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Abstract

New advances in global positioning systems (GPS) and geographical information systems

(GIS) translated in an explosion of spatial data collection. In this thesis we tackle two

well known problems of spatial data. The first one regards the quality of the geographical

coordinates used as input for many spatial models. This aspect is often neglected and we

provide a general framework to deal with the uncertainty present in the spatial locations.

The second problem takes the name of change of support and is related to the analysis

of spatial data at a scale of aggregation that is different than the one at which they

are observed. Also in this case we develop a theoretical framework to figure out the

inference problems inherent to this instance. For both problems the results obtained

are really promising.





Sommario

I progressi registrati negli ultimi decenni in ambito di sistemi di posizionamento globale

(GPS) e sistemi informativi territoriali hanno portato ad un’esplosione del raccoglimen-

to di dati spaziali. In questa tesi ci occupiamo di due problemi comuni a questa tipologia

di dati. Il primo riguarda la qualitá delle coordinate geografiche utilizzate come input

di svariati modelli spaziali. Questo aspetto é spesso trascurato e forniamo un quadro

teorico generale che tenga in considerazione l’incertezza presente nelle coordinate spa-

ziali. Il secondo problema prende il nome di cambio di supporto ed é legato all’analisi

di dati spaziali ad un livello di aggregazione diverso da quello al quale sono stati osser-

vati. Anche in questo caso sviluppiamo un framework teorico per risolvere i problemi

di inferenza legati a questa casistica. In entrambi i casi i risultati ottenuti sono molto

promettenti.
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Chapter 1

Introduction

Overview

The use of georeferenced data is nowadays pervasive in a lot of different areas: epi-

demiology, climate science, health studies and crime analysis to cite few. Moreover, in

the last years, the quantity of available spatial data has increased considerably, and is

being collected at a continuously higher level of resolution. However, an aspect often

neglected is the positional accuracy of the coordinates used as input of different classes

of spatial models.

Positional error can be introduced in different ways: use of imperfect measuring

instruments such as GPS receivers or satellites, random displacement of the spatial lo-

cations for confidentiality reasons (geomasking) and geocoding of text addresses. Even

if the process of collecting spatial data is usually not perfect, the quality of spatial

coordinates is infrequently assessed. Moreover, ignoring the uncertainty present in geo-

referenced data can lead to flawed inferences and misleading conclusions (Jacquez, 2012).

Indeed, the literature is full of studies that show how positional error can affect esti-

mates of diseases rates (Zimmerman and Sun, 2006; Zimmerman, 2007; Goldberg and

Cockburn, 2012), disease cluster statistics (Jacquez and Waller, 2000; Zimmerman et al.,

2010), test for space-time interaction (Malizia, 2013), exposure estimates (Zandbergen,

2007; Mazumdar et al., 2008) and parameters estimates of spatial models (Gabrosek

and Cressie, 2002; Arbia et al., 2015). Even if the negative impact of positional error is

well recognized, the current practice is to ignore the presence of positional error due to

a lack of well established theories and methods to deal with it (Jacquez, 2012).

One of the goal of this research thesis is to fill this gap, providing a theoretical

framework that takes into consideration the uncertainty present in the spatial locations.
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4 Main contributions of the thesis

Another common problem in the field of spatial statistics is what is often called COSP

(change of support problem), spatial misalignment or also MAUP (modifiable areal unit

problem). Spatial data are usually collected at differing scales and resolutions and many

statistical issues are associated with combining such data for modelling and inference

(Gotway and Young, 2002). The second goal of this work is to provide models that are

able to properly combine outcome and covariates when these are misaligned, i.e. when

their spatial scale is different.

Main contributions of the thesis

Chapter 1

1. Analyse the effects of positional error and, in particular, of geomasking on

the variogram and on the linear geostatistical model.

2. Obtain equations that quantify the bias and show that geomasking is the

cause of overestimation of the spatial range and underestimation of the vari-

ance of the underlying true process. Moreover it creates an artificial nugget

effect.

3. Propose two types of correction. The first, following the classic geostatistical

framwework, is based on a non-linear curve-fitting of the variogram. The

second, is a model-based approach, and makes use of composite likelihood

achieving a huge computational gain compared to the method proposed by

Fanshawe and Diggle (2011).

4. Propose an approximate version of our method that allows to obtain an extra

computational gain without sacrificing the efficiency of the estimators.

5. Extend our model to the case of Uniform geomasking and of heteroscedastic

geomasking.

6. Application on a real dataset taken from a DHS (Demographic and Health

Survey, (Burgert et al., 2013)) survey conducted in Senegal in 2011.

7. Suggest some useful guidelines on the selection of displacement parameters

such that both the confidentiality and the spatial structure of the data can

be preserved.

Chapter 2
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1. Extend the work done in Chapter 1 to Poisson and Binomial data and show

that also non Gaussian data suffer of the same problem if positional error is

neglected.

2. Propose a variogram-based correction for Poisson data.

3. Propose a model based solution for Binomial data after an empirical logit

transformation is applied.

4. Show the effects of geomasking on point pattern analysis and, in particular,

on the detection of clusters through the Rypley’s K function.

5. Suggest a possible correction in the case of Neyman-Scott processes (Neyman

and Scott, 1958).

Chapter 3

1. Propose a geostatistical model that is able to combine outcome and covariates

that are spatially misaligned.

2. Provide likelihood equations for point to area, area to area and area to point

estimation.

3. Simulation study on area to point prediction, i.e. when the outcome is ob-

served at a coarser level than the covariates that are continuously available.





Chapter 2

Geostatistical inference in the

presence of geomasking

2.1 Introduction

The use of georefenced data is nowadays pervasive in a lot of different areas: epi-

demiology, climate science, health studies and crime analysis to cite few. Moreover, in

the last years, the quantity of available spatial data has increased considerably, and is

being collected at a continuously higher level of resolution. However, an aspect often

neglected is the positional accuracy of the coordinates used as input of different classes

of spatial models.

Positional error can be introduced in different ways. Here we identify three major

sources of positional error: use of imperfect measuring instruments, geomasking and

geocoding. Spatial coordinates are usually collected through the use of measuring in-

struments like GPS receivers or satellites. The height at which the devise is placed

or other factors such as air transparency and clouding will influence the measurement

process giving raise to imprecise coordinates (Devillers and Jeansoulin, 2006). Another

common source of positional error is when, for confidentiality issues, the point location

of the event cannot be released. In these cases a common solution is geomasking (Arm-

strong et al., 1999), that is the random or deterministic perturbation of the observed

points in a way that is not possible to go back to the original coordinates. In this

case the positional error is introduced with the purpose of privacy protection. Geocod-

ing is the process of converting text-based addresses into geographic coordinates and is

very common in several disciplines. Such a process introduces positional error in the

geocoded point for several reasons: incorrect street segment, incorrect offset from the

street segment, incorrect placement along the street segment and positional error in

7



8 Section 2.1 - Introduction

the street segment (Zandbergen, 2009). The resultant error is therefore the aggregate

effect of all these factors. Several empirical studies suggest that the positional error

introduced on average is neither small nor random (Dearwent et al., 2001; Bonner et al.,

2003; Cayo and Talbot, 2003; Rushton et al., 2006; Kravets and Hadden, 2007; Zinszer

et al., 2010).

Even if the process of collecting spatial data is usually not perfect, the quality of

spatial coordinates is infrequently assessed. Moreover, ignoring the uncertainty present

in georeferenced data can lead to flawed inferences and misleading conclusions (Jacquez,

2012). Indeed, the literature is full of studies that show how positional error can affect

estimates of diseases rates (Zimmerman and Sun, 2006; Zimmerman, 2007; Goldberg and

Cockburn, 2012), disease cluster statistics (Jacquez and Waller, 2000; Zimmerman et al.,

2010), test for space-time interaction (Malizia, 2013), exposure estimates (Zandbergen,

2007; Mazumdar et al., 2008) and parameters estimates of spatial models (Gabrosek

and Cressie, 2002; Arbia et al., 2015). Even if the negative impact of positional error is

well recognized, the current practice is to ignore the presence of positional error due to

a lack of well established theories and methods to deal with it (Jacquez, 2012).

In a geostatistical setting, Gabrosek and Cressie (2002) examine the effect that uncer-

tainty in the spatial lag has on the first two moments of the underlying spatial random

process and show how to account for location error by adjustment of the kriging equa-

tions. They find that in presence of substantial positional error the adjusted kriging

approach for location error performs better than ordinary kriging, in particular, the

presence of positional error inflates both bias and mean squared prediction error of or-

dinary kriging. Cressie and Kornak (2003) propose new kriging equations that consider

also a component of variation for the more general trend term and apply them to remote

sensing data of total column ozone, where the positional error is caused by assignment

of the measured value to their nearest grid-cell centers. Fanshawe and Diggle (2011)

suggest a model-based solution. They obtain the likelihood function for a stationary

Gaussian geostatistical model in presence of positional error and consider also the case

when prediction locations contain uncertainty. Even if the approach is promising the

extremely high computational burden makes it computationally infeasible. Moreover,

they find that the local gradient of the surface may have a large effect on the variance

of the predictive distribution and that the predictive distribution at a point is non-

Gaussian, and asymmetric, in the presence of positional error, even if the underlying

process is Gaussian.

In this chapter, we develop a method of inference based on the composite likelihood

that overcomes the computational limits of the full likelihood method. The chapter is



Chapter 2 - Geostatistical inference in the presence of geomasking 9

structured as follows. In Section 2.2 we examine in depth the practice of geomasking

and the most used geomasking methods. This will be our source of positional error even

though the proposed approach can be extended to other contexts. In Section 2.3 we

introduce the modeling framework. In Section 2.4 we use the variogram as a tool to asses

the effects of positional error on the spatial structure of the data and on the parameters

that characterize the model and the we suggest a correction based on it. Section 2.5

shows a model based solution that makes use of composite likelihood. We show also

through a simulation study conducted in 2.6 that this approach is more efficient and has

to be preferred to the variogram for formal parameter estimation. Section 2.7 reports

the results of an analysis conducted on DHS data affected by positional error and Section

2.8 is a concluding discussion.

2.2 Geomasking

Geographical masking, or geomasking, was first introduced by Armstrong et al.

(1999) as an improvement to the standard practice of aggregating health records to

preserve confidentiality. Geomasking is imposed by adding stochastic or deterministic

noise to the spatial coordinates. The reason is generally to protect sensible or confiden-

tial information about individuals that otherwise could be identified if the geographic

information is linked with other widely available sources. In this way, geomasking al-

lows to reduce the disclosure risk of sensible information without degrading too much

the geographic properties of the data.

In this section we consider only random perturbation methods where stochastic noise,

opposite to deterministic, is introduced. This choice is guided by the fact that these

geomasking methods are the most used in practice. For example, the Forest Inven-

tory Analysis Program (McRoberts et al., 2005) the Living Standard Indicator Survey

(Grosh et al., 1996) and the Demographic and Health Surveys (Burgert et al., 2013) are

surveys that adopted geomasking approaches to protect respondents confidentiality so

that data can still be shared publically. Even though new geomasking techniques have

been proposed, such as donut geomasking (Hampton et al., 2010) or gaussian bimodal

displacement (Cassa et al., 2006) they are not used in practice and the authors think

that the extra bias introduced by these methods is not justifiable by the small reduction

in risk disclosure. For a recent and complete review about geograhic masking meth-

ods we refer the reader to (Zandbergen, 2014). Figures 2.1 and 2.2 shows the effects

of Gaussian and Uniform geomasking on a set of simulated points, the displacement

parameters are chosen such that the expected value and variance of the positional error
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models is the same.

Gaussian Unifrom

−2 0 2 −2 0 2

−2

−1

0

1

2

3

Figure 2.1: Repeatedely geomasking (Gaussian on the left and Uniform on the right)
of one single point located at the center.

Gaussian Unifrom

True

Observed

Figure 2.2: Gaussian and Uniform geomasking applied to a point pattern.

2.3 Modeling framewok

We consider a stationary Gaussian model (Diggle and Ribeiro, 2007) of the form

Yi = S (xi) + Zi : i = 1, . . . , n, (2.1)
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where Yi is the value observed at point xi ∈ R2, S (x) is a Gaussian process with

mean 0, variance σ2 and correlation function ρ (u) = Corr {S (x) , S (x′)} where u is

the euclidean distance between x and x′ and Zi are i.i.d. N (0, τ 2) independent of the

spatial stochastic process S. We will mainly consider the class of correlation functions

introduced by Matérn (1960)

ρ (u;φ, κ) =
{

2κ−1Γ (κ)
}−1

(u/φ)κKκ (u/φ) ,

where φ > 0 is a scale parameter with the dimension of the distance, κ > 0 is a

shape parameter which determines the analytic smoothness (differentiability) of the

underlying process S and Kκ denotes the modified Bessel function of order κ. Because

of their flexibility these correlation functions are widely used in practice.

2.4 Effects of positional error on the variogram

Due to geomasking, instead of observing the true location, say X∗i , we observe a

displaced location

Xi = X∗i +Wi, (2.2)

where Wi ∼ N2 (0, δ2I2) and δ2 is the positional error variance. Equation (2.2) represents

a Gaussian geomasking. This choice allows us to obtain a nice mathematical treatment.

However, we will show that the results here obtained can be generalized to other types

of geomasking procedures. We want to asses the effects of positional error on the spatial

structure of the observed data and, as a tool to identify it, on the variogram. The

variogram is defined as

VY
(
u∗ij
)

=
1

2
E
[
(Yi − Yj)2

]
.

