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Introduction

Harmonices Mundi, which was the culmination of Johannes Kepler (1571-1630) revolutionary contribution to science and
contained his third law of planetary motion, failed to account for the masses of planets. Indeed when we refer to Keplerian
orbits, we are implicitly assuming that these masses are truly negligible, and that Kepler’s so-called “laws” are exact. In
fact, however, with the exception of two-body motion, the problems of celestial mechanics are, generally, incapable of
exact mathematical solution. In many ways this was fortunate for the development of science and engineering. Celestial
mechanics became the driving force which spurred the great mathematicians to incredible efforts to find useful methods
of analyzing planetary motion. The elegant tools which they invented for this purpose had astonishing applicability in
many diverse fields.

The effects of perturbations were under study before the two-body equations were fully developed (see Pannekoek,
1989, [65]). Sir Isaac Newton (1642-1727) was the first to consider the attraction exerted by spheres and spheroids of
uniform and varying density on a particle. In the Principia, Proposition 74, he showed that the attraction exerted by a ho-
mogeneous sphere on a particle is the same as if the mass of the sphere were concentrated at its center. The Moon has also
been prominent in the study of perturbations. It was a natural choice, but its difficult orbit challenged scientists seeking
solutions for perturbed motion. Newton (1690) laid the basis for determining the Moon’s orbit with his law of gravitation.
Lunar theory continued to be studied by many other scientists after Newton until recently, as Clairaut, d’Alembert, Euler,
Laplace, Hansen, Delaunay, Hill, Brown, Eckert and Deprit just to mention the most important contributors to the subject.

The fundamental problem in perturbation analysis is orbit propagation. Solution techniques for the perturbation prob-
lem fall into three main categories: analytical, numerical and semi-analytical. The analytical approaches were developed
first because the other methods required computational horsepower that didn’t exist at the time. But today the modern
computer has erased this limitation and opened a whole new era in analyzing perturbations.

The simplest analytical model to be used in the propagation of an orbit is the theory of the Keplerian motion of a
celestial body. This theory, which is essential from several points of view, becomes hardly useful when perturbations are
involved in the dynamics and analytical solutions are no longer available. There are many perturbations which can be
acting on satellites. At first sight and due to the large number of theories and procedures developed in celestial mechanics
there would seem to be numerous analytical formulations for solving perturbed motion. Would it be possible to obtain an
analytical solution for each particular case? The answer depends on the forces we model; due to the complex nature of
the equations representing the physical models, exactly integrable expressions are difficult to obtain.

The end of the 18th century brought significant developments in perturbation theory, particularly in the modeling of the
Earth’s gravitational field. Pierre Simon Laplace (1749-1827) described a very useful analysis tool, the potential function.
Four volumes of his monumental work in celestial dynamics, Méchanique céleste, were published in 1799 and 1802-1805.
The fifth and final volume, published between 1823 and 1825, contained scant derivations but included his significant
contribution of the potential function. Adrian Marie Legendre (1752-1833), a French mathematician and professor, did
his main work on elliptic functions and number theory. Legendre functions are the solutions of the differential equations
arising from his studies of the attraction of spheroids (Boyce and DiPrima, 1977, [23]). He published his discovery in
1783 in the first of four memoirs on spheroids. They’re an integral part of solving the gravitational-potential problem.

In 1849, Sir George Gabriel Stokes (1819-1903), a professor at the University of Cambridge, derived an extremely
important formula which allowed accurate modeling of the Earth’s shape (Caputo, 1967, [29]). Essentially Stokes found
that we can determine the shape of a geoid if we know the local gravity anomalies. This evaluation permitted practical
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assessment of the Earth’s gravity field. Johann Franz Encke (1791-1865) presented a formulation for computing orbits
whenever the perturbations were small with respect to the two-body motion. This method was very popular for decades.
He numerically integrated the differences between the osculating orbit from a reference orbit, rather than the complete
attraction and specific forces involved. In this way he could attain enough accuracy with limited computer abilities.

For the first pioneers in celestial mechanics, the complexity of numerical integration often signaled a dead end. Of par-
ticular importance to the early scientists was their limited ability to calculate large numbers. Indeed, calculations weren’t
reasonable until John Napier (1550-1617) invented logarithms in 1614. Incidentally, Napier (and later Jorst Borgi) worked
on logarithms to help solve problems in astronomy. As techniques for manipulating and dealing with large numbers grew,
so did the complexity of the theories. It became apparent that such complexity could easily outpace the advances in com-
puting technology. The problem then became how to efficiently evaluate complex theories for computational applications.

Most numerical techniques couldn’t be taken into consideration until the 20th century because of limited computation
capacity. The concept of numerical integration was well understood, but it didn’t receive much attention in astrodynamics
until Phillip Herbert Cowell (1870-1949) used a numerical technique to determine the orbit of Jupiter’s eighth satellite.
Cowell and Crommelin also employed a numerical procedure to predict two of three return visits of Halley’s comet
between 1759 and 1910. Cowell’s method has been rediscovered many times and continues to gain favor in technical
circles as computers become faster and more powerful. In modern times, it’s common in astrodynamics to use Cowell’s
formulation to set up the differential equations of motion for numerical integration.

Special perturbation techniques numerically integrate the equations of motion including all necessary perturbing
accelerations. Because numerical integration is involved, we can think of numerical formulations as producing a specific,
or special, answer that is valid only for the given data (initial conditions and force-model parameters). Although numerical
methods can give very accurate results and often establish the “truth” in analyses, they suffer from their specificity,
which keeps us from using them in a different problem. Thus, new data means new integration, which can add lengthy
computing times. NASA began the first complex numerical integrations during the late 1960s and early 1970s. Personal
computers now compute sufficiently fast enough to perform complex perturbation analysis using numerical techniques.
However, numerical integration suffers from errors that build up with truncation and round-off due to fixed computer
word-length, which can cause numerical solutions to degrade as the propagation interval lengthens. While these error
sources affect all special perturbation methods, some formulations exhibit a better behavior in terms of accuracy than
others by containing the error growth produced by the numerical integration. Linearization and regularization proved to
be effective mathematical tools in achieving highly accurate orbit propagation of the motion of celestial bodies.

One of the most difficult tasks in numerical integration in celestial mechanics is the treatment of collisions. This is
not only a numerical but also a theoretical problem. Regularization is a method used to deal with dynamical collisions
numerically as well as analytically. Several schemes for regularizing the two-dimensional motion of a particle, subject to
gravitational forces, are known. In 1895 Thiele [81] achieved simultaneous regularization of two attracting centers and in
1915 Birkhoff [14] found a simpler method for reaching the same goal. A remarkable regularization of the plane motion of
a particle about a single attracting center was published by Levi-Civita in 1906 [79]. He introduced parabolic coordinates
in the plane of motion and used the eccentric anomaly in place of time as the independent variable. This procedure has the
desirable property of transforming the equations of pure Kepler motion into linear differential equations, thus permitting
easy integration and a simple theory of perturbations.

Several authors have proposed to take advantage of these pioneering studies for establishing analytical as well as
numerical methods. Happily, Kustaanheimo and Stiefel (1965, [57]) have succeeded in regularization in space by con-
structing a three-dimensional generalization of Levi-Civita’s transformation based on spinors. This is the celebrated
Kustaanheimo-Stiefel (KS) regularization (or the KS transformation), which opened the way for further generalizations,
for example the construction of a three-dimensional transformation of Birkhoff’s type. The KS regularized equations of
motion revealed to be effective for investigating the long-term behavior of perturbed two-body problems, namely, those
used for studying the dynamics of comets, minor planets, the Moon, and other natural and artificial satellites. Currently,
the most significant and promising flow of regularization research goes on around the KS transformation. For instance,
in 2007 Fukushima [44] announced that he found a new scheme to regularize a three-dimensional two-body problem
under perturbations. His method is a combination of Sundman’s time transformation and Levi-Civita’s spatial coordinate
transformation applied to the two-dimensional components of the position and velocity vectors in the osculating orbital
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plane.
In Chapter 1 we illustrate the main techniques discovered in the linearization of the two-body problem starting from

the monodimensional motion (Euler’s method), passing through the planar motion (Levi-Civita’s transformation), and
concluding with an overview of two extensively accurate and computational fast regularizations in space: Kustaanheimo-
Stiefel and Sperling-Burdut. We hope that through this brief survey of the most important linearization and regularization
techniques, the reader may be better introduced to the main topic of this PhD thesis, which deals with the study and
development of accurate numerical and analytical models to predict the orbital motion of artificial as well as natural
bodies in space when different kinds of perturbations are considered.

In particular, the research activity began with the study of a regularized special perturbation method recently published
by Peláez in 2007 [66], named DROMO. The method, drawing upon rigid body dynamics, describes the motion of a point
mass around a massive central body by tracking the evolution of a moving frame attached to the particle. By exploiting
the concept of projective decomposition, which is a key step for attaining linearization, as shown in Chapter 1, Peláez’s
method introduces two sets of variables: the first characterizes the size and shape of the osculating orbit, the second,
constituted by the four components of a unit quaternion, follows the evolution of its plane orientation in space. The
application of the variation of parameters (VOP) technique enables the introduction of generalized orbital elements whose
differential equations have no singularity even when the mutual distance is extremely small. Hence, the new variables
are suitable to deal with close encounters. The number of dependent variables in the new scheme becomes eight, which
is significantly smaller than the existing schemes to avoid close encounters: for example, the number is smaller by
two compared with the KS regularization. Chapter 2 investigates in depth the physical meaning of the new elements
employed in DROMO, which is not explained inside Peláez’s paper. Next, an error propagation analysis is performed
in order to simulate the behavior of the numerical integration error produced when the differential equations of motion
are numerically integrated. Furthermore, extensive comparisons in terms of accuracy and computation runtime have been
carried out with respect to one of the most used and efficient propagators, namely Cowell’s formulation integrated by a
Störmer-Cowell numerical algorithm.

The last part of Chapter 2 is devoted to a new regularization approach for closed orbits which was developed in this
doctoral thesis. The new scheme, named ELI-DROMO, chooses an independent variable different from DROMO: instead
of the true anomaly it employs the eccentric anomaly. Then, regularization is achieved by embedding the Keplerian
energy into the differential equations of motion and with a proper selection of the reference frame moving with the
particle. Finally, VOP is applied and a new complete set of regular elements is derived. Preliminary numerical tests reveal
the great performance of the proposed formulation with respect to DROMO and other regularizations. Chapter 2 refers
mainly to the articles by Baù et al. [6], [7] and [9].

In Chapter 3, the special perturbation DROMO is applied with the purpose of propagating the relative motion between
spacecraft flying in formation. Spacecraft formation flying concepts have been studied since the beginning of the manned
space program. The challenge at that time was to have two-spacecraft rendezvous and dock onto each other. This was
particularly crucial for the Apollo space program which had the final lunar spacecraft being assembled in orbit. During
this maneuver orbit corrections are performed not to correct the Earth relative orbit itself, but rather to adjust and control
the relative orbit between two vehicles. For the docking maneuver, the relative distance is decreased to zero in a very slow
and controlled manner. The modern day focus of spacecraft formation flying has now extended to maintain a formation of
various spacecraft. For example, the U.S. Air Force is studying concepts of having a cluster of identical satellites form a
sparse aperture radar dish in space. Having multiple satellites flying at a specific geometry avoids the significant technical
and financial challenge of attempting to build a radar dish of the equivalent size. The spacecraft formation flying problem
of maintaining the relative orbit of a cluster of satellites is significantly more sensitive to relative orbit modeling errors.

However, for the task of maintaining a spacecraft relative orbit formation, where a cluster of satellites are supposed
to continuously orbit each other, making linearizing assumption can potentially lead to a substantially higher fuel cost.
The reason is that this formation is supposed to be controlled over the entire life span of the satellites. If a relative orbit
is designed using a very simplified orbit model, then the formation station keeping control law will need to continuously
compensate for these modeling errors and burn fuel. Depending on the severity of the modeling errors, this fuel consump-
tion could drastically reduce the lifetime of the spacecraft formation. It is precisely this sensitivity to the orbital dynamics
that makes this type of formation flying problem very interesting from the celestial mechanics point of view.
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A team of doctoral students guided by prof. Enrico Lorenzini of the department of mechanical engineering at the
University of Padova is involved in the following activities concerning spacecraft formation flying (SFF): 1) implemen-
tation of a testbed that allows to carry on experimental research about SFF in an earthbound laboratory; 2) planning of
collision-avoidance and optimal control strategies for SFF; 3) software support for the SFF hardware simulator; 4) test of
formation control strategies with the SFF hardware simulator and 5) development of highly accurate and fast propagators
for predicting spacecraft relative motion. As regard the last subject, the availability of fast and accurate orbital propagators
is of crucial importance in order to test the robustness of the control strategies. Two approaches were proposed in order to
predict the evolution of the relative dynamics with respect to an arbitrary reference mass. In the first, named DROMO-FF,
the absolute motion is evaluated by DROMO and the synchronized propagation in the physical time is achieved at the
price of increasing the number of the dependent variables. In the second model, named DROMO-G, the gravitational
terms under consideration are linearized about the reference path given by the formation center of mass, which is propa-
gated by DROMO, and the relative dynamics is directly integrated. DROMO-FF was compared in terms of accuracy and
speed with Cowell’s formulation and then embedded, by applying some modifications, to the guidance, navigation and
control block developed by the doctoral student A. Valmorbida. Finally, the mission Laser Interferometer Space Antenna
(LISA) is considered, and a rough assessment of the control required to compensate for the solar radiation pressure is
provided. Chapter 3 refers to the articles of Baù et al. [8], [10] and Valmorbida, Baù et al. [84].

General perturbation techniques replace the original equations of motion with an analytical approximation that capture
the essential character of the motion over some limited time interval and which also permits analytical integration. Such
methods rely on series expansions of the perturbing accelerations. In practice, the series are truncated in order to allow
simpler expressions in theory. This trade-off speeds up computation but decreases accuracy. Unlike numerical techniques,
analytical methods produce approximate, or “general” results that hold for some limited time interval and accept any initial
input conditions. The quality of the solution degrades over time, but remember that also the numerical solution degrades,
at different rates and for different reasons. The method of perturbations describes a class of mathematical techniques for
generating analytical solutions which describe the motion of a satellite subject to disturbing forces.

Yoshihide Kozai in 1959 [55] published his solution of the motion of a close Earth satellite acted upon by the gravita-
tional field of the Earth (supposed axially symmetric) without considering drag. Kozai derived the periodic perturbations
of the first order and secular perturbations up to the second order of the classical orbital elements starting from Lagrange
planetary equations. His approach had remarkable insight and provided the basis for the first operational, analytical ap-
proaches to determining satellite orbits. That same year Dirk Brouwer [25] published a paper on the solution of the main
problem in artificial satellite theory where a satellite is subject to the attraction of a spheroidal Earth with potential limited
to the principal term and the second harmonic which contains the small factor J2. Brauwer’s theory took hold very quickly
and was extended in 1961 to include the effects of drag. During the mid 1960s and 1970s, several different contributors
developed satellite theories based on the VOP formulation. The next decade saw a unique semi-analytical theory from
a team of scientists led by Paul Cefola. Remarkably, one of the technical inspirations of their Draper Semianalytical
Satellite Theory (DSST) came from the work of Hansen in 1855 on expansions for modeling elliptical motion.

In Chapter 4 DROMO is applied to the particular situation in which a constant tangential force pushes or brakes a
spacecraft producing a slight but continuous modification of its trajectory in time. The strength of electric propulsion is
that despite its low thrust levels, the momentum transfer to the spacecraft per kilogram of expelled propellant is ten or
twenty times greater than for chemical propulsion. Future space missions Dawn and JIMO (NASA) and BepiColombo
(ESA) will use electric propulsion for interplanetary cruise and orbital operations.

Perturbation theory was applied to the generalized orbital elements of DROMO to derive a first-order solution of the
two-body problem with constant tangential thrust. The analytical expressions were then employed to compute the radial
displacement and time phasing produced by a low-thrust mitigation strategy for deviating a Near Earth Object (NEO)
from a potential impact with the Earth. Some NEO’s of the Solar System mean a real threat for the life on Earth. The
geological and biological history of our planet is punctuated by evidence of repeated, devastating cosmic impacts. As a
consequence, asteroid deflection is becoming a key topic in astrodynamics. Although no asteroid has been deflected so
far, altering the trajectory of a small-sized asteroid to avoid the impact with the Earth has been shown to be, in principle,
technically feasible, and different techniques, ranging from nuclear detonation to kinetic impact and low-thrust methods,
have been proposed. Chapter 4 refers to the articles by Bombardelli, Baù and Peláez [19] and Bombardelli and Baù [17].



Chapter 1

Two-body problem linearization and
regularization

The force of gravitational attraction that is reciprocally exerted between two bodies of masses m and M separated by the
distance r, is in magnitude equal to GMm/r2, where G is the universal gravitational constant. This law is valid if the
two bodies are regarded as point masses and not as bodies of finite dimensions. Let us introduce an inertial (Galileian)
reference frame I and let r1 and r2 be the position vectors of m and M with respect to the origin of this frame. Newton’s
Second Law is then applied to each mass and the equations of motion are derived:

m
d2r1

dt2
=

GMm

r3
(r2 − r1)

M
d2r2

dt2
=

GMm

r3
(r1 − r2) .

(1.1)

The motion is fully described by imposing the initial conditions, such as the positions r1 (t0), r2 (t0) and velocities
v1 (t0), v1 (t0) specified at some particular instant of time t0. Finding the position and velocity at future times t > t0 is
the famous two-body problem which was solved by Newton.

Seldom are we interested in the absolute motion referred to an arbitrary inertial frame I. Usually we want to determine
the relative motion of one mass with respect to the other. Thus, let us study the relative motion of m as “seen” from M .
By differencing Eqs. (1.1), after first canceling the common mass factors, we get:

r̈ +
µ

r3
r = 0 (1.2)

where r is the relative position vector of mass m
r = r1 − r2

and µ is
µ = G (M + m) .

The second-order, nonlinear, vector differential equation (1.2) is the fundamental equation of the two-body problem which
governs the so called pure Keplerian motion. One final preliminary remark is worthwhile. Remember that the body whose
mass is M is not fixed in space. However, if M is several orders of magnitude bigger than m, like happens for example in
the motion of a planet around a star or of a spacecraft around the Earth, the parameter µ can reasonably be approximated
by the product GM . By employing such approximation into Eq. (1.2), and multiplying by m we have

mr̈ = −GMm

r3
r , (1.3)
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which is Newton’s Second Law applied to the mass m with respect to the not accelerating mass M .
From now on we assume that m " M , and we refer to the massive body as the primary or central body of attraction

and to the body of mass m as the secondary body or simply the particle. Forces other than central attraction may act
on the particle m, which are produced for instance by atmospheric drag, sunlight pressure, third body attraction or the
asphericity of the central body. These forces are taken into account by adding to the right-hand side of Eq. (1.2) the single
force f acting per unit mass of the particle and called for convenience the perturbing force. The equations of motion are
modified to the form:

r̈ +
µ

r3
r = f , (1.4)

and f may depend on the position, the velocity and also on the time explicitly.
Focusing on Eq. (1.2), we see that apart from being nonlinear, it also exhibits a singularity when r = 0. In this

situation the force due to the gravitational attraction goes to infinity and the numerical integration of Eq. (1.2) encounters
difficulties. Even if in practice, it never occurs that r = 0, because real bodies have finite dimensions, sometimes the two
bodies are very close one to the other like at the pericenter of an highly eccentric orbit. The procedure for eliminating the
singularities from differential equations is called regularization.

In this chapter we first expose the principal approaches developed for the linearization of the equations of motion
of an accelerated point mass (§ 1.1). Then we deal with the regularization of the two-body problem starting from the
mono-dimensional case, passing to the planar case, and finally addressing the three dimensional regularizations due to
Kustaanheimo-Stiefel and Sperling-Burdet (§ 1.2). The last section, 1.3, points out some important numerical aspects
which one should be aware of when the numerical integration of differential equations is required.

1.1 Linearization in the perturbed motion of a point mass
The method for processing perturbed Keplerian systems known today as the linearization was already known in the
eighteenth century. Laplace seems to be the first to have codified it. He (1799, [58], Partie I, Livre 2, Chap. ii and v)
summarized in an authoritative synthesis his own contributions to the subject and those of his predecessors. In recognizing
that most equations in celestial mechanics are Hamiltonian in nature, Jacobi offered to solve them approximately as
perturbations of separable systems. For a long while before him mathematicians had concentrated their effort on finding
the right coordinates and independent variables in order to split the equations into sets of perturbed linear oscillators.
Decomposing the position vector r of a mass point into the product of the orbital distance r = ‖r‖ and its direction
u = r/r is a preliminary step in order to achieve linearization. The pair (r, u) is called, after Ferrándiz, the projective
coordinates of the point mass. With such a choice of the coordinates, the motion appears as a displacement along the
radial direction which is rotating on a unit sphere. After changing the independent variable from the physical time to the
fictitious time the equations of motion in projective coordinates are converted into a linear system. Should the system
be Keplerian then the coefficient in the linear system are constants. In this way a perturbed Keplerian system becomes
a set of perturbed harmonic oscillators. This technique became standard procedure in the hands of Clairaut, Euler and
d’Alembert. It bred a plethora of artifices and stratagems, most of them now obsolete, yet still much alive in the folklore
of celestial mechanics. Eventually Laplace codified the basic algorithms for solving linear differential equations with
constant coefficients in Book II of his Mécanique céleste published in 1799. But Laplace did not articulate the techniques
for finding transformations that would convert Kepler’s problem into a set of harmonic oscillators. Astronomers of the
nineteenth century went on contributing stratagems to linearize equations for individual state functions. The literature on
linearization is vast, unwieldy and cumbersome.

In the first section, an historical background of linearization is given by following the exposition made by Deprit
et al. (1994, [39]) which address this issue in the framework of vectorial geometry in order to avoid many analytical
complications. He reconstruct the numerous linearized formulas scattered through the literature of the XVIIIth and XIXth

centuries by means of a handful of vectorial identities, most of which are direct consequences of Darboux’s Theorem of
the Moving Frame.

Laplace’s exposition is limited primarily to Keplerian systems and their perturbations; at times it deals with gradients
of a force function. Let us start from the Newton’s Second Law which governs the point dynamics r̈ = a, where a is
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the force per unit mass applied to the particle. This second-order differential equation can be shifted into two differential
equations of the first order:

ṙ = v v̇ = a (t, r, v) . (1.5)

Let us also introduce the angular momentum per unit mass h = r× v, and add to the previous equations the differential
equation:

ḣ = r× a . (1.6)

1.1.1 Cylindrical coordinates
Let I = 〈x1, x2, x3〉 be a reference frame with the three orthonormal directions fixed in space. The position vector is
decomposed into the sum:

r = (r · x3)x3 + (x3 × r)× x3

of its components parallel and perpendicular to x3. The projection of r onto the plane (x1, x2) is then factorized into the
product:

(x3 × r)× x3 = ρm with ρ > 0 and ‖m‖ = 1 .

Let us also set z = r · x3 and x = x3 ×m and let λ be the longitude of the particle in the plane (x1, x2) so that:

m = x1 cos λ + x2 sin λ with 0 ≤ λ < 0 ,

and the component of the angular momentum along x3:

Λ = h · x3 = ρ2λ̇ .

We deduce that the overabundant system of Eqs. (1.5) and (1.6) can be replaced by the system:

z̈ = a · x3

ρ̈ =
Λ2

ρ3
+ (a ·m)

Λ̇ = ρ (a · x)

λ̇ =
Λ
ρ2

(1.7)

which are the equations of motion in cylindrical coordinates. Laplace linearized these equations by replacing ρ and z by
the auxiliary quantities σ and ζ, which are defined as:

σ =
1
ρ

ζ =
z

ρ
,

and by changing the independent variable from time t to the anomaly λ according to the transformation:

ρ2dλ = Λdt .

After some calculations, the final linearized equations of motion result in:

d2ζ

dλ2
+ ζ = −ζ (ã ·m)− dζ

dλ
(ã · x) + (ã · x3) (1.8)

d2σ

dλ2
+ σ = −σ (ã ·m)− dσ

dλ
(ã · x) (1.9)

dΛ
dλ

= Λ (ã · x) (1.10)
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where the tilde over the acceleration a is used to indicate that ã is dimensionless, as follows from its definition ã =
ρ3a/Λ2. The unit vectors m, x and x3 constitute a triad of orthonormal axes, and the moving frame R = 〈m, x, x3〉
rotates around x3 with the angular velocity λ̇.

Lunar theory motivated Clairaut, Euler, d’Alembert and Laplace to linearize system (1.7). In that problem the accel-
eration is the sum of two terms:

a = − µ

ρ2
m + εf

where ε is an auxiliary quantity for ranking terms on an asymptotic scale. When the perturbing acceleration f is set equal
to zero, then Eqs. (1.8) and (1.9) become a pair of linear equations of order two with constant coefficients:

d2ζ

dλ2
+ ζ = 0

d2σ

dλ2
+ σ =

µ

Λ2
.

The polar component of the angular momentum is an integral of the motion, and the longitude λ is obtained by quadrature.
Let us consider the perturbed two-body problem. In this case the acceleration is:

a = − µ

r3
r + f (1.11)

where f is again the perturbing term, which, in general might be derivable from a potential U (t, x). The orbital distance
r = ‖r‖ is expressed in function of σ and ζ like follows r =

√
1 + ζ2/σ . If, like before, the system is unperturbed, then

Eqs. (1.8) and (1.9) take the form:

d2ζ

dλ2
+ ζ = 0

d2σ

dλ2
+ σ =

µ

Λ2

1

(1 + ζ2)
3
2

,

and the equation for σ is not linear with respect to ζ, and the term on the right-hand side is no more constant being a
function of the dependent variable ζ.

Therefore, cylindrical coordinates achieve linearization when the main contribution of the acceleration is characterized
by an axial symmetry. If such a symmetry is not available, better coordinates derive by choosing an orbital reference frame.

1.1.2 Spherical coordinates
Let us start from the projective decomposition of the position vector

r = ru r > 0 and ‖i‖ = 1 ,

and of the angular momentum vector

h = hn h > 0 and ‖n‖ = 1 .

Before dealing with the time derivatives of r and h, we first recall the following:

Lemma 1. Given x (t) (= 0 and the decomposition into the product

x = xy with x > 0 and ‖y‖ = 1 ,

there follows that

ẋ = y · ṙ and ẏ = x−2 (x× ẋ)× y .

This rule is applied to r and h to yield:

ṙ = u · v and u̇ =
h

r2
s
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ḣ = r (a · s) and ṅ = − r

h
(a · n) s ,

where s = u × n. The unit vectors u, s and n are respectively the radial, transverse and normal directions and together
they represent a moving frame which is referred to as the orbital frame O. The original Newtonian equations are replaced
by three vector equations that govern the evolution of the frame O:

u̇ = ω × u, ṡ = ω × s, ṅ = ω × n

where ω is the angular velocity of the orbital frame (Darboux, 1915 [37]) is

ω =
r

h
(a · n)u +

h

r2
n ,

and two scalar equations that account for the radial displacement along u:

ḣ = r (a · s) r̈ =
h2

r3
+ (a · u) .

The dimension of the system is twelve, and the following invariant orthonormality relations are satisfied:

‖u‖ = ‖s‖ = ‖n‖ = 1 and u · s = u · n = s · n = 0 .

The next steps towards the linearization is to change the independent variable from time t to the anomaly ϑ and to use q
in place of r through the relations:

r2dϑ = hdt q =
1
r

.

After defining the non-dimensional acceleration and angular velocity:

ã =
r3

h2
a ω̃ =

r2

h
ω = (ã · n)u + n ,

the equations of motion are obtained in the form:

d

dϑ




u
s
n



 = ω̃ ×




u
s
n





dh

dϑ
= h (ã · s)

d2q

dϑ2
+ q = −q (ã · u)− dq

dϑ
(ã · s) .

Let us assume that the component of a along the direction n is zero, so that a · n = 0. As a consequence ω̃ is identical to
n, and n is an invariant of the motion. As far as a · n = 0 the trajectory of the particle lies on the same plane, which is
itself invariant. Furthermore, we derive

d2u
dϑ2

=
d

dϑ
(n× u) =

ds
dϑ

= n× s = −u ,

so that
d2u
dϑ2

+ u = 0 , (1.12)

where 0 is the zero 3 × 1 column vector. This equation states that for a system made of a particle acted upon by a force
permanently locked within the orbital plane, the radial direction is in free rotation about the origin. Laplace and his
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predecessors did not recognize such rotational invariance. However, they found that the spherical coordinates given by
the longitude λ and the latitude β, are solutions of the homogeneous linear system

(
d2

dϑ2
+ 1

) 


cos λ cos β
sinλ cos β

sinβ



 = 0 .

When the force has a normal component, the equation for the radial direction is determined as here shown

d2u
dϑ2

=
d

dϑ
(ω̃ × u) =

ds
dϑ

= ω̃ × s = −u + (ã · n)n , (1.13)

hence
d2u
dϑ2

+ u = (ã · n)n , (1.14)

which is still linear in the principal part (i.e. the part that remains after setting the acceleration a equal to zero), but non
homogeneous. For the pure Keplerian motion the dimensionless acceleration is ã = −µr/h2 and, once plugged this
relation into Eq. (1.13), Eq. (1.12) is obtained.

1.1.3 Orbital coordinates
The orientation of the orbit is determined by:

• the inclination i with respect to the reference plane (x1, x2) fixed in space

x3 · n = cos i with 0 ≤ i ≤ π ,

being x3 the third unit vector of the orthonormal basis 〈x1, x2, x3〉;

• the node vector l, which comes out from the relation

x3 × n = l sin i and ‖l‖ = 1 ;

• the longitude of the ascending node ν, which defines the projections of l into x1 and x2

l = x1 cos ν + x2 sin ν and 0 ≤ ν ≤ 2π ;

• the argument of latitude θ, which defines the projections of l into u and s

l = u cos θ − s sin θ and 0 ≤ θ ≤ 2π .

By splitting Eq. (1.14) into the components along x1, x2 and x3, the longitude and latitude equations are obtained:
(

d2

dϑ2
+ 1

)
cos λ cos β = (ã · n) (x1 · n) = (ã · n) sin i sin ν

(
d2

dϑ2
+ 1

)
sinλ cos β = (ã · n) (x2 · n) = − (ã · n) sin i cos ν

(
d2

dϑ2
+ 1

)
sinβ = (ã · n) (x3 · n) = − (ã · n) cos i .

There is an other line of linearization to mention, which was pursued by Bohlin at the beginning of the twentieth
century (1911). The key idea of Bohlin is to implement an independent variable different from the traditional true anomaly.
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He observed that by employing a change of the independent variable from the physical time t to the fictitious time τ
according to the transformation rdτ = αdt, the equation of motion for the two-body problem appear in the form

(
d2

dτ2
− 2H

α2

)
r +

1
α2

A = 0 .

The functionsH and A are respectively the energy and the Laplace vector A = v×h−µu, and α is a length scale to give
τ the physical dimension of a time. Wintner (1947, [91]), tied Bohlin’s linearization with the Levi-Civita regularization
for the two dimensional two-body problem. Some twenty years later, Bohlin’s idea resurfaced in the papers of Burdet
(1967, [26]; 1968, [27]; 1969, [28]), and inspired to Stiefel other ways for achieving linearization.

1.2 Regularized theory
In the last hundred years the regularization of the equations of motion has been studied and obtained with motivations
that have changed as time has gone on. The initial demand for demonstrating the existence of solutions for the equations
of motion, represented by convergent series expansions, has altered little by little in the quest for formulae to be used
in the best way in modern computers. The fundamental research which focused the problem goes back to the studies of
Levi-Civita (1903 and subsequents) and Sundman (1907, [76]; 1912, [77]) on the regularization of the three-body problem
(see ref. [79]).

As we have already stressed in the introduction of the chapter, Eq. (1.4) is singular at r = 0 since the Newtonian
gravitational attraction of the central mass is infinite at the origin. This fact arises not only theoretical but also unpleasant
practical difficulties. If the particle approaches the primary body very closely, we speak of a near-collision orbit, the
consequent high level of the gravity force produces a sharp bending of the trajectory along with a very fast orbital dy-
namics. Thus, when the differential equations are numerically integrated, the length of the integration steps is reduced
and an higher number of steps is required during the near-collision phase. Because of truncation and round-off errors, the
accuracy of the position will be deteriorated.

The procedure to eliminate the singularities from differential equations is known as regularization. Let x and y be two
scalar quantities. The differential equation

dy

dx
= f (x, y)

is regular in (x0, y0) if in an open domain enclosing (x0, y0) both f (x, y) and ∂f/∂y are continuous and bounded. In this
case, the theorem of existence and uniqueness guarantees that a solution exists and is the only one satisfying a given initial
condition. In the opposite case, the equation is singular in (x0, y0) and, in general, one cannot guarantee the existence of
a solution. The extension to a system of differential equations is straightforward. Remember that regularization concerns
the equations and not their solutions, and singular equations can admit nonsingular solutions. Before illustrating the
regularization theory we desire to derive the energy relations because they will be used later on.

1.2.1 Energy relations
The kinetic energy per unit mass of the particle is

T =
1
2
v2 =

1
2

(v · v)

where v = ṙ is the velocity vector of magnitude v. The time derivative of T is equal to the scalar product (a · v), and
once the acceleration a is replaced by the expression given in (1.11), it takes the form

Ṫ = − µ

r3
(r · v) + f · v .

Recalling that r · v = rṙ and substituting, we get

Ṫ = −V̇ + f · v ,
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wherein the gravitational potential V = −µ/r was introduced. Then, rearranging the terms and remembering that the
total Keplerian energy (or Kepler energy) is HK = T + V , the relation

ḢK = f · v (1.15)

is obtained. The rate of change of the Kepler energy is equal to the work done by the perturbing force per second. In the
particular case of pure Keplerian motion, Eq. (1.15) states that HK , where

HK =
v2

2
− µ

r
, (1.16)

is an integral of the motion.
If the perturbing force (per unit mass) f is derivable from a potential V (t, r) according to the relation

f = −∂V

∂r
(1.17)

where the partial derivative is the gradient operator, it is convenient to introduce the total energy H of the particle

H = HK + V . (1.18)

We differentiate H with respect to time

Ḣ = ḢK +
∂V

∂t
+

∂V

∂r
· v , (1.19)

and after inserting Eqs. (1.15) and (1.17) the first and the third term cancel out so that Eq. (1.19) simplifies in

Ḣ =
∂V

∂t
.

When the potential V does not depend on time, i.e. it is a conservative potential V (r), then the total energy is constant
during the motion.

In general, one expect that only part of the perturbing force is generated by a perturbing potential

f = p− ∂V

∂r
, (1.20)

where p is the remaining perturbing force. By plugging Eq. (1.20) into Eqs. (1.15) and (1.19) the energy laws become

ḢK = p · v − ∂V

∂r
· v Ḣ = p · v +

∂V

∂t
. (1.21)

1.2.2 Fictitious time
It is quite natural to investigate if a proper change of the independent variable allows to put the equation

r̈ +
µ

r3
r = p− ∂V

∂r
(1.22)

in a form suitable to the application of regularization techniques. Sundman (1912, [77]) proceeded in this way and
succeeded in regularizing the three-body problem.

From the Kepler energy relation (1.72) it follows at once that for r = 0, the velocity v is infinite. The basic idea to
overcome this inconvenience due to the increase of the velocity during a close approach is to compensate it with a scaling
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factor that vanishes at collision, regardless of the direction of the incoming particle. The fictitious time s is introduced by
means of any of the three equivalent relations

d

ds
= r

d

dt
dt = rds t =

ˆ

rds . (1.23)

The orbital radius r acts as a scaling factor of the derivatives with respect to the physical time t. Transformation from t to
s is performed by the expressions

d

dt
=

1
r

d

ds
d2

dt2
=

1
r3

(
r

d2

ds2
− dr

ds

d

ds

)
.

(1.24)

The variable s is employed as the new independent variable in place of t in Eq. (1.22) of motion to yield

rr′′ − r′r′ + µr = r3

(
p− ∂V

∂r

)
(1.25)

where the prime indicates differentiation with respect to s. The unknowns of Eq. (1.25) are the three projections of r onto
a fixed frame and the time t, which should always be considered as the fourth coordinate of the particle.

Let us find the energy laws in s. By taking into account the relation

v2 = ṙ · ṙ =
r′ · r′

r2
, (1.26)

the Kepler and total energy, respectively in Eqs. (1.72) and (1.18), are expressed as

HK =
r′ · r′

2r2
− µ

r
H = HK + V , (1.27)

and their s-derivatives are obtained from Eqs. (1.21)

H ′
K = p · r′ − ∂V

∂r
· r′ H ′ = p · r′ + r

∂V

∂t
. (1.28)

As far as the latter equation is concerned, recall that V is assumed to be given as a function of time t and position r,
therefore it is impossible to transform t into s in the partial derivative of V .

Solving Eq. (1.25) for the highest derivative

r′′ =
r′

r
r′ − µ

r
r + r2

(
p− ∂V

∂r

)
(1.29)

we realize that it is still singular. In the following we explain in sequence the Euler and Levi-Civita regularizations for
respectively one- and two-dimensional motion, and Kustaanheimo-Stiefel and Sperling-Burdet regularizations for three-
dimensional motion. The main references we use in our exposition are the books of Stiefel & Scheifele [75] and Bond &
Allman [22].

1.2.3 One-dimensional motion
Let us restrict our particle to move along a straight line, so that its motion is one-dimensional. Provided its velocity is not
always directed away from the primary, a collision will occur with the central mass. Euler (1765, [41]) was the first to
investigate the phenomenon and to propose methods of regularizations.

Let x be the coordinate of the particle along the axis of motion x, such that x ≥ 0. For pure Keplerian motion, Eqs.
(1.2) and (1.72) hold and are rewritten as

ẍ +
µ

x2
= 0 HK =

ẋ2

2
− µ

x
(1.30)
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since r = x and v = ẋ. At instant t = 0 the particle, located at x (0) = 0, is ejected from the central body with infinite
velocity v (0). In the terminology of complex variables this sort of singularity is a branch point. So, let us change the
independent variable from t to s with the help of relations (1.24) and transform Eqs. (1.30) into

xx′′ − x′2 + xµ = 0 (1.31)
x′2 = 2x (xHK + µ) . (1.32)

From Eq. (1.32) we derive x′ (s0) = 0, where s0 is the value taken by s at t = 0. Thus, the effect of introducing s is to
produce regular functions describing the motion and eliminate branch points. Note also that time vary very slowly with s
in proximity of the collision.

Equation (1.31) is singular as shown by solving it for x′′

x′′ =
x′2

x
− µ (1.33)

and at collision the ratio x′2/x is undetermined. So, Eq. (1.32) is plugged into Eq. (1.33) to find

x′′ − 2xHK = µ (1.34)

which is a regular differential equation and its solutions are regular functions of s.
Here an example is discussed. Assume that HK < 0 and define the frequency squared

ω2 = −HK

2
which is inserted into Eq. (1.34)

x′′ + 4ω2x = µ . (1.35)
This equation admits the solution (setting s0 = 0)

x =
µ

4ω2
[1− cos (2ωs)] (1.36)

and
t =
ˆ

xds =
µ

4ω2

[
s− 1

2ω
sin (2ωs)

]
.

The result (1.36) written in the form
x =

µ

2ω2
sin2 (ωs)

suggests the substitution
x = u2 (1.37)

which implies x′ = 2uu′ and x′′ = 2
(
uu′′ + u′2

)
. These expressions are used into Eqs. (1.31) and (1.32) to have

uu′′ − u′2 +
µ

2
= 0

u′2 =
1
2

(
u2HK + µ

)

and after plugging the latter into the first, the differential equation in the unknown u appears in the form

u′′ − HK

2
u = 0 . (1.38)

For any value of HK the nonlinear and singular equation of motion (1.30) is traduced in the linear Eq. (1.52). For a
positive value of HK the mono-dimensional motion in u is governed by the differential equation of an harmonic oscillator
of frequency ω

u′′ + ω2u = 0 ,
with initial conditions u (0) and u′ (0) at instant s = 0 calculated from x (0) and ẋ (0) at instant t = 0.
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1.2.4 Motion in a plane
It is assumed that the position vector r and the perturbing force vector f have a vanishing third component, hence the
particle’s trajectory always lies on the plane (x1, x2). In the one-dimensional case we realized that the introduction of
a new independent variable is not sufficient to eliminate the singularity in the differential equations, and a second step
was necessary. Regularization in two dimensions was achieved by Levi-Civita (1906, [79]) who employed a squaring
transformation analogous to (1.37).

Let x1 and x2 be the coordinates of r along the axes x1 and x2, and let u1 and u2 be two scalar parameters that satisfy
the mapping

x1 + ix2 = (u1 + iu2)
2 (1.39)

between the x1-x2-physical plane and the u1-u2-parametric plane, being i the imaginary unit. The point (u1, u2) is re-
ferred to as the parametric particle and the vector u with components u1 and u2 is named position vector of the parametric
particle. Using Euler’s formula for complex numbers representation, Eq. (1.39) may also be written as

r eiφ =
(
u eiϕ

)2
(1.40)

where

r =
√

x2
1 + x2

2 u =
√

u2
1 + u2

2

are the distances of the particle from the origin in the physical and parametric planes, and

φ = tan−1

(
x2

x1

)
ϕ = tan−1

(
u2

u1

)

are the phase angles. We deduce from Eq. (1.40) that the mapping (1.39) squares the distances and doubles the phase
angles

r = u2 = u · u φ = 2ϕ = 2 tan−1

(
u2

u1

)
.

In real notation Levi-Civita’s transformation (1.39) is

x1 = u2
1 − u2

2 x2 = 2u1u2 ,

and by differentiation with respect to s, we have
(

x′1
x′2

)
= 2

(
u1 −u2

u2 u1

) (
u′1
u′2

)
. (1.41)

Let us define the Levi-Civita’s matrix (L-matrix)

L (u) =
(

u1 −u2

u2 u1

)
(1.42)

and express Eq. (1.41) in vector notation as
r′ = 2L (u)u′ . (1.43)

Furthermore, we see that
r = L (u)u .

Some important properties of the L-matrix are enunciated below.
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1. L (u) is orthogonal since

L (u) LT (u) = (u · u) I = rI

L−1 (u) =
1

u · uLT (u) =
1
r
LT (u) ,

where I is the 2× 2 identity matrix. Solving Eq. (1.43) for u′ we obtain

u′ =
1
2r

LT (u) r′ . (1.44)

2. The elements of L (u) are linear and homogeneous functions of u1 and u2, so the following relation holds

L′ (u) = L (u′) . (1.45)

3. The first column of L (u) is the position vector of the parametric particle.

Finally, for two arbitrary vectors u and v in the parametric plane these rules are valid:

L (u)v = L (v)u (1.46)
(u · u) L (v)v − 2 (u · v) L (u)v + (v · v) L (u)u = 0 , (1.47)

which one can check by exploiting the definition of the L-matrix in (1.42).
All is ready to introduce the u-language in the equations of motion (1.25). First, the differentiation of Eq. (1.43) gives

r′′ = 2L (u)u′′ + 2L (u′)u′

with the help of property (1.45). Then, Eq. (1.25) is transformed into

2 (u · u) [L (u)u′′ + L (u′)u′]− 4 (u · u′) L (u)u′ + µL (u)u = (u · u)3
(
p− ∂V

∂r

)
(1.48)

where the identity r′ = 2 (u · u′) was used. Substituting v with u′ into Eq. (1.47) and rearranging the terms we get

(u · u)L (u′)u′ − 2 (u · u′) L (u)u′ = − (u′ · u′) L (u)u

which is inserted in Eq. (1.52) to yield

2 (u · u) L (u)u′′ − [2 (u′ · u′)− µ]L (u)u = (u · u)3
(
p− ∂V

∂r

)
.

By left-hand multiplication with L−1 (u) and dividing both sides by 2 (u · u), this is reduced to

u′′ −
u′ · u′ − µ

2

u · u u =
u · u

2
LT (u)

(
p− ∂V

∂r

)
. (1.49)

The Kepler energy in Eq. (1.27) becomes

HK =
2

(u · u)2
L (u)u′ · L (u)u′ − µ

(u · u)
,

and the substitution
L (u)u′ · L (u)u′ = (u · u) (u′ · u′)
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brings to the desired form for HK

HK =
2 (u′ · u′)− µ

u · u . (1.50)

This last expression divided by 2 is exactly the coefficient of the vector u on the left-hand side of Eq. (1.49), which is
then written as

u′′ − HK

2
u =

u · u
2

LT (u)
(
p− ∂V

∂r

)
. (1.51)

Equation (1.51) is the vector equation of motion of the parametric particle. To conclude, if no perturbations are applied,
then the right-hand side vanishes and it simplifies into

u′′ − HK

2
u = 0 (1.52)

which is linear in u and regular at collision (u = 0).

