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Abstract	
	
Over the last decade, numerous studies have demonstrated fundamental 

importance of tandem repeat proteins (TRP) in many biological processes 

(Andrade, Perez-Iratxeta, and Ponting 2001). Repeat proteins are a widespread 

class of non-globular proteins carrying heterogeneous functions involved in 

several diseases. One of the most frequent problems in the study of biology is 

the functional characterization of a protein. This problem is usually solved by 

analyzing the three-dimensional (3D) structure. The experimental determination 

of the 3D structure is time consuming and technically difficult. For this reason 

structure prediction by homology modeling offers a fast alternative to 

experimental approaches. However homology modeling is not feasible for 

tandem repeat proteins because it is difficult to infer homology due to a high 

degree of sequence degeneration. In this thesis, I focused on algorithms 

oriented toward repeat unit prediction, and characterization. I developed an 

innovative approach, Repeat Protein Unit Predictor (ReUPred), for fast 

automatic prediction of repeat units and repeat classification, exploiting a 

Structure Repeat Unit Library (SRUL) derived from RepeatsDB, the core 

database of TRP. ReUPred is based on the Victor C++ library, an open source 

platform dedicated to protein structure manipulation. To prove the accuracy of 

the predictor, we ran it against all the entries in the PDB database and the 

resulting predictions allowed us to improve and increase RepeatsDB annotation 

twenty times. During my PhD I have integrated ReUPred prediction into the new 

version of RepeatsDB (release 2.0) that now features information on start and 

end positions for the repeat regions and units for all entries. The updated web 

interface includes a new search engine for complex queries and a fully re-

designed entry page for a better overview of structural data. To further improve 

RepeatsDB quality we decided to provide a finer classification at the subclass 

level based on the structural conformation of the repeated units. We 

hypothesized that inside these ensembles it is possible to find subgroups of 

proteins sharing the same unit type. To prove it, we performed a detailed 

structural analysis. We created a network where nodes are the units and arcs 

represent structural similarity. The network can be partitioned in 7 different 

clusters. For each cluster, it was possible to create a Hidden Markov Model 



4	
	

similar to those representing Pfam domains. This analysis is an unpublished 

work but it already helped to improve ReUPred accuracy and RepeatsDB 

annotation. To summarize, this work is a partial answer to the problems of TRP 

modeling and might be helpful during future investigations such as drug design 

and disease studies. 
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Riassunto	
	
	
Nell’ultima decade, numerosi studi hanno dimostrato il ruolo fondamentale 

svolto dalle proteine ripetute (TRP, tandem repeat proteins) in molti processi 

biologici (Andrade, Perez-Iratxeta, and Ponting 2001). Quella delle TRP è 

un’ampia classe di proteine non globulari, caratterizzate da una notevole 

eterogeneità di funzione e dall’essere coinvolte nella eziogenesi di numerose 

patologie. Una delle maggiori difficoltà che si incontrano nella moderna biologia 

è la caratterizzazione funzionale di proteine. Nella pratica standard, questo 

problema è affrontato analizzandone la struttura cristallografica (3D). Tuttavia, 

la determinazione della struttura tridimensionale è un processo molto lento e 

spesso inficiato da difficoltà tecniche. Per questa ragione, le tecniche 

computazionali di modellazione per omologia spesso offrono una alternativa 

praticabile all’approccio sperimentale. Tali tecniche però non sono di ausilio 

nello studio delle TRP. Ciò è dovuto all’impossibilità di poter inferire 

informazione evolutiva a causa di una ridotta conservazione di sequenza 

dell’unità ripetuta, a sua volta derivata da un elevato grado di degenerazione 

della sequenza primaria.  In questo elaborato di tesi, mi sono focalizzata sullo 

sviluppo di un algoritmo orientato alla predizione di unità ripetute in proteine e 

alla loro caratterizzazione. Qui presento ReUPred (Repeat Protein Unit 

Predictor), un algoritmo innovativo per la predizione e caratterizzazione di unità 

proteiche ripetute basato sulla “libreria di unità strutturali ripetute” (SRUL, 

Structure Repeat Unit Library) direttamente derivata da RepeatsDB, la risorsa di 

riferimento per lo studio delle TRP. Architetturalmente, ReUPred è basato sulla 

libreria VICTOR C++, una piattaforma a sorgente aperto per la manipolazione 

di strutture proteiche. L’accuratezza del predittore è stata validata analizzando 

la banca dati PDB e le predizione ottenutene sono state successivamente 

utilizzate per estendere di venti volte il numero di proteine, correttamente 

annotate, contenute in RepeatDB. Durante lo svolgimento del mio dottorato ho 

integrato ReUPpred nella nuova versione di RepeatDB (release 2.0), che grazie 

a questo lavoro, ora integra informazioni dettagliate sulla posizione di inizio e 

fine per ogni unità ripetuta contenuta nel catalogo. L’interfaccia utente della 

banca dati è stata aggiornata implementando un nuovo motore di ricerca che 
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permette ora ricerche semantiche complesse. Inoltre, lo stile grafico delle 

singole schede è stato ridisegnato per una migliore visualizzazione dei dati 

strutturali. Al fine di migliorare ulteriormente la qualità dei dati contenuti in 

RepeatDB è stata fornita una classificazione più dettagliata delle unità strutturali 

ripetute, fino al livello di sottoclasse. Abbiamo ipotizzato che all’interno di 

questa raccolta di dati fosse possibile identificare sottogruppi di proteine 

condividenti la stessa unità strutturale di base. Una dettagliata analisi strutturale 

è stata condotta al fine di validare questa ipotesi. E’ stata generata una rete in 

cui le singole unità ripetute vengono visualizzate come nodi interconnessi da 

archi che rappresentano la similarità strutturale. Ne è emerso che l’intero 

insieme può essere descritto da sette diversi raggruppamenti. Inspirati dalla 

rappresentazione dei domini proteici usata nella banca dati Pfam, per ognuno 

dei raggruppamenti è stato derivato un modello di Markov nascosto (Hidden 

Markov Model). Questa analisi, al momento in via di completamento, ha già 

permesso di migliorare l’accuratezza di ReUPred ed il livello di annotazione di 

RepeatsDB. In sintesi, questo lavoro fornisce una robusta base teorica per il 

futuro sviluppo di nuove tecniche per la predizione di struttura di TRP e può 

essere di grande aiuto per la comprensione dei meccanismi alla base di 

patologie umane e per lo sviluppo di nuovi approcci terapeutici.  
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1. Introduction	
	
Proteins are amino acid molecules that are coded by our genes, form the basis 

of living tissue and play a central role in the biological processes. For example, 

catalysing reactions in our bodies, transporting molecules such as oxygen, 

keeping us healthy as part of the immune system and transmitting messages 

from cell to cell. Proteins are the building blocks of life and come in many 

different shapes and sizes. They are long chains of various combinations of 

amino acids. And a protein’s shape is determined by its amino acid sequence. 

The distribution of nonpolar amino acids along a protein chain largely 

determines how the protein folds. (Raven 2014). 

 

 

 

 

 

 

 
Figure	1	Representations	of	a	protein	(Raven 2014)	

1.1. Protein	structure		
	
Proteins are three-dimensional objects; they are large, complex polymers. Their 

biological function is dictated by its three-dimensional structure. They are 

considered as “molecular workhorses” of the cell (Privileged Scaffolds in 

Medicinal Chemistry: Design, Synthesis, Evaluation 2016). Also they are a 

diverse class of biological polymers that play an extraordinary variety of 

functional roles. Proteins consist of long amino acid chains folded into complex 

shapes. X-ray diffraction is one of the methods available to solve atomic 

coordinates for protein structure determination and is a painstaking procedure 

that allows investigators to build up a three-dimensional image of each atom’s 

position. The first protein to be analyzed in this way was myoglobin, soon 

followed by hemoglobin. As more and more proteins were added to the list, a 

general principle became evident: in every protein studied, essentially all the 

internal amino acids are nonpolar ones, as leucine, valine, and phenylalanine. 
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Water’s tendency to hydrophobically exclude nonpolar molecules literally 

shoves the nonpolar portions of the amino acid chain into the protein’s interior. 

This positions the nonpolar amino acids in close contact with one another, 

leaving little empty space inside. Polar and charged amino acids are restricted 

to the surface of the protein except for the few that play key functional roles. 

Protein structure has four structural levels that depend one on the other (Figure	

2).  

 

Figure	2	Levels	of	a	protein	structure	(Raven 2014) 

	
The first level is amino acid sequence and how it characterizes a single protein. 

The sequence of these amino acids in a polypeptide chain determines the types 

of secondary structure elements; the folding of the amino acid chain by 

hydrogen bonding into coils and pleats is called a protein’s secondary structure 

and it is the secondary level. The third level of organization is the way in which 

the secondary structure is arranged in space (motifs, folds and domains). 

Finally the fourth level is the quaternary structure, consisted of several 

polypeptide chains embedded in a protein complex. Because of progress in our 
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knowledge of protein structure, two additional levels of structure are 

increasingly distinguished by molecular biologists: motifs and domains. To 

summarize, in general; protein structure can be viewed at six levels: 1. the 

amino acid sequence, or primary structure; 2. coils and sheets, secondary 

structure; 3. folds or creases, called motifs; 4. three-dimensional shape, tertiary 

structure; 5. functional units, called domains; and 6. individual polypeptide 

subunits associated in a quaternary structure (Raven 2014). 