Under stationary assumptions, VY
(
u∗ij
)

= τ 2 + σ2
{

1− ρ
(
u∗ij
)}

and summarizes the

essential qualities of a geostatistical. Figure 2.3 show the shape of a standard variogram.

The observed quantities

vij =
1

2
(yi − yj)2 ,

constitute the empirical variogram and are unbiased estimates of the corresponding

variogram ordinates. From now on we will use the notation [ ] to mean “distribution

of”. Assuming that Uij and Vij = 1
2

(Yi − Yj)2 are stochastically independent given

U∗ij, the distribution of the empirical variogram ordinates conditionally on the observed

distance Uij is

[Vij | Uij] =

∫ ∞
0

[
Vij | U∗ij

] [
U∗ij | Uij

]
du∗, (2.3)
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2
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practical range

Figure 2.3: Standard form of the theoretical variogram. The total variance is the
sum of σ2 and τ2 and takes the name of sill. The practical range is defined as that
distance u such that ρ(u) = 0.05.

where
[
Vij | U∗ij

]
∼ VY

(
u∗ij
)
χ2
(1) and

[
U∗ij | Uij

]
∼ Rice

(
uij,
√

2δ
)
. Taking the expecta-

tion on both sides of (2.3) we obtain the form of the theoretical variogram in presence

of positional error

VY (uij) = τ 2 + σ2
{

1− E
[
ρ
(
U∗ij | Uij

)]}
. (2.4)

The closed form (when exists) of E
[
ρ
(
U∗ij | Uij

)]
=
∫
ρ
(
u∗ij
) [
U∗ij | Uij

]
du∗ depends

on the specific correlation function used. We show that in the case of a Gaussian

correlation function it exists and provides useful information on the collateral effects of

positional error. It is worth noting that as δ → 0 (2.4) converges to the true variogram

VY
(
u∗ij
)

and, on the other side, as δ → ∞ the points are displaced so far apart that

the spatial structure is not preserved anymore and (2.4) becomes a flat line at the level

of the sill τ 2 + σ2. As mentioned before, in the case of a Gaussian correlation function
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ρ
(
u∗ij
)

= exp
{
−
(
u∗ij/φ

)2}
it is possible to show that

E
[
ρ
(
U∗ij | Uij

)]
=

1

1 + (2r)2
exp

−
 uij

φ
√

1 + (2r)2

2 , (2.5)

where r = δ/φ. This means that the magnitude of the bias induced by geomasking

depends on the ratio between the standard deviation of the positional error and the range

parameter. We get another important insight looking at the behavior of (2.5) at the

origin. The limiting value of (2.5) as uij → 0 is
{

1 + (2r)2
}−1

that is smaller than 1, the

value we should expect in absence of positional error. Thus, geomasking locations leads

to the creation of an artificial nugget effect. More precisely, there are two forces that

act in opposite directions. The first part of the equation {1 + (2r)2}−1 that produces

the artificial nugget leads also to a systematic underestimation (overestimation) of the

correlation function (variogram), on the other side,
√

1 + (2r)2 increases the true value

of φ leading to a systematic overestimation (underestimation) of the correlation function

(variogram). The final bias is a result of the combination of these two forces. While

the first effect is fixed the second one is controlled by the distance. Indeed, we can see

from Figure 2.4 that while the true variogram is initially overestimated, as the distance

increases this effect is soften by the other acting force leading to underestimation of the

variogram for high levels of r. Likewise, this results can be generalized to any correlation

function with a symmetric positional error model.

κ = 0.5 κ = 1.5

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.00
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0.50
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1.00
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)

r = δ φ

0

0.1

0.5

1

Figure 2.4: Departures (red lines) from the true variogram (solid black line) with
σ2 = 1 and τ2 = 0 for increasing values of r = δ/φ. Matrn correlation functions with
two different shape parameters are used. For comparison purposes the scale parameter
φ is chosen such that the practical range u0 = 0.75, {u0 : ρ (u0) = 0.05}.
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2.4.1 Variogram correction

Using the result from equation (2.4) we suggest a correction through N-weighted least

squares. The vector of parameters θ = {σ2, φ, τ 2} is estimated minimizing the following

criterion

Sn (θ) =
m∑
k=1

nk {vk − VY (uk; θ)}2 , (2.6)

where vk are the sample variogram ordinates, obtained averaging all vij for which the

corresponding uij satisfies (k − 1)h < uij ≤ kh (h is the bin width), uk = (k − 0.5)h

is the mid-point of the corresponding interval and nk denotes the number of empirical

variogram ordinates which contributes to vk. The positional error variance δ2 is assumed

to be known. This is often the case with geomasking procedures. Estimating τ 2 and δ2

simultaneously would not be possible because of their identifiability. Indeed, there are

different combinations of τ 2 and δ2 that lead to the same result. However, if we can

assume that no nugget effect is present or we can estimate it from repeated measurements

we are able to use this estimation procedure even with unknown δ2.

2.4.2 Uniform geomasking

In alternative to Gaussian geomasking, another commonly used method is uniform

geomasking. Let W = (W1,W2); we now define the positional error process asW1 = R cos Λ

W2 = R sin Λ
, (2.7)

where R and Λ are two independent uniform random variables in [0, d], with d denoting

the maximum displacement distance, and [0, 2π], respectively. However, under uniform

geomasking [U∗ij|uij] is an intractable distribution, making computation of the likelihood

function in (2.13) cumbersome.

In the application of Section 2.7, we propose to approximate [U∗ij|uij] under uniform

geomasking with a Rice(uij, δ/
√

6) since the variance for each of the components of

W in (2.7) is δ2/6. We can essentially well approximate a Uniform geomasking with

maximum displacement distance d with a Gaussian geomasking with positional error

variance δ2 = d2/6.

We illustrate the goodness of such approximation as follows. We first express U∗ij in

terms of R, Λ and uij as

U∗ij =
√
u2ij +R2 − 2uijR sin Λ. (2.8)



Chapter 2 - Geostatistical inference in the presence of geomasking 15

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =1 ,  δ = 2

Uij
 *

C
D

F

0 1 2 3 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

uij =2 ,  δ = 2

Uij
 *

C
D

F

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =4 ,  δ = 2

Uij
 *

C
D

F

6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =8 ,  δ = 2

Uij
 *

C
D

F

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =1 ,  δ = 5

Uij
 *

C
D

F

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =5 ,  δ = 5

Uij
 *

C
D

F

4 6 8 10 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =10 ,  δ = 5

Uij
 *

C
D

F

14 18 22 26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uij =20 ,  δ = 5

Uij
 *

C
D

F
Figure 2.5: Each plot shows the empirical cumulative density function (CDF) based
on 100, 000 samples generated from [U∗ij |uij ] under uniform geomasking (black line)

and the CDF of a Rice(uij , δ/
√

6) (red line). The corresponding values of uij and δ
are shown in the heading of each plot.

We then simulate 100,000 samples from a uniform distribution in [0, δ], setting δ = 2

and δ = 5 which correspond to the maximum displacement distances that were applied

to the data in Section 2.7; we also simulate an equal number of samples from a uniform

in [0, 2π]. For a given value of uij, we then compute the empirical cumulative density

function (CDF) using the resulting 100,000 generated from [U∗ij|uij] based on (2.8).

Figure 2.5 reports the result of the simulation. The discrepancies between the em-

pirical CDF under uniform geomasking (black line) and the CDF of a Rice(uij, δ/
√

6)

are small in all of the eight scenarios considered.



16 Section 2.5 - Likelihood-based inference for the linear Gaussian model

2.5 Likelihood-based inference for the linear Gaus-

sian model

Although the results obtained through the variogram correction are promising, in

general, we favour the application of principles of statistical modelling and inference to

geostatistical problems. The variogram is still useful for exploratory purposes and to

suggest reasonable initial values for estimation methods involving numerical optimisa-

tion. The model (2.1) can be factorized as follow

[Y, S,X,X∗] = [Y | S,X,X∗] [S,X,X∗]

= [Y | S,X∗] [S | X,X∗] [X,X∗]

= [Y | S,X∗] [S | X∗] [X∗ | X] [X] ,

where, [Y | S,X∗] is a product of N (S (x∗i ) , τ
2) and [S | X∗] is multivariate Gaus-

sian with mean 0 and covariance matrix σ2ρ(X∗;φ) and [X∗i | Xi] ∼ N2 (Xi, δ
2I2)

since we are assuming Gaussian geomasking. Moreover, note that in the factorization

[Y | S,X,X∗] = [Y | S,X∗] we assume that Y and X are stochastically independent

given X∗. This is a reasonable assumption because giving the true locations X∗, the

observed locations do not provide further information about Y . The likelihood for this

model accounting for positional error is L (θ, δ) = [Y,X | θ, δ], with θ = (σ2, φ, τ 2) the

vector of parameters to be estimated, and can be written as

L (θ, δ) = [Y,X | θ, δ]

=

∫ ∫
[Y,X,X∗, S | θ, δ] dSdX∗

=

∫ ∫
[Y | X,X∗, S, θ] [S,X,X∗ | θ, δ] dSdX∗

=

∫ ∫
[Y | X∗, S, θ] [S | X∗, θ] [X∗ | X, δ] [X] dSdX∗

∝
∫ ∫

[Y | X∗, S, θ] [S | X∗, θ] [X∗ | X, δ] dSdX∗, (2.9)

As the integration with respect to S can be performed exactly, equation (2.9) can be

rewritten as

EX∗|X,δ [Y | X∗] =

∫
[Y | X∗] [X∗ | X] dX∗, (2.10)

where [Y | X∗, θ] ∼ N (0, σ2ρ (X∗;φ) + τ 2). Fanshawe and Diggle (2011) propose to

evaluate (2.10) by Monte Carlo integration. This means that for each value of (θ, δ), the

likelihood can be therefore estimated by drawing nk independent samples X∗k , each of
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length n, from [X∗ | X, δ], evaluating the density fk ≡ f (y | x∗k, θ) for each sample, and

then computing n−1k
∑

k fk. Maximization of the likelihood can then be performed using

an optimization algorithm. Noting that X∗ appears in the variance covariance function

of f (y | x∗k, θ) this means that for each step of the maximization algorithm we need to

do k inversions of a n × n matrix. This leads to a considerable computational burden

of order O (kn3), indeed merely computing maximum likelihood estimates for 80 points

takes around 72 hours. As the authors highlight this also make reliable estimation of

standard errors impractical.

2.5.1 Composite likelihood

To overcome this problem we propose to approximate the likelihood through the

use of composite likelihood. It is as method of inference that combines conditional or

marginal density together to approximate the full likelihood. The resulting estimating

equation obtained from the derivative of the composite log-likelihood is an unbiased

estimating equation (Varin et al., 2011). This approach has been applied to standard

geostatistical models to make computations faster when the number of spatial locations

is demanding (Vecchia 1988; Hjort et al. 1994; Curriero and Lele 1999; Stein et al. 2004;

Caragea and Smith 2006, 2007; Mateu et al. 2007; Bevilacqua et al. 2012; Bevilacqua

and Gaetan 2015). We refer the reader to Varin et al. (2011) for a thorough review on

composite likelihood methods. When inference is focused on the dependence structure,

we could either use composite marginal log-likelihoods based on pairwise differences or

on pairwise observation

ldiff (θ, y) =
n−1∑
i=1

n∑
j=i+1

log f (yi − yj; θ) (2.11)

lpair (θ, y) =
n−1∑
i=1

n∑
j=i+1

log f (yi, yj; θ) . (2.12)

We have fitted the model using both (2.11) and (2.12) but since results from lpair

are superior we will not report results obtained with ldiff . Using equation (2.12) and

noting that our model depends only on the distance between pairs of observations, we
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can rewrite equation (2.10) as

l1 (θ, δ) =
n−1∑
i=1

n∑
j=i+1

logEU∗|U,δ
[
Yi, Yj | U∗ij

]
=

n−1∑
i=1

n∑
j=i+1

log

∫ ∞
0

[
Yi, Yj | U∗ij

] [
U∗ij | Uij

]
dU∗ij, (2.13)

with
[
Yi, Yj | U∗ij

]
∼ N

(
0, σ2ρ

(
U∗ij;φ

)
+ τ 2I2

)
,
[
U∗ij | Uij

]
∼ Rice

(
uij,
√

2δ
)

and U∗ij =∥∥X∗i −X∗j ∥∥. Hence, for obtaining the likelihood we need n (n− 1) /2 computations of

a one-dimensional integral with no matrix inversion involved. This results in a huge

computational gain. We are able to obtain ML estimates for 80 points in only 1 minute.

Moreover, as soon as ρ
(
u∗ij;φ

)
→ 0, the above equation will reduce to

l2
(
σ2, τ 2

)
≈ 1

2π (σ2 + τ 2)
exp

{
− y2i + y2j

2 (σ2 + τ 2)

}
.

We can use this result to reformulate the log-likelihood in the following way

l (θ, δ) = l1I (uij ≤ t) + l2I (uij > t) , (2.14)

where t is a threshold calculated with a numerical search algorithm such that ρ (t;φ) ≈ 0

and I (·) is an indicator function. Integral in 2.13 has shown some numerical instability.

We use quasi Monte Carlo to calculate it. We avoid numerical instability and it is faster.