1.2.5 Motion in space. Kustaanheimo-Stiefel regularization
The Levi-Civita’s transformation succeeded in regularizing the two-body problem when the motion of the attracted body
is constrained on the plane (x1, x2). Levi-Civita tried hard to find a generalization for the three-dimensional motion in
space by introducing three parameters u1, u2 and u3 without any success.

Kustaanheimo in 1964 [56] expounded a scheme based on Pauli’s representation of the atom of hydrogen by spinors.
Stiefel, heard about this theory, jumped on the idea and joined with Kustaanheimo (1965, [57]) in tying linearization with
regularization by spinors. Kustaanheimo proposed to employ a pair of complex numbers as a generalization of the single
complex number of the Levi-Civita’s theory. As a consequence four real scalars u1, u2, u3 and u4 are introduced along
with the generalization of Levi-Civita’s matrix, known as KS-matrix

L (u) =





u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1





where u is the four vector composed by the parameters u1, u2, u3 and u4. The KS-matrix maps the vector u into the four
dimensional vector r through the KS-transformation

r = L (u)u , (1.53)

or by components

x1 = u2
1 − u2

2 − u2
3 + u2

4

x2 = 2 (u1u2 − u3u4)
x3 = 2 (u1u3 + u2u4)
x4 = 0 .

The three properties listed in the previous section for the Levi-Civita’s matrix still hold true for the KS-matrix. From Eq.
(1.53) and thanks to the orthogonality of L it follows that:

r2 = uTLT (u) L (u)u = (u · u)2

and the orbital radius is
r = u · u . (1.54)
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Besides, as a direct consequence of property 3 in section (1.2.4), we have

L′ (u) = L (u′) .

Unfortunately the unrestricted application of the rules (1.46) and (1.47) is no longer permitted. Therefore, conditions
under which these rules are true were stipulated. In particular, when two vectors u and v satisfy the relation

u4v1 − u3v2 + u2v3 − u1v4 = 0 (1.55)

which is named bilinear relation, then the two rules

L (u)v = L (v)u (1.56)
(u · u) L (v)v − 2 (u · v) L (u)v + (v · v) L (u)u = 0 (1.57)

hold.
It should be noted at this point that a whole one-dimensional set of vectors u corresponds to a given vector r. This

fact prevents from determining the equations of motion in the unknown u starting from Eq. (1.25), as we did in the case
of planar motion. The only way to proceed is to postulate Eq. (1.49) and verify that the original Eq. (1.25) is satisfied.

The first aspect we are concerned with is the determination of the initial conditions u (0) and u′ (0) at s = 0. The
vector u (0) is chosen arbitrarily among the vectors that obey the KS-transformation

r (0) = L (u (0))u (0) . (1.58)

Once u (0) is chosen, one can guess that u′ (0) is defined by

u′ (0) =
1

2 ‖u (0)‖2
LT (u (0)) r′ (0) , (1.59)

according to Eq. (1.44) valid for the planar motion.
The following Proposition 1 can be shown. Given two vectors u and v such that

v = LT (u)y

where y is a vector in the physical space, which by convention is considered as a four-vector with vanishing fourth
component, then u and v satisfy the bilinear relation.

From Proposition 1 and Eq. (1.59) it follows that the initial vectors u (0) and u′ (0) fulfill the bilinear relation

u4 (0)u′1 (0)− u3 (0)u′2 (0) + u2 (0)u′3 (0)− u1 (0)u′4 (0) = 0 . (1.60)

Let us write Eq. (1.49) in the form

u′′ −
u′ · u′ − µ

2

u · u u = q , (1.61)

where the vectorial function u (s) has four components now. The right-hand side of Eq. (1.61) is

q =
u · u

2
LT (u)

(
p− ∂V

∂r

)
, (1.62)

and according to Proposition 1 fulfills the bilinear relation

u4q1 − u3q2 + u2q3 − u1q4 = 0 . (1.63)

We enunciate and show the following Proposition 2. Let l (u, u′) be the left-hand side of the bilinear relation

l (u, u′) = u4u
′
1 − u3u

′
2 + u2u

′
3 − u1u

′
4 ,
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then, provided u (s) is a solution of the equation of motion (1.61), l (u, u′) is a first integral of Eq. (1.61).
Proof. The s-derivative of l (u, u′) is

dl

ds
= u4u

′′
1 − u3u

′′
2 + u2u

′′
3 − u1u

′′
4

and after inserting the expressions of u′′k (for k = 1, . . . , 4) determined from Eq. (1.61), we have

dl

ds
= u4q1 − u3q2 + u2q3 − u1q4

which is equal to zero, as stated by relation (1.63).
From Proposition 2 and Eq. (1.60) we infer that any solution u (s) of Eq. (1.61), with initial conditions u (0) chosen

in order to verify Eq. (1.58), and u′ (0) calculated by Eq. (1.59), satisfies the bilinear relation

u4 (s)u′1 (s)− u3 (s) u′2 (s) + u2 (s) u′3 (s)− u1 (s) u′4 (s) = 0

where s in an arbitrary value of the fictitious time. The important consequence of this result is that the two rules (1.56)
and (1.57) are applicable to the vectorial functions u (s) and u′ (s). In particular we have

r′ = L′ (u)u + L (u)u′ = L (u′)u + L (u)u′ = 2L (u)u′ , (1.64)

showing that the Levi-Civita relation (1.43) is still true in space.
The discussion is concluded by showing that the KS-transform of u (s)

r = L (u)u

satisfies Eq. (1.25) of motion as well as the given initial conditions x (0) and x′ (0). Let us differentiate Eqs. (1.64) and
(1.54)

r′′ = 2L (u)u′′ + 2L (u′)u′ r′ = 2 (u · u′)

and employ these relations in the left-hand side of Eq. (1.25) which takes the form

2 (u · u)L (u)u′′ + 2 (u · u) L (u′)u′ − 4 (u · u′) L (u)u′ + µL (u)u .

We replace u′′ with the expression that is derived from Eq. (1.61)

2 (u′ · u′) L (u)u + 2 (u · u)L (u′)u′ − 4 (u · u′) L (u)u′ + 2 (u · u) L (u)q ,

and apply the rule (1.57) with v = u′, to obtain

2 (u · u) L (u)q .

First substituting for q through Eq. (1.62) and then exploiting the orthogonality of the KS-matrix, it results

(u · u)2 L (u) LT (u)
(
p− ∂V

∂r

)
= r3

(
p− ∂V

∂r

)

where r = u · u, so that

rr′′ − r′r′ + µr = r3

(
p− ∂V

∂r

)
,

which is the equation of motion (1.25). As regard the initial conditions it is seen that the value of r′ (0) at s = 0, calculated
by Eq. (1.64), is exactly the prescribed value appearing in Eq. (1.59).
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The differential equation (1.61) for the parameters u1, u2, u3 and u4 along with the starting rule (1.59) are the
equations of motion in space. The Kepler energy in the form provided by Eq. (1.72), which is still valid for the three-
dimensional case, is included in Eq. (1.61) to find

u′′ − HK

2
u =

u · u
2

LT (u)
(
p− ∂V

∂r

)
. (1.65)

The partial derivative of the disturbing potential with respect to r is written as (Stiefel & Scheifele, 1971, [75], p. 29)

∂V

∂r
=

1
2 (u · u)

L (u)
∂V

∂u
(1.66)

in order to give to Eq. (1.65) the final form

u′′ − HK

2
u =

u · u
2

(
LT (u)p− 1

2
∂V

∂u

)
. (1.67)

This set of four second-order differential equations must be supplemented by the differential equation for HK , Eq. (1.28),
here traduced in the u-language with the aid of Eqs. (1.64) and (1.66) as

H ′
K = 2LT (u)p · u′ − ∂V

∂u
· u′ , (1.68)

and the differential equation for time t, Eq. (1.23)
t′ = u · u . (1.69)

The set of Eqs. (1.67), (1.68) and (1.69), which has dimension 10, is regular at collision with the central mass (u = 0),
provided the perturbing forces remain finite. Note that if HK < 0, Eq. (1.67) is of the type of a four-dimensional harmonic
oscillator with frequency

√
−HK/2.

1.2.6 Motion in space. Sperling-Burdet regularization
The Kustaanheimo-Stiefel’s method is still nowadays, after more than forty years since its invention, one of the most
elegant, accurate and computationally fast regularizations. We desire to present in this section an other very efficient
regularization which was developed some years before the KS method and that probably gave to Stiefel suggestions for
his theory.

In 1961 Sperling [74] proposed a new strategy for linearizing and regularizing the two-body problem. He accom-
plished this result with some steps: changing the independent variable from time to fictitious time by Sundman’s trans-
formation (1907, [76]) and then embedding the Laplace vector and the Kepler energy into the equations of motion. The
nonlinear two-body problem was transformed into a linear differential equation that could be readily solved as an har-
monic oscillator. Burdet [27] in 1968 published a perturbation theory based on Sperling’s regularization. He exploited the
variation of parameters technique to derive differential equations of the elements or integrals of motion, which appeared
in the Sperling’s equations.

We follow the development due to Sperling and explain the meaning of the elements, but we leave to the reader the
study of the remaining part of the work done by Burdet (see ref. [22]).

The first step is to apply the Sundman’s transformation in (1.23)

dt

ds
= r

to the differential equation of the perturbed two-body problem, Eq. (1.4)

r̈ +
µ

r3
r = f , (1.70)
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which is transformed into Eq. (1.29)

r′′ − r′

r
r′ +

µ

r
r = r2f (1.71)

where the prime indicates the derivative with respect to s. This is the equation of the perturbed two-body problem in the
fictitious time. In the one-dimensional case the regularization was completed by inserting the Kepler energy HK in Eq.
(1.33) to eliminate the “velocity” and produce Eq. (1.34). The expression of HK in the s-domain is reported in Eq. (1.27)

HK =
r′ · r′

2r2
− µ

r
. (1.72)

Unfortunately, the velocity term in Eq. (1.71) can not be eliminated by using Eq. (1.72). In front of this difficulty Sperling
employed the Laplace vector

A = ṙ× h− µ

r
r

which is constant when perturbations are absent. Let us replace the angular momentum per unit mass with its definition
h = r× ṙ and apply the vector triple product rule, to get

A = [(ṙ · ṙ) r− (r · ṙ) ṙ]− µ

r
r .

The relations

ṙ =
r′

r
r · r′ = rr′

are used in sequence to transform the expression of A in

A =
r′ · r′

r2
r− r′

r
r′ − µ

r
r . (1.73)

The velocity term is explicitated
r′

r
r′ =

r′ · r′

r2
r− µ

r
r−A

and substitution into Eq. (1.71) gives

r′′ −
(

r′ · r′

r2
− 2µ

r

)
r + A = r2f . (1.74)

By comparison with Eq. (1.72), we recognize that the bracketed term in the last equation is 2HK . Therefore Eq. (1.74)
becomes

r′′ − 2HKr = −A + r2f (1.75)

where A was moved to the right-hand side.
Equation (1.70) has been linearized and regularized (when f = 0). Let us take the dot product of Eq. (1.75) with r to

determine the analogous equation for the orbital distance r

r · r′′ − 2HKr2 = −r ·A + r2r · f . (1.76)

By differentiating the relation

r′ =
r · r′

r
we get

r′′ = − r′

r2
(r · r′) +

1
r

(r′ · r′ + r · r′′) .

Solving for r · r′′

r · r′′ = rr′′ +
r′

r
(r · r′)− r′ · r′ ,
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the expression is inserted in Eq. (1.76) wherein A is replaced by Eq. (1.73)

rr′′ +
r′

r
(r · r′)− r′ · r′ − 2HKr2 = −r ·

(
r′ · r′

r2
r− r′

r
r′ − µ

r
r
)

+ r2r · f .

After canceling and dividing by r, this reduces to

r′′ − 2HKr = µ + rr · f . (1.77)

When f = 0 we find the equation of motion (1.35) for the one dimensional case (with x = r).
The evolution of the Kepler energy HK , which explicitly appears in Eqs. (1.75) and (1.77), is governed by the

differential equation
H ′

K = r′ · f . (1.78)

Finally, also the Laplace vector A which appears on the right-hand side of Eq. (1.75), requires a differential equation,
which is given by (Battin, [5], p. 499)

A′ = 2 (r′ · f) r− (r · f) r′ − (r · r′) f . (1.79)

The differential equations (1.75), (1.77), (1.78) and (1.79) along with the time equation t′ = r were proposed by Sperling
in place of Eq. (1.70) for representing the perturbed two-body problem. This system has dimension thirteen and so a
minimum of thirteen constants of integration are required. The variational equations for these constants or for constants
related to them were, derived by Burdet (1968, [27]) by means of the variation of parameters technique.

1.3 Numerical aspects
A special perturbation method is a numerical approach for solving the perturbed two-body problem. The most straight-
forward method for determining the position and velocity r (t) and v (t) when the orbit is not a conic is a direct numerical
integration of the equations of motion (1.4) in rectangular coordinates known in celestial mechanics as Cowell’s method.
The integration formulas used in the Cowell’s method actually were first given by Gauss and were well adapted to the
computation techniques available at the end of the nineteenth century. Today when Eq. (1.4) is integrated numerically in
rectangular coordinates by any technique whatsoever, the method is still referred to as Cowell’s method.

When the perturbing force magnitude f = ‖f‖ on the right-hand side of Eq. (1.4) is small compared with that due
to the central force field, Cowell’s method can be inefficient. Even in the extreme case of absence of perturbations,
numerical errors would affect position and velocity. Thus, Cowell’s method may require relatively small interval lengths
independent of the size of f in order to ensure a fixed accuracy. However, if the differential accelerations instead of the
total acceleration are integrated, considerable accuracy with larger step lengths can be achieved. This procedure is known
as Encke’s method (see Battin, [5]), and the deviation δ with respect to the osculating orbit is obtained by a numerical
integration of

d2δ

dt2
+

µ

r3
osc

δ = − µ

r3
osc

g (δ, r) r + f (1.80)

where rosc is the orbital radius in the osculating orbit, and g a function of δ and r. The terms involved in Eq. (1.80)
should remain small (of the same order of f ) if the method is to be efficient. As the deviation δ grows in magnitude, a
new osculating orbit is defined through a process known as rectification.

Two-body linearization and regularization are efficient tools to numerically integrate the equations of motion (Fer-
randiz, 1992, [43]; Fukushima, 2007, [45]) with respect to unregularized methods like Cowell’s and Encke’s. Originally
regularization was developed to avoid the numerical difficulty in the integration of near parabolic orbits such as those of
comets. Then, it revealed to be advantageous also for near circular orbits (Arakida & Fukushima, 2000, [2]). This is
due to its better numerical stability than unregularized Keplerian motion (Stiefel & Scheifele, [75]). Moreover, the time
transformation from physical to fictitious time reduces instability in the state-vector equation and the propagation of the
numerical error is minimized (Nacozy, 1976, [64]).
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Regularization can be further improved by the variation of parameters technique, especially when dealing with the
long-term study of the motion of asteroids, comets, as well as natural and artificial satellites subject to relatively small
perturbation forces, mainly because, unlike the methods formulated in rectangular coordinates, describe the evolution
of elements (or integrals of the motion), which exhibit no error propagation with respect to the unperturbed two-body
problem. Stiefel and Scheifele [75] found a set of regular elements attached to the four parameters ui (i = 1, . . . , 4) of the
KS-method and introduced also a time-element. As we said, Burdet (1968, [27]) derived the differential equations of the
elements linked to the Sperling’s regularized equations of motion. Arakida and Fukushima (2001, [3]) have discovered that
the application of the method of variation of parameters to the KS-regularization drastically reduces the orbital integration
errors of the perturbed two-body problem with arbitrary types of perturbations. This is because both the position error
and the error of the physical time grow linearly with the fictitious time s even if using traditional integrators such as the
Runge-Kutta, extrapolation, or Adams methods.

1.3.1 Stability
We begin with the description of a pure Keplerian motion by the linear Eqs. (1.65) and (1.77), which reduce to

u′′ − HK

2
u = 0 r′′ − 2HKr = µ . (1.81)

This, together with
t′ = r , (1.82)

provides a system of eleven first-order differential equations for the variables ui (i = 1, 2, 3, 4), r, their derivatives with
respect to the fictitious time s, and t. On the other hand, the Newtonian equation

r̈ +
µ

r3
r = 0

represents a six-dimensional system, but it is nonlinear.
The stability in the sense of Lyapunov is defined as follows. Let us consider a nonlinear dynamical system of n

differential equations of the first-order

x′ =
dx
ds

= g (s, x) (1.83)

where x (s) = (x1, x2, . . . , xn) is the state-vector with initial condition x (0) at the instant s = 0, x ∈ D ⊆ Rn

being D an open set containing the origin, and g (s, x) is the vector field g : D → Rn continuous on D. Let x (s) =
(x1, x2, . . . , xn) be a reference solution with initial condition x (0). This reference solution is called stable if for every
ε > 0, there exist n positive real numbers δi = δi (ε) > 0 such that if

|xi (0)− xi (0)| < δi

then
|xi (s)− xi (s)| < ε ,

for any positive value of s and for i = 1, 2, . . . , n. In other words, x (s) is stable if small deviations of the initial values
x (0) from the reference values x (0), produce a small variation of the solution x (s) of Eq. (1.83) with respect to the
reference solution x (s) for any value of s > 0.

Let us assume HK < 0, then every solution of the regularized differential system (1.81) and (1.82) is stable. Our
proof of this statement starts with the left-hand of Eq. (1.81), wherein the frequency ω is inserted through the substitution
−HK/2 = ω2. Each parameter ui (i = 1, 2, 3, 4) is governed by

u′′i + ω2ui = 0 .
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The deviations-ui (s) = ui (s)− ui (s) and-u′i (s) = u′i (s)− u′i (s) undergo the simple harmonic motion

-ui (s) = -ui (0) cos (ωs) +
-u′i (0)

ω
sin (ωs)

-u′i (s) = −-ui (0) ω sin (ωs) +-u′i (0) cos (ωs) .

It follows that

|-ui (s)| < |-ui (0)|+ |-u′i (0)|
ω

|-u′i (s)| < ω |-ui (0)|+ |-u′i (0)| .

For any value of ε > 0, we can choose two positive real numbers δi and δ′i, such that

ωδi + δ′i < ωε ωδi + δ′i < ε ,

and the initial deviations satisfy the conditions |-ui (0)| < δi and |-u′i (0)| < δ′i. Therefore, it results

|-ui (s)| < δi +
δ′i
ω

< ε |-u′i (s)| < ωδi + δ′i < ε ,

consequently the harmonic oscillator is stable. By similar arguments as above it is shown that |-r (s)|, |-r′ (s)| and
|-t (s)| can be kept as small as we want with a proper choice of the initial deviations |-r (0)|, |-r′ (0)| and |-t (0)|.

By contrast, every elliptic solution of the classical nonlinear Newtonian equation

r̈ = − µ

r3
r (1.84)

is unstable. Let us first introduce the state-vector x = (r; v) and write Eq. (1.84) as the first-order system

ẋ = g (x) , (1.85)

where the vector field is
g (x) =

(
v; − µ

r3
r
)

.

Expanding the right-hand side of Eq. (1.85) in a Taylor series about the point x0 = (r0, ṙ0) with r0 = r (t0) and
ṙ0 = ṙ (t0), and introducing y = x− x0, yields the linear and homogeneous differential equation

ẏ = Ay (1.86)

where the higher order terms have been suppressed. The matrix A is the Jacobian matrix of g calculated in x0 and takes
the form

A =
[

O I
C O

]

where O and I are respectively the 3× 3 zero and identity matrices and

C = − µ

r3
0

[
I − 3

r2
0

r0rT
0

]
.

Let us consider two neighboring solutions of Eq. (1.86), y1 (t) and y2 (t) having slightly different initial conditions
y1 (t0) and y2 (t0), then the difference δy (t) = y1 (t)− y2 (t) satisfies the equation

δẏ = Aδy .
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The eigenvalues of the matrix A are

λ1 = i
√

µ

r3
0

λ2 = −i
√

µ

r3
0

λ3 =

√
2µ

r3
0

λ4 = −

√
2µ

r3
0

.

Because one of the eigenvalues, namely λ3, has a positive real value, then the origin δy = 0 is unstable.
Bond (1981, [21]) investigated in a similar way the stability of Encke’s formulation, and concluded that also the

cartesian coordinate differential equations (1.80) for this method are unstable. The mathematical instability is at the
origin of the numerical instability by causing an error amplification at each integration step which can not be cured by
any numerical algorithm. Let xi (t) be an exact reference solution of the differential system. Suppose that the numerical
integration has produced after N steps each of length h the value xi (Nh) which deviates from xi (Nh) by the small
error -xi. Thus, the erroneous quantity xi (Nh) +-xi is used as initial value for the (N + 1)-th step. If the system in
not stable in Lyapunov sense, then we expect that this deviation will increase from the (N + 1)-th step onwards with a
consequent loss of accuracy of the solution.

1.3.2 Analytical step regulation
The transformation from the physical time t to the fictitious time s according to the differential law

dt = rds (1.87)

generates an analytical step regulation. By assuming a constant length for the steps in s, the modulation due to the orbital
radius r makes the t-steps become larger when the particle is far from the attracting body, and shorter in the opposite
case. This kind of step-regulation reproduces the step-size control implemented by most of the numerical algorithms used
for integrating the differential equations of motion. Therefore, if we consider for instance an elliptic orbit, we have that
around the apocenter, where the motion is slow, the propagation can be sped up by limiting the number of steps, while,
around the pericenter, where the motion is fast, steps should be reduced in size in order to satisfy the required accuracy.

The analytical step regulation (1.87) is not always adequate, because shorter steps at the pericenter may be required.
This is the reason why other laws with higher powers of r than the first have been proposed:

dt = r2ds dt = r
3
2 ds . (1.88)

However, let us only record the following (Stiefel & Scheifele, [75], p.78):
Proposition 3. Adopt an analytical step regulation of the kind

dt = rνds ,

then a necessary condition for reaching the central mass along a collision orbit is that ν < 3/2.
From a theoretical point of view the analytical step regulations (1.88) will fail in collision, because as the particle

approaches the central body, the orbital radius goes to zero and the center is reached for s equal to infinite, when the step
length in time is zero. This behavior prevents regularization.
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Chapter 2

New two-body regularizations based on
quaternions

In 1844 the Irish mathematician W. R. Hamilton [47] devised a non-commutative algebra of four-dimensional objects
generalizing the algebra of complex numbers. Quaternions soon became a standard topic in higher analysis, and today,
they are in use in computer graphics, control theory, signal processing, orbital mechanics, etc., mainly for representing
rotations and orientations in 3-space.

The use of quaternions for the purpose of regularization of the spatial Kepler problem has been contemplated soon
after the discovery of the so-called KS-transformation by Kustaanheimo and Stiefel (1965, [57]). The KS-transformation
is modeled after the conversion from Cartesian to parabolic coordinates in a plane and its standard canonical extension,
a transformation Szebehely (1967, [78], p. 97) named after Levi-Civita. Velte (1978, [86]) interpreted the KS-mapping
as an LC-mapping followed by a rotation in three dimensions. The fact that the KS regularization is based on a four-
dimensional parametric space immediately called for bringing quaternions into play. In their comprehensive text Stiefel
and Scheifele (1971, [75]) clearly rejected this idea (p. 286): “Any attempt to substitute the theory of the KS matrix by the
more popular theory of the quaternion matrices leads to failure or at least to a very unwieldy formalism”. This statement
was first refuted by Chelnokov (1981, [33]), who presented a regularization theory of the spatial Kepler problem using
geometrical considerations in a rotating coordinate system and quaternion matrices. In a series of papers, including (1992,
[34]; 1993, [35]), Chelnokov extended the theory of quaternion regularization and also presented practical applications.

A deeper insight into the connection between KS matrix formalism and quaternions is due to Vivarelli (1983, [87]),
who remarked that the KS-transformation is a doubling of the LC-transformation. In a similar way, but independently,
Vrbik (1994, [88]; 1995, [89]) demonstrated the usefulness of quaternions for regularization in celestial mechanics. Deprit
et al. (1994, [39]) reviewed the basic ingredients of KS-formalism and reset the whole KS-theory in terms of quaternions.
Sharaf (1991, [72]) established connections between the rigid body dynamics and orbit dynamics by means of the Euler
redundant parameters and developed special perturbation techniques for the initial value problem of artificial satellite
motion. Recently, the Space Mechanics Group of the University of Zaragoza (Spain) took advantage of the elegance of
the quaternion language in various applications in orbital and rigid-body dynamics, see, e. g., Arribas et al. (2006, [4]).
Waldvogel (2008, [90]) summarized the theory of quaternions and then gave an overview of the new, elegant way of
handling three-dimensional regularization by means of an unconventional conjugation of quaternions. As an application,
the theory of Kepler motion was rederived on the basis of the regularized equations of motion.

In 2007 Peláez et al. [66] proposed a new formulation for the two body-problem, named DROMO, borrowing ele-
ments of rigid-body dynamics and employing quaternions. From preliminary tests of accuracy and computational speed,
DROMO appeared to be very efficient with respect to other regularization methods. Peláez’s method represented the start-
ing point of this doctoral research activity. Two first important issues to be addressed were to understand the connection
between the generalized orbital elements implemented by DROMO and the classical orbital elements, and investigate in
more detail its error propagation and numerical stability. Sections (2.1), 2.3 and (2.4) deal with these topics and contain

27
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the results reported in the papers by Baù et al. [8] (2011), [6] (2011) and [9] (2011). Once achieved a deep comprehension
of the physics hidden behind the differential equations of motion characterizing the two-body dynamics in DROMO, a
new regularization scheme based on quaternions was derived in the framework of Peláez’s method. Section (2.5), which
contains the results of the papers by Baù et al. [6] (2011) and [7] (2011), shows the procedure carried out to derive the
new regularization named ELI-DROMO. The two schemes DROMO and ELI-DROMO have been tested by comparing
their performance with other very efficient regularizations such as Kustaanheimo-Stiefel (KS) and Sperling-Burdet.

2.1 DROMO special perturbation method

DROMO propagator is a new regularization scheme which is characterized by only eight ordinary differential equations.
This special perturbation method was presented for the first time in the 2005 winter meeting of the American Astronautical
Society (Hedo et al., 2005, [48]), but the basic theory of DROMO can be found in [66] (Peláez et al., 2007) that was
published in 2007 almost simultaneously with the Fukushima report (DROMO is not evaluated in [45]).

This novel method is especially appropriated to carry out the propagation of complex orbits, like, for example, Near
Earth Objects’ (NEO) orbits. The formulation of DROMO is flexible and it permits, in some cases, to derive analytical
or semi-analytical solutions; an example of this flexibility can be found in [19] (Bombardelli et al., 2011), where a new
asymptotic solution has been obtained for the constant tangential thrust acceleration case. However, the best performances
of DROMO are obtained when it is used in the numerical propagation of orbits. Thus, DROMO turns out to be one of
the most accurate propagators when compared with similar formulations. Due to the plus of accuracy provided by the
DROMO formulation this scheme is quite appropriated for the propagation of orbits when a high-fidelity description of
the trajectory is mandatory.

In this section we describe the main features of DROMO.

2.1.1 The moving frame

The basic concept behind DROMO, the special perturbation method developed by Peláez [66], is to track the evolution
of an orbital frame moving with the particle and link a new set of generalized orbital elements to this frame. The result
is an improvement in accuracy (or, equivalently, computational speed) with respect to other efficient methods in orbital
dynamics, such as KS and Sperling-Burdet, and a more compact and simple formulation of the equations of motion. The
formulation is unique for elliptic, parabolic and hyperbolic motion so that transitions from different kinds of orbits can be
managed without stopping the integration. This fact is related to the choice of the fictitious time, which coincides with
the true anomaly in the pure Keplerian motion. However, the consequence of this choice is that full regularization can
not be achieved due to the structure of the Sundman’s transformation employed (see § 1.3.1). From a practical point of
view, when the orbital motion approaches a rectilinear motion, for example along orbits with eccentricity near to one, the
growth of the propagation error is amplified.

The starting idea of DROMO special perturbation method is the decomposition of the position vector of a point mass
r into the product of its magnitude r = ‖r‖ and its direction i = r/R. The decomposition in the projective coordinates
(R, i), so-called after Ferrándiz, is a preliminary operation in obtaining a set of linearized equations of motion (Deprit
et al., 1994, [39]). The KS method exploits this artifice in order to transform a perturbed Keplerian system into a set of
perturbed harmonic oscillators. A rotating coordinate system with one axis oriented along i is introduced by Chelnokov
(1992, [34]) in order to derive the generalized quaternion form of the regular KS equations. Besides he shows that the
quaternion differential equations governing the evolution of the orbit orientation with arbitrary potential are regular if true
anomaly is chosen as the independent variable.

A particle P of mass m moves with respect to an inertial frame I = 〈x1, x2, x3〉 with the origin O placed at the
center of mass of the primary body (the Earth, the Sun, etc.). Let the particle be exposed to the main term of the primary’s
gravitational attraction and the other forces gathered as a single perturbation whose resultant is mf . The position and
velocity of P with respect to the origin O are defined respectively by the radius vector r, and its time derivative v.
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Figure 2.1: Orbital reference frames R and U0 for the generic osculating orbit. The dash line represents the apse line of
the osculating ellipse.

Let us express the position vector r as the product of its magnitude r = ‖r‖ and its direction r̂, which is given by

r̂ =
r
r

, (2.1)

in order to decompose the motion of the particle into a radial displacement along r̂, and a rotation of the radial direction
r̂ with respect to the inertial space. This preliminary operation makes natural to introduce a rotating frame R = 〈i, j, k〉
with one axis oriented along the radial direction r̂, as defined in Eq. (2.1). As noted by Chelnokov (1992, [34]) there is
some arbitrariness in the rotation of the coordinate system around r̂. We make the following choice for the axes ofR (Fig.
2.1):

1. i ≡ r̂;

2. j lies on the osculating orbital plane, which is the plane defined by the position r and the velocity v of the particle,
and is oriented in such a way that j · v ≥ 0;

3. k is oriented along the orbital angular momentum L = r× p of the particle, being p = mv its linear momentum.

According to the previous definitions, the right-handed triad {i, j, k} is determined by the relations

i =
r
r

j = k× i k =
h
h

, (2.2)

where h is the orbital angular momentum per unit mass, namely

h =
L
m

= r× v

and h = ‖h‖ is its magnitude.
The velocity field of the frame R gets established by the velocity v of the particle P , and its angular velocity w with

respect to the reference I, and both v and w depend on the motion of P . Hence, if the trajectory r (t) is known as a
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function of time, then v and w can be calculated. The key point of DROMO is simple: instead of determining the time
evolution of the dynamic state (r, v) of the particle, the time evolution of the orbital frame R is obtained.
Let w = wxi + wyj + wzk be the angular velocity of R, where (wx, wy, wz) are the components of w along the axes of
R. We are interested in finding expressions for these components. For this purpose, let us apply the Poisson’s formula for
the time derivative of a unit vector to i and k, as follows:

di
dt

= w × i = wzj− wyk (2.3)

dk
dt

= w × k = wyi− wxj . (2.4)

Besides, the time derivatives of i and k can also be obtained by employing the first and the third definitions provided in
(2.2), yielding:

di
dt

=
d
dt

(r
r

)
= −1

r

(
dr

dt
i− dr

dt

)
(2.5)

dk
dt

=
d
dt

(
h
h

)
= − 1

h

(
dh

dt
k− dh

dt

)
. (2.6)

The velocity and the orbital torque per unit mass can be written as (Battin, [5]):

dr
dt

=
dr

dt
i +

h

r
j

dh
dt

= r× f = rfyk− rfzj

where r = ri and f = fxi+fyj+fzk, being (fx, fy, fz) the components of f along the axes ofR, and the time derivative
of h is (Battin, [5]):

dh

dt
=

dh
dt

· k = rfy . (2.7)

The last three relations are used into Eqs. (2.5) and (2.6), which simplify into:

di
dt

=
h

r2
j (2.8)

dk
dt

= −rfz

h
j . (2.9)

Equations (2.3), (2.4) and Eqs. (2.8), (2.9) contain different expressions of the same quantities, therefore they must be
equal:

wzj− wyk =
h

r2
j wyi− wxj = −rfz

h
j .

By comparison we infer that:

wx =
r

h
fz wy = 0 wz =

h

r2
, (2.10)

and the angular velocity of R takes the form:

w =
rfz

h
i +

h

r2
k . (2.11)

Note that if the particle motion was central f = f i, then h would be a constant vector that would fulfill the law of areas
r2ϑ̇ = h, being ϑ the true anomaly. In this situation the angular velocity components would turn into: wx = 0, wy = 0
and wz = ϑ̇. In the most general case of a perturbed motion, namely if f (= 0, the angular velocity of the position vector
has two non-zero components: wx and wz . Thus, the orbital motion of the frame R is defined as a superposition of two
rotations:
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1. one rotation of wx = rfz/h about the unit vector i, which does not exist in the Kepler problem;

2. another one of wz = h/r2 about the axis perpendicular to the osculating orbital plane.

However, traditionally, the orientation of the orbital plane is described by its inclination i and the longitude of the as-
cending node Ω. In order to express the components of the angular velocity w in terms of the derivatives of these orbital
elements we introduce the orthonormal frame N = 〈n1, n2, n3〉, where n1 is in the direction of the ascending node, n3

points in the direction of the angular momentum vector (so that n3 = k) and n2 completes the right-handed system. The
relation between the frames R and N is established in the following way

[i, j, k] = [n1, n2, n3]Q Q =




cos (ω + ϑ) − sin (ω + ϑ) 0
sin (ω + ϑ) cos (ω + ϑ) 0

0 0 1



 (2.12)

where ω is the argument of periapsis and ϑ is the true anomaly. Usually, the sum ω + ϑ is referred to as the argument of
latitude and it indicates the angle swept by the particle radius vector r with respect to the node vector n1. Let us project
the angular velocity w = wxi + wyj + wzk onto N by exploiting the relation (2.2), we have

w = [wx cos (ω + ϑ)− wy sin (ω + ϑ)]n1 + [wx sin (ω + ϑ) + wy cos (ω + ϑ)]n2 + wzn3 . (2.13)

On the other hand, the angular velocity is a function of dΩ/dt, di/dt and dω/dt

w =
(

di

dt

)
n1 +

(
dΩ
dt

sin i

)
n2 +

(
dω

dt
+

dϑ

dt
+

dΩ
dt

cos i

)
n3 . (2.14)

By comparing the corresponding components in Eqs. (2.13) and (2.14) we derive

wx =
di

dt
cos (ω + ϑ) +

dΩ
dt

sin (ω + ϑ) sin i

wy = −di

dt
sin (ω + ϑ) +

dΩ
dt

cos (ω + ϑ) sin i

wz =
dω

dt
+

dϑ

dt
+

dΩ
dt

cos i .

Finally, by replacing the left-hand sides with the expressions of the components of w provided in (2.10) and solving for
dΩ/dt, di/dt and dω/dt we get

dΩ
dt

=
r

h

sin (ω + ϑ)
sin i

(f · k) (2.15)

di

dt
=

r

h
cos (ω + ϑ) (f · k) (2.16)

dω

dt
=

h

r2
− dϑ

dt
− dΩ

dt
cos i . (2.17)

where the scalar product (f · k) is the out-of-plane component of the perturbing force (fz). Eqs. (2.15) - (2.17) are the
Gauss planetary equations for Ω, i and ω. Note that if f · k = 0 the time derivatives of Ω, i are zero, and as regard ω

dω

dt
=

h

r2
− dϑ

dt
.

Thus, Ω and i are constants when the perturbing force lies on the orbital plane, which implies that the orientation of the
orbital plane does not change during the motion.
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The next step done in [66] is to introduce reference quantities for operating non-dimensionalization. In particular, the
orbital distance at the initial time r0 and the inverse of the orbital frequency of a circular orbit of radius r0 are chosen as
reference length and reference time respectively

R0 = r (t0) = r0 τ0 =

√
r (t0)

3

µ
=

√
R3

0

µ
. (2.18)

The differential equations are determined for:

1. z = 1/r̃, where r̃ is the non-dimensional orbital radius;

2. u = ṽr, where ṽr = dr̃/dt̃ is the non-dimensional radial velocity;

3. ψ = h̃, where h̃ is the non-dimensional specific angular momentum;

4. the components of the unit quaternion q = (q1, q2, q3, q4) related to the orbital reference frame R = 〈i, j, k〉,
defined in (2.12).

Then, the independent variable is changed from the physical time t to the fictitious time σ, according to the transformation:

dσ

dt
=

h

r2
. (2.19)

The initial value of σ is set equal to the initial value of the true anomaly ϑ, namely σ0 = ϑ0. By plugging Eq. (2.7) into
Eq. (2.17), integrating from the initial time t0 to the generic time t, and solving for σ, yields

σ = ϑ + α , (2.20)

where the perturbing quantity α takes the expression

α = ω − ω0 +
ˆ t

t0

dΩ
dt

cos idt . (2.21)

If f · k = 0, then α = ω − ω0 and
σ = ϑ + ω − ω0 , (2.22)

the planar acceleration f = fxi + fyj induces a variation -ω = ω − ω0 of the argument of periapsis, and recalling that
this angle defines the orientation of the eccentricity vector on the orbital plane with respect to the node vector n1, we infer
from Eq. (2.22) that σ differs from the true anomaly ϑ by the rotation of the eccentricity vector due to f . Moreover, from
our assumption σ0 = ϑ0 it follows that in the pure Keplerian motion σ coincides with the true anomaly ϑ.

The variation of parameters technique is applied in [66] to determine the differential equations of the elements attached
to the quantities z, u, ψ and q. In the next section we explain the meaning of the generalized orbital elements adopted by
DROMO propagator.

2.1.2 Physical interpretation of the generalized orbital elements
The first element we introduce is ζ3, which is set equal to the inverse of the specific angular momentum

ζ3 =
1
ψ

. (2.23)

The elements related to z and u need a deeper reasoning to be explained. Let us consider the family of reference frames
U = 〈u1, u2, u3〉 that rotate with respect to R at the angular velocity

Ωrel = − h

r2
k ,
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then, the absolute angular velocity becomes

Ω = w + Ωrel =
r

h
fz i

where we exploited Eq. (2.11) for w. In the case of zero acceleration along k, fz = 0, the frames remains fixed with
respect to the inertial space. There exist∞1 reference frames U that rotate with the angular velocity Ω, they all have one
axis coinciding with k and the other two axes rotated in such a way that the following transformation holds

[u1, u2, u3] = [i, j, k]Q0 , (2.24)

where:

Q0 =




cos (σ + c) sin (σ + c) 0
− sin (σ + c) cos (σ + c) 0

0 0 1



 , (2.25)

and c is an arbitrary constant. Assume that c = 0, and refer to the corresponding frame as U0. For this choice of c Eq.
(2.24) represents a clockwise rotation of R around the axis k = u3 of the angle σ. The reference frames R and U0 are
shown in Fig. (2.1). The first interesting consideration is that when the motion is not perturbed it results σ = ϑ and it
follows at once that U0 is the so-called perifocal frame with u1 oriented along the eccentricity vector e, defined by (Battin,
[5])

e = −r
r
− h× v

µ
, (2.26)

u3 oriented along the angular momentum and u2 = u3 ×u1. In general, perturbations make σ differ from ϑ by the angle
α, as stated by Eq. (2.20), which may now be defined by

cos α =
1
e
e · u1 sin α =

1
e
e · u2 . (2.27)

By pursuing the procedure of the variation of parameters, the differential equations for the inverse of the orbital radius
z and the radial velocity u are analytically solved for the case of Keplerian motion. The solutions u (σ) and z (σ) are
expressed in terms of the two constants of integration ζ1 and ζ2 as:

z (σ) = ζ3 (ζ3 + ζ1 cos σ + ζ2 sinσ)
u (σ) = ζ1 sin σ − ζ2 cos σ .

Let us project the eccentricity given in Eq. (2.26) onto the rotating frame R

e = −i− 1
ζ3

k× (u i + s j) , (2.28)

where s is the non-dimensional transverse velocity

s = ṽt =
z

ζ3
= ζ3 + ζ1 cos σ + ζ2 sinσ .

After employing the identities k× i = j and k× j = −i, and substituting for u and s, Eq. (2.28) takes the form

e =

„
ζ1

ζ3
cos σ +

ζ2

ζ3
sin σ

«
i−

„
ζ1

ζ3
sin σ − ζ2

ζ3
cos σ

«
j . (2.29)

Finally, Eq. (2.24) is used to explicitate the components of e along the axes of U0, and Eq. (2.29) reduces to

e =
ζ1

ζ3
u1 +

ζ2

ζ3
u2 . (2.30)
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The previous relation states that ζ1 and ζ2, divided by ζ3, are the projections of the eccentricity vector on the unit vectors
u1 and u2, and by taking into account Eqs. (2.27), we have

ζ1

ζ3
= e cos α

ζ2

ζ3
= e sinα ,

where α, shown in Fig. (2.1), is the angle between u1 and e. Therefore, the two elements ζ1 and ζ2 employed by DROMO
are defined by

ζ1 =
e

h̃
cos (σ − ϑ) ζ2 =

e

h̃
sin (σ − ϑ) . (2.31)

At this point we deal with the elements attached to the four components of the unit quaternion q. These elements
are themselves the four components of a unit quaternion, named q0 = (q10, q20, q30, q40), and associated to the orbital
frame R0 = 〈i0, j0, k0〉, which is defined by the rotation:

[i0, j0, k0] = [i, j, k]Q0 , (2.32)

where:

Q0 =




cos (σ − σ0) sin (σ − σ0) 0
− sin (σ − σ0) cos (σ − σ0) 0

0 0 1



 .

By coming back to Eq. (2.24), and by comparison with Eq. (2.32), we realize that R0 belongs to the family of reference
frames U introduced before, and, in particular, it corresponds to the choice c = −σ0 of the arbitrary constant c which
appears inside the matrix (2.25). As a consequence, the frame R0 is invariant when the motion is unperturbed, and also
when the disturbing force is locked within the orbital plane. Besides, from our assumption of σ0 it follows that R0 is
permanently rotated of ϑ0 with respect to U0.

In general, for any choice of the value of c, it exists a SO(3) rotation with respect to an inertial reference frame made
by the longitude of the ascending node Ω, the inclination i and the angle ω = ω − α − c, where ω is the argument of
periapsis and α is defined in Eq. (2.21), such that Ω, i and ω are integrals of the motion both if the perturbing force is
absent and if it always lies on the orbital plane. For example, in the particular case of fz = 0, the orientation of U0 and
R0 is fixed by the three Euler angles (Ω, i, ω) where ω = ω0 for U0, and ω = ω0 + σ0 for R0.

Once the orbital frames U0 = 〈u1, u2, u3〉 and R0 = 〈i0, j0, k0〉 are introduced, the generalized orbital elements
used in DROMO

l =
(

ζ1 ζ2 ζ3 q10 q20 q30 q40

)
(2.33)

are fully explained: ζ3 is the inverse of the non-dimensional specific angular momentum (Eq. 2.23), ζ1 and ζ2, divided by
ζ3, give the projections of the eccentricity vector on u1 and u2 respectively (Eq. 2.30), and q10, q20, q30 and q40 are the
components of the unit quaternion which defines the orientation of R0 with respect to the inertial space.

In Appendix A we report the relations to switch from the classical orbital elements (a, e, i, Ω, i, ω, M0) to the
generalized orbital elements in (2.33) and vicevirsa.

2.1.3 Differential equations of motion

Poisson’s variational method (Battin, [5]) is used to determine the differential equations governing the evolution of the
new set of osculating elements contained in l, see (2.33), with respect to the independent variable σ

dl
dσ

=
dt

dσ

∂l
∂v

f . (2.34)
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The variational equations of motion are derived in Appendix C and their final form is here reported

dζ1

dσ
=

1
q3s2

[
sinσ f̃x +

(q3

s
+ 1

)
cos σ f̃y

]
(2.35)

dζ2

dσ
=

1
q3s2

[
− cos σ f̃x +

(q3

s
+ 1

)
sinσ f̃y

]
(2.36)

dζ3

dσ
= −fy

s3
(2.37)

dq10

dσ
=

λ (σ)
2

[cos (σ − σ0) q40 − sin (σ − σ0) q30] (2.38)

dq20

dσ
=

λ (σ)
2

[cos (σ − σ0) q30 + sin (σ − σ0) q40] (2.39)

dε30

dσ
= −λ (σ)

2
[cos (σ − σ0) q20 − sin (σ − σ0) q10] (2.40)

dq40

dσ
= −λ (σ)

2
[cos (σ − σ0) q10 + sin (σ − σ0) q20] . (2.41)

These equations along with the time equation
dt̃

dσ
=

1
q3s2

(2.42)

being t̃ the non-dimensional time, should be integrated taking into account the relations

λ (σ) =
f̃z

q3s3

s = ζ3 + ζ1 cos σ + ζ2 sin σ (2.43)

z =
1
r̃

= ζ3 (ζ3 + ζ1 cos σ + ζ2 sin σ)

u = ζ1 sinσ − ζ2 cos σ

χ =
σ − σ0

2



q1

q2

q3

q4



 =





cos χ sinχ 0 0
− sinχ cos χ 0 0

0 0 cos χ sinχ
0 0 − sinχ cos χ









q10

q20

q30

q40



 .