1.2. Amino	Acids		
	
	
The amino acids are the building blocks of proteins; about 23 of them have 

been isolated from natural proteins. They have a specific characteristic defined 

by its side chain, which provides it with a unique role in a protein structure.  

Each amino acid consists of an α carbon atom to which is attached (Figure	3): 

• A hydrogen atom. 

• An amino group (hence "amino" acid). 

• A carboxyl group (-COOH). This gives up a proton and is thus an acid (hence 

amino "acid"). 

• One of 20 different "R" groups. It is the structure of the R group that 

determines which of the 20 it is and its special properties.  

 
Figure	3	Alanine,	its	amino	acid	composition	 

 

Amino acids are linked into a polypeptide chain on the ribosome during protein 

synthesis. One possible classification is based on the propensity of the side 

chain to be in contact with polar solvent (water) as: 
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• Hydrophobic (low propensity to be in contact with water) 

• Polar or charged (energetically favorable contact with water).  

The charged amino acid residues include lysine (+), arginine (+), aspartate (-) 

and glutamate (-). Polar amino acids include serine, threonine, asparagine, 

glutamine, histidine and tyrosine. The hydrophobic amino acids include alanine, 

valine, leucine, isoleucine, proline, phenylalanine, tryptophan, cysteine and 

methionine (Table	1). Glycine on the other hand does not have a side chain, this 

is why it is not straightforward to assign it as hydrophobic or polar. It is also one 

of the most common amino acids. Generally, glycine is often found at the 

surface of proteins, within loop or coil regions, which gives to this location a high 

flexibility to the polypeptide chain. This suggests that it is rather hydrophilic. 

While proline, is usually found buried inside the protein, it is considered as non-

polar and it is often found in loop regions. 

 
Table	1	20	most	common	amino	acids	in	protein	

Charged (side chains often make salt bridges) 
      

Arginine Arg R 
Lysine Lys K 

Aspartic acid Asp D 
Glutamic acid Glu  E 

      
Polar (usually participate in hydrogen bonds as proton donors or acceptors): 

      
Glutamine Gln Q 
Asparagine Asn N 

Histidine His H 
Serine Ser S 

Threonine Thr T 
Tyrosine Tyr Y 
Cysteine Cys C 

Methionine Met M 
Tryptophan Trp    

      
Hydrophobic (normally buried inside the protein core): 

Alanine Ala A 
Isoleucine Ile I 
Leucine Leu L 

Phenylalanine Phe F 
Valine Val V 
Proline Pro P 
Glycine Gly G 

	
In contrast to glycine, proline provides rigidity to the polypeptide chain by 

imposing certain torsion angles on structure segments. Proline in contrast to 

glycine fixes torsion angles at a certain value, very close to that of an extended 
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β-strand. It is usually found at the end of helices and functions as a “helix 

disruptor”.   As Glycine and proline are essential for the conservation of a 

particular protein fold they are usually conserved within a protein family (Raven 

2014) . 

 

Most protein molecules have a hydrophobic core not accessible to solvent and 

a polar surface in contact with the environment. While hydrophobic amino acid 

residues build up the core, polar and charged amino acids preferentially cover 

the surface of molecules and are in contact with solvents due to their ability to 

form hydrogen bonds.  

1.3. Primary	structure		
 

Proteins are made up of polypeptide chains, which are amino acids joined 

together with peptide bonds (Figure	 4). The unique sequence of amino acids 

that make up a protein or polypeptide chain is called Primary Structure. It is a 

structure of a biological molecule in which there is a precise sequence or order 

of monomeric units. It serves as the covalent backbone of biological molecules 

(such as DNA and proteins) (Alberts 2002).   

 
 

 
 
 
 
 

 
Figure	4	Graphical	representation	of	a	primary	structure 

1.4. Torsion	angles	
	
Torsion angles are dihedral angles, which are defined by 4 points in space. In 

proteins two torsions angles φ and ψ describe the rotation of the polypeptide 

chain around two bonds on both sides of the Cα atom (Figure	 5). The 

Ramachandran plot (Figure	6) is a way to view the distribution of torsion angles 

in a protein structure. It also shows excluded regions in which rotations of 
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polypeptide are not allowed due to collisions between atoms (steric hindrance).  

 
 

Figure	5	Rotations	of	the	polypeptide	backbone 

 

This kind of plot of a particular protein serves also as an indicator of the 3D 

structure quality. Torsion angles are really important local structural parameters 

that control protein folding. The torsion angles phi and psi provide flexibility 

required for polypeptide backbone to adopt a certain fold, while omega (ω) is 

essentially flat and fixed to 180 degrees (Figure	6) (Metalloproteins: Structural 

Aspects 1991).  

Due to the partial double-bond character of the peptide bond, which restricts 

rotations around the C-N bond, placing two successive α-carbons and C, O, N 

and H between them in one plane. Thus, rotation of protein chain can be 

described as rotation of peptide bond planes relative to each other (Alberts 

2002). 

As shown in Figure	6 each type of secondary structure elements occupies its 

characteristic range of φ and ψ angles, marked α is for α-helices and β is for β-

sheet on the left. Red indicates low-energy regions; brown allowed regions, 

yellow the so-called generously allowed regions and pale-yellow marks 

disallowed regions. On the left plot there are many dots in the disallowed 

regions, but almost none on the right (the ones which are seen are for glycine 

residues). The torsion angles on the left plot lack real clustering around 

secondary structure regions and have a much wider distribution, compared to 

the plot on the right. Generally this is a result of bad geometry - high resolution 

structures generally tend to have better clustering within the allowed regions of 

the plot (Anfinsen et al. 1981). The horizontal axis shows φ values, while the 



21	
	

vertical shows ψ values. Each dot on the plot shows the angles for an amino 

acid. Regions on Ramachandran plot with highest density of dots are called 

“allowed” or low-energy regions. Some values of φ and ψ are forbidden since 

involved atoms will come too close to each other, resulting in a steric clash. For 

a high-quality and high-resolution experimental structure these regions are 

usually empty or almost empty - very few amino acid residues in proteins have 

their torsion angles within these regions.  

 

 
Figure	6	Ramachandran	plot		

 

In Ramachandran plot (Figure	7) for glycine an exception of clustering principle 

around the α and β-regions can be seen, as glycine does not have a side chain, 

which gives high flexibility to polypeptide chain, some of the forbidden rotation 

angles became accessible.  

 

 

 

 

 

 

 

 

 

 

 
Figure	7	Two	Ramachandran	plots	for	the	same	structure	refined	at	different	resolutions.	
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This type of plot is also used in assessing quality of experimental structures or 

homology models, as torsion angles outside low-energy regions may indicate 

problems in structure, but they may also be true and may provide some 

interesting insights into the function of proteins. 

1.5. Secondary	structure		
	
The –COOH and –NH2 groups of the main chain together with the amino acid 

side group can form hydrogen bonds. In the case of the main chain groups, the 

formed bonds could be as good that their interactions with water. It might be 

expected to offset the tendency of nonpolar side groups to be forced into the 

protein interior.  

The reason for this is that the polar groups of the main chain form a kind of 

bonds with each other. As a result two patterns of H bonding occur. The first, in 

where hydrogen bonds form along a single chain, linking one amino acid to 

another farther down the chain, which tends to pull the chain into a coil (Figure	

8). In the second pattern, the bond occurs across two chains, linking the amino 

acid of one chain to the other in the second chain. Usually many parallel chains 

are linked, forming a pleated, sheet-like structure (Figure	 9) This two 

characteristic coils and pleats are the secondary structure (Raven 2014). 

1.5.1. α 	Helix	conformation	
 

The R groups of amino acids all extend to the outside. The helix makes a 

complete turn every 3.6 amino acids. It is right-handed; and twist in a clockwise 

direction. The carbonyl group (-C=O) of each peptide bond extends parallel to 

the axis of the helix and points directly at the –N-H group of the peptide bond 4 

amino acis below it in the helix. A hydrogen bond forms between them [-N-

H…..)=C-] (Figure	8) (Raven 2014).  
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Figure	8	 α  hélix conformation 

1.5.2. β-sheet	Conformation		
 

Consists of pairs of chains lying side-by-side and stabilized by hydrogen 

bonds between carbonyl oxygen atom on one chain and -NH group on 

the adjacent chain. The chains are often "anti-parallel"; N-terminal to C-

terminal direction of one being the reverse of the other (Figure	9) (Raven 

2014).  

 
Figure	9	β  pleated sheet 
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1.6. Tertiary	structure		
	
It refers to three-dimensional structure of the entire polypeptide chain in the 

native state, i.e. the most stable in physiological conditions. The final folded 

shape of a globular protein, which positions the folds and motifs non polar side 

groups into the interior is called a proteins tertiary structure (Raven 2014). 

Amino acid side chains may interact and bond in a number of ways. Interactions 

and bonds of side chains within a particular protein determine its tertiary 

structure and it is defined by it atomic coordinates. Many proteins can be fully 

unfolded (“denatured”) and will spontaneously refold back to their characteristic 

shape. The action of heat can break a tertiary structure because with the 

increase of kinetic energy the structure vibrates more so the bonds that 

maintain its shape are more likely to break (denatured) (Figure	 10). As the 

function of a protein depends on structure if denatured the function might be 

lost too. An example of a lost function are enzymes that when denatured they 

lose their catalytic power, or antibodies that can no longer bind to an antigen. If 

a mutation happens in the gene encoding of a protein, usually the tertiary 

structure is altered (Andersen 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure	10	Denaturation	of	a	protein(Raven 2014)	
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The stability of a protein is influence by how well its interior fits together. When 

two nonpolar chains in the interior are in very close proximity, they experience a 

kind of molecular attraction called Van der Waal’s forces. By their own they are 

weak but when many come into play these forces can add up to a string 

attraction but they are effective only over short distances. As there are many 

different nonpolar amino acids with different-sized R groups, there are many 

precise fitting of non-polar chains within the protein interior. This is the reason 

why when mutation converts one nonpolar amino acid into another the protein’s 

stability very often is disrupted and can result in lost or altered function of the 

protein. This tertiary structure may involve coiling or pleating, often with straight 

chains of amino acids in between.  

