAI13, NOT14, MOR15_3 and the references 

reported therein). The aforementioned approach consists in the subdivision of a complex mi-

crostructure in a set of PGs, having constant features in terms of spatial orientation, fiber 

diameter and fiber length. The final properties are therefore computed by analytically aver-

aging the grains properties through a certain weight that can be identified based on the fiber 

orientation probability function. 

In the work of Camacho et al. (CAM90), a two step-homogenization method was proposed 

for computing the thermo-elastic properties of a composite material for a given microstruc-

ture.  

Pierard et al. (PIE04) successfully investigated the applicability of the pseudo-grain method 

for computing the stiffness tensor of complex microstructures.  

Müller et al. (MÜL15) gathered different homogenization models and compared the elastic 

properties derived from the solution of numerical models to the ones obtained from the ana-

lytical models, including a two-step homogenization formulation according to the PG ap-

proach. 

Within the framework of materials reinforced with non-spherical and misaligned inclusions, 

Doghri and Tinel (DOG05) proposed to reproduce the macroscopic elasto-plastic behavior 

of composites with the aid of a PG approach. Later, the same authors have extended the 

proposed methodology to the case of linear thermo-elastic and rate-independent inelastic ma-

trices (DOG06).  

Jain at el. (JAI13) focused on the computation of the average stresses within the matrix and 

the inclusions of SFRPs by adopting a Mori-Tanaka pseudo-grain (MTPG) approach. 

Kammoun et al. (KAM11) made use of a PG methodology to formulate the so-called “first 

pseudo-grain failure model” in analogy to the “first ply failure model”, widely used for con-

tinuous fiber-reinforced laminates. Similarly, an approach developed by Notta-Cuvier et al. 

(NOT14) proposed the use of pseudo-grains for the prediction of the macroscopic elasto-

plastic behavior of SFRPs under quasi-static loadings, including its dependency on the local 

anisotropic damage that occurs within the matrix of the composite. 
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The approaches listed above rely on two-step methodologies, in which the single PG has to 

be firstly homogenized through analytical schemes and, secondly, the properties resulting 

from the first stage have to be combined in order to reproduce the macro-scale behavior of 

the composite. However, with respect to the literature, in the present work the pseudo-grain 

method is used with a different and innovative approach, aiming to compute the local stress 

fields in the matrix, rather than the homogenized composite properties or the average matrix 

stresses. In fact, the approach presented here aims at reproducing the entire elastic stress dis-

tribution within the matrix of a generic microstructure, to serve as an input for fatigue failure 

criteria based on the local stresses in the matrix (chapters 4 and 5). The choice of focusing 

on the elastic stress fields is justified by the fact that the mechanisms leading to fatigue crack 

initiation, at least below the matrix Tg, were found to be of a brittle type (BEL16, BEL17, 

BEL17_2), the load levels being quite low with respect to those leading to the static failure. 

In particular, the  matrix stress-cumulative distribution function (S-CDF) relevant to a given 

microstructure will be obtained by weighting the S-CDFs resulting from unidirectional PGs, 

solved with the finite element method (FEM). The proposed methodology, which represents 

a novelty with respect to the literature, is therefore characterized by the following advantages: 

 The generation and numerical solution of complex RVEs with misaligned fibers is 

now avoided. Indeed, only unidirectional volume elements, of which the generation 

and solution is much easier, are adopted; 

 The meshing operation is not anymore hindered by the complexity of the fibers 

placement. Unidirectional models are, furthermore, relatively small and require a 

lower amount of finite elements with respect to complex microstructures; 

 Thanks to the simple geometry of the unidirectional models, a periodic mesh is easier 

to be achieved with respect to RVEs with misaligned fibers. 

With the presented methodology, the local matrix stress fields can be obtained avoiding the 

generation of complex microstructures and the numerical effort is reduced to the generation 

and solution of unidirectional cells (pseudo-grains).  

In the following sections, a description of the proposed approach will be provided, detailing 

the stages related to the recovery of the orientation probability density function (OPDF) of 

the fibers from a second-order FOT (ADV90, ADV90_2, ADV87, DOG05, DOG06, 
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CHU02, DRA07) and describing the pseudo-grain approach for computing the stress distri-

butions in the matrix. Eventually, the results obtained from several analyses carried out on 

RVEs filled with misaligned fibers will be reported in order to validate the efficacy of the 

new PG methodology. 

In order to extensively validate the proposed methodology, the cumulative distribution func-

tion of different stress components, i.e. local hydrostatic stress (LHS) , local maximum prin-

cipal stress (LMPS) (CAR14) and von Mises stress (σVM), will be computed through the PG 

approach. As a validation, the results will be then compared to the CDFs deriving from ref-

erence microstructures with misaligned fibers. 

 

 

3.2  Analytical preliminaries 

 

In this section, a few details related to the symbols that will be encountered within the next 

paragraphs are provided to better understand the notation adopted. Furthermore, information 

concerning the common method for calculating the fiber orientation probability density func-

tion, having the FOT available, will be given. 

 

3.2.1  Notation 

 

In this section, information related to the notation adopted throughout this paper is provided. 

With regard to tensor-symbols, vectors and second-order tensors are denoted by lowercase 

and uppercase bold letters (e.g. 𝐩 and 𝐀). An exception is made for stress and strain second-

order tensors, the symbolism of which is characterized by lowercase and bold Greek letters, 

such as 𝛔 and 𝛆. Fourth-order tensors are instead indicated with double-struck letters, e.g. 𝔸. 

The linear mapping of a second-order tensor by a fourth-order tensor is denoted by 𝔸 ∶ 𝐀, 

whereas the scalar products between second- and fourth-order tensors are respectively iden-

tified by 𝐀 ∶ 𝐀 and 𝔸 ∶ 𝔸. According to the work of Müller et al. (MÜL15), considering a 

generic fourth-order tensor 𝔻, the symbol □ can be better explained through Eq. (3.1): 
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𝔻 = 𝐀 □ 𝐀 = AikAjlei ⊗ ej ⊗ ek ⊗ el = Dijklei ⊗ ej ⊗ ek ⊗ el (3.1) 

 

where ei is a generic base of the space and ⊗ represents the dyadic product.  

The superscript TR is used to indicate the right transposition operation, such that Aijkl
TR = Aijlk. 

Symbols det(∙), dev(∙), and diag(∙),  indicate the determinat, deviatoric part and diagonal 

components of a generic second-order tensor.  

Symbol ∪ is employed to denote the union among a collection of sets. 

Throughout this work, ℂf and ℂm will be adopted to indicate the stiffness tensors attributed 

to fibers and matrix of the considered composite. 

 

3.2.2  Definition of the orientation probability density function 

 

As already mentioned in the, the thesis work deals with short fiber-reinforced polymers. In-

deed, the microstructure is identified through ω = ωm ∪ ωf (MÜL15), ωm and ωf being 

respectively the domains corresponding to matrix and fibers. Within a reference volume ω, 

fibers are commonly described through the orientation probability density function (OPDF) 

ψ(𝐩). As widely discussed in the work of Advani and Tucker (ADV87), the OPDF describes 

the probability of finding a fiber having its orientation unit vector 𝐩 within the interval be-

tween 𝐩 and 𝐩 + d𝐩. According to Fig. 3.1, the aforementioned vector can also be described 

by means of its polar coordinates identified by angles ϕ and θ. 

A normalized OPDF is considered and the following identity has to be fulfilled: 

 

∮ ψ(𝐩)d𝐩
ω

= 1 (3.2) 

 

where  

 

d𝐩 = sin θ dθ dϕ (3.3) 
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Figure 3.1. Unit vector in the global reference system and its polar coordinates. 

 

Due to the symmetric nature of 𝐩 with respect to the origin of the three-dimensional Cartesian 

system, the equality ψ(𝐩) = ψ(−𝐩) has to be valid. 

In the present thesis, it is assumed that all the fibers of a generic microstructure possess the 

same diameter d, length l and therefore aspect ratio AR = l/d. Referring to the different 

works (MÜL15, CAM90, PIE04, DOG05, DOG06, JAI13, NOT14) that has dealt with the 

application of the PG approach, the domain ω can be subdivided into other domains ωk, 

which are the so-called pseudo-grains, as it is shown in Fig. 3.2.  

 

 
 

Figure 3.2. Schematization of a real microstructure (a) and discretization in pseudo-grains (b), each 

characterized by a weight αk and subjected to Voigt boundary conditions. 
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The domain of the OPDF can be therefore discretized into K orientations and each PG is 

assumed to contain fibers with the same orientation, which will be denoted by the vector 𝐩k 

from here on. The fiber volume fraction of each PG, evaluated with respect to ωk, equals vf 

which in turn denotes the fiber volume fraction of the entire microstructure. 

According to the work of Pierard et al. (PIE04), a Voigt formulation is assumed for combin-

ing the properties of PGs and the computation of a generic property fω (e.g. stiffness tensor, 

matrix’s and fibers’ average stress tensor, etc.) of the entire domain ω reads: 

 

fω = ∑ fωk
αk

K

k=1

 (3.4) 

 

where αk is a weight factor, which, according to Eq. (3.3), is defined as follows: 

 

αk = ψ(𝐩) Δ𝐩k = ψ(ϕk, θk) sin θk ΔϕkΔθk (3.5) 

 

3.2.3  Recovery of the OPDF 

 

In the literature, many authors have proposed methodologies for reconstructing the OPDF.  

Advani e Tucker (ADV87) described a detailed formulation for an approximate calculation 

of the OPDF by using the second- and fourth-order FOTs, respectively denoted with 𝐀 and 

𝔸. 

 

𝐀 = ∮𝐩 ⊗ 𝐩 ψ(𝐩) d𝐩 (3.6) 

 

𝔸 = ∮𝐩 ⊗ 𝐩 ⊗ 𝐩 ⊗ 𝐩 ψ(𝐩) d𝐩 (3.7) 
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Typically, only the second-order FOT is available from analyses on real parts, carried out by 

means of the X-ray computed tomography (CT). Then, the generic fourth-order FOT can be 

recovered by means of the so-called closure approximations (ADV87). 

The formulation adopted in this work is that by Doghri and Tinel (DOG06), who re-wrote in 

a tensor-notation the expressions discussed in ADV87. The authors illustrated that, only in 

case of perfectly randomly oriented or aligned inclusions, an exact expression for 𝔸 is pos-

sible. Respectively, the formulations for the reconstruction of the fourth-order FOTs for these 

two exemplar cases are designated as linear closure (𝔸l) and quadratic closure (𝔸q) 

(DOG06): 

 

𝔸l = a1𝐈
s ⊗ 𝐈s + 2(a1 − b1)𝕀

s + a1(𝐈
s ⊗ 𝐀 + 𝐀 ⊗ 𝐈s) 

        +2b1[𝕀(A + 𝐈s) − 𝕀(𝐀)] 
(3.8) 

 

where 𝕀(𝐀) can be re-written as follows: 

 

𝕀(𝐀) =
1

2
[(𝐀 □ 𝐀) + (𝐀 □ 𝐀)TR] (3.9) 

 

according to Eq. (3.1). 

In Eq. (3.8), 𝐈s and 𝕀s are symmetric identity tensors and the values of coefficients a1 and b1 

are reported in (ADV87). 

When fibers are fully aligned, the quadratic closure can be expressed as follows: 

 

𝔸q(𝐀) = 𝐀 ⊗ 𝐀 (3.10) 

 

In case of misaligned fibers, the orientation of which is neither isotropic nor unidirectional, 

a hybrid formulation of the fourth-order FOT (closure approximation) was proposed by Ad-

vani and Tucker (ADV87) and, according to (DOG06), it reads: 
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𝔸h = (1 − a)𝔸l(𝐀) + a𝔸q(𝐀)       with      a = 1 − bdet(𝐀) (3.11) 

 

Parameter b of Eq. (3.11) can be found in (DOG06). 

Once that 𝐀 and 𝔸h are available, it is possible to calculate the OPDF. Referring to the work 

of Doghri et al. (DOG06), the final formulation of ψ(𝐩k),  evaluated along a generic orien-

tation vector 𝐩k, is expressed through the following formulation: 

 

ψ(𝐩k) ≈ ψ1 + ψ2𝐁(𝐀) ∶ 𝐅(𝐩k) + ψ3𝔹(𝐀) ∷  𝔽(𝐩k)   (3.12) 

 

 

3.3  Development of the proposed procedure 

 

3.3.1  Description of the approach 

 

The PG approach has been frequently adopted, in the literature, for the computation of macro-

scale properties of a composite by mathematically combining the results derived from the 

solution of homogenized grains (see, among the others, MÜL15, CAM90, PIE04, DOG05, 

DOG06, JAI13) which, in principle, can be solved analytically (PIE04) or numerically 

(KAM14). Conversely, in the present work, the PG approach is adopted for the efficient 

computation of the local stress fields in the matrix, without focusing on the macroscopic 

elastic properties or the average stresses in the constituents. 

In this frame, the single pseudo-grain becomes a unidirectional cell composed of few short 

fibers, which undergoes periodic boundary conditions and can be easily generated and solved 

by means of commercial FE codes. The choice of solving numerically (with the FE method) 

the pseudo-grain allows the computation of the complete matrix stress distribution within the 

single grain. Indeed, the field fω of Eq. (3.4) that will be computed is the inverse of the matrix 

stress-cumulative distribution function denoted by F(σij). From an implementation point of 

view, after computing the discrete x values (stress values for predefined CDF values) of the 

single pseudo-grain, the latter are combined according to Eq. (3.4). Particularly, the matrix 
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stress-CDFs of the LMPS, LHS and von Mises stress (σVM) will be considered here and they 

are indicated with F(LMPS), F(LHS) and F(σVM ). 

The starting inputs for the application of the proposed methodology are vf, the fiber aspect 

ratio AR, 𝐀 and a generic external macro-scale stress state 𝛔̅ that is applied to the composite. 

The first step of the procedure consists in the discretization, into K sub-domains, of the unit-

sphere on the surface of which the OPDF is defined: namely, vectors 𝐩k with k belonging to 

[1, K] have to be defined (K was chosen equal to 482 in the present work, high enough to 

provide a fine discretization). The unit vector 𝐩k can be actually expressed as follows: 

 

𝐩k = (sin θk cosϕk , sin θk sinϕk , cosϕk) (3.13) 

 

and therefore a discretization based on the angles of Eq. (3.13) can be established, such that 

ϕk ∈ [0,2π] and θk ∈ [0, π]. 

At this point, the values of ψ(𝐩k), for all integers within the interval [1, K], can be computed 

according to Eq. (3.12). It is reminded that each index k corresponds to a PG, i.e. a FE model 

with fully aligned fibers, identified by its domain ωk. Subsequently, the external stress state 

is transferred to each ωk (the characteristics of which are reported within the next paragraphs) 

that can be numerically solved. The resulting matrix stress fields (e.g. LMPS, LHS and σVM) 

of each PG can be carried out and, accordingly, the S-CDFs is calculated. Eventually, Eq. 

(3.4) is applied to the stress values of the cumulative distribution functions of the pseudo-

grains and the S-CDFs for the desired microstructure are found. 

For the sake of clarity, all the steps for the computation of a generic stress component CDF 

are schematically reported in the flow-chart in Fig. 3.3.  
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Figure 3.3. Flow-chart for the application of the proposed PG approach. 
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3.3.2  Pseudo-grain boundary conditions 

 

As already mentioned, it is assumed that all the fibers of the microstructure are characterized 

by the same aspect ratio AR and diameter d. Regarding the generation of the geometry of the 

PGs, it is sufficient to create only one unidirectional FE model (Fig. 3.4). 

 

 

Figure 3.4. Example of unidirectional pseudo-grain generated with Digimat® (fiber volume frac-

tion is set to 20%). 

 

The grains can be therefore distinguished from each other only relying on the applied bound-

ary conditions that depend on the grain orientation. In this work, the UD models have been 

created with the software Digimat®, which makes use of an algorithm that follows a random 

and uniform placement of inclusions (DIG18). 

Boundary conditions need to be applied to the unidirectional FE model, representative of 

each domain ωk, oriented along a vector 𝐩k (Fig. 3.5). For this purpose, a Voigt formulation 

is adopted, which means that each pseudo-grain is subjected to the same external strain state 

𝛆̅ (Fig. 3.2), that can be easily derived by the following equation: 

 

𝛆̅ = ℂω
−1: 𝛔̅ (3.14) 

0.4

0.15

0.15
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Figure 3.5. Schematic representation of a FE pseudo-grain rotated along a generic orientation vec-

tor 𝐩k. 