Equations (2.35) - (2.41) and Eq. (2.42) constitute the system of eight first-order differential equations that govern
the perturbed two-body motion of one point mass. These equations should be integrated in the selected interval of the
independent variable starting from the appropriate initial conditions at σ = σ0 (t0 = 0). Here

(
f̃x, f̃y, f̃z

)
are the

non-dimensional components of the perturbing force acting upon the particle.
The initial conditions are obtained from the initial position and velocity of the body (r0, v0) as shown in Appendix

B. In particular σ0 is equal to the true anomaly of the initial position in the initial osculating orbit; the initial values of
(q10, q20, q30, q40) are calculated directly from the orbital frame at the initial position and

t̃ = 0 ζ1 = e0ζ3 ζ2 = 0 ζ3 =
√

µ ‖r0‖
‖r0 × v0‖

where e0 is the eccentricity of the initial osculating orbit and µ the gravitational constant of the central body.
After the numerical integration we need formulas in order to compute the position and velocity from the generalized

orbital elements. Appendix B contains such relations.
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2.1.3.1 Singularities

Singularities occur in Eqs. (2.35) - (2.41) and (2.42) when ζ3 = 0 and s = 0, which may cause serious difficulties during
the numerical integration. The first singularity is traduced in the situation of an infinite value of the angular momentum,
which is of quite poor interest because the orbital radius should be infinite and the particle would be out of the primary
sphere of influence. The second case occurs either when ζ3 = 0 or when

1. e = 1 and ϑ = π: rectilinear ellipse at apoapsis, parabola for r equal to infinity;

2. cos ϑ = −1/e: hyperbola for r equal to infinity.

The conditions above, which are deduced from the relation s = ζ3 (1 + e cos ϑ), suggest that the numerical error could
be amplified in the two cases of highly eccentric orbits near the apoapsis, and hyperbolic orbits near the asymptotes.

The rectilinear motion is characterized by vanishing angular momentum and transverse velocity s, because the velocity
is only radial. However, by computing s with Eq. (2.43) and substituting ζ3 with infinite, one would find that also s is
infinite. This contradiction is due to the fact that the independent variable σ can not be defined when the motion is
rectilinear.

2.1.3.2 Main advantages of the propagator

The mains characteristics of DROMO are:

• Unique formulation for the three types of orbits: elliptic, parabolic and hyperbolic. So, the singularity that appears in
the proximity of parabolic motion when different formulations are used for elliptic and hyperbolic orbits disappears.

• It adopts orbital elements as generalized coordinates (as the Lagrange’s planetary equations); as a consequence, the
truncation error vanishes in the unperturbed problem and is scaled by the perturbation itself in the perturbed one.
The method does not present singularities for small inclination and/or small eccentricities, unlike the Lagrange’s
planetary equations. The orbital plane attitude is determined by Euler parameters which are free of singularities.

• The implementation of Euler parameters gives easy auto-correction as well as robustness. The error propagation
shows better performances than in the cases of Cowell’s or Encke’s methods. Easy programming, since the compo-
nents of the perturbation forces in the orbital frame appear in the differential equations of motion. This makes easy
the employment of models proper of Orbital Dynamics.

• A precise and fast simulator is obtained by integrating DROMO differential equations with variable step routines
with effective step control, as Runge-Kutta-Fehlberg or Dormand-Prince types. However, routines with fixed step
does not reduce the performance. Multistep routines, like the classical one of Shampine and Gordon (1975, [71]),
are also possible. In fact, this kind of routines show excellent characteristics because, from a practical point of view,
keep the accuracy and reduce the number of function calls significantly.

• It is not necessary to solve Kepler’s equation in the elliptic case, nor the equivalent for hyperbolic and parabolic
cases, since time is one of the dependent variables determined by the method itself.

In what follows we describe some test problems which have been chosen to assess the performances of DROMO as orbit
propagator compared to other propagators used in astrodynamical problems, like for instance Cowell’s special perturbation
method.

2.2 Cowell’s method
The propagation of the orbit of a celestial body or a spacecraft involves the integration of the equations of motion

r̈ = − µ

r3
r + f (2.44)
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where r is the position vector of the satellite and f is the total perturbing acceleration, usually referred to as the perturbing
force. Cowell’s method1 (or Cowell’s formulation, Vallado, [83]) is a special perturbation method which provides a
numerical solution of this problem by integrating the following set of ordinary differential equations (ODE)

ẍ = −µ
x

r3
+ fx (t, x, y, z, ẋ, ẏ, ż) (2.45)

ÿ = −µ
y

r3
+ fy (t, x, y, z, ẋ, ẏ, ż) (2.46)

z̈ = −µ
z

r3
+ fz (t, x, y, z, ẋ, ẏ, ż) , (2.47)

r =
√

x2 + y2 + z2

where (x, y, z) are the cartesian coordinates of r in some frame (usually inertial). They are integrated from the initial
conditions at t = 0

x = x0 y = y0 z = z0 ẋ = ẋ0 ẏ = ẏ0 ż = ż0 . (2.48)

There is some confusion in the terminology regularly used when describing the numerical propagation of orbits. Some
authors talk about Cowell’s method as a special perturbation method; other authors talk about Cowell’s method as a set
of multistep algorithms especially designed for the direct integration of second-order differential equations. This situation
is probably due to a particular integration scheme called Störmer-Cowell method which, at present, is widely employed
for the propagation of orbits in many astrodynamical problems. In Störmer-Cowell method the equations of motion of
Cowell’s method (as special perturbation method) are integrated by the Störmer-Cowell formulas. Many people prefer
these methods for improved round-off error and ease of programming. But this is an open question and there is no general
agreement about the supremacy of any particular method relative to others.

The second-order differential equations (2.45) - (2.47) with initial conditions (2.48) can be integrated by reducing
them to a first-order system (which allows to choose in a broader class of integration methods); however, it seems more
natural to directly integrate Eqs. (2.45) - (2.48) without using first derivatives. This approach results in an increase in
efficiency (Ramos & Vigo-Aguiar, 2005, [68]) because it exploits special information about the differential equations. So,
we shall distinguish between double-integration methods that directly integrate the second-order differential equations
(2.45) - (2.48) and single-integration methods that integrate first-order differential equations.

Double-integration methods are generally more accurate than single-integration methods, because removing the veloc-
ity calculation reduces the round-off error. In addition, in the case of multi-step integration, double-integration methods
are more stable and only require one evaluation per step, so double-integration is faster than single-integration (Berry &
Healy, 2005, [13]).

Runge-Kutta-Nyström methods (RKN) are single-step double-integrations methods. These methods allow for an
easy stepsize control and are well suited for high accuracy requirements. The corresponding multi-step methods are the
explicit Störmer methods and the implicit Cowell methods, which are usually combined together in a predictor-corrector
construction as Störmer-Cowell methods (SC). Störmer-Cowell methods are known to obtain the maximum profit out
of Cowell’s formulation, and hence are the ones on which we will focus. Multi-step integrators can be implemented
following different formulations. For example they have both a non-summed and a summed form, depending on whether
a summation term is used in the derivation (2005, [13]; see Tab. 2.1). The summed form of Störmer-Cowell method is also
known as Gauss-Jackson integration, and is usually preferred since it manages to reduce the round-off error (Montenbruck,
[63]).

The formulation of Störmer-Cowell methods is easy for fixed-stepsize (see Tab. 2.1) and is most clearly expressed in
terms of backward differences of the backpoints, but backward differences require that the backpoints are equally spaced,
so the stepsize must remain constant (2005, [13]). However, it is advantageous for an integrator to be suitable for a variable
stepsize formulation, which is not easy in a multi-step method, since it becomes necessary to recompute the coefficients
via recurrences in order to avoid the evaluation of the two-fold integrals that define the coefficients. This is achieved
by using divided differences instead of backward differences, for divided differences do not require the backpoints to be

1The name is due to its discoverer P. H. Cowell in the early 20th century.
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Formulation Störmer methods Cowell methods

Non-summed rn+1 = 2rn − rn−1 + h2
k−1∑
j=0

δj∇jan rn+1 = 2rn − rn−1 + h2
k−1∑
j=0

δ∗j∇jan+1

Summed rn+1 = h2
k+1∑
j=0

δj∇j−2an rn+1 = h2
k+1∑
j=0

δ∗j∇j−2an+1

Table 2.1: Some of the different formulations for fixed-stepsize Störmer-Cowell methods (Berry, 2004,[12]).

equally spaced (2005, [68]; Berry, 2004, [12]). This yields the problem of stepsize control, which is usually solved by
taking the difference of correctors of different orders to estimate the local error at each step, and the size of the next step
is then adjusted based on the local error estimate to meet a given tolerance.

Orbit propagators that implement a Cowell’s formulation with a variable-stepsize Störmer-Cowell integration method
are believed to provide the best combination of performances in terms of accuracy and speed. However, the implemen-
tation of such codes is delicate and non-trivial, since Störmer-Cowell methods might be implemented following many
different algorithms, and there are several issues such as the stepsize control strategy or the starting procedure that are
very tricky and susceptible of different approaches that lead to different performances. In order to provide the most fair
comparison of propagators we decided to use a well-known, referenced and tested Störmer-Cowell method for performing
numerical comparisons. So, we used the code that Matthew M. Berry derived and kindly put freely available (2004, [12]),
where just slight adjustments were made to the code to extend the allowed maximum order of the method. The main
features of this code are the following:

• The method is variable-step with error control, so larger stepsizes can be taken when possible.

• The step size is controlled by estimating the local position error at each step.

• Only one evaluation is performed per step, for a Prediction-Evaluation-Correction (PEC) implementation, which
significantly reduces the run-time, and because order increases that require a constant step are not being considered,
fewer restrictions are placed on the stepsize control, while preserving the stability of the scheme.

• The method uses a variable-order implementation for initialization, so it is self-starting. However, it is not variable-
order beyond the initialization phase, because variable-order algorithms would require a second evaluation.

Notice that (unlike DROMO formulation) Cowell’s formulation integrated with Störmer-Cowell integrators just provides
the propagated position vector but not the velocity. If the velocity is also desired, then the Störmer-Cowell integrator must
be combined with an embedded Adams integrator, which usually slightly increases the number of integration steps, as the
stepsize required by Adams integrators might be more limiting than that required by Störmer-Cowell integrators.

2.3 Numerical comparisons
We compare DROMO characteristics as orbit propagator with the propagation scheme based on Cowell’s method by
using the Störmer-Cowell algorithms to integrate the equations. The comparison between these two high fidelity models
is performed by using:

1. the classical Example 2b of the famous book by Stiefel and Scheifele [75]; such an example has been exploited also
in other works (for example, in the book by Bond and Allman [22]);

2. an analytical solution which appears in the well known problem of Tsien: a satellite perturbed by a constant radial
thrust.
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2.3.1 Satellite perturbed by Moon and oblate Earth
For further evaluation of the quality of the methods, a scenario is introduced, in which a satellite about the Earth is
perturbed by two forces: the oblateness of the Earth and the gravitation of the Moon. The satellite flies along a highly
elliptical orbit with an eccentricity of approximately e = 0.95 and a perigee radius of 6800 kilometers. Thus, it moves
very fast at its perigee and in this region it is strongly perturbed by the oblateness of the Earth. At apogee the satellite is
subject to perturbations caused by the Moon, which are very significant due to its low velocity in this region.

2.3.1.1 Problem description

The initial conditions of the problem are given as coordinates and velocity components at the instant t0. They refer to the
cartesian coordinate system associated with the center of the Earth and have the values

r0 = (0.0, −5888.9727, −3400.0) km
v0 = (10.691338, 0.0, 0.0) km s−1 .

The span of the integration is equal to 288.12768941 days, which roughly describes 50 complete orbits. The perturbation
due to the Earth’s oblateness is defined by the J2-term, the Earth radius RE , and the Earth gravity constant µ which take
the values

J2 = 1.08265× 10−3 RE = 6371.22 km µ = 398601 km3s−1 .

The perturbations due to the Moon and the Earth’s oblateness are calculated as explained in the book of Stiefel and
Scheifele [75], p. 122. Hence, the acceleration of the Moon’s gravity acting on the satellite is defined through the relation

r̈ = GmL

(
rL − r
‖rL − r‖3

− rL

‖rL‖3

)

where rL is the lunar position vector, r is the satellite position vector and GmL is the lunar gravity constant which is
put equal to 4902.66 km3s−1. The position of the Moon is not provided by an ephemeris model, but by trigonometric
functions based on the time of the integration as follows

rL = rL

[
sin (ΩLt)x1 −

cos (ΩLt)
2

(√
3x2 + x3

)]

where the radius of the lunar orbit and the orbital angular velocity are given by

rL = 384400 km ΩL = 2.665315780887× 10−6 s−1 .

Originally this example was intended to show the performance of the regularization method presented by Stiefel
and Scheifele [75]. The two authors derived a set of elements linked to the parameters of the Kustaanheimo-Stiefel
regularization and completed this set by adding also a time-element ([75], § 18). They gave exact initial conditions
and reported precise results for different numbers of steps. It was shown that for a high number of steps, no further
improvement of the accuracy could be achieved. Hence, the final position obtained by Stiefel and Scheifele with their
method based on regular elements (which here is referred to as Stiefel-Scheifele) can be assumed very accurate and
thus serves as reference. Bond and Allman [22] referred to this example to compare regularization methods, such as
Kustaanheimo-Stiefel and Sperling-Burdet. In their work, the different methods were integrated with a stepsize-controlled
Runge-Kutta-Fehlberg algorithm of order 4/5, RKF 4(5). To establish equal conditions for each regularization method,
the integrator tolerance is tuned in such a way that the final position is reached with approximately the same number of
integration steps per orbit. Peláez et al. ([66], p. 147) added the results of the first version of DROMO, yielding the
values shown in Tab. (2.2). In this table all regularization methods use an RKF 4(5) and they reach the final position
with 62 steps per revolution. The error is computed as the magnitude of the vector given by the difference between the
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Method Stiefel-Scheifele Sperling-Burdet Kustaanheimo-Stiefel Cowell DROMO

X (km) -24219.050 -24218.818 -24219.002 -24182.152 -24219.279
Y (km) 227962.106 227961.915 227962.429 227943.989 227962.207
Z (km) 129753.442 129753.343 129753.822 129744.270 129753.492
Steps/rev. 500 62 62 240 62
Error (km) - 0.318 0.501 42.5 0.250

Table 2.2: Results for Stiefel & Scheifele’s Example 2b, as obtained in [66] (Peláez et al., 2007).
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Figure 2.2: Comparison between DROMO and Sperling-Burdet.

approximated and exact final positions of the satellite. The latest DROMO version, reformulated according to Baù et al.
(2011, [6]), and the Störmer-Cowell integrator will be compared using the described scenario.

Table (2.2) shows that DROMO and Sperling-Burdet methods provide similar accuracy. An additional comparison
between these two methods have been carried out in [66]. In that comparison the exact solution is not the one given
in the book [75]. Instead, the solution was recalculated two times using both propagators with the maximum accuracy;
the common part obtained in both calculations was taken as the exact solution. The computations were done: 1) in the
same computer (Intel Xeon 3056 MHz microprocessor, 2 Gb RAM), 2) with the same compiler (Intel C++ 8.1.022),
3) with the same integrating algorithm (Runge-Kutta-Fehlberg 7(8) of variable step-size), and 4) in the same computer
conditions (processor load, etc.). To minimize the effect of uncontrolled factors on the computational time, propagations
were repeated 30 times and the mean value of runtime was obtained.

Figure (2.2), taken from [66], shows the results of the comparison. The runtime is plotted in ordinates and the common
logarithm of the norm of the error vector (− log ‖-x‖) in abscissas. This last quantity is a measure of the quality of the
solution: it is approximately equal to the number of exact decimal digits of the solution plus one. The plot shows better
performances for DROMO, which seems to be quicker for the same precision, or equivalently, it seems to be more accurate
for identical computational time. These differences are mainly due to the lower order of DROMO (8 ODE) compared
with the Sperling-Burdet method (13 ODE). But there are other reasons also: in Sperling-Burdet the calculation of the
“second members” of the equations requires to process perturbation forces through numerical treatments of some length;
this also happens in similar methods based on regularization techniques as the Kustaanheimo-Stiefel regularization. In
DROMO however, forces hardly require manipulation. Note that the right-hand sides of Eqs. (2.35) - (2.41) only include
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their components in the orbital frame fx, fy and fz , which are obtained by simple scalar products

fx = i · f fy = j · f fz = k · f

where i, j and k are the unit vectors of the orbital frame R and are defined in Eqs. (2.2). Moreover, the simplicity of
programming, joined to the clearness and the elegance of the equations governing the evolution of the Euler parameters,
strengthens the conviction in the method advantages.

The comparison performed in Tab. (2.2) and other similar performed in other contexts (see Esteban-Dones & Peláez,
2010, [40] in the field of interplanetary trajectories) is not completely fair for Cowell’s method. The reasoning is as
follows: for any method, DROMO or Cowell’s method, it exists a numerical integrator that provides the best performances
of the method by achieving the required numerical accuracy after propagation over some specified simulation time. The
point is that these integrators need not be the same for the different methods considered. Thus, for each method, we should
select the numerical integrator that minimizes the CPU time needed to achieve the specified error.

2.3.1.2 A finer comparison of the propagators

The results of Tab. (2.2) arise from a comparison of different propagators, intended to highlight the achievable accuracy
when the steps per revolution ratio is held constant 2 and the integrator used is the same for all cases. This seems adequate
for an equitable comparison of propagators when the numerical integrator is the same but the method (i.e. the system of
ODE to be integrated) is not. However, if we wish to compare propagators using different integrators for each method, then
fixing the steps/revolution ratio does not seem fair anymore, since multi-step integrators take a single function evaluation
per step, whereas single-step integrators make several function calls per step. Thus, a better criteria for fairly comparing
propagators is one based on the computational cost, so, we prefer to compare the achievable accuracy for equal function
calls. This is measured by comparing the final error for each propagator when their tolerance is tuned so that the number
of function calls remains the same (372 calls), which more equitably quantifies the performance of the propagators. Table
(2.3) and Fig. (2.3) gather the main results of our tests.

A glance at Tab. (2.3) evidences very interesting results. We see that Cowell equations integrated with a Störmer-
Cowell integrator of order 5 (SC 5) and constrained to 372 function calls per orbit, provide a final error of 13.896 kilo-
meters. This level of accuracy is unachievable by a RKF 4(5) integrator unless we permit it to make up to 1440 function
calls per orbit, which involves a computational cost almost four times larger. The error in the final position for Cowell’s
formulation can though be reduced by the use of higher order integrators, as allowing the variable order Störmer-Cowell
integrator to increase its order up to 9 (SC 9), thus providing a much smaller final error of just 150 meters, but with a
slightly increased runtime 3. However, the best performance in Tab. (2.3) is shown by DROMO regularization, even when
integrated with a simple low-order RKF 4(5). In this condition, DROMO yields a final error of only 10 meters, with a
runtime that competes with that of SC 5, but with an error yet an order of magnitude smaller than that provided by the
SC 9 integrator. If the integration routine used with DROMO is updated to RKF 7(8) the error decreases until 2 meters,
practically two orders of magnitude smaller than that provided by the SC 9 integrator.

At this point we must remark that the results for DROMO gathered in Tab. (2.3), which show an improvement in
accuracy compared with the previous results of Tab. (2.2) taken from [66], are due in part to the use of improved Runge-
Kutta-Fehlberg routines, and mainly to a slight reformulation of DROMO equations introduced by Baù et al. (2011, [6]),
who proposed to substitute the original elements ζ1 and ζ2, which are defined by Eqs. (2.31), with the new elements

ζ̄1 = e cos (σ − ϑ) =
ζ1

ζ3
ζ̄2 = e sin (σ − ϑ) =

ζ2

ζ3
.

Hence, after observing that in terms of precision Cowell’s method can not compete against DROMO when using an
integrator of the same order, the question arises of what could be the increase in performance for DROMO when using

2Notice that the steps per revolution ratio was fixed to 62 for regularization methods, but for Cowell’s formulation had to be increased up to 240 if
comparable final errors were to be obtained.

3The increase in runtime is due to the overhead of calculating a larger table of divided differences, which becomes visible when function evaluations
are computationally cheap, as is the case.
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Method Cowell DROMO DROMO Cowell Cowell

Integrator RKF 4(5) RKF 4(5) RKF 7(8) Störmer-Cowell 5 Störmer-Cowell 9

X (km) -24210.188 -24219.049 -24219.050 -24232.184 -24219.183
Y (km) 227957.706 227962.097 227962.105 227966.173 227962.169
Z (km) 129751.208 129753.437 129753.441 129755.268 129753.473
Steps/rev. 240 62 29 372 372
Fcalls/rev. 1440 372 372 372 372
Runtime (s) 0.232 0.094 0.050 0.065 0.12
Error (km) 10.143 0.010 0.002 13.896 0.150

Table 2.3: Results for Stiefel & Scheifele’s Example 2b, employing DROMO newest formulation and Cowell’s method
integrated by RKF and Störmer-Cowell numerical integrators.
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Figure 2.3: Comparative results showing the “Run-Time” vs. “Final Error” relation for different propagators when used
in Stiefel & Scheifele’s Example 2b.

high-order integrators instead. For this purpose, several simulations were run within the scenario under consideration with
both DROMO and Cowell’s formulations and different high-order integrators, by sequentially tightening the integration
tolerance and plotting their performance in a “Run-Time” versus “Final Error” graphic (Fig. 2.3), which gives a clearer
insight of the overall performance of these propagators by directly relating their computational cost to the accuracy they
provide.

We easily find out that among the propagators tested the best performance is reached by DROMO and the variable
order (up to order 8) Shampine-Gordon integrator, which takes advantage of the higher efficiency of multistep integrators
as compared to high-order Runge-Kutta integrators. In fact, it can be observed that for a given run-time DROMO is more
accurate, or for a given accuracy DROMO is faster, thus concluding that for the current scenario of a highly perturbed
orbital motion, DROMO shows an outstanding performance when integrated with high order integrators, far beyond that
obtainable by Störmer-Cowell propagators.
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Figure 2.4: Effective potential Veff (red) and total energy
(blu) in the asymptotic case ε = 1.
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Figure 2.5: Satellite trajectory in the asymptotic case ε = 1.

2.3.2 The Tsien problem
A satellite in a circular orbit of radius R0, with a circular velocity R0ω0, being ω0 =

√
µ/R3

0, is acted upon by a constant
radial thrust f = ari starting at t0 = 0. Depending of the intensity of the radial thrust ar two bahaviors can be detected.
If ar is greater than a critical value, then a non-Keplerian escape trajectory takes place; otherwise, the radial motion of
the satellite keeps bounded.

2.3.2.1 Classical analysis

The forces are central; therefore the angular momentum is constant and the trajectory is a plane curve

h = r× v = r0 × v0 = R2
0ω0k .

Let (r, θ) be the polar coordinates inside the orbital plane. The law of areas takes the form

r2θ̇ = h where h = R2
0ω0 . (2.49)

The whole forces acting upon the satellite are conservative and they derive from the potential energy

V (r) = −µ

r
− arr ,

as a consequence, the total energy is conserved

1
2
v2 + V (r) = H where H =

1
2
v2
0 −

µ

R0
− arR0 .

We introduce the following non-dimensional variables

u =
r

R0
τ = tω0 ε = 8

ar

R0ω2
0

.
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The energy equation governs the motion of the radius vector, and by exploiting the law of areas to properly express the
magnitude of the velocity v, after some manipulations we have

du

dτ
= ±

√
2H̃ − Veff (u)

where the effective potential Veff and the total energy H̃ , both non-dimensional, are given by

Veff (u) =
1
u2
− 2

u
− ε

4
u H̃ = −1

2

(
1 +

ε

4

)
.

The solution is obtained by the following quadrature

τ = ±
ˆ u

1

dς√
2H̃ − Veff (ς)

(2.50)

and the motion takes place in regions where
2H̃ − Veff > 0 .

Depending on the value of ε, two different behaviors appear:

1. ε < 1 the thrust is small and the motion is bounded by two concentric circles;

2. ε > 1 the thrust is large and the motion is unbounded. In particular, the escape velocity is reached after a while (see
details in Battin [5]).

2.3.2.2 Test solution

There is an asymptotic motion which separates these two different behaviors; it appears for ε = 1. In such a case the
energy line is tangent to the graphic of the effective potential, as shown in Fig. (2.4) in a relative maximum which takes
place in u = 2. In this particular case, Eq. (2.50) provides the following solution

τ =
ˆ u

1

2dς

(2− ς)
√

ς − 1
⇒ τ = 4 ln

(
1 +

√
u− 1

1−
√

u− 1

)
− 4
√

u− 1 (2.51)

Notice that the motion is tending to a circular orbit along a circumference of radius 2R0 (see Fig. 2.5).
The numerical obtaining of this analytical solution is not easy. In effect, the errors accumulated in the calculation

prevent the numerical solution to reach the asymptotic behavior for moderately large values of the time τ . These errors
move the energy line which is no longer tangent to the graphic of the effective potential and either 1) the satellite descends
towards the starting circle or 2) it escapes from the attractive body. Thus, and due to its well defined analytical solution,
the Tsien problem is an excellent tool to compare performances of different propagators and integrators.

The goal is to compare special perturbation methods DROMO and Störmer-Cowell in terms of the accuracy and the
computational time associated with the numerical description of the solution given in (2.51). In order to obtain the best
possible performance with both DROMO and Störmer-Cowell propagators, they are arranged and simplified as much as
possible for solving the Tsien problem.

The governing equations of Cowell’s method for the problem under consideration take the form, in non-dimensional
variables

d2ξ

dτ2
= − ξ

ρ3

(
1− ε

8
ρ2

)

d2η

dτ2
= − η

ρ3

(
1− ε

8
ρ2

)

ρ =
√

ξ2 + η2
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where ξ and η are cartesian coordinates, and they are integrated from the initial conditions at time τ0 = 0

ξ = 1 η = 0 ξ̇ = 0 η̇ = 1 .

In the case of DROMO, it is not necessary to calculate the perturbations in the inertial reference frame but they can
directly be expressed in the components of the orbital frame. Hence, a purely radial thrust results in fx = εR0ω2

0/8,
fy = 0 and fz = 0. Since the orbital plane remains constant during the motion, the Euler parameters (q10, q20, q30, q40)
are unchanged and the unit vectors (i0, j0) and (u1, u2) are fixed in the inertial space. Only the physical time and the first
two elements (τ, ζ1, ζ2) change their values with the independent variable σ. From the total number of eight equations
(2.35) - (2.41) of DROMO only three are necessary, namely those of (τ, ζ1, ζ2). The initial conditions at σ0 = 0 are

τ = 0 ζ1 = 0 ζ2 = 0 ζ3 = 1 ,

but ζ3 does not have to be integrated since it remains constant. The translation from the DROMO elements to the Cowell
coordinates are given by

ξ =
1

ζ3s
cos σ

dξ

dτ
= −ζ3 (ζ2 + sinσ)

η =
1

ζ3s
sinσ

dη

dτ
= ζ3 (ζ1 + cos σ) .

The asymptotic orbit, which should be calculated numerically, is very unstable and it can be assumed that any prop-
agator will only be able to obtain a stable solution for a few orbits. It is clear that a more accurate integration scheme
permits to describe the asymptotic orbit during a longer time. In the sequel the stability of the presented methods and the
computational cost will be analyzed and compared.

2.3.2.3 Stability

A suitable measure to evaluate the performance of the presented propagators is to calculate the number of orbits until the
numerical solution starts to deviate from the asymptotic orbit. A deviation is considered, when the relative error of the
numerically computed position is larger than a threshold. The current orbital radius r is compared with the radius of the
asymptotic orbit 2R0 according to the condition

|2R0 − r|
2R0

< 10−3 .

To allow for a fair comparison, integrators of the same order are applied to DROMO and Störmer-Cowell formulations.
For DROMO, the integrators of the Runge-Kutta-Fehlberg family have proven to be very efficient and accurate. These
schemes (Press et al., [67]; Fehlberg, 1968, [42]) of order 5 to 8 are compared to Störmer-Cowell implementations (2004,
[12]) of equal maximum order. In addition, integrators of the multistep method of Shampine and Gordon (1975, [71]; DE
5-8) are tested and compared to Störmer-Cowell, too. The implementations of Störmer-Cowell and DE integrators are
modified to obtain a fixed order version to be compared with RKF integrators.

Figure (2.6) shows the number of stable orbits based on the initially given relative tolerance of the integrators. It
is evident that DROMO in combination with RKF integrators has a better stability than Störmer-Cowell. However, the
runtime of DROMO is higher than that of Störmer-Cowell for the same order. This drawback can in part be accounted for
by using the DE integrator, which is faster but less accurate for DROMO.

2.3.2.4 Computational cost

In order to evaluate the computational cost of the different methods under equal conditions, the integrators have to be
tuned to a similar performance. Therefore a common integration range and accuracy is chosen for them. According to
Fig. (2.6), all integrators can be stable for up to 4 orbital revolutions. For fair comparison, the relative errors are chosen in
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Figure 2.6: Comparison of method stability versus relative tolerance.

such a way that the integrators are stable only within that specified range. DROMO RKF 7(8) and RKF 6(7) can achieve
this with εrel = 10−11 while the equal order Störmer-Cowell propagators need a tighter tolerance of εrel = 10−14. The
results show comparison only of integrators of order 7 and 8 because, for both methods, they perform significantly better
in terms of runtime. The evaluation is performed 100 times and Tab. (2.4) reports the mean runtime, the number of steps
and the function calls. It indicates similar processing time for DROMO RKF and Störmer-Cowell of the same order even
though the number of function calls of DROMO is higher. This is due to the specific characteristics of the Tsien problem.
The higher number of function calls in DROMO does not influence the runtime significantly, because the calculation of
the perturbations is not very costly. In Störmer-Cowell method the runtime is affected by the necessity of recalculating
the coefficients for each integration step. Using DROMO formulation in combination with the multistep DE integrator
requires less function calls. For these integrators the runtime are not shown because they are implemented in a different
programming environment.

2.3.3 Final considerations
From our analysis some conclusions can be drawn.

• In terms of accuracy DROMO with the Runge-Kutta-Fehlberg routine RKF 7(8) turn out to be the best combination
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Method DROMO DROMO DROMO DROMO Cowell Cowell

Integrator RKF 7(8) RKF 6(7) DE 8 DE 7 SC 8 SC 7

Rel. tolerance 10−11 10−11 10−11 10−12 10−14 10−14

Runtime (s) 0.21 0.47 - - 0.24 0.24
Function calls 2004 3372 1113 1623 439 536
Number of steps 154 338 - - 431 529

Table 2.4: Runtime comparison for 4 complete orbits.

since they provide a longer and more stable description of the asymptotic orbit (in the Tsien problem) and a much
more accurate answer (in the Example 2b of [75]).

• In terms of function calls Störmer-Cowell, in some cases, but not always, turns out to be the best formulation since
it provides the lowest number of calls to the derivative functions.

Notice in the upper picture of Fig. (2.6) that DROMO + RKF 7(8) is able to describe almost 6 times the asymptotic orbit
and SC 8 only 4 with a very tight tolerance. That is, DROMO + RKF 7(8) reaches levels of accuracy unachievable for other
propagators. Due to the plus of accuracy provided by the DROMO formulation, this scheme is the most appropriated for
the propagation of orbits when a high-fidelity description of the trajectory is mandatory. This plus of accuracy, however,
has a cost: the higher number of function calls due to the Runge-Kutta-Fehlberg routine used to perform the integration.

From a global point of view, the combination of DROMO with the multistep method of Shampine and Gordon [71]
(DE) has excellent characteristics because: 1) the accuracy worsens in a small amount, relative to the accuracy provided
by the combination DROMO + RKF 7(8), and 2) the number of function calls reduces in a significant way (see Figs. 2.3
and 2.6). Regarding this last point, it should be noticed that the Störmer-Cowell formulas require one function call per
step, and the multistep method of Shampine and Gordon [71] (DE) requires two function calls per step due to the second
evaluation that takes place in the correction part of the algorithm.

The runtime is not a reliable parameter because: 1) is influenced by the MATLAB environment in which most of
the calculations have been made, and 2) the simplicity of the derivatives in the problems exploited to test the different
schemes leads to an almost zero computational cost which can not be extrapolated to the propagation of real orbits.

We desire to conclude this section focusing the attention of the reader to the possibility of improving the numerical
behavior of DROMO. Look at Fig. (2.7) which compares DROMO and the very efficient Stiefel-Scheifele method for
the Example 2b in [75], which was addressed in section (2.3.1). Two performance indicators are taken into account: the
number of steps per revolution (in the picture above), and the root sum square of the error on the position vector at the
end of the propagation (in the picture below). Both these quantities are plotted in function of the relative tolerance of
the Runge-Kutta algorithm of fourth order with Cash-Karp parameters that was employed as numerical integrator of the
differential equations of motion. It is evident that for the same number of steps per revolution, Stiefel-Scheifele is more
accurate than DROMO. Indeed, the method of Stiefel and Scheifele along with other similar formulations, derived from
the application of the variation of parameters technique to the Kustaanheimo and Stiefel regularization, are still nowadays
the most accurate and fast propagators (Arakida, 2001, [3]). Motivated by this challenge of competing or even beating
the best regularized sets of elements based on the KS scheme, and driven by the deep comprehension of DROMO key
concept, we developed a new regularization method devoted to closed orbits, which is presented in section (2.5).

2.4 Numerical error propagation in DROMO
The error propagation in the solutions of any system of nonlinear differential equations, when used in conjunction with a
numerical integrator, is related to the local stability of the system. A criterion for local stability is that the solution of the
linearized system of differential equations should be stable. Bond (1982, [21]) shows that, for the unperturbed two-body
problem, Cowell, Encke, and Encke’s formulation with an independent variable different from time, all have a real positive
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Figure 2.7: Steps per revolution and RSS of the position error in function of the relative tolerance of the RK 4(5) for
Stiefel-Scheifele and DROMO.

eigenvalue which causes an amplification of the error in the solution. In contrast, an element formulation is numerically
stable. We follow the procedure outlined by Bond [21], and taken from the book of Shampine and Gordon [70], to present
the error propagation in Peláez’s special perturbation method (2007, [66]) in the case of perturbed two-body motion.
The state transition matrix of the linearized system is first derived and then employed in order to analytically predict the
numerical error.

2.4.1 Linearization
The special perturbation method developed by Peláez in 2006 [66], named DROMO, consists of a non-autonomous system
of differential equations of the first order on a manifold D ⊂ R8

dx
dσ

= F (x, σ) , F = (F1, . . . , F8) : D → R8 , (2.52)

where σ is the independent variable, x is a point in the configuration space of the system

x = (τ, ζ1, ζ2, ζ3, q10, q20, q30, q40) , (2.53)

and F is the vector field

F1 =
1

ζ3s2
(2.54)

F2 =
1

ζ3s2

[
ax sinσ +

(
1 +

ζ3

s

)
ay cos σ

]
(2.55)

F3 =
1

ζ3s2

[
−ax cos σ +

(
1 +

ζ3

s

)
ay sin σ

]
(2.56)

F4 = − 1
s3

ay (2.57)
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F5 =
az

2ζ3s3
[q40 cos (σ − σ0)− q30 sin (σ − σ0)] (2.58)

F6 =
az

2ζ3s3
[q30 cos (σ − σ0) + q40 sin (σ − σ0)] (2.59)

F7 = − az

2ζ3s3
[q20 cos (σ − σ0)− q10 sin (σ − σ0)] (2.60)

F8 = − az

2ζ3s3
[q10 cos (σ − σ0) + q20 sin (σ − σ0)] (2.61)

wherein s = ζ3 + ζ1 cos σ + ζ2 sinσ.
If F (x, σ), with x ∈ D and σ ∈ R, is continuous, and, with respect to x, continuously differentiable, then, according

to Cauchy theorem, for any x̃ ∈ D and σ0 ∈ R, there is a neighborhood U of x̃ and an interval S around σ0 such that for
all x0 ∈ U there is precisely one curve x (x0, σ0, σ), with σ ∈ S, that fulfills the following conditions:

(i)
∂

∂σ
x (x0, σ0, σ) = F (x (x0, σ0, σ) , σ)

(ii) x (x0, σ0, σ = σ0) = x0

(iii) x (x0, σ0, σ) has continuous derivatives in x0, σ0, σ.

Let F (x, σ) be of class C1 on D, and let x (σ) and xref (σ) be two solutions of Eq. (2.52) having initial conditions
x0 and xref,0 respectively such that x0 ∈ V (xref,0), where V ⊂ D is a sufficiently small neighborhood of xref,0. Let
p (σ) = x (σ)− xref (σ) be the propagation error, then, from Eq. (2.52), we have

dp (σ)
dσ

= F (xref (σ) + p (σ) , σ)− F (xref (σ) , σ) .

Expanding the right-hand side in a Taylor series about the solution xref (σ), yields the linear, homogeneous, and non-
autonomous differential equation

dp (σ)
dσ

= G (xref (σ) , σ)p (σ) (2.62)

where G (xref (σ) , σ) is the Jacobian matrix of F (x, σ) calculated in xref (σ)

Gmn =
∂Fm

∂xn
(x = xref (σ) , σ) .

2.4.2 Gradient matrix
Equations (2.52), with x and F defined in Eqs. (2.53) and (2.54) - (2.61), are integrated to propagate the orbit of a point
mass around a primary body of attraction. The meaning of the variables contained in x is here explained:

τ is the physical time (dimensionless)
(ζ1, ζ2, ζ3)

T = ζ define the shape of the orbit

(q10, q20, q30, q40)
T = q0 define the inertial orientation of the orbit.

In the vector field the quantities ax, ay and az appear. They are the components of the non-dimensional perturbing
acceleration vector expressed in the orbital frame R = 〈i, j, k〉, introduced by Eqs. (2.2).

In the hypothesis that
dax

dσ
= 0,

day

dσ
= 0,

daz

dσ
= 0 ,
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the elements of the gradient matrix G take the expressions

1st raw:
dτ

dσ
= F1

G11, ..., 18 = − 2
ζ3s3

{
0, cos σ, sin σ, 1 +

s

2ζ3
, 0, 0, 0, 0

}

2nd raw:
dζ1

dσ
= F2

G21 = 0

G22 = −cos σ

s

(
2F2 +

ay

s3
cos σ

)
(2.63)

G23 = − sinσ

s

(
2F2 +

ay

s3
cos σ

)
(2.64)

G24 = − 1
ζ3s

[
(s + 2ζ3) F2 −

(
s− ζ3

s3

)
ay cos σ

]
(2.65)

G25, ..., 28 = {0, 0, 0, 0}

3rd raw:
dζ2

dσ
= F3

G31 = 0

G32 = −cos σ

s

(
2F3 +

ay

s3
sin σ

)
(2.66)

G33 = − sinσ

s

(
2F3 +

ay

s3
sin σ

)
(2.67)

G34 = − 1
ζ3s

[
(s + 2ζ3) F3 −

(
s− ζ3

s3

)
ay sinσ

]
(2.68)

G35, ..., 38 = {0, 0, 0, 0}

4th raw:
dζ3

dσ
= F4

G41, ..., 48 =
3ay

s4
{0, cos σ, sinσ, 1, 0, 0, 0, 0} (2.69)

5th raw:
dq10

dσ
= F5

G51, ..., 54 = −3F5

s

{
0, cos σ, sinσ, 1 +

s

3ζ3

}
(2.70)

G55, ..., 58 =
az

2ζ3s3
{0, 0, − sin (σ − σ0) , cos (σ − σ0)} (2.71)

6th raw:
dq20

dσ
= F6

G61, ..., 64 = −3F6

s

{
0, cos σ, sinσ, 1 +

s

3ζ3

}
(2.72)

G65, ..., 68 =
az

2ζ3s3
{0, 0, cos (σ − σ0) , sin (σ − σ0)} (2.73)

7th raw:
dq30

dσ
= F7

G71, ..., 74 = −3F7

s

{
0, cos σ, sinσ, 1 +

s

3ζ3

}
(2.74)

G75, ..., 78 =
az

2ζ3s3
{sin (σ − σ0) , − cos (σ − σ0) , 0, 0} (2.75)
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> 0 < 0

ax Stable Stable
ay Asymptotically Stable Instable
az Stable Stable

Table 2.5: Stability of DROMO.

8th raw:
dq40

dσ
= F8

G81, ..., 84 = −3F8

s

{
0, cos σ, sin σ, 1 +

s

3ζ3

}
(2.76)

G85, ..., 88 =
az

2ζ3s3
{− cos (σ − σ0) , − sin (σ − σ0) , 0, 0} . (2.77)

Note that in the previous relations the subscript ref was omitted from ζ1, ζ2 and ζ3 (where ζ1 and ζ2 are hidden inside s).

2.4.3 Local stability
The determination of the eigenvalues of the linearized system in Eq. (2.62) is necessary for stability analysis. We assume
that the solution p (σ) with the initial condition p (σn) = pn is defined in a small interval S = [σn, σn+1], n ≥ 0 such
that the gradient matrix can be considered constant in S and the differential equation of the propagation error becomes
autonomous

dp
dσ

= G (xref (σn) , σn)p . (2.78)

Noting that the physical time τ does not explicitly appear in the vector field F (x, σ), and the error of τ depends on the
errors affecting ζ1, ζ2 and ζ3, we consider the reduced 7 × 7 matrix Gr, which is obtained from G by removing the first
raw and the first column, and the linear system

dp
dσ

= Grp , (2.79)

where p does not contain the propagation error of τ . The eigenvalues of Gr are calculated by forming the characteristic
polynomial

det (Gr − λI) = 0

where I is the identity matrix, and result

λ1 = 0 λ2, 3 = ± i
az

2ζ3s3
λ4, 5 = ± i

az

√
sin (2-σ)
2ζ3s3

λ6, 7 =
ay

ζ3s3

(
−1± i

√
2
)

where i is the imaginary unit and -σ = σn − σ0. Table (2.5) shows the stability regions defined by the sign of the
acceleration components: the solution of Eq. (2.78) is unstable only if the real part of the eigenvalues λ6, 7 is positive.
This situation occurs when ay is opposed to the transverse velocity (for instance because of the atmospheric drag).

The effect of the instability is related to the coefficient

α =
ay

ζ3s3
. (2.80)

The non-dimensional quantities ay , ζ3, and s may be written as follows

ay =
R2

0

µ
fy ζ3 =

√
µR0

h
s =

√
µR0

h
(1 + e cos ϑ) (2.81)
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Figure 2.8: Amplification factor of the instability in DROMO for a circular orbit. The radius is chosen in the range
[RE + 150 km, rGEO], where RE is the Earth radius, and rGEO is the radius of a geostationary orbit.

where R0 is equal to the orbital radius at σ = σ0, fy is the dimensional acceleration along the transverse direction j, h is
the angular momentum per unit mass, e is the eccentricity and ϑ is the true anomaly. By plugging Eqs. (2.81) into Eq.
(2.80), and exploiting the relation for the orbital radius r = h2/ [µ (1 + e cos ϑ)], we get

α =
(

fy

ag

)
1

1 + e cos ϑ
, ag =

µ

r2
(2.82)

where ag is the acceleration due to the main term of the gravity field of the central body. The equation shows a quadratic
dependence of α on the orbital radius r through the acceleration ag . For a circular orbit (e = 0) it results α = fy/ag , and
the scaling factor 1/ag of the perturbing term fy is plotted in logarithmic scale in Fig. (2.8) as a function of r.

2.4.4 State transition matrix
The linear system in Eq. (2.79) can be solved explicitly. The solution that fulfills the initial condition p (σn) = pn is

p (σ) = Ψ (σ, σn)pn , σ ∈ [σn, σn+1] ,

with the state transition matrix given by

Ψ (σ, σn) = exp [(σ − σn) Gr] .

The structure of the matrix Gr

Gr =
(

Gζ 0
Gζq Gq

)

where 0 is a 3× 4 null matrix, allows to separately solve the two subsystems

dpζ

dσ
= Gζpζ (2.83)

dpq

dσ
= Gζqpζ + Gqpq (2.84)
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where we have split the propagation error p into two vectors pζ = (δζ1, δζ2, δζ3)
T and pq = (δq10, δq20, δq30, δq40)

T.
Let us introduce for convenience the auxiliary quantities

η =
s

ζ3
η̃ =

ζ3

s
,

and employ the variable ξ, where ξ = σ − σn.