To be more specific, we proceed as follows:

1. Decide the number of points n at which we are going to evaluate the integral.

2. Generate a quasi-random low-discrepancy sequence of n numbers. We choose the

Halton sequence because it is suggested when the dimension of the integral is ≤ 6.

3. Convert the sequence to the actual distribution using either the quantile function

of a Rice
(
uij,
√

2δ
)

or the quantile function of N (xi, δ
2) (since we can also rewrite

the integral respect to the coordinates).

4. Compute 1
n

∑n
i=1

[
Yi, Yj | U∗ij

]
with u∗ij the sequence obtained at step 3.

We suggest, to rewrite the one-dimensional integral as a four-dimensional integral re-

spect to the spatial locations since evaluating four quantile functions of a Normal is

faster than evaluating one quantile function of a Rice distribution.
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2.6 Simulation study

We conduct a simulation study to quantify the effects of positional errors on param-

eter estimation as follows.

1. Generate n = 1000 locations from [X∗] a homogeneous Poisson process over the

square [0, 15]× [0, 15].

2. Simulate the outcome data from Y ∼MVN (0, τ 2 + σ2 {1− ρ (u∗)}).

3. Simulate from [X|X∗] using Gaussian geomasking to obtain X.

4. Estimate θ to obtain θ̂i for the i-th simulated data-set using:

• variogNaive, a parametric fit to the variogram that ignores positional errror

using weighted least squares (WLS);

• variogAdj, a parametric fit to the variogram that corrects for positional error

using WLS;

• geoNaive, a linear geostatistical model that ignores positional error;

• CL, the composite likelihood method of Section 2.5.1;

• ACL1, as CL but assuming pairs of observations Yi and Yj to be independent

for values of the spatial correlation below 5× 10−2;

• ACL2, as CL but assuming pairs of observations Yi and Yj to be independent

for values of the spatial correlation below 5× 10−6;

5. Repeat from 1 to 4 for s = 500 times.

6. Calculate the average of the estimated parameters as

1

s

s∑
i=1

ψ̂i

and the root-mean-square-error (RMSE)√√√√1

s

s∑
i=1

(
ψ̂i − ψ

)2
.

We define the following scenarios: (a) σ2 = 1, τ 2 = 0, κ = 0.5 and φ = 0.25; (b) σ2 = 1,

τ 2 = 0, κ = 1.5 and φ = 0.16. In both scenarios, we let r = δ/φ vary over the set

{0.2, 0.4, 0.6, 0.8, 1}. We can observe from Table 2.2 and 2.3 that if positional error is
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not taken into account τ 2 and φ are systematically overestimated and σ2 is systemat-

ically underestimated. We already anticipated the first two effects from the analysis

of equation (2.5). The distortion on σ2 is a consequence of the artificial nugget effect.

Indeed, the the estimated total variance σ2 + τ 2 u 1 is not affected by the positional

error. With the corrections proposed we are able to obtain consistent estimates of θ with

also a smaller RMSE compared to the naive methods. In particular, the model-based

solution performs always better, in terms of efficiency, than estimation based on the

sample variogram. Along with the results from the full composite likelihood (equation

(2.13)) we report estimates obtained using its approximate version (equation (2.14)) and

conclude that we can obtain a considerable extra computational gain without a notice-

able difference in the results. However, the statical efficiency of our methods decrease

with increasing r. In general, the drawbacks of locational uncertainty are less evident

for the Matrn withκ = 1.5. This is easily explained because if the true process that

has generated the data is smoother, then at a fixed distance observations will be more

correlated and so less affected by a possible displacement. Table 2.4 reports results

for uniform geosmaked data. The above observations still hold and our correction is

suitable also for this type of geomasking.

2.7 Application

We analyse data on height-for-age Z-scores (HAZs) from a Demographic and Health

Survey (Burgert et al., 2013) conducted in Senegal in 2011. HAZs are a measure of

the deviation from standard growth as defined by the WHO Growth Standards and are

comparable across ages and gender. A HAZ below -2 indicates stunted growth in a child

and, if close to 0, normal growth instead.

In this survey, the sampling unit are clusters of households within a predefined ge-

ographic area known as census enumeration area (EA). An EA can be a city block or

apartment building in urban areas, while in rural areas this can be a village or group of

villages. The estimated centre of each cluster is recorded as a latitude/longitude coor-

dinate, obtained from a GPS receiver or derived from public online maps or gazetteers

(Gething et al., 2015). To preserve the confidentiality of survey respondents, uniform

geomasking was applied to the cluster centres. To take into account the different popu-

lation density, different values for the maximum displacement distance were applied to

urban and rural locations, more specifically δurbarn = 2 km and δrural = 5 km.

The data consist of 384 clusters, of which 122 are urban, with 10 children per cluster

on average. Our outcome of interest, Yi, is the average HAZ for a cluster which we
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model as

Yi = µ+ S(xi) + Zi (2.15)

where Zi ∼ N(0, τ 2/ni) and ni is the number of children at i-th cluster. To account

for positional error, we approximate uniform geomasking with its Gaussian counterpart

as explained in Section 2.4.2. Moreover, we also extend our model to consider the het-

eroscedasticity of the geomasking applied in this case. Table 2.1 reports the results for

the estimation of the model parameters from the naive geostatistical model and correc-

tion based on the composite likelihood. We were not able to obtain reliable estimates

from the variogram-based correction due to the relatively high noise to signal ratio.

Table 2.1: Parameter estimates and corresponding 95% confidence intervals (CI) for
the fitted linear geostatistical models to malnutrition data of Section 2.7. “geoNaive”
is the naive approach which ignores positional error, while “CL” is the proposed
approach based on the composite likelihood.

geoNaive CL

Parameter Estimate 95% CI Estimate 95% CI

µ -1.303 (-1.470, -1.137) -1.159 (-1.562, -0.736)

σ2 0.117 (0.045, 0.289) 0.197 (0.146, 0.257)

φ 44.669 (9.184, 80.138) 25.860 (17.782, 37.614)

τ 2 0.536 (0.081, 0.994) 0.464 (0.409, 0.521)

Compared to our model, the naive geostatistical model estimates a bigger nugget

variance, a smaller σ2 and a bigger φ. This is perfectly in line with the bias that we

would expect in presence of geomasking. Moreover, the magnitude of the bias seems to

be in agreement with the ratio between δ and φ. We can estimate it using the average

maximum displacement in our dataset δ̄ = 4.05 and φ̂ = 25.85 estimated from our model

that leads to r̂ = 0.16.

2.8 Discussion

In this chapter we analysed the effects of positional error and, in particular, of geo-

masking on a linear geostatistical model. Using the variogram as a tool to detect the

spatial structure of the data we show how this is biased when location uncertainty is

present. We obtained equations that quantify the bias and found that geomasking is the

cause of overestimation of the spatial range and underestimation of the variance of the

underlying true process. Moreover it creates an artificial nugget effect. Two types of

correction were then proposed. The first, following the classic geostatistical framwework,

is based on a non-linear curve-fitting of the variogram. The second, is a model-based
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approach, and makes use of composite likelihood achieving a huge computational gain

compared to the method proposed by Fanshawe and Diggle (2011). We also propose an

approximate version of our method that allows to obtain an extra computational gain

without sacrificing the efficiency of the estimators. As expected, the likelihood-based

correction performs markedly better, in terms of statistical efficiency, compared to the

one based on the variogram. The corrections are suitable for different types of geomask-

ing and consider also the case when different magnitude of displacements are applied to

different categories of points (heteroscedastic geomasking).

Deciding a value for δ when applying geomasking is crucial and we have shown that

the resulting bias depends both on the true scale parameter φ and the smoothness of the

underlying process κ. Our suggestion for who has the role to preserve the confidentiality

of spatial data is to first obtain an estimate of φ from the true data locations and apply

the smallest level of δ possible providing also the resulting ratio r. This can be used a

proxy of the level of bias that has been introduced.
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Method σ2 φ τ 2 r

True Parameters 1 0.25 0 -

variogNaive 0.894 (0.1115) 0.276 (0.0365) 0.101 (0.1011) 0.2

variogAdj 0.950 (0.0694) 0.263 (0.0291) 0.014 (0.0148) 0.2

geoNaive 0.834 (0.1663) 0.287 (0.0377) 0.149 (0.1494) 0.2

CL 0.947 (0.0689) 0.249 (0.0173) 0.015 (0.0136) 0.2

ACL2 0.947 (0.0689) 0.249 (0.0173) 0.015 (0.0136) 0.2

ACL1 0.948 (0.0684) 0.255 (0.021) 0.015 (0.0141) 0.2

variogNaive 0.734 (0.2656) 0.320 (0.0703) 0.279 (0.2794) 0.4

variogAdj 0.947 (0.0717) 0.263 (0.0352) 0.002 (0.0017) 0.4

geoNaive 0.677 (0.3229) 0.333 (0.0833) 0.321 (0.321) 0.4

CL 0.948 (0.0711) 0.248 (0.0182) 0.002 (0.0015) 0.4

ACL2 0.948 (0.0711) 0.248 (0.0183) 0.002 (0.0015) 0.4

ACL1 0.949 (0.0706) 0.253 (0.0253) 0.002 (0.0016) 0.4

variogNaive 0.590 (0.4098) 0.408 (0.1585) 0.444 (0.4443) 0.6

variogAdj 0.945 (0.0724) 0.274 (0.0407) 0.007 (0.0095) 0.6

geoNaive 0.542 (0.4575) 0.388 (0.1384) 0.456 (0.4565) 0.6

CL 0.943 (0.0712) 0.250 (0.0223) 0.009 (0.0072) 0.6

ACL2 0.943 (0.0712) 0.250 (0.0222) 0.009 (0.0071) 0.6

ACL1 0.943 (0.0716) 0.260 (0.0278) 0.009 (0.0073) 0.6

variogNaive 0.481 (0.5220) 0.518 (0.2680) 0.574 (0.574) 0.8

variogAdj 0.933 (0.0922) 0.287 (0.0490) 0.030 (0.0379) 0.8

geoNaive 0.429 (0.5706) 0.437 (0.1867) 0.566 (0.5664) 0.8

CL 0.937 (0.0800) 0.246 (0.0248) 0.038 (0.0299) 0.8

ACL2 0.937 (0.0800) 0.246 (0.0252) 0.038 (0.0299) 0.8

ACL1 0.937 (0.0793) 0.259 (0.0354) 0.032 (0.0318) 0.8

variogNaive 0.413 (0.6030) 0.687 (0.4372) 0.667 (0.667) 1.0

variogAdj 0.934 (0.0970) 0.302 (0.0594) 0.023 (0.0268) 1.0

geoNaive 0.345 (0.6548) 0.493 (0.2426) 0.653 (0.6528) 1.0

CL 0.929 (0.0884) 0.243 (0.0306) 0.027 (0.0233) 1.0

ACL2 0.929 (0.0876) 0.242 (0.0315) 0.025 (0.0231) 1.0

ACL1 0.929 (0.0885) 0.259 (0.0440) 0.023 (0.0229) 1.0

Table 2.2: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 0.5.
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Method σ2 φ τ 2 r

True Parameters 1 0.16 0 -

variogNaive 0.951 (0.0949) 0.169 (0.0233) 0.051 (0.0737) 0.2

variogAdj 0.967 (0.0856) 0.167 (0.0219) 0.034 (0.0593) 0.2

geoNaive 0.947 (0.0786) 0.168 (0.0123) 0.048 (0.0511) 0.2

CL 0.962 (0.0840) 0.160 (0.0107) 0.035 (0.0587) 0.2

ACL2 0.962 (0.0841) 0.160 (0.0107) 0.035 (0.0588) 0.2

ACL1 0.962 (0.0851) 0.162 (0.0124) 0.035 (0.0600) 0.2

variogNaive 0.876 (0.1542) 0.178 (0.0300) 0.124 (0.1412) 0.4

variogAdj 0.950 (0.1017) 0.169 (0.0241) 0.049 (0.0795) 0.4

geoNaive 0.853 (0.1603) 0.180 (0.0241) 0.141 (0.1448) 0.4

CL 0.948 (0.0987) 0.161 (0.0115) 0.049 (0.0783) 0.4

ACL2 0.948 (0.0987) 0.161 (0.0115) 0.049 (0.0783) 0.4

ACL1 0.947 (0.1010) 0.162 (0.0139) 0.050 (0.0813) 0.4

variogNaive 0.788 (0.2299) 0.191 (0.0438) 0.217 (0.2281) 0.6

variogAdj 0.952 (0.1049) 0.169 (0.0296) 0.050 (0.0919) 0.6

geoNaive 0.757 (0.2522) 0.195 (0.0391) 0.240 (0.2437) 0.6

CL 0.949 (0.1044) 0.160 (0.0129) 0.049 (0.0865) 0.6

ACL2 0.949 (0.1049) 0.160 (0.0129) 0.049 (0.0871) 0.6

ACL1 0.948 (0.1074) 0.162 (0.0191) 0.050 (0.0904) 0.6

variogNaive 0.688 (0.3238) 0.211 (0.0612) 0.325 (0.3325) 0.8

variogAdj 0.941 (0.1185) 0.173 (0.0322) 0.066 (0.1139) 0.8

geoNaive 0.655 (0.3519) 0.214 (0.0576) 0.345 (0.3486) 0.8

CL 0.937 (0.1195) 0.161 (0.0140) 0.063 (0.1064) 0.8

ACL2 0.937 (0.1195) 0.161 (0.0140) 0.063 (0.1065) 0.8

ACL1 0.935 (0.1249) 0.164 (0.0203) 0.065 (0.1122) 0.8

variogNaive 0.600 (0.4082) 0.239 (0.0902) 0.420 (0.4256) 1.0

variogAdj 0.924 (0.1465) 0.182 (0.0422) 0.088 (0.1454) 1.0

geoNaive 0.567 (0.4377) 0.234 (0.0777) 0.433 (0.4355) 1.0

CL 0.918 (0.1441) 0.161 (0.0208) 0.083 (0.1341) 1.0

ACL2 0.917 (0.1449) 0.161 (0.0208) 0.083 (0.1349) 1.0

ACL1 0.914 (0.1524) 0.166 (0.0217) 0.087 (0.1427) 1.0

Table 2.3: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 1.5.
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Method σ2 φ τ 2 r