 

In Eq. (3.14), ℂω is the fourth-order stiffness matrix corresponding to domain , which is 

calculated by replacing fωk
 in Eq. (3.4) with the stiffness tensor ℂωk

 of the single UD model: 

 

ℂω = ∑ ℂωk
αωk

K

k=1

 (3.15) 

 

The term ℂωk
 is the stiffness tensor of each PG obtained from FE analyses. Eq. (3.15) must 

be computed adopting the same base system for both terms ℂω and ℂωk
.  

First, the external strain tensor can be expressed with bases belonging to the global reference 

system, as follows: 

 

𝛆̅ = ε̅mn
g

em
g

⊗ en
g
 (3.16) 

x 

y 

z 

ϕk 

θk 
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ε̅mn
g

 being the external strain components in the global reference system and {ei
g
} the corre-

sponding global base system. 

Then, to determine the boundary conditions for each pseudo-grain, a base transformation of 

Eq. (3.16), from {ei
g
} to {ei

lk}, the latter denoting the local base system for the k-th PG, must 

be performed. Therefore, the external strain tensor also reads: 

 

𝛆̅ = ε̅mn
g

QimQjnei
lk ⊗ ej

lk = ε̅ij
lkei

lk ⊗ ej
lk (3.17) 

 

where ε̅ij
lk = ε̅mn

g
QimQjn identifies the external strain components that must be applied to 

each pseudo-grain. Qimand Qjn are the components of a generic second-order rotation tensor 

𝐐, of which the formulation is: 

 

𝐐(𝐧, α) = 𝐧 ⊗ 𝐧 + cos α (𝐈 − 𝐧 ⊗ 𝐧) − sin α𝐑 ∙ 𝐧 (3.18) 

 

In Eq. (3.18), symbols 𝐧, α and 𝐑 denote, respectively, a unit vector corresponding to the 

rotation axis, the rotation angle and the Ricci’s tensor. According to Eq. (3.18), for a generic 

ωk, terms Qim and Qjn of Eq. (3.18) can be recovered after performing the two subsequent 

rotations identified by tensors 𝐐([0,0,1], −ϕ
k
) and 𝐐([1,0,0], θk − π/2). 

For easiness of implementation, the boundary conditions for each pseudo-grain are applied 

in the form of stresses, which can be computed as: 

 

𝛔ωk

BC = ℂωk
: 𝛆̅ (3.19) 

 

Therefore, symbol 𝛔ωk

BC  denotes the stress tensor that must be applied to the single PG and 

the superscript BC stands for boundary condition.  
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3.3.3  Numerical implementation 

 

According to Eq. (3.4), a certain amount K of solutions of the UD model, characterized by 

the proper PBCs, should be performed. However, it is reminded here that this work aims at 

calculating the local elastic stress fields within the matrix, these being useful for predicting 

the high cycle fatigue crack initiation through proper criteria (chapters 4 and 5). Therefore, 

the constitutive law of the phases is assumed as linear-elastic and, subsequently, the numer-

ical solution of any applied stress state can be carried out by linearly combining the solutions 

of six uniaxial load cases, each representing the application of one single component of the 

stress tensor. To this end, the formulation of the stress tensor 𝛔ωk
(𝐱) evaluated at a defined 

coordinate-vector 𝐱 within ωk reads:  

 

𝛔ωk
(𝐱) = ∑∑σ̅ij

z

j=x

𝛔ωk

ij (𝐱)

z

i=x

 (3.20) 

 

In Eq. (3.20), 𝛔ωk

ij
 denotes the full stress tensor at a generic coordinate vector 𝐱 in case the 

k-th PG undergoes a stress state where only the external stress component σ̅ij is equal to 1 

MPa and the others are set to 0 MPa. For a better understanding, terms of Eq. (3.20) are 

reported, as an example, in  Fig. 3.6, in case i = j = x. 

 

 

 

 
 

Figure 3.6. Graphical visualization of the terms in Eq. (3.20), in case (i, j) = (x, y). 
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After computing the complete stress field within the matrix of the UD grain, the stress values 

of the CDFs Fωk
(LMPS), Fωk

(LHS) and Fωk
(σVM) can be calculated and combined, accord-

ing to Eq. (3.4). With this approach, the computation of the elastic stress-cumulative function 

of misaligned short fiber microstructures can be carried out without relying on the generation 

and solution of complex microstructures. 

The entire procedure for the calculation of the matrix stress-CDF is eventually summarized 

in the following steps: 

1) Generation and meshing of a UD pseudo-grain; 

2) Application of the six unit stress cases to the UD pseudo-grain; 

3) Discretization of the unit sphere into K directions 𝐩k, with  k = 1,… , K; 

4) Calculation of the global stress state relevant to each PG, according to its orientation, 

by adopting a Voigt approach; 

5) Computation of the entire linear elastic stress fields within the matrix of each PG by 

combining the results coming from the six uniaxial load cases, according to the stress 

state defined at point 4, according to Eq. (3.20); 

6) Computation of the cumulative matrix stress distribution for each pseudo-grain; 

7) Computation of the average cumulative stress distribution (along the stress axis) over 

all PG cells according to Eq. (3.4), each of them weighted by means of the fiber ori-

entation probability evaluated along the single PG direction. 

Eventually, it is worth mentioning that, from the conceptual point of view, the proposed ap-

proach could be applied also in case of non-linear or inelastic behavior of the constituents. 

In such a case, the UD pseudo-grains with different orientations discretizing the entire 3D 

space (482 divisions were chosen in this work), should be solved through separated FE mod-

els with proper boundary conditions depending on the grain orientation. Once this is done, 

the results can be combined to obtain the final matrix stress-CDF as in Eq. (3.4) and Fig. 3.3. 

However, in this case the proposed approach, though still possible, would not be efficient as 

it requires 482 non-linear FE analyses.  
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The efficiency of the proposed approach lies, indeed, in the computation of the matrix stress 

field of each pseudo-grain by performing a linear combination of the stress fields of six uni-

axial load cases, as highlighted in Eq. (3.20). This is possible only for a linear elastic behavior 

of the constituents. 

 

 

3.4  Results and discussions 

 

In this section, a validation of the proposed method for the computation of the cumulative 

distribution function of the matrix stress fields in short-fiber RVEs is carried out. For this 

purpose, different volume elements with misaligned fibers have been generated and their 

actual S-CDFs, computed within the matrix, have been compared to the ones obtained with 

the proposed methodology.  

 

3.4.1  Reference microstructures  

 

The generation of the microstructures for validating the proposed approach has been per-

formed by means of a non-commercial software developed by the Fraunhofer Institute 

ITWM, which makes use of the algorithm described in SCH17. With such tool, the desired 

FOT and fiber volume fraction can be efficiently reached. Furthermore, due the complexity 

of the reference microstructures, it has been decided not to generate a conventional mesh, but 

to voxelize the entire model (voxel size of 1 µm³). The complexity of the mesh activity is 

therefore avoided. In order to better discretize the considered microstructure, the dimension 

of the single voxel has been set to 1µm. All reference cells have been subsequently solved 

with a fast Fourier transform (FFT) based solver (WEB3). 

In order to validate the proposed PG approach, which has been developed to compute the 

matrix stress distributions, the reference microstructures listed in Tab. 3.1 have been ana-

lyzed. According to the software settings, only cubic cells have been generated and the edges’ 

length was set to 300µm. Fibers have been modeled as cylinders with flat tips. As reported 

in Tab. 3.1, some parameters have been varied, i.e. different fiber aspect ratios, fiber volume 
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fractions (20%, 22%, 25%) and FOTs have been adopted. The fiber diameter has been kept 

equal to 10 µm for all analyses, as it is indicated in Tab. 3.1. 

 

Table 3.1. Geometrical features of the reference models with misaligned fibers. 

No. 

 

𝐯𝐟 

[%] 

𝐀𝐑 

 

d 

[µm] 

Cell size 

[mm3] 

Amount of 

voxels 

Amount of 

fibers 

diag(𝐀) 

 

1 20 20 10 0.30 x 0.30 x 0.30 27x106 250 (0.7, 0.2, 0.1) 

2 20 15 10 0.30 x 0.30 x 0.30 27x106 250 (0.7, 0.2, 0.1) 

3 20 20 10 0.30 x 0.30 x 0.30 27x106 250 (0.5, 0.4, 0.1) 

4 20 20 10 0.30 x 0.30 x 0.30 27x106 250 (0.33, 0.33, 0.34) 

5 20 25 10 0.30 x 0.30 x 0.30 27x106 250 (0.7, 0.2, 0.1) 

6 22 20 10 0.30 x 0.30 x 0.30 27x106 275 (0.7, 0.2, 0.1) 

7 25 20 10 0.30 x 0.30 x 0.30 27x106 313 (0.7, 0.2, 0.1) 

 

 

As an example, microstructure 1 is shown in Fig. 3.7. For the sake of representation, the fiber 

coordinates, which have been generated with the algorithm described in (SCH17), have been 

imported in Digimat® and used to generate the microstructure. 

 

            

Figure 3.7. Example of complex microstructure (microstructure 1 of Tab. 3.1). 

0.3 0.3

0.3
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The reference microstructures with misaligned fibers undergo PBCs (appendix B) and a unit 

external stress has been applied. The latter has been rotated by 0°, 45° and 90° around the z 

axis, starting from the x axis of the global reference system (Fig. 3.7). 

The properties assumed for the constituents are listed in Tab 3.2. 

 

Table 3.2. Reasonable elastic constants of matrix (subscript m) and fibers (subscript f): tensile mod-

ulus E and Poisson’s ratio ν. 

𝐄𝐦 [MPa] 𝛎𝐦 [-] 𝐄𝐟 [MPa] 𝛎𝐟 [-] 

3000 0.39 72000 0.22 

 

 

3.4.2  Convergence study 

 

The application of the pseudo-grain approach requires the use of the numerical results deriv-

ing from the solution of unidirectional cells. 

In this section, a convergence study related to the choice of the PG cell size is reported. In 

this interest, two unidirectional FE cells has been generated, having their fiber volume frac-

tion equal to 20%, according to the values reported in Tab 3.1. The cell sizes listed in Tab 

3.3 have been investigated and an external unit stress has been rotated by 0°, 45° and 90° 

around the z axis (Fig. 3.4). The CDFs related to the matrix von Mises stress are plotted in 

Fig. 3.8, showing a good agreement between the two investigated cell sizes. The maximum 

relative error, evaluated along the horizontal axis, is lower than 10%, this allowing the usage 

of the UD cell (0.4x0.15x0.15 mm3) for the current application. 

 

Table 3.3. Considered microstructures for cell size convergence studies. 

No. 

 

𝐯𝐟 

[%] 

𝐀𝐑 

 

d 

[µm] 

Cell size 

[mm3] 

Amount of 

elements 
 

Cell type 

 

1 20 20.0 10.0 0.40 x 0.15 x 0.15 0.7x106 Unidirectional 

2 20 20.0 10.0 0.40 x 0.30 x 0.30 2.6x106 Unidirectional 
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The average element size (edge length) adopted for microstructures 1 and 2 of Tab. 3.3 is 

4µm and the amount of fibers in the cells are respectively 83 and 333. 

 

.  

Figure 3.8. Convergence study: comparison of matrix von Mises-CFDs for microstructures of Tab. 

3.3 (solid line for no. 1 and symbols for no.2). 

 

3.4.3  Validation of the approach 

 

As mentioned above, the computation of the matrix elastic stress distributions within the 

pseudo-grain cells can be performed by computing the matrix stress fields under six load 

cases. This has been achieved by meshing the UD geometry with the software Hypermesh® 

and by solving it with the FE software Abaqus®. According to the Abaqus® notation,  

C3D10 elements (quadric thetraedric) have been adopted. 

In Fig. 3.9, the CDF of LHS, LMPS and σVM within the matrix are reported for microstructure 

1, whereas only the CDF of the von Mises stress is shown for the other microstructures in 

Fig. 3.10, for the sake of brevity. The results obtained with the misaligned RVEs are com-

pared to those obtained with the proposed PG methodology. For all the analyses, the unidi-

rectional cell size has always been set to 0.40 x 0.15 x 0.15 mm3, sufficient to get converged 

results for the matrix stress distributions. 

It can be observed that, in case of microstructures 3 and 4 of Tab. 3.1, the cumulative distri-

bution functions for different orientations of the global load are very close to each other (Fig. 

3.10b and 3.10c). Indeed, the first two entries of the FOT diagonal of microstructure 3 are 
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close to each other, reproducing with a good approximation a planar isotropic fiber orienta-

tion distribution. A similar observation can be done for microstructure 4, where the FOT is 

almost three-dimensionally isotropic. As a consequence, the stress distribution, in these two 

cases, is not dependent on the load orientation angle on the xy plane. 

From Fig. 3.9 and 3.10 it is clear that the PG approach reproduces very well the CDFs of 

LMPS, LHS and σVM  as the maximum relative error with respect to the results obtained by 

solving the geometries of Tab. 3.1 is never higher than 10%.  

As a concluding remark, it has to be highlighted that the problems that could arise because 

of the microstructure generation and solution are now overcome by adopting the proposed 

approach. Indeed, the PG methodology requires the generation of unidirectional FE models, 

in which high volume fractions (≥ 15%) can be easily reached and the FOT is defined a-priori 

as an input to the approach. The use of such UD models makes the meshing activity easier 

with respect to FE geometries with misaligned fibers because of the absence of sharp edges 

on the model faces, which might arise as a consequence of fibers non-parallel to the model 

outer surfaces. This accelerates the meshing procedure and, eventually, the time needed for 

solving the model is not anymore hindered or slowed down by the presence of large mesh 

refinements around sharp edges. Finally, the proposed approach allows to compute the matrix 

elastic stress distribution without using complex fiber generation algorithms and with rela-

tively low computational costs. 
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Figure 3.9. Validations of the PG approach for microstructure 1. Solid lines: PG, symbols: RVE. 
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Figure 3.10. Validations of the PG approach for microstructure 2-7. Solid lines: PG, symbols: 

RVE. 

 

It is furthermore worth highlighting that the adopted elastic modulus (3000 MPa) can be 

considered as typical for dry-as-molded materials. On the other hand, the matrix phase of real 

SFRT parts can present a certain concentration of absorbed water as a consequence of the 

humidity of the surrounding environment. Nevertheless, by lowering the matrix elastic mod-

ulus by two thirds (thus reproducing a matrix with a relative humidity of 50%), no significant 

variation in the PG formulation (cell size at convergence) is expected. This would be a con-

sequence of the fact that both in case of dry and conditioned SFRTs, the matrix elastic mod-

ulus still results to be one order of magnitude smaller than the fibers’ one. Accordingly, Fig. 
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3.11 shows the capability of the proposed approach and PG size of reproducing the matrix 

von Mises stress CDF for microstructure 1 of Tab. 3.1. 

 

 

Figure 3.11. Validations of the PG approach for microstructure 1. Solid lines: PG, symbols: RVE. 

The matrix elastic modulus has been set to 1000 MPa. 

 

 

3.5   Conclusions 

 

In the present chapter, an innovative procedure for computing the cumulative distribution 

function of different local stress components within the matrix of a generic microstructure 

with misaligned short fibers has been formulated.  

A framework based on the application of the pseudo-grain methodology combined to the 

generation and solution of single UD grains through the finite element method has been pro-

posed.  

The efficacy of the present approach consists in the capability of overcoming issues related 

to the generation, meshing and solution of a classical volume element filled with a high frac-

tion of misaligned short fibers.   

Eventually, the cumulative distribution functions of the local maximum principal stress, local 

hydrostatic stress and von Mises stress within the matrix of different microstructures with 

misaligned fibers have been computed and employed to validate the proposed approach.  
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A good agreement between the results obtained from the reference microstructures and the 

pseudo-grain model has been obtained. 

As it will be better within the next chapters, the proposed PG methodology will be later used 

to formulated multiscale fatigue criteria based on the definition of matrix effective stresses. 

In fact, the latter will be formulated on the basis of the matrix stress distributions.  

Furthermore, some considerations regarding the choice of the threshold of the matrix stress 

cumulative functions can be found in the appendix D. 

Concluding, It has been numerically verified that while dealing with the energetic matrix 

contributes (deviatoric and hydrostatic), the deviatoric part results to be 3-4 orders of mag-

nitude higher than the hydrostatic one. Therefore, within the next paragraphs, the computa-

tion of the matrix Beltrami stress (the use of which will be discussed later on) distributions 

will be also possible by only considering the matrix von Mises stress distributions, after per-

forming some algebraic manipulations. 
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Chapter 4 

 

Fatigue model for plain specimens 

 

4.1  Introduction 

 

In this chapter, the pseudo-grain approach for computing the matrix stress distribution, pre-

sented in chapter 3, is integrated in a multiscale model for the prediction of the fatigue 

strength of specimens in the absence of notches. Data on plain specimens presented in chapter 

2 are furthermore employed to validate the proposed criterion. 