2.4.4.1 First system

The elements of the the gradient matrix Gζ

Gζ =




G22 G23 G24

G32 G33 G34

G42 G43 G44





are reported in Eqs. (2.63) - (2.65), (2.66) - (2.68) and (2.69), and depend only on the planar components of the accelera-
tion, namely ax and ay . This matrix admits three distinct eigenvalues

λ1 = 0 λ2 =
ay

ζ3s3

(
−1 + i

√
2
)

λ3 =
ay

ζ3s3

(
−1− i

√
2
)

.

Thus, a fundamental matrix solution of the system in Eq. (2.83), written by columns, takes the form

Φζ (ξ) =
[
eλ1ξu1, Re

(
eλ2ξu2

)
, Im

(
eλ2ξu2

)]

where ξ = σ − σn, and u1 and u2 are the eigenvectors of respectively λ1 and λ2

u1 =




− sinσn

cos σn

0



 u2 =




− cos σn − η/3 + iη

√
2/3 (cos σn + axy sinσn)

− sin σn − η/3 + iη
√

2/3 (sinσn − axy cos σn)
1





with axy = ax/ay . The state transition matrix with the initial condition pζ (σn) = pζ,n is calculated by the matrix
product

Ψζ (ξ, 0) = Φζ (ξ) Φ−1
ζ (0) , (2.85)

and its elements are expressed as

Ψζ,11 = e−αξ
[
b2 cos

(√
2αξ

)
− c2 sin

(√
2αξ

)]
cos σn + b1 sin σn

Ψζ,21 = e−αξ
[
b1 cos

(√
2αξ

)
− c1 sin

(√
2αξ

)]
cos σn − b1 cos σn

Ψζ,31 =
3√
2
η̃e−αξ cos σn sin

(√
2αξ

)

Ψζ,12 = e−αξ
[
b2 cos

(√
2αξ

)
− c2 sin

(√
2αξ

)]
sinσn − b2 sin σn

Ψζ,22 = e−αξ
[
b1 cos

(√
2αξ

)
− c1 sin

(√
2αξ

)]
sinσn + b2 cos σn

Ψζ,32 =
3√
2
η̃e−αξ sin σn sin

(√
2αξ

)

Ψζ,13 = e−αξ
[
axy sinσn cos

(√
2αξ

)
− c3 sin

(√
2αξ

)]
− axy sinσn

Ψζ,23 = −e−αξ
[
axy cos σn cos

(√
2αξ

)
+ c4 sin

(√
2αξ

)]
+ axy cos σn

Ψζ,33 = e−αξ
[
cos

(√
2αξ

)
+ b3 sin

(√
2αξ

)]

(2.86)



54 CHAPTER 2. NEW TWO-BODY REGULARIZATIONS BASED ON QUATERNIONS

where

b1 = sinσn − axy cos σn

b2 = cos σn + axy sinσn

b3 = (1 + 3η̃) /
√

2

c1 = [(3η̃ + 1) sinσn − axy cos σn] /
√

2

c2 = [(3η̃ + 1) cos σn + axy sin σn] /
√

2

c3 = [(2 + η + 3η̃) cos σn + axy (1 + η) sinσn] /
√

2

c4 = [(2 + η + 3η̃) sinσn − axy (1 + η) cos σn] /
√

2

are constants. Finally, the solution of Eq. (2.83) is determined by means of the state transition matrix Ψζ just obtained

pζ (σ) = Ψζ (σ, σn)pζ,n , σ ∈ [σn, σn+1] . (2.87)

2.4.4.2 Second system

Let us consider the homogeneous system associated to Eq. (2.84)

dpq

dσ
= Gqpq . (2.88)

The matrix Gq is constituted by the elements

Gq =





G55 G56 G57 G58

G65 G66 G67 G68

G75 G76 G77 G78

G85 G86 G87 G88





which are reported in Eqs. (2.71), (2.73), (2.75) and (2.77), and its eigenvalues are

λ1 = +i
az

2ζ3s3
λ2 = −i

az

2ζ3s3
,

each one with multiplicity 2. Two independent eigenvectors u(1)
1 and u(2)

1 exist for λ1 (the same is true for λ2)

u(1)
1 =





i sin-σn

−i cos-σn

1
0



 u(2)
1 =





−i cos-σn

−i sin-σn

0
1





where-σn = σn − σ0. A fundamental matrix solution of the system in Eq. (2.88) is

Φq (ξ) =
[
Re

(
eλ1ξu(1)

1

)
, Im

(
eλ1ξu(1)

1

)
, Re

(
eλ1ξu(2)

1

)
, Im

(
eλ1ξu(2)

1

)]
, (2.89)

and the state transition matrix, for the initial condition pq (σn) = pq,n, is calculated through Φq, like in Eq. (2.85). It
results

Ψq (ξ, 0) = I cos (βξ) + E sin (βξ) (2.90)

where
β =

az

2ζ3s3
, (2.91)



2.4. NUMERICAL ERROR PROPAGATION IN DROMO 55

I is the 4× 4 identity matrix, and E is the constant matrix

E =
1
β

Gq =





0 0 − sin-σn cos-σn

0 0 cos-σn sin-σn

sin-σn − cos-σn 0 0
− cos-σn − sin-σn 0 0



 .

We can treat now the non-homogeneous system in Eq. (2.84). The solution that satisfies the initial condition pq (σn) =
pq,n is provided by the variation of parameter formula

pq (σ) = Φq (σ)
ˆ σ

σn

Φ−1
q (l)Gζqpζ (l) dl + Ψq (σ, σn)pq,n , σ ∈ [σn, σn+1] , (2.92)

where Φ−1
q is the inverse matrix of Φq given in Eq. (2.89) and Gζq is the constant matrix

Gζq =





G52 G53 G54

G62 G63 G64

G72 G73 G74

G82 G83 G84



 ,

which is defined in Eqs. (2.70), (2.72), (2.74) and (2.76). Plugging Eq. (2.87) into Eq. (2.92) and taking out pζ,n from
the integral sign, yields a more compact and meaningful form of Eq. (2.92)

pq (σ) = Ψζq (σ, σn)pζ,n + Ψq (σ, σn)pq,n , σ ∈ [σn, σn+1] , (2.93)

where
Ψζq (σ, σn) = Φq (σ)

ˆ σ

σn

Φ−1
q (l) GζqΨζ (l, σn) dl

may be regarded as the coupling state transition matrix between pq (σ) and pζ,n. After solving the integral, this matrix
takes the final form

1st column of Ψζq (ξ, 0):

− 3
p1

β

s
cos σn

{
e−αξ

[
d2 sin

(√
2αξ

)
− d3 cos

(√
2αξ

)]
+ d3 cos (βξ)− d4 sin (βξ)

}
(2.94)

2nd column of Ψζq (ξ, 0):

− 3
p1

β

s
sinσn

{
e−αξ

[
d2 sin

(√
2αξ

)
− d3 cos

(√
2αξ

)]
+ d3 cos (βξ)− d4 sin (βξ)

}
(2.95)

3rd column of Ψζq (ξ, 0):

− 1
p1

β

ζ3s

{
e−αξ

[√
2d5 sin

(√
2αξ

)
− d6 cos

(√
2αξ

)]
+ d6 cos (βξ)− d7 sin (βξ)

}
(2.96)

where

p1 = 9α4 − 2α2β2 + β4

d2 =
√

2α
[
2αβq0 +

(
3α2 − β2

)
Fq

]

d3 = β
(
β2 − α2

)
q0 + α

(
β2 + 3α2

)
Fq

d4 = α
(
β2 + 3α2

)
q0 + β

(
α2 − β2

)
Fq

d5 =
{
β

[
α2 (6ζ3 + s) + β2s

]}
q0 +

{
3α

[
α2 (3ζ3 + 2s)− β2ζ3

]}
Fq

d6 =
{
β

[
β2 (3ζ3 + s)− α2 (3ζ3 + 5s)

]}
q0 +

{
3α

[
β2 (ζ3 + s) + α2 (3ζ3 − s)

]}
Fq

d7 =
{
3α

[
β2 (ζ3 + s) + α2 (3ζ3 − s)

]}
q0 −

{
β

[
β2 (3ζ3 + s)− α2 (3ζ3 + 5s)

]}
Fq
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are constants and

q0 = (q10, q20, q30, q40)
T

Fq =
1
β

(F5, F6, F7, F8)
T .

Equations (2.87) and (2.93) suggest the structure of the state transition matrix Ψ of the system in Eq. (2.79)

Ψ (σ, σn) =
(

Ψζ (σ, σn) 0
Ψζq (σ, σn) Ψq (σ, σn)

)

where 0 is a 3× 4 null matrix, and Ψζ , Ψq and Ψζq are defined in Eqs. (2.86), (2.90) and (2.94) - (2.96).
It remains to valuate the propagation error of the physical time. From Eq. (2.78) we get

δτ (σ) = − 2
ζ3s3

ˆ σ

σn

[
δζ1 (l) cos σn + δζ2 (l) sinσn +

(
1 +

s

2ζ3

)
δζ3 (l)

]
dl + (δτ)n , σ ∈ [σn, σn+1] , (2.97)

where (δτ)n = δτ (σn) and δζ1, δζ2 and δζ3 are determined by Eq. (2.87).

2.4.5 Single-axis accelerations
We study now the three cases where the acceleration vector is oriented along one axis of the orbital reference frame.

2.4.5.1 Radial direction

Let the acceleration vector be oriented along the i-axis

a = (ax, 0, 0)T

where ax is non-dimensional and constant. Only ζ1 and ζ2 are influenced by ax, as shown in Eqs. (2.55) and (2.56), being
the other integration variables in x constant. Unfortunately, the state transition matrix Ψζ in Eqs. (2.86) is singular when
ay = 0, so, we proceed by integrating the differential equation

dpζ,12

dσ
= Gζ,12pζ,12 (2.98)

in order to determine the propagation errors pζ,12 = (δζ1, δζ2)
T, where

Gζ,12 =
ax

ζ3s3

(
− sin 2σn −2 sin2 σn

2 cos2 σn sin 2σn

)
.

The solutions of Eq. (2.98) with the initial data (δζ1)n and (δζ2)n are given by

δζ1 (ξ) = −
2ax (δζ12)n sin σn

ζ3s3
ξ + (δζ1)n

δζ2 (ξ) =
2ax (δζ12)n cos σn

ζ3s3
ξ + (δζ2)n

(2.99)

where
(δζ12)n = (δζ1)n cos σn + (δζ2)n sin σn . (2.100)

Equations (2.99) describe a linear variation of δζ1 (σ) and δζ2 (σ) for σ ∈ [σn, σn+1]. They are plugged into Eq. (2.97)
to get the propagation error of the time

δτ (ξ) = −
2 (δζ12)n

ζ3s3
ξ + (δτ)n

which has a linear evolution with ξ and not parabolic as one might expect.
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2.4.5.2 Transverse direction

Let the acceleration vector be oriented along the j-axis

a = (0, ay, 0)T

where ay is non-dimensional and constant. The transverse acceleration affects the quantities ζ1, ζ2 and ζ3, as one can infer
from Eqs. (2.55) - (2.57), and the propagation errors vary according to Eq. (2.87), wherein pζ,n has the three components
(δζ1)n, (δζ2)n and (δζ3)n, as follows

δζ1 (ξ) = e−αξ

[
(δζ12)n cos

(√
2αξ

)
− d1√

2
sin

(√
2αξ

)]
cos σn + (δu)n sinσn (2.101)

δζ2 (ξ) = e−αξ

[
(δζ12)n cos

(√
2αξ

)
− d1√

2
sin

(√
2αξ

)]
sinσn − (δu)n cos σn (2.102)

δζ3 (ξ) = e−αξ

[
(δζ12)n cos

(√
2αξ

)
+

d2√
2

sin
(√

2αξ
)]

(2.103)

where (δζ12)n was introduced in (2.100), α is defined in Eq. (2.80), and

d1 = [3η̃ + 1] (δs)n + [η + 1] (δζ3)n

d2 = 3η̃ (δs)n + (δζ3)n

(δs)n = (δζ3)n + (δζ1)n cos σn + (δζ2)n sinσn

(δu)n = (δζ1)n sinσn − (δζ2)n cos σn .

Finally, by applying Eqs. (2.101) - (2.103) to Eq. (2.97), and solving the integral, the error δτ results

δτ (ξ) =
e−αξ

ay

[
(δs)n cos

(√
2αξ

)
−

(δs)n + η (δζ3)n√
2

sin
(√

2αξ
)]

+
(δs)n

ay
+ (δτ)n .

Note that a singularity occurs when ay = 0, in this case we have δτ (ξ) = (δτ)n.

2.4.5.3 Normal direction

Let the acceleration vector be oriented along the k-axis

a = (0, 0, az)
T

where az is non-dimensional and constant. An acceleration normal to the orbital plane changes the unit quaternion q0 as
stated by Eqs. (2.58) - (2.61). We exploit the equation

pq (σ) = Ψq (σ, σn)pq,n , σ ∈ [σn, σn+1] ,

where Ψq is defined in Eq. (2.90) and pq,n has the components (δq10)n, (δq20)n, (δq30)n and (δq40)n, to determine the
propagation errors

δq10 (ξ) = (δq10)n cos (βξ)− [(δq30)n sin-σn − (δq40)n cos-σn] sin (βξ)
δq20 (ξ) = (δq20)n cos (βξ) + [(δq40)n sin-σn + (δq30)n cos-σn] sin (βξ)
δq30 (ξ) = (δq30)n cos (βξ) + [(δq10)n sin-σn − (δq20)n cos-σn] sin (βξ)
δq40 (ξ) = (δq40)n cos (βξ)− [(δq20)n sin-σn + (δq10)n cos-σn] sin (βξ)

(2.104)

where-σn = σn − σ0.
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ζ1 ζ2 ζ3 q10 q20 q30 q40

Reference 0 0 1 1+
√

2
8q40

− 1
8q40

1+
√

2
8q40

√
3+
√

2
8

Error 0.005√
2

0.005√
2

0 0 0 0 0

Table 2.6: Generalized orbital elements of the reference orbits at σ = σ0 and corresponding errors, for the case of constant
radial acceleration.

2.4.6 Numerical tests
The equations of the propagation error derived in the previous section are analyzed in more detail and tested with some
examples. We will refer to the relative propagation error, defined by

prel (σ) =
p (σ)− p (σn)

p (σn)
(2.105)

where p is any component of p.

2.4.6.1 Radial direction

Plugging Eqs. (2.99) into Eq. (2.105) produces the relations

δζ1,rel (ξ) = m1ξ (2.106)
δζ2,rel (ξ) = m2ξ (2.107)

where
m1 = − 2ax

ζ3s3
sinσn

(
cos σn +

(δζ2)n

(δζ1)n

sinσn

)

m2 =
2ax

ζ3s3
cos σn

(
sin σn +

(δζ1)n

(δζ2)n

cos σn

)
.

(2.108)

The solutions for the case of radial acceleration are unstable, nonetheless the magnitude of the propagation errors can
decrease. This situation occurs to δζ1 and δζ2 if respectively

m1 < 0 ∪ ξ < −1/m1

m2 < 0 ∪ ξ < −1/m2 .
(2.109)

The angular coefficients m1 and m2 in Eqs. (2.108) are modulated by the factor

ax

ζ3s3
=

(
fx

ag

)
1

1 + e cos ϑ
, ag =

µ

r2
(2.110)

where fx is the dimensional acceleration. We infer that the propagation errors of ζ1 and ζ2 vary with the square of the
orbital radius, and are scaled by the acceleration.

The following examples are employed to test Eqs. (2.106) and (2.107): a LEO and a GEO, both circular and with an
inclination of π/4 rad, are perturbed by the same constant radial acceleration fx. The values taken at σ = σ0 by DROMO
elements for the two reference orbits are reported in the first raw of Tab. (2.6). We assume that the absolute errors of ζ1

and ζ2 at σ = σ0 take the same value δζ (σ0), which is computed from the relation

e + δe =

√
(ζ1 + δζ1)

2 + (ζ2 + δζ2)
2

ζ3
(2.111)
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Figure 2.9: Comparison of the numerical, from numerical simulations, and analytical, from Eq. (2.106), relative prop-
agation error δζ1,rel in function of ξ = σ − σn (σn = π/4 rad) for a circular LEO at 150 km of altitude and a circular
GEO, with a constant radial acceleration fx = −10−7 km/s2.
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Figure 2.10: Comparison of the numerical, from numerical simulations, and analytical, from Eq. (2.107), relative prop-
agation error δζ2,rel in function of ξ = σ − σn (σn = π/4 rad) for a circular LEO at 150 km of altitude and a circular
GEO, with a constant radial acceleration fx = −10−7 km/s2.

evaluated at σ = σ0 (e = 0). After solving for δζ (σ0), it results

δζ (σ0) =
δe (σ0)√

2

where, for instance, δe (σ0) = 5 × 10−3. The initial errors of ζ1 and ζ2 are reported in the second raw of Tab. (2.6) and
are the same for the two kinds of orbits.

Each orbit is numerically integrated by Peláez’s special perturbation method. One simulation is run with the initial
reference conditions, then the errors are added to the initial reference values and a second simulation is run with the new
initial conditions. The relative propagation errors of ζ1 and ζ2 are obtained from the results of the two simulations, and
compared to those calculated in Eqs. (2.106) and (2.107). Figures (2.9) and (2.10) show the results in the range of ξ
wherein the difference between the two curves is smaller than 10 % of the analytical one.

The same value of σ0 is chosen for the LEO and the GEO, and σn is set equal to σ0 in Eqs. (2.108). The aim of
these assumptions is to put in evidence that for the same radial acceleration and initial conditions, the amplification of the
error is bigger for the GEO than for the LEO because of the bigger orbital radius. From Eqs. (2.106) and (2.107), where
Eq. (2.110) is inserted in the expressions (2.108) of m1 and m2, it can be checked that the relative propagation errors
of the GEO are amplified by the factor (rGEO/rLEO)2 ≈ 41.87 with respect to those of the LEO. Finally, note that δζ2

decreases (see Fig. 2.10) because both the conditions in (2.109) are satisfied.
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2.4.6.2 Transverse acceleration

Let us linearly combine the propagation errors of ζ1 and ζ2 as follows

δζ12 (σ) = δζ1 (σ) cos σn + δζ2 (σ) sinσn .

By substituting the expressions of δζ1 and δζ2, derived in Eqs. (2.101) and (2.102), yields

δζ12 (ξ) = e−αξ

[
(δζ12)n cos

(√
2αξ

)
− d1√

2
sin

(√
2αξ

)]
. (2.112)

Equations (2.112) and (2.103) are plugged into Eq. (2.105) to find the relative propagation errors

δζ12,rel (ξ) =
cos

(√
2αξ + φn

)

cos φn
e−αξ − 1 (2.113)

δζ3,rel (ξ) =
cos

(√
2αξ − ψn

)

cos ψn
e−αξ − 1 (2.114)

where

φn = tan−1

(
d1√

2 (δζ12)n

)
ψn = tan−1

(
d2√

2 (δζ3)n

)
.

The solutions (2.101) - (2.103) are unstable when ay < 0. However, a more rigorous analysis reveals that the magnitudes
of δζ12 and δζ3 can decrease in S = [σn, σn+1] 6 ξ also when the acceleration is opposed to the transverse velocity if

−π

2
< φn ≤ − tan−1

(
1√
2

)
∪ ξ <

1√
2 |α|

(π

2
+ φn

)

π

2
< φn ≤ π − tan−1

(
1√
2

)
∪ ξ < − 1√

2 |α|

(π

2
− φn

)

and if

tan−1

(
1√
2

)
≤ ϕn <

π

2
∪ ξ <

1√
2 |α|

(π

2
− ϕn

)

−π + tan−1

(
1√
2

)
≤ ϕn < −π

2
∪ ξ < − 1√

2 |α|

(π

2
+ ϕn

)
.

The argument of the exponential and the frequency of the cosine and sine in Eqs. (2.101) - (2.103) are functions of α,
which, as stated by Eq. (2.82), is directly proportional to the acceleration fy and to the square of the orbital radius. In
a given interval S, as α approaches to 0, the exponential looses its amplification or damping down effect and the ratio
between the period of the oscillations and S increases.

Equations (2.113) and (2.114) are tested by a circular GEO perturbed by a constant transverse acceleration fy . This
orbit is numerically propagated by Peláez’s special perturbation method starting from the initial values of the generalized
orbital elements reported in the first raw of Tab. (2.7). The initial absolute errors of ζ1, ζ2 and ζ3 are computed from Eq.
(2.111) and from the relation for the semi-major axis a

a + δa =
rGEO

(q3 + δq3)
2 − (q1 + δq1)

2 − (q2 + δq2)
2

both vaulted at σ = σ0. Assuming δζ1 (σ0) = δζ2 (σ0) = δζ (σ0), and solving for δζ (σ0) and δζ3 (σ0), it results

δζ (σ0) = |δe (σ0)|
√

rGEO

2 [rGEO + δp (σ0)]

δζ3 (σ0) =
√

2
δζ (σ0)
δe (σ0)

− 1
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ζ1 ζ2 ζ3 q10 q20 q30 q40

Reference 0 0 1 1+
√

2
8q40

− 1
8q40

1+
√

2
8q40

√
3+
√

2
8

Error
√

1
80397.99

√
1

80397.99

√
80000

80397.99 − 1 0 0 0 0

Table 2.7: Generalized orbital elements of the reference orbit at σ = σ0 and corresponding errors, for the case of constant
transverse acceleration.
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Figure 2.11: Comparison of the numerical, from numerical simulations, and analytical, from Eqs. (2.113) and (2.114),
relative propagation errors δζ12,rel (left) and δζ3,rel (right) in function of ξ = σ − σn (σn = σ0 = π/4 rad) for a GEO,
with a constant negative acceleration fy = −10−7 km/s2.

where δp = δa− (a + δa) (e + δe)2, and the identity a (σ0) = rGEO is applied. Finally, we set δe (σ0) = 5× 10−3 and
δa (σ0) /rGEO = 5× 10−3 in the previous two equations and the errors so calculated, which are contained in the second
raw of Tab. (2.7), are added to the reference values. A second simulation is run to propagate the orbit affected by the
errors.

Figures (2.11) and (2.12) compare δζ12,rel and δζ3,rel from the numerical integrations with those calculated from Eqs.
(2.113) and (2.114), for respectively a negative and a positive transverse acceleration. In each figure the curves are plotted
in the interval S where they differ by less than 10 % of the analytical one.
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Figure 2.12: Comparison of the numerical, from numerical simulations, and analytical, from Eq. (2.113) and (2.114),
relative propagation errors δζ12,rel (left) and δζ3,rel (right) in function of ξ = σ − σn (σn = σ0 = π/4 rad) for a GEO,
with a constant positive acceleration fy = +10−7 km/s2.



62 CHAPTER 2. NEW TWO-BODY REGULARIZATIONS BASED ON QUATERNIONS

ζ1 ζ2 ζ3 q10 q20 q30 q40

Reference
√

1.1
11 0

√
1.1

1.1

√
2

4

√
2

4 − 1
2

√
2

4 + 1
2

√
2

4
Error 0 0 0 1.064× 10−2 −2.766× 10−3 2.788× 10−3 −2.704× 10−3

Table 2.8: Generalized orbital elements of the reference orbit at σ = σ0 and corresponding errors, for the case of constant
normal acceleration.

2.4.6.3 Normal acceleration

Equations (2.104) are plugged into Eq. (2.105), then the addition formula of the cosine is applied. The relative propagation
error of q10 results

δq10,rel (ξ) =
cos (βξ + γn)

cos γn
− 1 (2.115)

where β is defined in Eq. (2.91) and

γn = tan−1

(
(δq30)n sin-σn − (δq40)n cos-σn

(δq10)n

)
.

Expressions similar to the right-hand side of Eq. (2.115) are taken by the other three components of the unit quaternion
q0. The error δq10 decreases in the considered interval S for az < 0, if

−π

2
< γn ≤ 0 ∪ ξ <

1
|β|

(π

2
+ γn

)

π

2
< γn ≤ π ∪ ξ <

1
β

(π

2
− γn

)

and for az > 0, if

0 ≤ γn <
π

2
∪ ξ <

1
β

(π

2
− γn

)

−π ≤ γn < −π

2
∪ ξ < − 1

β

(π

2
+ γn

)
.

Analogous conditions can be derived for δq20, δq30 and δq40. Note that the oscillatory period of the propagation errors is
scaled by β.

Equation (2.115) is tested by an elliptic orbit with: eccentricity e = 0.1, height at perigee zp = 700 km, inclination
i = 45◦, argument of perigee ω = 90◦, longitude of the ascending node Ω = 45◦ and initial true anomaly ϑ (σ0) = 0◦,
perturbed by a normal acceleration fz of constant magnitude. For such orbit the integrals of the two-body problem used
in DROMO take the values reported in the first raw on Tab. (2.8). The errors on the components of the unit quaternion,
contained in the second raw of Tab. (2.8), are calculated by introducing a positive error of 1 % in the angles i, ω and Ω.

The relative errors are numerically propagated and compared to those calculated by the analytical formulae. Figures
(2.13) show this comparison in the range of ξ wherein the difference between the two curves is less than 10 % of the
analytical one.

2.4.7 Near-circular orbits
So far the mathematical stability of Peláez’s method has been studied in a sufficiently small interval S = [σn+1, σn]
of the independent variable σ. We deal now with the issue of predicting the error in an arbitrary interval [σ0, σf ]. The
case of constant transverse acceleration is considered because it is encountered in many space operations. Such kind of
acceleration affects the elements ζ1, ζ2 and ζ3, and the corresponding errors are propagated in S by using Eqs. (2.101) -
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Figure 2.13: Comparison of the numerical, from numerical simulations, and analytical, from Eq. (2.115) for q10, relative
propagation errors δq10,rel, δq20,rel, δq30,rel and δq40,rel in function of ξ = σ − σn (σn = σ0 = 0 rad) , for an elliptical
LEO with a constant normal acceleration fz = +10−7 km/s2.

(2.103). In these equations the product αξ appears, where α is proportional to the ratio between the transverse acceleration
fy and the gravitational acceleration ag , and ξ varies inside the interval S. Let us assume that |α| ξ " 1, then by exploiting
the definition of α in Eq. (2.82), such condition may be put in the form

|fy|"
µ

ξr2
(1 + e cos ϑ) . (2.116)

We have that 0 < ξ ≤ ξmax, and ξmax = σn+1 − σn is the maximum length of S wherein the linearized theory is valid,
according to an established criterion. Therefore, for a given value of |fy|, ξ can always be chosen small enough so that
the condition stated by Eq. (2.116) is verified, the only exception being when e = 1 and ϑ = π.

The functions whose argument contains αξ in Eqs. (2.101) - (2.103) are expanded by using Taylor’s theorem as
follows

e−χ = 1− χ +O
(
χ2

)

cos
(√

2χ
)

= 1 +O
(
χ2

)

sin
(√

2χ
)

=
√

2χ +O
(
χ3

)

where χ = αξ. If only the terms of the first order in χ are retained, then Eqs. (2.101) - (2.103) for ξ = ξmax simplify in

(δζ1)n+1 = (1−m1) (δζ1)n − n1 (2.117)
(δζ2)n+1 = (1−m2) (δζ2)n − n2 (2.118)
(δζ3)n+1 = (1 + m3) (δζ3)n + n3 (2.119)

where

m1 = χ

(
3ζ3

s
+ 2

)
(cos σn)2 m2 = χ

(
3ζ3

s
+ 2

)
(sinσn)2 m3 = χ

3ζ3

s
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and

n1 = χ cos σn

[(
3ζ3

s
+ 2

)
(δζ2)n sin σn +

(
3ζ3

s
+

s

ζ3
+ 2

)
(δζ3)n

]

n2 = χ sinσn

[(
3ζ3

s
+ 2

)
(δζ1)n cos σn +

(
3ζ3

s
+

s

ζ3
+ 2

)
(δζ3)n

]

n3 = χ
3ζ3

s
[(δζ1)n cos σn + (δζ2)n sin σn] .

Note that the sign of m1, m2 and m3 is determined only by the sign of the acceleration fy , which means that, if n1, n2

and n3 were neglectable, we could immediately infer from Eqs. (2.117) - (2.119) the evolution of the errors inside the
whole interval [σ0, σf ].

Let us assume that the trajectory is near-circular, which implies that e (σ) " 1 for σ ∈ [σ0, σf ]. Plugging the second
relation in the third one in (2.81), yields

s = ζ3 (1 + e cos ϑ) . (2.120)
The non-dimensional velocity s appears in Eqs. (2.117) - (2.119) in the form sk, where k = {−2, −3, −4}. Thus, we
expand the power sk, with s expressed by Eq. (2.120), by means of the binomial series and neglect the terms of order
higher than one in e

sk = ζk
3

[
1 + ke cos ϑ + O

(
e2

)]
.

After applying this approximation, the coefficients m1, m2, m3 and n1, n2, n3 take the expressions

m1 (σ) =
ayξ

ζ4
3

(5− 18e cos ϑ) (cos σ)2

m2 (σ) =
ayξ

ζ4
3

(5− 18e cos ϑ) (sinσ)2

m3 (σ) =
3ayξ

ζ4
3

(1− 4e cos ϑ)

n1 (σ) =
ayξ

ζ4
3

[(5− 18e cos ϑ) (δζ2)n sin σ + (6− 20e cos ϑ) (δζ3)n] cos σ

n2 (σ) =
ayξ

ζ4
3

[(5− 18e cos ϑ) (δζ1)n cos σ + (6− 20e cos ϑ) (δζ3)n] sinσ

n3 (σ) =
3ayξ

ζ4
3

(1− 4e cos ϑ) [(δζ1)n cos σ + (δζ2)n sin σ]

(2.121)

where σn is replaced by σ and ϑ is an explicit function of σ through the relation

ϑ = σ − tan−1 ζ2

ζ1
.

In order to capture only the secular contribution to the errors, the right-hand sides of Eqs. (2.121) are averaged in σ
on the interval [0, 2π]:

m1 =
1
2π

2π
ˆ

0

m1 (σ) dσ =
5ayξ

2ζ4
3

n1 =
1
2π

2π
ˆ

0

n1 (σ) dσ = −e
10ayξ

ζ4
3

(δζ3)n cos γ

m2 =
1
2π

2π
ˆ

0

m2 (σ) dσ =
5ayξ

2ζ4
3

n2 =
1
2π

2π
ˆ

0

n2 (σ) dσ = −e
10ayξ

ζ4
3

(δζ3)n sin γ

m3 =
1
2π

2π
ˆ

0

m3 (σ) dσ =
3ayξ

ζ4
3

n3 =
1
2π

2π
ˆ

0

n3 (σ) dσ = −e
6ayξ

ζ4
3

[(δζ1)n cos γ + (δζ2)n sin γ]
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where a bar is used over a quantity to indicate that it is averaged, and

γ = tan−1 ζ2

ζ1
.

The secular variations due to n1, n2 and n3 are proportional to the eccentricity e, and for the assumption that the trajectory
is near-circular, they can be neglected with respect to m1, m2 and m3. Therefore the secular variations of the errors of ζ1,
ζ2 and ζ3 are approximated by:

δζ1 (ξ) =
(

1− 5ay

2ζ4
3

ξ

) (
δζ1

)
n

(2.122)

δζ2 (ξ) =
(

1− 5ay

2ζ4
3

ξ

) (
δζ2

)
n

(2.123)

δζ3 (ξ) =
(

1 +
3ay

ζ4
3

ξ

) (
δζ3

)
n

. (2.124)

The signs of m1, m2 and m3 are determined only by the sign of the acceleration ay , as a consequence we can state that:

1. if ay > 0 then |δζ1| and |δζ2| decrease, and |δζ3| increases for σ0 ≤ σ ≤ σf ;

2. if ay < 0 then |δζ1| and |δζ2| increase, and |δζ3| decreases for σ0 ≤ σ ≤ σf .

Equations (2.122) - (2.124) are checked with two examples: 1) low-thrust transfer from LEO to a higher orbit, and 2)
de-orbiting. First, let us write the relations between δζ1, δζ2, δζ3 and the errors in the components of the position and
velocity vectors of the particle projected on the orbital frame R.

2.4.7.1 Error propagation in the position and velocity

Because the elements ζ1, ζ2 and ζ3 are not of straightforward comprehension, we need to relate them to more sensible
quantities. We recall that the set of elements used in Peláez’s method is given by ζ1, ζ2, ζ3 and the components of a
unit quaternion q10, q20, q30 and q40. The unit quaternion sets the inertial orientation of the plane where the orbit lies
and a reference direction in this orbit. From the unit quaternion and σ, the instantaneous direction of the position vector
can be determined. The elements ζ1, ζ2 and ζ3 eliminate the remaining degrees of freedom by setting: the semi-major
axis, the magnitude of the eccentricity vector and its angular separation on the orbital plane with respect to the reference
direction, or equivalently, the magnitude of the orbital radius r, the radial and transverse components of the velocity
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Figure 2.14: Error δζ1 for the low-thrust example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.101), and analytical-averaged, from Eq. (2.122), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).
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Figure 2.15: Error δζ2 for the low-thrust example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.102), and analytical-averaged, from Eq. (2.123), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).
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Figure 2.16: Error δζ3 for the low-thrust example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.103), and analytical-averaged, from Eq. (2.124), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).

vector, respectively vr and vθ. Given the relations (B.6) - (B.8), the errors affecting r, vr and vθ are expressed in function
of δζ1, δζ2 and δζ3 as follows

δr = R0

[
1

(ζ3 + δζ3) (s + δs)
− 1

ζ3s

]

δvr = R0w0 (δζ1 sinσ − δζ2 cos σ)
δvθ = R0w0 (δζ3 + δζ1 cos σ + δζ2 sin σ)

where R0 = r (σ0), w0 =
√

µ/R3
0 and δs = δζ3 + δζ1 cos σ + δζ2 sinσ. On the other hand, the errors of ζ1, ζ2 and ζ3

are computed in terms of δr, δvr and δvθ through the relations

δζ1 =
1

R0w0
(δvr sinσ + δvθ cos σ)− δζ3 cos σ

δζ2 =
1

R0w0
(δvθ sin σ − δvr cos σ)− δζ3 sin σ

δζ3 = R2
0w0

[
1

(r + δr) (vθ + δvθ)
− 1

rvθ

]
.

(2.125)
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2.4.7.2 Low-thrust transfer from LEO to a higher orbit

A spacecraft with a mass of 4000 kg is propelled by a constant thrust force of 100 mN from an initial circular orbit of
radius r0 = RE +500 km, where RE is the Earth radius. The resulting transverse acceleration is fy = 2.5×10−8 km/s2.
For a circular orbit we have ζ3 = 1 and s = 1, and by substituting these values into Eq. (2.80) it results α0 = ay ,
where ay = fyr2

0/µ ≈ 2.97 × 10−6. The interval of the independent variable where the errors are propagated is
[σ0 = 0, σf = 10000× 2π], and after t (σf ) = 1022 days the orbital radius has grown up to the value of r (σf ) =
13640 km.

First we numerically integrate the reference orbit, then the following initial errors of r, vr and vθ are introduced

δr (σ0) = 0.01 km δvr (σ0) = 0.001 km/s δvθ (σ0) = 0.001 km/s

and substituted into Eqs. (2.125) to calculate δζ1 (σ0), δζ2 (σ0) and δζ3 (σ0). These errors are added to the corresponding
reference quantities and the second numerical integration is initialized and run. Finally, δζ1, δζ2 and δζ3 are propagated by
subtracting ζ1, ζ2 and ζ3 of the first simulation from those of the second one. Figures (2.14) - (2.16) show a good agreement
between the errors obtained from the numerical integrations and those calculated from Eqs. (2.101) - (2.103). Besides,
we see that Eqs. (2.122) - (2.124) well predict the secular contribution to the errors, being the assumptions αξ " 1 and
e " 1 both satisfied in the whole interval [σ0, σf ]: the maximum values taken by αξ and e are χmax = 3.52 × 10−7

and emax = 2.69 × 10−5. The quantity ξ, in Eqs. (2.101) - (2.103) and Eqs. (2.122) - (2.124), is chosen equal to the
integration step size.

2.4.7.3 De-orbiting

A spacecraft with a mass of 1000 kg is braked by a constant force of 100 mN from an initial circular orbit of radius
r0 = RE + 1000 km, where RE is the Earth radius. The resulting transverse acceleration is fy = −10−7 km/s2. Like in
the low-thrust example it results α0 = ay , where now ay ≈ −1.37× 10−5.

The numerical integration is stopped when r < RE + 500 km, and the orbital radius decreases under this value after
t (σf ) = 30.63 days. The initial errors of r, vr and vθ are set equal to

δr (σ0) = 0.01 km δvr (σ0) = 0.001 km/s δvθ (σ0) = 0.001 km/s

and once substituted into Eqs. (2.125), δζ1 (σ0), δζ2 (σ0) and δζ3 (σ0) are determined. The same procedure explained in
the previous example of low-thrust is applied to calculate the errors referred to as numerical. Figures (2.17) - (2.19) show
that these errors are well approximated by Eqs. (2.101) - (2.103), and that Eqs. (2.122) - (2.124) well predict the secular
contribution to the errors, being the assumptions |α| ξ " 1 and e " 1 both satisfied in the whole interval [σ0, σf ]: the
maximum values taken by |α| ξ and e are |χ|max = 3.72×10−7 and emax = 5.46×10−5. The quantity ξ, in Eqs. (2.101)
- (2.103) and Eqs. (2.122) - (2.124), is chosen equal to the integration step size.
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Figure 2.19: Error δζ3 for the de-orbiting example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.103), and analytical-averaged, from Eq. (2.124), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).
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Figure 2.17: Error δζ1 for the de-orbiting example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.101), and analytical-averaged, from Eq. (2.122), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).
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Figure 2.18: Error δζ2 for the de-orbiting example: comparison of the numerical, from numerical simulations, analytical,
from Eq. (2.102), and analytical-averaged, from Eq. (2.123), error for σ0 ≤ σ ≤ σf (left). Zoom in on a small interval
of σ (right).

2.5 A new quaternion-based regularization for closed orbits
We present a new regularized method for propagating closed orbits under perturbations, called ELI-DROMO, which
inherits the regularized framework of DROMO. The concept of projective coordinates is exploited in order to decompose
the particle dynamics into a perturbed harmonic oscillation of the orbital radius and the rotation of an orthonormal frame
which defines the orientations of the instantaneous osculating plane and the radial direction. A unit quaternion is employed
to describe this frame. The independent variable is changed from physical time to eccentric anomaly through Sundman’s
transformation and regularization is achieved by embedding the Keplerian energy and by properly choosing the rotating
frame. The number of dependent variables is eight, the same of DROMO, they are the physical time and seven regular
elements generated by applying the variation of parameters technique. The new method is tested and compared with other
regularized schemes for two examples: a highly eccentric orbit perturbed by Earth’s oblateness plus Moon’s gravitational
attraction and the Tsien problem. ELI-DROMO shows the best performance between the compared methods.

2.5.1 Perturbed two-body problem in projective coordinates
The dynamic state of the particle is represented by the projective coordinates (r, i) and their time derivatives (dr/dt, di/dt).
From the new state variables the position and velocity are computed through the relations

r = ri

v =
dr

dt
i + r

di
dt

.
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Note that apparently the dimension of the state vector has risen from six to eight variables. Actually we can exploit the
fact that i and di/dt are perpendicular to reduce the number of variables to seven4. In the next two sections we derive the
differential equations that describe the evolution of r and i.

2.5.1.1 Projective coordinate r

We exploit the rotating frame R = 〈i, j, k〉 defined in (2.2) to determine the radial acceleration of the mass m induced
by the gravitational attraction of the central body and by the perturbing forces under consideration. The integration of the
radial acceleration provides the radial velocity and again through integration we get the orbital radius.

Starting from the equation r = ri, let us operate the time derivative of r

dr
dt

=
dr

dt
i + r (w × i)

where, according to Poisson’s formula, di/dt was replaced by the cross product of the angular velocity vector w and i.
By plugging Eq. (2.11) into the previous equation and executing the cross product, we find

dr
dt

=
dr

dt
i +

(
rfz

h
i +

h

r2
k
)
× ri =

dr

dt
i +

h

r
j .

Then we differentiate with respect to time the velocity dr/dt written in the fashion that we have just found out. With the
help again of Eq. (2.11) and doing the required products, we get

d2r
dt2

=
(

d2r

dt2
− h2

r3

)
i + fzk .

Such expression is plugged into the left-hand side of Eq. (2.44), which becomes
(

d2r

dt2
− h2

r3

)
i + fzk = − µ

r2
i + f ,

and the projection along i yields the second-order differential equation

d2r

dt2
= − µ

r2
+

h2

r3
+ fx (2.126)

where fx = f · i.

2.5.1.2 Projective coordinate i

Let us focus now on the unit vector i. We start from Eq. (2.8), reported below

di
dt

=
h

r2
j , (2.127)

and differentiate both sides with respect to time

d2i
dt2

=
(

1
r2

dh

dt
− 2h

r3

dr

dt

)
j +

h

r2

dj
dt

. (2.128)

The time derivative of j is obtained with the help of Poisson’s formula, wherein w is given in Eq. (2.11)

dj
dt

= − h

r2
i +

rfz

h
k . (2.129)

4There is also an other condition we might take advantage of, which is that the magnitude of i is equal to one. Nevertheless, if we know two
components of i, and apply this condition, an ambiguity on the sign of the third component remains.



70 CHAPTER 2. NEW TWO-BODY REGULARIZATIONS BASED ON QUATERNIONS

Finally, we use Eqs. (2.7) and (2.129) into Eq. (2.128) which takes the form

d2i
dt2

= −h2

r4
i +

(
fy

r
− 2h

r3

dr

dt

)
j +

fz

r
k (2.130)

where the unit vectors j and k are intended as

j =
r2

h

di
dt

k = i× j .

2.5.1.3 Motion in plane

The orbital angular momentum per unit mass should be replaced in both Eqs. (2.126) and (2.130) by

h = r2

∥∥∥∥
di
dt

∥∥∥∥ (2.131)

which is straight derived from Eq. (2.127). Thus, we see that Eq. (2.126) is coupled with Eq. (2.130).
It seems more convenient to include h among the state variables. The time derivative of h is shown in Eq. (2.7), here

reported
dh

dt
= rfy , (2.132)

and, as we expect, h is an invariant when the motion is Keplerian, because in this case f is identical to zero, and so also its
component along the unit vector j is zero, namely fy . One consequence of considering h as a state variable is that we do
not need to know the magnitude of di/dt to calculate h, because Eq. (2.131) is no longer useful. Therefore, by integrating
Eqs. (2.126) and (2.132) the dynamics of the particle in the rotating frame R is determined without using any information
about the orientation of R. From the components of the position and velocity in R

r =
(

r 0 0
)

v =
(

dr
dt

h
r 0

)

the shape of the orbit is fully characterized in terms, for instance, of the semi-major axis and eccentricity, as follows from
the relations (Battin, [5])

a =
(

2
r
− v2

µ

)−1

e =

√

1− h2

µ

(
2
r
− v2

µ

)

where

v = ‖v‖ =

√(
dr

dt

)2

+
(

h

r

)2

.

Furthermore, the angle between the eccentricity vector and the position vector measured in the sense of motion, namely
the so-called true anomaly, is given by

ϑ = tan−1

(
dr
dt

h
r −

µ
h

)
(2.133)

and the ambiguity on the quadrant of ϑ is solved by taking into account the signs of the numerator and denominator.

2.5.1.4 Motion in space - introducing the unit quaternion

As discussed in the previous section, the quantities r, dr/dt and h determine the position and velocity in the frame R.
Once the orientations of the axes of R with respect to the inertial space are known, the three-dimensional dynamics of
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the particle is completely described. The introduction of h as a state variable allows to substitute di/dt with j in the state
vector. The time evolutions of i and j result by integrating Eqs. (2.127) and (2.129), reported below

di
dt

=
h

r2
j (2.134)

dj
dt

= − h

r2
i +

rfz

h
(i× j) (2.135)

where in the second equation we used the identity k = i× j.
According to Euler’s rotation theorem, the attitude of R with respect to a reference frame I with fixed orientation in

space, is obtained by a rotation of an angle ϕ around a unit vector u. Let us introduce the unit quaternion q̃ associated to
such rotation

q̃ = (q4, q)

where the scalar part q4 and the vectorial part q are functions of ϕ and u as follows

q4 = cos
ϕ

2
q = u sin

ϕ

2
.