 
Figure	11	3D	structure	representation	

 

 

Tertiary structure is held together by four different bonds and interactions: 

• Disulphide Bonds Disulphide Bonds - Where two Cysteine amino acids are 

found together, a strong double bond (S=S) is formed between Sulphur 

atoms within Cysteine monomers. 

• Ionic Bonds - If two oppositely charged 'R' groups (+ve and -ve) are found 
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close to each other, and ionic bond forms between them.  

• Hydrogen Bonds - Your typical everyday Hydrogen bonds. 

• Hydrophobic and Hydrophilic Interactions - Some amino acids may be 

hydrophobic while others are hydrophilic. In a water based environment, a 

globular protein will orientate itself such that it's hydrophobic parts are 

towards its centre and its hydrophilic parts are towards its edges (Figure	11). 

 
Based on solubility there are two main groups (Alberts 2002): 

• Globular – these kind of structure tend to form ball-like, its hydrophobic parts 

are towards the center and hydrophilic are towards the edges, which makes 

them water-soluble. Usually they have metabolic roles, for example: 

enzymes in all organisms, plasma proteins and antibodies in mammals. 

• Fibrous – mostly consist of repeated sequences of amino acids, they are 

insoluble in water and form long fibers, usually have structural roles, such 

as: Collagen in bone and cartilage, Keratin in fingernails and hair. 

 

Intrinsically disordered regions and proteins show a wide variety of structural 

subtypes. These different types of disorder can be characterized using an array 

of experimental techniques, and several resources collect computationally 

identified and experimentally verified disordered regions. Proteins have been 

proposed to function within a conformational continuum, ranging from fully 

structured to completely disordered (van der Lee et al. 2014). 

1.7. Structural	Motifs	&	Connectivity		
 
 

The elements of secondary structure can combine in characteristic ways called 

motif or “supersecondary structure”. A motif is a short protein set of amino acids 

that contributes to the biological function of sequence in which it resides. A 

protein sequence motif is a short pattern that is conserved by purifying selection 

and may correspond to a protein binding site; in proteins, a motif may 

correspond to the active site of an enzyme or a structural unit necessary for 

proper folding of protein. Thus, sequence motifs are one of the basic functional 

units of molecular evolution. Consequently, identifying and understanding these 
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motifs is fundamental to building models of cellular processes at molecular 

scale and to understanding the mechanisms of human disease(Grant, Bailey, 

and Noble 2011).  

One very common motif is the β α β motif, which created a fold (Figure	12). The 

“Rossmann fold“, is another example of motif but a β α β α β one. Another motif 

that occurs in many proteins is the β-barrel, a β sheet folded round to form a 

tube. There is another really important motif that many proteins use to bind the 

DNA double helixes, that is the α turn α motif (Figure	 12). They are short 

segments of protein 3D structure, which are spatially close but not necessarily 

adjacent in the sequence. An example of motif is the β turn is a structural motif 

with a structural role and it consists of four consecutive residues where the 

polypeptide chain folds back on itself by nearly 180 degrees(Raven 2014). 

 
 
 
 
 
 
 
 
 
 

Figure	12	Structural	Motif(Raven 2014) 

1.8. Protein	structure	databases	
	

The restrictions that nature places on three-dimensional structures during 

evolution are much stricter than those that it puts on amino acid sequence.  The 

3D structures generated by crystalografic and spectroscopic studies are limited 

but their impact will increase as more structures become available. In general, 

these resources can be divided into those that house the 3D coordinates of 

solved structures and those that classify and summarize them. 

The PDB databank, is the single largest global archive of biological 
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macromolecular structures (Berman et al. 2000). It is a massively redundant 

resource because particular proteins become the focus of repeated structure 

determination. The nature of the information presented by structural 

classification schemes is dependent on the methods used to identify and 

evaluate similarity. Two well-known structure classification resources are SCOP 

and CATH. 

SCOP (Structural Classification of Proteins) database classifies proteins of 

known structure according to their evolutionary and structural relationships 

(Andreeva et al. 2008). Domains in SCOP are grouped by species and 

hierarchically classified into families, superfamilies, folds and classes. This 

database has been constructed using a combination of manual and automated 

methods (Higgs and Attwood 2005) (Cuff et al. 2011) (Andreeva et al. 2008) 

and it is divided in.  

• Family: 

Inside a family we can identify a clear evolutionary relationship. Usually this 

means that between proteins there is a pairwise residue identity greater or 

equal than 30%. However there are some cases where globins have only 

15% sequence identity even though they share a common descent. 

• Super family: 

In this level we can find proteins with low sequence identity with a probable 

common evolutionary origin suggested by its structural and functional 

features. An example for this level is actin, ATPase domain of heat shock 

protein, and hexakinase that together form a superfamily. 

• Fold: 

When proteins have the same topological connections and same secondary 

structure we could say that they have a common fold. Proteins with different 

folds with different size and conformations often have peripheral elements of 

secondary structure and turn regions. Proteins with same fold category may 

not have a common evolutionary origin but similarities in structure may arise 

from physics and chemistry of proteins.  

 

Another important database is CATH, that comes from the first letters in Class-

Architecture-Topology-Homologous. It is a hierarchical domain classification of 

protein structures (Pearl et al. 2005). The resource is largely derived from 
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automatic methods, but when they fail manual inspection is used. There are 

four levels (Higgs and Attwood 2005): 

• Class: 

Denotes a gross secondary structure content and packing 

• Architecture: 

Describes a gross arrangement of secondary structures ignoring 

connectivity and assigned manually using simple descriptions, such as 

barrel, roll, sandwich. 

• Topology: 

Assigns the overall shape and secondary structure connectivity by means of 

structure comparison algorithms, structures in which at least 60% of the 

larger protein matches the smaller are assigned to the same level. 

• Homology: 

Clusters domains that share greater than or equal to 35% sequence identity 

and are thought to share a common ancestor. Both sequence and structure 

comparison algorithms identify similarities. 

1.9. Protein	domains	
	
Proteins in our body are encoded within our genes in functional sections called 

exons. Each exon encodes a 100 to 200 residues section of a protein, and folds 

into a structurally independent functional unit call domain.  

 
A domain (Figure	 13) is the basic building block of a protein structure. Their 

main features are (Raven 2014) (Higgs and Attwood 2005): 

a) It is a spatially separated unit of the protein structure. 

b) It may have sequence and/or structural resemblance to another protein 

structure or domain. 

c) It may have a specific function associated. 

Certain protein domains have some clearly defined function associated with 

them, like Rossmann-fold domain, also called coenzyme-binding domain. Such 

domains often “carry” their function with them when they get inserted into 

different proteins during evolution.  
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Figure	13	Domain	representation	(Raven	2014) 

1.10. Thesis	objectives	
	
This document is a summary of all my research done since January 2014 which 

includes three published papers: the first published in Bioinformatics Journal (L. 

Hirsh et al. 2015), the second in Amino Acids ((L. Hirsh et al. 2016)) and the last 

one published in the Databases Special Issue of Nucleic Acid Research 

(Paladin et al. 2016) and also includes an already accepted but unpublished 

work that will be published in the Repeat Proteins Special Issue of Journal of 

Structural Biology. 

In January 2014 I started my research trying to do homology modeling of repeat 

proteins, but in time I realized not only that there was not enough quality data to 

do it but also that homology modeling based on one template protein was not 

the best method to create a model of a repeat one.  

Doing an analysis on the posible methods we could use for the modeling, we 

decided that the best way would be to work with repeat unit fragments as 

templates instead of a complete protein and then follow a homology model 

method. To do so we created Victor C++ library for protein representation and 

advance manipulation(L. Hirsh et al. 2015), the idea with this library was to 

have all what we needed to do the model once we have the template created 
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with the repeat unit fragments. The biggest problem was that at that time there 

was not enough data of the unit fragments which lead my research on a 

“different” path, the identification of repetitive units in protein structures with 

ReUPRed (L. Hirsh et al. 2016). The work we published was done to identify 

repeat unit fragments in solenoid proteins, but as the method accuracy was 

really high we replicated the work in elongated structures (Class III), closed 

structures (Class IV) and beads on string (Class V). The results were really 

interesting and let us identify new structural subclases. In paralel we had 

RepeatsDB (Di Domenico et al. 2014a), a database created in BiocomputingUp 

Laboratory ( laboratory in where I have been doing my research) and all the 

data predicted by ReUPred, therefore we decided to make an update of the 

database , but to do so we manually curated some of the predicted information.  

We created RepeatsDB 2.0; with improved annotation classification, search and 

visualization of repeat protein structures (Paladin et al. 2016).  In this database 

we present new structural subclasses while in the first release of the database 

only ˜300 entries had repeat unit information. In the new release all the entries 

have it and almost 60% of the entries (˜3500) were curated manually.  