The lightness and the good mechanical properties of short fiber reinforced thermoplastics 

(SFRTs) have encouraged a widespread employment of such materials within the automotive 

industry. This is the case, for example, of under-the-hood-components (e.g. fuel-rails), which 

commonly undergo repeated mechanical loads. As a consequence, the need of reliable meth-

ods for designing those parts against fatigue failure has become more and more relevant.  

The fatigue lifetime of SFRTs is generally determined by several parameters such as the load 

application (load ratio, stress amplitude), the fiber geometry (length and diameter) and the 

fiber spatial distribution (fiber orientation and volume fraction).  

Accordingly, a comprehensive material characterization typically requires a large bulk of 

experimental tests. Therefore, robust fatigue models are needed to restrict the experimental 

effort and the inferred costs. 

The present work falls within this framework. It aims to provide a model for predicting the 

fatigue life to crack initiation of SFRTs. In particular, the effect of the fiber volume fraction 

(vf) and fiber orientation distribution (FOD) will be accounted for. The latter, which may be 

non-uniform within a single specimen or component (BER07, DEM10_2, JAI16_2, KLI11, 

LUN13, LUN13_2, ARI14, KRA16, BER15, MOR17), is usually described by means of a 

second-order fiber orientation tensor (FOT) (ADV87). 
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The fatigue strength of such materials is highly sensitive to the local fiber orientation distri-

butions. In this context, many authors have conducted studies on the effect of the angle be-

tween the loading direction and the main flow direction (MFD). 

An exhaustive literature review on the fatigue response of SFRTs was carried out by Mor-

tazavian and Fatemi (MOR15_3) and the effect of material anisotropy was emphasized. The 

authors showed that it is caused both by the FOD non-uniformity within the part and the 

specimen cut-out angle, meant as the orientation of the load with respect to the injection 

direction (MOR17).  

Bernasconi and coworkers (BER15) investigated the fatigue response of notched specimens 

that were longitudinally or laterally injected. They evaluated the FOD through the specimen 

thickness by adopting an optical method at the notched cross section. Thus, they demon-

strated how the fatigue strength could depend on the FOT profile of each specimen. 

Additionally, the matrix stress multiaxiality influencing the fatigue behavior of SFRTs also 

depends on the amount of fibers, namely on the material fiber volume fraction. The effect of 

the latter has not been widely investigated in the literature yet.  

Nevertheless, in 2017 Belmonte and coauthors (BEL17_2) tested, under cyclic uniaxial 

loads, sharply notched specimens with a vf ranging from 0% (unreinforced polymer) to 50% 

in weight. They obtained S-N curves correlating the nominal applied stress to the life to crack 

initiation and final failure, showing a strengthening effect as the vf was increased. 

In the literature are furthermore present fatigue failure criteria that mainly aim to capture the 

effect of the material anisotropy induced by the fiber orientation onto the material fatigue 

behavior.  

A broad overview of the existing fatigue models until 2015 was also provided in (MOR15_3).  

Additionally, in their work (WIL15) Wilmes and Hornberger proposed a criterion for pre-

dicting the effect of the local material anisotropy onto the fatigue strength of a polyamide 6.6 

reinforced with the 35 wt% of fibers (PA66-GF35). The authors formulated a numerical sca-

lar indicator called fiber-share, which takes into account the local material anisotropy deriv-

ing from the FOT. Thanks to this, tests on specimens extracted from injected plates along 

two different angles (0° and 90°) are needed to calibrate the model and to predict the fatigue 

life of a SFRT composite with a generic FOT profile and loading direction. Furthermore, in 
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WIL15 the authors made use of the process simulation software Moldflow® to compute the 

FOTs within the injected plates and, subsequently, within the considered specimens.  

In 2016, Jain et al. (JAI16) formulated a master S-N curve approach for the fatigue life pre-

diction of SFRTs. The FOTs assigned to the material were evaluated through process simu-

lations (KLIM11) or derived from the first entry of the second-order FOT measured through 

optical 2D analyses (DEM10). The authors formulated an approach in which the fatigue 

strength of the considered specimens can be related to the simulated material quasi-static 

laws. 

In another recent work, Krairi and coauthors (KRA11) proposed a multiscale model for pre-

dicting the high-cycle fatigue life of a PA66-GF30, including the effect of the material ani-

sotropy. The tested plain dumbbells were cut out at 0°, 45° and 90° with respect to the main 

flow direction (MFD). Regarding the properties’ assignment, the average second-order FOT, 

evaluated through the thickness, was adopted. The formulated criterion attributes the fatigue 

progressive damage to matrix weak spots obeying a viscoelasic-viscoplasic law including 

damage. 

On the other hand, the effect of the vf on the fatigue strength of SFRTs has not been widely 

treated in the literature yet.  

In such a complex scenario, where the material behavior is influenced by several material 

and geometrical/morphological features, a reliable crack initiation model has to be based on 

the damage mechanisms occurring during the fatigue life. 

In addition, the evolution of damage within SFRTs under cyclic loads is by nature a mul-

tiscale and hierarchical process. Indeed, it has been shown that the initiation of a fatigue crack 

in a SFRT is the result of the accumulation of damage at the microscopic scale, occurring 

mainly in the matrix surrounding the fibers (BEL17, BEL17_2). Accordingly, the crack onset 

can be identified as a matrix-driven phenomenon (HOR97, BEL17, BEL17_2).  

Horst and Spoormaker described in HOR97 the damage phases that follow one another dur-

ing the fatigue life of a PA6-GF30, in both cases conditioned and dry-as-molded states. They 

highlighted that matrix damage form at fiber tips and subsequently at fiber walls. This gives 

rise to bridging cracks from fiber to fiber. All observations were carried out by cryogenically 

fracturing the damaged material and analyzing the exposed surface by means of a scanning 

electron microscope (SEM). 
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De Monte et al. (DEM10_3) also performed SEM analyses on failed PA66-GF35 flat and 

tubular plain coupons. They paid attention to the crack nucleation zones and observed that 

the damage affects the thermoplastic matrix, determining fibers’ debonding and pull-out.  

In a paper of Arif and coauthors (ARI14), a study on the correlation between local fiber 

orientation and matrix damage was carried out, conducting micro-computed tomography 

(µCT) analyses on cyclically loaded PA66-GF30 materials. They observed that the damage 

evolution is mainly governed by the formation and growth of voids, identified as fiber-matrix 

debonding. 

Eventually, Belmonte and coworkers (BEL17_2) inspected the crack onset site in plain spec-

imens made of PA66-GF35 and found a clear ductile rupture within the matrix. Furthermore, 

zooming on the fibers’ wall, no neat matrix detachment from fibers could be encountered. 

In light of this, it is important to mention that most of the fatigue models developed for SFRTs 

in the literature do not focus on the matrix damage at the microscale and are typically formu-

lated at the macroscale level, i.e. based on macro-scale stress fields. In addition, none of the 

models available at present is capable of accounting, at the same time, for the influence of 

the FOD, the load orientation and the fiber volume fraction. In this context, the present work 

aims at developing a fatigue crack initiation criterion for SFRTs, based on the micro-scale 

stress fields in the matrix, computed for the actual material microstructure. Thanks to the 

stress distribution resolved at the micro-scale level (within the matrix), it will be possible to 

formulate an effective stress component enabling the prediction of the whole composite fa-

tigue strength. This means that the macroscopic fatigue response of the treated materials will 

be linked to the aforementioned effective stress (σeff) component, which, in turn, has to be 

considered as responsible for the microscopic matrix fatigue damage, the evolution of which 

brings to the appearance of a macroscopic crack. 

The criterion is validated against new and already existing experimental data on PA66-GF15, 

PA66-GF25, PA66-GF35 and PA66-GF50, showing a very good agreement and the capabil-

ity of accounting for the load orientation, the FOD and the fiber volume fraction.  
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4.3  Fatigue criterion definition 

 

In this section, the formulation of a fatigue criterion based on the identification of a matrix 

stress component considered as responsible for the initiation of a macroscopic crack interest-

ing the overall composite is provided. In particular, the aforementioned stress is obtained by 

means of an effective stress (σeff) calculated within the matrix (microscale) and considered 

as responsible for the microscopic matrix fatigue damage evolution, bringing, in turn, to the 

onset of a visible macro-crack. This falls within the formulation of a multiscale criterion 

which describes the composite fatigue response on the basis of the local matrix strength iden-

tified by the formulated effective stress. This agrees furthermore with the experimental ob-

servations previously discussed, stating that the composite fatigue damage mainly occurs 

within the matrix, i.e. among fibers. 

The novelty of the present work consists in identifying the previously discussed σeff by 

means of the elastic stress field, which the composite matrix undergoes, or rather thanks to 

the matrix stress distributions. The choice of using the stress distribution lies in the fact that 

the introduced effective stress can be computed within the most stressed regions of the matrix 

phase. It is indeed reasonable assuming that, considering the stress field of a certain matrix 

stress component, the upper tail of its distribution control the matrix fatigue damage evolu-

tion. As a matter of fact, the latter is representative for the most stressed regions that can be 

identified within the matrix. It is therefore decided to formulate the effective stress as the 

average value of a certain matrix stress component, computed within the matrix phase region 

corresponding to the stress distribution upper tail.  

To sum up, the concept of effective stress allows to bridge the macroscopic crack initiation 

and the local matrix fatigue damage by means of the formulation of such a matrix stress 

component controlling in turn the fatigue strength of the whole composite. 

Eventually, since only plain specimens will be considered within this chapter and no signif-

icant stress gradients are present, the maximum value of the carried out effective stress 

(σeff,max) encountered within the plain specimen model will be used to predict the fatigue 

strength of the whole composite. 
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Furthermore, the matrix of the composite is normally subjected to a strong stress multiaxiality 

as a consequence of the local fibers’ arrangements and of the fiber geometry. Indeed, the 

cylindrical shape of fibers, combined with their tip, strongly perturbs the local matrix stress 

field. 

In order to capture the aforementioned effects, it is hereby proposed to compute the fatigue 

damage driving force (σeff) from the distributions of the Beltrami stress calculated at the 

matrix level. This stress component is nothing but the expression, in terms of stress, of the 

total strain energy density computed within the matrix and it reads: 

 

σB,m = √Wtot,m ∙ Em    (4.1) 

 

Terms Wtot,m and Em of Eq. (4.1) respectively denote the total strain energy density and the 

Young’s modulus. Subscript m indicates furthermore that the terms refer to the constituent 

matrix. 

Symbol Wtot,m can also be expressed as follows: 

 

Wtot,m = Wdev,m + Wdil,m    (4.2) 

 

According to Eq. (4.2), the total strain energy density can be normally split into two energetic 

contributions, namely a deviatoric (Wdev,m) and a dilatational (Wdil,m) part. The deviatoric 

strain energy density can be reformulated by means of the matrix von Mises stress: 

 

Wdev,m =
1 + νm

3Em
 σVM

2    (4.3) 

 

while the dilatational, or alternatively hydrostatic, term of Eq. (4.2) can be formulated as a 

function of the first invariant I1,m of the matrix stress tensor: 
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Wdil,m =
1 − 2νm

6Em
I1,m
2  (4.4) 

 

where symbol νm stands for the Poisson’s ratio of the matrix and I1,m can be expressed as a 

function of the matrix hydrostatic stress: 

 

I1,m = σxx,m + σyy,m + σzz,m = 3 σH,m (4.5) 

 

In Eq. (4.5), terms σxx,m, σyy,m and σ𝑧𝑧,m respectively denote the diagonal stress components 

of a generic matrix stress tensor and  σH,m the matrix hydrostatic stress. 

As it will be widely discussed later on, the plain specimen geometry will be simplified and 

reproduced with the RVE technique. In particular, a model layered along the thickness direc-

tion will be proposed and for each layer the computation of the Beltrami stress distribution 

will be possible by means of the pseudo-grain approach (chapter 3).  

It is furthermore assumed that the crack initiation interesting the whole specimen can be at-

tributed to the most critical layer, namely to the one characterized by the highest values of 

matrix Beltrami stresses, which can be identified by considering the cumulative stress distri-

bution functions.  

As proved by Belmonte et al. (BEL17, BEL17_2), the micro-scale damage process that leads 

to the initiation of a technical crack is not a point phenomenon. Conversely, it involves a 

finite matrix volume that can be defined as a process zone, which is typically confined within 

the matrix regions surrounding the fibers. Based on numerical simulations (Fig. 4.1) and on 

(BEL16), it can be easily stated that the right tail of the stress distributions (e.g. CDF higher 

than 90 %) are associated to the matrix portion surrounding the fibers. On the other hand, the 

same matrix regions correspond to the critical volumes in which the damage initiates and 

evolves during the fatigue life (BEL16, BEL17, BEL17_2, ARI14). As a consequence, the 

effective stress (σeff) proposed in the present chapter, is equal to the average value of the 

Beltrami stress, calculated within a matrix volume corresponding to a given percentage Vc% 

of the matrix subjected to the highest values of the Beltrami stress, as schematically shown 

in Fig. 4.2. The choice of the critical volume Vc% has to be such that the matrix regions 
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included are those where the damage actually occurs, i.e. those surrounding the fibers. As an 

example, the Beltrami stress field for an RVE with misaligned fibers under a unit tensile 

stress along direction x is shown in Fig. 4.1, where the most critical 10% of the matrix is 

isolated. It can be seen that the volume involved is always surrounding the fibers, suggesting 

that a Vc% equal to 10% or similar can be a reasonable choice. 

 

 

Figure 4.1. Example of Vc% corresponding to the 10%. 

 

Fig. 4.2 schematically shows the isolation of the Vc% by setting a threshold of the cumulative 

distribution function of the matrix Beltrami stress. 

For calculating σeff as the average value of the local Beltrami stress within a matrix volume 

defined by a CDF% equal to (100 − Vc%), the probability density function (PDF) must be 

obtained from the derivative of the CDF. In case of the Beltrami stress, it reads: 

 

PDF(σB,m) =
d (CDF(σB,m))

d(σB,m)
 (4.6) 
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Figure 4.2. Schematic representation of effective stress computation from a CDF threshold. 

 

As already mentioned, the effective stress is computed as the average value of the Beltrami 

stresses corresponding to the distribution tail. Indeed, as it is schematically depicted in Fig. 

4.2, once the distribution tail is identified by means of the threshold (100 – Vc%) of the CDF, 

the mean value of σB,m can be calculated by means of the following expression: 

 

σeff =
1

∫ PDF(σB,m)
+∞

σB,m,Vc%

d(σB,m)
∫ σB,m ∙ PDF(σB,m) d(σB,m)

+∞

σB,m,Vc%

 (4.7) 

 

Eq. (4.7) represents, therefore, the mean value of the Beltrami stress carried at the right tail 

of the distribution (dashed region). To better understand the expression of Eq. (4.7), it is 

additionally remarked that the integration domain is identified by the σB,m variable, as indi-

cated by the differential symbol d(σB,m). 

Nonetheless, the choice of Vc% will be discussed within the next paragraphs. 
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4.2  Multiscale model 

 

In this section, the fatigue crack initiation model, accounting for the combined effect of the 

local FOD and the fiber volume fraction within SFRTs is presented. It has already been dis-

cussed that the initiation of a macro-crack (meant as a visible technical crack propagating in 

the material) is driven by the damage evolving within the thermoplastic matrix, among the 

fibers. As a consequence, it is reasonable to identify, as the driving force for crack initiation, 

a local stress parameter calculated at the micro-scale in the matrix. For this reason, a mul-

tiscale model is required to compute the micro-scale stress fields in the matrix and link them 

to the macro-scale stresses. The choice of the effective stress (σeff) to be adopted as a driving 

force will be discussed later on. As it will be detailed within the next paragraphs, the compu-

tation of such a stress component identified as responsible for the crack initiation within the 

modeled specimen geometry will be based on the matrix stress distributions. As already re-

ported in the introduction of the present chapter, σeff will be computed by means of the matrix 

stress field, or better by using the stress distribution to which the composite matrix phase 

undergoes. It will be therefore possible to explain and describe the composite fatigue strength 

(associated with the onset of a crack at the macro-scale) by means of such a local parameter 

computed at the matrix level. This implicitly means that the macroscopic crack onset is con-

trolled by the stress state present at the matrix level and, therefore, by the matrix damage 

mechanisms themselves. 