By employing the rotating frame R to express q in the form

q = q1i + q2j + q3k , (2.136)

the differential equation governing the evolution of q̃ is

dq̃

dt
=

1
2
q̃ w̃

where the unit quaternion q̃ is multiplied by the quaternion w̃ = (0, w) being w the angular velocity ofR. After applying
the rule of the product between quaternions we have

dq̃

dt
=

1
2

(−q ·w, q4w + q×w) . (2.137)

Due to the advantages related to the use of quaternions, we abandon Eqs. (2.134) and (2.135) in favor of Eq. (2.137).

2.5.1.5 Set of differential equations of motion

The equation of the perturbed two-body problem, Eq. (2.44), which describes the dynamics of the particle in terms of
position r and velocity dr/dt projected in a fixed coordinate system, has been substituted by Eqs. (2.126), (2.132)

d2r

dt2
= − µ

r2
+

h2

r3
+ fx (2.138)

dh

dt
= rfy (2.139)

and by Eq. (2.137), here split into components

dq1

dt
=

1
2

(
q4

rfz

h
+ q2

h

r2

)
(2.140)

dq2

dt
=

1
2

(
q3

rfz

h
− q1

h

r2

)
(2.141)

dq3

dt
= −1

2

(
q2

rfz

h
− q4

h

r2

)
(2.142)

dq4

dt
= −1

2

(
q1

rfz

h
+ q3

h

r2

)
. (2.143)
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This set of differential equations represent the motion in terms of r, dr/dt, h, and the four components of the unit
quaternion q̃, namely q1, q2, q3 and q4. The dimension of the state vector is seven, but can be lowered to six by taking into
account the following condition

q2
1 + q2

2 + q2
3 + q2

4 = 1 .

2.5.2 Regularization for closed orbits
Consider Eqs. (2.138), (2.139), and Eqs. (2.140) - (2.143) and see if the right-hand sides can become singular.

A first singularity occurs in Eqs. (2.140) - (2.143), which govern the evolution of the unit quaternion associated to R,
when the angular momentum per unit mass h is zero, as happens in a rectilinear motion along the radial direction i. In
such a case the orbital plane is not defined, and there are ∞1 possible configurations of R which correspond to arbitrary
rotations around the unit vector i. A second singularity occurs in all equations except for dh/dt, when the orbital radius
r is zero, as happens at the pericenter of a collision orbit (eccentricity e → 1 at a fixed semi-major axis a). However,
along a collision orbit we have that also h is zero, therefore in this particular and unusual situation the terms h2/r3 in Eq.
(2.138), and r/h and h/r2 in Eqs. (2.140) - (2.143) are not defined. Finally, the perturbing acceleration itself might be
singular or not defined.

The singularity related to h is strictly correlated to the approach of projective decomposition and it is the price we pay
for using a rotating frame R to describe the motion in space. The singularity related to r instead can be eliminated by
means of a procedure known as regularization. This procedure brings to a new set of differential equations which usually
present a suitable form for an accurate and computational fast numerical integration (Arakida and Fukushima, 2000, [2]).

We will deal from now on with closed orbits, which are characterized by a negative value of the Keplerian energy.

2.5.2.1 Changing the independent variable

It is a known fact that the eccentric anomaly is a regularizing variable for Keplerian motion along closed orbits (Boccaletti
& Pucacco, [15]). So let us introduce the fictitious time E instead of the physical time t by means of the classical time
transformation of the Sundman type (Sundman, 1912, [77])

dt = r

√
a

µ
dE . (2.144)

Let E be the eccentric anomaly, the time derivative of E may be written as (Battin, [5])

dE

dt
=

dE
dt

+
∂E

∂v
· f . (2.145)

By integrating Eq. (2.145) from the initial time t0 to the generic time t yields

E (t)− E (t0) = E (t)− E (t0) + φ (t) (2.146)

where

φ (t) =
t
ˆ

t0

dl
∂E

∂v
· f . (2.147)

Let us assume that the independent variable and the eccentric anomaly are equal at the initial time

E (t0) = E (t0)

so that Eq. (2.146) reduces to
E (t) = E (t) + φ (t) .

In general, E differs from E by the quantity φ (t) which is defined in Eq. (2.147). In the special case of Keplerian motion
we have φ (t) = 0, and as a consequence the fictitious time coincides with the eccentric anomaly

E (t) = E (t) . (2.148)
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2.5.2.2 Regularization in plane

From the Sundman’s transformation (2.144) the following relations are derived

dr

dt
=

1
r

√
µ

a

dr

dE (2.149)

d2r

dt2
=

µ

r2a

[
d2r

dE2
−

(
1
r

dr

dE +
1
2a

da

dE

)
dr

dE

]
. (2.150)

Equation (2.150) is plugged into Eq. (2.138). Then, after multiplying both sides by r2a/µ and rearranging the terms we
get

d2r

dE2
− 1

r

(
dr

dE

)2

− h2a

rµ
+ a =

r2a

µ
fx +

1
2a

da

dE
dr

dE . (2.151)

Since the term containing the derivative of a vanishes in the case of pure Keplerian motion, it is of the character of a
perturbing term and it is consequently shifted to the right-hand side. In order to achieve regularization we embed the
Keplerian energy (Boccaletti & Pucacco [15] and Bond & Allman [22]) into Eq. (2.151) in the way that we are going to
explain. Let us introduce the Keplerian energy in the form

UK =
1
2

[(
dr

dt

)2

+
(

h

r

)2
]
− µ

r

wherein we substitute dr/dt with the expression provided by Eq. (2.149), and collect the factor 1/2r to have

UK =
1
2r

[
µ

ra

(
dr

dE

)2

+
h2

r
− 2µ

]
. (2.152)

We solve for the first two terms inside the square brackets

µ

ra

(
dr

dE

)2

+
h2

r
= 2 (rUK + µ)

and multiply both sides by −a/µ to obtain

−1
r

(
dr

dE

)2

− h2a

rµ
= −2a

µ
(rUK + µ) .

By employing the relation UK = −µ/ (2a) and simplifying, it results

−1
r

(
dr

dE

)2

− h2a

rµ
= r − 2a .

The previous equation is straight plugged into Eq. (2.151), which takes the form

d2r

dE2
+ r − a =

r2a

µ
fx +

1
2a

da

dE
dr

dE . (2.153)

The perturbing term (Battin, [5])
da

dE =
2a2

µ

(
dr

dE fx + h

√
a

µ
fy

)
(2.154)

is inserted into Eq. (2.153), which finally becomes

d2r

dE2
+ r − a =

a

µ

([
r2 +

(
dr

dE

)2
]

fx + h
dr

dE

√
a

µ
fy

)
. (2.155)

Equation (2.155) is not singular when r = 0: the original Eq. (2.138) has been regularized. Furthermore, in the case of
unperturbed motion Eq. (2.155) is linear.
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Figure 2.20: Reference frames R = 〈i, j, k〉 and RE = 〈iE , jE , kE〉. The particle, placed in P, is moving around the
primary body, placed in O, along an elliptic orbit.

2.5.2.3 Regularization in space

Regularization of Eqs. (2.140) - (2.143) with respect to the orbital radius could be directly achieved by employing a
Sundman’s transformation of the kind

dt =
r2

h
dσ , (2.156)

which is adopted by Peláez [66] and Chelnokov [34]. For instance, if we apply the transformation (2.156) to Eq. (2.140),
we get at once

dq1

dσ
=

1
2

(
q4

r3fz

h2
+ q2

)

wherein r has disappeared from the denominator. Analogous results are found for Eqs. (2.141) - (2.143).
We pursue here a different strategy towards regularization. Let us introduce a new rotating frameRE = 〈iE , jE , kE〉

which is defined as follows
[iE , jE , kE ] = R [i, j, k] (2.157)

where the orthogonal matrix R represents the rotation

R =




cos (ϑ− E) − sin (ϑ− E) 0
sin (ϑ− E) cos (ϑ− E) 0

0 0 1





being ϑ−E the difference between the true anomaly ϑ and the eccentric anomaly E of the particle along the instantaneous
osculating orbit. In Fig. (2.20) the reference frame RE is represented together with R. They are rotated one respect to
the other of |ϑ− E| around the common axis k = kE .

The relative angular velocity of RE with respect to R is

Ω =
(

dE

dt
− dϑ

dt

)
kE , (2.158)

and when it is summed to the angular velocity w of R we get the angular velocity wE of RE . Let us first project w into
the frame RE . Thus, we insert into Eq. (2.11), wherein the unit vectors i and k appear, the relations

i = cos (ϑ− E) iE + sin (ϑ− E) jE k = kE
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which are derived by inverting Eq. (2.157), to get

w =
rfz

h
[cos (ϑ− E) iE + sin (ϑ− E) jE ] +

h

r2
kE (2.159)

where remember that fz is the component of the perturbing acceleration f along the unit vector k, or, which is the same,
along kE . Then, we sum Eq. (2.158) to Eq. (2.159) and find the angular velocity of RE

wE =
rfz

h
[cos (ϑ− E) iE + sin (ϑ− E) jE ] +

(
h

r2
+

dE

dt
− dϑ

dt

)
kE . (2.160)

By substituting the time derivatives of E and ϑ with the expressions derived with Poisson’s variational method (Battin,
[5])

dϑ

dt
=

h

r2
+

∂ϑ

∂v
· f (2.161)

dE

dt
=

1
r

√
µ

a
+

∂E

∂v
· f , (2.162)

the component of wE along kE can be written in the form

wE,z = wE · kE =
1
r

√
µ

a
− ∂ (ϑ− E)

∂v
· f . (2.163)

The inverse of the transformation shown in Eq. (2.157)

[i, j, k] = RT [iE , jE , kE ]

where RT is the transpose of R, suggests that if the orientations of the axes iE , jE and kE , and the angle ϑ − E are
known, then the attitude of R is determined. The idea is to employ RE instead of R, and substitute Eqs. (2.140) - (2.143)
with a new set of equations.

Let p̃ the unit quaternion associated to the attitude of RE with respect to a frame I of fixed attitude in space

p̃ = (p4, p)

where p4 is the scalar part and p is the vectorial part, expressed as

p = p1iE + p2jE + p3kE .

We differentiate p̃ with respect to physical time by means of the relation

dp̃

dt
=

1
2

(−p ·wE , p4wE + p×wE)

and switch to the fictitious time E according to Eq. (2.144). For the components of p̃ we have

dp1

dE =
1
2

√
a

µ

[
r2fz

h
(p4 cos λ− p3 sinλ) +

(√
µ

a
− βp

)
p2

]
(2.164)

dp2

dE =
1
2

√
a

µ

[
r2fz

h
(p3 cos λ + p4 sinλ)−

(√
µ

a
− βp

)
p1

]
(2.165)

dp3

dE = −1
2

√
a

µ

[
r2fz

h
(p2 cos λ− p1 sin λ)−

(√
µ

a
− βp

)
p4

]
(2.166)

dp4

dE = −1
2

√
a

µ

[
r2fz

h
(p1 cos λ + p2 sin λ) +

(√
µ

a
− βp

)
p3

]
(2.167)
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where the auxiliary quantities λ and βp are defined by

λ = ϑ− E (2.168)

βp = r
∂ (ϑ− E)

∂v
· f . (2.169)

Let us write the perturbing term βp in a proper fashion. In Eq. (2.169) a scalar product that involves the perturbing
acceleration f appears. Because scalar product is invariant with respect to the reference frame, we find more convenient
to employ the rotating frame R = 〈i, j, k〉 to execute this product. From the expressions of the perturbative derivatives
of the true anomaly (∂ϑ/∂v) and the eccentric anomaly (∂E/∂v) reported in the book [5] (p. 502), some manipulations
result in

βp =
1

√
µa + h

[(
hr

√
a

µ
+ 2ar − h2 a

µ

)
fx −

dr

dE

(
r − h

√
a

µ

)
fy

]
(2.170)

where remember that fx and fy are the projections of f along the directions i and j respectively. Equations (2.164) -
(2.167) and Eq. (2.170) are regularized with respect to the orbital radius r. One last consideration is on the fact that
while the attitude of R is influenced only by the perturbing acceleration normal to the osculating orbital plane (fz), as it
is shown by Eqs. (2.140) - (2.143), the attitude of the rotating frame RE is disturbed by the whole vector f .

2.5.2.4 Set of regular differential equations of motion

The new regular set of first-order differential equations is

dt

dE = r

√
a

µ
(2.171)

dr

dE = u (2.172)

du

dE = −r + a +
a

µ

[(
r2 + u2

)
fx + hu

√
a

µ
fy

]
(2.173)

dh

dE = r2

√
a

µ
fy (2.174)

dp1

dE =
1
2

√
a

µ

[
r2fz

h
(p4 cos λ− p3 sin λ) + p2

(√
µ

a
− βp

)]
(2.175)

dp2

dE =
1
2

√
a

µ

[
r2fz

h
(p3 cos λ + p4 sin λ)− p1

(√
µ

a
− βp

)]
(2.176)

dp3

dE = −1
2

√
a

µ

[
r2fz

h
(p2 cos λ− p1 sinλ)− p4

(√
µ

a
− βp

)]
(2.177)

dp4

dE = −1
2

√
a

µ

[
r2fz

h
(p1 cos λ + p2 sinλ) + p3

(√
µ

a
− βp

)]
(2.178)

where βp is determined by Eq. (2.170) and λ = ϑ− E. The true anomaly ϑ is given by the expression

ϑ = tan−1

(√
µ

a

hu

h2 − µr

)

which is derived by using Eq. (2.149) into Eq. (2.133). From ϑ and the eccentricity e (0 ≤ e < 1), provided by the
relation

e =

√

1− h2

µa
,
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which follows from the identity for closed orbits h =
√

µa (1− e2), the eccentric anomaly is calculated as (Battin, [5])

E = 2 tan−1

(√
1− e

1 + e
tan

ϑ

2

)
.

It still remains to find a proper formula for computing the semi-major axis a. From Eq. (2.152), after replacing UK with
−µ/ (2a) and solving for a, we get

a =
r2 + u2

2r − h2/µ
.

The state vector is constituted by the eight variables

S =
(

t r u h p1 p2 p3 p4

)
,

but only seven of them are independent to each other because p̃ is a unit quaternion and therefore its magnitude is equal
to one, p2

1 + p2
2 + p2

3 + p2
4 = 1.

2.5.3 Regular elements - variation of parameters
We apply the variation of parameters technique in order to find the regular elements attached to the state variables utilized
for describing the motion of the particle. Variational equations of elements, or integrals of the motion, are very effective
in reducing the error growth in both the physical time and the position as shown by Arakida (2001, [3]) for the famous
regularization scheme KS (Kustaanheimo-Stiefel). We deal separately with the variables r, u and h first, and then the
components of the unit quaternion p̃.

2.5.3.1 Elements attached to r, u, and h

In the pure Keplerian motion the terms on the right-hand side of Eq. (2.155) disappear to give

d2r

dE2
+ r = a . (2.179)

This is the typical equation of an harmonic oscillator of frequency equal to one, perturbed by a constant acceleration (in
the E domain) which is represented by the semi-major axis a. Analytical integration of Eq. (2.179) yields the solution

r = a + c1 cos E + c2 sin E (2.180)

where c1 and c2 are integration constants which depend on the initial conditions. We collect a in Eq. (2.180) and replace
c1 and c2 with the two constants

η1 = −c1

a
η2 = −c2

a
,

so that
r = a (1− η1 cos E − η2 sin E) . (2.181)

Come back to the system of two first-order differential equations (2.172) and (2.173) which account for the perturba-
tions. According to the variation of parameters technique, the solution of these equations is sought in the form

r = a (E) [1− η1 (E) cos E − η2 (E) sin E ]
u = a (E) [η1 (E) sin E − η2 (E) cos E ] (2.182)
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where η1, η2 and a vary, in general, with E . The relations above are introduced into Eqs. (2.172) and (2.173) to obtain the
following differential equations for η1 and η2

dη1

dE =
a2

µ

([(
1− η2

)
sin E − 2sη2

]
fx +

h
√

µa
[(1 + s) cos E − η1] fy

)
(2.183)

dη2

dE =
a2

µ

([(
η2 − 1

)
cos E + 2sη1

]
fx +

h
√

µa
[(1 + s) sin E − η2] fy

)
(2.184)

where the quantities s and η are defined by

s =
r

a
= 1− η1 cos E − η2 sin E (2.185)

η =
√

η2
1 + η2

2 . (2.186)

Let us explain the meaning of the elements η1 and η2. The orbital radius is written in function of the eccentric anomaly
E (Battin, [5])

r = a (1− e cos E) ,

and it is differentiated with respect to E while keeping a and e constants, to have

dr

dE
= ae sinE . (2.187)

Noting that this is actually the derivative of r with respect to E , namely u given in Eq. (2.182), we write the identity

ae sinE = a (η1 sin E − η2 cos E) ,

from which the following relations are inferred

η1 = e cos (E −E) (2.188)
η2 = e sin (E −E) . (2.189)

The form of the expressions in (2.188) and (2.189) suggests that η1 and η2 are the projections of the eccentricity vector
e on two orthogonal axis. In order to identify these axis, we first write e by exploiting the rotating frame RE , which is
defined in Eq. (2.157)

e = e cos E iE − e sinE jE .

Then, after introducing the frame U = 〈u1, u2, u3〉 by means of the rotation

[u1, u2, u3] = Q [iE , jE , kE ] (2.190)

where

Q =




cos E − sin E 0
sin E cos E 0

0 0 1



 ,

we project e into U to get
e = e cos (E − E)u1 + e sin (E −E)u2 ,

and by considering Eqs. (2.188) and (2.189), it results

e = η1 u1 + η2 u2 . (2.191)
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We conclude that the elements η1 and η2 are the projections of the eccentricity vector e into the frame U . Furthermore,
from Eqs. (2.188) and (2.189) we derive

√
η2
1 + η2

2 = e (2.192)

tan−1

(
η2

η1

)
= E − E . (2.193)

The frame U rotates with respect to RE at the angular velocity

ΩE = −dE
dt

kE = −1
r

√
µ

a
kE , (2.194)

and its absolute angular velocity, with the help of Eqs. (2.160), (2.163) and (2.194), can be written as

wE + ΩE =
rfz

h
[cos (ϑ− E) iE + sin (ϑ− E) jE ]−

[
∂ (ϑ− E)

∂v
· f

]
kE . (2.195)

Equation (2.195) shows that U has a fixed attitude when f is zero. In this case, the anomalies E and E coincide as stated
by Eq. (2.148), and from Eqs. (2.188) and (2.189) it follows that η1 = e and η2 = 0, which are substituted in Eq. (2.191)
to yield e = eu1.

The angular momentum per unit mass h is itself an integral of the motion. We include in our set of elements the
inverse of h instead of h. Thus, the third element is η3 = 1/h. From Eq. (2.174), we get

dη3

dE = −a2

√
a

µ
(η3s)

2 fy

with s given in Eq. (2.185).

2.5.3.2 Elements attached to the unit quaternion p̃

When perturbations are not applied, Eqs. (2.175) - (2.178) simplify as follows

dp1

dE =
1
2

p2
dp3

dE =
1
2

p4

dp2

dE = −1
2

p1
dp4

dE = −1
2

p3 .

This system of four first-order differential equations is analytically integrated and the solutions are

p1 = p10 cos
(

1
2
-E

)
+ p20 sin

(
1
2
-E

)

p2 = p20 cos
(

1
2
-E

)
− p10 sin

(
1
2
-E

)

p3 = p30 cos
(

1
2
-E

)
+ p40 sin

(
1
2
-E

)

p4 = p40 cos
(

1
2
-E

)
− p30 sin

(
1
2
-E

)

(2.196)

where the angle-E is the difference
-E = E (t)− E (t0) (2.197)
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being E (t0) the value taken by E at the initial time, and p10, p20, p30 and p40 the four constants of integration which are
defined by the initial conditions

p10 = p1 (E0) p20 = p2 (E0) p30 = p3 (E0) p40 = p4 (E0) .

Let us go back to the perturbed case and search for a solution of Eqs. (2.175) - (2.178) in the same form of Eqs. (2.196)
wherein p10, p20, p30 and p40 are in general functions of the independent variable E . So we plug Eqs. (2.196) into Eqs.
(2.175) - (2.178) and derive the variational equations

dp10

dE =
1
2

√
a

µ

(
r2fz

h
[p40 cos (λ +-E)− p30 sin (λ +-E)]− p20βp

)
(2.198)

dp20

dE =
1
2

√
a

µ

(
r2fz

h
[p30 cos (λ +-E) + p40 sin (λ +-E)] + p10βp

)
(2.199)

dp30

dE = −1
2

√
a

µ

(
r2fz

h
[p20 cos (λ +-E)− p10 sin (λ +-E)] + p40βp

)
(2.200)

dp40

dE = −1
2

√
a

µ

(
r2fz

h
[p10 cos (λ +-E) + p20 sin (λ +-E)]− p30βp

)
(2.201)

where λ and βp are defined in Eqs. (2.168) and (2.169) and -E in Eq. (2.197). The argument of the trigonometric
functions is λ +-E = ϑ− E + E − E (t0).

The four elements p10, p20, p30 and p40 are the components of a unit quaternion p̃0 = (p40, p0) with the scalar part
given by p40 and the vectorial part that is expressed as

p0 = p10u10 + p20u20 + p30u30 .

The unit orthogonal triad of vectors U0 = 〈u10, u20, u30〉 are defined by the transformation

[u10, u20, u30] = Q0 [iE , jE , kE ]

with

Q0 =




cos-E − sin-E 0
sin-E cos-E 0

0 0 1



 ,

which represents a rotation of-E around the axis kE of RE . In the previous section we introduced the frame U , through
Eq. (2.190), in order to give an interpretation of the elements η1 and η2. It can be checked that U0 has the same angular
velocity of U , provided by Eq. (2.195), and as a consequence the same attitude dynamics. The only difference between
the attitudes of the two frames U0 and U is that they are always rotated one respect to the other of the constant angle E (t0)
on the osculating orbital plane.

2.5.3.3 Set of variational equations of motion for the generalized orbital elements and the physical time

Let us replace h into Eqs. (2.183) and (2.184) with

h =
√

µa (1− η2) (2.202)

where η = e, as can be verified by plugging Eqs. (2.188) and (2.189) into Eq. (2.186), and h with 1/η3 into Eqs.
(2.198) - (2.201), wherein moreover we substitute r with the product as, with s reported in Eq. (2.185). After doing these
preliminary operations, the complete set of differential equations of the generalized orbital elements

S =
(

η1 η2 η3 p10 p20 p30 p40

)
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takes the form

dη1

dE =
1

an2

([(
1− η2

)
sin E − 2sη2

]
fx +

√
1− η2 [(1 + s) cos E − η1] fy

)
(2.203)

dη2

dE =
1

an2

([(
η2 − 1

)
cos E + 2sη1

]
fx +

√
1− η2 [(1 + s) sin E − η2] fy

)
(2.204)

dη3

dE = −a

n
(η3s)

2 fy (2.205)

dp10

dE =
a

2n
η3

[
s2 (p40 cos γ − p30 sin γ) fz − p20Bp

]
(2.206)

dp20

dE =
a

2n
η3

[
s2 (p30 cos γ + p40 sin γ) fz + p10Bp

]
(2.207)

dp30

dE = − a

2n
η3

[
s2 (p20 cos γ − p10 sin γ) fz + p40Bp

]
(2.208)

dp40

dE = − a

2n
η3

[
s2 (p10 cos γ + p20 sin γ) fz − p30Bp

]
(2.209)

where

s = 1− η1 cos E − η2 sin E

η =
√

η2
1 + η2

2

n =
√

µ

a3
(2.210)

γ = ϑ− E + E − E (t0)

and the term Bp in Eqs. (2.206) - (2.209), which has the character of an acceleration, is

Bp =
βp

a2η3
=

1
1 + η3

√
µa

([
s
(√

1− η2 + 2
)
− 1 + η2

]
fx + w

(√
1− η2 − s

)
fy

)

with
w =

1
a

dr

dE = η1 sin E − η2 cos E .

The eccentric anomaly E, required to compute γ, is calculated by

E = E − tan−1

(
η2

η1

)

which is derived by rearranging the terms in Eq. (2.193). Once E is known, the true anomaly is computed by (Battin, [5])

ϑ = 2 tan−1

(√
1 + η

1− η
tan

E

2

)
.

In order to determine the semi-major axis a we exploit again Eq. (2.202) and find the expression

a =
[
µη2

3

(
1− η2

)]−1 .

The set of differential equations is completed with the equation of the physical time

dt

dE =
s

n
(2.211)

which is Eq. (2.171) wherein we replaced r by as and employed Eq. (2.210).
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Finally, we introduce an element with respect to the time t, called the time-element. In order to find it we consider the
pure Kepler motion. By integrating Eq. (2.211), the physical time is obtained

t = c0 + a
3
2 E − a

3
2 (η1 sin E − η2 cos E) (2.212)

where c0 is the constant of integration. The term

t∗ = c0 + a
3
2 E , (2.213)

which linearly depends on the independent variable E , is the time-element, according to the definition given by Stiefel
and Scheifele [75]. Let us, firstly, plug Eq. (2.213) into Eq. (2.212) and rearrange the terms to get

t∗ = t + a
3
2 (η1 sin E − η2 cos E) . (2.214)

Then, we differentiate Eq. (2.214) with respect to E . After exploiting Eqs. (2.211) and (2.154) and simplifying, it results

dt∗

dE = a
3
2 + a

7
2

([
3u + b2 + 2s (s− 1)

]
fx − 2ubfy

)
(2.215)

where, for convenience, we have introduced the auxiliary quantities

u = η2 cos E − η1 sin E b =
√

1− η2
1 − η2

2 .

Once t∗ is known, the physical time is calculated by

t = t∗ + a
3
2 u .

In Appendix D.1 we explain the procedure to calculate the generalized orbital elements from the position and velocity
at the initial time, and in Appendix D.2 to calculate position and velocity from the generalized orbital elements.

2.5.4 Results
Let us call from now on ELI-DROMO the regularization scheme for closed orbits we have proposed. We compare in terms
of accuracy the following methods: 1) the element formulation derived by Stiefel and Scheifele from the Kustaanheimo-
Stiefel regularization (see ref. [75]), 2) the Sperling-Burdet regularization (see ref. [22]), 3) the special perturbation
method DROMO developed by Peláez (2007, [66]), 4) our regularized set of elements for closed orbits ELI-DROMO
(Baù et al., 2011, [6] and [9]), and 5) Cowell’s method. Two examples are considered: a spacecraft flying in a highly
elliptic orbit acted upon by the Earth’s oblateness and the Moon’s gravitational attraction, and a spacecraft perturbed by a
constant radial acceleration. Detailed descriptions of these examples are found respectively in sections (2.3.1) and (2.3.2).

As regard ELI-FROMO, we did not implement in the code the time-element equation (2.215), whose influence on the
performance of our method will be assess in the next future. As in DROMO, we performed non-dimensionalization of
length and time by means of the same reference quantities introduced in Eqs. (2.18). The preliminary investigation of
the accuracy of ELI-DROMO reveals a great performance as evidenced by Tabs. (2.9) and (2.10). Further tests will be
carried out in the next future also to address the important aspect of the computational time and to better understand how
the method behaves in the critical scenario of a near-parabolic orbit.

2.5.4.1 Highly elliptic orbit in a extremely perturbed scenario

We select the example 2b at page 122 of the book by Stiefel and Scheifele [75] to test the performance of ELI-DROMO.
The problem, which was also exploited by Bond and Allman [22] and Peláez [66] for comparing different special per-
turbation methods, consists in propagating the position of a satellite for 288.12768941 mean solar days (msd) around the
Earth under the perturbing action of the Earth’s oblateness (J2) and the Lunar gravitational attraction. The initial osculat-
ing orbit has an inclination of 30◦ with respect to the equatorial plane and an eccentricity of 0.95. The satellite is initially
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Steps/rev. RSS (km) -R (km)

Stiefel-Scheifele 62 0.0143 0.0102
Sperling-Burdet 62 0.0352 0.0082
DROMO 62 0.0622 0.0622
ELI-DROMO 62 0.0126 0.0102
Cowell 200 120.82 65.98

Table 2.9: Comparison of special perturbation methods for the problem of oblate Earth plus the Moon.

at the perigee at the distance R0 = 6800 km. Details on the implementation of the two perturbations are available in the
book [75].

Apart from Cowell’s method, the other propagators adopt a fictitious time as independent variable. In order to de-
termine the value of the fictitious time corresponding to the physical time of 288.12768941 msd, we created an iterative
procedure based on the Newton-Raphson algorithm. Once we have calculated the final value of the independent variable,
the comparison between the special perturbation methods is performed by means of an embedded Runge-Kutta numerical
method 4(5) of fourth order with Cash-Karp parameters.

The components of the final position vector assumed as correct



x1,ref

x2,ref

x3,ref



 =




−24219.0501
227962.1064
129753.4424



 km

were obtained by integrating DROMO [66], Sperling-Burdet [22] and Stiefel-Scheifele’s variables [75] with an explicit
Runge-Kutta 5(4) pair of Dormand and Prince set at the maximum accuracy and keeping the common figures. Let
rf = (x1,f , x2,f , x3,f) and rref = (x1,ref , x2,ref , x3,ref) be the approximated and correct positions of the spacecraft at the
desired final time. Two errors are computed, the root sum square

RSS =
√

(x1,f − x1,ref)
2 + (x2,f − x2,ref)

2 + (x3,f − x3,ref)
2

and the difference between the orbital radii

-R =
∣∣∣
√

x2
1,f + x2

2,f + x2
3,f −

√
x2

1,ref + x2
2,ref + x2

3,ref

∣∣∣ .

The results are shown in Tab. (2.9).

2.5.4.2 Constant radial acceleration

Let us consider a spacecraft in a circular orbit of radius R0 around the Earth. A constant radial acceleration of magnitude
fx = R0w2

0/8 is applied, where w0 =
√

µ/R3
0 is the orbital mean motion at the initial time. For this specific value of

radial acceleration, the condition given by r = 2R0 represents an equilibrium configuration which is unstable (see ref.
[5]). Starting from the circular orbit of radius R0, the trajectory spirals out until the orbital radius doubles the value of
R0. Then, the motion proceeds along a circular orbit of radius 2R0.

This case is particularly challenging from a numerical point of view. Due to the numerical errors produced during
the integration of the differential equations of motion, we expect that the final configuration, which as we said before is
unstable, is kept for a limited range of time after which the trajectory will spiral in or out. Thus, we can state that the more
accurate is a propagator the bigger is the number of stable orbits, where for stable orbit we mean a near circular orbit of
radius r which satisfies the condition |2R0 − r| / (2R0) < 10−3.

An explicit Runge-Kutta 5(4) pair of Dormand and Prince is used for the numerical integration with the same relative
tolerance for all the compared methods. In Tab. (2.10) we summarize the results. In Stiefel-Scheifele and Sperling-Burdet
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N. of stable orbits

Stiefel-Scheifele 4.518
Sperling-Burdet 4.735
DROMO 4.870
ELI-DROMO 5.010
Cowell 3.451

Table 2.10: Comparison between several special perturbation methods for the problem of constant radial acceleration.

methods the radial acceleration is regarded as derivable from a disturbing potential of the form

V = −rfx .

The advantage of introducing V , is that the total energy, which is a dependent variable for these methods, remains constant
during the integration.



Chapter 3

Application of DROMO to formation flight

The team of doctoral students A. Caon, A. Valmorbida e G. Baù, coordinated by prof. E. Lorenzini of the Department
of Mechanical Engineering at University of Padova are working on different topics on formation flying. In particular, the
research activities are going on in these directions: 1) realizing a testbed that allows to carry on experimental research
about spacecraft formation flying (SFF) in an earthbound laboratory; 2) collision-avoidance and optimal control strategies
for SFF; 3) software development for the SFF hardware simulator; 4) test of formation control strategies with the SFF
hardware simulator; and 5) highly accurate propagation of spacecraft relative dynamics in formation flying. The team is
also concerned in the ESA Pilot project of the Zero Robotics SPHERES Challenge 2011 competition. In this chapter we
discuss the activity done on the last of the subjects listed above, which is of our main interest.

Two models have been developed to propagate the relative motion of a spacecraft formation flight which take advan-
tage of the special perturbation method proposed by Peláez (2007, [66]). In the first model DROMO is applied to each
mass by introducing a time synchronization of the spacecraft dynamic states. In the second model the gravitational terms
are linearized with respect to the formation center of mass which is propagated by DROMO and the relative dynamics
of each vehicle is directly integrated. For convenience the two models are referred to as DROMO-FF and DROMO-G
respectively, because the first uses DROMO for propagating the motion of each spacecraft of the formation, the latter only
for the center of mass, which in mechanics is usually indicated by G. The procedure to derive the differential equations of
motion produced by the two proposed approaches is carried out in section (3.1) following the paper [8] (2010, Baù et al.)
wherein the models were also compared in terms of computational speed for the case of a bounded triangular formation,
as shown in section (3.2).

Next, in section (3.3) we focus on DROMO-FF and compare its performance with that of Cowell’s method in terms
of accuracy and computational speed (Baù et al., 2011, [10]). DROMO-FF was embedded in the software of Guidance
Navigation and Control (GNC) developed by our team with the aim of test the robustness and fidelity of traditional and
new control algorithms (Valmorbida, Baù, et al., 2011, [84]). We conclude the chapter with section (3.4) which deals with
the assessment of the control requirements in the mission Laser Interferometer Space Antenna (LISA).

3.1 Relative dynamics
The study of relative motion between satellites is of great importance in space technology. Usually the relative motion of
the generic spacecraft, called chaser, is expressed in an orbital frame moving with a reference spacecraft, called target.
The first model of relative motion was developed by Hill (1878, [50]) in his work on the lunar theory. Clohessy and
Wilthshire [36] adapted Hill’s equations to the problem of satellite rendezvous in the 1960s. The Hill-CW equations
of relative motion were derived assuming that the distance between the target and the chaser is small compared with
the radius of the target circular orbit. These equations can be analytically integrated if the motion is supposed to be
unperturbed, and the solutions are used to obtain a rough prediction of the relative dynamics for short time spans. Lawden
[59] was the first to formulate and determine the analytical solutions of the linearized equations of relative motion valid

85
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for elliptical orbits. Many other authors have obtained solutions for this case, the most known are Tschauner and Hempel
(1965, [82]), who, like Lawden, use the true anomaly as the independent variable, and de Vries (1963, [38]), Melton
(2000, [62]), Yamanaka Ankersen (2002, [93]) and Broucke (2006, [24]), who use the time as the independent variable.

Analytical solutions to the problem of relative motion provide a tool for the preliminary design of a formation flight.
Besides, they are preferred to numerical integrators in applications where an onboard computer is used to calculate the
relative position with respect to an other spacecraft. However, the big drawback of analytical solutions is that they lose
accuracy with time, and for long-term predictions numerical algorithms are required.

In 2006 Peláez [66] formulated a special perturbation method that propagates the orbit of a material particle affected
by any kind of perturbations with a very fast and accurate numerical integration. The variation of parameters technique is
applied to a particular set of elements, which are chosen as the integrals of the unperturbed motion. This method, named
DROMO, is free of singularities related to small inclination and/or eccentricity.

Let us consider n spacecraft in formation flight around a primary body of attraction, and let I = 〈x1, x2, x3〉 be an
inertial frame with the origin placed at the primary center of mass. At time t0 the dynamic state of each spacecraft is given
by the inertial position and velocity vectors r0 and v0. The problem of determining the time evolution of the formation
is usually stated in these terms: propagate the relative dynamic states of the spacecraft with respect to a reference orbit,
and propagate this orbit. The reference spacecraft (real or virtual) should be chosen in such a way that represents the
formation position in space, and the spacecraft relative positions can be easily understood. This formulation of the problem
is suitable for planning station keeping and formation keeping control strategies.

In the sequel we use DROMO in the problem of determining the relative motion between the spacecraft of a formation
flight with respect to a reference mass, which might be one of the formation units or the formation center of mass. Two
approaches are proposed. In the first, the method is applied to each spacecraft, and the relative dynamic states with
respect to the reference mass are calculated after the integration by operating a difference between two absolute positions
and velocities. In the second approach, the method is applied only to the center of mass, which is chosen as the reference
target point, and the differential equations which govern the evolution of the relative motion are linearized and expressed
in an inertial reference frame. An example of a bounded triangular formation is used to compare the models in terms of
computational speed.

3.1.1 DROMO-FF propagator
DROMO [66] is applied to each spacecraft in order to obtain a synchronous propagation of the relative dynamic states
with respect to a reference mass, real or virtual.

If Eqs. (1.35) - (1.41) for the generalized orbital elements S = (ζ1, ζ2, ζ3, q10, q20, q30, q40) and Eq. (1.42) for the
non-dimensional time τ were integrated in sequence for the n particles, we would calculate, in general, the position and
velocity vectors of the spacecraft at different times for each integration step, even in the case that the vector containing the
values taken by the independent variable would be the same (for instance it is possible to pass as input to the numerical
integrator the instants of the independent variable wherein we desire to know the output). The reason is that the evolution
of the physical time is different for each vehicle, since the right-hand side of Eq. (1.42) depends on the specific angular
momentum and orbital radius of the spacecraft.

In order to overcome this difficulty, we first assume a unique time imposed by a generic mass of the formation, for
instance mass 1

τ1 = τi i = 2, . . . , n .

As a consequence, looking at σ as a dependent variable which varies with time, σ will take, in general, different values
for the spacecraft at the same time τ1, as one deduces from the equation

dσi

dτ1
= ζ3,is

2
i i = 1, . . . , n (3.1)

which is derived from Eq. (1.42). Hence, after introducing the n variables σi, we take σ1 as the independent variable and
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regard the remaining n− 1 quantities σi as new dependent variables. So, we have one differential equation for time

dτ1

dσ1
=

1
ζ3,1s2

1

, (3.2)

the n− 1 differential equations

dσi

dσ1
=

dσi

dτ1

dτ1

dσ1
=

ζ3,is2
i

ζ3,1s2
1

i = 2, . . . , n (3.3)

where Eqs. (3.1) and (3.2) have been exploited, and the 7× n variational equations

dSi

dσ1
=

ζ3,is2
i

ζ3,1s2
1

dSi

dσi
i = 1, . . . , n (3.4)

where the term dSi/dσi on the right-hand side represents the set of Eqs. (1.35) - (1.41) for the i-th mass. The simultaneous
numerical integration of the 8× n Eqs. (3.2) - (3.4) produces the synchronized propagation of the absolute motion of the
spacecraft. Next, by means of the relations reported in Appendix B.1, the positions ri and velocities vi are determined
from the elements in Si. If, for instance, we are interested in visualizing the relative dynamics with respect to the formation
center of mass G, then the position of G is computed by the well-known formula

rG =
1
M

n∑

i=1

miri

where M is the formation total mass, and finally, the relative positions of the spacecraft with respect to the center of mass
are computed by the difference

δri = ri − rG i = 1, . . . , n .

3.1.2 DROMO-G propagator
The absolute motion of each spacecraft is the composition of the reference mass translational motion, and the relative
motion with respect to this mass. Let us choose the formation center of mass G as the reference point of mass M , equal
to the total mass of the formation, and express the position (r) and velocity (v) of each spacecraft in the form

r = rG + δr
v = vG + δv (3.5)

where δr and δv are the relative position and velocity with respect to the center of mass. The time derivatives of r and v
are

dr
dt

= v

dv
dt

= − µ

r3
r + gp (r) + ap (r, v, t) (3.6)

where the vector gp includes the perturbative gravitational effects under consideration, and ap is the resultant vector of
the perturbative non-gravitational accelerations, which, in general, can be external or internal to the formation

ap (r, v, t) = aext
p (r, v, t) + aint

p (r, v, t) .

The dynamic state of the center of mass varies according to the equations

drG

dt
= vG

dvG

dt
=

1
M

n∑

i=1

mi

[
− µ

r3
i

ri + gp,i (ri) + aext
p,i (ri, vi, t)

]
, (3.7)
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and in order to propagate its motion through the special perturbation method DROMO [66], we should find a two-body
problem formulation of Eq. (3.7). Let us expand the gravitational terms in Eq. (3.6) about the reference path with Taylor’s
theorem. Stopping at the first order and introducing the little-o notation, we get

− µ

r3
r + gp (r) = − µ

r3
G

rG + gp (rG) + [F (rG) + Fp (rG)] δr + o (δr) (3.8)

where F (rG) and Fp (rG) are the gravity gradient matrix and the gradient matrix of the perturbative gravitational accel-
erations calculated at the center of mass position vector

F (rG) + Fp (rG) =
d
dr

(
− µ

r3
r + gp (r)

)∣∣∣∣
r=rG

.

By substituting Eq. (3.8) into Eq. (3.7), we obtain

dvG

dt
=

1
M

n∑

i=1

mi

(
− µ

r3
G

rG + gp (rG) + [F (rG) + Fp (rG)] δri + o (δri) + aext
p,i (ri, vi, t)

)

and after applying the definition of the center of mass position vector, the previous equation reduces to

dvG

dt
= − µ

r3
G

rG + gp (rG) +
1
M

n∑

i=1

mi

[
o (δri) + aext

p,i (ri, vi, t)
]

. (3.9)

Comparing Eq. (3.9) with Eq. (3.6), we recognize that they appear in the same form: the center of mass behaves like a
particle of mass M moving around the primary under the influence of the perturbative acceleration vector

aG,p = gp (rG) +
1
M

n∑

i=1

mi

[
o (δri) + aext

p,i (ri, vi, t)
]

.

Therefore, we decide to employ DROMO formulation for predicting the motion of the center of mass, and Eqs. (1.35) -
(1.42) are integrated with the non-dimensional perturbative acceleration calculated as

f̃G,p =
aG,p

rG,0 ω2
G,0

where rG,0 is the orbital distance of G at the initial time, and ωG,0 =
√

r3
G,0/µ.

At this point, we are ready to derive the equations that govern the relative dynamics of the spacecraft with respect to
the center of mass. Plugging Eq. (3.8) into Eq. (3.6) yields

dv
dt

= − µ

r3
G

rG + gp (rG) + [F (rG) + Fp (rG)] δr + o (δri) + ap (r, v, t) , (3.10)

then, Eq. (3.5) is differentiated with respect to time and Eqs. (3.9) and (3.10) are inserted to obtain the relative acceleration
vector of a generic spacecraft

d (δv)
dt

= [F (rG) + Fp (rG)] δr + o (δr) + ap (r, v, t)− 1
M

n∑

i=1

mi

[
o (δr) + aext

p,i (ri, vi, t)
]

. (3.11)

Equation (3.11) and
d (δr)

dt
= δv (3.12)
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Orbit rp (km) e i (deg) ω (deg) Ω (deg) ϑ0 (deg)

1. GEO 42241 0 30 – 0 0
2. GEO 21121 0.5 30 0 0 0
3. LEO 7040 0 30 – 0 0
4. LEO 7040 0.5 30 0 0 0

Table 3.1: Center of mass initial orbit: perigee radius (rp), eccentricity (e), inclination (i), argument of perigee (ω),
longitude of the ascending node (Ω), initial true anomaly (ϑ0, for the circular orbit it is the angle between the node vector
and the position vector).

describe the time evolution of the relative dynamic state of each spacecraft. We prefer to valuate δr and δv in the inertial
frame I, instead of the orbital frame R = {G; i, j, k}, to avoid the non-trivial determination of the time derivative of
f̃G,p, which appears in the component of the angular velocity vector w of R along i

wx = w · i =
1
s

(
f̃G,p · k

)
ωG,0 .

Finally the independent variable is switched from physical time t to fictitious time σ in Eqs. (3.11) and (3.12) by means
of Eq. (1.42).

Note that, if an external perturbative acceleration vector has the same magnitude and direction for all the spacecraft,
it disappears from Eq. (3.11) because it does not produce a differential effect on the formation relative dynamics.

3.2 Numerical comparisons between DROMO-FF and DROMO-G
From now on we will refer to D-FF and D-G to the propagators described in sections (3.1.1) and (3.1.2). They are
compared in terms of computational speed by considering for example a formation similar to that used in LISA (Laser
Interferometer Space Antenna) mission: three spacecraft of the same mass m fly around the Earth (in LISA the central
body is the Sun, see section 3.4) in a triangular formation with arms of equal length L.

The motions of the spacecraft are propagated by D-FF and D-G, first in pure Keplerian motion and then adding the
perturbing forces due to the Earth oblateness and the Moon third-body gravitational attraction. In the model D-G the
perturbations take into account only the first order in the Taylor expansions of these forces.

The spacecraft initial position and velocity vectors are calculated from the initial dynamic state of the formation center
of mass, which is specified by the four set of classical orbital elements reported in Tab. (3.1): two geosynchronous orbits
(GEO) and two low Earth orbits (LEO). In the next two sections we explain how the initial relative position and velocity
vectors of the spacecraft with respect to the center of mass are obtained for a circular and elliptical reference orbit.