True Parameters 1 0.16 0 -

variogNaive 0.948 (0.0964) 0.166 (0.0222) 0.047 (0.0698) 0.2

variogAdj 0.964 (0.0864) 0.165 (0.0210) 0.031 (0.0553) 0.2

geoNaive 0.944 (0.0824) 0.166 (0.0123) 0.047 (0.0505) 0.2

CL 0.961 (0.0830) 0.160 (0.0113) 0.032 (0.0551) 0.2

ACL2 0.961 (0.0831) 0.160 (0.0113) 0.032 (0.0552) 0.2

ACL1 0.960 (0.0852) 0.161 (0.0133) 0.033 (0.0575) 0.2

variogNaive 0.896 (0.1372) 0.176 (0.0272) 0.113 (0.1320) 0.4

variogAdj 0.966 (0.0928) 0.168 (0.0214) 0.042 (0.0735) 0.4

geoNaive 0.861 (0.1527) 0.180 (0.0238) 0.140 (0.1442) 0.4

CL 0.961 (0.0900) 0.161 (0.0114) 0.043 (0.0721) 0.4

ACL2 0.961 (0.0900) 0.161 (0.0114) 0.043 (0.0720) 0.4

ACL1 0.960 (0.0923) 0.163 (0.0141) 0.044 (0.0750) 0.4

variogNaive 0.790 (0.2280) 0.190 (0.0401) 0.220 (0.2306) 0.6

variogAdj 0.957 (0.1046) 0.168 (0.0252) 0.050 (0.0900) 0.6

geoNaive 0.755 (0.2540) 0.195 (0.0387) 0.246 (0.2488) 0.6

CL 0.953 (0.1034) 0.159 (0.0145) 0.050 (0.0873) 0.6

ACL2 0.953 (0.1035) 0.159 (0.0145) 0.050 (0.0873) 0.6

ACL1 0.952 (0.1054) 0.161 (0.0181) 0.051 (0.0899) 0.6

variogNaive 0.679 (0.3323) 0.213 (0.0631) 0.331 (0.3385) 0.8

variogAdj 0.931 (0.1304) 0.175 (0.0331) 0.074 (0.1222) 0.8

geoNaive 0.649 (0.3578) 0.215 (0.0583) 0.349 (0.3519) 0.8

CL 0.928 (0.1286) 0.161 (0.0155) 0.070 (0.1136) 0.8

ACL2 0.928 (0.1288) 0.161 (0.0155) 0.071 (0.1138) 0.8

ACL1 0.926 (0.1323) 0.164 (0.0195) 0.072 (0.1178) 0.8

variogNaive 0.588 (0.4198) 0.241 (0.0935) 0.429 (0.4346) 1.0

variogAdj 0.911 (0.1595) 0.182 (0.0469) 0.098 (0.1599) 1.0

geoNaive 0.557 (0.4478) 0.235 (0.0795) 0.440 (0.4433) 1.0

CL 0.906 (0.1585) 0.158 (0.0234) 0.091 (0.1452) 1.0

ACL2 0.907 (0.1585) 0.158 (0.0234) 0.091 (0.1453) 1.0

ACL1 0.904 (0.1627) 0.162 (0.0291) 0.093 (0.1501) 1.0

Table 2.4: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 1.5. Locations are displaced using
Uniform geomasking.





Chapter 3

Effects of positional errors on spatial

GLM and point-pattern analysis

3.1 Introduction

If we consider the taxonomy of spatial processes we can separate discrete spatial

variation from continuous spatial variation. This primary distinction is between a phe-

nomenon that is defined on a finite (or countably infinite) set of locations, and one that

is defined on a continuous spatial region, A ∈ R2. If we consider the first category

(discrete spatial variation) it is obvious that positional error is not a problem since we

work with areal data instead of point data. Within the second category, continuous spa-

tial variation, we can further distinguish real-valued processes, {S (x) ∈ R2}, from point

processes whose realizations are a countable sets of points, X = {xi ∈ R2 : i = 1, 2, . . .}.
The secondary distinction between spatially continuous real-valued processes and point

processes is made because the tools needed to analyse data from the two types of pro-

cess turn out to be somewhat different. In the previous chapter we have studied the

effect of positional errors, and in particular of geomasking, on Gaussian data generated

from a real-valued spatial process. In this chapter we further extend our analysis to two

other frameworks: non-Gaussian data whose underlying spatial variation comes from a

real-valued spatial process and point processes.

If in the case of Gaussian data the solution, reported in the literature, for the presence

of positional errors are very limited, when we talk about non-Gaussian there are no

solution at all. Hence, the corrections provided here are of great help. Instead, in the

case of point pattern analysis a first attempt to explore the effects of positional errors has

been made by Arbia et al. (2017). Starting from a homogeneous point process they show

that patterns of clustering or inhibition may be observed not as genuine phenomena but

27
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only as the effect of data imperfections.

3.2 Generalized linear geostatisical models

Data whose stochastic variation is known to be non-Gaussian are very frequent in a

lot of contexts. In particular, they are standard output in epidemiological and health

studies, where they usually arise as disease counts or as prevalence data (Woodward,

2013). Observations of this type can be treated as either spatially indexed Poisson or

binomial counts conditional on an unobserved spatially varying intensity (or relative

risk surface). Diggle et al. (1998) extended the framework of generalized linear models,

as introduced by Nelder and Wedderburn (1972) for independently replicated data, to

geostatistical data to deal with non-Gaussian distributional assumptions. The class of

models they introduced is based on two general assumptions:

1. The spatially varying outcome is linked by a one-to-one function to a Gaussian

random field with certain parametric mean and covariance functions.

2. For any set of locations the observations of the response variable at these locations

are conditionally independent given the values of the Gaussian random field at

these locations.

Let {S (x) : x ∈ R2} be the Gaussian random field that is functionally related to the

spatially varying attribute of interest, and S = (S (x1) , . . . , S (xn))T . Each observed

value Yi is then stochastically related to the attribute of interest at xi. The general

model can be then hierarchically specified as follows:

Yi | S (xi) ∼ p (· | µi) , i = 1, . . . , n (3.1)

µi = mig
−1 (S (xi))

S ∼ Nn

(
Dβ,Σ + τ 2In

)
where:

• {Yi : i = 1, . . . , n} are conditionally independent given S, and have marginal prob-

ability density function p (· | µi).

• µi = E [Yi | S (xi)], g (·) is a known one-to-one link function and mi is an offset.

• D = (1, d1, . . . , dp) is a known n × (p+ 1) design matrix, with 1 the n × 1

vector of ones and dj = (dj (x1) , . . . , dj (xn))T , where dj (xi) is the value of
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the j-th spatial varying covariate measuread at the i-th sampling location, and

β = (β0, β1, . . . , βp)
Tare unkown regression parameteres.

• Σ = (σij) is a n×n positive definite variance-covariance matrix with σij = σ2ρ (uij)

if i 6= j and σij = σ2 + τ 2 otherwise, where σ2 > 0 is the unknown constant

variance of the Gaussian random field, τ 2 is the so called nugget effect, ρ (uij) is

a parametric isotropic correlation function and uij = ‖xi − xj‖ is the Euclidean

distance.

Note that we have specified the nugget inside the variance covariance function of the

spatial random effects S. This is equivalent to add some non-structured normal ran-

dom effects Z with mean zero and variance τ 2 to the inverse of the link function

g−1 (S (xi) + Zi). If we use the idendity link function g (µ) = µ and set mi = 1 then we

obtain the standard linear geostatistical model used in Chapter 2.

Although the above general framework can be used to model different types of non-

Gaussian spatial data, we will concentrate on spatial count data and, in particular,

on Poisson and binomial counts as already anticipated. We will consider the Poisson-

lognormal and the bionomial-logitnormal spatial models. Their hierarchical specificia-

tion is

Yi | S (xi) ∼ Poisson (µi) , i = 1, . . . , n (3.2)

µi = mi exp (S (xi)) ,

for the Poisson model and

Yi | S (xi) ∼ Binomial (mi, µi/mi) , i = 1, . . . , n (3.3)

µi = mi
exp (S (xi))

1 + exp (S (xi))
.

3.2.1 Variogram

If assumpations 1 and 2 stated in Section 3.2 hold, using the same definition of

variogram given in Section 2.4 we can obtain the theoretical form of the variogram for

the generalized geostatistial models

VY
(
u∗ij
)

=
1

2
var {Yi}+

1

2
var {Yj} − cov {Y (xi) , Y (xj)}

=
1

2
ES [varY {Yi | S (xi)}] +

1

2
Es [varY {Yj | S (xj)}] +

1

2
varS {EY [Yi | S (xi)]}

+
1

2
varS {EY [Yj | S (xj)]} − covS {EY [Yi | S (xi)] , EY [Yj | S (xj)]} , (3.4)
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using the fact that ES [covY {Yi, Yj | S}] = 0, since the observations are indipendent

conditionally on S. Writing µi = EY [Yi | S (xi)] and vi = varY {Yi | S (xi)}, equation

(3.4) simplifies to

VY
(
u∗ij
)

=
1

2
[ES {vi + vj}+ varS {µi}+ varS {µj}]− covS {µi, µj} .

=
1

2
[2ES {vi}+ varS {µi − µj}]

=
1

2

[
2ES {vi}+ ES

{
(µi − µj)2

}]
. (3.5)

The first term of equation (3.5) is a constant, which we can write as 2τ̄ 2 to emphasise

that it is the average of the conditional variance over the distribution of S. Indeed, τ̄ 2

can be interpreted as the analogous to the nugget varince in the stastionary Gaussian

model studied in Chapter 2. Then, if we assume that the Gaussian random field is

stationary with constant mean α we can write µi = g−1 (α + S (xi)) and using a first-

order Taulor series approximation g−1 (α + S) ≈ g (α) + Sg−1′ (α) we obtain an helpful

equation of the variogram

Vy
(
u∗ij
)
≈ g−1′ (α)2 VS

(
u∗ij
)

+ τ̄ 2.

Therefore we can conclude that the variogram on the non-Gaussian observations is ap-

proximately proportinal to the variogram of the Gaussian process S plus an intercept

which represents an average nugget effect induced by the variance of the error distri-

bution of the model. It is obvious that also the theoretical variogram for a generalised

linear geostatistical model will be biased in presence of positional error since it is a by

product of the variogram of the Gaussian process that we have already shown to be

biased in the previous Chapter. We expect to observe the same effects on the vector

of parameters θ = (σ2, φ, τ 2)
T

and this will be confirmed through simulation in Section

3.2.4.

3.2.2 Correction for Poisson data

It is possible to obtain a closed form equation for (3.5) when we have Gaussian

or Poisson distributed data. We introduce here the variogram for the Poisson case

since for the Gaussian case it has been already analysed in Section 2.4. If we set
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µi = exp {α + S (xi) + Zi}, where Zi are i.i.d. N (0, τ 2) then (3.5) becomes

VY
(
u∗ij
)

= exp

(
α +

σ2 + τ 2

2

)
+ exp

(
2α + σ2 + τ 2

) [
exp

(
σ2 + τ 2

)
− exp

{
σ2ρ

(
u∗ij
)}]

.

(3.6)

Using the same arguments of Section 2.4 we can obtain the theoretical variogram in

presence of positional error for Poisson data

VY (uij) = exp

(
α +

σ2 + τ 2

2

)
+exp

(
2α + σ2 + τ 2

) [
exp

(
σ2 + τ 2

)
− exp

{
σ2E

[
ρ
(
U∗ij | Uij

)]}]
,

(3.7)

wehre E
[
ρ
(
U∗ij | Uij

)]
=
∫
ρ
(
u∗ij
) [
U∗ij | Uij

]
du∗ and

[
U∗ij | Uij

]
∼ Rice

(
uij,
√

2δ
)
. We

can then estimate the vector of parameters θ using this result with the same procedure

of Section 2.4.1, N-weighted least squares

Sn (θ) =
m∑
k=1

nk {vk − VY (uk; θ)}2 , (3.8)

all the quantities inside equation (3.8) are the defined as in Chapter 2 apart from VY (·)
that is replaced with equation (3.7).