In the following, a multiscale strategy is presented, to be used for the computation of the 

microscale stress fields in the matrix.  In particular, a two-scales strategy is here adopted, as 

schematically shown in Fig. 4.3. Therefore, the multiscale model has the following charac-

teristics: 

 At the macro-scale, the material is considered as homogeneous and anisotropic. In 

particular, the modeled geometry can be discretized into a number of sub-layers. Each 

of them is characterized by a uniform in-plane FOT. Concerning the through-the-

thickness direction, a varying FOT is assigned, according to the experimental data 

obtained by means of CT scans. It is furthermore worth highlighting that no actual 
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specimen geometry will be modeled, but a RVE technique will be employed as it will 

be detailed later on; 

 At the micro-scale, fibers and matrix are modeled as separated phases. At this scale, 

heterogeneous RVEs can be generated, fulfilling the required FOT and vf. The desired 

microstructure can be normally generated by using conventional algorithms for plac-

ing fibers within a cell. The latter is an operation that usually has to face different 

problems related to the model generation, mesh and solution. For this reason, in the 

present work the pseudo-grain methodology proposed in chapter 3 and PIE18 will be 

used, since the final aim of the micro-model solution is to carry out the matrix stress 

distributions. 

For the calculation of the elastic properties of the macro-models, the path from the micro- 

to the macro-scale has to be followed, by using analytical (PIE4) or numerical homoge-

nization techniques by means of Finite Element (FE) analyses on the micro-scale RVE. 

 

 

Figure 4.3. Schematic representation of multiscale modeling. 

 

For the computation of the local stress fields in the matrix, the opposite path is taken, accord-

ing to the following steps: 

1) FE solution of the macro-scale model with homogenized elastic properties under pre-

scribed displacement and/or load boundary conditions, for the calculation of the com-

plete macro-scale stress field, namely the homogenized stress tensor within each 

layer; 
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2) FE solution of the heterogeneous microstructure representative of each sub-layer, 

subjected to boundary conditions simulating the stress field in the relevant sub-layers. 

As already mentioned, the use of the pseudo-grain approach (PIE18) is suggested for 

the calculation of the local stress fields in the matrix, this being more efficient than 

the generation and solution of actual RVEs with misaligned fibers.  

Once the micro-scale stress distributions are calculated, the damage driving force parameter 

can be identified as the maximum value of the effective stress field, i.e. σeff,max. The latter 

can be eventually used to plot crack initiation σeff,max-N curves. The workflow for the com-

putation of the micro-scale effective stress responsible for the fatigue damage evolution at 

the micro-scale, by way of the pseudo-grain application, is shown in the flowchart of Fig. 

4.4. Further details on the construction and solution of the macro- and micro-scale models 

are given within the next sections. 

It has to be furthermore pointed out that, since only linear analyses will be carried out, only 

one simulation for each specimen geometry is needed. Indeed, as it is shown in Fig. 4.4, 

instead of considering all stresses describing the nominal S-N curve, one normalized external 

load (i.e. a unit nominal stress) can be applied to the macro-model. Be therefore σ̅eff,max the 

most critical effective stress computed for an external applied unit nominal stress. 

Once all fatigue data are displayed in terms of σeff,max, whether fatigue points collapse within 

a narrow scatter band, the robustness of the proposed fatigue criterion is demonstrated. The 

expression of fatigue curves as a function of the most critical effective stress can be done 

according to the following equation: 

 

σeff,max = σa ∙ σ̅eff,max (4.8) 

 

where symbol σa denotes the nominal stress amplitude used for displaying Wöhler-curves. 

Eq. (4.8) is moreover based on the assumption that all fatigue curves are lines parallel to each 

other, whether displayed through a bi-logarithmic scale. 

Observing Fig. 4.4., it must be pointed out that information related to the external load direc-

tion and the used fiber orientation tensors are connected to each other. Hence, in order to 

avoid mistakes, it is suggested to refer the FOT components’ reference system to the one 
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related to the injection-molded geometries. From now on, the following axis conventions will 

be adopted: 

 x direction: main flow direction; 

 y direction: specimen/plate width direction; 

 z direction: through-the-thickness direction. 

 

4.2.1  Macro-scale model 

 

As revealed by CT analyses or process simulations (KLI11), the FOTs within a generic com-

ponent might be characterized by a large variability along the three space coordinates. How-

ever, for plain flat specimens, as those considered for the practical application in the present 

work, a significant variability of the FOT is obtained along the through-the-thickness direc-

tion only. This phenomenon is typically observed in specimens that have been extracted from 

injection-molded plates. Therefore, in the specimen plane, the FOT variations can be consid-

ered as negligible.  

As schematically shown in Fig. 4.5, the thickness of the specimen is discretized into a number 

of sub-layer, each of them having a uniform FOT that varies, layer by layer, according to the 

trend given by CT measurements or process simulations.  

Once again, no FOT variation is considered along x and y, but only along z. Accordingly, the 

homogenized macro-model is characterized by the actual thickness of the corresponding 

specimen. As already mentioned, the model depicted in Fig. 4.5 is meant to undergo a unit 

external load, the direction of which lays on the xy plane, letting the upper and lower faces 

unconstrained. This can be done by applying mixed periodic boundary conditions (PBC) to 

the cell of Fig. 4.5. More details regarding the implementation of the PBCs are reported in 

appendix B. The equations expressing the deformation of faces/edges/vertices are written in 

terms of nodal displacements, i.e. nodes belonging to opposite faces move in the same man-

ner and their relative displacements are expressed by the equations themselves. 
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Figure 4.4. Flow-chart for computing the fatigue effective stress of a generic SFRT plain specimen. 
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Figure 4.5. Example of layered macro-scale model for plain specimens.  

 

The external stress tensor 𝛔ext, which the model undergo, can be converted to an external 

strain tensor by means of the Hook’s law: 

 

𝛆ext = ℂmacro ∶  𝛔ext  (4.9) 

 

where term ℂmacro identifies the stiffness tensor of the homogenized cell of Fig. 4.5, which 

can be numerically evaluated from the macro-model. 

The proper elastic constants must be assigned to each sub-layer of the macro-scale model. In 

the present chapter, this is done by means of two-steps homogenization schemes (DOG06, 

MÜL15, PIE04, OGI17) that permit the computation of the stiffness matrix as a function of 

the FOT and vf. As widely reported in the literature, this method is articulated in the follow-

ing two steps: 

i) Computation of the stiffness matrix for the so-called pseudo grains (PG), which 

are unidirectional cells oriented along discretized spatial directions; 

ii) Computation of the final stiffness tensor components by averaging the previous 

UD stiffness matrices, weighted by the fiber orientation probability density func-

tion (FO-PDF) evaluated along the predefined orientations. 

Regarding step i), the above mentioned spatial directions can be hereby identified by angles 

θu and ϕu, as it is shown in Fig. 4.6.  

1 MPa 1 MPa 

PBC 

Free surface 

PBC 
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Therefore, the stiffness tensor components of the PG schematically represented in Fig. 4.6 

must be computed for discrete angles.  

Each PG is characterized by aligned fibers and its fiber volume fraction matches that of the 

material. The generation and solution of the single PG is hereby achieved by means of the 

finite element (FE) method, according to (PIE18). The reason why such a technique is 

adopted stems from the fact the same unidirectional FE model will be used later on for the 

computation of the micromechanical stress distributions within the composite matrix, as pro-

posed by the authors (PIE18).  

 

 

Figure 4.6. Schematic representation of a pseudo-grain rotated along its unit vector described by 

two angles (PIE18). 

 

The components of the fourth-order stiffness tensor ℂPG of the single PG can be derived once 

that two subsequent rotations of the global stiffness components are performed: 

 

ℂPG = CPG,mnop
ϕ

em
ϕ

⊗ en
ϕ
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⊗ ep
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Therefore, combining Eq. (4.10) and (4.11), the ℂPG components expressed in the global 

reference system read: 

 

CPG,ijkl
g

= CPG,qrst
l Qim

ϕ
Qjn

ϕ
Qko

ϕ
Qlp

ϕ
Qmq

l Qnr
l Qos

l Qpt
l     (4.12) 

 

Terms Qij indicate the components of the second-order rotation tensor ℚ(n, α), the expression 

of which is reported in the first chapter and in (PIE18). Symbols n and α respectively denote 

the axis (unit vector) and the angle of each rotation. Referring to Eq. (4.10)-(4.12), bases {ei
g
} 

and {ei
l} stand for the global and the pseudo-grain coordinate systems and {ei

ϕ
} represents the 

bases of an intermediate coordinate system. The latter refers to the first of the two rotations 

that must be performed to migrate from the global to the pseudo-grain local reference system. 

The required coordinate system transformations are the followings: 

 ϕ-rotation of {ei
g
} around [0,0,1]

g
. Thence, {ei

ϕ
} is obtained; 

 (
π

2
− θ)-rotation of {ei

ϕ
} around [1,0,0]

ϕ
. 

Concerning the step ii), the computation of the stiffness tensor ℂlayer components can be 

performed for each sub-layer of the model and the equation reads: 

 

ℂlayer = ∑ ℂPG,u

U

u=1

ψ(𝐩u) Δ𝐩u    (4.13) 

 

In Eq. (4.13), ψ(𝐩𝐮)  denotes the fiber orientation probability density function (FO-PDF), 

which is recovered from the FOT resorting to the equations of Advani and Tacker (ADV87). 

Symbol 𝐩𝐮 is the unit orientation vector along witch the u-th pseudo-grain is rotated, as de-

picted in Fig. 4.6. Eventually, U quantifies the amount of PGs derived from the discretization 

of angles θ and ϕ. 

Once the elastic constants of each layer are carried out, they can be assigned to the homoge-

nized model of Fig. 4.5. The latter, that undergoes periodic boundary conditions emulating 

an external unit stress state, can be now solved. Eventually, the stress states read from the 



Chapter 4 

116 

solved macro-model can be employed as loads that must be applied to the micro-model that 

will be detailed in the next paragraph. 

In order to better understand the complete workflow that has to be performed to achieve the 

layers’ stress tensor, the reader may refer to Fig. 4.7, in which information concerning the 

involved software is also provided. Therefore, the latter reports the steps that have to be fol-

lowed in order to obtain the Abaqus® output file (.odb), in which the solution information is 

stored. 

 

 

Figure 4.7. Macro-scale model solution workflow for plain specimens. 

 

4.2.2  Micro-scale model 

 

In this section, the steps that must be followed to obtain the matrix stress distributions of the 

macro-model layers are covered. As already said, the pseudo-grain methodology shall re-

place the generation and solution of a generic cell made of misaligned fibers and matrix. 

As mentioned above, the matrix stress distribution of each layer is obtained by adopting the 

pseudo-grain approach presented in the chapter 3 and in PIE18.  
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The procedure to compute the stress distribution within the matrix of a generic microstructure 

corresponding to each sub-layer of Fig. 4.5 is the following: 

 Identification of the FOT, fiber volume fraction and layer stress tensor of the macro- 

model (the vf is assumed to be equal to the nominal fiber volume fraction of the entire 

composite); 

 Generation of a unidirectional model (pseudo-grain) to which PBC must be applied. 

According to PIE18, the cell size is set to 0.4x0.15x0.15 mm3, being 0.4 mm the 

dimension along fibers’ direction. vf corresponds to the nominal value; 

 Computation of the Fiber Orientation Probability Density Function (FO-PDF) as a 

function of FOT, as explained in ADV87; 

 Discretization of the angles of Fig. 4.6 and rotation of the pseudo-grain along all the 

unit vectors; 

 Application of the same external strain tensor (chapter 3 and PIE18) to each PG (i.e. 

Voigt boundary condition) and solution. The cumulative density function is now com-

puted for each PG; 

 Computation of the desired matrix stress-CDF through the linear combination of 

pseudo-grain CDFs, by weighting them through the FO-PDF. 

With this procedure, it is now possible to compute the cumulative distribution function (CDF) 

of any stress component within the matrix, without facing the multiple problems that may 

arise while generating, meshing and solving complex RVEs with misaligned fibers. 

The pseudo-grain procedure has been implemented in Python and the computation of the 

matrix stress distribution of each layer can be achieved by referring to the flowchart of Fig. 

3.3 and using the computed layers’ stresses as inputs. 

A schematic application of the workflow for computing σeff,max is shown in Fig. 4.8. Ac-

cording to latter, once σeff is calculated for all layers of the macro-model (Fig. 4.5), the high-

est value among them is adopted as damage driving force parameter and used to plot the 

σeff,max-N curves to crack initiation, according to Eq. (4.8). 

To sum up, the homogenized and anisotropic macro-model is firstly solved and, secondly, 

the layer FOT and stress tensor are adopted as input to the pseudo-grain method.  The latter 

yields the Beltrami stress distribution of each layer and, after computing the effective stresses 
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of the whole layered model, the most critical value (σeff,max) can be individuated as used to 

re-express the fatigue nominal S-N curves. The effectiveness of the fatigue criterion would 

be then demonstrated in case all data fell within a narrow scatter band. 

 

 

Figure 4.8. Schematic workflow of the multiscale model application to plain specimens. 

 

Later on, data corresponding to different critical volumes will be shown and discussed. 

 

 

4.4  Case studies 

 

In this paragraph, more details related to the type of specimens that will be used for the val-

idation of the proposed criterion are provided. 

In chapter 2, a wide overview on the experimental tests that have been performed for this 

work have been presented.  

It has already been mentioned that the application of the proposed fatigue model for plain 

specimens requires reliable information concerning the FOT estimated through-the-thickness 

and the corresponding fatigue S-N curves for the sake of validation. Not only data reported 

in chapter 2 will be used, but also some of them have been taken from the literature. A com-

prehensive overview of the used FOT and fatigue data is reported in Tab. 4.1. 

Referring to Tab. 4.1, the adopted specimens’ nomenclature recalls the one used in chapter 2 

to identify the specimen geometry. An identification number has been furthermore added to 

differentiate specimens characterized by different cut-out angles or fiber volume fractions. 
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Table 4.1. List of employed plain specimens. 

Name Geometry Material FO Mold Machined T R Source 

P/A1 P/A PA66-GF35 0° 80x80x1 mm³ ✔ RT 0 DEM10_2 

P/A2 P/A PA66-GF35 30° 80x80x1 mm³ ✔ RT 0 DEM10_2 

P/A3 P/A PA66-GF35 90° 80x80x1 mm³ ✔ RT 0 DEM10_2 

P/B1 P/B PA66-GF15 90° 120x80x2 mm³ ✔ RT 0 Chap. 2 

P/B2 P/B PA66-GF25 90° 120x80x2 mm³ ✔ RT 0 Chap. 2 

P/B3 P/B PA66-GF35 90° 120x80x2 mm³ ✔ RT 0 Chap. 2 

P/B4 P/B PA66-GF50 90° 120x80x2 mm³ ✔ RT 0 Chap. 2 

P/C1 P/C PA66-GF15 0° 250x40x3 mm³ ✘ RT 0 Chap. 2 

P/C2 P/C PA66-GF25 0° 250x40x3 mm³ ✘ RT 0 Chap. 2 

P/C3 P/C PA66-GF35 0° 250x40x3 mm³ ✘ RT 0 Chap. 2 

P/C4 P/C PA66-GF50 0° 250x40x3 mm³ ✘ RT 0 Chap. 2 

 

 

It must be pointed out that symbol FO of Tab. 4.1 denotes the extraction angle of a specimen 

with respect to the main flow direction. Symbol T indicates the temperature at which tests 

have been performed and, in particular, it can been seen that all of them have been carried 

out at room temperature (RT) and R denotes the load ratio, in this work kept equal to 0. 

It is also highlighted that the considered specimens possess different geometrical character-

istics and the efficiency of the proposed model relies on the choice of the proper FOTs.  

The employed fiber orientation tensors are those reported in chapter 2. Concerning the 

through-the-thickness discretization of the model shown in Fig. 4.5, the original one obtained 

from the CT observations has been kept. 

It must be highlighted that all fatigue data presented in Tab. 4.1 correspond to the lifetime of 

the specimens up to failure. Nevertheless, no significant crack propagation phases were ob-

served during the tests on plain specimens, as it is stated also in BEL17. This implies that the 

fatigue curves can be interpreted as crack initiation data. 
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One more observation can be made concerning the application of the proposed model to 

specimens characterized by different extraction angles (Tab. 4.1). In case the out-of-diagonal 

components of the FOTs were neglected, significant errors could arise whether the specimens 

were extracted at 30° with respect to the MFD. This would be caused by the fact that a de-

coupling between the diagonal and deviatoric components of the stress tensor could not be 

assumed anymore as valid, due to the strong anisotropy of the specimen layers. In this work, 

instead, the complete FOTs are involved for the computation of the homogenized stiffness 

tensors of model of Fig. 4.5 and the possible shear-coupling effects are taken into account 

for all different extraction angles. Therefore, models of specimens extracted at different an-

gles are treated in the same manner. 

Nevertheless, the proposed fatigue model does not take into account the actual gradient of 

the FOT components along the gauge length. More accurate models might be developed by 

reproducing the specimen actual geometry and by adopting higher order (fourth-order) FOTs 

for the estimation of the elastic properties. 