Finally, during the curating process we realized that each subclass repeat unit 

presented specific caracteristics inside them. We decided to do a deeper 

analysis and for that we started with the α-solenoid. This analysis is not yet 

published but the results lead us to believe that we could replicate the analysis 

in the rest of the classes and that we will be able to classify a protein based on 

its sequence. With this knowledge we could optimize the creation of the model, 

but this will be done in future research. 
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2. Tandem	Repeat	Proteins	(TRP)	
 

Tandem repeats (TRs) are ubiquitous, unstable genomic elements that have 

historically been designated as nonfunctional "junk DNA" and are therefore 

mostly ignored in comparative genomics. However, as many as 10% to 20% of 

eukaryotic genes and promoters contain an unstable repeat tract. Mutations in 

these repeats often have fascinating phenotypic consequences. For example, 

changes in unstable repeats located in/or near human genes can lead to 

neurodegenerative diseases such as Huntington disease. Apart from their role 

in disease, variable repeats also confer useful phenotypic variability, including 

cell surface variability, plasticity in skeletal morphology, and tuning of circadian 

rhythm. As such, TRs combine characteristics of genetic and epigenetic 

changes that may facilitate organismal evolvability (Gemayel et al. 2010). 

More recent measurements (Pellegrini, Renda, and Vecchio 2012)  give a count 

of about 20% of proteins in UniProtKB database (Bairoch 2004) holding a TRP 

of at least 20 amino acids length.  In the last few years the number of known 

structures has been growing exponentially and in fact current (January 2017) 

PDB database holds 126,060 protein structure entries while in 1998 it only 

contained 2058 structure entries and in 2012, when Pellegrini et al. did their 

analysis, it had about 8775 structures entries. It is also important to notice that 

in all these years new structures have been found and new repeat structures 

have been identified and along the years we can observe an exponential 

growth. 

Andrade, Perez-Iratxeta, and Ponting 2001 observed that repetitive 

subsequences that appear in tandem repetitions (TR) within protein primary 

sequence often form integrated assemblies when these residues are mapped to 

their corresponding 3D folded conformation.  Tandem repeats mean different 

binding opportunities and may play a structural role by giving rigidity to a 

protein.  Furthermore, repeats in protein sequences are usually hard to detect 

because on average repeating unit is relatively short, and moreover there can 

be considerable sequence divergence among units of the same TR (Andrade et 

al. 2001).  

Some proteins show tandem repetitions of apparent modular structure that do 

not fold independently, but rather co-operate in stabilizing structural forms that 
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comprise several repeat-units (Espada et al. 2015). Some of these called 

protein domains are composed of units of similar structure. Often, but not 

always, these units are also similar in sequence. These kinds of domains can 

be considered repeats that originated by duplications from a single ancestral 

sequence. These small units are large enough to form secondary structural 

elements but too small to be stable by themselves. They acquire stability by 

folding together in a repetitive structure. Detection of TRP either from protein 

sequence or structure data is challenging due to inherent high signal to noise 

ratio (Pellegrini 2015).  

Repeats, as mentioned before, are ubiquitous elements of proteins and play 

important roles for cellular function and during evolution. Repeats are also 

notoriously difficult to capture computationally and large scale studies so far 

had difficulties in linking genetic causes of diseases, structural properties and 

evolutionary trajectories of protein repeats. Shuler and Bornber-Bauer observed 

that repeats in larger protein families experience generally very few insertions 

or deletions (indels) of repeat units but there is also a significant fraction of 

noteworthy volatile outliers with very high indel rates (Schüler and Bornberg-

Bauer 2016). Their analysis of structural data indicates that repeats with an 

open structure and independently folding units are more volatile and more likely 

to be intrinsically disordered. Such disordered repeats are also significantly 

enriched in sites with a high functional potential such as linear motifs (short 

stretches of protein sequence that mediate protein – protein interaction). In 

addition, the most volatile repeats have a high sequence similarity between 

their units. Since many volatile repeats also show signs of recombination, they 

conclude that these repeats are often shaped by concerted evolution, that is a 

molecular process that leads to homogenization of DNA sequences belonging 

to a given repetitive family (Liao 1999). Intriguingly, many of these conserved 

yet volatile repeats are involved in host-pathogen interactions where they might 

foster fast but subtle adaptation in biological arms races.  

Quite often, these domains are reused across many proteins in a different 

context, i.e., they combine with other domains in changing order and quantity 
(Apic, Gough, and Teichmann 2001). Some protein repeats are hyper-variable, 

i.e., the number of repeat units within the domain repeat changes within 

evolutionary short time by insertion (expansion) or deletion (contraction) of 
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units. In Figure	 14 we can observe 1yrg chain A protein, an αβ-solenoid in 

where a) each of the repeated units is colored b) has all the colored units 

structurally aligned, blue arrows show the biggest insertions c) shows the 

corresponding multisequence alignment of b) and where exactly the insertions 

are. In some proteins, these changes occur so rapidly that they can be 

observed not only between species but also within a population under both 

adaptive(Verstrepen et al. 2005) and neural conditions  (Chevanne et al. 2010). 
Figure	
14	

Tandem	repeat	protein 
1YRG	chain	A	a)	3D	structure	with	each	repeat	unit	colored	b)	All	the	units	structurally	aligned,	

marked	with	arrows	three	of	the	biggest	insertions	c)	Corresponding	sequence	alignment	of	all	the	
repeat	units	inside	the	chain,	in	squares	the	three	biggest	insertions.	

2.1. Importance	of	TRP		
	
There is a lot of theoretical interest in tandem repeat proteins because of their 

abundance, raising the question what is their role in evolution and in the 

structure of the genome. Other important questions include how do they 

appear, how do they evolve and why they do it. 
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Something we can assertate is that TRPs are important not only because of 

their involvement in diseases, but also because they are useful in many areas 

of molecular biology.  

Also in protein design they are considered of importance, as different structures 

related with different repeated structural motifs have generated significant 

interest with respect to protein engineering and synthetic protein design (Javadi 

and Itzhaki 2013) and there are various articles where we can find information 

about re-engineering of TRP binding specificities, with particular attention paid 

to protein folding kinetics and protein stability. 

Moreover, Tompa recognized that many important functions are also linked to 

proteins that lack a folded structure, and that these functions are not only linked 

to a well-defined 3D structure protein conformation (Tompa 2002). Furthermore, 

usually the concept of ordered and disordered proteins is linked to the concept 

of absence or presence of repeat segments at sequence level, we could say 

that as a consequence, TRPs are also important to understand protein 

functions (Tompa et al. 2009).   

2.2. Protein	repetitive	motifs,	domain	repeats	and	their	
evolution		

	
A protein motif is a supersecondary structure containing multiple secondary 

structure elements in a stable arrangement, not necessarily having a similar 

function. An example of this is the omega loop, that is a protein motif that 

resembles the greek letter omega. This makes the motif extremely common, but 

nothing can be said about its significance in the protein  function. On the other 

hand, a protein domain is a stable structure with a specific defined function in 

protein and it can exist independently of it, and could maintain its structure even 

if it is separated from the entire protein. For example :SH2 (src homology 2) 

domains are found in signalling pathways in JAK-STAT  that are responsible for 

controlling transcription of certain genes. The function of this domain is to bind 

proteins containing this domain to specific sites in  membrane protein (Marco 

Milán et al., n.d.). 

Many large proteins have evolved by internal duplication and many internal 

sequence repeats correspond to functional and structural units. Evolution 



37	
	

modifies and recombines existing building blocks instead of inventing 

everything from scratch (Heger and Holm 2000). Protein domain repeats (PDR) 

are evolutionarily related units that occur in a protein. Many proteins are 

composed of functional units of common origin. PDR are stretches of domains 

from the same family, one next to each other in a protein. Structurally, these 

kinds of domains are diverse and may form modular structures on their own or 

form larger filaments where each repeat is dependent on the other for 

functioning. Their sequence is malleable with regard to the repeat unit and the 

number of repeats, therefore provides flexibility binding to many partners.	
Motif and domain are two different concepts that could be related, as is the 

case of zinc finger domains, an important group of regulatory proteins. Due to 

their evolution, its sequences contain a variable number of different short 

sequences with specific symbols at each position, known as zinc fingers (Figure	

15).  

 

 

 

 

 

 
Figure	15	Representation	of	a	structure	of	a	zinc	finger 

 

In general, internal duplications in proteins may be grouped in three categories 

(Katti et al. 2000): 

a) Each of the duplicated domains is a structurally and functionally 

independent unit and possible originates from entire exon duplication 

(zinc finger). 

b) Repeats of 20-40 residues each of which form structurally distinct units 

(leucine rich) but may not function in isolation. 

c) Tandem repeats of single amino acids or short oligopeptides, unlikely to 

form independent structurally units.  

 

Proteins evolve through mutation and by domain rearrangement. In the case of 

domain rearrange, mutation tolerance is pretty high because domains perform 
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modular functions. Repeat proteins vary a lot in the number of repeat units 

inside the protein. They are different from other proteins by expanding through 

internal duplication rather than domain shuffling.  

a) Optimal RMSD for all unit structures 

 

b) Optimal RMSD for unit structures without 
insertions  

 

c) 

 

 

d) 

e) 

 

 

f) 

 

 

 

 

Figure	16	Tandem	repeat	protein 
1YRG	chain	A	a)	RMSD	matrix	for	all	repeat	protein	unit,	less	repeat	purity	b)	RMSD	matrix	for	repeat	
protein	unit	without	insertions,	more	repeat	purity	c)	All	protein	units	structurally	aligned	d)	units	
without	insertions	structurally	aligned	e)	corresponding	sequence	alignment	of	all	the	repeat	units	

inside	the	chain	f)	Sequence	alignment	of	all	the	units	without	insertions.	
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It is possible that repeat proteins expand pretty fast until a physical/structural 

limit has been reached and as a consequence diverge rapidly since repeat 

domains tend to only have weak the sequence similarity(Andrade et al. 2001). 