3.2.3 Correction for Binomial data

Unfortunately, if the observed data have a Binomial distribution it is not possible to

obtain a closed form of the variogram. In this case we suggest to use a trans-Gaussian

approximation of the model. Before the introduction of generalised linear model for

spatial data, a common technique to deal with non-Gaussian data was trans-Gaussian

kriging (Cressie, 1993, pages 137-138). It consists of applying a marginal non-linear

function g (·) to the data such that the resulting transformation g (Yi) is approximately

Gaussian and standard Gaussian methods can so be used. With Binomial data a suit-

able function g (·) is the empirical logit. Hence, we propose to apply the variogram

or the composite likelihood correction introduced in Chapter 2 to the empirical logit

transformation of the data,

Ỹi = log

(
Yi + 1/2

mi − Yi + 1/2

)

where we assume that Ỹi | S (xi) ∼ N
(
d (xi)

T β + S (xi) , τ
2
)

with S (x) having the

same properties as previously defined. Caution should be exercised when applying this
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transformation to Binomial data. Useful guidelines are that the goodness of the Gaus-

sian approximation deteriorates both as the binomial denominators decrease and/or the

overall prevalence of the outcome of interest becomes very small or very large, that is,

approaches either zero or one (Stanton and Diggle, 2013).

3.2.4 Simulation study

Similar to what we have done in Section 2.6, also here we conduct a simulation study

to asses the effects of geomasking on parameters estimation of spatial GLM. We will

proceed as follows:

1. Generate n = 1000 locations from [X∗] a homogeneous Poisson process over the

square [0, 15]× [0, 15].

2. Simulate the outcome data from models (3.2) and (3.3).

3. Generate the observed locations X from [X|X∗] using Gaussian geomasking.

4. Estimate θ to obtain θ̂i for the i-th simulated data-set using:

• variogNaive, a parametric fit to the variogram that ignores positional errror

using weighted least squares (WLS);

• variogAdj, a parametric fit to the variogram that corrects for positional error

using WLS;

for both the Poisson model and the Binomial model and

• geoNaive, a linear geostatistical model that ignores positional error;

• CL, the composite likelihood method of Section 2.5.1;

• ACL1, as CL but assuming pairs of observations Yi and Yj to be independent

for values of the spatial correlation below 5× 10−2;

• ACL2, as CL but assuming pairs of observations Yi and Yj to be independent

for values of the spatial correlation below 5× 10−6;

only for the Binomial model.

5. Repeat from 1 to 4 for s = 500 times.

6. Calculate the average of the estimated parameters as

1

s

s∑
i=1

ψ̂i
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and the root-mean-square-error (RMSE)√√√√1

s

s∑
i=1

(
ψ̂i − ψ

)2
.

Method σ2 φ τ 2 r

True Parameters 1 0.25 0 -

Naive Variogram 0.961 (0.0546) 0.266 (0.0338) 0.031 (0.0314) 0.1

Adjusted Variogram 0.978 (0.0492) 0.263 (0.0304) 0.004 (0.0044) 0.1

Naive Variogram 0.902 (0.1075) 0.283 (0.0491) 0.101 (0.1014) 0.2

Adjusted Variogram 0.971 (0.0614) 0.267 (0.0364) 0.007 (0.0068) 0.2

Naive Variogram 0.802 (0.1981) 0.318 (0.0721) 0.198 (0.1978) 0.3

Adjusted Variogram 0.939 (0.0763) 0.272 (0.0330) 0.053 (0.0533) 0.3

Naive Variogram 0.731 (0.2688) 0.348 (0.0984) 0.276 (0.2757) 0.4

Adjusted Variogram 0.957 (0.0712) 0.277 (0.0480) 0.016 (0.0164) 0.4

Naive Variogram 0.656 (0.3443) 0.383 (0.1335) 0.344 (0.3440) 0.5

Adjusted Variogram 0.952 (0.0739) 0.281 (0.0427) 0.027 (0.0271) 0.5

Naive Variogram 0.589 (0.4108) 0.424 (0.1739) 0.425 (0.4253) 0.6

Adjusted Variogram 0.938 (0.0818) 0.286 (0.0476) 0.024 (0.0244) 0.6

Naive Variogram 0.532 (0.4680) 0.458 (0.2084) 0.463 (0.4631) 0.7

Adjusted Variogram 0.935 (0.0867) 0.287 (0.0497) 0.037 (0.0366) 0.7

Naive Variogram 0.461 (0.5392) 0.554 (0.3045) 0.526 (0.5260) 0.8

Adjusted Variogram 0.920 (0.0865) 0.297 (0.0566) 0.057 (0.0572) 0.8

Naive Variogram 0.425 (0.5749) 0.597 (0.3468) 0.564 (0.5643) 0.9

Adjusted Variogram 0.866 (0.1337) 0.289 (0.0409) 0.108 (0.1076) 0.9

Naive Variogram 0.389 (0.6110) 0.681 (0.4310) 0.612 (0.6115) 1.0

Adjusted Variogram 0.859 (0.1409) 0.304 (0.0562) 0.137 (0.1367) 1.0

Table 3.1: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (Naive Variogram) and the correction proposed (Adjusted Variogram)
for increasing levels of r. The true correlation function is Matrn with κ = 0.5. Data
were generated from model (3.2).

We define the following scenarios: (a) σ2 = 1, τ 2 = 0, κ = 0.5 and φ = 0.25; (b)

σ2 = 1, τ 2 = 0, κ = 1.5 and φ = 0.16; (c) σ2 = 1, τ 2 = 0, κ = 2.5 and φ = 0.13.

In all scenarios, we let r = δ/φ vary over the set {0.2, 0.4, 0.6, 0.8, 1}. The value for

φ has been chosen such that the practical range is approximately 0.74 for the three
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scenarios. In this way the results are comparable. Output from simulation is reported

in Tables 3.1, 3.2 and 3.3 for the Poisson model and in Tables 3.6, 3.7 and 3.8 for the

Binomial model. As anticipated in Section 3.2.1, also for non-Gaussian data ignoring the

uncertainty hidden in the spatial location due to geomasking leads to biased estimates:

inflation of the nugget τ 2 and the scale parameter φ and underestimation of the spatial

variance σ2. We can appreciate how the proposed corrections help us to correct the

bias. However, the variogram based correction for Poisson data, even if preferable to

the naive approach, is not able to provide consistent estimates when the positional error

is too high.

Method σ2 φ τ 2 r

True Parameters 1 0.16 0 -

Naive Variogram 0.959 (0.0656) 0.161 (0.0148) 0.011 (0.0114) 0.1

Adjusted Variogram 0.968 (0.0628) 0.161 (0.0147) 0.003 (0.0028) 0.1

Naive Variogram 0.945 (0.0625) 0.166 (0.0151) 0.037 (0.0366) 0.2

Adjusted Variogram 0.975 (0.0590) 0.163 (0.0142) 0.001 (0.0010) 0.2

Naive Variogram 0.909 (0.0943) 0.172 (0.0160) 0.073 (0.0729) 0.3

Adjusted Variogram 0.966 (0.0603) 0.164 (0.0138) 0.011 (0.0112) 0.3

Naive Variogram 0.872 (0.1282) 0.180 (0.0210) 0.120 (0.1196) 0.4

Adjusted Variogram 0.957 (0.0638) 0.171 (0.0194) 0.009 (0.0093) 0.4

Naive Variogram 0.827 (0.1730) 0.187 (0.0272) 0.158 (0.1578) 0.5

Adjusted Variogram 0.956 (0.0654) 0.168 (0.0127) 0.000 (0.0003) 0.5

Naive Variogram 0.779 (0.2212) 0.197 (0.0367) 0.203 (0.2033) 0.6

Adjusted Variogram 0.958 (0.0618) 0.170 (0.0148) 0.000 (0.0000) 0.6

Naive Variogram 0.744 (0.2562) 0.211 (0.0511) 0.254 (0.2542) 0.7

Adjusted Variogram 0.956 (0.0650) 0.174 (0.0208) 0.002 (0.0016) 0.7

Naive Variogram 0.694 (0.3058) 0.219 (0.0591) 0.295 (0.2953) 0.8

Adjusted Variogram 0.948 (0.0670) 0.177 (0.0181) 0.002 (0.0017) 0.8

Naive Variogram 0.650 (0.3499) 0.228 (0.0685) 0.345 (0.3453) 0.9

Adjusted Variogram 0.955 (0.0650) 0.175 (0.0177) 0.006 (0.0056) 0.9

Naive Variogram 0.620 (0.3803) 0.241 (0.0807) 0.380 (0.3801) 1.0

Adjusted Variogram 0.968 (0.0682) 0.177 (0.0196) 0.005 (0.0045) 1.0

Table 3.2: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (Naive Variogram) and the correction proposed (Adjusted Variogram)
for increasing levels of r. The true correlation function is Matrn with κ = 1.5. Data
were generated from model (3.2).
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Method σ2 φ τ 2 r

True Parameters 1 0.13 0 -

Naive Variogram 0.959 (0.0593) 0.133 (0.0093) 0.009 (0.0088) 0.1

Adjusted Variogram 0.961 (0.0595) 0.133 (0.0090) 0.005 (0.0056) 0.1

Naive Variogram 0.954 (0.0617) 0.132 (0.0079) 0.020 (0.0200) 0.2

Adjusted Variogram 0.963 (0.0581) 0.131 (0.0075) 0.001 (0.0007) 0.2

Naive Variogram 0.935 (0.0715) 0.134 (0.0092) 0.039 (0.0391) 0.3

Adjusted Variogram 0.966 (0.0570) 0.132 (0.0083) 0.000 (0.0003) 0.3

Naive Variogram 0.913 (0.0970) 0.138 (0.0110) 0.066 (0.0664) 0.4

Adjusted Variogram 0.963 (0.0582) 0.135 (0.0083) 0.000 (0.0003) 0.4

Naive Variogram 0.878 (0.1241) 0.142 (0.0135) 0.099 (0.0994) 0.5

Adjusted Variogram 0.956 (0.0568) 0.136 (0.0093) 0.001 (0.0008) 0.5

Naive Variogram 0.850 (0.1538) 0.145 (0.0166) 0.135 (0.1348) 0.6

Adjusted Variogram 0.950 (0.0646) 0.137 (0.0097) 0.000 (0.0000) 0.6

Naive Variogram 0.813 (0.1871) 0.150 (0.0206) 0.170 (0.1705) 0.7

Adjusted Variogram 0.955 (0.0590) 0.136 (0.0096) 0.000 (0.0000) 0.7

Naive Variogram 0.772 (0.2280) 0.157 (0.0270) 0.205 (0.2046) 0.8

Adjusted Variogram 0.953 (0.0564) 0.137 (0.0092) 0.001 (0.0009) 0.8

Naive Variogram 0.742 (0.2579) 0.160 (0.0303) 0.239 (0.2394) 0.9

Adjusted Variogram 0.951 (0.0585) 0.137 (0.0099) 0.000 (0.0000) 0.9

Naive Variogram 0.695 (0.3051) 0.171 (0.0414) 0.285 (0.2850) 1.0

Adjusted Variogram 0.937 (0.0776) 0.141 (0.0136) 0.004 (0.0035) 1.0

Table 3.3: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (Naive Variogram) and the correction proposed (Adjusted Variogram)
for increasing levels of r. The true correlation function is Matrn with κ = 2.5. Data
were generated from model (3.2).

3.2.5 Application

We illustrate further our methods using real data that consist of Loa loa (eyeworm)

prevalence from a series of surveys undertaken in 197 villages in Cameroon and southern

Nigeria. Loa loa is a filarial disease that is of interest to the African Programme for On-

chocerciasis (APOC, see WHO (2013)), because individuals with high filarial loadings of

these parasites can experience serious adverse reactions to the onchocerciasis prophylac-

tic, ivermectin. As a result, APOC has declared a policy objective of identifying areas

of high Loa loa prevalence within the 19 countries taking part in APOC.Specifically,
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APOC policy states that in areas where Loa loa prevalence exceeds 20%, precautionary

measures should be put in place before mass prophylactic treatment with ivermectin.

This data-set has been already extensively analysed by Diggle et al. (2007).

For each of the n villages we have the longitude and latitude x∗i of the ith study

village, the number of individuals mi tested for the Loa loa infection (median 132, range

24 to 432) and the number of blood samples Yi that tested positive for the Loa loa

parasite. Observed village-level prevalence (proportion of positive samples) ranges from

0 to 0.53, with median 0.12. The distance between villages in the study region ranges

from 0.01 km to 1500 km, with a median distance of 895 km. Figure 3.1 shows the

locations of sampled villages with the observed prevalence.
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Figure 3.1: Sampling locations for the Loa loa data. Size and colour of the points
indicates the level of prevalence observed.

We fitted the Gaussian model (2.1) to the logit transformed data, assuming a constant

mean µ and treating S(x) as a stationary Gaussian process characterised by a Matérn

correlation function with κ = 0.5. This value has been chosen from a discrete set of

candidate values, which we compared by evaluating the profile likelihood for κ based
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on the empirical logit transformation of the observed prevalence as reported in Figure

3.2. Since the maximum likelihood estimate is very close to 1/2, we then fix the shape

parameter κ at this value for the subsequent analysis.
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Figure 3.2: Profile likelihood for the shape parameter κ of the Matérn covariance
function. The profile likelihood (black solid line) is interpolated by a spline (red solid
line), which is then used to obtain a confidence interval of coverage 95% (vertical
dashed lines).

Scenario µ σ2 φ τ 2 r

1 -2.299 2.451 0.844 0.369 -

2a -2.345 2.158 12.848 1.659 0.5

2b -2.214 2.548 0.697 0.463 0.5

Table 3.4: Parameter estimates for the Loa loa data-set shown in Figure 3.1 under
the following scenarios: (1) Using the original, true locations; (2a) Using the incorrect,
geomasked locations with δ = 0.422, making no allowance for positional error; (2b)
As 2a, but correcting for positional error.