 

 

4.5  Results and discussion 

 

For what concerns fiber and matrix, the properties of both constituents have been reported in 

Tab. 4.2. 

 

Table 4.2. Fiber and matrix properties for a short glass fiber-reinforced PA66.  

𝐝𝐟 [µm] 𝐥𝐟 [µm] 𝐄𝐟 [MPa] 𝛎𝐟 [-] 𝐄𝐦 [MPa] 𝛎𝐦 [-] 

10 275 72000 0.22 3000 0.39 

 

 

 

In Tab. 4.2, the subscripts f and m respectively refer to fiber and matrix. Symbols d, l, E and 

ν denote diameter, length, Young’s module and Poisson’s ratio. According to Tab. 4.2, both 

constituents have been assumed to be isotropic. 

Furthermore, the fiber volume fractions assigned to each material are listed in Tab. 4.3. 
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Table 4.3. Fiber volume fractions for the examined short glass fiber-reinforced PA66. 

Material PA66-GF15 PA66-GF25 PA66-GF35 PA66-GF50 

𝐯𝐟 [%] 8 14 20 28 

 

 

As already mentioned, concerning the homogenized model generation, the same discretiza-

tion as the ones shown in chapter 2 is kept (each data-point in the FOT plots corresponds to 

a layer). As already said, the FOT components are expressed in the global reference systems 

of Fig. 4.6. Therefore, the unit external stress is rotated according to the cut-out angle, 

whether the specimens are extracted from plates. In case of geometry P/D, no rotation is 

required. 

According to the flow-chart reported in Fig. 4.4, the effective stress, intended as driving force 

responsible for the fatigue damage, has been computed for each specimen, which in turn 

depends on the FOTs derived through CT scans and on the vf. It has been widely discussed 

about the choice of evaluating such a mean stress component in a critical region surrounding 

the fibers. This has been achieved by setting different CFD thresholds (i.e. Vc%) and compu-

ting σeff.  

Eventually, the Tσ values are summarized in Tab. 4.4 for different CDF thresholds. It can be 

seen that the values of the scatter index do not exceed 1.30 for different values of Vc%, this 

implying the robustness of the proposed criterion. 

 

Table 4.4. Scatter indices of fatigue data after model application to plain specimens. 

𝐕𝐜% 10% 8% 6% 4% 2% 

𝐓𝛔 1.29 1.29 1.25 1.25 1.27 

 

The fatigue data points expressed, firstly, in terms of nominal stress (Fig. 4.9) then of σeff,max 

for different values of Vc%% are shown in Fig. 4.10, in which the upper and lower solid lines 

respectively delimit a confidence interval between the 10% and 90% of probability of sur-

vival.  
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Figure 4.9. Fatigue data for plain specimens, expressed in terms of nominal stress. 
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Figure 4.10. Fatigue data of plain specimens, expressed in terms of effective stress for different val-

ues of Vc%. 
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The outcome of the proposed criterion consists in the possibility of choosing different values 

of Vc% in order to identify critical regions surrounding the fibers.  

It is worth mentioning that the proposed criterion was specifically conceived for plain spec-

imens, in which the macro-scale stress field is uniform or nearly uniform, so that a point-

criterion can be adopted at the macro-scale (the macro-scale material point with the highest 

σeff values controls the crack initiation). In the presence of high stress gradients, caused by 

severe notches for instance, the present multiscale approach must be combined with a meth-

odology to account for the effect of stress concentrations, as it will be done in chapter 5. 

Eventually, it is also worth mentioning that specimens listed in Tab. 4.1 and used for the sake 

of validation are generically characterized by different geometries. Indeed, different speci-

men thicknesses (1 mm, 2 mm and 3 mm) and different shoulder radii (R12.5, R40 and R80) 

have been employed. Nonetheless, the application of the proposed approach revealed to be 

efficient for all specimens, even taking into account the effect of the local fiber orientation 

distributions and of the fiber volume fractions. Therefore, it can be stated that, as long as no 

strong geometrical variation is present, a simplified approach as the one presented in this 

chapter can be adopted with a good approximation, without paying attention to the actual 

specimen shape and dimensions. 

 

4.5.1  Considerations on the critical section 

 

Before concluding, it is worth making some considerations concerning the critical through-

the-thickness section assumed to be responsible for the initiation of a macroscopic crack 

within plain specimens characterized by the skin-core effect. Fig. 4.11 reports the computed 

effective stresses (with Vc% = 10%) for geometry N/A, evaluated for each layer of the ho-

mogenized model (Fig. 4.5). The external applied stress is 1 MPa and therefore the effective 

stress is hereby denoted by σ̅eff. 
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Figure 4.11. Through-the-thickness effective stress (Vc% = 10%) for geometry N/A, evaluated for 

three cut-out angles: 0° (a), 30° (b) and 90° (c). The external stress has been set to 1MPa. 
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In Fig. 4.11, the maximum value of the effective stress is highlighted. The latter identifies 

therefore the section in which the crack caused by the fatigue loading is supposed to start. 

Nonetheless, by observing the scale of the y axis, it can be stated that the obtained maximum 

effective stress can be considered approximately constant along the thickness direction.  

Therefore, relying on the σeff values resulting from the model application, it can be observed 

that the crack onset layer cannot be identified with absolute certainty. 

 

 

4.6.  Conclusions 

 

In the present chapter, a multiscale model has been proposed to predict the effect of local 

fiber orientation, load direction and fiber volume fraction on the cycles to fatigue crack ini-

tiation in SFRT plain specimens. Based on the experimental observations, it has been possi-

ble to state that the fatigue damage mainly occurs within the matrix surrounding fibers. Due 

to the strong mulitaxiality that characterizes the specimen damage zones, a criterion based 

on the matrix stress distributions has been developed in order to carry out the fatigue damage 

driving force. It was possible to identify an effective stress responsible for the micro-scale 

damage accumulation by means of the Beltrami stress distribution within the matrix. The 

identification of the matrix critical regions has been performed by setting thresholds of the 

stress-cumulative density function within the matrix. Being the generation and solution of 

equivalent microstructures still a time consuming operation, the pseudo-grain approach pro-

posed in chapter 3 has been employed for computing the matrix stress-CDFs. A bulk of ex-

perimental data (CT scans and fatigue curves) has been herein presented and used for vali-

dating the proposed fatigue criterion.  

The proposed approach enables the prediction of the lifetime duration of plain specimens 

characterized by generic through-the-thickness FOT profiles, fiber volume fractions and ex-

ternal loads. This is done by computing a scalar fatigue parameter (effective stress) at the 

matrix level of the composite. 
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The efficacy and the robustness of the model have been demonstrated by obtaining low-scat-

tered fatigue data for different Beltrami-CDF thresholds, once fatigue data for different ma-

terials have been displayed in terms of maximum matrix effective stress over the specimen 

thickness. 

It is furthermore worth remarking that the proposed fatigue criterion cannot implicitly ac-

count for the effect of the fatigue mean stress. In case the proposed method were applied to 

different load ratios, it would be recommended to adopt the formulated fatigue criterion 

within each set of data characterized by the same load ratio. Empirical methodologies may 

also been applied later on to correlate the computed effective stress and the mean stress (e.g. 

MAL04) in order to predict the fatigue strength for various load ratios. 

The proposed approach has been validated for dry-as-molded materials. In case of condi-

tioned specimens, in the first place, the proposed model might be used only by changing 

(lowering) the elastic modulus of the thermoplastic matrix. On the other hand, the humid 

matrix results to be more ductile and the damage mechanisms interesting SFRT part might 

be different. Therefore, the proposed criterion might not be able to capture the previously 

discussed effects and further criterion modifications would be required. 
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Chapter 5 

 

Fatigue model for notched specimens 

 

5.1  Introduction 

 

In this chapter, the fatigue criterion proposed for plain specimens in chapter 4 is extended to 

notched specimens and fatigue data reported in chapter 2 are used for validating the proposed 

fatigue model.  

Because of the complex geometries characterizing the components’ shape, some part sites 

become critical as a consequence of the presence of notches that may not be avoided. It is 

well known that notches consist in local strong geometry variation to which a part strength 

reduction is often attributed. In this work, only the fatigue strength of SFRTs will be treated. 

In this context, the aim of the present section can be outlined. Namely, a fatigue criterion 

simultaneously accounting for following effects is hereby presented and validated: 

 Local fiber orientation distribution;  

 Fiber volume fraction; 

 Notch geometry. 

In the literature, only a few works have dealt with the combined effects of the aforementioned 

parameters influencing the fatigue strength of the material and in most cases they have faced 

them separately. 

It must be remarked that many works in the literature has stated that a perfect control of the 

fiber orientation during the injection molding process is not possible and a fiber orientation 

gradient is normally encountered within SFRT parts (DEM10, DEM10_2, DEM10_3, 

ZHO04, MOR15, BER06, BER12, ROL16, ROL18, BEL17, KLI11). 

With regard to the presence of notches, a comprehensive study has been carried out by Bel-

monte et al. (BEL17), who created notched specimens made of polyamide 6.6 (PA66) rein-

forced with different fiber weight fractions (15wt%, 25wt%, 35wt% and 50%wt). Contrary 
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to most of the works, where notches are obtained by machining plates, the authors of BEL17 

decided to insert a sharp slit into the mold, thus resulting in the “natural” formation of a 

notch. Additionally, in BEL17 the effect of fiber volume fraction onto the local fiber orien-

tation distribution around the notch edges was analyzed thee-dimensionally, showing in av-

erage an enhancement of the fiber alignment along the main flow direction (MFD) by in-

creasing the fiber content.  

Moreover, Bernasconi et al. (BER15), created notched specimens without machining the 

notch geometry. In fact, they modeled a double V-notch mold and filled it with a PA6-GF30, 

longitudinally and laterally. The authors performed optical analyses at the net cross-section, 

quantifying the thickness average fiber orientation by means of the computed average angle 

cosines. In this interest, they observed that moving from notch to notch along the specimen 

width-direction, a relevant fiber longitudinal alignment could be detected nearby the notch 

tips. 

With regard to the effect of fiber orientation onto the fatigue life of SFRTs, many authors 

have produced specimens extracted at different angles (BER07, DEM10_2) or directly in-

jected from different gate locations (BER15) and then tested them under fatigue loading. All 

authors showed a neat decrease of the fatigue load bearing capability while reducing the fiber 

alignment with respect to the loading direction. 

With reference to the effect of fiber content onto the strength of SFRTs, only few works have 

deeply dealt with it. In BEL17, the author carried out fatigue curves for sharply notched 

specimens, showing how the fatigue specimens’ fatigue strength is enhanced by increasing 

the amount of fillers (i.e. fibers). In particular, the authors of BEL17 experimentally esti-

mated the difference between crack initiation and propagation phases. Besides, they observed 

that the higher the fiber volume fraction is the lower the crack propagation rate is.  

Concerning the effect of notch geometry, different authors have experimentally quantified 

the influence of the notch radius onto the fatigue strength. In BER15, Bernasconi et al. per-

formed S-N curves for longitudinally and transversally injected specimens, having 0.5 mm, 

1.0 mm and 2.0 mm radii and demonstrating how, respectively, the specimen becomes less 

resistant. The authors also highlight that the crack initiation phase is reduced while enlarging 
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the notch radius. Once again, the fatigue strength drop (tests performed up to specimen fail-

ure) of a PA66-GF33 specimen was shown by Zhou and Mallick (MAL04), who obtained 

circular notches by drilling holes with decreasing radii. 

At this point, it must be remarked that SFRTs are often in contact with dangerous liquids 

(e.g. fuel in SON08) and possible leakages should be avoided. To this aim, the need of de-

veloping a fatigue criterion up to crack initiation emerges and therefore a local approach has 

to be developed and validated. Accordingly, Meneghetti and Quaresimin (MEN11) predicted 

the fatigue behavior of PA66-GF35 notched specimens by locally measuring the heat dissi-

pation at the most critical sites (i.e. notch root). 

In the literature, the attention on the modeling activity of SFRTs has been mainly emphasized 

with regard to plain specimens, developing criteria usually capturing the fiber orientation 

effect, without comprehensively taking into account the damage mechanisms occurring at 

the microscale. Accordingly, in BEL17_2 the stages previous to the crack onset in sharply 

notched specimens undergoing cyclic fatigue loading were analyzed. The authors showed 

indeed that damage mainly occurs at the matrix level within highly stressed matrix regions 

surrounding the fibers themselves. Accordingly, Arif et al. (ARI14) tracked the damage evo-

lution within the matrix of a fiber reinforced thermoplastic and observed a diffused damage 

along fibers and at their tips by means of CT scans. 

Being aware of the aforementioned factors affecting the fatigue life of a SFRT, particularly 

in the presence of notches, the thesis work aims at developing a multiscale fatigue criterion 

accounting for the relevant observed damage mechanisms evolving at the micro-scale. Anal-

ogously to the section about the plain specimens’ model, the proposed model will cover the 

effect of local fiber orientation and fiber volume fraction by computing a matrix stress dis-

tribution based effective stress. Additionally, the notch geometry is here taken into account 

by applying an averaging concept inside a critical material volume, i.e. around the peak value 

of the defined effective stress. Within the next paragraphs, more details regarding the choice 

of the critical volume responsible for the crack initiation will be given. 
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5.2  Multiscale model 

 

In this paragraph, the complete description of the fatigue model formulation and implemen-

tation is provided. As mentioned in the introduction, the aim of the present work concerns 

the development of a multiscale model enabling to capture the combined effect of local fiber 

orientation, fiber volume fraction and notch geometry. This will be done by computing the 

mean value of a matrix stress-based effective stress (σeff) in a critical volume, to which the 

crack initiation phase is attributed.  

For the sake of clarity, the complete workflow that must be followed (Fig. 5.1) to compute 

the abovementioned average effective stress can be summarized through the following steps: 

 Generation and solution of a homogenized and anisotropic macro-scale model, to 

which the proper external load has to be applied. This step can be performed by means 

of the sub-modeling technique. It must be reminded that, throughout this work, only 

linear elastic analyses will be carried out. Therefore, the computation of the proper 

driving forces responsible for the crack initiation can be referred to a normalized ex-

ternal load, i.e. to a unit external nominal stress. 

 Solution of a micro-scale model for each element, by means of which a matrix-based 

effective stress is obtained and subsequent mapping of the carried out field onto the 

finite element (FE) model. In this step, the carried out homogenized stress tensors 

evaluated at the macro-level are used as boundary conditions to the micro-model, in 

combination with the FOT and fiber volume fraction information. 

 Fatigue criterion formulation, i.e. application of an averaging concept within a critical 

volume surrounding the effective stress peak and computation of a mean effective 

stress, responsible for the crack initiation phase. 

 



Fatigue model for notched specimens 

133 

 

Figure 5.1. Flow-chart for the computation of the average effective stress responsible for the crack 

onset in SFRT notched specimens. 

 

5.2.1  Macro-scale model 

 

In this paragraph the formulation of the macro-model is described. The latter provides the 

inputs to the micro-model, which in turn permits the formalization of the fatigue criterion 

based on the micro-mechanical damage mechanisms. 
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The proposed macro-model can be subdivided into the following steps: 

a) Generation and solution of a homogenized global model; 

b) Generation and solution of a homogenized sub-model which inherits the boundary 

nodal displacement from global model solution; 

c) Reading of the homogeneous macro-stresses. 

Concerning point a), the entire specimen geometry has to be reproduced according to its 

actual dimensions (chapter 2). This operation is performed within the software Abaqus®, 

which will be also used for the model numerical solution. 

As it was highlighted in the aforementioned points, the first step to carry out is the generation 

of the global model. Because of the strong anisotropy characterizing the considered speci-

mens, the elastic properties have to be applied properly to the global model. In the most 

generic case, every element has its own elastic constants. The fourth-order stiffness tensor 

(Eq. 5.1) of a single mesh-element depends on the element’s fiber orientation tensor (that 

may be derived from CT analyses or Moldflow® simulations) and fiber volume fraction.  

 

ℂel = f(FOT, vf) (5.1) 

 

The term ℂel of Eq. (5.1) stands for the stiffness tensor of the single finite element. 

Similarly to chapter 4, the fiber volume fraction is assumed not to vary within the specimen 

geometry and is set equal to the nominal one, which in turn is calculated by means of the 

constituents’ density and weight fraction. 

The process of assigning the proper stiffness tensor to each element is depicted in Fig. 5.2.  

 

 

Figure 5.2. Homogenized elastic properties assignment to SFRT notched FE models. 
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From Fig. 5.2 it is clear that, once the single element that must receive the elastic constants 

is isolated, homogenization methods (TIA16, KAI14, MÜL15, BAB18, PIE18) have to be 

applied according to Eq. (5.1) in order to evaluate all entries of the anisotropic stiffness ten-

sor. Term FOTel of Fig. 5.2 identifies the fiber orientation tensor that has been attributed to 

the single FE element of interest. The same operation will be also repeated for the sub-model.  