3.2.1 Circular reference orbit
Let us consider a circular orbit for the center of mass. When the motion of the spacecraft is unperturbed, the propagator
D-G numerically integrates the Clohessy-Wiltshire (CW) [36] equations written with respect to the center of mass of the
triangle in an inertial frame attached to G. In the CW hypothesis the triangle can rotate like a rigid body around a spinning
axis normal to the plane where the formation lies, if the following conditions are applied:

1. the relative motion is bounded, which implies the constraint

(δvy,0)i = −2wE (δrx,0)i i = 1, 2, 3

where wE is the Earth angular velocity around its rotation axis;

2. the motion at time t0 is a rigid rotation around the axis normal to the plane where the formation lies, and the angular
velocity of this rotation coincides with wE .
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A B C

δrx,0 (km) L
√

3/6 −L
√

3/12 −L
√

3/12
δry,0 (km) 0 L/2 −L/2
δrz,0 (km) L/2 −L/4 −L/4
δvx,0 (km/s) 0 LwE/4 −LwE/4
δvy,0 (km/s) −LwE

√
3/3 LwE

√
3/6 LwE

√
3/6

δvz,0 (km/s) 0 LwE

√
3/4 −LwE

√
3/4

Table 3.2: Initial relative positions and velocities of the spacecraft A, B and C in the orbital frame R for a circular
reference orbit.

Keplerian motion Perturbed motion
tD−FF (s) tD−G (s) tD−FF (s) tD−G (s)

L1,GEO 1.6055 98.4738 11.1963 104.4350
L2,GEO 1.7520 99.9208 11.2699 105.6100
L3,GEO 1.8421 101.3234 11.3001 104.9073

Table 3.3: Comparison of the computational times of D-FF and D-G for the orbit 1 of Tab. (3.1).

The combination of these conditions determines the values±60◦ as the only two possible inclinations of the triangle plane
with respect to the reference orbital plane. We choose here the hyperbolic configuration given by the angle +60◦ (as in
LISA). The initial relative position and velocity vectors of the three spacecraft indicated by A, B, and C in the orbital
frame R referred to the center of mass are contained in Tab. (3.2).

3.2.2 Elliptical reference orbit
Let us consider an elliptical orbit for the center of mass. When the motion of the spacecraft is unperturbed, the propagator
D-G numerically integrates the Tschauner-Hempel [49] equations written with respect to the center of mass of the triangle
in an inertial frame attached to G. In order to get bounded motion near the reference orbit, we apply to each mass the
constraint (Inalhan et al., 2002, [51])

(δvy,0)i = − n (2 + e)√
(1 + e) (1− e)3

(δrx,0)i i = 1, 2, 3 (3.13)

where n and e are the mean motion and the eccentricity of the reference orbit. Equation (3.13) works only when the
initial position of G is at perigee of its osculating orbit. Eccentricity does not allow a perfect rigid motion of the triangle
around a spinning axis like in the circular case. Without performing any optimization on the initial conditions, we only
impose that the motion at time t0 is a rigid rotation around the axis normal to the triangle plane, and the angular velocity
of this rotation coincides with the angular velocity at perigee wp. The initial relative position and velocity vectors of the
spacecraft in the orbital frame R are the same contained in Tab. (3.2), where wE is replaced by wp.

After initializing the integration variables, we start the numerical integration in the following ranges of the independent
variable σ

-σGEO = σf − σ0 = 30× 2π rad
-σLEO = σf − σ0 = 15× 2π rad

where σf is the final value taken by σ and σ0 is chosen to be the initial true anomaly. Remember that σ in DROMO-FF
refers to one generic spacecraft we have selected, while in DROMO-G to the center of mass. An explicit Runge-Kutta
5(4) pair of Dormand and Prince is employed to numerically integrate the differential equations of motion.
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Keplerian motion Perturbed motion
tD−FF (s) tD−G (s) tD−FF (s) tD−G (s)

L1,GEO 8.6281 99.9242 13.8969 104.2881
L2,GEO 8.5977 100.3348 13.8702 104.2245
L3,GEO 8.5957 100.6011 13.7653 120.4167

Table 3.4: Comparison of the computational times of D-FF and D-G for the orbit 2 of Tab. (3.1).

Keplerian motion Perturbed motion
tD−FF (s) tD−G (s) tD−FF (s) tD−G (s)

L1,LEO 1.1468 43.0834 11.5984 45.2400
L2,LEO 1.4779 44.3962 11.5750 45.8455
L3,LEO 1.2829 45.0691 11.5718 46.4105

Table 3.5: Comparison of the computational times of D-FF and D-G for the orbit 3 of Tab. (3.1).

In Tabs. (3.3) - (3.6) we compare the computational times of D-FF and D-G for the four orbits of Tab. (3.1). For each
orbit three different initial arm lengths are considered

L1,GEO = 9km L1,LEO = 1.5 km
L2,GEO = 18 km L2,LEO = 3km
L3,GEO = 27 km L3,LEO = 4.5 km .

We note that:

• DROMO-FF propagator is always faster than DROMO-G, and the difference in the computational times is particu-
larly evident when the motion is unperturbed;

• DROMO-G is not very sensitive to the eccentricity both in the Keplerian and in the perturbed motion;

• perturbations have a bigger impact on the computational times of DROMO-FF than on those of DROMO-G.

In Tab. (3.7) we consider an increasing number of orbits and an arm length of 5 km with the geosynchronous circular
orbit 1 in Tab. (3.2). Note that the computational times of D-FF and D-G exhibit a near proportional increase with the
number of orbits.

The propagator D-FF is not only very fast, but also accurate in the determination of the absolute dynamic states of the
spacecraft because it is completely based on the very efficient regularized method DROMO [66]. However, it seems to
present two disadvantages with respect to the slower and less accurate propagator D-G:

1. It suffers of the round-off error: if the formation dimension is very small when compared to the center of mass
distance from the primary, then the round-off error can affect the calculation of the relative position and velocity
vectors. On the contrary, the closer and more compact is the formation the more accurate becomes D-G.

Keplerian motion Perturbed motion
tD−FF (s) tD−G (s) tD−FF (s) tD−G (s)

L1,LEO 5.1352 46.6060 9.2219 47.9290
L2,LEO 5.0999 46.9792 9.2405 48.4895
L3,LEO 5.0949 47.1498 9.2294 48.8311

Table 3.6: Comparison of the computational times of D-FF and D-G for the orbit 4 of Tab. (3.1).
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Keplerian motion Perturbed motion
N. orbits tD−FF (s) tD−G (s) tD−FF (s) tD−G (s)

150 12.94 466.42 60.05 519.47
300 15.44 980.18 113.71 1066.71
450 18.59 1591.20 171.46 1776.37
600 22.28 2250.02 231.17 2349.83

Table 3.7: Comparison of the computational times of D-FF and D-G for the orbit 1 of Tab. (3.1) with an increasing
number of orbits (L = 5km).

2. It does not give information on the effect of single perturbation terms on the formation relative dynamics, as can do
instead D-G thanks to the Taylor’s expansion that was performed with respect to the center of mass.

To summarize, the fast and accurate special perturbation method developed in 2006 by Peláez [66] is used to propagate
the relative motion of a formation flight. We propose two different models: DROMO-FF and DROMO-G. In the first
propagator, the special perturbation method is applied to each spacecraft. In the latter, the gravitational terms appearing
in the two-body problem equation of motion are expanded with respect to a reference orbit provided by the formation
center of mass G. This operation allows to write the differential equation of motion of the center of mass in the form
of a two-body problem equation. Thus, we propagate the motion of G with DROMO [66], and describe the relative
dynamics of the spacecraft with respect to a reference frame moving with G and with an inertial attitude. We compare the
computational times of the two propagators when applied to a triangular formation with bounded initial motion imposed
to the spacecraft. DROMO-FF proves to be faster than DROMO-G, and the difference in the computational time is more
evident when no perturbations are applied and for a large number of orbits. DROMO-FF, thanks to its high propagation
speed could be implemented in an onboard computer for relative motion prediction.

3.3 Performance analysis of DROMO-FF
The performance of DROMO-FF in terms of accuracy and computational speed is compared to Cowell’s method, which is
commonly chosen for the orbit propagation in astrodynamics. The simulations have been run: 1) in the same computer -
Intel Core 2 Duo 2 GHz, 1 Gb RAM; 2) with the same compiler - Matlab 7.8.0.347; 3) with the same integrating algorithm
- an embedded Runge-Kutta 4(5) of fourth order with Cash-Karp parameters.

3.3.1 Absolute keplerian motion
The motion of one mass is characterized by 8 dependent variables in DROMO, one of these variables is the physical
time. When the relative motion of a formation of n spacecraft is determined using DROMO-FF, the number of dependent
variables becomes 8× n, including: the physical time, 7× n elements or integrals of the unperturbed two-body problem
(seven for each point mass), and n − 1 variables σi which were added in order to synchronize the propagation of the
spacecraft trajectories.

In the case of pure Keplerian motion, the elements are by definition constants, while the physical time and the variables
σi, with i = 2, . . . , n, vary with the independent variable, which is denoted by σ1, or more simply σ. Besides, while the
variable time is not involved in the computation of the dynamic state of the generic i-th mass, the quantities σi explicitly
appear in the expression of the orbital radius and fix its orientation on the orbital plane. Thus, the numerical errors
introduced in σi, mainly due to truncation and round-off, also affect the position and velocity of the i-th mass.

In this section we analyze the influence of the numerical integration of the n− 1 differential equations of the variables
σi, with i = 2, . . . , n, on the accuracy and computational speed with respect to the case in which DROMO is applied to
each mass in sequence.
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Semi-major axis (km) Eccentricity Inclination (rad) Initial true anomaly (rad)

Mass 1 70000 0.9 0 0
Mass 2 70000 0.9 10−3 π

Table 3.8: Orbital elements.

Mean runtime (s) Steps

DROMO-FF 132.43 135489
DROMO 81.02 111190

Table 3.9: Mean computational runtime and integration steps for 100 revolutions.

We consider two unperturbed ellipses around the Earth, followed by mass 1 and mass 2 respectively (Tab. 3.8). Mass
1 is chosen as the reference mass, and its position and velocity are propagated with no errors, because they depend on
DROMO integrals and the independent variable σ1. The dynamic state of mass 2 instead, is determined by DROMO
integrals and by σ2, which is a dependent variable, hence affected by numerical errors. We compute the error in the final
position vector of mass 2 through the root sum square, defined as follows

RSS =
√

(x− xref)
2 + (y − yref)

2 + (z − zref)
2 (3.14)

where (x, y, z) are the inertial coordinates of mass 2 as computed by DROMO-FF, and (xref , yref , zref) are the same
components calculated analytically (or, which is the same, by employing DROMO for mass 2). The derivative of σ2 with
respect to σ1 (Eq. 3.3, for i = 2) in terms of the classical orbital elements semi-major axis (a) and eccentricity (e) appears
in the form

dσ2

dσ1
=

[
a1

(
1− e2

1

)

a2 (1− e2
2)

]3/2 (
1 + e2 cos σ2

1 + e1 cos σ1

)2

. (3.15)

Figure (3.1) shows the RSS up to 100 revolutions. We selected a very unfavorable example with two highly eccentric orbits
phased by 180 degrees, so that picks are generated in the derivative of σ2. These picks make the numerical integration less
accurate and amplify the error when mass 2 is at perigee. The RSS increases as mass 2 accumulates revolutions around
the Earth up to the maximum value of 88 meters reached in the last perigee passage. By decreasing the eccentricity down
to 0.3, for example, and keeping unchanged the semi-major axis for both orbits, the maximum RSS would be less than 3
meters. Spacecraft flying in formation move along orbits of increasingly similar shape the closer they are, thus we expect
that the error in the position made by DROMO-FF will be much smaller.

As regard the computation effort, we compare the integration steps and the computational time required to propagate
the motion of masses 1 and 2 after 100 revolutions with DROMO-FF and with DROMO applied to each mass in sequence.
We do not account for the runtime spent after the integration to calculate position and velocity starting from the dependent
variables. Besides, to minimize the effect of uncontrolled factors we repeated the simulations 30 times and averaged the
runtimes. Table (3.9) collects the results. DROMO-FF needs 63% more runtime due to the fact that the number of steps is
22% bigger and that each step is nearly one third of time slower. As we deal with less eccentric orbits this gap decreases
until the simultaneous orbit propagation operated by DROMO-FF becomes faster than propagating mass 1 and mass 2 in
sequence using DROMO.

3.3.2 Relative Motion
We select the example reported in Yamanaka and Ankersen (2002, [93]) to compare DROMO-FF with Cowell’s method
in terms of computational time and accuracy. Table (3.10) reports the classical orbital elements of the target along with
the chaser position and velocity relative to the target at the initial time. The relative motion of the spacecraft under the
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Figure 3.1: Root sum square of the error in the position vector of mass 2, calculated by Eq. (3.14).

Target
Eccentricity 0.1 and 0.7
Perigee height 500 km
Inclination 30 deg
Longitude of the ascending node 0 deg
Argument of perigee 0 deg
Initial true anomaly 45 deg

Chaser
Position (Hill frame) [100, 10, 10] m
Velocity (Hill frame) [0.1, 0.1, 0.1] m/s

Table 3.10: Target and chaser initial conditions.

influence of the perturbations due to the Earth oblateness and the Moon third body gravitational attraction is propagated
for a time interval of 50 periods of the target initial orbit. The constants implemented for the Earth, the Moon and the zonal
harmonic J2 are the same of the example 2b at page 122 of the book [75]. Figure (3.2) shows the mean computational
runtimes of DROMO-FF and Cowell’s method, each one being the average over 30 simulations, for different values of the
relative tolerance adopted in the RK 4(5) algorithm. Figure (3.3) compares the accuracy in terms of the error

E = ‖rT − rT, ref‖+ ‖rC − rC, ref‖ (3.16)

where rT and rC are respectively the target and the chaser computed position vectors, while rT, ref and rC, ref are the cor-
responding correct position vectors. These were obtained by employing DROMO, Sperling-Burdet and Stiefel-Scheifele
regularized methods integrated by DOPRI5 with the maximum accuracy and keeping the common figures in the compo-
nents.

For the case of eccentricity equal to 0.1, the least accurate propagation by DROMO-FF produces an error of 0.37
meters against the 605.38 meters of the most accurate propagation by Cowell’s method. Besides, the runtime is nearly
5 times smaller. The increase in the eccentricity up to 0.7 deteriorates the accuracy, especially of DROMO-FF, which
achieves a maximum error of 34.43 km. Nevertheless, even with the relative tolerance set equal to 10−7, DROMO-FF
is more accurate and faster, of respectively a factor 5.43 and 4.62, than Cowell’s method integrated with the maximum
accuracy.

In the previous section we dealt with the effect that the integration of the n−1 new variables σi, introduced to synchro-
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Figure 3.2: The mean computational runtime of DROMO-FF (triangle marker) and Cowell’s method (circle marker) for
the two eccentricities 0.1 (markers connected by solid lines) and 0.7 (markers connected by dash lines) is plotted versus
the relative tolerance of the RK 4(5) algorithm.
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Figure 3.3: The error, calculated by Eq. (3.16), of DROMO-FF (triangle marker) and Cowell’s method (circle marker) for
the two eccentricities 0.1 (markers connected by solid lines) and 0.7 (markers connected by dash lines), is plotted versus
the relative tolerance of the RK 4(5) algorithm.

nize the orbit propagation of n masses, has on the computational time and accuracy of DROMO-FF. A different approach
is to propagate each mass in sequence with DROMO. In the pure Keplerian motion this is equivalent in terms of accuracy
to the analytical calculation, while as regard the computational time, it is wasted mainly in the numerical integration of the
physical time, which is a dependent variable. Therefore, we are interested in checking also the performance of DROMO
applied to the target and to the chaser in sequence. For the more eccentric case (e = 0.7) and the same values of the
relative tolerance used to generate Figs. (3.2) and (3.3), the mean runtimes and the root sum squares of the errors in the
final position vectors of each spacecraft are computed and then summed together. The orbit propagation of the target and
the chaser in cascade improves the accuracy with a slight increase of the mean runtime: an error smaller then that of the
most accurate simulation by DROMO-FF is made with a mean runtime more than 8 times shorter. However, by decreasing
the relative tolerance the gap between the two approaches reduces both in terms of accuracy and mean runtime.
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0.1 m 1m

DROMO-FF 0.05 0.01
DROMO-G 2.01 2.17

Table 3.11: Relative errors (%) of DROMO-FF and DROMO-G.

3.3.3 Round-off error
There is a last issue we desire to address, the round-off error. DROMO-FF integrates the complete dynamics, without
making any approximation. It can be less accurate for the same runtime than the integration of each mass in sequence by
DROMO, but it presents the advantage of synchronizing the motion of the spacecraft so that we can appreciate the relative
trajectories from the beginning to the end of the simulations.

We have to pay attention on a possible source of error given by the differentiation operated in DROMO-FF to determine
the relative dynamics from the absolute positions and velocities. If the spacecraft are so close that have α digits in
common, and if the computer word length is β digits, (β ≥ α), then the relative state vector obtained from the difference
will have one or more components known to only β−α digits. The loose of accuracy just described is known as round-off
error. The closer the spacecraft are the smaller is the number β − α of known digits and the bigger is the relative error on
the relative dynamic state computation.

One way to overcome this error is to directly propagate the relative motion, as does DROMO-G, which was developed
also with this aim in mind. Because linearization is performed, the method is particularly suited to close formations,
which, instead, are source of round-off error for DROMO-FF. Thus, we are interested in comparing the accuracy of
DROMO-FF and DROMO-G when spacecraft are close one to the other. Let us select for the target at the initial time the
same orbit reported in Tab. (3.10), with eccentricity equal to 0.7, except the true anomaly which is set equal to 0. For the
chaser two displacements along the radial direction of the target are considered: 10 centimeters and 1 meter. The motion
is perturbed by J2 and Moon and is propagated for 20 periods of the initial osculating orbit of the target. The accuracy
on the final distance between the masses is calculated by imposing 40 steps per revolution in both the methods. The
correct final distance is calculated with the same procedure of the previous examples and is respectively of 0.943 m and
9.435 m for the two cases. The relative errors are reported in Tab. (3.11). We see that DROMO-FF is very accurate and
the relative error increases of 5 times after reducing of one order of magnitude the distance. Even if the distance between
the spacecraft is so much smaller than the orbital radius of the target, round-off does not affect the results because the
main role in the accuracy is played by the global integration error.

3.3.4 Final considerations
We propose a method, named DROMO-FF, to simultaneously propagate the relative motion of n spacecraft in formation,
based on the regularized formulation of the perturbed two-body problem developed by Peláez in 2006 [66]. DROMO-FF
is compared with Cowell’s method in terms of accuracy as well as computational time on the problem of propagating the
motion of two spacecraft flying along perturbed orbits of small and high eccentricity. In the first case DROMO-FF reduces
the error of at least a factor 1650 with moreover a saving in runtime for this case of a factor 5. In the latter DROMO-FF
is 4 orders of magnitude more accurate and only from 2 to 3 times slower than Cowell’s method. On the basis of these
results we decided to employ DROMO-FF in our software simulator.

3.4 Control issues in LISA mission
The propagator DROMO-FF was slightly modified in order to include it into the orbital propagation block inside the
Guidance, Navigation and Control (GNC) unit developed by the doctoral student A. Valmorbida (2011, [84]). Because
the control dictates the frequency of propagation, and remembering that DROMO adopts an independent variable different
from the physical time, a specialized code was created to allow to stop the integration at the desired instants of time. The
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utilization of DROMO-FF instead of the traditional Cowell’s method is likely to improve the reliability of the control
strategies adopted in formation flying especially when we expect that the control action will apply few corrections to the
trajectory.

As a preliminary study in this direction, we employed DROMO-FF for the orbital propagation of the three spacecraft
of the Laser Interferometer Space Antenna (LISA) mission in order to give a qualitative assessment of the control require-
ments of the mission. First, we give a brief overview of the science, orbital configuration, spacecraft and technology of
LISA, and then we show the results of the numerical simulations.

3.4.1 Science
The Cosmos sings with many strong gravitational voices, causing ripples in the fabric of space and time that carry the
message of tremendous astronomical events: the rapid dances of closely orbiting stellar remnants, the mergers of massive
black holes millions of times heavier than the Sun, the aftermath of the Big Bang. These ripples are the gravitational
waves predicted by Albert Einstein’s 1915 general relativity; nearly one century later, it is now possible to detect them.

In general relativity, Einstein’s theory of space-time and gravity, the geometry of space-time is not a passive setting for
the dynamics of matter and energy, but an equally dynamic player. Matter and energy cause space-time curvature, which
in its turn guides the free fall of matter and energy. Remarkably, space-time can support curvature without any matter:
black holes, the densest masses in the Universe, are objects of pure space-time wrapped around itself; gravitational waves
are self-sustaining, undulatory excitations of space-time, carrying energy and traveling at the speed of light.

The Laser Interferometer Space Antenna (LISA) is a planned space mission to detect and accurately measure gravita-
tional waves from astronomical sources. LISA was originally conceived as a joint effort between the United States space
agency NASA and the European Space Agency (ESA). However, on April 8th 2011, NASA announced that it would likely
be unable to continue its LISA partnership with the European Space Agency, due to funding limitations. ESA is planning
to begin a full revision of the mission’s concept, renamed the Next Gravitational-Wave Observatory (NGO), with selection
of the winning Cosmic Vision L-class mission candidate due in February 2012.

LISA will observe astrophysical and cosmological sources of gravitational waves of low frequencies (0.03 milliHertz
to 0.1 Hertz, corresponding to oscillation periods of about 10 hours to 10 seconds). This frequency band contains the
emission from massive black-hole binaries that form after galactic mergers; the song of compact stellar remnants as they
slowly spiral to their final fate in the black holes at the centers of galaxies; the chorus of millions of compact binaries in our
own Galaxy; and possibly the faint whispers of waves generated shortly after the Big Bang, and speculative astrophysical
objects such as cosmic strings and domain boundaries. Measuring all these signals will give us insight into a broad
range of unanswered science questions: the birth and history of galaxies and massive black holes; the behavior of general
relativity and space-time in their most extreme regime; the expansion history of the Universe; the physics of dense matter
and stellar remnants; and maybe new physics characteristic of the early Universe or of string theory.

3.4.2 Orbital configuration
LISA will measure gravitational waves by using laser interferometry to monitor the fluctuations in the relative distances
between three spacecraft, arranged in an equilateral triangle with 5 million km arms, and flying along an Earth-like
heliocentric orbit. Passing gravitational waves create oscillations in the inter-spacecraft distances, as measured by light,
in directions transverse to the direction of wave propagation.

The desired configuration for the LISA spacecraft is such that the three spacecraft form an equilateral triangle which
changes as little as possible throughout the mission. This desire arises from instrumental noise introduced into the
gravitational-wave measurement that must be dealt with if there are changes in the distances between spacecraft. The
current nominal orbital configuration places the spacecraft in a triangle with a center 1 AU from the Sun and trailing the
Earth by 20◦ in its orbit (see Fig. 3.4). From the Earth the triangle appears to rotate about the center with a period of
one year. The location of the center of the formation 20◦ behind the Earth represents a compromise between the desire to
have the constellation far from the Earth, to reduce distortions caused by the Earth’s gravitational pull, and the desire to
be closer to the Earth, to reduce the amount of propellant needed and to ease the requirements on the telecommunications
system. Each spacecraft is in an orbit around the Sun with major axis D = 2 AU and eccentricity e = D/

(
d
√

3
)
, where
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the spacecraft walls. As long as the spacecraft do not disturb the mirrors, then, ideally,
only gravitational waves would perturb their relative motion. “Drag-free control” can be
employed to ensure that the spacecraft always remain centred on the mirrors.

A Michelson interferometer in space could be realised using three spacecraft: one at the
“corner” to house the light source, beam splitter, and detector, plus one at each “end” to
house the remote mirrors. But for practical reasons the actual implementation is slightly
different. Each spacecraft contains two telescopes, each one pointing at one of the distant
spacecraft at the other two corners of the triangle, and two lasers, one per telescope. Each
laser is phase-locked either to its companion on the same spacecraft, forming the equiva-
lent of a beam-splitter, or to the incoming light from the distant spacecraft, forming the
equivalent of an amplifying mirror, or light transponder. Together the three spacecraft
function as a Michelson interferometer with an additional redundant third arm. (Fig-
ure 2.5). Each spacecraft is located at the vertex of a large triangle whose sides measure

Figure 2.5 Three spacecraft in a triangle, with one at each vertex.

5×106 km in length. This arm length has been chosen to optimise the sensitivity of LISA
at the frequencies of known and expected sources. A factor of 2 increase may be de-
sirable. However, an arm length increase beyond that would begin to compromise the
high-frequency sensitivity when the light in the arms experiences more than half of the
gravitational wave period. An interferometer shorter than 5×106 km would begin to lose
the interesting low-frequency massive blackhole sources. It would give less scientific in-
formation but would not be any easier to build or operate because the spacecraft and the
interferometry would be essentially the same.

Each spacecraft is actually in its own orbit around the Sun. The three individual orbits
have their inclinations and eccentricities arranged such that, relative to each other, the
spacecraft rotate on a circle ‘drawn through’ the vertices of the giant triangle which is
tilted at 60◦ with respect to the ecliptic. With this special choice of orbits, the triangular
geometry of the interferometer is largely maintained throughout the mission. The centre
of the triangle is located on the ecliptic — 20◦ behind the Earth — and follows the Earth
on its orbit around the Sun. Ideally, the constellation should be as far from Earth as
possible in order to minimise gravitational disturbances. The choice of 20◦ is a practical
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Figure 3.4: Three spacecraft in a triangle, with one at each vertex.

d is the separation between the vertices (5 million km for the nominal LISA orbits). If the spacecraft were all in the same
plane then the separation between spacecraft would vary between De and De/2 over the course of one year. By giving
the spacecraft an inclination i = d/D, and by appropriate choice of the node, anomaly, and argument of perihelion, the
separation between spacecraft is constant to order De2/2 (see ref. [80]).

This heliocentric orbital configuration has the property that the directions between spacecraft are always within 30◦ of
being orthogonal to the direction to the Sun. This allows the spacecraft to be designed such that sunlight never enters the
interferometer optics, and also allows the spacecraft to have the Sun always illuminating the same part of the spacecraft.

Both the nature of the elliptical orbits and planetary perturbations will cause small changes in the lengths of the
sides of the triangle formed by the three spacecraft. These orbital changes of distance between spacecraft will impose
Doppler shifts on the interferometer signals that will have to be removed using on-board oscillators (clocks). Noise
from the oscillators will then corrupt the distance measurements. The amount of noise introduced depends on the size
of the Doppler shift and the performance of the oscillator. The spacecraft are designed to be drag-free so that the only
significant forces affecting the proof masses at the center of each spacecraft are gravitational. In the simplest case the
only free parameters that can be adjusted to minimize the arm rates-of-change are the initial positions and velocities
of the proof masses, which then move under the influence of the gravitational field of the Sun and planets. For the
heliocentric configuration the typical arm-length changes due to the initial shape of the orbits are of order De2 with a
main period T of one year. For an arm length d = 5 × 106 km, this implies a maximum arm rate-of-change of order
v = (2π/T ) d2/ (3D) ≈ 5 m/s. Perturbations due to the Earth and other planets cause larger changes in the arm lengths
after a few years. The degradation is larger when the formation is nearer the Earth.

3.4.3 Spacecraft
The LISA spacecraft will be launched from a single medium-lift rocket and injected into an Earth-escape trajectory.
The three spacecraft will then leave the rocket, and each will be guided by an individual propulsion module to its own
independent orbit around our Sun. After reaching the final orbits, about 13 months after launch, the propulsion modules
will separate. Each spacecraft orbit will then evolve under gravitational forces alone, and remain stable for the mission
duration goal of ten years.

The spacecraft configuration is shown in Fig. (3.5). Each of the three LISA spacecraft is designed as a short cylinder,
2.8 m × 0.76 m. It supports a Y-shaped tubular structure, the payload thermal shield, which serves to reduce the effects
of changes in the solar luminosity on the optical assemblies contained in the two arms of the Y. A top lid across the
cylinder (not shown in Fig. 3.5) prevents sunlight from striking the payload thermal shield. Extending out from the
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Figure 7.1 One of the three identical LISA spacecraft. The main structure is
a ring with a diameter of 1.8m, and a height of 0.48m, made from graphite-
epoxy for low thermal expansion. A lid on top of the spacecraft is removed to
allow view at the Y-shaped thermal shield (indicated here as semitransparent)
encasing the two payload arms.

direction varies between about 78◦ and 84◦. The major part of this variation is due to
the eccentricity of the Earth orbit. As the interferometer rotates in the apparent orbital
plane, making one revolution per year, while the apparent plane moves along the Earth
orbit around the Sun, the spacecraft rotate about their X-axes at a rate of about 1◦/day,
while the X-axes precess at about the same rate.

Figure 7.2 shows the interior of the spacecraft and the lay-out for the payload. The two
optical assemblies each contain a 30 cm diameter telescope and an optical bench centered
about a platinum-gold alloy proof mass. Telescope and optical bench are mounted from
the payload cylinder, a graphite-epoxy cylinder which is gold-coated to thermally isolate it
from the payload thermal shield. the optical bench is supported from its payload cylinder
by ceramic rods with small thermal conductivity. The payload cylinders are attached at
the front to two actuators (not shown) and at the rear to a flexure mount.

7.1.2 Propulsion module

At launch, each spacecraft is attached to a propulsion module. The propulsion module
provides the capability to maneuver the spacecraft/propulsion module composites into the
final orbits, using solar electric propulsion (SEP). The deployed configuration is shown in
Figure 7.3 .

After reaching the final orbits, about 13 months after launch, the propulsion modules are
separated from the spacecraft to avoid having excess mass and solar panels near the proof
masses within the spacecraft.
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Figure 3.5: One of the three identical LISA spacecraft. The main structure is a ring made from graphite-epoxy for low
thermal expansion. A lid on top of the spacecraft is removed to allow view at the Y-shaped thermal shield (indicated here
as semitransparent) encasing the two payload arms.

structural cylinder is a sun shield that keeps sunlight off the cylinder wall. Solar panels, mounted on the solar shield,
power the spacecraft. The spacecraft equipment is mounted on the inside wall of the structural cylinder: two telescopes,
two lasers and two test masses, arranged in two optical assemblies pointed at the other two spacecraft. This forms three
Michelson-like interferometers, each centered on one of the spacecraft, with the platinum-gold test masses defining the
ends of the arms. The LISA radio antennas and micro-Newton thrusters are mounted on the outer wall of the cylinder.
The two antennas on each spacecraft have a diameter of 30 cm, and operate in the X and Ka bands; they communicate
with NASA’s Deep Space Network. Low and medium-gain antennas are mounted on short booms at the lower side of the
structural cylinder.

In the operational heliocentric orbit the spacecraft nominal orientation is such that the yz-plane coincides with the
plane of the interferometer. Thus the spacecraft x-axes make an angle of 30◦ with the Sun direction. As the interferometer
rotates in the apparent orbital plane, making one revolution per year, while the apparent plane moves along the Earth orbit
around the Sun, the spacecraft rotate about their x-axes at a rate of about 1◦/day, while the x-axes precess at about the
same rate.

3.4.3.1 The LISA sensitivity

The LISA sensitivity (the strength of the gravitational-wave signals to which LISA is sensitive, as a function of frequency)
is limited at low frequencies by test-mass acceleration noise; at mid frequencies by laser shot noise and optical-path
measurement errors; and at high frequencies by the fact that the gravitational wavelength becomes shorter than the LISA
arm length, reducing the efficiency of the interferometric measurement. LISA can determine a source position in the sky
using AM and FM modulation (much like radio transmissions). For sources above 1 milliHertz, LISA will observe the
Doppler shifts of gravitational-wave frequencies as LISA orbits the Sun (which changes the relative velocity between
LISA and the source). At lower frequencies, LISA will measure the amplitude modulations induced on the signals by the
yearly rotation of the LISA triangle (which changes the angle between the LISA sensitive arms and the incoming waves).
Both of these methods can provide sub-degree location accuracy for strong sources.
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3.4.4 Technology
LISA will be the first dedicated gravitational-wave observatory in space. So far, the only space searches for gravitational
waves have been performed using measurements of radio signals from spacecraft on their way to other planets; these
missions were not optimized for gravitational wave searches. By contrast, LISA will employ an advanced system of laser
interferometry and some of the most sensitive measuring instruments ever flown.

LISA detects gravitational waves by measuring the change in separation between freely floating test masses, so sources
of both external and internal disturbance need to be eliminated or damped down to extremely low levels. By minimizing
such disturbances, motions that would imitate or mask the effect of gravitational waves are less likely to occur. To
accomplish this, the LISA mission relies on two core technologies: drag-free operation and laser interferometry.

3.4.4.1 Drag free and attitude control

An essential task of the spacecraft is to protect the mirrors from any disturbances which could jostle them around and
create phase-signals that appear as gravitational waves. Examples of external disturbances are the pressure from the
light of the Sun and its very small variations, the variable solar magnetic field, and distortion of the LISA array by the
gravitational effects of the Earth and Moon. Examples of internal disturbances are the interaction of the electrical field
generated by the spacecraft computer acting on the test masses, effects from residual gas pressure near the test masses,
and thermal radiation by the electrodes used to measure the spacecraft position. Consider the momentum of the light from
the Sun which amounts to an average pressure of about 5 × 10−6 N/m2. The internal dynamics of the Sun lead to small
variations - less than one percent - in this photon pressure, which occur at the low frequencies within LISA’s range of
interest. Although this variable photon pressure may seem rather small, if it were allowed to act on the cubical mirrors,
the resulting motion would be 104 times larger than the tiny motions due to gravitational waves that LISA is looking for.

By simply wrapping a spacecraft around each on”, the cubes are isolated from the solar pressure - but this is not the
complete picture. When the solar pressure blows on the surface of the spacecraft, it will move relative to the freely-
floating cube. Left alone, this motion would build up to unacceptable levels and in the extreme case, the cube would
eventually “hit the wall". To stop this from happening, the relative motion can be measured very precisely by monitoring
the change in electrical capacitance between the cube and electrodes mounted on the spacecraft. This measurement is
then converted into a force-command which instructs thrusters mounted on the outer structure of the spacecraft, to fire
against the solar pressure and keep the spacecraft centered on the cube. This concept is, for historical reasons, known as
“drag-free control”, since it was originally invented in the 1960’s to shield Earth-orbiting satellites from the aerodynamic
drag due to the residual atmospheric gases.

The thrusters used on conventional spacecraft are far too powerful for LISA. The drag-free system only needs to
develop a force of a few micro-Newtons. Furthermore, the delivered force must be smoothly controllable so that the
varying disturbance forces can be matched without introducing a further disturbance from the thrust system itself.

3.4.4.2 Laser interferometry

LISA implementation of interferometric measurements resembles the technique known as spacecraft Doppler tracking,
but it is realized with infrared laser light instead of radio waves. The laser light going out from one spacecraft to the other
corners is not reflected back directly, because diffraction losses over such long distances would be too great. Instead, the
phase of the incoming laser is measured, and used to set the phase of the outgoing laser, which is transmitted back at full
intensity: this process is known as transponding. When the transponded laser light arrives back at the original spacecraft,
it is superposed with a portion of the original laser beam, and their phases compared.

This relative phase measurement, which is referenced to the position of the two test masses, gives information about
the separation between the spacecraft. The difference between the phase measurements for the two arms gives information
about the relative changes in the two arms, which are induced by gravitational waves.

Such a two-arm interferometer can be prone to phase errors due to the fluctuations of laser frequency. If the arms were
exactly equal in length, then laser frequency fluctuations would cancel perfectly when the two phase measurements are
subtracted. Unfortunately, the freely evolving LISA orbits cause slowly changing differences between the arm lengths,
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so the phase errors must be removed in a different way. The lasers are frequency stabilized, first to an optical cavity, and
then to the 5 million kilometers interferometer arm. Any residual laser frequency noise in the LISA measurements is then
removed by post-processing on the ground using a technique called Time Delay Interferometry.

3.4.5 Solar radiation force
The most important non-gravitational force that has to be compensated by the spacecraft control subsystem is the force
due to the solar radiation. The solar radiation pressure P at the generic distance r from the Sun, can be calculated by the
relation

P = P1

(r1

r

)2

where P1 = 4.5632 × 10−6 Pa is the solar radiation pressure at the distance r1 = 1AU. When the sunlight hits the
exposed surface of the spacecraft, it can be absorbed or reflected, and reflection can be specular or diffuse. We can model
diffuse and specular radiation forces by assuming a Lambertian diffusion so that the solar radiation force is provided by
(Vallado, [83]) :

f = PA cos δ

[
(ρa + ρd) s +

(
2ρs cos δ +

2
3
ρd

)
n
]

(3.17)

where A is the area of the exposed surface, ŝ is the direction of the incoming radiation and the unit vector n̂ is normal
to the exposed surface and oriented towards the dark side. We also need the angle between the surface normal and the
incoming radiation, δ, the diffuse ρd, the specular ρs reflectivities, and the absorption coefficient ρa.

In order to compute the solar radiation force that acts upon the three spacecraft of LISA causing its displacement
with respect to the proof masses, we employ Eq. (3.17). The external sunshade, added to the outer spacecraft edge on
the Sun side, combined with the nominal cylinder flat surface provides a total Sun-facing diameter of 2.8 m with a total
surface area of 6.16 m2. The orbital configuration allows the spacecraft to be in sunlight at all time, with a maximum off
Sun angle of 30◦ (during science operations). Therefore, let us set A = 6.16 m2 and δ = 30◦. Besides, we assume that
ρa = ρs = ρd = 1/3. The direction of the incoming radiation ŝ for each spacecraft is calculated as ŝ = r/r, being r the
spacecraft position vector. For the unit vector n̂, we assume that is the sum of two orthogonal vectors

n = s cos δ − k sin δ

having introduced the direction of the specific angular momentum k, defined by

k =
r× v
‖r× v‖ .

3.4.6 Numerical simulations
The solar radiation force introduces a relative displacement between the spacecraft and the proof masses which are affected
only by gravitational forces. Thus, a control strategy is necessary to compensate for this force and avoid a collision
between the proof masses and their case.

The accurate orbital propagator DROMO-FF devoted to formation flying is utilized to predict the motion of LISA
formation over the mission duration of ten years. From an orbital point of view LISA can be thought as constituted by
six point masses, that at the initial time occupy by twos the vertices A, B and C of an equilateral triangle. Three masses,
one for each vertex, represent the proof masses and are perturbed by the gravitational forces under consideration, which
are the third-body attraction of the planets from Mercury to Saturn and of the Moon. The other three masses represent the
spacecraft and apart from the gravitational forces are perturbed also by the solar radiation force.

The initial conditions for the numerical simulations are provided in the form of orbital elements and are reported in
Tab. (3.12). Xia (2010, [92]) obtained these elements as the solution of a global optimization problem. The coast function
that was minimized is given by the weighted sum of the variations from their nominal values of the arm length, and the
trailing angle. The elements in Tab. (3.12) refer to the optimized orbits for an initial epoch on 1st March 2020, which is
the expected epoch for the spacecraft to enter their operational orbits if they will be launched at the beginning of 2019.
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A B C

radius of perielium (km) 148085283.544 148073622.224 148073213.816
eccentricity 0.0095252089 0.0096189089 0.0096206895
inclination (deg) 0.95357 0.95637 0.94999
right ascension (deg) 344.81513 104.53893 224.70686
argument of perielium (deg) 269.60197 270.1922 269.35279
true anomaly (deg) 237.82959 119.419 359.10891

Table 3.12: Initial set of orbital elements of the proof masses and spacecraft (Xia et al., 2010, [92]).
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Figure 3.6: Solar radiation forces acting upon the three LISA spacecraft.

Figure (3.6) plots the magnitude of the solar radiation forces acting upon the spacecraft, indicated by their initial
positions A, B and C. Due to this perturbation each spacecraft will increasingly separate from the correspondent proof
mass, as shown in Fig. (3.7). Note that, after ten years from the simulation start the displacements are of the same order
of magnitude of the distance between the Earth and the Moon. Finally, in Fig. (3.8) the arm lengths are plotted, which are
calculated as the distance between two proof masses.

DROMO-FF is compared in terms of accuracy to an analogous propagator for formation flying based on Cowell’s
special perturbation method, which was named Cowell-FF. Let us choose one of the LISA six masses, for instance the
spacecraft that at the simulation start is in C (see Tab. 3.12), and find its correct position after an arbitrary interval of
time. Following a common practice in astrodynamics, the motion of the selected mass is propagated up to the desired
final time by means of at least two highly accurate methods, we used the regularization schemes Kustaanheimo-Stiefel
(Stiefel & Scheifele, [75]) and Sperling-Burdet (Bond & Allman, [22]). Then, the two final positions are compared and by
keeping the common figures we can assume to know the correct final position up to the last common figure. At this point
DROMO-FF and Cowell-FF are run both integrated by a Runge-Kutta numerical method of fourth order with Cash-Karp
parameters, and the final positions of the spacecraft are obtained. Finally, the root sum square (RSS) of the position errors
are computed for different values of the relative tolerance of the numerical method. Table (3.13) contains the RSS of
the position error after six months and five years. For the same relative tolerance, DROMO-FF is at least two and three
orders of magnitude more accurate than Cowell-FF for respectively six months and five years, with small differences in
the computational time.
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Figure 3.7: Separations between the spacecraft and the proof masses due to the solar radiation pressure.
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Figure 3.8: Distances between the proof masses, which are the side lengths of the LISA equilateral triangle.

Rel. tol. RSS (km) - 6 months

Cowell-FF DROMO-FF

10−5 937.91 2.6× 10−2

10−7 15.64 3.6× 10−4

10−9 0.20 1.4× 10−5

10−11 2.3× 10−3 1.0× 10−5

Rel. tol. RSS (km) - 5 years

Cowell-FF DROMO-FF

10−5 233999.13 0.59
10−7 2311.59 1.1× 10−3

10−9 29.91 2.8× 10−4

10−11 0.33 2.8× 10−4

Table 3.13: Root sum square of the position error of one of LISA spacecraft after six months (table on the left) and five
years (table on the right), for Cowell-FF and DROMO-FF. We consider different values of the relative tolerance of the
Runge-Kutta numerical method employed to integrate the differential equations of motion.



104 CHAPTER 3. APPLICATION OF DROMO TO FORMATION FLIGHT



Chapter 4

Motion under constant tangential thrust

An analytical solution of the two-body problem perturbed by a constant tangential acceleration is derived in section (4.1)
with the aid of perturbation theory applied to the special perturbation method DROMO (Peláez et al., 2007, [66]). The
solution, which is valid for elliptic orbits with generic eccentricity, accurately describes the instantaneous variation of all
orbital elements.

In section (4.2) we present an analytical method to estimate the variation of achieved deflection for an Earth-impacting
asteroid following a continuous tangential low-thrust deflection strategy. The relatively simple analytical expressions
obtained in section (4.1) with the aid of asymptotic theory and starting from the regularized method proposed by Peláez
[66], which is particularly suitable to the asteroid deflection problem, are employed. A comparison of the derived formulas
with the numerical case is carried out showing negligible error for both early and late deflection campaigns. The results
will be of aid in planning future low-thrust asteroid deflection missions.

4.1 Analytical solution
Tangential thrust is an effective way of changing the instantaneous orbital energy of a spacecraft and has important
implications in orbital dynamics. In the framework of the two-body problem for example, it is known that when constant
acceleration is available the thrust strategy providing maximum increase (or decrease) of the instantaneous orbit semi-
major axis consists of having the thrust vector pointed along the tangent to the orbit1.

Orbit raising, planetary escape and planetary capture maneuvers can be carried out with continuous tangential low
thrust usually based on electric propulsion systems providing considerable fuel mass savings when compared to chemical
options. Because of the relatively small magnitude of the available acceleration for these systems, a low tangential thrust
maneuver typically involves multiple revolutions and relatively large thrust times which turn into a numerical burden
when it is time to simulate the trajectory evolution or, to a larger extent, in the optimization phase of low-thrust mission
design. For these reasons the problem of propagating a low tangential thrust trajectory using (approximate) analytical
methods has been analyzed by many authors in the literature starting from the late 50s and continuing until recently. The
goal has always been to find simple analytical models to provide fast but relatively accurate propagation of these types
of low-thrust orbits. Benney, in 1958 [11], first analyzes the problem of escaping from a circular orbit using tangential
thrust, which is also dealt with by Boltz (1992, [16]) and by Battin (1999, [5]). The extension to non-circular orbits is
considered by Kechichian (1998, [53]) and by Gao and Kluever (2005, [46]) who use approximate solutions following the
evolution of the averaged orbit equations of motion in Gauss form.