Another interesting concept is repeat purity; it is defined as the average 

pairwise sequence identity between all individual repeat units inside one 

protein. By the use of artificial proteins and zone domain repeats it has been 

demonstrated that above 40% sequence identity, protein aggregation and 

misfolding become very likely (Wright et al. 2005). In Figure	16, protein 1yrgA is 

shown considering all the repeat units a) c) e) while in b) d) f) show only the 

units that will allow us to have a high repeat purity (no insertions). To obtain 

these images we use Mustang (Konagurthu et al. 2006), a) and b) show the 

Optimal RMSD values using as input all (11) repeat units and the units without 

insertions. Then in c) and d) we can observe how the units are structurally align 

ed and comparing them we can observe and identify where the insertions are. 

Finally e) and f) present the corresponding sequence alignment and in the case 

of f) we are able to observe conservation of residues that were not observed in 

e) as a result of the low repeat purity. 

	

2.3. Structural	classification	of	repeats	
 

Appraisal of known protein structures and their classification uncovers a 

straightforward relationship between their architecture and the length of the 

repetitive units. This relationship and the repetitive character of structural folds 

suggest rules for better prediction of 3D structures of such proteins (Andrey V 

Kajava 2012). 

 

More than fifteen years ago, a classification of 3D structures based on the 

repeat length was suggested by A. Kajava (A. V. Kajava 2001). Ten years later, 

the appearance of new 3D structures allowed a refinement (Andrey V Kajava 

2012) shown in Figure	17.  

In 2012 structural classification of five different classes and their subclasses 

were identified: 

• Class 1: Crystalline aggregates of unlimited size 
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Includes proteins and peptides with 1 or 2 residue-long repeats that forms 

different types of crystallites which are harmful to living organisms. The 

regions of proteomes with such repeats have propensity to be unfolded and 

are mostly hydrophilic (Julien Jorda et al. 2010). The structures of these 

protein regions are absent in the PDB. All the knowledge about them is from 

previous studies. Huntington’s disease, a human neurodegenerative 

disorder is caused by expansion of polyglutamine, and molecular packing of 

polyglutamine is related to this class, which make it an interesting subject of 

study.  

 

• Class 2: Fibrous structures stabilized by interchain interactions 

In this class we find collagen and α helical coiled coils, two major fibrous 

structures. Collagens have a tripeptide repeat Gly-X-Y, where X and Y could 

be any residue but are usually proline or hydroxyproline.     

 

• Class 3: Elongated structures where repetitive units that require one another 

to maintain structure. 

In this class we can find solenoids and non-solenoids structures. 

• Solenoids: Based on solenoidal windings of the polypeptide chain. They 

tend to have elongated structures and are predominant in this class.   

o β-Solenoids (III.1) 

o α/β-Solenoids (III.2) 

o α-Solenoids (III.3) 

 

• Non-solenoids: In this subclass we find more complicated folds than 

solenoidal fold.  

o Single layer antiparallel β (III.4) 

o Trimer of β-spirals (III.5):  with long central β strands that hold the 

trimer together through interchain hydrogen bonds, and 

interactions of apolar side chains and short peripheral β strands 

stabilize the structure. 
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Figure	17	Structural	Classification 
 

• Class 4: Closed structures where repetitive units need one another to have 

structure. 

In contrast with previous classes, that are able to have an unlimited number 

of repeats and do not have restrictions to axial growth these called closed 

structures have a fixed number to make them “closed”.  
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o Tim Barrel (IV. 1) 

o β Barrel (IV. 2) 

o β trefoil (IV. 3) 

o β Propeller (IV.4 ) 

o α/β prism (IV.5 ) 

o α	barrel (IV.6) 

 

• Class 5: Beads on a string structures which repeats are large enough to fold 

independently. 

In this class we can find repetitive units, which are large enough to fold 

independently into stable domains. They usually have from 50 – 60 

residues.  

o α	bead (V.1 ) 

o α/β beads (V.2 ) 

o β beads (V.3 ) 

	

2.4. Identification	of	repetitive	elements	
	
	
Considering classes III and IV from the structural classification, a “repeat” 

protein is a protein containing a repeat domain, composed of repeating 

homologous structural units (repeats), which tightly stack together forming a 

joined hydrophobic core. The stability of the domain is ensured by mutual 

stabilization of the repeats. A repeat is one of several repeated homologous 

building blocks of a repeat domain. It has a well-defined topology when present 

in a repeat domain, but is usually unfolded on its own (Forrer et al. 2004).  

 

Many repeats appear to possess high amino acid substitution rates and thus 

recognition of repeat homologues is highly problematic (Andrade et al. 2000). 

Moreover, detection of this kind of proteins is another challenging task. In 

literature we can find algorithms based on sequence and based on structure. 

Even in the presence of high divergence among subsequences corresponding 

to TRP units, DNA coding sequence and amino acid sequences are usually 
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preserved. Since 1990, different approaches have been developed and most 

recently there is a tendency to integrate basic sequence data with evolutionary 

or biochemical annotation. M. Andrade presented a detection algorithm which 

uses a homology based method to identify statistical significance in protein 

repeats (Andrade et al. 2000). Other methods are based on detecting 

suboptimal alignments in self-alignment matrix generated by Smith-Waterman 

or a similar method(Heger and Holm 2000)(Szklarczyk and Heringa 

2004)(George and Heringa 2000).  

 

There are other methods that use a seed expansion (Newman and Cooper 

2007) approach while others use a clustering approach based on k-means(J. 

Jorda and Kajava 2009). In literature we can also find some approaches that 

are based on building, matching Hidden Markov Models for the repeating 

substring(Soding, Remmert, and Biegert 2006) and others based on neural 

networks that aim to detect a specific repetitive structure. The sequence-based 

algorithms are many, each has a different approach and to our knowledge there 

is no comparative study. It is not surprising that sequence-based methods fail to 

infer true structural repetitions since the same structural motif can be encoded 

by sequences that appear completely unrelated, which is the case in several 

repeat-protein families. Thus sequence approach is not usually the best one, 

but when there is no structure it should be enough.  

 

Its already known that function features are more linked to structure of the 

protein than to primary sequence thus available structural data should be used 

to detect repetitive motifs or units. Of course there are some approaches that 

use both, sequence and structure signals as in (Murray, Gorse, and Thornton 

2002). And other approaches that integrate structural information with other 

methods as Fourier transform (Murray, Taylor, and Thornton 2004) or dynamic 

programming (Sabarinathan, Basu, and Sekar 2010). There are also various 

other tools that are focus in a specific class of repeat structures, like Raphael 

(Walsh et al. 2012) and (Hrabe and Godzik 2014) created for detection of 

solenoids.  
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3. Methods	
	

3.1. Predicting	repeat	units	with	ReUPred	
	
Numerous studies in biological processes have been made over the last 10 

years and they have demonstrated the importance of tandem repeat proteins in 

these processes as mentioned in (Di Domenico et al. 2014). In 2014, Di 

Domenico et al. published RepeatsDB: a database of tandem repeats protein 

structures. The database was one of the first efforts to systematically classify 

and annotate structural protein repeats in a consistent way. It provides a 

detailed structural characterization of the repetitive elements (Figure	18), which 

includes the PFAM domains, the repeat units, and the corresponding fragments 

in the sequence but only for 3% of the entries (Table	 2) (Di Domenico et al. 

2014a).  In this database we were able to find more details on structural 

classification made by Kajava including the five classes and the subclasses 

(Andrey V Kajava 2012) (Figure	 19). Kajava based this classification on the 

repeat unit length, but only a small number of protein repeat units in each 

subclass were manually identify as mentioned before. In Table	 3, we show 

statistics for 2014 RepeatsDB, not only entries with detailed information (Figure	

20) but also entries predicted as repeat by Raphael. Raphael is a method for 

the detection of solenoids in protein structures. Its reliability solves three 

problems of increasing difficulty: recognition of solenoids domains, 

determination of their periodicity and assignment of insertions (Walsh et al. 

2012).  