As already mentioned, the global model undergoes a unit external nominal stress in order to 

obtained normalized results and once it is solve, the resulting displacement field computed 

in the region surrounding the notch root can be used as boundary condition to a sub-model 

(Fig. 5.3). 

 

Figure 5.3. Schematic global model (a) and sub-model (b). 

 

In Fig. 5.3, symbol uf indicates the displacement field that is computed on the surfaces (in 

case of a 3D model) of the sub-model, depicted by the red square. 

The motivation of generating a sub-model stems from the need of performing a finer mesh 

close to the notch tip, in order to better solve the stress field in the most critical homogenized 

volumes. With this technique, a finer mesh can be applied to the sub-model, still keeping 

acceptable computational times. 

At this stage, the sub-model can be solved and the resulting homogenized stress tensors read 

for each element and used as inputs to the micro-model, the formulation of which will be 

detailed within the next paragraphs. It is worth remarking that the solved homogenous stress 

field does not distinguish between fiber and matrix, but is comprehensive of both. This aspect 

(a) (b) 
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differs from the micro-model definition, where only information carried out at the matrix 

level will be considered as relevant to the fatigue criterion formulation.  

Nonetheless, Fig. 5.4 reports an example of a solved sub-model (geometry N/A of chapter 

2), from which the stress tensor and the FOT can be read for the micro-model solution. 

In Fig. 5.4, symbol 𝛔el represent the homogenized stress tensor of a single element. 

 

Figure 5.4. Example of a solved sub-model generated around the tip of a V-notch. 

 

 

5.2.2  Micro-scale model 

 

Once the solution of the homogenous model is obtained, the formulation of the micro-scale 

model can be now presented, which aims at providing information related to the matrix 

stresses relevant to the multiscale fatigue criterion formulation. With this step, the matrix 

stress distributions are computed at the micro-scale and will be later used to formulate the 

micro-mechanically based fatigue criterion. As mentioned above, the latter must take into 

account the effect of fiber volume fraction, local fiber orientation and notch geometry. 

Analogously to the model for plain specimens, the solution of the macro-scale model is now 

used as boundary conditions to the micro-scale model. Nevertheless, differently from the 

plain specimens’ model formulation where a schematic macro-geometry was created in form 

of RVE, the computation of the matrix stress distribution is now carried out for each mesh-
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element. The reason of such a choice stems from the fact that stress concentrations, and there-

fore localized fatigue damages induced by the notch geometry must be accounted for. This 

step was not needed in case of plain specimens, where the fatigue damage was assumed to 

be equally distributed on the specimen plane and thence the specimen failure was attributed 

to the most critical section.  

In the absence of the pseudo-grain (PG) approach previously presented, the computation of 

the matrix stress distribution for a generic element of the sub-model might be performed by 

generating an equivalent microstructure fulfilling the requirements of FOT and vf. In Fig. 

5.5, an example of the conceptual derivation of an equivalent microstructure is shown. 

 

Figure 5.5. Schematic representation of multiscale modeling for notched specimens. 

 

At this stage, the matrix stress distribution computation should be carried out at the matrix 

level of the equivalent microstructure (Fig. 5.5) of each finite element of the sub-model. 

Nevertheless, because of different issues related to the generation and solution of a generic 

heterogeneous volume element, the pseudo-grain methodology developed in the chapter 3 is 

hereby applied once again to compute the stress distributions for each element. More details 

about the stress components that will considered are reported within the next paragraphs 

while developing the fatigue criterion. 

According to chapter 3, the pseudo-grain methodology requires the same inputs as the heter-

ogeneous volume element shown in Fig. 5.5, i.e. FOT and vf.  

In particular, the attention will be payed to the computation of the matrix cumulative stress 

distributions, from which the effective stress (Fig. 5.1) is computed. In Fig. 5.6, the steps that 
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must be followed elementwise to compute the aforementioned cumulative functions are de-

picted. 

 

Figure 5.6. Schematic application of the PG approach to notched FE models. 

 

 

5.3  Fatigue criterion formulation 

 

In this section, the complete formulation of the fatigue criterion, which will applied to spec-

imens with a generic notch geometry, fiber orientation distribution and fiber volume fraction, 

is presented. Particularly, the complete workflow that must be followed in order to carry out 

an average value of the effective stress responsible for the crack initiation in case of fatigue 

loading is hereinafter detailed. Eventually, the choice of the critical volume in which the 

crack initiation is assumed to occur is discussed. 

Firstly, some assumption have to been done before formally formulating the procedure to 

follow: 

 The damage mechanisms responsible for the crack onset are univocally attributed 

to the matrix level, therefore possible fiber failures are not considered; 

 The abovementioned mechanisms do not affect the fatigue curves’ slope. This 

means that non-linear effect causing a slope change are hereby not taken into 

account; 
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 The micromechanical damage nature only depends on the matrix properties and 

is independent of the local fiber orientation, fiber volume fraction and local stress 

state. Therefore, the effect of these three parameters is automatically taken into 

account while computing the matrix stress distributions. 

Being aware of the points listed above, the choice of the effective stress based on the matrix 

stress distributions can be done. Similarly to chapter 4, a Beltrami stress (σB) is chosen in 

order to formulate the micro-mechanical fatigue criterion.  

The reason of adopting such a stress component derives from the fact that it is closely related 

to the expression of the total strain energy. Indeed, the Beltrami stress carried out in the 

matrix reads: 

 

σB,m = √Wtot,m ∙ Em (5.2) 

 

Analogously to chapter 4, subscript m of Eq. (5.2) indicates that the calculation is done at the 

matrix level and terms Wtot and E respectively denote the total strain energy and the elastic 

of the considered constituent. Further details concerning the analytical formulation of the 

terms in Eq. (5.2) can be found in chapter 4. 

According to Eq. (5.2), the Beltrami stress contains both dilatational and deviatoric contri-

butions. This makes the proposed approach suitable to the case of short fiber-reinforced com-

posites, the matrix of which undergoes a strongly multiaxial stress state as a consequence of 

the complex local orientation of the fibers, combined to the generically multiaxial macro-

stress state deriving from the strong material anisotropy. The idea of describing the fatigue 

strength of a composite by means of the matrix stress state was also used in the work of 

Carraro et al. (CAR14) who correlated micromechanical stress components to the formation 

of macroscopic cracks in a continuous fiber lamina. Differently from that work, in the present 

section the fiber orientation cannot be considered as uniform within a certain region of inter-

est and, furthermore, the effect of the fiber tip onto the local stress state perturbation is not 

negligible. For such a reasons, a fatigue criterion is hereby formulated in the most generic 

manner, considering the total energy contribution as responsible for the complex damage 

mechanisms occurring at the micro-scale level, among fibers. 
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Different authors observed that the fatigue damage mainly evolves within the SFRT matrix 

and, in particular, within volumes surrounding fibers (HOR97, KAB06, DEM10_3, KLI11, 

ARI14), i.e. along the fibers’ wall and close the fibers’ tip. The work of Belmonte at al. 

(BEL17) refers to the specimens geometry N/B. The authors focused on microscopic obser-

vation of damage mechanisms for a sharply notched specimen and they observed that the 

damage anticipating the crack onset can be considered as distributed around the aforemen-

tioned critical regions. For a better understanding, the mostly damaged regions are schemat-

ically shown in Fig. 5.7. 

 

 

Figure 5.7. Schematic representation of damage evolution zones around fibers. 

 

Assuming the schematic damage representation of Fig. 5.7 to be valid, a criterion can now 

be defined in order to carry out the effective stress involved in the matrix fatigue damage. It 

is thus decided to isolate the highly stress matrix volumes of Fig. 5.7 by considering the 

Beltrami stress distributions at the matrix level. Especially, the attention is focused on the 

cumulative distribution functions. Accordingly, the highly stressed matrix volumes can be 

identified by means of the tails of the Beltrami stress distributions, as it is depicted in Fig. 

5.8.  

By defining a threshold value of the cumulative stress distribution function, a method for 

isolating the most stressed region is thus defined.  
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Figure 5.8. Matrix stress cumulative function and critical matrix regions identification. 

 

After properly choosing the CDF threshold, the effective stress, responsible for the crack 

onset, is now calculated as the weighted average matrix Beltrami stress computed within the 

micro-scale critical regions identified by the CDF upper tail. 

Referring once again to Fig. 5.6, the previously mentioned effective stress can now be eval-

uated for each mesh-element thanks to the stress state, FOT and vf. The resulting σeff field 

can be displayed for the entire FE model (sub-model) and used for further developments of 

the fatigue approach.  

According to Fig. 5.9, the complete workflow describing the achievement of the effective 

stress field is depicted. Nonetheless, it must be reminded that linear elastic stress components 

are computed. 

 

 

Figure 5.9. Effective stress computation workflow for notched specimens. 
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Nevertheless, the presence of a notch concentrates the fatigue damage within a limited mac-

roscopic volume around the notch tip, or alternatively, around the most critical mesh-element. 

In this context, the following assumptions are reasonably formulated: 

 The crack initiation site is controlled the peak value of the effective stress; 

 The crack onset phase is controlled by the average value of the effective stress, cal-

culated in a critical macro-scale volume surrounding the most critical element. 

According to the two listed assumptions, the shape of the critical volume is defined as spher-

ical and is assumed to be centered on the effective stress peak computed at the notch tip. 

 

 

Figure 5.10. Example of spherical critical macroscopic volume at the notch tip of SFRT models. 

 

Symbol rc of Fig. 5.10 denotes the radius of the sphere isolating the  macroscopic critical 

volume. 

 

 

5.4  Definition of the critical radius 

 

In this paragraph, the determination of the radius of the critical volume identified by the 

sphere of Fig. 5.10 is described.  

Because of the complex nature of SFRTs, the determination of the critical radius as a material 

parameter could be an issue due to the difficulties of controlling the testing input parameters, 

𝐫𝐜 
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namely the local fiber orientation distribution. As it will be shown, the critical radius can be 

carried out by performing a model calibration with the aid of two specimens with different 

notch geometries or, alternatively, by means of a plain a notched specimen. 

Before proceeding with the description of the algorithm that has to be followed for the ob-

taining the critical radius value, some parameters formulations need firstly to be explained. 

Symbol r will be hereinafter used to indicate a genetic radius of a sphere centered on the 

effective stress peak.  

Be symbol 〈σ̅eff〉r the average value of the effective stress, computed within the volume iden-

tified by a sphere of radius r for an applied unit nominal tensile stress. With regard to the FE 

model, it reads: 

 

〈σ̅eff,cycles〉r = ∑ σeff,i Vi

Kel,r

i=1

 (5.3) 

 

where σeff,i and Vi respectively denote the effective stress and volume associated to the i-th 

element of the mesh. Symbol Kel.r indicates the amount of elements contained in the consid-

ered spherical volume of radius r. 

As already anticipated, since only linear analyses are performed, the computation of the av-

erage effective stress is done only once per specimen. Thence, the calculation of the actual 

average σeff yields: 

 

〈σeff,cycles〉r = σa ∙ 〈σ̅eff,cycles〉r  (5.4) 

 

Term σa of Eq. (5.4) indicates the nominal stress amplitude, typical of a Wöhler-curve. 

Now considering the value of Eq. (5.4) for two generic different specimens (A and B), pos-

sibly with different notch geometries, the following error estimator can be defined: 

 

ΔAB(r) = |〈σeff,cycles
A 〉r − 〈σeff,cycles

B 〉r| (5.5) 
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In Eq. (5.5), the subscript r is once again recalled to indicate that the computation of the terms 

is carried out within the volume of radius r.  

The choice of the rc is performed through a loop, the formalization of which is shown in Fig. 

5.11.  

 

 

Figure 5.11. Calibration process and determination of the critical radius for notched specimens. 

 

Eventually, Δr is used to indicate a small incremental value of r and δ is an error estimator. 

Once the critical radius rc is carried out through the calibration process reported in Fig. 5.11, 

the carried out value can be used for other notch geometries, fiber volume fraction and local 

fiber orientation distributions. 

It must be observed that the proposed methodology may be adopted not only to predict the 

fatigue curves of coupons, but also to estimate the fatigue lifetime of real parts undergoing 

similar conditions to the ones treated in this thesis work. 
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5.5  Case studies 

 

At this stage, more information concerning the analyzed specimens is provided. 

As it was already reported within the previous paragraphs, the proposed approach is suitable 

for the prediction of the fatigue lifetime of notched specimens, in particular for those under-

going fatigue loadings up to crack initiation. Indeed, fatigue data reported in chapter 2 are 

hereby used for the sake of validation and the corresponding FOTs adopted in order to 

properly assign the elastic properties to the developed FE models. Additionally, data pre-

sented by Belmonte et al. (BEL17) are employed to extend the model validation to other fiber 

weight fractions and notch-geometries. 

In Tab. 5.1, a summary of the used data set is shown, reporting details regarding the speci-

mens’ dimensions and fiber content. Symbols FO, rnotch, T and R of Tab. 5.1 respectively 

denote the main fiber orientation, the notch radius, the temperature at which tests have been 

conducted and the load ratio. 

More information related to the specimen geometries and fatigue strength has been reported 

in chapter 2. 

The elastic properties’ assignment has been differentiated between coupons that were ma-

chined out of injection-molded plates (geometries N/A and N/C) and those obtained by shap-

ing the notch geometry with a metallic insert (N/B and N/D). 

With reference to the geometries listed in Tab.1, the procedure that has been followed for 

obtaining the macro-model is hereinafter presented. 
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Table 5.1. Summary of the considered notched specimens for the model validation. 

Name Material FO rnotch Mold Machined T R Source 

N/A1 PA66-GF15 0° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/A2 PA66-GF35 0° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/A3 PA66-GF50 0° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/A4 PA66-GF15 90° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/A5 PA66-GF35 90° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/A6 PA66-GF50 90° 0.1 mm 120x80x2 mm³ ✔ RT 0 Chap. 2 

N/B1 PA66-GF15 0° 0.2 mm 250x40x3 mm³ ✘ RT 0 BEL17 

N/B2 PA66-GF25 0° 0.2 mm 250x40x3 mm³ ✘ RT 0 BEL17 

N/B3 PA66-GF35 0° 0.2 mm 250x40x3 mm³ ✘ RT 0 BEL17 

N/B4 PA66-GF50 0° 0.2 mm 250x40x3 mm³ ✘ RT 0 BEL17 

N/C1 PA66-GF35 0° 2 mm 80x80x2 mm³ ✔ RT 0 Chap. 2 

N/D1 PA66-GF35 0° 5 mm 250x40x3 mm³ ✘ RT 0 DEM08 

 

5.5.1  Global model generation 

 

According to Fig. 5.1, before solving the sub-model to which the fatigue criterion is applied, 

the solution of the global model has to be achieved. In this section, two different techniques 

are presented: 

1) Concerning those specimens the shape of which corresponds to the mold shape and 

where the notch is not obtained by removing material, the workflow described in Tab. 

5.12 is adopted. The generation and solution of the global model takes place within 

different environments. Indeed, different software are involved, namely Moldflow® 

for process simulations, Digimat® for assigning material properties to the model and 

Abaqus® to obtain the model solution in terms of homogenized stress fields. With 
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regard to the first steps of Fig. 5.12, the proper process parameters (pressure, temper-

ature, material velocity, etc.) must be properly defined according to the actual ones 

adopted for injecting the molds. Subsequently, once the solution of the software 

Moldflow® is reached, the fiber orientation tensors, i.e. the process simulation out-

puts, are provided to Digimat® in order to carry out the elastic properties that are later 

attributed to the Abaqus® model. Once the proper loading conditions are defined and 

given to the FE solver, the solved file containing the complete stress field is obtained. 

It must be highlighted that, because of the fully 3D process simulation, the resulting 

model has elastic properties generally varying along all directions. With reference to 

Tab. 5.1, the procedure described in Fig. 5.12 can be therefore applied to specimens 

N/B and N/D. 

2) The second adopted technique can be used for specimens extracted from injection-

molded plates, in which the variation of the FOT component on the xy plane can be 

neglected with regards to the through-the-thickness one. 

The generation and solution of the global model is detailed in the flow-chart of Fig. 

5.14. Since no particular FOT gradients are present, the specimen geometry can be 

reproduced by means of a layered model (Fig. 5.15). 

According to Fig. 5.14, once the through-the-thickness FOT components are identi-

fied, homogenization schemes can be used to properly assign the elastic constants to 

the modeled geometry. In this step, the use of other external software (Digimat®) 

useful for attributing the elastic properties to the FE model is not required anymore. 