The problem of all these proposed methods is that each of them suffers from specific limitations. Early methods (Ben-
ney 1958; Boltz 1992; Battin 1999) can only deal with circular or almost circular orbits, which limits their applicability to
realistic problems in astrodynamics. On the other hand, more recent methods (Kechichian 1998; Gao & Kluever 2005),

1Note that the maximum increase in the orbital energy over a fixed period of time is obtained when the thrust is aligned with the primer vector
minimizing the Hamiltonian associated with the optimum control problem. This does not generally coincide with the tangent to the orbit.
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which are able to deal with elliptic orbits, can not reproduce the oscillatory variations of the orbital elements along each
orbit. Such variations can be crucial when low thrust interplanetary orbits are propagated.

We develop an approximate, yet accurate analytical model to represent the average and oscillatory time evolution of
all orbital elements by exploiting the use of perturbation theory and of a non-singular variation of parameters formulation
of the orbital dynamics.

The equations of motions for the tangential-thrust-perturbed two-body problem are written using the special perturba-
tion method developed by Peláez (2007, [66]) which has the advantage of a relatively compact and simple formulation of
the equations of motion valid for elliptic, parabolic and hyperbolic orbits and is free of singularities (with the exception
of the unusual case of rectilinear collision orbits).

Assuming the acceleration magnitude is small when compared to the local gravity (as reasonable given the limit of
current low-thrust propulsion systems) we formulate the orbit dynamic problem as a general perturbation problem in which
a small parameter, ε, represents the non-dimensional magnitude of the tangential acceleration. By a straightforward series
expansion the first-order time evolution of the three generalized orbital elements associated to the planar orbital motion
are obtained, in analytical close form, by simple quadrature. Secular and oscillatory terms are both computed, which are
generally a combination of elliptic integrals of the first and second kind. Trigonometric series for the oscillatory terms
are given in order to further speed up the computation process. The effectiveness of the approximate analytical solution
is tested for a transfer from GTO to Earth escape and from Earth to Mercury, in both cases assuming continuous and
constant tangential acceleration and no orbit plane change.

4.1.1 Equations of motion
Let us consider a particle orbiting around a primary at initial radial position r0 measured from the center of the primary
and angular position σ0 measured from the initial eccentricity vector. Let us employ, from now on, r0 as the unit of
distance and 1/Ω0 as the unit of time, where Ω0 is the angular rate of a circular orbit with radius equal to the initial radius

Ω0 =
√

µ

r3
0

with µ indicating the gravitational parameter of the primary. The dimensionless angular momentum of the initial osculat-
ing orbit can be written, for later use, as

h0 =
σ̇0

Ω0
=
√

1 + e0 cos σ0 .

Using the formulation described by Peláez (2007, [66]), and under the hypothesis that all acting perturbation forces
have a zero component along the normal to the orbital plane, the orbit geometry can be fully described by the three
generalized orbital parameters (see Eqs. A.1, A.2 and A.3)

ζ1 =
e

h
cos-γ ζ2 =

e

h
sin-γ ζ3 =

1
h

(4.1)

where h is the dimensionless angular momentum of the osculating orbit, e its eccentricity and -γ is, for the planar
orbit case, the rotation of the eccentricity vector with respect to the initial orbit. From the above expressions the orbit
eccentricity, the eccentricity vector rotation and the non-dimensional angular momentum are written, for later use, as

e =
√

ζ2
1 + ζ2

2

ζ3
(4.2)

-γ = tan−1 ζ2

ζ1
(4.3)

h =
1
ζ3

. (4.4)
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The expression of the non-dimensional semi-major axis is then (see Eq. A.7)

a =
h2

1− e2
=

1
ζ2
3 − ζ2

1 − ζ2
2

. (4.5)

The independent variable used in DROMO is, again for the planar case

σ = ϑ +-γ (4.6)

where ϑ is the true anomaly of the osculating orbit. Note that σ corresponds to the inertial angular position of the particle
measured from the initial eccentricity vector.

A Sundmann transformation, corresponding to the angular momentum variation equation, relates σ to the dimension-
less time t as

dσ

dt
=

h

r2
= ζ3s

2 (4.7)

where s is the dimensionless transverse velocity of the particle and obeys (see Eq. B.8)

s = ζ1 cos σ + ζ2 sinσ + ζ3 . (4.8)

The orbital radius as a function of ζ1, ζ2 and ζ3 can be obtained from the two equations above as

r = (ζ3s)
−1 =

(
ζ2
3 + ζ1ζ3 cos σ + ζ2ζ3 sinσ

)−1 . (4.9)

The evolution of the three generalized orbital parameters obeys Eqs. (1.35) - (1.37), here written in vector notation as

d
dσ




ζ1

ζ2

ζ3



 =
1

ζ3s3




s sinσ (s + ζ3) cos σ
−s cos σ (s + ζ3) sinσ

0 −ζ3




(

fr

fθ

)
(4.10)

where fr and fθ are, respectively, the component of the dimensionless perturbative acceleration along the instantaneous
radial and transverse direction. If the acceleration is constant and always directed along the instantaneous velocity vector
Eqs. (4.10) become

d
dσ




ζ1

ζ2

ζ3



 =
ε

ζ3s3
√

e2 + 2e cos ϑ + 1




s sinσ (s + ζ3) cos σ
−s cos σ (s + ζ3) sinσ

0 −ζ3




(

e sinϑ
1 + e cos ϑ

)
(4.11)

where

ε =
√

f2
r + f2

θ =
at

µ/r2
0

is the corresponding dimensionless value of the constant tangential acceleration at. Note that, by use of Eqs. (4.2), (4.3),
(4.6) and (4.8), Eqs. (4.11) can be put in the form

dζ

dσ
= g (ζ, ε, σ) (4.12)

where ζ = (ζ1, ζ2, ζ3)
T and g is a nonlinear vectorial function. Equations (4.12) must be integrated with the appropriate

initial conditions, namely

ζ1 (σ0) =
e0

h0
ζ2 (σ0) = 0 ζ3 (σ0) =

1
h0

where e0 and h0 are the eccentricity and dimensionless angular momentum of the initial trajectory.
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4.1.2 Asymptotic solution
When considering high specific impulse electric propulsion systems, currently the most common low-thrust solution em-
ployed in space technology, typical values for the achievable acceleration with reasonable payload masses range around
100 mN/tonne (Kemble, [54]). In most circumstances (depending on the local gravity value for the particular orbit con-
sidered) the resulting dimensionless acceleration ε will also be a small quantity, and can be used to perform an asymptotic
expansion of Eqs. (4.11) and (4.7), which characterize, respectively, the trajectory geometry and its evolution in time.

4.1.2.1 Trajectory

In the hypothesis that ε is a small quantity we write the three generalized orbital elements as power series

ζi (σ, ε) = ζi0 (σ) + ε ζi1 (σ) + o (ε) i = 1, . . . , 3 . (4.13)

Substituting into Eq. (4.12), expanding in a Taylor series and solving for like powers of epsilon, we obtain, for the zeroth
order

dζi0

dσ
= 0 ,

showing that the zeroth order terms are just the (constant) generalized orbital elements of the unperturbed trajectory

ζ10 =
e0

h0
ζ20 = 0 ζ30 =

1
h0

.

The differential equations for the first order terms result

d
dσ




ζ11

ζ21

ζ31



 =
h3

0

(1 + e0 cos σ)2
√

e2
0 + 2e0 cos σ + 1




e0 + 2 cos σ

2 sinσ
−1



 . (4.14)

Equations (4.14) can be best integrated by introducing the new variable B which obeys

tan
B

2
=

√
1− e0

1 + e0
tan

σ

2
. (4.15)

Note that B, although similar, does not exactly correspond to the eccentric anomaly of the osculating orbit, except when
σ = σ0 at the very beginning of the integration2. The following relations are derived from Eq. (4.15)

sinσ =
√

1− e2
0 sin B

1− e0 cos B
cos σ =

cos B − e0

1− e0 cos B

dB

dσ
=

1− e0 cos B√
1− e2

0

,

and substituted into Eqs. (4.14) yield

dζ11

dB
=

h3
0

(1− e2
0)

2

e0

(
e2
0 − 2

)
cos2 B + 2 cos B − e0√
1− e2

0 cos2 B
(4.16)

dζ21

dB
=

h3
0

(1− e2
0)

3/2

2 sinB (1− e0 cos B)√
1− e2

0 cos2 B
(4.17)

dζ31

dB
=

−h3
0

(1− e2
0)

2

(1− e0 cos B)2√
1− e2

0 cos2 B
. (4.18)

2In such case σ and e0 coincide with the true anomaly and eccentricity of the osculating orbit, respectively.
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Equations (4.16) - (4.18) can now be solved by quadrature leading to the following compact form as a function of B

ζ11 (B)− ζ11 (B0) =
h3

0

(1− e2
0)

2 [Q11 (e0, B)−Q11 (e0, B0)] (4.19)

ζ21 (B)− ζ21 (B0) =
h3

0

(1− e2
0)

3/2
[Q21 (e0, B)−Q21 (e0, B0)] (4.20)

ζ31 (B)− ζ31 (B0) =
h3

0

(1− e2
0)

2 [Q31 (e0, B)−Q31 (e0, B0)] (4.21)

where

Q11 (e0, B) =
B̂

0

e0

(
e2
0 − 2

)
cos2 B + 2 cos B − e0√
1− e2

0 cos2 B
dB

Q21 (e0, B) =
B̂

0

2 sinB (1− e0 cos B)√
1− e2

0 cos2 B
dB

Q31 (e0, B) =
B̂

0

− (1− e0 cos B)2√
1− e2

0 cos2 B
dB .

The above integrals are solvable analytically and are conveniently written separating a secular and oscillatory component

Qi1 (B) = Qi1,sec (B) + Qi1,osc (B) i = 1, . . . , 3 .

The secular components yield

Q11,sec = k1B Q21,sec = 0 Q31,sec = k3B

where k1 and k3 are given by

k1 =
2

(
2− e2

0

)
E (e0)− 4K (e0)
πe0

k3 =
2E (e0)− 4K (e0)

π

with K and E indicating complete elliptic integrals of the first and second kind, respectively

K (e0) =
1̂

0

dz√
(1− z2) (1− e2

0z
2)

E (e0) =
1̂

0

√
1− e2

0z
2

1− z2
dz .

The oscillatory terms, are periodic functions of period 2π and can be written for −π < B < π as

Q11,osc =
sin B

|sin B| ×
1
e0

[
2F (cos B, e0)−

(
2− e2

0

)
E (cos B, e0)− 2K (e0) +

(
2− e2

0

)
E (e0)

− ln
(

(1− e0)
−1

(
1− 2e2

0 cos2 B + e2
0 − 2e0 |sin B|

√
1− e2

0 cos2 B

))]
− k1B

Q21,osc = − 2
e0

[
tan−1

(
e0 cos B√

1− e2
0 cos2 B

)
+

√
1− e2

0 cos2 B

]

Q31,osc =
sin B

|sin B| ×
[
2F (cos B, e0)− E (cos B, e0)− 2K (e0) + E (e0)

− ln
(

(1− e0)
−1

(
1− 2e2

0 cos2 B + e2
0 − 2e0 |sin B|

√
1− e2

0 cos2 B

))]
− k3B
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where F and E are incomplete elliptic integrals of the first and second kind, respectively

F (cos B, e0) =
cos B
ˆ

0

dz√
(1− z2) (1− e2

0z
2)

E (cos B, e0) =
cos B
ˆ

0

√
1− e2

0z
2

1− z2
dz .

The oscillatory terms can be expanded in Taylor series for small e0 and written in the compact matrix form

Q11,osc = (Q1ve0)
T vS Q21,osc = (Q2ve0)

T vC Q31,osc = (Q3ve0)
T vS

where

ve0 =
(
1, e0, e2

0, e3
0, . . .

)T

vS = (sinB, sin 2B, sin 3B, . . .)T

vC = (cos B, cos 2B, cos 3B, . . .)T ,

and the matrices Qi are reported in Appendix E.
Once a first-order solution for the generalized orbital elements has been derived, Eq. (4.15) is used to express all

quantities as a function of the angular position σ if desired. Finally, the radial position as well as the orbit eccentricity,
semi-major axis and angular momentum are computed through Eqs. (4.9), (4.2), (4.5) and (4.4).

4.1.2.2 Time of flight

So far we have obtained the orbit characteristics as a function of the angular position σ. The last step is now to obtain the
generalized orbital elements as a function of time so that the spacecraft position and velocity can be inferred at any given
epoch.

The time t corresponding to a given σ for the perturbed trajectory is conveniently written as a series expansion

t (ε, σ) = t0 (σ) + ε t1 (σ) + o (ε) (4.22)

where t0 (σ) corresponds to the time of the unperturbed trajectory and the remaining part is the thrust-induced phasing
difference between the perturbed and unperturbed trajectory

-t (ε, σ) = ε t1 (σ) + o (ε) . (4.23)

By substituting Eq. (4.22) into Eq. (4.7) we obtain

dt

dσ
=

dt0
dσ

+ ε
dt1
dσ

=
1

ζ3s2
. (4.24)

After plugging the expansions (4.13) into Eq. (4.24), expanding in Taylor series and collecting terms of equal power of
epsilon we get

dt1
dσ

= − ζ31

ζ30s3
0

(s0 + 2ζ30)−
2ζ11

ζ30s3
0

cos σ − 2ζ21

ζ30s3
0

sinσ (4.25)

where
s0 = ζ10 cos σ + ζ30 = ζ30(1 + e0 cos σ) .

Equation (4.25) is expressed in function of the variable B as

dt1
dB

=
3e0 −

(
2 + 2e2

0

)
cos B + e0 cos 2B

ζ4
30 (1− e2

0)
5/2

ζ11 −
2 sinB − e0 sin 2B

ζ4
30 (1− e2

0)
2 ζ21 −

3−
(
5e0 − e3

0

)
cos B + e2

0 cos 2B

ζ4
30 (1− e2

0)
5/2

ζ31
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which can be integrated after considering the previously derived terms ζi1 in Eqs (4.19) - (4.21). The complete solution
of the integral is

t1 (B) =
h7

0

(1− e2
0)

9/2
[T (B)− T (B0)] (4.26)

where

T (e0, B) =
B̂

0

(
3e0 −

(
2 + 2e2

0

)
cos B + e0 cos 2B

)
[Q11 (B)−Q11 (B0)]

+
(
1− e2

0

)
(−2 sinB + e0 sin 2B) [Q21 (B)−Q21 (B0)]

+
(
−3 +

(
5e0 − e3

0

)
cos B − e2

0 cos 2B
)
[Q31 (B)−Q31 (B0)] dB .

By inserting Eq. (4.26) into Eq. (4.23) the phasing time difference takes the following compact form

-t (ε, B) =
ε h7

0

(1− e2
0)

9/2
[T (B)− T (B0)] .

The function T can be expressed as a sum of secular and oscillatory terms

T (B) = Tsec (B) + Tosc (B) .

The secular part yields

Tsec =
([

k3e0

(
5− e2

0

)
− 2k1

(
1 + e2

0

)]
sin B +

1
2
e0 (k1 − k3e0) sin 2B + g (e0, B0)

)
B+

3
2

(k1e0 − k3) B2 (4.27)

where
g (e0, B0) = (Gve0)

T wS0

with
wS0 = (1, sinB0, sin 2B0, sin 3B0, . . .)T

and the matrix G is given in Appendix E.
The oscillatory part yields

Tosc = (Hve0)
T vC + (P1ve0)

T vC0 cos B + (P2ve0)
T vS0 sinB + (P3ve0)

T vC0 cos 2B + (P4ve0)
T vS0 sin 2B

(4.28)
where

vS0 = vS (B = B0) vC0 = vC (B = B0)

and the matrices H and Pi are given in Appendix E.
Finally, the zeroth order (i.e. unperturbed) part of the time function obeys Kepler’s equation

t0 (B) =
h3

0

(1− e2
0)

3/2
[Tkep (B)− Tkep (B0)]

where
Tkep (B) = B − e0 sin B .
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Fig. 1 Variability of the parameter epsilon for Earth (right) and interplanetary orbits (left)

The integration process is performed in Appendix II leading to the following compact
form:

!t (e0, θ) = εh7
0

(1 − e2
0)

9/2
[T (Ẽ) − T (Ẽ0)],

where the function T (Ẽ) is derived in Appendix II.
Finally, the zeroth order (i.e. unperturbed) part of the time function obeys Kepler’s

equation:

t0(Ẽ) = h3
0

(1 − e2
0)

3/2
[Tkep(Ẽ) − Tkep(Ẽ0)],

where

Tkep(Ẽ) = Ẽ − e0 sin Ẽ .

3.3 Variability of the parameter ε

The variability of the parameter ε for Earth and interplanetary orbits is plotted in Fig. 1 con-
sidering different values of the tangential accelerations ranging from 50 to 400 mN/tonne. In
general the parameter ε is much smaller in Earth orbit than in interplanetary space, meaning
that interplanetary orbits are more difficult to propagate analytically. Low thrust orbit trans-
fer beyond Mars with tangential acceleration exceeding 100 mN/tonne would in general be
difficult to reproduce with the current analytical solution. Yet, due to the rapid decrease of the
available solar energy, such case would imply the use of nuclear electric propulsion, a space
technology which has not yet been developed. On the other hand, when considering trajec-
tories to the inner planets the higher value of the local solar gravity helps reducing ε so that
accurate analytical propagations can be obtained. An example of low thrust interplanetary
transfer to Mercury is reported later on.

4 Rectification

By comparison with an accurate numerical solution one can see that as long as the parameter
epsilon remains small the above formulas represent fairly accurately the system dynamics
along at least one revolution. Depending on the value of ε, for the multiple-revolution case,
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Figure 4.1: Variability of the parameter epsilon for Earth (left) and interplanetary orbits (right).

4.1.2.3 Variability of the parameter ε

The variability of the parameter ε for Earth and interplanetary orbits is plotted in Fig. (4.1) considering different values of
the tangential accelerations ranging from 50 to 400 mN/tonne. In general the parameter ε is much smaller in Earth orbit
than in interplanetary space, meaning that interplanetary orbits are more difficult to propagate analytically. Low-thrust
orbit transfer beyond Mars with tangential acceleration exceeding 100 mN/tonne would in general be difficult to reproduce
with the current analytical solution. Yet, due to the rapid decrease of the available solar energy, such case would imply
the use of nuclear electric propulsion, a space technology which has not yet been developed. On the other hand, when
considering trajectories to the inner planets the higher value of the local solar gravity helps reducing ε so that accurate
analytical propagations can be obtained.

4.1.3 Results
Simulations have been run to compare the analytical formulas with an accurate numerical integration. We have considered
two test cases: a low-thrust spiral out maneuver from a geostationary transfer orbit to Earth escape and an interplanetary
low-thrust trajectory from Earth to Mercury.

4.1.3.1 GTO to Earth escape

For the first test case we consider a spacecraft in a Earth geostationary transfer orbit of eccentricity e0 = 0.72 and ini-
tial semi-major axis of 24000 km, subject to a continuous and constant tangential acceleration at of 100 mN/tonne and
neglecting other perturbative accelerations3. Assuming the orbit transfer starts at pericenter, the corresponding dimen-
sionless angular momentum is h0 =

√
1 + e0 ≈ 1.3 while the dimensionless tangential acceleration is ε = at/g0 ≈

1.13× 10−5, where g0 = 8.28 m/s2 is the local gravitational acceleration at the beginning of the orbit raising maneuver.
A first numerical comparison has been conducted in order to check the degree of convergence of the proposed analyt-

ical solution without updating the initial conditions at intermediate steps. Figure (4.3) plots the analytical and numerical
solution for the evolution of the eccentricity over 100 orbital revolutions. A very good match is retained throughout un-
til 20-30 orbits when the analytical solution starts, mostly due to the decreasing value of the local gravity as the orbit
apoapsis increases. Note that because the eccentricity increases around periapsis but decreases to a major extent around
apoapsis, a net decrease in eccentricity is obtained until almost escape conditions where the eccentricity rapidly increases
toward unity. By employing an optimized (non-tangential) thrust direction one would take advantage of the high ini-
tial eccentricity to escape much more quickly while avoiding the orbit eccentricity to decrease too much throughout the

3The same example is reported on page 249 of Kemble [54].
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Fig. 3 Comparison between analytical and numerical solution for the evolution of the eccentricity in a GTO
orbit raising maneuver
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Fig. 4 Percentage of phasing (dark) and position error (grey) of the analytical solution for the GTO orbit
raising (left) and the Mercury transfer (right)

of the local gravity as the orbit apoapsis increases. Note that because the eccentricity increases
around periapsis but decreases to a major extent around apoapsis a net decrease in eccen-
tricity is obtained until almost escape conditions where the eccentricity rapidly increases
toward unity. By employing an optimized (non-tangential) thrust direction one would take
advantage of the high initial eccentricity to escape much more quickly while avoiding the
orbit eccentricity to decrease too much throughout the maneuver.

A much more accurate solution can be obtained by performing analytical rectification. By
doing this twice per orbital revolution a very good match between the analytical and numerical
solution is obtained up to almost escape conditions as plotted in Fig. 5. The corresponding
percentage position and phasing error as a function of the angular position are plotted in
Fig. 4.

5.2 Earth to mercury

For the second test case we consider a 35-months low-thrust orbit transfer from Earth to
Mercury employing a constant and continuous thrust At = 200 mN/tonne. For simplicity the
Earth and Mercury orbits are considered coplanar and circular. To make the trajectory more
realistic, a launch !V of 2 km/s in the inward radial direction is applied to the spacecraft in
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Figure 4.2: Comparison between analytical and numerical solution for the evolution of the eccentricity in a GTO orbit
raising maneuver.Asymptotic solution for the two-body problem
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Fig. 5 Comparison between analytical and numerical solution for an orbit raising maneuver from GTO to
earth escape. The plotted quantities are the orbit eccentricity (left) and semimajor axis (right). The analytical
formulas are propagated twice per orbital revolution

Fig. 6 Low thrust
Earth–Mercury orbit transfer.
Planets orbits are assumed
coplanar and circular for
simplicity. The small difference
between the numerical and
analytical trajectory cannot be
appreciated from this plot
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order to arrive at Mercury with almost zero relative velocity. This results in an initial eccen-
tricity e0 ! 0.067 while the initial dimensionless angular momentum is h0 = 1. The dimen-
sionless tangential acceleration is ε = At/g0 ≈ −3.37 × 10−2, where g0 ≈ 0.0059 m/s2 is
the sun gravitational acceleration at 1 AU. The interplanetary trajectory is depicted in Fig. 6
while a comparison between numerical and analytical solution is presented in Fig. 7. Due to
the much higher value of epsilon, compared with the previous case, the analytical formulas
have been propagated three times per revolution in order to achieve sufficient accuracy. In
this way both the position and phasing error can be kept below 2% (Fig. 4).

Note that in a real mission scenario the need to perform a plane change maneuver severely
complicates the trajectory design problem introducing thrust arcs with time-varying in- and
out-of-plane thrust components. While the current model is clearly not suitable to describe
these types of trajectories an attempt to extend its capability to the three-dimensional case
will be conducted in the future.
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Figure 4.3: Comparison between analytical and numerical solution for an orbit raising maneuver from GTO to Earth
escape. The plotted quantities are the orbit eccentricity (left) and semi-major axis (right). The analytical formulas are
propagated twice per orbital revolution.

maneuver.
A much more accurate solution can be obtained by performing analytical rectification. By doing this twice per orbital

revolution a very good match between the analytical and numerical solution is obtained up to almost escape conditions as
plotted in Fig. (4.3).

4.1.3.2 Earth to Mercury

For the second test case we consider a 35-month slow-thrust orbit transfer from Earth to Mercury employing a constant
and continuous thrust at of 200 mN/tonne. For simplicity the Earth and Mercury orbits are considered coplanar and
circular. To make the trajectory more realistic, a launch -V of 2 km/s in the inward radial direction is applied to
the spacecraft in order to arrive at Mercury with almost zero relative velocity. This results in an initial eccentricity
e0 ≈ 0.067 while the initial dimensionless angular momentum is h0 = 1. The dimensionless tangential acceleration is
ε = at/g0 ≈ −3.37 × 10−2, where g0 ≈ 0.0059 m/s2 is the Sun gravitational acceleration at 1 AU. The interplanetary
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Asymptotic solution for the two-body problem
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Fig. 5 Comparison between analytical and numerical solution for an orbit raising maneuver from GTO to
earth escape. The plotted quantities are the orbit eccentricity (left) and semimajor axis (right). The analytical
formulas are propagated twice per orbital revolution

Fig. 6 Low thrust
Earth–Mercury orbit transfer.
Planets orbits are assumed
coplanar and circular for
simplicity. The small difference
between the numerical and
analytical trajectory cannot be
appreciated from this plot
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order to arrive at Mercury with almost zero relative velocity. This results in an initial eccen-
tricity e0 ! 0.067 while the initial dimensionless angular momentum is h0 = 1. The dimen-
sionless tangential acceleration is ε = At/g0 ≈ −3.37 × 10−2, where g0 ≈ 0.0059 m/s2 is
the sun gravitational acceleration at 1 AU. The interplanetary trajectory is depicted in Fig. 6
while a comparison between numerical and analytical solution is presented in Fig. 7. Due to
the much higher value of epsilon, compared with the previous case, the analytical formulas
have been propagated three times per revolution in order to achieve sufficient accuracy. In
this way both the position and phasing error can be kept below 2% (Fig. 4).

Note that in a real mission scenario the need to perform a plane change maneuver severely
complicates the trajectory design problem introducing thrust arcs with time-varying in- and
out-of-plane thrust components. While the current model is clearly not suitable to describe
these types of trajectories an attempt to extend its capability to the three-dimensional case
will be conducted in the future.
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Figure 4.4: Low thrust Earth-Mercury orbit transfer. Planets orbits are assumed coplanar and circular for simplicity. The
small difference between the numerical and analytical trajectory can not be appreciated from this plot.C. Bombardelli et al.
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Fig. 7 Comparison between analytical and numerical solution for an Earth to Mercury transfer. The analytical
formulas are here rectified three times per orbital revolution

5.3 Variation of argument of periapsis over a continuous thrust arc

Let our spacecraft be located at initial radius r0 and angular distance θ0 from the pericenter of
an elliptic orbit with initial eccentricity e0. Let us apply a continuous and constant tangential
thrust acceleration of magnitude At along the arc [θ0, θ ]. The corresponding value of the
parameter ε is given by Eq. (15).

The variation of the argument of periapsis across the thrust arc is just the rotation #γ of
the eccentricity vector around the angular momentum direction. The first order solution is
(Eq. 41):

#γ ! tan−1
(

q20 + εq21

q10 + εq11

)
= tan−1

(
εq21

e0/h0 + εq11

)
≈ εh0q21

e0
. (41)

where, following Eq. (27) and Eq. (47) in Appendix I we have:

q21 = h3
0

(1 − e2
0)

3/2
[Q21(e0, Ẽ) − Q21(e0, Ẽ0)],

Q21(e0, Ẽ) = − 2
e0



tan−1



 e0 cos Ẽ
√

1 − e2
0 cos2 Ẽ



 +
√

1 − e2
0 cos2 Ẽ



 .

Here Ẽ0 and Ẽ are related to θ0 and θ through Eq. (22), while h0 can be computed through
Eq. (1).

For the particular case in which the thrust is applied over an arc from −180 to 0 degree
we have:

Ẽ0 = θ0 = −π; Ẽ = θ = 0,

and the above formulas yield:

#γ [−π, 0] ! 4Atr2
0
√

1 − e0

µe2
0(1 + e0)3/2

tan−1



 e0√
1 − e2

0



 . (42)
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Figure 4.5: Comparison between analytical and numerical solution for an Earth to Mercury transfer. The plotted quantities
are the orbit eccentricity (left) and orbit radius (right). The analytical formulas are here rectified three times per orbital
revolution.

trajectory is depicted in Fig. (4.4) while a comparison between numerical and analytical solution is presented in Fig. (4.5).
Due to the much higher value of epsilon, compared with the previous case, the analytical formulas have been propagated
three times per revolution in order to achieve sufficient accuracy.

Note that in a real mission scenario the need to perform a plane change maneuver severely complicates the trajectory
design problem introducing thrust arcs with time-varying in- and out-of-plane thrust components. While the current model
is clearly not suitable to describe these types of trajectories, an attempt to extend its capability to the three-dimensional
case will be conducted in the future.
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4.2 Low-thrust asteroid deflection formula
The subject of asteroid deflection is gaining increasing attention from the scientific community and is becoming a key
topic in astrodynamics and space science. Starting in 1992 Ahrens and Harris [1] first showed that Earth-impacting
asteroids could be safely deflected by applying to the asteroid a small change in velocity (-V ) sufficiently well before
the expected impact. For a ∼ 100 m diameter asteroid the required -V could be obtained with a kinetic impactor of
reasonable mass striking the asteroid with a relative velocity of a few km/s a decade or more before the impact event.
The preliminary results of Ahrens and Harris, obtained with a simplified orbital model, were later refined by Carusi in a
series of three papers dealing with asteroid deflection by kinetic impact (2002, [32]; 2005, [30]; 2008, [31]). Employing
numerical and analytical techniques the previous authors computed the impulsive ∆V needed for deflecting an Earth-
impacting asteroid on a generic orbit as a function of the epoch of interception and including the effect of gravitational
scattering due to close approaches with the Earth and planets. In addition they considered the option of multiple kinetic
impactors (the distributed deflection approach) and analyzed the requirements of a deflection mission taking into account
the accessibility of the spacecraft terminal orbit from Earth given the current launching constraints.

The kinetic impactor strategy, although often considered the easier to implement, is only one of the many non-nuclear
deflection methods proposed in the literature. The use of solar ablation (Melosh, 1993, [61]), gravitational pull (Lu &
Love, 2005, [60]) and ion beam irradiation (Bombardelli & Peláez, 2011, [18]) have been suggested as possible contactless
low-thrust deflection methods which can gently modify the asteroid trajectory while eliminating the risk of fragmentation.
Many subkilometer asteroids are thought to be rubble piles and could get easily disrupted by an impacting spacecraft the
more so the smaller their diameter (Carusi, [31]).

The computation of the asteroid deflection magnitude following a continuous low thrust acceleration can be demand-
ing from a numerical point of view and approximate analytical formulas are highly desirable. For instance, a basic
question that needs to be answered when dealing with low-thrust strategies is the influence of the different asteroid orbital
parameters on the final achievable deflection. Similarly to the case of impulsive strategies, a first crude estimation of the
achievable low-thrust deflection was developed for the case of an asteroid in circular orbit (Scheeres, 2004, [69]) and
assuming a constant continuous thrust phase followed by a coasting phase until the encounter epoch. A more detailed
analysis was later provided by Izzo (2007, [52]), who derived a semi-analytical quadrature formula, which can be used to
compute a low-thrust deflection provided the time between the beginning of the maneuver and the expected impact epoch
is sufficiently large. The formula was then employed to speed up a trajectory optimization algorithm aimed at achieving
maximum deflection given the available spacecraft mass that can be launched into orbit.

In a recent article (Bombardelli, Baù and Peláez, 2011, [19]) a first-order analytical solution for the orbit evolution
under constant tangential thrust was obtained with the aid of perturbation theory and a new set of orbital elements (Peláez
et al., 2007, [66]). The capability of representing both secular and periodic variations of the orbit position with any
value of the orbit eccentricity and the high accuracy obtainable starting from weakly perturbed low-thrust orbits renders
the method particularly suitable to the low-thrust asteroid deflection problem, in which applying a continuous tangential
thrust is effective for changing the asteroid energy and maximize the deflection.

In this section we apply the analytical theory developed in [19], and illustrated in section (4.1), to obtain a fully
analytical low-thrust deflection formula capable of accurately computing the shift in the asteroid b-plane coordinates due
to a continuous tangential thrust maneuver followed by a coasting phase. We will report mainly the content of the article
by Bombardelli and Baù (2011, [17]). In order to keep the model and the equations as simple as possible we assume no
close encounters with solar system planets occur between the beginning of the maneuver and the expected impact date
and that the magnitude of the thrust (or drag) acceleration is constant.

The structure of the section is the following. First we compute analytical expressions to estimate the total b-plane
asteroid deflection and minimum orbit intersection distance (MOID) as a function of the radial distance (-r) and time
delay (-t) accumulated during the deflection and evaluated at the expected impact angular position on the asteroid orbit.
In the subsequent subsection we provide analytical expressions to accurately compute -r and -t assuming a constant
tangential thrust arc of given amplitude followed by a coasting arc until the impact event. In the third subsection the accu-
racy of the complete deflection formulas are evaluated by comparison with a full numerical solution. Finally, simplified
and compact formulas for both the total deflection and the MOID are then obtained by accounting for dominant secular
terms only.
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4.2.1 Kinematics of asteroid deflection
In the sequel we will provide an analytical expression to quantify the achieved asteroid deflection given the accumulated
variation of the position and velocity vector at the unperturbed impact event. In general terms we define impact event the
outcome in which an asteroid and a selected spot in the Earth vicinity pass through a given region of space at the same
instant of time. The selected spot can be, for example, just the Earth center, a point on the Earth surface, a resonant return
keyhole (Valsecchi et al., 2003, [85]). While the present analysis is valid independently of what impact point is chosen,
we will here refer, for clarity, to the case of an asteroid passing through the center of the Earth.

In the present section, the following simplifying assumptions will be made:

1. the asteroid orbital plane is invariant;

2. the Earth orbit is assumed circular of radius rE = 1AU;

3. the asteroid displacement from the impact point, as a result of the deflection action and any additional perturbation
force, is small relatively to the radius of the Earth heliocentric orbit;

4. no close encounters with the Earth or other planetary bodies occur before the deflection maneuver ends.

Let us employ as reference length and time units the Earth orbit radius rE and the reciprocal of the Earth mean motion
1/ΩE , and let 〈X, Y, Z〉 be the coordinates along the axes of an inertial reference system with X along the unperturbed
asteroid orbit eccentricity vector, Z orthogonal to the asteroid orbit plane and Y following the right-hand rule.

The non-dimensional inertial position and velocity of the unperturbed asteroid with respect to 〈X, Y, Z〉 is written as

(XA, YA, ZA)T =
p0

1 + e0 cos ϑ
(cos ϑ, sin ϑ, 0)T

(
ẊA, ẎA, ŻA

)T
=

1
√

p0
(− sinϑ, e0 + cos ϑ, 0)T (4.29)

where e0, ϑ and p0 are the eccentricity, true anomaly and dimensionless parameter of the initial asteroid orbit, respectively.
Let us suppose that for ϑ = α the object is predicted to collide with the Earth. After denoting with e0 and p0 the

asteroid eccentricity and dimensionless orbit parameter evaluated at the impact event the necessary condition for α in
order to have an impact is

α = ± cos−1

(
p0 − 1

e0

)
, (4.30)

and a collision will be possible as long as the asteroid eccentricity e0 and non-dimensional asteroid semi-major axis a0

evaluated at the impact event satisfy

a0 (1− e0) < 1 < a0 (1 + e0) ⇔ |cos α| ≤ 1 .

In equation (4.30) and in the remainder of the section the upper sign of the double sign notation refers to 0 < α < π.
If we assume, with no loss of generality, that the predicted impact occurs at the asteroid ascending node with respect

to the ecliptic, the Earth position projected onto 〈X, Y, Z〉 as a function of time t measured from the the impact event is
written as

(XE , YE , ZE)T = (cos t cos α− sin t sinα cos i, cos t sinα + sin t cos α cos i, − sin t sin i)T (4.31)

where i is the asteroid orbit inclination. The corresponding Earth velocity results in
(
ẊE , ẎE , ŻE

)T
= (− sin t cos α− cos t sin α cos i, − sin t sin α + cos t cos α cos i, − cos t sin i)T . (4.32)

Let vA and vE indicate, respectively, the unperturbed asteroid velocity vector and the Earth velocity vector both
evaluated at the impact event (ϑ = α, t = 0). By excluding the case in which vA and vE are parallel, which will be dealt
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with in Appendix F, let 〈x, y, z〉 represent an inertial reference system centered at the Earth-asteroid impact point and
with axes directions defined as

ux =
vA

‖vA‖
uz =

vA × vE

‖vA × vE‖
uy = uz × ux .

Using Eqs. (4.29), (4.30) and (4.32) we have

vA =



∓

√
e2
0 − (p0 − 1)2

e0
√

p0
,

e2
0 + p0 − 1
e0
√

p0
, 0





T

(4.33)

vE =



∓

√
e2
0 − (p0 − 1)2

e0
cos i,

p0 − 1
e0

cos i, − sin i





T

. (4.34)

If we restrict ourselves to a small interval of time -t " 1 around the impact event, we can consider the motion of
both the Earth and the asteroid as uniform rectilinear with good approximation. In this hypothesis the trajectories of the
two bodies are represented by two straight lines in the unperturbed 〈x, y〉 plane and intersecting with each other at the
time of the impact. Besides, if we now assume a deflection maneuver is applied to the asteroid by some artificial means or,
in more general terms, the asteroid orbit is affected by an external perturbation, its velocity vector at the impact event can
be considered virtually unchanged with respect to the unperturbed case4. Conversely the asteroid position at the impact
event will have shifted from the origin of 〈x, y, z〉 to the point (-x, -y, -z)T. Under the uniform rectilinear motion
assumption, the corresponding shift of the asteroid image in the b-plane can be determined with simple geometrical
considerations.

First of all, following Valsecchi et al. (2003, [85]), we consider the (ξ, η, ζ) planetocentric b-plane frame in which the
η axis is directed along the asteroid velocity relative to the Earth, the ζ axis is in the direction opposite to the projection
on the b-plane of the heliocentric velocity of the Earth and ξ follows the right-hand rule. The ξ axis, which as shown in
the previous reference corresponds to the direction of the minimum orbit intersection distance (MOID), is orthogonal to
the heliocentric Earth and asteroid velocity vectors and coincides with the previously defined z axis. With reference to
Fig. (4.6) the image on the b-plane of a point (-x, -y, -z)T obeys

{
ξ = −- z

ζ = −- x sin θ −-y cos θ
(4.35)

where 0 < θ ≤ π is the angle between the asteroid inertial velocity and the asteroid relative velocity with respect to the
Earth. The total deflection results in

δ =
√

ξ2 + ζ2 . (4.36)

If the asteroid is deflected from a direct impact towards the Earth center, the Earth gravitational effect can be added
by noticing that δ is the distance between the Earth and the incoming trajectory asymptote. The real deflection is then
the distance between the Earth and the vertex of the geocentric hyperbolic orbit and can be computed from the vis-viva
integral (see for instance Battin, [5])

d =
√

δ2 + a2
h − ah (4.37)

where ah is the dimensionless semi-major axis of the asteroid hyperbolic trajectory

ah =
µE

µSv2
∞

4When close encounters with planetary bodies are excluded, as done here, typical velocity changes applied to asteroid are, at most, of the order of
cm/s, completely negligible when compared to their heliocentric velocity.
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Figure 4.6: Asteroid-Earth encounter geometry.

with µE and v∞ indicating the Earth gravitational parameter and the non-dimensional inbound relative velocity, respec-
tively. The latter can be computed from Eqs. (4.33) and (4.34) as

v∞ = ‖vA − vE‖ =

√
e2
0 − 2p3/2

0 cos i + 3p0 − 1
p0

.

Clearly if d is smaller than the Earth radius Eq. (4.37) is no longer meaningful.
One now needs to relate -x, -y and -z to the characteristics of the perturbed orbital motion of the asteroid. Since

the orbit plane is not affected by the deflection, when the asteroid reaches the impact angular position α it will have, in
the most general case, an accumulated orbital radius variation -r and a time delay -t when compared to its original
unperturbed trajectory. Because of the uniform rectilinear motion approximation, the accumulated time delay -t gives
rise to a position shift along the velocity vector and its contribution is given by

-x1 = −vast-t

where vast can be taken as the magnitude of the unperturbed heliocentric asteroid velocity at impact, which is computed
directly from Eq. (4.33) as

vast = ‖vA‖ =

√
e2
0 − 2p0 − 1

p0
.

On the other hand the variation-r affects in general all three components of the position shift as

-x2 = -r (ur · ux) (4.38)
-y = -r (ur · uy) (4.39)
-z = -r (ur · uz) (4.40)

where ur = (cos α, sin α, 0)T is the unit vector of the unperturbed asteroid position at the time of the impact and is
expressed as

ur =

(
p0 − 1

e0
, ±

√
e2
0 − (p0 − 1)2

e2
0

, 0

)T

.

By employing Eqs. (4.30), (4.33), (4.34), and after some algebraic simplifications Eq. (4.38) yields
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-x2 = ±-r ×

√
e2
0 − (p0 − 1)2

e2
0 + 2p0 − 1

,

so that the overall displacement along x is

-x = -x1 +-x2 = −-t×

√
e2
0 − 2p0 − 1

p0
±-r ×

√
e2
0 − (p0 − 1)2

e2
0 + 2p0 − 1

. (4.41)

Similarly, Eqs. (4.39) and (4.40) can be put in the final form

-y = ∓-r × p0

√
e2
0 − (p0 − 1)2 cos i√

(e2
0 + 2p0 − 1)(e2

0 + 2p0 − 1− p2
0 cos2 i)

(4.42)

-z = −-r × p0 sin i√
e2
0 − p2

0 cos2 i + 2p0 − 1
. (4.43)

Note that for the case in which the asteroid orbit is circular |-z| = |-r|,-x = −vast-t and-y = 0.
Finally the angle θ is expressed as

cos θ =
(vA − vE) · vA

‖vA − vE‖ ‖vA‖
=

e2
0 + 2p0 − 1− p3/2

0 cos i
√

e2
0 + 2p0 − 1

√
e2
0 + 3p0 − 1− 2p3/2

0 cos i
(4.44)

sin θ =
√

1− cos2 θ . (4.45)

What is left to compute is now the accumulated encounter delay and radial variation,-t and-r for the perturbed asteroid
orbit until the impact event following a given deflection strategy.

4.2.2 Optimal low-thrust deflection strategy
When reasonable warning time is available, that is, the deflection maneuver starts sufficiently early in time with respect to
the actual predicted impact, the most effective way to deflect an asteroid is to modify the semi-major axis (or, equivalently,
the energy) of the asteroid orbit (Ahrens, [1]) hence obtaining a secular growth of the time delay at encounter and, in turns,
a secular shift along the ζ axis of the Earth encounter b-plane. In other words, the phasing term vast-t, related to the
orbit energy variation, is dominant over the asteroid orbit radial variation-r provided the deflection maneuver is initiated
sufficiently early in time.

What is left to determine is then the thrust steering angle needed to obtain the maximum increase (or decrease) in orbit
semi-major axis. For the low-thrust asteroid deflection case, in which the orbital elements vary by an extremely small
amount, such optimum condition corresponds to having the thrust vector virtually tangent to the orbit at all times (Song
et al., 2007, [73]).

Given these considerations, we will assume, for the present work, the asteroid undergoes a continuous tangential
thrust phase followed by a coasting phase until the predicted impact event. During the thrust arc the acceleration will
be kept constant hence allowing to make use of a recently published analytical solution for the constant tangential thrust
acceleration along a generic orbit (Bombardelli, Baù and Peláez, 2011, [19]). It is worth pointing out that this assumption
is compatible with low thrust deflection missions based on nuclear electric propulsion.

4.2.3 Dynamics of asteroid deflection under constant tangential thrust
We provide accurate analytical expressions to estimate the accumulated radial variation-r and time delay-t following
a purely tangential deflection maneuver with constant thrust acceleration. The problem is formulated as follows.
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A continuous tangential thrust acceleration of constant magnitude is applied to the asteroid across the trajectory arc
[σ0, σ1] with σ denoting the asteroid angular position measured from its initial eccentricity vector. In the general case
the thrust can be applied over multiple revolutions. All orbital perturbations other than the deflection acceleration are
neglected. Following the thrust phase the asteroid is left on its final osculating orbit, where all external perturbations
are neglected, until it enters the sphere of influence of the Earth. The coasting trajectory arc from the end of the thrust
maneuver until Earth approach is denoted with [σ1, σ2 = α].

4.2.3.1 Radial displacement

Following the procedure carried out in section (4.1) the asteroid trajectory can be characterized by the generalized orbital
parameters ζ1, ζ2 and ζ3 defined by Eqs. (4.1). Here, unlike subsection (4.2.1), the reference units for length and time
are, respectively, the asteroid pericenter radius rp0 at the beginning of the thrust maneuver and the reciprocal 1/Ω0 of the
angular rate of a circular orbit with radius equal to rp0

Ω0 =
√

µS

r3
p0

.

In order to avoid confusion we will indicate with ρ and τ , respectively, the orbit radius and time when using rp0 and 1/Ω0

as reference units.
The eccentricity vector magnitude and rotation can be related to ζ1, ζ2 and ζ3, for later use, through Eqs. (4.2) and

(4.3). The instantaneous orbit radius ρ is a function of the angular position σ and the three generalized orbital parameters
ζi as follows (Eq. 4.9)

ρ =
(
ζ2
3 + ζ1ζ3 cos σ + ζ2ζ3 sinσ

)−1 .