Treating the measurement locations as fixed, we found the maximum likelihood es-

timates of the parameters to be µ = −2.299, σ2 = 2.451, φ = 0.844 and τ 2 = 0.369. We

then impose a Gaussian geomasking on the observed locations using a positional error

standard deviation δ = 0.422 such that r u 0.5. Using these new set of coordinates

xi we refit the previous model and calculate the MLE from the composite likelihood
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correction introduced in Section 2.5.1. Results are reported in Table 3.4. As we can see,

ignoring positional error it’s not a wise decision since it leads to biased estimates. With

our correction applied to the empirical logit transformation of the observed prevalence

we are able to recover the true parameters.

3.3 Point Pattern Analysis

A spatial point pattern, following the definition provided by Diggle (2013), is a

countable set of locations xi irregularly distributed in a region, lets say A, that arise

as the realizations of some stochastic mechanism. The region A can be defined in Rd

with d ≥ 1 but we will consider only planar regions, hence d = 2. Indeed, this is

usually the standard framework for the majority of real applications. The goal of point

pattern analysis is to understand the spatial distribution of a certain variable and o try

to individuate phenomena like clustering or repulsion. Usually, the strategy adopted

is to compare the observed point pattern with a benchmark that is the homogeneous

Poisson process. This type of process is characterised by the two following conditions

1. The numer of events in a study region A with area |A| follow a Poisson distribution

with mean λ |A|.

2. Given n events xi in a region A, the points xi are independent random samples

from a Uniform distribution over A.

The constant λ is the intensity or average number of points for unit area. The first

condition implies that the intensity of the events does not vary spatially. The second

condition guaranties that the n events are independent and don’t interact in any possi-

ble way. A pattern with these characteristics is called a CSR (complete spatial random)

pattern. The hypothesis of complete spatial randomness is often unrealistic in practical

applications but it is used as the null hypothesis to individuate statistical significant de-

viations from it. There are two wide classes of point processes that constitute violations

to conditions 1 and 2 (and so deviations from the CSR hypothesis):

• cluster processes,

• inhibitory or regular processes.

In the following Section we will focus on cluster processes since this will be the object

of study for our work. Figure 3.3 shows the realisations of an homogeneous Poisson

process (left), a cluster Poisson process (centre) and a inhibitory Poisson process (right).
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  CSR   Cluster   Regular

Figure 3.3: The three main typologies of spatial point patterns.

3.3.1 Poisson cluster processes

The violation of one or both the hypotheses stated in Section 3.3 can lead to the

formation of a clustered pattern. If the first condition does not hold we could assist

to clustering of events due to an apparent diffusion (or contagion). We use the term

apparent because in this case the observed clusters are the results of the presence of

spatial heterogeneity that makes the intensity of the process non constant. Instead, if te

second condition is violated then we can observe a real diffusion phenomenon because it

is the presence of an event in a specific part of the region that attracts other events (the

condition on independence does not hold any more). In the first case the underlying

process is called a inhomogeneous Poisson process, in the second case we deal with

Poisson cluster processes.

If we define with N (A) = n the random variable that generates the n events in a

finite planar region A, a inhomogeneous Poisson process is then defined through the two

following properties:

1. N (A) ∼ Poisson
(∫

A
λ (x) dx

)
.

2. The n events in A constitute an indipendent random sample from the distribution

on A having pdf proportional to λ (x).

Poisson cluster processes were introduced by Neyman and Scott (1958) and incor-

porate an explicit form of spatial clustering. They are generated through the following

three steps:

1. Parent events form a Poisson process with intensity ξ.

2. Each parent produces a random number T of i.i.d. offspring, realized for each

parent according to a probability distribution pt : t = 0, 1, . . . , n.
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3. The positions of the offspring xt are i.i.d. realisations from a bivariate pdf h (·)
(usually a normal or uniform distribution).

Poisson cluster processes as defined here are stationary, with intensity λ = ξµ where

µ = E [T ]. If the offspring of each parent point are uniformly distributed in a disc of

radius R centred around the parent we then have what is called a Matèrn cluster process

(Matern, 1986). The spatial scale of the clusters is controlled by the radius R. Instead,

in Thomas cluster process (Thomas, 1949), the probability density of offspring locations

h(·) is an isotropic Gaussian density. Effectively, each offspring is randomly displaced

from its parent, with the displacement vectors having an isotropic Gaussian distribution

N (0, σ2I) with standard deviation σ along each coordinate axis. The spatial scale of the

clusters is controlled by σ. This type of cluster process is extensively used in ecological

and environmental studies to test for the presence of clustering. The way in which

offspring are generated resemble the geomasking process. Indeed, we will exploit this

fact to suggest a possible correction.

3.3.2 First and second moment properties

A spatial point process is mainly characterised by the first and second moment prop-

erties. Before introducing them is useful to specify when a spatial point process is

stationary and isotropic:

• The process is stationary if, for every number k and every region Ai (i = 1, . . . , k),

the joint distribution of N (Ai) , . . . , N (Ak) is invariant under translation. This

means that all the property of the process won’t change after a translation of the

plane.

• The process is isotropic if, for every number k and every region Ai (i = 1, . . . , k),

the joint distribution of N (Ai) , . . . , N (Ak) is invariant under rotation. This

means that all the property of the process won’t change after a rotation of the

plane of an arbitrary angle θ.

This characteristics will be reflected on the first and second moment properties as

we will see soon. First moment properties describe how the expected value of the

process varies spatially, instead, second moment properties describe the covariance (and

correlation) between events of the process over the region A.

First order properties are described in terms of intensity function, λ (x), of the pro-

cess, as an indicator of the mean number of events per unit area. The intensity function
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is defined through the following limit

λ (x) = lim
|dx|→0

{
E [N (dx)]

|dx|

}
,

where dx is an infinitesimal region that contain the point x, |dx| is its area and N (dx)

is the number of points that lies in the region dx. Hence, λ (x) dx is the probability that

an event is located in an infinitesimal region with area |dx| and with centre the point x.

Second order properties, or spatial dependence, of a spatial point process summarize

the relation between the number of events observed in couples of subregions. The second

order intensity function is defined through the following limit

λ2 (x, y) = lim
|dx|,|dy|→0

{
E [N (dx)N (dy)]

|dx| |dy|

}
,

where x and y denote the coordinates of two dinstinct points and λ2 (x, y) dxdy is the

probability that two points lie in two infinitesimal regions centered at x and y and with

area equal to |dx| and |dy|, respectively. Note that if N (dx) and N (dy) are uncorrelated

λ2 (x, y) = λ (x)λ (y). Another useful quantity is the covariance density of the process

γ (x, y) = λ2 (x, y)− λ (x)λ (y) , (3.9)

and, if we divide (3.9) by λ (x)λ (y) and sum by 1 we obtain what is called the pair

correlation function g (x, y) = λ2 (x, y) /λ (x)λ (y). If we assume that the point process

is stationary and isotropic, then it follows that

1. λ (x) = λ = E [N (A)] / |A|, the intensity does not vary spatially and is constant

over the region A.

2. λ2 (x, y) = λ2 (u) /λ2, with u = ‖x− y‖ the Euclidean distance between x and

y. This indicates that the second order intensity function depends only on the

distance between the two points and not on their locations in absolute terms.

While the first order intensity function is easily interpretable, we cannot say the same

about the second order intensity. Indeed, for a stationary and isotropic spatial point

process, the second order properties are described through a more easily interpretable

function: the Ripley’s K function (Ripley, 1976, 1977).
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3.3.3 Ripley’s K function

The K function is a summary of the pairwise distances in the point pattern dataset,

normalised to enable us to compare different datasets. It is defined as

K (u) = 2πλ−2
∫ u

0

tλ2 (t) dt, (3.10)

in particular, the quantity λK (u) is the expected number of further events within dis-

tance u of an arbitrary event. This result gives the K function a tangible interpretation

as a scaled expectation. For a stationary Poisson process, is possible to show that

K(u) = πu2.

This is a very useful result since we now have a value that can be used as a benchmark

to validate the hypothesis of CSR and the deviations from it. Figure 3.4 shows the

K function for the three main types of point patterns. Positive deviations from the
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Figure 3.4: Empirical K functions for the three patterns in Figure 3.3. Green line:
clustered pattern. Blue line: independent pattern. Red line: regular pattern.
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benchmark value πu2 are evidence of some clustering going on; vice versa, negative

deviations from πu2 are signal of the presence of inhibitory patterns.

For a general Poisson cluster process, if the random number of offspring T follows a

Poisson distribution, the resulting K function is

K(u) = πu2 +
H2(u)

ξ
,

where H2(u) is the cumulative distribution function of the vector difference between the

positions of the offspring from the same parent. For a Thomas process H2(u) is available

in closed form and the K function becomes

Kψ(u) = πu2 +
1

ξ

{
1− exp

(
− u2

4σ2

)}
, (3.11)

where ψ = (ξ, σ). These results suggest a useful way of identifying whether a Poisson

cluster process might be a reasonable model for an observed pattern, and if so a mean

of obtaining preliminary parameter estimates.

3.3.4 Effects of positional error

In this section we consider what happens to a point pattern generated by a Poisson

cluster process when the locations xi are affected by positional error. In particular, we

will consider a practical case that is when random displacement (geomasking) is applied

to the true original coordinates x∗i (see Section 2.2). Our guess is that as the magnitude

of the displacement increases (parameter δ and R in equations (2.2) and (2.7)) the

spatial structure of the clusters will be destroyed and the observed point pattern will

converge to a CSR pattern as if it was generated by a homogeneous Poisson process.

Following Diggle (1993), if the locations are displaced according to some symmetric

positional error function f (·), then the resulting K function is

K (u) = πu2 + 2πλ−2
∫ ∞
0

tP (u, t) γ (t) dt, (3.12)

where P (u, t) =
∫
‖x‖≤u f (x− z) dz is the probability that the displacement induced

by f (·) will move an event originally at the point z to a point somewhere in the disc

‖x‖ ≤ u. We now compare equation (3.12) with K∗ (u) = πu2 + 2πλ−2
∫∞
0
tγ (t) dt,

that is the K function of the true process. In (3.12) the integrand is attenuated by the

function P (u, t). If the perturbation distribution degenerates to a zero perturbation

with probability 1, i.e. the positional error standard deviation δ = 0, then P (u, t) = 1
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if t ≤ u and P (u, t) = 0 otherwise, and K(u) = K∗(u). Instead, if the perturbation

distribution is highly dispersed, i.e. high values of δ, then for any fixed u, P (u, t) ≈ 0

for all u, and K(u) ≈ πu2. In intermediate cases, typically for any value of u, we have

that 0 < P (u, t) < 1 and P (u, t) is monotone decreasing in t. Since typically γ(t) is

also positive and monotone decreasing in t, the effect of positional error is to reduce the

value of the covariance integral so that,

πu2 < K (u) < K∗ (u) .

The practical implication of this result is that second-moment analyses of randomly

perturbed data are likely to be conservative, in the sense that they are likely to under-

estimate the true extent of spatial heterogeneity or clustering.

At the moment of writing a correction has not been implemented yet. However,

we suggest the following solution. We can consider the observed point pattern after

geomasking as a Poisson cluster process where the parents are the offspring of the true

point pattern and each parent as one and one only child (offspring) generated applying

the geomasking procedure. If we consider a Thomas process and Gaussian geomasking,

it should then be possible to obtain a closed form for the K function in presence of

positional error. Model fitting and hypothesis testing is then straightforward. I

3.3.5 Simulation study

Here we provide further evidence of the drawbacks of ignoring the presence of posi-

tional error in point pattern analysis. We proceed as follows:

• Generate a clustered point pattern on the unit square as a realisation of a Thomas

process with ξ = 10, µ = 4 and σ = 0.05.

• for i : 1, . . . , 1000:

– introduce the positional error using Gaussian geomasking;

– obtain an estimate of Ki (u)

• calculate the empirical Bias, the RMSE and the Type II error where the null

hypothesis is the one of CSR.

Results are reported in Figure 3.5 and in Table 3.5. Also a small displacement of the

true locations is enough to move the empirical K function to the region of acceptance of

the null hypothesis. This is even more clear if we look at the Type II error rate in Table

3.5. It monotonically increase with the positional error standard deviation δ, this means
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that we wrongly don’t reject the null hypothesis of CSR. This is a great limitation in

practice because makes the individuation of clusters with gemoasked a difficult task.

Moreover, if the displacement is relatively high there is the additional risk to arrive to

the opposite conclusion, that is to infer a spurious regular pattern.
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Figure 3.5: Empirical K function for the true point pattern (green line). K function
calculated as the average estimate at each distance u from Monte Carlo simulations
(red lines). K function for the null hypothesis (dashed black line) and confidence
bands in grey.

3.4 Conclusions

In this chapter we extended the work done in Chapter 2 in two different directions.

Since our study was constrained to Gaussian data we relaxed this assumption and

provided corrections also for Poisson and binomial data. In the case of Poisson data
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δ δ/max(u) Bias RMSE Type II error rate

0.05 3.5% -0.0136 0.0158 0.092

0.10 7.1% -0.0369 0.0398 0.637

0.15 10.6% -0.0542 0.0597 0.888

0.20 14.1% -0.0640 0.0718 0.899

0.25 17.7% -0.0713 0.0809 0.896

0.30 21.2% -0.0774 0.0888 0.852

Table 3.5: Empirical bias, RMSE of the K-function estimator and type II error rate
for the CSR test under locational errors generated by random geomasking.

we are able to obtain a closed form expression of the variogram and so we applied

the variogram-based correction. Instead, if the observations are binomial distributed

a closed form of the variogram does not exist. Hence, our suggestion was to apply

an empirical logit transformation to the observed data that will now be approximately

Gaussian and both the variogram-based and the model-based solutions can be applied

to the transformed data. We then showed with a simulation study that either for

Poisson data or binomial data our corrections lead to consistent estimation of the model

parameters.