Indeed, the analytical homogenization formulations have been simply implemented 

through Python® scripting. 

Eventually, the layered FE model can be solved and the homogenized stress field can 

be read from the Abaqus® .odb file. 

As already mentioned, the detailed model generation and solution can be employed 

for those specimens that are extracted from plates and, therefore, for the specimens 

geometries N/A and N/C listed in Tab.5.1. 
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Figure 5.12. Macro-model solution workflow for notched specimens, estimating FOTs with 

Moldlfow®. 
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Figure 5.13. Example of FOT components resulting from Moldflow® near the notch of specimen 

N/B3 of Tab. 5.1. 
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Figure 5.14. Layered macro-model solution workflow for notched specimens, evaluating FOTs 

with CT scans. 

 

 

      

Figure 5.15. Layered FE model generated in Abaqus®. 
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5.5.2  Sub-model generation 

 

With regard to the generation and solution of the sub-models, the geometries reported in Fig. 

5.16 have been created and subsequently solved by applying the nodal displacements derived 

from the global models’ solution as boundary conditions.  

 

                      

               

Figure 5.16. Sub-models for notched specimens listed in Tab. 5.1. 

 

In this section, three type of sub-model properties and boundary conditions assignments are 

presented: 

a) The first case regards specimens of geometries N/B and N/D. The same procedure 

as the one detailed in Fig. 5.11 is adopted. Namely, the FOTs are estimated through 

process simulations. Concerning the application of the boundary conditions, the 
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nodal displacements obtained from the global model described at point (1) of section 

5.5.1 (Fig. 5.12) are used. 

b) The second case, that will be employed only for geometry N/B, consists in using the 

FOTs obtained through CT scans at the notch root of the specimens of interest. On 

the other hand, the nodal boundary displacements still derive from the global model 

type described at point (1) of section 5.5.1 (Fig. 5.12). The procedure to solve such 

a model is depicted in Fig. 5.17. Furthermore, a comparison between the CT obser-

vation grid and the structural FE model is shown in Fig. 5.18. 

c) The third procedure will be exclusively adopted for specimen type N/A and N/C. In 

this case, the coupons have been extracted from injection-molded plates and no sig-

nificant fiber orientation gradients are expected on the xy plane. Therefore a layered 

sub-model is created according to the method described at point (2) of section 5.5.1 

(Fig. 5.14). The boundary conditions are obtained from the solution of a global 

model, the properties of which are assigned in the same manner (Fig. 5.14).  

Before proceeding with the application of the developed fatigue criterion, some considera-

tions must be done with regards to the presented sub-modeling techniques (a, b and c). 

For method (a), the following considerations can be done: 

 A reduced effort is required in order to detect the complex fiber orientation around 

the tip of notches shaped by means of a metallic insert; 

 Less accuracy on the FOT prediction in the elements close to the notch edge is 

achieved. 

Concerning method (b), it can be stated that: 

 High accuracy on the FOT assignment is encountered; 

 There might be errors induced by the nodal displacements discontinuities between 

the global model (whose properties derive from Moldflow® FOTs) and the sub-

model (whose properties derive from the FOT evaluated through CT scans). 

Instead, with regards to method (b): 

 The elastic properties assignment relies on a simple method, since the stiffness matrix 

has to be computed only for few layers (Fig. 5.15). 

 Information related to FOT variation on the xy plane is lost. 
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Figure 5.17. Macro-Model solution starting from CT scans, considering three-dimensional FOT 

variations. 
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Figure 5.18. CT scans’ grid (a) and Abaqus® sub-model (b) for geometry N/B. 

 

Once the sub-model is numerically solved, it is possible to proceed with the application of 

the multiscale fatigue criterion according to workflow shown in Fig. 5.9 and with the identi-

fication of the critical radius of the macroscopic spherical volume centered on the peak of 

the effective stress (Fig. 5.10 and 5.11).  

 

 

5.6  Results and discussion 

 

In this paragraph, the results deriving from the application of the proposed fatigue criterion 

to specimens characterized by different notch geometries, fiber volume fractions and fiber 

orientation distributions are reported. According to chapter 3, Vc% is set to 10%. 

Three examples of validations are reported in this section. Firstly, the fatigue raw data of the 

considered notched specimens are reported in Fig. 5.19. 

 

          

Figure 5.19. Collection of considered fatigue raw data for notched specimens (Tab. 5.1). 
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5.6.1  Example 1 

 

For this first example of model validation, the following methods have been adopted for the 

considered specimen notched geometries: 

 Geometries N/A and N/C: the fiber orientation tensor components have been obtained 

through CT scans. Therefore procedure of Fig. 5.14 has been adopted both for the 

global and the sub-model; 

 Geometries N/B and N/D: FOTs have been obtained by means of Moldflow® simu-

lations either for the global model either for the sub-model (Fig. 5.12). 

The calibration process is shown in Fig. 5.20 and the obtained critical radius is equal to 0.15 

mm. The specimens used for the calibration are two notched specimens, i.e. N/B3 and N/C1. 

Fatigue data expressed in terms of the average effective stress responsible for crack onset are 

shown in Fig. 5.21.  

As it can be observed in Fig. 5.21, the fatigue strength of the considered specimens is pre-

dicted correctly. It is worth mentioning that the calibration phase has been performed by 

considering specimens with the same fiber volume fraction, with different geometries and 

that they are now sufficient to predict the fatigue response of other fiber volume fractions 

and notch shapes (milder and sharper).  
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Figure 5.20. Calibration fatigue curves expressed in terms of nominal stress (a) and average effec-

tive stress (b), according to Eq. (5.4).  

 

         

Figure 5.21. Fatigue data expressed in terms of 〈σeff〉.  

 

5.6.2  Example 2 

 

In this example the following model procedures have been adopted: 

10

100

1E+03 1E+04 1E+05 1E+06

<
σ

ef
f
>

 [
M

P
a]

Cycles to crack initiation

N/B3

N/C1

10

100

1E+03 1E+04 1E+05 1E+06 1E+07

<
σ

ef
f
>

 [
M

P
a]

Cycles to crack initiation

N/A1

N/A2

N/A3

N/A4

N/A5

N/A6

N/B1

N/B2

N/B3

N/B4

N/C1

N/D1

(b) 

rc = 0.15 mm 

rc = 0.15 mm 

Tσ = 1.18 



Fatigue model for notched specimens 

157 

 Geometries N/A and N/C: the fiber orientation tensor components have been obtained 

through CT scans. Therefore procedure of Fig. 5.14 has been adopted both for the 

global and the sub-model; 

 Geometries N/B and N/D: FOTs have been obtained from Moldflow® in case of the 

global model (Fig. 5.12), while the sub-model has inherited the FOTs from CT scans, 

according to Fig. 5.17 and 5.18. 

In this case, no calibration curves are reported, since a procedure similar to Fig. 5.20 is ob-

tained, yielding a critical radius of 0.13 mm.  

Fatigue data expressed in terms of average effective stress responsible for crack onset are 

shown in Fig. 5.22. 

 

          

Figure 5.22. Fatigue data expressed in terms of 〈σeff〉.  

 

5.6.3  Example 3 

 

With regard to the property assignment to notched specimens, the same considerations as 

example 1 can be done. Nonetheless, the model calibration (Fig. 5.23) has been carried out 
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tion of the fatigue strength of the other notched specimens is shown in Fig. 5.24. 
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Figure 5.23. Fatigue data for specimens N/B3 and P/C3 before (a) and after (b) calibration. 

 

                  

Figure 5.24. Fatigue curve prediction by means of one plain and one notched specimen. 
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This time, the carried out critical radius is equal to 0.11 mm, the value of which is not much 

different from the other validations. 

 

 

5.7  Schematic application to a real component 

 

In this paragraph, the possible application of the proposed fatigue to a real part is discussed. 

The full procedure for a possible application to a real component is detailed in Fig.5.25. 

It must firstly clear that the reported procedure has to be considered as an example, since no 

studies on the actual material and mechanical behavior of the component of Fig. 5.25 have 

been done in this thesis work. 

To sum up, once the component dimensions are known, the process simulation model can be 

generated and solved. The latter requires some inputs, such as parameters related to fibers 

(fiber diameter, length and volume fraction) and others about the production process (pres-

sure, temperature, etc.). This type of simulation leads to the estimation of the FOT compo-

nents within the modeled geometry. The latter are then fed into analytical homogenization 

schemes to compute the spatially varying anisotropic stiffness matrices that have to be as-

signed to the FE model. The structural simulation can subsequently performed, yielding the 

complete homogenized stress field characterizing the solved model, after applying the exter-

nal load (in this case, in the form of distributed pressure on the surface highlighted in Fig. 

5.25). The carried out stress tensors (or alternatively, strain tensors) can be used as inputs to 

the pseudo-grain approach (chapter 3 and PIE18). This numerical analytical model can be 

applied to each element of the solved FE model, enabling the computation of the effective 

stress field for the whole geometry. Before proceeding with the estimation of the fatigue 

cycles to crack initiation, the size of the critical radius of the spherical critical volume (re-

sponsible for the crack onset), a calibration has to be performed on tested specimens. Ac-

cordingly, two coupons with different geometries must be tested under fatigue loadings and, 

after properly assigning the elastic properties (thanks to the specimens’ FOTs), the critical 

radius dimension is reached. At this stage, the critical spherical volume (whose radius derived 

from the calibration process) can be placed onto the effective stress peak.  



Chapter 5 

160 

 

Figure 5.25. Schematic application of the proposed fatigue criterion to real parts. 
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The average value of the effective stress, computed in the critical macroscopic value, can 

now be entered in the calibration curve (carried out on specimens) to estimate the amount of 

cycles spent up to crack initiation. 

 

 

5.8  Conclusions 

 

In the present chapter, an innovative criterion for the estimation of the lifetime duration of 

SFRTs in the presence of notches has been proposed. 

Until now, no model in the literature capable of combining the effect of fiber contents, local 

fiber orientations and notch geometry onto the fatigue strength of SFRTs has been available. 

Indeed, the aim of the present chapter was to take all the aforementioned effects into account, 

this enabling to significantly reduce the amount of experimental tests (i.e. fatigue data) that 

are needed to comprehensively characterize the fatigue behavior of the considered materials. 

The complete workflow that must be followed to evaluate the fatigue life of notch specimens 

has been defined. 

The formulation of such an approach has been possible thanks to the models that have been 

previously presented in this thesis. As a matter of fact, a multiscale approach has been devel-

oped and validated, which makes use of the matrix stress distribution functions. The compu-

tation of the latter has been enabled by the pseudo-grain methodology described in chapter 

3. Subsequently, based on the micromechanical information inherited from the model for 

plain specimens presented in chapter 4, the definition of an effective stress responsible for 

the damage of the matrix while undergoing fatigue loadings has been possible.  

Firstly, the generation of the macro-scale model has been done by using the FOTs, either 

from CT scans either from process simulations (Moldflow®), and the resulting stress fields 

have been used as inputs for the micro-scale model generation and solution. Secondly, the 

effective stresses (carried out at the micro-scale level) have been computed for different notch 

radii (0.1 mm, 0.2 mm, 2.0 mm and 5.0 mm), different fiber weight fractions (15 wt%, 25 

wt%,35 wt% and 50 wt%,) and different nominal fiber orientations (0° and 90°). 
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Once the complete effective stress field has been displayed around the notch root, an averag-

ing method has been defined in order to correlate the fatigue strength of specimens with 

different notch geometries. In this context, a critical volume shape has been chosen, namely 

a spherical region, the center of which has to be placed onto the effective stress peak. 

Fatigue data up to crack initiation that have been discussed in chapter 2 have been here em-

ployed to validate the fatigue criterion: firstly, a calibration based on the fatigue curves of 

two different notch geometries (R0.2 and R2.0) and, secondly, the same model has been cal-

ibrated by means of a plain and a notched specimen (R0.2). Subsequently, once the radius of 

a critical spherical macroscopic volume (responsible for the crack initiation phase) has been 

identified, the fatigue criterion has been applied to other notched geometries showing a good 

agreement between the predicted fatigue strength and the experimental ones. 

Eventually, it must be pointed out that very different geometries have been employed for the 

calibration/validation of the proposed multiscale fatigue criterion, still yielding good results 

in terms of fatigue strength prediction. This means that the assumptions made, concerning 

the use of a multiscale model common to all types of specimens without considering the 

differences in terms of notch generation process (with metallic slits or by machining plates), 

are acceptable. 

. 
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Concluding remarks 

 

 

The present thesis’ work has faced some design issues still present in the industry and in the 

literature, regarding the use of short fiber-reinforced thermoplastics for the fabrication of 

injection-molded parts. The advantage of using such materials can be summed up as the re-

duction of components’ weight, the achievement of mechanical properties similar to those of 

metals and high production rates. 

On the other hand, while the production process of such materials has reached advanced 

results, the design efficiency is still encountering obstacles because of the complexity of the 

materials morphology and of the various factors affecting the mechanical response of such 

composites. 

In this thesis, the attention has been payed to the mechanical behavior of SFRTs undergoing 

fatigue loadings. In this context, the present work has aimed at deeply investigating and pre-

dicting the effect of morphology (fiber content and local fiber orientation distributions) and 

specimen geometry (presence of notches) on the fatigue strength of short fiber-reinforced 

thermoplastics. 

In the literature, different authors reported that the onset of a macroscopic crack in a SFRT 

part undergoing fatigue loadings can be attributed to the nucleation and coalescence of mi-

croscopic cracks evolving at the matrix level. The latter are mainly diffused around fibers, 

within highly stressed regions. On the other hand, only few works have proposed multiscale 

models comprehensively taking into account the actual fatigue damage occurring at the ma-

trix level. 

In this thesis, experimental studies (chapter 2) have been firstly presented, aiming to analyze 

the specimens’ local fiber orientation distributions (with computer tomography analyses) and 

characterizing the fatigue response of short glass fiber-reinforced PA66-coupons.  

Being aware of the multiscale nature of the fatigue damage occurring in such materials, it has 

been chosen to reproduce the micro-scale matrix cracking by relying on the local stress dis-

tributions interesting the composite matrix. In this context, an analytical numerical pseudo-
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grain approach (chapter 3) has been secondly formulated and validated, in order to compute 

the stress distributions to which the thermoplastic matrix is subjected. 

The latter innovatively enables the computation of matrix stress cumulative distribution func-

tions in microstructures with misaligned short fibers, without dealing with the generation and 

solution of complex finite element models. 

Thirdly, a criterion that makes use of the abovementioned matrix stress distributions (ob-

tained with the pseudo-grain approach) has been formulated (chapter 4). The presented cri-

terion has been furthermore validated by means of the experimental data reported in chapter 

2. Namely, fiber orientation tensors have been used for properly assigning the elastic prop-

erties to the finite element models and the fatigue curves for assessing whether the fatigue 

strength is correctly predicted. The developed model permits now to estimate the fatigue 

strength of a generic plain specimen characterized by its fiber orientations and volume frac-

tion, by only relying on one calibration Wöhler-curve. 

Eventually, the model developed for plain specimens has been extended for capturing the 

influence of notch geometries (chapter 5). Also in this case, a comprehensive validation has 

been performed by using data on notched specimens reported in chapter 2. Thanks to the 

formulated criterion, it is possible to efficiently predict the fatigue curves of a generic notched 

specimen, by carrying out only two calibration fatigue curves (two notched specimens or one 

plain and one notched). 

Concerning possible future activities, the proposed methodology for predicting the fatigue 

strength of SFRTs should be applied to specimens undergoing different multiaxial external  

fatigue loads causing the crack onset under mode II, III and mode mixity. This step would be 

essential to understand the limitations of the formulated fatigue criterion and to have a better 

insight on the damage mechanisms caused by the entity of the external load. Furthermore, a 

required extension of the proposed fatigue model concerns the application to specimens un-

dergoing different load ratios (positive and negative) and the necessity of predicting the effect 

of them. Similar model enhancements might also be performed to predict the fatigue strength 

of SFRTs being loaded under different temperatures (e.g. -40°C and 130°C). Nonetheless, 

the effect of the matrix relative humidity should also be taken into account. 

Further improvements of the fatigue criterion could derive from the capability of predicting 

the fatigue lifetime of a SFRT undergoing variable amplitude load histories.  
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Eventually, the aforementioned variants should be implemented into one single code in order 

to be estimate the lifetime of a generic part undergoing real loading and environmental con-

ditions. 
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Appendix A 

 

 

A.1  Fiber orientation tensor components of geometry N/B 

 

In this appendix, the out-of-diagonal components referring to the same FOTs as in Fig. 