 

 

 

 

 

 

 

 

 
	 Figure	18	RepeatsDB	2014	entry	 	

1b3uA 
α-Solenoid 
manually	
curated 
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The method recognized repeat proteins but without detailed information of the 

units. This amount of detailed information was not enough for any reliable large-

scale analysis. To increase RepeatsDB annotation and to solve the problem of 

modeling repeat proteins we adopted an innovative approach using detailed 

information of Solenoids. Initially using all fragment units we created a 

Structural Repeat Unit Library (SRUL). To create it, we only considered units 

with at least 10 residues. However, we retained all the rest of the units, even 

the ones with insertions and finally to avoid redundancy we considered 90% of 

sequence identity between the remaining units. 
Table	2	Statistics	by	class	of	RepeatsDB	2014	

		 Detailed	
Classified	
(manually)	

Classified								
(By	similarity)	 Predicted	

I	-	Crystalline	aggregates	 0	 0	 0	 0	
II	-	Fibrous	structures	 23	 41	 69	 0	

III	-	Elongated	structure	 119	 397	 692	 0	
IV	-	Closed	structure	 149	 300	 890	 0	
V	-	Beads	on	string	 36	 16	 76	 0	
UA	-	Unassigned	 0	 0	 0	 7948	

Total	 327	 754	 1727	 7948	
Total	(%)	 3%	 7%	 16%	 74%	

	
Table	3	Statistics	by	subclass	of	RepeatsDB	2014	

Subclass Detailed	
Classified	
(manually)	

Classified				
(By	similarity)	

III.1 - β-solenoid 41 108 21 
III.2 - α/β-solenoid 19 43 27 
III.3 - α-solenoid 48 244 631 

III.4 - trimer of β spirals 7 0 13 
III.5 - single layer β 4 3 0 

IV.1 - TIM-barrel 84 117 626 
IV.2 - β-barrel 8 1 8 
IV.3 - β-trefoil 15 0 29 

IV.4 - β-propeller 38 168 227 
IV.5 - α/β-prism 0 14 0 
IV.6 - α-barrel 5 0 0 
V.1 - α-beads 2 1 0 
V.2 - β-beads 29 12 71 

V.3 - α/β-beads 3 3 1 
 

After having a clean version of the SRUL we created ReUPred (L. Hirsh et al. 

2016). Repeat Protein Unit Predictor is a novel method for fast automatic 
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prediction of repeat units and repeat classification and its accuracy depends on 

the Structure Repeat Unit library (SRUL). The SRUL library contains a set of 

fragments, one for each of the repeated units identified.  

 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	19	RepeatsDB	2014	Structural	classification	

	
 

 

 

 
Figure	20	RepeatsDB	2014	detailed	entry	example	

1wdyA 

αSolenoid 

		UNITS													INS								 
			21-50 
			51-84 
			85-117 
	118-150 
	151-193							155-168 
	194-231 
	232-264 
	265-298 
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ReUPred uses an iterative structural search against the SRUL to find a master 

repetitive unit. This called master unit is the first repeat unit found in the target. 

Therefore, it is the result of structural alignment of SRUL units against the target 

protein. Then it uses the master unit on the target protein to find all the rest of 

the repeat units based on best structural alignment. We use 2v70 protein (Third 

LRR domain of human SLIT2), chain A as a practical example of ReUPred 

method. 
	
In Figure	 21, we can observe four examples of alignments between target 

(2v70A) and four different units of SRUL, as shown in all images, master unit is 

option A with a TMscore of 0.69, and the used template is 1oznA unit 7 (Figure	

22). We choose this unit template because it covers the thresholds (Table	 4) 

and it has the higher TM-score value. The TM-score value is a value between 0 

and 1, higher the value, better the structural alignment (Figure	23).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure	21	ReUpred	selection	of	master	unit	

Different	alignments	of	target	protein	against	SRUL	units	in	where	1oznA_unit7	is	the	best	template	
unit.	
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Figure	22	Protein	2v70	chain	A		

a)	Structure	of	ReUpred	target	protein	b)	Sequence	fragment	resulting	of	structure	alignment	of	the	
target	protein	versus	the	template	from	the	SRUL	library	

 

 
Table	4	Thresholds	for	the	target	protein	against	SRUL	units	

Iteration TM-Score RMSD Alignment Unit gaps 

(A) (residues) (%) 
1 ≥ 0.52 ≤ 1.6 > 21 < 10 
2 ≥ 0.47 ≤ 1.9 > 17 < 20 
3 ≥ 0.30 ≤ 2.5 > 16 < 50 
4 ≥ 0.23 ≤ 3.0 > 14 < 50 

	
 

 

 

 

 

 

 
	

Figure	23	Different	results	of	aligning	two	unit	structures	

 

In Figure	 24, we can see the structure of the called master unit (610 - 633 

residues of 2v70A), and how extracting this master unit from the protein, two 

different fragments are created, one from 505 - 609 residues and the other from 

634 - 714 residues. 

 

a)	
	
	
	
	
	
	
	
	
b)	
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Figure	24	ReUpred	master	unit	and	remaining	fragments	

Then, the so called master unit is aligned with both fragments, and we select 

the best (the one with a higher TMscore) (Figure	25).  In this case, selection is 

based in the RMSD and TMscore value and the corresponding threshold 

values(Table	5), as both of alignments have almost the same value for TMscore 

we choose the one with a lower RMSD value.	

	
	
	
	
	
	
	
	
	
	
 

 

 

 

 

 
Figure	25	ReUpred	Selection	of	master	unit	



51	
	

	
Then we repeat the previous process creating new fragments and aligning the 

fragments with previously created repeat units of the target protein, until there 

are no possible segments to evaluate or until alignments do not reach the 

thresholds.  In Figure	26 we can see how units colored in blue and red are the 

predicted units and how there are regions in grey that do not reach the 

threshold so they are not considered as part of the repeat region.  

 
Table	5	Thresholds	for	predicted	units	inside	a	protein	

Iteration TM-Score RMSD Alignment Unit gaps Length 
ratio (%) (A) (residues) (%) 

1 ≥ 0.35 ≤ 1.8 ≤ 1.20 < 40 ≥ 70 
2 ≥ 0.30 ≤ 2.0 ≤ 1.15 < 40 ≥ 70 
3 ≥ 0.30 ≤ 2.5 ≤ 1.15 < 40 ≥ 70 
4 ≥ 0.30 ≤ 3.0 ≤ 1.10 < 50 ≥ 70 

	

 
Figure	26	ReUpred	repeat	units	

	
	
	

For assigning the prediction subclass, ReUPred does the classification using 

the class of template unit selected from SRUL library. For the shown example 

we use 1oznA part of the α/β-solenoid so 2v70A would be classified by 

ReUPred as an α/β-solenoid. 

To evaluate the resulting prediction we had to redefine some concepts applied 

to the repeat unit idea. So, as shown in Figure	27, and based on an evaluation 

(eval) of a prediction (Pred) against a manually curated reference (Ref) we 

obtained true positives (TP), false positives (FP), true negatives (TN) and false 
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negatives (FN) are calculated. For classification, given a solenoid subclass, TP 

is the number of proteins with correct assignment, FN are proteins assigned the 

wrong class and FP are class assignments to wrong targets. TN is always zero 

since the test set contains only classified proteins. For all evaluations, the 

measures recall [or sensitivity; TP/(TP + FN)], precision [TP/(TP + FP)] and 

accuracy [(TP + TN)/(TP + FP + TN + FN)] are used.  

 

 

 
Figure	27	Evaluation	for	repeat	unit	predictor	

 

3.2. Large	scale	annotation	
	
In 2016 ReUPred (L. Hirsh et al. 2016) was created, originally for only solenoids 

structures but recently updated the method, SRUL library and thus optimizing 

the algorithm. So, as in the case of solenoids version of the predictor, we 

started the process creating the SRUL library, but this time using all detailed 

information in classes III, IV and V of RepeatsDB 2014 (Table	6). 
Table	6	Statistics	by	class	of	RepeatsDB	2014,	detailed	information 

		 Detailed	
Classified	
(manually)	

Classified								
(By	similarity)	 Predicted	

I	-	Crystalline	aggregates	 0	 0	 0	 0	
II	-	Fibrous	structures	 23	 41	 69	 0	

III	-	Elongated	structure	 119	 397	 692	 0	
IV	-	Closed	structure	 149	 300	 890	 0	
V	-	Beads	on	string	 36	 16	 76	 0	
UA	-	Unassigned	 0	 0	 0	 7948	

Total	 327	 754	 1727	 7948	
Total	(%)	 3%	 7%	 16%	 74%	

 

Using 304 detailed entries, we manually curated the data and created a new 

version of SRUL. This curating process included the redefinition of insertions 

(Figure	 28), reclassification of proteins (Figure	 29) and even the definition of 

new regions inside a protein (Figure	30). 
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Figure	28	unit	classification	possible	error	

 

The resulting and original entry values for SRUL are shown in Table	 7. Then 

using this version of the library we updated the ReUPred algorithm (Figure	31). 

To our surprise, looking at some of the new predictions, we observed that it 

wrongly classified some repeat structures. These repeat structures were 

wrongly classified because there was no similar subclass defined in Kajava’s 

stucture definition(Bostjan Kobe and Kajava 2000). But considering the logic of 

the algorithm ReUPred correctly identifies the protein as a repeat. 

 

 

 

 

 

 

 

 

 

 

 
Figure	29	Protein	reclassification	possible	error	
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Table	7	Statistics	modifications	of	the	new	SRUL 

 
Number	of	chains	

  Subclass	 SRUL	 SRUL	rev.	
  III.1	-	β-solenoid	 41	 39	
  III.2	-	α/β	solenoid	 19	 21	
  III.3	-	α-solenoid	 46	 47	
  III.4	-	trimer	of	β	spirals	 7	 7	 Modification	 Number	of	chains	

III.5	-	single	layer	β	 4	 3	 Switch	subclass	 9	
IV.1	-	TIM-barrel	 84	 83	 Remove	 15	
IV.2	-	β-barrel	 8	 6	 Add	 4	
IV.3	-	β-trefoil	 15	 13	 Split	 1	

IV.4	-	β-propeller	 38	 37	 Join	 2	
IV.5	-	α/β	prism	 0	 2	

  IV.6	-	α-barrel	 5	 5	
  V.1	-	α-beads	 2	 2	
  V.2	-	β-beads	 29	 25	
  V.3	-	α/β-beads	 3	 4	
  V.Other		 3	 0	
  Total	 304	 294	
   

 

 

 

 

 

 

 

 

 

 
Figure	30	Region	classification	possible	error	

 

 

Consequently, to create new structural subclasses we used the process shown 

in Figure	 32. In it we gathered a set of proteins using Raphael(Walsh et al. 