We then moved from real-valued continuous processes (geostatistical data) to point

processes. In particular, we showed the effects of geomasking on a clustered point

pattern. We found that, as the positional error variance increases, the clusters are ob-

fuscated and their spatial structure is destroyed. Using the standard summary statistics

for these type of processes, such as the Ripley’s K function, this leads to misleading

inferences, i.e. the null hypothesis of complete spatial randomness won’t be (wrongly)

rejected, inflating the Type II error.
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Method σ2 φ τ 2 r

True Parameters 1 0.25 0 -

variogNaive 0.940 (0.1019) 0.273 (0.0373) 0.142 (0.1417) 0.2

variogAdj 1.003 (0.0876) 0.260 (0.0325) 0.039 (0.0394) 0.2

geoNaive 0.851 (0.1488) 0.285 (0.0346) 0.192 (0.1917) 0.2

CL 1.056 (0.0577) 0.238 (0.0181) 0.002 (0.0019) 0.2

ACL2 1.056 (0.0577) 0.238 (0.0181) 0.002 (0.0019) 0.2

ACL1 1.056 (0.0583) 0.245 (0.0179) 0.002 (0.0017) 0.2

variogNaive 0.744 (0.2564) 0.324 (0.0739) 0.338 (0.3379) 0.4

variogAdj 0.990 (0.0887) 0.263 (0.0375) 0.058 (0.0609) 0.4

geoNaive 0.684 (0.3157) 0.341 (0.0912) 0.377 (0.3772) 0.4

CL 1.051 (0.0529) 0.240 (0.0189) 0.002 (0.0019) 0.4

ACL2 1.051 (0.0529) 0.241 (0.0189) 0.002 (0.0019) 0.4

ACL1 1.051 (0.0530) 0.246 (0.0158) 0.002 (0.0017) 0.4

variogNaive 0.605 (0.3983) 0.427 (0.1773) 0.507 (0.5069) 0.6

variogAdj 1.003 (0.1025) 0.271 (0.0422) 0.073 (0.0730) 0.6

geoNaive 0.534 (0.4663) 0.381 (0.1312) 0.509 (0.5092) 0.6

CL 1.054 (0.0564) 0.240 (0.0206) 0.002 (0.0020) 0.6

ACL2 1.054 (0.0564) 0.240 (0.0206) 0.002 (0.0020) 0.6

ACL1 1.056 (0.0570) 0.244 (0.0188) 0.002 (0.0017) 0.6

variogNaive 0.502 (0.5022) 0.501 (0.2513) 0.621 (0.6206) 0.8

variogAdj 1.003 (0.0838) 0.271 (0.0476) 0.003 (0.0032) 0.8

geoNaive 0.436 (0.5641) 0.434 (0.1836) 0.624 (0.6235) 0.8

CL 1.049 (0.0532) 0.241 (0.0179) 0.002 (0.0018) 0.8

ACL2 1.049 (0.0532) 0.241 (0.0179) 0.002 (0.0019) 0.8

ACL1 1.049 (0.0531) 0.255 (0.0216) 0.002 (0.0017) 0.8

variogNaive 0.442 (0.6250) 0.655 (0.4049) 0.722 (0.7221) 1.0

variogAdj 1.008 (0.1038) 0.264 (0.0608) 0.062 (0.0632) 1.0

geoNaive 0.345 (0.6553) 0.477 (0.2269) 0.702 (0.7019) 1.0

CL 1.057 (0.0588) 0.239 (0.0229) 0.002 (0.0019) 1.0

ACL2 1.057 (0.0588) 0.239 (0.0229) 0.002 (0.0019) 1.0

ACL1 1.057 (0.0586) 0.252 (0.0269) 0.002 (0.0018) 1.0

Table 3.6: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 0.5. Data were generated from model
(3.3).
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Method σ2 φ τ 2 r

True Parameters 1 0.16 0 -

variogNaive 0.965 (0.1009) 0.166 (0.0229) 0.090 (0.1170) 0.2

variogAdj 0.987 (0.0932) 0.163 (0.0219) 0.068 (0.0986) 0.2

geoNaive 0.952 (0.0801) 0.166 (0.0146) 0.098 (0.1029) 0.2

CL 1.047 (0.0773) 0.130 (0.0638) 0.008 (0.0171) 0.2

ACL2 1.051 (0.0837) 0.151 (0.0158) 0.004 (0.0155) 0.2

ACL1 1.050 (0.0808) 0.152 (0.0151) 0.005 (0.0101) 0.2

variogNaive 0.890 (0.1461) 0.175 (0.0303) 0.165 (0.1845) 0.4

variogAdj 0.975 (0.1014) 0.165 (0.0258) 0.079 (0.1159) 0.4

geoNaive 0.861 (0.1539) 0.179 (0.0238) 0.187 (0.1913) 0.4

CL 1.045 (0.0763) 0.132 (0.0614) 0.008 (0.0160) 0.4

ACL2 1.050 (0.0837) 0.152 (0.0159) 0.003 (0.0142) 0.4

ACL1 1.050 (0.0823) 0.154 (0.0145) 0.004 (0.0093) 0.4

variogNaive 0.796 (0.2235) 0.186 (0.0370) 0.260 (0.2696) 0.6

variogAdj 0.989 (0.1095) 0.162 (0.0251) 0.064 (0.1080) 0.6

geoNaive 0.765 (0.2464) 0.194 (0.0377) 0.290 (0.2936) 0.6

CL 1.050 (0.0788) 0.129 (0.0674) 0.006 (0.0130) 0.6

ACL2 1.055 (0.0849) 0.153 (0.0148) 0.002 (0.0020) 0.6

ACL1 1.053 (0.0832) 0.156 (0.0141) 0.003 (0.0091) 0.6

variogNaive 0.683 (0.3328) 0.208 (0.0617) 0.375 (0.3837) 0.8

variogAdj 0.955 (0.1384) 0.169 (0.0366) 0.097 (0.1549) 0.8

geoNaive 0.655 (0.3518) 0.213 (0.0565) 0.394 (0.3977) 0.8

CL 1.046 (0.0770) 0.135 (0.0597) 0.006 (0.0146) 0.8

ACL2 1.049 (0.0807) 0.154 (0.0162) 0.003 (0.0083) 0.8

ACL1 1.050 (0.0801) 0.156 (0.0158) 0.002 (0.0029) 0.8

variogNaive 0.596 (0.4126) 0.233 (0.0859) 0.467 (0.4731) 1.0

variogAdj 0.939 (0.1496) 0.175 (0.0409) 0.116 (0.1770) 1.0

geoNaive 0.574 (0.4311) 0.231 (0.0767) 0.476 (0.4788) 1.0

CL 1.047 (0.0795) 0.137 (0.0597) 0.006 (0.0136) 1.0

ACL2 1.051 (0.0827) 0.155 (0.0168) 0.002 (0.0028) 1.0

ACL1 1.050 (0.0823) 0.159 (0.0170) 0.003 (0.0049) 1.0

Table 3.7: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 1.5. Data were generated from model
(3.3).
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Method σ2 φ τ 2 r

True Parameters 1 0.13 0 -

variogNaive 0.991 (0.0840) 0.130 (0.0144) 0.065 (0.0810) 0.2

variogAdj 1.005 (0.0843) 0.129 (0.0142) 0.050 (0.0682) 0.2

geoNaive 0.982 (0.0650) 0.132 (0.0079) 0.074 (0.0757) 0.2

CL 1.013 (0.0698) 0.128 (0.0106) 0.042 (0.0484) 0.2

ACL2 1.013 (0.0695) 0.128 (0.0106) 0.043 (0.0487) 0.2

ACL1 1.042 (0.0789) 0.121 (0.0125) 0.014 (0.0228) 0.2

variogNaive 0.943 (0.1027) 0.134 (0.0155) 0.111 (0.1221) 0.4

variogAdj 1.001 (0.0849) 0.129 (0.0144) 0.053 (0.0727) 0.4

geoNaive 0.922 (0.1018) 0.139 (0.0124) 0.132 (0.1338) 0.4

CL 1.023 (0.0735) 0.126 (0.0116) 0.029 (0.0422) 0.4

ACL2 1.023 (0.0732) 0.126 (0.0116) 0.030 (0.0423) 0.4

ACL1 1.049 (0.0844) 0.123 (0.0109) 0.004 (0.0087) 0.4

variogNaive 0.868 (0.1600) 0.143 (0.0208) 0.190 (0.1991) 0.6

variogAdj 0.991 (0.0959) 0.132 (0.0162) 0.065 (0.0936) 0.6

geoNaive 0.841 (0.1748) 0.147 (0.0206) 0.213 (0.2165) 0.6

CL 1.015 (0.0806) 0.128 (0.0121) 0.040 (0.0591) 0.6

ACL2 1.016 (0.0803) 0.127 (0.0121) 0.039 (0.0573) 0.6

ACL1 1.049 (0.0857) 0.124 (0.0109) 0.006 (0.0130) 0.6

variogNaive 0.788 (0.2306) 0.150 (0.0276) 0.271 (0.2773) 0.8

variogAdj 0.990 (0.1064) 0.132 (0.0179) 0.066 (0.1030) 0.8

geoNaive 0.769 (0.2411) 0.154 (0.0272) 0.284 (0.2868) 0.8

CL 1.017 (0.0798) 0.127 (0.0132) 0.036 (0.0603) 0.8

ACL2 1.017 (0.0797) 0.127 (0.0131) 0.036 (0.0603) 0.8

ACL1 1.050 (0.0868) 0.124 (0.0117) 0.003 (0.0064) 0.8

variogNaive 0.699 (0.3138) 0.162 (0.0386) 0.360 (0.3670) 1.0

variogAdj 0.970 (0.1295) 0.134 (0.0203) 0.085 (0.1349) 1.0

geoNaive 0.681 (0.3257) 0.166 (0.0383) 0.374 (0.3769) 1.0

CL 1.022 (0.0885) 0.127 (0.0128) 0.031 (0.0560) 1.0

ACL2 1.021 (0.0899) 0.127 (0.0130) 0.033 (0.0588) 1.0

ACL1 1.051 (0.0844) 0.125 (0.0110) 0.003 (0.0066) 1.0

Table 3.8: Average of Monte Carlo simulations and RMSE in parentheses for the
naive methods (variogNaive and geoNaive) and their respective corrections (variogAdj
and CL) for increasing levels of r. ACL2 and ACL1 reports results from (2.14) where
t has been chosen such that ρ (t;φ) = 5 × 10−6 and ρ (t;φ) = 5 × 10−2 respectively.
The true correlation function is Matrn with κ = 0.5. Data were generated from model
(3.3).





Chapter 4

Geostatistics for aggregated data

4.1 Introduction

The analysis of spatial data collected at different spatial scales is a challenging task

in the field of spatial statistics. Nowadays it is often the case that different spatial

data layers are collected at different scales. For example, we may have one layer at

point level, another at the regional level or vice versa. These types of spatial data are

often called misaligned and the inference problem related with them takes the name of

change of support problem The change of support problem (COSP) is concerned with

inference about the values of a variable at points or blocks different from those at which

it has been observed. Gotway and Young (2002) provides a really nice review about the

problem. Table 4.1, modified from Gotway and Young (2002) reports the most common

examples of COSPs.

We observe But the nature Examples

or analyse of the process is

Point Point Point kriging or model based geostatistcs

Area Point Ecological inference; quadrant counts

Point Line Contouring

Point Area Use of areal centroids; spatial smootghin;

block kriging

Area Area The modifiable areal unit problem (MAUP);

areal interpolation; incompatible/misaligned zones

Point Surface Trend surface analysis; environmental monitoring;

exposure assessment

Area Surface Remote sensing; multiresolution images; image analysis

Table 4.1: Examples of COSPs
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Changing the support implies that a new random variable is created whose distribu-

tion may be developed from the original one but, in any event, has different statistical

and spatial properties.A naive approach when the observed value is aggregated over a

certain region A is to attach it to the centroid of the region xa and then fit a standard

geostatistical model to Y (xa). This approach uses a single centroid value to represent

the outcome level in the entire region, and fails to properly capture variability and spa-

tial association. In the following sections we introduce a model based treatment to this

problem that allows to obtain better predictions.

4.2 Methodological framework

In these section we provide a detailed theoretical framework for the case in which we

observe the output at the areal level but the nature of the process is continuous and we

aim to obtain point predictions. A as real example we might have a very low-resolution

global climate model for weather prediction, and seek to predict more locally (i.e., at

higher resolution).