2.20-2.22 are reported for geometry N/B. The following figures are respectively related to 

PA66-GF15 (Fig. A.1), PA66-GF25 (Fig. A.2) and PA66-GF50 (Fig. A.3). 
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Figure A.1. Out-of-diagonal FOT components for geometry N/B1 (PA66-GF15). 
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Figure A.2. Out-of-diagonal FOT components for geometry N/B2 (PA66-GF25). 
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Figure A.3. Out-of-diagonal FOT components for geometry N/B4 (PA66-GF50). 
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Appendix B 

 

 

B.1  Periodic boundary conditions’ formulation 

 

In this section, the application of 3D periodic boundary conditions to a generic element cell 

is formulated in a manner suitable to the software Abaqus®, but the hereinafter presented 

methodology may be easily transferred to other commercial FE codes. 

Periodic boundary conditions are hereby expressed in terms of strains and, in particular, they 

will be applied to the considered models as node displacements. Before formulating the com-

plete set of equations which the volume cell external nodes undergo, it is worth depicting the 

normal (Fig. B.1) and shear (Fig. B.2) deformations of a generic cell, in order to better un-

derstand the meaning of the employed strain tensor components. 

 

 

Figure B.1. Schematic representation of a normal deformation. 

 

Indices i and j of Fig. B.1 and B.2 can be substituted by the axes’ name (x, y, z) in the 3D 

case. In order to better interpret the indices, it is here assumed that x < y < z. 
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Figure B.2. Schematic representation of a shear deformation. 

 

Term γij of Fig. B.2 denotes the strain components expressed in the Voigt notation and it is 

defined as follows: 

 

γij = εij + εji                                ∀i ∈ [x, y] ;  ∀j ∈ [y, z]  with   i ≠ j  and  i < j (B.1) 

 

Considering the strain tensor 𝛆 as symmetric, the following equation is therefore valid: 

 

γij = 2 εij                                       ∀i ∈ [x, y] ;  ∀j ∈ [y, z]  with  i ≠ j  and  i < j (B.2) 

 

It is furthermore assumed that the shear deformation is univocally represented by Fig. B.2 

and 

 

γji = 0                                             ∀i ∈ [x, y] ;  ∀j ∈ [y, z]  with i ≠ j  and  i > j (B.3) 

 

The formulation of the PBC equations will be hereinafter subdivided into three steps: 

1. Formulation of the equations for the cell faces; 

2. Formulation of the equations for the cell edges; 

3. Formulation of the equations for the cell vertices. 

  

ljγij 

lj 

γij 
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Moreover, the notation of faces, edges and vertices is reported in Fig. B.3 and the relevant 

cell dimensions in Fig. B.4. 

 

 

Figure B.3. Notation of faces, edges and vertices.  

 

 

Figure B.4. Relevant dimensions of a representative element. 

 

B.1.1  Faces’ equations 

 

According to Fig. B.3 and B.4, the set of equations governing the normal deformations of the 

faces is formulated in the following manner: 

 

ui
i+ − ui

i− = −liεii                              ∀i ∈ [x, y, z] (B.4) 

 

With regard to the shear-related equations of the faces, Eq. (B.5) and (B.6) are therefore 

valid: 
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uj
i+ − uj

i− = −liγij = −2 εij             ∀i, j ∈ [x, y, z]  ;   i ≠ j  and  i < j (B.5) 

ui
j+

− ui
j−

= −llγji = 0                      ∀i, j ∈ [x, y, z]  ;   i ≠ j  and  i < j (B.6) 

 

B.1.2 Edges’ equations 

 

After some algebraic manipulations, the equations expressing the edge deformations can be 

thus formulated: 

 

ui
i−j−

− ui
i+j+

= liεii + ljγij  = −liεii − 2 ljεij   (B.7) 

uj
i−j−

− uj
i+j+

= −ljεjj − liγji = −ljεjj (B.8) 

ui
i+j+

− ui
i+j−

= −2 ljεij (B.9) 

 

Eq. (B.7)-(B.9) must be valid for the following conditions: 

 

∀i ∈ [x, y] ;  ∀j ∈ [y, z]    with   i ≠ j  and  i < j (B.10) 

 

Whether indices i, j and k are substituted in Eq. (B.4)-(B.9), a set of 27 equations is therefore 

obtained for the edges’ nodes. It has to be noticed that Eq. (B.7) and (B.8) contain either 

normal either shear terms, as a consequence of the fact that each edge must simultaneously 

fulfill the constraints imposed by two adjacent faces. 

 

B.1.3  Vertices’ equations 

 

Analogously, the expressions related to the vertex displacements are expressed as follows: 

 



Appendix B 

175 

ui
x−y−z−

− ui
x+y+z+

= −li[εii + γji + γjk]   (B.11) 

ui
x−y+z+

− ui
x+y−z−

= −li[εii + γji + γjk]   (B.12) 

ui
x−y+z−

− ui
x+y−z+

= −li[εii + γji + γjk]   (B.13) 

ui
x−y−z+

− ui
x+y+z−

= −li[εii + γji + γjk]   (B.14) 

 

In order to correctly interpret Eq. (B.11)-(B.14), the indices must respect the following con-

ditions: 

 

∀i, j ∈ [x, y, z]    with   i ≠ j (B.15) 

 

It is reminded that whether i < j and j< k, terms γji and γjk of Eq. (B.11)-(B.14) are set to 0 

and in case i > j and j> k, they respectively equal 2εji and 2εjk. 

Eventually, the last set of equations for vertices reads: 

 

ui
x+y−z+

− ui
x+y−z−

= −lx aix                      ∀i ∈ [x, y, z] (B.16) 

ui
x+y−z−

− ui
x+y+z−

= −ly aiy                      ∀i ∈ [x, y, z] (B.17) 

ui
x+y+z−

− ui
x+y+z+

= −lz aiz                      ∀i ∈ [x, y, z] (B.18) 

 

where: 

 

aii = εii                       ∀i ∈ [x, y, z]  (B.19) 

aij = γij = 2εij           ∀i, j ∈ [x, y, z]    if    i < j  and  i ≠ j  (B.20) 

aij = γij = 0               ∀i, j ∈ [x, y, z]    if    i > j  and  i ≠ j  (B.21) 

 



Appendix B 

176 

B.1.4  Mixed PBCs 

 

By replacing the indices of Eq. (B.11)-(B.14) and Eq. (B.16)-(B.21), a set of 21 equations is 

therefore obtained. 

In order to get the formulation of the mixed PBCs for the cell faces, it is firstly sufficient not 

to include the term i = z of Eq. (B.4) and to add the following equations: 

 

uz
i+ = uz

i−                ∀i ∈ [x, y] (B.22) 

 

Subsequently, the edges’ displacement equation can be obtained by using Eq. (B.7) and (B.9) 

and excluding again i = z. Here again, the set can be completed by means of these expres-

sions: 

 

uz
i−j+

= uz
i+j+

         ∀i, j ∈ [x, y]   with  i < j  (B.23) 

uz
i−j−

= uz
i+j−

         ∀i, j ∈ [x, y]   with  i < j  (B.24) 

uz
i+j−

= uz
i+j+

         ∀i, j ∈ [x, y]   with  i < j  (B.25) 

 

Also in case of vertices, Eq. (B.11)-(B.14) and Eq. (B.16)-(B.21) are valid whether i = z is 

removed and the completing formulations read: 

 

uz
x−y+z+

= uz
x−y−z+

  (B.26) 

uz
x−y−z+

= uz
x+y−z+

 (B.27) 

uz
x+y−z+

= uz
x−y−z−

 (B.28) 

ui
x−y−z−

= ui
x+y−z−

 (B.29) 

ui
x+y−z−

= ui
x+y+z−

 (B.30) 
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B.2  Numerical implementation in Abaqus® 

 

In this section, further details related to the PBC equations’ implementation within the soft-

ware Abaqus® are treated.  

It must be reminded that the previously formulated equations refer to nodal displacements.  

Nevertheless, while identifying the nodes of faces, edges and vertices, it has to be highlighted 

that they are belonging only to one of these entities. This means in turn that face nodes ex-

clude the edge and vertex nodes and edge nodes do not contain the vertex nodes. 

Concerning the implementation of the PBC equations, all expressions can be written within 

an Abaqus® input file (.inp) and, either displacements either the constant terms defined by 

the strain tensor components and by the cell dimension, have to be handled as variables. This 

issue is hereby overcome by defining floating nodes (not belonging to the model geometry), 

to the degrees of freedom (DOF) of which constant values can be assigned in the form of 

boundary conditions. The generation of such floating nodes takes place after defining refer-

ence points outside of the geometry (Fig.B.5). 

 

Figure B.5. Example of FE model with reference points (RP1, RP2 and RP3) and assignment of a 

constant value lxεxx to RP3. 

 

Some problems may occur during the meshing activity as a consequence of the non-periodic 

node location on opposite faces and edges. In this work, this problem has been overcome by 

RP1 

RP2 

RP3 

lxεxx                               



Appendix B 

178 

utilizing the tie option of Abaqus®. Namely, the following steps must be followed in order 

to apply the PBCs to opposite faces and edges’ nodes: 

 Copying the nodes from one reference face/edge to the opposite one identified as 

target, as it is depicted in Fig. B.6; 

 Constraining the new node set to the nodes belonging to the target face/edge. The 

new node set is now identical to the reference one, but shifted by the cell length; 

 Application of the displacement equations between the new node set and the reference 

one. 

 

Figure B.6. Schematic 2D representation of the tie operation. In (a) the blue dots represent the orig-

inal nodes. In (b) the reference nodes (left) are copied to the target face (red dots) and constrained to 

the original ones (blue dot on the right). 

x

y
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Appendix C 

 

 

C.1 .Fatigue criterion based on the UTS 

 

In this section, the limitation of applying a fatigue approach based on the normalization of 

the fatigue strength by means of the ultimate tensile strength is shown. The aforementioned 

criterion is a phenomenological approach and has been often used in the literature by different 

authors.  

According to DEM10_2, the robustness of the approach is demonstrated whether fatigue 

curves collapse within a narrow scatter band, when expressed in terms of the following stress: 

 

σeff,UTS =
σa

UTS
 (C.1) 

 

where σa is the nominal stress amplitude of the considered specimen and UTS it its ultimate 

strength. 

The UTS of some plain and notched specimens are respectively reported in Tab. C.1 and C.2. 

 

Table C.1. UTS values of the considered plain specimens. 

Specimen P/A1 P/A2 P/A3 P/B1 P/B2 P/B3 P/B4 P/C1 P/C2 P/C3 P/C4 

UTS [MPa] 160 127 88 94 96 95 121 119 160 181 194 

 

 

 

Table C.2. UTS value of the considered notched specimens. 

Specimen N/B1 N/B2 N/B3 N/B4 

UTS [MPa] 37 71 116 170 
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This fatigue criterion is firstly applied to plain specimens. The adopted fatigue model has 

been already presented in the literature by many authors (e.g. DEM10_2) and its validation 

is reported in Fig. C.1, yielding good results. 

 

 

Figure C.1. Fatigue strength prediction by means of UTS values, for plain specimens. 

 

Nevertheless, the main aim of the work is to give the possibility of embedding the thesis 

fatigue criterion into geometries that are more complex than those of plain specimens. For 

the sake of comparison, the UTS approach is also applied to notched specimens (geometry 

N/B of chapter 2 and results are plotted in Fig. C.2.  

 

 

Figure C.2. Fatigue strength prediction by means of specimens UTS values, for notched specimens. 
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From Fig. C.2, it can be stated that such an approach is not sufficient to efficiently predict 

the fatigue behavior of a generic SFRT part, that may be characterized by the presence of 

stress concentrations caused by notches. 
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Appendix D 

 

 

D.1  Considerations on the matrix stress threshold 

 

In this section, some considerations about the choice of the threshold of the matrix Beltrami 

CDF are made. In chapter 4 and 5, this threshold has been denoted by Vc%. It has been demon-

strated in chapter 4, that in case of plain specimens, the application of the fatigue criterion 

yield good results while setting Vc% to values smaller then 10%. This is also experimentally 

justified by the fact that the most critical regions are around the fibers, i.e. in those sites where 

the matrix is stressed at the most. This statement agrees indeed with the choice of a small 

Vc%.  

With reference to the results obtained for plain specimens, it is clear that, by adopting Vc% 

values higher that 10%, the application of the fatigue criterion would bring to poor quality 

results. Nevertheless, it could be an interesting operation to investigate the application of the 

proposed fatigue criterion in case of notched coupons, by considering the matrix average 

effective stress, without setting any threshold. The reason of this alternative procedure can 

be attributed to the ease of computing the average matrix stress by means of commercial 

software, such as Digimat®. 

For simplicity, the calibration procedure is performed by means of specimens N/B3 and N/D1 

(chapter 5), which are both made of PA66-GF35. Once the calibration radius is carried out, 

the approach is applied to a third specimen geometry (N/C1) to assess whether the choice of 

the average matrix Beltrami stress as effective stress is acceptable. 

The results deriving from the application of the proposed fatigue approach, after choosing 

the mean Beltrami stress, are reported in Fig. D.1. The obtained critical radius is equal to 

0.20 mm. By focusing on the curve associated with specimen N/C1, it can be easily stated 

that the fatigue strength of the latter cannot be properly predicted. This supports the necessity 

of the computing the matrix effective stress determined by the choice of a low Vc% value, in 
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order to identify the most stressed matrix volumes, which are responsible for the fatigue mi-

cro-damage evolution. 

 

 

Figure D.1. Application of the fatigue criterion to notched specimens by adopting the matrix aver-

age Beltrami stress as σeff. 

 

Nevertheless, further observations can be done with regard to the proposed threshold of the 

effective cumulative stress (Vc% ≤ 10%). In this context, some quantitative analyses are herby 

reported in order to understand the entity of the expected matrix plasticization, by comparing 

the nominal matrix elastic limit with the carried out effective stress values.  

As shown above, the use of the matrix average Beltrami stress does not yield good results. It 

is however interesting to compare the obtained matrix effective stress (corresponding to Vc% 

= 10%) with the matrix elastic limit. According to reference BAS1, the matrix yield stress 

(σy,m) is equal to 85 MPa for an unreinforced PA66 material. Assuming that the maximum 

principal stress coincides with σy,m and setting all other stress components to 0 MPa, the 

Beltrami stress associated with the elastic limit can be obtained by means Eq. (4.1) and it 

reads: 
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σB,y,m = 
σy,m

√2
=

85

√2
 MPa = 60 MPa (D.1) 

 

By taking specimen N/B3 as a reference and using the critical radius of 0.15 mm (chapter 5), 

the maximum tested nominal stress amplitude can be expressed in terms of average effective 

stress 〈σeff〉 computed in the critical sphere, resulting in a value of 30 MPa. The latter is 

associated with a stress amplitude and therefore, by doubling it, the maximum average effec-

tive stress (to be intended as the stress peak over the constant amplitude load history) equals 

60 MPa. By comparing this value with σy,m, it can be stated that no significant plasticization 

is expected, in average, within the critical spherical volume. On the other hand, by consider-

ing the effective stress deriving from Vc% = 10%, the yield Beltrami stress would be signifi-

cantly exceeded by it. Indeed, the doubled average effective stress computed within the crit-

ical sphere (rc = 0.15 mm) reads 82 MPa (whilst the peak of effective stress at the notch tip 

is 102 MPa). This agrees with some experimental observations (BEL17_2).stating that mi-

cro-plasticization phenomena mainly occur around fibers. 

Eventually, it is worth investigating the value of Vc% at which the elastic limit is overcome 

in a plain specimen. In this context and according to section 5.6.3, the specimen type P/C3 

(PA66-GF35) is taken as a reference. Tab. D.1 reports the matrix effective stresses evaluated 

for different thresholds of the cumulative function of the Beltrami stress. 

 

Table D.1. Effective stress values evaluated for different Vc% values. 

𝐕𝐜% 10% 20% 30% 40% 50% 

𝟐 ∙ 𝛔𝐞𝐟𝐟 67 MPa 54 MPa 47 MPa 43 MPa 41 MPa 

 

From Tab. D.1, it can be seen that the elastic limit (σB,y,m = 60 MPa) is exceeded between 

Vc%= 10% and Vc%= 20%. More precisely, the limit is reached at Vc%= 15%. 

Eventually, the same observations can be done with reference to the plain specimen P/C3 in 

the presence of humidity. In this case, the matrix elastic modulus is set to 1000 MPa. After 

some algebraic manipulation, the Beltrami elastic limit is found to be 35 MPa. By applying 
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the same load as in case of dry matrix, the effective stress results to overcome the elastic limit 

for Vc% equal to 15%. Nevertheless, the damage mechanisms interesting a conditioned matrix 

are generally different from those of dry matrices, i.e. higher plasticization is encountered. 

For this reason, some limitations deriving from the use of linear elastic laws for humid ma-

trices may be not valid any more and more accurate models might be required.
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