2012) predictions and then we use them as inputs for ReUPred, analyze the 

predictions and create new structural subclasses when needed and add new 

repeat units to SRUL.  Finally we run ReUPred against the PDBdata bank to 

create the data inside the latest version of RepeatsDB (Paladin et al. 2016).   
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Figure	31	ReUpred	2.0	algorithm	
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure	32	Data	creation	process	
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This RepeatsDB updated version presents an improved annotation, 

classification, search and visualization. In this database, on the contrary to the 

previous version, all entries have unit information and it is mapped with other 

repositories, allowing scientifics to have everything they may need. 

 

3.3. Solenoid	ensembles	
	
In 2016 we created and published RepeatsDB 2.0 (Paladin et al. 2016), in this 

database we were able to find 5498 entries corresponding to 970 UniProtKB 

sequences. From this 5498 entries 3307 were manually curated and the rest 

were ReUPred predictions. To further improve RepeatsDB’s quality we decided 

to provide a finer classification at subclass level. We focused on α-solenoids 

that represent the most abundant fold in repeat proteins. α-solenoids are 

flexible protein structural domains formed by ensembles of α-helical repeats. 

Ensembles as HEAT, Armadillo, TPR among others inside this type of solenoids 

do not have the same structure or sequence between repeat units. Moreover, 

this kind of protein adopts a variety of elongated curved structures and 

functions. We initially hypothesized that inside ensembles of α-solenoids 

proteins, i.e. at sub class level, repeat units would share a similar structure that 

should let us characterize a specific ensemble. To verify this hypothesis we did 

an analysis of repeat units inside this subclass. Taking into consideration the 

remaining 740 repeat units after curation process, we created a matrix of all 

versus all repeat units, in which for each of them we calculate structural 

alignment values (TMscore) between all the rest of the units. Then we created a 

network using each of the units as a node and each of the corresponding 

structural alignment value as an edge. The process followed for this curation is 

shown in Figure	 33, first we collected all the 1329 α-solenoid entries from 

RepeatsDB, and randomly select and evaluate some of them.  

 

As shown in Figure	33, we first create the repeat unit, evaluate the entry using 

structure alignment of the repeat units and their secondary structure, we also 

identify missing segments in the structure and visually verify if the units were 

rightly defined. Then we create the dataset with entries that were considered as 

valid. Some of them share same UniProtKB sequences which could mean a 
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reduction of time in the verification process but similar UniProtKB sequence is 

not necessarily a similar secondary structure as shown in Figure	34. 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	33	Protein	curation	process	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	
Figure	34	Protein	chains	with	same	UniProtKB	sequence	

Protein	3as5	chain	A	and	chain	B,	same	sequence	different	UniProtKB	
	
	
We wanted a unified unit structure definition for each type of α-solenoids 

proteins, and have the same time a definition that allows us to differentiate one 

ensemble from the other. Which led us to a possible redefinition of some of the 

units and/or inclusion of insertions as shown in Figure	36. 
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Figure	35	Filtered	border	units	and	units	with	insertions		

 

For this redefinition, we always try to reduce the length of loops inside the unit, 

maintaining a standard of having the longer α helixes in the N terminal and C 

terminal, having two α helix bonded by loops, or three α helix where the 

smallest helix would be in the middle. The reason for this decision was mostly 

because we were not able to decide if the small α helix should be in the N 

terminal or in the C terminal (Figure	36).	

	
	
	
	
	
	
	
	
	
	
	
	

	
	

Figure	36	Protein	unit	structure	definition	
	
	
Finally, after this curation process we got a dataset of 620 entries, which means 

4699 repeat units. Using Victor library (L. Hirsh et al. 2015) we acquired all 

sequences that were the input for CD-Hit at 100% to reduce the repeat units 
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redundancy, and obtained 1193 units without redundancy in which we based 

our analysis.  

We aligned all the units structurally and considered a threshold of 0.7 of TM-

score, create the network shown in Figure	37. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	37		Network	created	based	on	1193	units	matrix	
 
	
	

3.4. Manipulating	proteins	structures	with	VIctual	Construction	TOol	
for	pRoteins	(Victor)	

Protein sequence and structure representation and manipulation require 

software specially made for this end. There are many tools developed but most 

of them are not open source or they use a lot of computational resources. 

Instead, we propose an open source library called Victor (L. Hirsh et al. 2015), 

made in C++ programming language. This library is able to manipulate protein 

structures with minimal computing time.  
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Fifteen years ago S. C. E. Tossato created the first version of the library, and for 

many years after that, students of different levels have been creating and 

updating different applications and publishing them, demonstrating the 

effectivity of the never published complete library. But because of the different 

coding style inside the library a standarization was needed together with the 

validation of new formats for different possible input files as PDB or Fasta files.  

This is the reason why we made this reengineering, which includes not only the 

standardization of code but also the creation of a unit test for all main methods 

and the creation of extensive online material; which includes the explanation of 

how classes work and also instructions for installation and how to use different 

applications.  

The first step for standardization of code was to identify the classes and unify 

the style of classes’ definitions, which include names of attributes, methods, 

comments and examples. This library contains more than 60000 lines of code 

and still expanding. The Victor2.0 library (Virtual Construction Toolkit for 

Proteins) is composed of four main modules: 

• Biopool - BIOPolymer Object Oriented Library. Generates the protein 

object and provides useful methods to manipulate structure. 

• Align - ALIGNment generation and analysis. 

• Energy - A library to calculate statistical potentials from protein structures. 

• Lobo - LOop Build-up and Optimization. Ab initio prediction of missing loop 

conformation in protein models.  

Initially the reengineering process started from Biopool module based in a 

structural design pattern. These design patterns are all about Class and Object 

composition. Structural class-creation patterns use inheritance to compose 

interfaces. Structural object-patterns define ways to compose objects to obtain 

new functionality(Gamma 1995). A Protein object is just a container for vectors 

representing chains. Each vector has 2 elements: Spacer and Ligand Set. 

Spacer is the container for AminoAcid objects whereas LigandSet is a container 

for all other molecules and ions, including DNA/RNA chains. Ultimately all 

molecules, both in Spacer and inLigandSet are collections of Atom objects 

(Figure	 38). The main feature in Biopool is that each AminoAcid object in 
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Spacer is connected to its neighbours by means of one rotational vector plus 

one translational vector. 

 

 
Figure	38	Biopool	protein	pattern 

This implementation makes the modification of protein structure fast and a lot of 

functions were implemented to, for example modify/perturbate/transformate or 

residue relative position, in an efficient way. The next reengineered module was 

Align, as it has the simplest application, even do it has severals options. The 

necessary data files (e.g. substitution matrices) are provided. The most 

important feature of the package is the modular object oriented design, which 

should allow a moderately experienced C++ programmer to rapidly implement 

and test new features for sequence alignment. Inside this package, different 

weighting schemes, scoring functions, ways to penalize gaps, and typologies of 

structural information can be used. The Align library was designed to be 

modular and easy to expand. There are four basic components which are 

needed to use alignment methods. 

The four main components are:  

o AlignmentData - Stores information on sequence (SequenceData) and, 

when needed, secondary structure (SecSequenceData). 

o ScoringScheme - Stores information on how a single position shall be 

scored in alignment. 

o Align - The alignment algorithm. It requires both AlignmentData and 

ScoringScheme objects. 

o Blosum - The substitution matrix. 

Then one of the most used modules: Energy, has already been used in different 

publications. Energy functions are used in a variety of roles in protein modelling. 

An energy function precise enough to always discriminate native protein 

structures from all possible decoys would not only simplify protein structure 

prediction problems considerably. It would also increase understanding of the 
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protein folding process itself. If feasible, one could use quantum mechanical 

models, being the most detailed representation to calculate the energy of a 

protein. It can theoretically be done by solving Schrödinger equation. This 

equation can be solved exactly for the hydrogen atom, but is no longer trivial for 

three or more particles. In recent years it has become possible to approximately 

solve Schrödinger equation for systems up to a hundred atoms with Hartree-

Fock or self-consistent field approximations. Their main idea is that many-body 

interactions are reduced to several two-body interactions. The functions of this 

class are important to all aspects of protein structure prediction, as they give a 

measure of confidence for optimization. An ideal energy function would also 

explain the process of protein folding. The most detailed way to calculate 

energies are quantum mechanical methods. These are, to date, still overly time 

consuming and impractical. Two alternative classes of functions have been 

developed: force fields and knowledge-based potentials. Force fields (e.g. 