Here we are interested in the radius variation -ρ between the unperturbed and actual trajectory evaluated at the impact
point angular position α, that is

-ρ =
(
ζ2
3 + ζ1ζ3 cos σ + ζ2ζ3 sin σ

)−1 −
(
ζ2
30 + ζ10ζ30 cos α + ζ20ζ30 sin α

)−1 (4.46)

where ζi0 are the generalized orbital elements of the unperturbed trajectory of eccentricity e0

ζ10 =
e0√

1 + e0

ζ20 = 0

ζ30 =
1√

1 + e0
.

The evolution of ζ1, ζ2, ζ3 along the thrust arc [σ0, σ1] obeys Eqs. (4.13)

ζ1 = ζ10 + ε ζ11 + o (ε) (4.47)
ζ2 = ζ20 + ε ζ21 + o (ε) (4.48)
ζ3 = ζ30 + ε ζ31 + o (ε) (4.49)

where ε is the ratio between the tangential acceleration and the local gravitational acceleration at the beginning of the
maneuver

ε =
Ft/mast

µS/r2
p0

with Ft and mast indicating the thrust magnitude and asteroid mass, respectively.
After substituting Eq. (4.30) and Eqs. (4.47) - (4.49) into Eq. (4.46) and expanding in Taylor series for small ε we

obtain

-ρ =
ε (1 + e0)

3/2

e0p2
0

×
[
(1− p0) ζ11 ∓ ζ21

√
e2
0 − (p0 − 1)2 − e0 (p0 + 1) ζ31

]
+ o (ε) . (4.50)
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The terms ζi1 appearing in the above equation are derivable from Eqs. (4.19) - (4.21) and take the expressions

ζ11 =
Q11 (E1)−Q11 (E0)
(1 + e0)

1/2 (1− e0)
2

ζ21 =
Q21 (E1)−Q21 (E0)

(1− e0)
3/2

ζ31 =
Q31 (E1)−Q31 (E0)
(1 + e0)

1/2 (1− e0)
2

where E0 and E1 are the values, at the beginning and at the end of the thrust arc, of the unperturbed orbit eccentric
anomaly, which is related to the orbit angular position σ through the equality

tan
E

2
=

√
1− e0

1 + e0
tan

σ

2
.

Formulas to compute Qi1 were provided in section (4.1).

4.2.3.2 Time delay

The total time delay at the impact angular position α is made up by one contribution -τ01 accumulated during the
thrust phase, and a second contribution -τ12 accumulated throughout the coasting phase due to the variation of the orbit
semi-major axis when compared to the unperturbed trajectory.

From Eq. (4.26), the first contribution is written as

-τ01 =
T (E1)− T (E0)

(1− e0)
9/2 (1 + e0)

where the function T is computed from Eqs. (4.27) and (4.28).
The time delay -τ12 accumulated during the coasting phase is the difference in time traveled between the same arc

-σc = σ2 − σ1 of two Keplerian orbits having different semi-major axis, eccentricity and argument of periapsis

-τ12 =
Tkep,1(Ê2)− Tkep,1(Ê1)

ζ3
3 (1− e2

1)
3/2

− Tkep,0 (E2)− Tkep,0 (E1)

ζ3
30 (1− e2

0)
3/2

(4.51)

where the functions Tkep,i are defined as

Tkep,0 (E) = E − e0 sinE Tkep,1 (E) = E − e1 sinE ,

e1 is the orbit eccentricity at the end of the thrust arc, and Ê is the final osculating orbit eccentric anomaly, whose
relationship with the arc angle σ is

tan
Ê

2
=

√
1− e1

1 + e1
tan

(σ −-γ1)
2

.

In the above equation-γ1 is the rotation of the eccentricity vector at the end of the thrust arc.
Equation (4.51) takes a compact form by expressing e1 and-γ1 as a function of the parameters ζi through Eqs. (4.2)

and (4.3), and by taking into account the expansions (4.47) - (4.49). After expanding in Taylor series and performing
algebraic simplifications we obtain

-τ12 =
ε

(1− e0)
3/2 (1 + e0)

1/2
×

[
3 (e0ζ11 − ζ31) (E2 − E1) + ζ11 (S1ve0)

T (vS2 − vS1)

+ ζ21 (S2ve0)
T (vC2 − vC1) + ζ31 (S3ve0)

T (vS2 − vS1)
]

+ o (ε)
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where

vSi = vS (E = Ei) vCi = vC (E = Ei)

and the matrices Si are given in Appendix E.
After renormalization the radial variation and accumulated time delay at the impact event, as to be used in Eqs. (4.41)

- (4.43), ultimately yield

-r =
rp0-ρ

rE
=

p0

1 + e0
-ρ (4.52)

-t =
ΩE (-τ01 +-τ12)

Ω0
=

(
p0

1 + e0

)3/2

(-τ01 +-τ12) . (4.53)

4.2.4 Analytical Deflection Formula
The evolution (measured in AU) of the asteroid image in the encounter b-plane (ξ, ζ) and the total deflection magnitude
δ can now be summarized, by use of Eqs. (4.35), (4.36), (4.41) - (4.43), (4.44) and (4.45) as follows

{
ξ = Cξr - r

ζ = Cζt-t + Cζr - r
(4.54)

δ =
√

ξ2 + ζ2

where
Cξr =

p0 sin i√
e2
0 − p2

0 cos2 i + 2p0 − 1
(4.55)

Cζt =

√
e2
0 − p2

0 cos2 i + 2p0 − 1

e2
0 − 2p3/2

0 cos i + 3p0 − 1

and

Cζr = ±

√
p0

[
e2
0 − (p0 − 1)2

]

(e2
0 + 2p0 − 1)

√
e2
0 − 2p3/2

0 cos i + 3p0 − 1
×




√

p0 cos i
(
e2
0 − p3/2

0 cos i + 2p0 − 1
)

√
e2
0 − p2

0 cos i + 2p0 − 1
−

√
e2
0 − p2

0 cos2 i + 2p0 − 1





and where the dimensional radial variation-r and time delay-t are given through Eqs. (4.50), (4.52) and (4.53), whose
different terms are found in the previous subsection. It is worth pointing out that the deflection component along the ξ
axis, Eqs. (4.54) and (4.55), is equivalent to the analytical MOID, or AMOID, computed by Bonanno (2000, [20]).

A good approximation of the achieved deflection can be obtained by considering only the ζ axis component of the
deflection and retaining only the dominant secular terms. In this way only the phasing terms-t contribute to the deflection
whose final expression, measured in AU, yields

δ ≈ 3Ft/mast

2µS/r2
E

×
p7/2
0

(
e2
0 − p2

0 cos2 i + 2p0 − 1
)1/2 (k1e0 − k3) (E1 − E0) (2E2 − E1 − E0)

(1− e2
0)

9/2
(
e2
0 − 2p3/2

0 cos i + 3p0 − 1
)1/2

. (4.56)

Similarly, an approximate expression is obtained for the MOID by neglecting oscillatory terms
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2007VK184 2011AG5

mass (kg) 3.3× 109 3.9× 109

diameter (m) 130 140
semi-major axis (AU) 1.726 1.43
eccentricity 0.57 0.39
inclination (deg) 1.22 3.68
period (days) 828 625

Table 4.1: Main characteristics of the two chosen asteroids.

ξ ≈ Ft/mast

µS/r2
E

× p2
0 sin i [(1− p0) k1 − e0 (1 + p0) k3] (E1 − E0)

e0 (1− e2
0)

2 (e2
0 − p2

0 cos2 i + 2p0 − 1)1/2
. (4.57)

Note however that for the case of MOID computation, oscillatory terms are usually not negligible even for asteroids with
low eccentricities, so Eq. (4.57) should only be used for order-of-magnitude estimates.

The accuracy of the above formulas was tested by comparison with a very accurate numerical integrator and consider-
ing a deflection initiated up to 10 years before the impact event of the two asteroids 2007 VK184 and 2011 AG5, currently
the only two known asteroids with index 1 in the Torino scale (Tab. 4.1). The former will pass at close distance with
the Earth in 2048 with no close approaches with the Earth or other planets between 2014 and 2048. The latter will come
close to our planet in 2040 with no close planetary approaches between 2028 and 2040 (as retrieved from the NEODyS
website). For each asteroid two deflection strategies have been considered. For the first strategy a continuous tangential
thrust of 1 N is applied continuously starting from 10 years before the scheduled impact. In the second strategy a 1 N
thrust is applied continuously for two years with a subsequent coasting trajectory of up to 8 years.

Figure (4.7) represents the numerically-computed deflection magnitude δ and MOID ξ showing, as already known in
the literature, that the latter can be more than two orders of magnitudes smaller when the deflection begins sufficiently
far back in time (say more than 2 years). This fact is also reflected by the representation of the trajectory of the asteroid
impact point in the b-plane as the deflection starting point moves back in time from the predicted impact (Fig. 4.8). As
it can be seen, following an initial oscillation, the ζ component starts to rapidly increase becoming dominant over the ξ
component already after half an asteroid orbital period.

Finally, the relative error of the full and approximate analytical deflection formula is plotted in Fig. (4.9). The
full analytical formula exhibits a remarkable accuracy with less than 0.02 % relative error in all cases when including
oscillatory terms up to order 20. The relative error is still very small (always less than 0.1 % except for deflection
maneuvers starting shortly before the impact) using an order 8th expansion. The approximate formula of Eq. (4.56)
works quite well (less than 10 % relative error) for deflection campaigns longer than one asteroid orbital period (where
secular terms are dominant) and is increasingly more accurate the further back from the impact event the maneuver is
initiated.
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Figure 4.7: B-plane deflection magnitude (upper row) and MOID (lower row) for asteroid 2007 VK184 (left) and
2011 AG5 (right) following a continuous tangential thrust of magnitude 1 N. The abscissa represents the time before
impact at which the maneuver starts. The thrust is applied continuously up to 10 years (solid line) or for up to 2 years and
followed by a coast phase (dash line).
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Figure 4.8: Evolution of the asteroid position in the b-plane following a continuous 1 N thrust applied up to half an
asteroid revolution prior to the scheduled impact.
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Figure 4.9: Relative error on the b-plane deflection magnitude for asteroid 2007 VK184 (left column) and 2011 AG5 (right
column) employing the approximate analytical solution given by Eq. (4.56) (grey solid line) and the full analytical solution
including oscillatory terms up to the 8th order (dark solid line) and 20th order (dash line) in the asteroid eccentricity. The
same deflection strategy described in Fig. (4.7) is employed with the upper and lower column representing the full thrust
and 2-years thrust case, respectively.
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Conclusions

The special perturbation method developed by Peláez in 2007, named DROMO, is the starting point of this PhD thesis.
It is based on a regularized formulation for solving numerically the two-body problem with arbitrary perturbations. A
deep insight into the method supported by a detailed study of the main linearization and regularization techniques devised
from the 18th century ahead, helped in revealing the guiding idea hidden behind the final set of differential equations
of motion. DROMO takes roots in the concept of projective decomposition, which is then developed in a peculiar and
original way. The three-dimensional motion of a particle attracted by a massive central body is thought as the evolution
of a moving reference frame attached to the particle. This interpretation makes natural to describe the motion as the
result of a displacement along the radial direction and a rotation of this direction in space. The independent variable is
changed from physical time to fictitious time, corresponding to the true anomaly in Keplerian motion, and the variation
of parameters technique is applied to produce a set of seven generalized orbital elements. Because the way these new
variables are related to the shape, size and orientation of the osculating orbit, was quite obscure to Peláez himself, a
careful investigation of their physical meaning was carried on. We discovered that all these elements can be explained
by introducing the family of reference frames that obey the following sequence of the Euler angles: longitude of the
ascending node Ω, orbit inclination i and (ω − σ + ϑ + c), with ω the argument of periapsis, σ the independent variable,
ϑ the true anomaly and c an arbitrary constant. The interesting property of such frames is that their attitude remains fixed
not only when the motion is unperturbed, but also when the perturbing force vector always lies on the orbital plane. Thus,
we could derive useful relations between the generalized and classical orbital elements, which have a more direct and
intuitive interpretation. Finally, Poisson’s variational method was exploited to derive the differential equations of motion.

The error propagation in Peláez’s method when used in conjunction with a numerical integration method was analyzed
in order to assess the stability of this formulation. The study of the eigenvalues of the Jacobian matrix associated to the
vector field has revealed a possible source of instability when the perturbing acceleration has a negative component along
the transverse direction. Moreover, we expect that the error growth might be amplified when integrating highly eccentric
orbits near the apoapsis or hyperbolic orbits near the asymptotes. Then, the linear system was solved and the solution
was employed to find conditions that assure an error decrease inside the selected range of propagation. Finally, analytical
recursive formulas to predict the secular contribution to the numerical error for a near circular orbit perturbed by a constant
transverse thrust were derived and tested. As far as we know, this is the first time that an error propagation analysis is
applied to a method based on integrals of the motion. Bond shown in a similar way that Cowell and Encke formulations
are mathematically unstable. Such analysis, apart from giving information on the numerical behavior of the method and
suggesting possible improvements, could also be useful for developing a new type of numerical integrators suited to the
specific perturbation acting on the particle. Future work will be to extend the analysis to elliptic and hyperbolic orbits and
consider time-varying perturbing forces.

The performance of DROMO has been extensively tested and compared in terms of accuracy and computation runtime
to a very efficient and widely used propagator, which is the combination of Cowell’s method and the Störmer-Cowell
numerical algorithm. Both the single-step Runge-Kutta-Fehlberg (RKF) and the multi-step variable order Shampine &
Gordon (DE) integrators were applied to DROMO. Two problems have been considered: a spacecraft flying along a highly
eccentric orbit perturbed by the Earth oblateness and Moon gravitational attraction, and a circular orbit perturbed by a
constant radial acceleration (the so-called Tsien problem). DROMO in combination with the high order routines shows
a great performance, far beyond that obtainable by Störmer-Cowell propagators. In particular, as regard the accuracy,

127



128 CHAPTER 4. MOTION UNDER CONSTANT TANGENTIAL THRUST

DROMO with the RKF 7(8) turns out to be the best combination in both the problems; while, as regards the function
calls, the Störmer-Cowell formulation, in some cases, but not always, exhibits the best behavior since it provides the
lowest number of calls to the derivative functions. DROMO with DE is less accurate than DROMO with RKF algorithms,
but the number of function calls is significantly reduced. It should be noticed that the influence of the function calls on
the runtime in our comparisons is low because the models representing the perturbations involved are simple and so the
code is fast to evaluate. We conclude that DROMO is recommended when highly accurate and fast orbit propagation is
mandatory.

A new regularization scheme for closed orbits was devised in the framework of projective decomposition. We propose
the eccentric anomaly as independent variable which is more appropriate for dealing with collision orbits. The motion
is traduced into a perturbed harmonic oscillation of the orbital radius, and the rotation of a reference frame moving
with the particle osculating orbit described by a unit quaternion. By embedding the Keplerian energy and by properly
choosing the moving frame, we achieved full regularization of the differential equations. Next, the variation of parameters
was applied to express the particle dynamics in function of a regular set of generalized orbital elements, which are
put in connection with the classical orbital elements and the position and velocity. A preliminary campaign to test the
new method, named ELI-DROMO, has shown that it improves the accuracy of DROMO and is competitive with the
most efficient regularization schemes known nowadays, in particular the Kustaanheimo-Stiefel method. Future work will
further investigate the performance of the method and complete an analogous formulation which is being developed for
hyperbolic orbits.

DROMO was applied to predict the relative motion in spacecraft formation flying. Two models were created. In the
first, named DROMO-FF, the absolute motion of each unit is propagated with DROMO, and the problem of synchroniza-
tion was overcome by introducing new dependent variables. Next, the relative dynamics is determined from the absolute
dynamics by differentiation. In the second model, named DROMO-G, the gravitational terms are linearized about the
formation center of mass, which is propagated by DROMO and the relative position and velocity are directly integrated.
After investigating the degradation of the accuracy and computation runtime due to the new dependent variables, the
performance of DROMO-FF was compared with Cowell’s method both integrated by a simple RKF 4(5) with Cash-Karp
parameters. For the same computation runtime DROMO is orders of magnitude more accurate than Cowell’s method, or
equivalently, for the same accuracy DROMO is orders of magnitude faster. Due to this exceptional results, we decided to
include DROMO in the guidance navigation and control unit developed by our team of formation flying coordinated by
prof. Enrico Lorenzini in order to test the robustness of new control strategies which are being employed by our group.
Finally, we consider the triangular formation of Laser Interferometer Space Antenna (LISA) mission and assess the re-
quirements of the control system for compensating the solar radiation pressure which produces a continuous drift between
the three spacecraft and the proof masses located at their center.

A new asymptotic solution for the two-body problem perturbed by constant tangential acceleration has been provided
with the aid of a special perturbation formulation of the orbit equations of motion. Relatively compact analytical formulas
accurately represent the trajectory evolution in time accounting for both secular and oscillatory variations of the orbital
elements and are not limited by high values of the orbit eccentricity. The accuracy of the method has been tested with
highly eccentric Earth orbits evolving beyond lunar distance and interplanetary orbits to the inner solar system planets
referring to tangential acceleration magnitude achievable by state-of-the-art electric propulsion engines. It is seen that for
small values (say ε < 1× 10−4) of the non-dimensional acceleration magnitude, as it is the case in Low Earth Orbit, the
approximate analytical solution can be used to accurately represent the orbit evolution along very large intervals without
iterating the process. For the worst case scenario in which the acceleration magnitude is high compared to local gravity,
which is the case of interplanetary orbits, high accuracy can be retained by updating the values of the initial generalized
parameters a few times along each orbit. A preliminary estimation suggests that a computation time savings of about
one order of magnitude can be obtained when comparing the proposed solution with very fast numerical integration of
comparable accuracy. Future work will address the more general problem in which the tangential acceleration is not
constant along the orbit and the extension of the method to non-planar trajectories.

We provide accurate analytical expressions quantifying the impact b-plane position of an Earth-impacting asteroid
after a deflection maneuver consisting of a constant tangential thrust phase followed by a coasting phase until the predicted
impact event. The deflection can be evaluated with very high accuracy (less than 0.02 % even in the case of very short
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warning time) using a complete analytical expression including high-order oscillatory terms. A less accurate but very
compact expression, accounting for secular terms only, allows estimating the total deflection with less than a few percent
relative error if we exclude deflection maneuvers starting less than one asteroid period before impact. Deflection charts
are provided for the case of asteroids 2007 VK184 and 2011 AG5, currently the only two NEOs with index 1 in the Torino
scale, showing that a continuous 1 N deflection thrust applied 5 years before impact and for a time span of 2 years is
sufficient to deflect both asteroids by more than 1 Earth radius.
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Appendix A

Generalized orbital elements vs. Classical
orbital elements

The classical orbital elements are: the semi-major axis (a), the eccentricity (e), the longitude of the ascending node (Ω),
the inclination (i), the argument of periapsis (ω) and the initial true anomaly referred to the instantaneous osculating orbit
(ϑosc

0 ). The generalized orbital elements of DROMO are ζ1, ζ2, ζ3, q10, q20, q30, q40.

A.1 From the classical orbital elements to the generalized orbital elements
We recall the definitions of the first three elements

ζ1 =
e

h̃
cos (σ − ϑ) (A.1)

ζ2 =
e

h̃
sin (σ − ϑ) (A.2)

ζ3 =
1
h̃

(A.3)

where h̃ is the non-dimensional angular momentum per unit mass, which may be expressed as

h̃ =
√

a

R0
(1− e2) (A.4)

being R0 the reference length defined in (2.18).
The orientation of the frame R0, defined by Eq. (2.32), with respect to an inertial reference frame I, is represented

by the unit quaternion q0 which is the product of four elementary quaternions

q0 = q3 (Ω) q1 (i) q3 (ω) = (q40, q10i0 + q20j0 + q30k0) (A.5)

where ω = ω + ϑosc
0 , and

q3 (Ω) =
(

cos
Ω
2

, sin
Ω
2

k0

)

q1 (i) =
(

cos
i

2
, sin

i

2
i0

)

q3 (ω) =
(

cos
ω

2
, sin

ω

2
k0

)
.
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Solving the three products in (A.5), we get

q10 = sin
(

i

2

)
cos

(
Ω− ω

2

)

q20 = sin
(

i

2

)
sin

(
Ω− ω

2

)

q30 = cos
(

i

2

)
sin

(
Ω + ω

2

)

q40 = cos
(

i

2

)
cos

(
Ω + ω

2

)
.

A.2 From the generalized orbital elements to the classical orbital elements
Semi-major axis

We sum ζ1 and ζ2 both squared and exploit Eqs. (A.1) and (A.2) to obtain

ζ2
1 + ζ2

2 =
(

e

h̃

)2

. (A.6)

Then, we subtract ζ3 squared on the left-hand side and on the right-hand side wherein Eq. (A.3) is exploited

ζ2
1 + ζ2

2 − ζ2
3 =

e2 − 1
h̃2

.

Finally, by replacing h̃ with the expression given in (A.4) and solving for the semi-major axis a, it results

a =
R0

ζ2
3 − ζ2

1 − ζ2
2

(A.7)

where a > 0 for closed orbits, a = ∞ for parabolas and a < 0 for hyperbolas.

Eccentricity

Equation (A.3) is inserted into Eq. (A.6) and solving for e, yields

e =
√

ζ2
1 + ζ2

2

ζ3
.

Specific angular momentum

From Eq. (A.3) and introducing the reference length and time (2.18), we derive

h =
R2

0

τ0

1
ζ3

.

Inclination

The rotation matrix associated to the unit quaternion q0, which is used to describe the attitude of the reference frame R0,
is expressed in function of the longitude of the ascending node Ω, the inclination i, the argument of periapsis ω and the
initial true anomaly ϑosc

0 , as

S0 =




cos Ω cos ω − sin Ω sinω cos i − cos Ω sin ω − sin Ω cos ω cos i sin Ω sin i
sin Ω cos ω + cos Ω sin ω cos i − sin Ω sinω + cos Ω cos ω cos i − cos Ω sin i

sinω sin i cos ω sin i cos i







A.2. FROM THE GENERALIZED ORBITAL ELEMENTS TO THE CLASSICAL ORBITAL ELEMENTS 133

where ω = ω + ϑosc
0 . The same matrix, in function of the components of q0, appears in the form

S0 =




1− 2 (q20)

2 − 2 (q30)
2 2q10q20 − 2q40q30 2q10q30 + 2q40q20

2q10q20 + 2q40q30 1− 2 (q10)
2 − 2 (q30)

2 2q20q30 − 2q40q10

2q10q30 − 2q40q20 2q20q30 + 2q40q10 1− 2 (q10)
2 − 2 (q20)

2



 . (A.8)

The following relations are deduced by comparing the corresponding elements of the two versions of S0 just provided:

• Longitude of the ascending node

Ω = − tan−1

(
q10q30 + q20q40

q20q30 − q10q40

)

• Inclination
i = cos−1

(
1− 2q2

10 − 2q2
20

)

• Argument of periapsis

ω = −ϑosc
0 + tan−1

(
q10q30 − q20q40

q20q30 + q10q40

)

where the initial true anomaly ϑosc
0 is given by

ϑosc
0 = σ0 − tan−1

(
ζ2

ζ1

)
.
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Appendix B

DROMO generalized orbital elements vs.
Position and Velocity

B.1 Initializing the numerical integration of the differential equations of mo-
tion

Equations (2.35) - (2.41) and Eq. (2.42) are numerically integrated with the proper initial conditions at the initial time
t0 = 0

ζ1 (t0) ζ2 (t0) ζ3 (t0) q10 (t0) q20 (t0) q30 (t0) q40 (t0) .

We show step by step how to calculate these initial conditions starting from the initial position r (t0) and velocity v (t0)
expressed in an inertial frame I = 〈x1, x2, x3〉. For convenience sake we suppress the notation (t0).

• Orbital radius
r = |r|

• Reference length and time

R0 = r τ0 =

√
R3

0

µ

• Angular momentum per unit mass (vector, magnitude and non-dimensional)

h = r× v h = ‖h‖

h̃ =
τ0

R2
0

h

• Unit vectors of the rotating frame R = 〈i, j, k〉

i =
r
r

k =
h
h

j = k× i

• Radial component of the velocity
vr = v · i

135
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• Eccentricity (vector and magnitude)

e =
v × h

µ
− r

r
e = ‖e‖

• True anomaly

ϑ = cos−1
(e · r

er

)
if vr ≥ 0

ϑ = 2π − cos−1
(e · r

er

)
if vr < 0

• By assuming that at time t0
σ = ϑ

from Eqs. (A.1) and (A.2) we find the values taken by the elements ζ1 and ζ2

ζ1 =
e

h̃
ζ2 = 0

• Element ζ3

ζ3 =
1
h̃

• Rotation matrix
S0 = (i, j, k)

with components

S (1, 1) = i · x1 S (1, 2) = j · x1 S (1, 3) = k · x1

S (2, 1) = i · x2 S (2, 2) = j · x2 S (2, 3) = k · x2

S (3, 1) = i · x3 S (3, 2) = j · x3 S (3, 3) = k · x3

where by definition

x1 =
(

1, 0, 0
)T x2 =

(
0, 1, 0

)T x3 =
(

0, 0, 1
)T

• Element q40

q40 =
1
2
√

1 + S (1, 1) + S (2, 2) + S (3, 3)

• Elements q10, q20 and q30

q10 =
S (3, 2)− S (2, 3)

4q40
(B.1)

q20 =
S (1, 3)− S (3, 1)

4q40
(B.2)

q30 =
S (2, 1)− S (1, 2)

4q40
(B.3)

If q40 = 0 Eqs. (B.1) - (B.3) are singular and we use instead

q10 =
S (1, 3)
2q30

(B.4)

q20 =
S (2, 3)
2q30

(B.5)

q30 =

√
S (3, 3) + 1

2
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If moreover q30 = 0 Eqs. (B.4) and (B.5) are singular and we use

q10 =

√
1− S(2, 2)

2
q20 =

S(1, 2)
2q10

Finally, if also q10 = 0, then we have q20 = 1.

B.2 Calculating position and velocity from the generalized orbital elements
The position r (t) and velocity v (t) at time t expressed in an inertial frame I = 〈x1, x2, x3〉 are calculated from the
generalized orbital elements

ζ1 (t) ζ2 (t) ζ3 (t) q10 (t) q20 (t) q30 (t) q40 (t)

as explained below. For convenience sake we suppress the notation (t).

• Orbital radius
r =

R0

ζ3 (ζ3 + ζ1 cos σ + ζ2 sin σ)
(B.6)

• Components of the velocity along the unit vectors i (radial velocity vr) and j (transverse velocity vt)

vr =
R0

τ0
(ζ1 sinσ − ζ2 cos σ) (B.7)

vt =
R0

τ0
(ζ3 + ζ1 cos σ + ζ2 sinσ) (B.8)

• True anomaly

ϑ = σ − tan−1

(
ζ2

ζ1

)

• Position and velocity projected into the rotating frame R = 〈i, j, k〉

r∗ =
(

r, 0, 0
)T

v∗ =
(

vr, vt, 0
)T

• Rotation matrix
S = [i, j, k]

with components

S (1, 1) = 1− 2 (q20)
2 − 2 (q30)

2 S (1, 2) = 2q10q20 − 2q40q30 S (1, 3) = 2q10q30 + 2q40q20

S (2, 1) = 2q10q20 + 2q40q30 S (2, 2) = 1− 2 (q10)
2 − 2 (q30)

2 S (2, 3) = 2q20q30 − 2q40q10

S (3, 1) = 2q10q30 − 2q40q20 S (3, 2) = 2q20q30 + 2q40q10 S (3, 3) = 1− 2 (q10)
2 − 2 (q20)

2

• Position and velocity projected into the inertial frame I

r = Sr∗

v = Sv∗ .
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Appendix C

Derivation of DROMO differential equations
of motion

Let us call first set of elements ζ =
(

ζ1 ζ2 ζ3

)T and second set of elements q0 =
(

q10 q20 q30

)T , q40.

C.1 First set
For the first set of elements Eq. (2.34) is evaluated in the orbital frame R = 〈i, j, k〉. First, we manipulate Eqs. (B.6),
(B.7) and (B.8) to express ζ in function of the components vr and vt of the velocity vector v inR. Then, by differentiating
ζ with respect to these components, we get

∂ζ

∂v
=

τ0

R0




sin σ (1 + q3/s) cos σ 0
− cos σ (1 + q3/s) sinσ 0

0 −q3/s 0



 . (C.1)

After plugging the differential equation for the time (Eq. 2.42)

dt

dσ
=

τ0

q3s2
(C.2)

and Eq. (C.1) into Eq. (2.34), and calculating the products, where f =
(
R0/τ2

0

)
f̃ , the variational equations for ζ1, ζ2 and

ζ3 take the form reported in Eqs. (2.35) - (2.37).

C.2 Second set
Equation (2.34) is evaluated in the inertial frame I = 〈x1, x2, x3〉. The matrix S0 in Eq. (A.8) may also be expressed as

S0 = [i0, j0, k0]

where k0 = k, and i0, j0 and k0 are written in I. Therefore, let us establish the following identities
[
1− 2 (q20)

2 − 2 (q30)
2
]
cos (σ − σ0) + (2q10q20 − 2q40q30) sin (σ − σ0) = i · x1

2q20q30 − 2q40q10 = k · x2

1− 2 (q10)
2 − 2 (q20)

2 = k · x3 ,
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where for deriving the first relation we need to recover Eq. (2.32). By differentiating both sides of these equations with
respect to the components of v in I and taking into account the relation

∂q40

∂v
= −q10

q40

∂q10

∂v
− q20

q40

∂q20

∂v
− q30

q40

∂q30

∂v
, (C.3)

we get
∂q0

∂v
= A−1 B (C.4)

where the elements of the matrices A and B are

A (1, 1) =
S0 (1, 3)

q40
sin (σ − σ0) A (2, 1) = −S0 (2, 2) + S0 (3, 3)

q40
A (3, 1) = −4q10

A (1, 2) = −4q20 cos (σ − σ0) +
S0 (3, 2)

q40
sin (σ − σ0) A (2, 2) =

S0 (2, 1)
q40

A (3, 2) = −4q20

A (1, 3) = 4q30 cos (σ − σ0) +
S0 (1, 1) + S0 (2, 2)

q40
sin (σ − σ0) A (2, 3) =

S0 (1, 3)
q40

A (3, 3) = 0

and

B (1, 1) = 0 B (2, 1) = − τ0

R0

S (2, 2) k · x1

s
B (3, 1) = − τ0

R0

S (3, 2) k · x1

s

B (1, 2) = 0 B (2, 2) = − τ0

R0

S (2, 2) k · x2

s
B (3, 2) = − τ0

R0

S (3, 2) k · x2

s

B (1, 3) = 0 B (2, 3) = − τ0

R0

S (2, 2) k · x3

s
B (3, 3) = − τ0

R0

S (3, 2) k · x3

s

The elements S (2, 2) and S (3, 2), which belong to the matrix

S = [i, j, k] ,

have the expressions

S (2, 2) =
[
1− 2 (q10)

2 − 2 (q30)
2
]
cos (σ − σ0)− (2q10q20 + 2q40q30) sin (σ − σ0)

S (3, 2) = (2q20q30 + 2q40q10) cos (σ − σ0)− (2q10q30 − 2q40q20) sin (σ − σ0) .

Note that if q40 = 0 some elements of the matrix A are singular. In this case A reduces to

A = 2




q30 sin (σ − σ0) −2q20 cos (σ − σ0) −2q30 cos (σ − σ0) + q10 sin (σ − σ0)

0 q30 q20

−2q10 −2q20 0



 .

Equations (C.4) and (C.2) are employed in Eq. (2.34) and the variational equations for q10, q20 and q30 are derived in
the form given by Eqs. (2.38) - (2.40). Finally, the variational equation for q40, reported in Eq. (2.41), is obtained by
exploiting Eq. (C.3).



Appendix D

ELI-DROMO generalized orbital elements
vs. Position and Velocity

D.1 Initializing the numerical integration of the differential equations of mo-
tion

Equations (2.203) - (2.209) and Eq. (2.211) are numerically integrated with the proper initial conditions at the initial time
t0

η1 (t0) η2 (t0) η3 (t0) p10 (t0) p20 (t0) p30 (t0) p40 (t0) .

We show step by step how to calculate these initial conditions starting from the position r (t0) and velocity v (t0) at the
initial time expressed in an inertial frame I = 〈x1, x2, x3〉. For convenience sake we suppress the notation (t0).

• Orbital radius
r = ‖r‖

• Angular momentum per unit mass (vector and magnitude)

h = r× v h = ‖h‖

• Unit vectors of the rotating frame R = 〈i, j, k〉

i =
r
r

k =
h
h

j = k× i

• Radial component of the velocity
vr = v · i

• Eccentricity (vector and magnitude)

e =
v × h

µ
− r

r
e = ‖e‖

• True anomaly

ϑ = cos−1
(e · r

er

)
if vr ≥ 0

ϑ = 2π − cos−1
(e · r

er

)
if vr < 0
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• Eccentric anomaly

E = 2 tan−1

(√
1− e

1 + e
tan

ϑ

2

)

• By assuming that at time t0
E = E

from Eqs. (2.188) and (2.189) we find the values taken by the elements η1 and η2

η1 = e η2 = 0

• Element η3

η3 =
1
h

• Unit vectors of the rotating frame RE = 〈iE , jE , kE〉

iE = i cos (ϑ− E)− j sin (ϑ− E)
jE = i sin (ϑ− E) + j cos (ϑ− E)
kE = k

• Rotation matrix
Q = [iE , jE , kE ]

with components

Q (1, 1) = iE · x1 Q (1, 2) = jE · x1 Q (1, 3) = kE · x1

Q (2, 1) = iE · x2 Q (2, 2) = jE · x2 Q (2, 3) = kE · x2

Q (3, 1) = iE · x3 Q (3, 2) = jE · x3 Q (3, 3) = kE · x3

where by definition

x1 =
(

1, 0, 0
)T x2 =

(
0, 1, 0

)T x3 =
(

0, 0, 1
)T

• Element p40

p40 =
1
2
√

1 + Q (1, 1) + Q (2, 2) + Q (3, 3)

• Elements p10, p20 and p30

p10 =
Q (3, 2)−Q (2, 3)

4p40
(D.1)

p20 =
Q (1, 3)−Q (3, 1)

4p40
(D.2)

p30 =
Q (2, 1)−Q (1, 2)

4p40
(D.3)

If p40 = 0 Eqs. (D.1) - (D.3) are singular and we use

p10 =
Q (1, 3)
2p30

(D.4)

p20 =
Q (2, 3)
2p30

(D.5)

p30 =

√
Q (3, 3) + 1

2
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If moreover p30 = 0 Eqs. (D.4) and (D.5) are singular and we use

p10 =

√
1−Q(2, 2)

2
p20 =

Q(1, 2)
2p10

Finally, if also p10 = 0, then we have p20 = 1.

D.2 Calculating position and velocity from the generalized orbital elements
The position r (t) and velocity v (t) at time t expressed in an inertial frame I = 〈x1, x2, x3〉 are calculated from the
generalized orbital elements

η1 (t) η2 (t) η3 (t) p10 (t) p20 (t) p30 (t) p40 (t)

as explained below. For convenience sake we suppress the notation (t).

• Eccentricity (magnitude)

e =
√

η2
1 + η2

2

• Orbital angular momentum per unit mass

h =
1
η3

• Semi-major axis

a =
h2

µ (1− e2)

• Orbital radius
r = a (1− η1 cos E − η2 sin E)

• Components of the velocity along the unit vectors i (radial velocity vr) and j (transverse velocity vt)

vr =
√

µa

r
(η1 sin E − η2 cos E) vt =

h

r

• Eccentric anomaly

E = E − tan−1

(
η2

η1

)

• True anomaly

ϑ = 2 tan−1

(√
1 + e

1− e
tan

E

2

)

• Position and velocity projected into the rotating frame RE = 〈iE , jE , kE〉

r∗ =
(

r cos λ, r sinλ, 0
)T

v∗ =
(

vr cos λ− vt sin λ, vr sin λ + vt cos λ, 0
)T

where λ = ϑ− E
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• Rotation matrix
Q = [iE , jE , kE ]

with components

Q (1, 1) = 1− 2 (p20)
2 − 2 (p30)

2 Q (1, 2) = 2p10p20 − 2p40p30 Q (1, 3) = 2p10p30 + 2p40p20

Q (2, 1) = 2p10p20 + 2p40p30 Q (2, 2) = 1− 2 (p10)
2 − 2 (p30)

2 Q (2, 3) = 2p20p30 − 2p40p10

Q (3, 1) = 2p10p30 − 2p40p20 Q (3, 2) = 2p20p30 + 2p40p10 Q (3, 3) = 1− 2 (p10)
2 − 2 (p20)

2

• Position and velocity projected into the inertial frame I

r = Qr∗

v = Qv∗ .



Appendix E

Matrices employed in the asymptotic solution

We here provide the expression of the different matrices used for the analytical solution of constant tangential thrust
trajectory propagation. The matrices are visualized until the 8th order.

Q1 =





2 0 3
4 0 15

32 0 175
512 0

0 − 1
2 0 − 1

8 0 − 37
256 0 − 125

1024
0 0 1

12 0 5
64 0 35

512 0
0 0 0 − 1

32 0 − 1
32 0 − 1

32
0 0 0 0 3

320 0 7
512 0

0 0 0 0 0 − 1
256 0 − 19

3072
0 0 0 0 0 0 5

3584 0
0 0 0 0 0 0 0 − 5

8192





Q2 =





−2 0 − 1
4 0 − 3

32 0 − 25
512 0

0 1
2 0 1

8 0 15
256 0 35

1024
0 0 − 1

12 0 − 3
64 0 − 15

512 0
0 0 0 1

32 0 3
128 0 35

2048
0 0 0 0 − 3

320 0 − 5
512 0

0 0 0 0 0 1
256 0 5

1024
0 0 0 0 0 0 − 5

3584 0
0 0 0 0 0 0 0 5

8192





Q3 =





0 2 0 3
4 0 15

32 0 175
512

0 0 − 3
8 0 − 7

32 0 − 165
1024 0

0 0 0 1
12 0 5

64 0 35
512

0 0 0 0 − 7
256 0 − 33

1024 0
0 0 0 0 0 3

320 0 7
512

0 0 0 0 0 0 − 11
3072 0

0 0 0 0 0 0 0 5
3584
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G =





3k3E0 −3k1E0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 3

8 0 − 9
32 0 − 51

1024 0 − 75
4096

0 0 0 0 0 0 0 0 0
0 0 0 0 3

256 0 − 3
1024 0 − 39

16384
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

1024 0 1
4096

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 15

131072





H =





4− 2k1 5k3 −2k1 − 10
3 −k3 − 5

24 − 11
30

19
192 − 17

140
153
4096

0 k1
4 − 1 −k3

4 + 13
48

5
6 − 17

192
11
120 − 271

6144
17
560

0 0 0 − 1
8 0 77

2560 0 177
10240

0 0 0 0 317
15360 0 23

12288 0
0 0 0 0 0 − 13

2560 0 − 403
215040

0 0 0 0 0 0 317
215040 0

0 0 0 0 0 0 0 − 41
86016

0 0 0 0 0 0 0 0





P1 =





−4 1 10
3 − 11

16
11
30 − 9

64
17
140 − 239

4096
115
2016

4 0 − 7
2 0 − 5

16 0 − 23
256 0 − 155

4096
0 −1 0 3

4 0 17
128 0 25

512 0
0 0 1

6 0 − 7
96 0 − 9

256 0 − 115
6144

0 0 0 − 1
16 0 1

64 0 13
1024 0

0 0 0 0 3
160 0 1

1280 0 − 5
2048

0 0 0 0 0 − 1
128 0 − 1

512 0
0 0 0 0 0 0 5

1792 0 85
57344

0 0 0 0 0 0 0 − 5
4096 0





P2 =





2k1E0 −5k3E0 2k1E0 k3E0 0 0 0 0 0
4 0 − 9

2 0 11
16 0 7

256 0 − 75
4096

0 −1 0 5
8 0 15

32 0 55
1024 0

0 0 1
6 0 − 3

32 0 − 11
768 0 − 15

2048
0 0 0 − 1

16 0 19
256 0 9

1024 0
0 0 0 0 3

160 0 − 1
1280 0 − 9

10240
0 0 0 0 0 0 0 − 7

3072 0
0 0 0 0 0 0 5

1792 0 75
57344

0 0 0 0 0 0 0 − 5
4096 0





P3 =





0 1 − 1
4 − 5

6
11
64 − 11

120
9

256 − 17
560

239
16384

0 −1 0 7
8 0 5

64 0 23
1024 0

0 0 1
4 0 − 3

16 0 − 17
512 0 − 25

2048
0 0 0 − 1

24 0 7
384 0 9

1024 0
0 0 0 0 1

64 0 − 1
256 0 − 13

4096
0 0 0 0 0 − 3

640 0 − 1
5120 0

0 0 0 0 0 0 1
512 0 1

2048
0 0 0 0 0 0 0 − 5

7168 0
0 0 0 0 0 0 0 0 5

16384
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P4 =





0 −k1E0
2

k3E0
2 0 0 0 0 0 0

0 −1 0 5
8 0 9

64 0 65
1024 0

0 0 1
4 0 − 1

8 0 − 19
512 0 − 5

256
0 0 0 − 1

24 0 1
384 0 5

1024 0
0 0 0 0 1

64 0 1
512 0 − 1

2048
0 0 0 0 0 − 3

640 0 − 11
5120 0

0 0 0 0 0 0 1
512 0 1

768
0 0 0 0 0 0 0 − 5

7168 0
0 0 0 0 0 0 0 0 5

16384





S1 =





−2 0 − 131
64

1
64 − 11

2048
1

1024
313

262144 − 617
262144

0 5
8 − 1

16
5

128 − 7
256

667
32768 − 1035

65536
3309

262144

0 0 − 5
64

3
64 − 141

4096
7

256 − 5941
262144

5061
262144

0 0 0 5
512 − 11

1024
171

16384 − 323
32768

4843
524288

0 0 0 0 − 5
4096

1
512 − 623

262144
687

262144

0 0 0 0 0 5
32768 − 21

65536
123

262144

0 0 0 0 0 0 − 5
262144

13
262144

0 0 0 0 0 0 0 5
2097152





S2 =





2 0 − 69
64

3
64 − 505

2048
3

512 − 32105
262144

385
262144

0 − 5
8

1
16

35
128 − 1

256
2533
32768 − 373

65536
10879
262144

0 0 5
64 − 3

64 − 19
4096 − 1

256 − 1131
262144

59
262144

0 0 0 − 5
512

11
1024 − 91

16384
147

32768 − 1467
524288

0 0 0 0 5
4096 − 1

512
463

262144 − 431
262144

0 0 0 0 0 − 5
32768

21
65536 − 103

262144

0 0 0 0 0 0 5
262144 − 13

262144

0 0 0 0 0 0 0 − 5
2097152





S3 =





0 5 0 − 61
64 − 1

64
11

2048 − 1
1024 − 313

262144

0 0 − 5
8

1
16 − 5

128
7

256 − 667
32768

1035
65536

0 0 0 5
64 − 3

64
141
4096 − 7

256
5941

262144

0 0 0 0 − 5
512

11
1024 − 171

16384
323

32768

0 0 0 0 0 5
4096 − 1

512
623

262144

0 0 0 0 0 0 − 5
32768

21
65536

0 0 0 0 0 0 0 5
262144

0 0 0 0 0 0 0 0





.
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Appendix F

Asteroid deflection formula for parallel
velocities

In the following we deal with the deflection computation for the particular case in which the asteroid and Earth heliocentric
velocity vectors at the impact event are parallel. It can be easily verified that, under the hypothesis of circular orbit for the
Earth, this is possible only when both the following conditions are verified:

1. the impact event occurs either at the apoapsis or periapsis of the asteroid orbit (i.e. α = 0 or α = π);

2. the asteroid orbit lies on the ecliptic plane (i = 0).

From condition (1) and taking into account Eq. (4.30) we obtain the constraint e = p − 1, which is substituted into Eqs.
(4.41) - (4.43) to yield

-x = −vast-t

-y = 0
-z = −-r .

From conditions (1) and (2) Eq. (4.44) yields
θ = 0 .

So the final deflection (Eqs. 4.54 and 4.36) results in

δ = |ξ| = -r ,

showing that in such circumstance the deflection magnitude coincides with the MOID and the asteroid is particularly
difficult to deflect since the phasing component vast-t cannot be exploited. However, a quick inspection of Eq. (4.44)
reveals that the angle θ is very sensitive to small variations of both α and i leading to the conclusion that the case of θ → 0
is extremely unlikely and has little practical relevance.
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