Let Y (xi) for i = 1, . . . , n denotes the spatial process of some continuous measure-

ment. We recall the stationary Gaussian model used in the previous Chapters

Y (x) = µ (x; β) + S (x) + Z (4.1)

where µ (x; β) is the mean function including some covariates, S (x) is a Gaussian process

with zero mean and variance covariance matrix σ2P (x;φ) = σ2ρ (x− x′;φ) and Z is a

multivariate normal, independent from S (x), with zero mean and variance covariance

matrix τ 2I. Here φ denotes the vector of parameters that define the correlation function

ρ (·). We can summarize model (4.1) saying that

Y (x) ∼ N
(
µ (x; β) , σ2P (x;φ) + τ 2I

)
(4.2)

Instead of observing data at point locations, we observe block data and we assume they

arise as block averages. That is, for a block Am ⊂ D for m = 1, . . . ,M where D ⊂ R2

is the observed region

Y (Am) = |Am|−1
∫
Am

Y (x)dx. (4.3)

The above integral is an average of random variables, hence, a random or stochastic

integral. Thus, the assumption of an underlying spatial process is only appropriate for

block data that can be sensibly viewed as an averaging over point data; examples of
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this would include rainfall, pollutant level, temperature, and elevation. It would be

inappropriate for, say, population, since there is no population at a particular point.

Our goal is to make inference on the true process at the finest spatial resolution using

block averages data and covariates collected at point level (blocks to points prediction).

This translates to find the distribution of Y (x) | Y (A). Using (4.3) we can state that

Y (A) ∼ N
(
µA (β) , σ2PA (φ) + τ 2IA

)
(4.4)

with µA (β) = |A|−1
∫
A
µ (x; β) dx and PA (φ) = |A|−2

∫
A

∫
A
ρ (x− x′;φ) dxdx′. Since

Y (x) and Y (A) are jointly normal we obtain a n+M - dimensional multivariate normal(
Y (x)

Y (A)

)
∼ N

((
µ (x; β)

µA (β)

)
,

(
σ2P (x;φ) + τ 2I Px,A (φ)

P T
x,A (φ) σ2PA (φ) + τ 2IA

))
(4.5)

where

(µA (β))m = E [Y (Am)] = |Am|−1
∫
Am

µ (x; β) dx,

(PA (θ))mm′ = |Am|−1 |Am′|−1
∫
Am

∫
Am′

ρ (x− x′;φ) dxdx′,

(Px,A (θ))im = |Am|−1
∫
Am

ρ (xi − x′;φ) dx′.

Noting that the above equations are nothing but an expectation with respect to a

uniform distribution, we can use MC integration to estimate them. For each block Am

we can draw a set of locations xm,l for l = 1, . . . , Lm, distributed independently and

uniformly over Am. Hence we can replace the preceding formulas with

(µ̂A (β))m = L−1m
∑
l

µ (xm,l; β) ,(
P̂A (φ)

)
mm′

= L−1m L−1m′
∑
l

∑
l′

ρ (xml − xm′l′ ;φ) ,(
P̂x,A (φ)

)
im

= L−1m
∑
l

ρ (xi − xml;φ) .

From (4.5) we can obtain the distribution of Y (x) | Y (A) that is N
(
µx|A,Σx|A

)
where

µx|A = µ (x; β) + Px,A (φ)
(
σ2PA (φ) + τ 2IA

)−1
(Y (A)− µA (β))

Σx|A = σ2P (x;φ)− Px,A (φ)
(
σ2PA (φ) + τ 2IA

)−1
P T
x,A (φ)
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As far as we are able to fit the model (4.3) and then sample from [Y (x) | Y (A)] we

should end up with consistent point level predictions.

What we have shown here is for the case of area or block to point prediction. Since

everything is based on conditional expectation of multivariate Normal random variable,

it is straightforward to extend the theory to the point to area, and area to area case.

4.2.1 Inference

We first specify the mean function µ (x; β) = Dβ with D a n × p matrix with

geo-referenced covariates as entries Di,j = dj (xi) and β a p × 1 vector of parameters.

Since we consider the covariates as a deterministic component, the mean vector of

YA can be redefined as µA (β) = D̄β, where D̄ is a M × p matrix whose entries are

D̄mj = 1
#xi∈Am

∑
xi∈Am

dj (xi).

Before proceeding to calculate the MLE estimates, it is convenient to express the

nugget variance parameter, τ 2 in relative terms r = τ 2/σ2, thus we have

Cov (YA) = σ2
(
P̂A (φ) + rIA

)
where P (φ) is the correlation matrix. The log-likelihood for model (4.3) is

l (β, θ) = −M
2

log (2π)−1

2
log
(∣∣∣σ2

(
P̂A (φ) + rIA

)∣∣∣)− 1

2σ2

(
YA − D̄β

)T (
P̂A (φ) + rIA

)−1 (
YA − D̄β

)
.

Maximum likelihood estimates for β and σ2 are

β̂ =

(
D̄T
(
P̂A (φ) + rIA

)−1
D̄

)−1
D̄T
(
P̂A (φ) + rIA

)−1
YA

σ̂2 =

(
YA − D̄β

)T (
P̂A (φ) + rIA

)−1 (
YA − D̄β

)
M

.

Substituting β̂ and σ̂2 into the log-likelihood , we get the profile likelihood

lp (r, φ) = −1

2

{
log
(∣∣∣σ̂2

(
P̂A (φ) + rIA

)∣∣∣)+M
(
log
(
2πσ̂2

)
+ 1
)}

.

An optimization algorithm can then be used to estimate the noise r and the scale

parameter φ.
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4.3 Simulation study

We use a simulation study to asses the goodness of the predictions obtained from

our model compared to the naive approach. We proceed as follows:

• for i : 1, . . . , 1000:

– generate n = 100 points from model (4.1) over the unit square;

– aggregate the observed values in a number M of blocks using the empirical

version of (4.3);

– calculate the parameters using the proposed method and the naive geosta-

tistical approach that consider each averaged value over region A as the true

value located at the centroid of A;

– Calculate the mean squared prediction error using 4-fold cross validation. We

randomly sample the 75% of the data points and use it as the training set

for parameter estimation and then we validate the accuracy of prediction on

the remaining 24% of points left out.

We define the following scenarios: (a) σ2 = 1, τ 2 = 0.2, κ = 0.5 and φ = 0.1; (b) σ2 = 1,

τ 2 = 0.2, κ = 1.5 and φ = 0.7. In both scenarios, we let the number of blocks M vary

over the set {10, 30, 50}. Results are reported in Table 4.2. Our method outperforms

the naive approach since we obtain a smaller MSPE in all the considered scenarios.

Method
φ = 0.1 φ = 0.7

M = 50 M = 30 M = 10 M = 50 M = 30 M = 10
Naive 0.667 0.935 1.691 0.444 0.832 1.174

Adjusted 0.221 0.654 1.218 0.104 0.591 0.983

Table 4.2: MSPE for the Naive and the Adjusted model calculated from 1000 Monte
Carlo simulations.

4.4 Conclusions

This chapter takes into consideration the change of support problem for spatial data.

We propose a geostatistical model that is able to produce consistent block to point

prediction. The approach introduced could also be used as a first step when dealing

with spatially misaligned data, i.e. to bring all the spatial layers to the same level of

resolution and then fit a regression model. We first provided likelihood equations for

block to point prediction i.e. when the outcome is observed at a coarser level than the
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covariates that are continuously available. We compared standard spatial models with

our method and found that we can obtain predictions with a smaller mean squared

prediction error.
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Appendix

A.1 Mathematical Proofs

In this section we provide mathematical proofs needed to understand some of the

equation reported in the thesis.

A.1.1 Proof for the variogram in presence of positional error

The distribution of Vij | Uij reported in (2.3) is obtained through the following

calculations

[Vij | Uij] =

∫ [
Vij, U

∗
ij, Uij

]
dU∗ij

[Uij]

=

∫ [
Vij | U∗ij, Uij

] [
U∗ij, Uij

]
dU∗ij

[Uij]

=

∫ [
Vij | U∗ij

] [
U∗ij | Uij

]
[Uij] dU

∗
ij

[Uij]

=

∫ [
Vij | U∗ij

] [
U∗ij | Uij

]
dU∗ij,

Now we need to obtain
[
Vij | U∗ij

]
and

[
U∗ij | Uij

]
. Let’s start from the distribution of

Vij = (Yi−Yj)2 | U∗ij. Since S (x∗i ) and Zi are independent by assumption (see the general

model reported in (2.1)), it follows that Yi ∼ N(0, σ2 + τ 2). To obtain the distribution

of Yi − Yj we need first to calculate the covariance between these two variables

Cov (Yi, Yj) = Cov
(
S {x∗i }+ Zi, S

{
x∗j
}

+ Zj
)

= Cov
(
S {x∗i } , S

{
x∗j
})

= σ2ρ
(
u∗ij
)
.
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Hence, Yi−Yj ∼ N
(
0, 2

[
τ 2 + σ2

{
1− ρ

(
u∗ij
)}])

. Let’s define α2 = 2
[
τ 2 + σ2

{
1− ρ

(
u∗ij
)}]

,

it follows that (Yi − Yj)2/α2 ∼ χ2
(1). Thus, we can conclude that Vij | U∗ij ∼ α2χ2

(1). Be-

fore we turn to the calculations of
[
U∗ij | Uij

]
, we need to introduce the Rice distribution.

A random variable U follows a Rice(ν, σ) if its density function is

f (u; ν, σ) =
u

σ2
exp

(
−u

2 + ν2

2σ2

)
I0

(uν
σ2

)
,

with Ik (·) is the modified Bessel function of the first kind with order k.

The mean of U is

E[U ] = σ

√
π

2
L(ν2/2σ2)

where

L(x) = ex/2 [(1− x)I0(x/2)− xI1(x/2)] ;

the variance is

Var[U ] = 2σ2 + ν2 − πσ2

2
L2(−ν2/2σ2).

To calculate
[
U∗ij | Uij

]
we start from the distribution of X∗i | Xi = xi. From (2.2)

it’s easy to deduce that it is a bivariate normal with mean the observed point xi and

covariance matrix δ2I2,(
X∗i1 | Xi1

X∗i2 | Xi2

)
∼ BV N

([
xi1

xi2

]
,

[
δ2 0

0 δ2

])
.

Let’s first define X∗1 | X1 = X∗i1 | Xi1 −X∗j1 | Xj1 and X∗2 | X2 = X∗i2 | Xi2 −X∗j2 | Xj2.

It follows that X∗1 | X1 ∼ N (xi1 − xj1, 2δ2) and X∗2 | X2 ∼ N (xi2 − xj2, 2δ2). We can

now exploit the fact that R ∼ Rice(ν, σ) has a Rice distribution if R =
√
X2 + Y 2where

X ∼ N(ν cos (θ) , σ2) and Y ∼ N(ν sin (θ) , σ2) are statistically independent normal

random variables and θ is any real number. Starting from this known fact, if we take

X = X∗1 | X1 and Y = X∗2 | X2 and convert them to the polar coordinates solving the

system ν cos (θ) = xi1 − xj1
ν sin (θ) = xi2 − xj2

we obtain ν = uij, θ = arctan
(
xi2−xj2
xi1−xj1

)
and we can express X∗1 | X1 ∼ N(ν cos (θ) , 2δ2)

and X∗2 | X2 ∼ N(ν sin (θ) , 2δ2). Hence,

U∗ij | Uij =

√
(X∗1 | X1)

2 + (X∗2 | X2)
2 ∼ Rice

(
uij,
√

2δ
)
.
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If we now substitute the two distributions calculated above inside (2.3) we get

[Vij | Uij] =

∫ [
Vij | U∗ij

] [
U∗ij | Uij

]
dU∗ij

=

∫
α2 1√

2π
exp

{
−vij

2

} 1
√
vij

u∗ij
2δ2

exp

{
−
(
u∗ij
)2

+ u2ij
4δ2

}
I0

(
u∗ijuij

2δ2

)
dU∗ij

=

∫ [
2τ 2 + 2σ2 − 2σ2ρ

(
u∗ij
)] 1√

2π
exp

{
−vij

2

} 1
√
vij

u∗ij
2δ2

exp

{
−
(
u∗ij
)2

+ u2ij
4δ2

}
I0

(
u∗ijuij

2δ2

)
dU∗ij

=

∫ {
2τ 2AB + 2σ2AB − 2σ2ρ

(
u∗ij
)
AB
}
dU∗ij

= 2τ 2A

∫
BdU∗ij + 2σ2A

∫
BdU∗ij − 2σ2A

∫
ρ
(
u∗ij
)
BdU∗ij

= 2τ 2A+ 2σ2A− 2σ2A

∫
ρ
(
u∗ij
)
BdU∗ij

= 2A

{
τ 2 + σ2 − σ2

∫
ρ
(
u∗ij
)
BdU∗ij

}
= 2A

{
τ 2 + σ2

[
1− E

{
ρ
(
U∗ij
)}]}

with A = 1√
2π

exp
{
−vij

2

}
1√
vij

the density of a χ2
(1), B =

u∗ij
2δ2

exp

{
−(u∗ij)

2
+u2ij

4δ2

}
I0

(
u∗ijuij

2δ2

)
the density of a Rice

(
uij,
√

2δ
)

and
∫
BdU∗ij = 1 (since I am integrating over the support

of B (0,+∞)). Since the closed form of E
[
ρ
(
U∗ij
)]

depends on the specific correlation

function used, it will be calculated by quadrature. If we take the expectation both sides

we have

1

2
E [Vij | Uij] = E [A]

{
τ 2 + σ2

[
1− E

{
ρ
(
U∗ij
)}]}

= τ 2 + σ2
{

1− E
[
ρ
(
U∗ij
)]}

.

A.1.2 R code

The R code for the thesis is all provide in an R library called geomask. It can be

downloaded at the following website: https://github.com/claudiofronterre/geomask. It

contains all the functions needed to reproduce the results contained in this thesis.
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