AMBER) are empirical models approximating the energy of a protein with 

bonded and non-bonded interactions, attempting to describe all contributions to 

total energy. They tend to be very detailed and are prone to yield many 

erroneous local minima. An alternative is knowledge-based potentials, where 

“energy” is derived from the probability of a structure being similar to interaction 

patterns found in the database of known structures. This approach is very 

popular for fold recognition as it produces a smoother “global” energy surface, 

allowing detection of a general trend. Abstraction levels for knowledge-based 

potentials vary greatly and several functional forms have been proposed. The 

energy functions presented in the package allow optimizing procedures. The 

main feature is its applicability in the context of protein classes implemented in 

the package. It should be possible to invoke energy calculation with any 

structure from all programs. Previously parameters of energy models had to be 

stored externally to allow their rapid modification. With this considerations in 

mind, the package Energy was designed to collect classes and programs 

dealing with energy calculation. The main design decision was to use the 

“strategy” design pattern from (Gamma 1995). The abstract class Potential was 

defined to provide a common interface for energy calculation. It contains 

necessary methods to load energy parameters during initialization of an object. 
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Computing energy value for objects of Atom and Spacer classes as well as a 

combination of both is allowed.  

 

Finally but not less important is the Lobo module, current database methods 

using solely experimentally determined loop fragments do not cover all possible 

loop conformations, especially for longer fragments. And for sure, it is not 

feasible to use a combinational search of all possible torsion angle 

combinations (Figure	39). For an algorithm to be efficient, a compromise has to 

be found. One improvement in ab initio loop modelling is the use of look-up 

tables (LUT) to avoid repetitive calculation of loop fragments. LUTs can be 

generated once and stored; only requiring loading during loop modelling. Using 

a set of LUTs reduces computational time significantly. The next problem is how 

to best explore conformational space. Especially for longer loops, it is useful to 

generate a set of different candidate loops to exclude improbable ones by 

ranking. The method should therefore be able to select different loops by global 

exploration of conformational space independently of starting conditions. 

Methods building the loop stepwise from one anchor residue to the other bias 

the solutions depending on choices made in conformation of the first few 

residues. Rather a global approach to the optimization is required. 

 

 

 

 

 

 

 

 
Figure	39	Lobo	loop	modeling	
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4. Results	
	

4.1. ReUPred	performance	
	
ReUpred (L. Hirsh et al. 2016) is a predictor based on the structure of repeat 

units and their structural alignment. We looked for a similar application in order 

to have a benchmark but to our knowledge there is no similar tool. Instead we 

found two different applications that predict repeat units but using different 

approaches. These applications were: TAPO: A combined method for the 

identification of tandem repeats in protein structures	(Do	Viet,	Roche,	and	Kajava	

2015)	 and	 ConSole: using modularity of contact maps to locate solenoid 

domains in protein structures (Hrabe and Godzik 2014).	  We used Raphael 

(Walsh et al. 2012) dataset in order to create a benchmark, it contained 105 

known solenoids structures and 247 non-solenoids structures. To do the 

analysis we considered separately each of the three types of solenoids (α, β 

and α/β) as well as all together. And as shown Figure	40, all Precision, Recall, 

FMeasure and accuracy are higher for ReUPred than for Console or TAPO.	

	

	
	

Figure	40	ReUPred	versus	TAPO	and	Console		
	
We also evaluated the quality of the predicted units obtained with each of the 

applications and considered all solenoid types then compared the resulting 

values with units found in RepeatsDB. From observations we can state that 

ReUPred’s performance for detection of unit lengths has proved better than 

TAPO’s and Console’s (Figure	41). 

0,00	

0,10	

0,20	

0,30	

0,40	

0,50	

0,60	

0,70	

0,80	

Recall	 Precision	 F-Measure	 Accuracy	

ReUPred	

ConSole	

TAPO	



66	
	

	

	
	

Figure	41	Number	of	units	predicted	by	ReUPred,	TAPO	and	Console	
	
Then using data gathered from RepeatsDB, we evaluated the length of all units 

based in the number of residues that conform it. And as shown in Figure	 42, 

ReUPred is the most similar to the original data. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	42	Predicted	units	by	ReUPred,	TAPO	and	Console		

	
After elaborating a benchmark of ReUPred against the other two applications, 

we evaluated ReUPred in a more detailed way, analyzing the predictor 

performance by subclasses: α, β, α/β as well as all together. ReUPred 

algorithm, as explained before, is based on a template unit allocated in 

Structural Repeat Unit Library (SRUL), and this unit is related to a specific 
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subclass. However, information used to “identify” the subclass of a target 

protein in the case of α/β-solenoid template units sometimes could result as 

being more structurally similar to an α-solenoids or more structurally similar to 

α/β-solenoid. This is the reason why mixed α/β-solenoids have lower values 

than α-solenoids and β-solenoids, as shown in Figure	43. We also noted that α-

solenoid is the subclass in which ReUPred has almost a perfect performance in 

classifying target protein. The reason for this is more about regularity on 

secondary structure of unit inside this subclass. While in the case of β-

solenoids, we have units of different length and a lot of loops/insertions. 

 

 

 
	

	
Figure	43	ReUPred	performance	for	solenoid	subclasses	classification		

 

Inside RepeatsDB we were able to find a period for each of the entries used in 

dataset, this period value was obtained using Raphael (Walsh et al. 2012), an 

application that determines period in a protein structure and it is able to identify 

if a protein is repeated or not. So to evaluate if ReUPred had similar values to 

the ones calculated by Raphael, we obtained the average length of predicted 

units and compared resulting values with the period obtained from the database 

(Figure	44). 
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Figure	44	Period	from	RaPhael	versus	average	unit	length	of	ReUpred		
	
	
Then we replicated the analysis but instead of using Raphael period against the 

average length, we compared values with the lengths of predicted units. And as 

shown in Figure	 45, the values were almost the same, which again confirmed 

the good performance of ReUPred.  

 

 

 

 

 

 

 

 

 

 

	
	

Figure	45	Predicted	units	by	ReUPred,	TAPO	and	Console		
	
 

Finally we decided to run the predictor with a different dataset of 1075 classified 

and by similarity known repeat proteins from RepeatsDB, as we did not have 

information about repeat units to make a similar analisys as before, we mapped 
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predicted units with PFAM’s information of proteins. Based on our observation 

we can state that ReUPred is able to increase annotation by an order of 

magnitude for both of the datasets (Figure	46).   

	
	
	
	
	
	
	
	
	
	
	
	

Figure	46	Venn	diagram	of	available	annotation	for	RepeatsDB	classified	dataset		
	
	
	

4.2. RepeatsDB	content	and	structural	classification		
	
RepeatsDB is a database that contains information about repeat proteins (Di 

Domenico et al. 2014a). The second version, RepeatsDB 2.0 contains a total of 

5474 entries with detailed information predicted by an optimization of ReUPred 

(L. Hirsh et al. 2016) and 3307(65%) of these entries were manually curated.  

As shown in Table	 8 all these entries correspond to 970 UniProtKB different 

sequences  (Paladin et al. 2016) . 

  
Table	8	Statistics	by	class	of	RepeatsDB	2016 

Class	 Chains	 UniProt	

	
Reviewed	 All	 All	

II	 12	 12	 4	
III	 1356	 2367	 405	
IV	 1777	 2780	 486	
V	 162	 215	 75	

TOTAL	 3307	 5374	 970	
	
This database update presents more information for each entry (Figure	 47). In 

the top part of the page it reports structure information from PDB and cross-

references to third party databases (UniProtKB, MobiDB, SCOP, CATH and 

Pfam). Then it displays a table in where region details are shown (structural 
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classification, start end, number of units, periods and cluster families).  In the 

following a section feature viewer, summarizes available annotation for PDB 

reference sequence, i.e. the SEQRES field in PDB file. An overview of 

RepeatsDB information (regions, units and insertions) along with secondary 

structure (DSSP), Pfam, SCOP and CATH tracks (when available) are also 

shown. Finally in the bottom section a detailed view of RepeatsDB annotations 

is highlighted in sequence and PDB viewers. 

As a result of ReUPred execution on all PDB databases, we were also able to 

identify new structural subclasses on class IV (Closed structures whose repeat 

units need one another to maintain structure) and class V (Beads on a string' 

structures whose repeat units are large enough to fold independently) that were 

included in the new version of the database.  

 

 

 

 

Figure	47	RepeatsDB	2,0	sample	entry			
 

These new subclasses are (Figure	48 a-e):  

For class IV:  
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• α/β barrel (IV.7), always a five α/β unit closed structure .  

• α/β propeller (IV.8), similar to a β propeller in shape and number but with 

the presence of α helix inside the unit.   

• α/β trefoil (IV.9), similar to a β trefoil in shape and number but with the 

presence of α helix inside the unit.    

For the class V:  

• α/β sandwich (V.4), each sandwich bead is formed by “two layers” of 	

α/β.	

• β sandwich (V.5), same as α/β sandwich but in the unit there are only β 

strains. 

Two later identified subclasses are aligned prism (Figure	 48f) and box (Figure	

48g), these two new subclasses are not included in the current version of 

RepeatsDB, but will be included in next update. The reason for not including 

them was not only that we realized their existence at the last minute as is the 

case of the aligned prism but also the uncertainty of its class as is the case of 

the box. It seems to be an elongated structure but it closes in the presence of 

enough repeat units (Figure	49) and this is the reason why we were unable to 

define its right class.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure	48	a)	α/β  	barrel	1g61A,	IV.7	sample			b)	α/β  	propeller		3qi0B,	IV.9	sample		c)	α/β  	Trefoil		

2d43A,	IV.9	sample		d) β  sandwich	bead	1q55C,V.4	sample		e)	α/β  	sandwich	bead	2wqrB	,V.5	sample			
f)	Align	prism	3wocB,	IV.10	sample			

	g)	Box	2xurA,	III.7	sample			
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The problem with the box structure made us think if a new classification might 

be needed, also because there are some cases in which a elongated structure 

can became a closed one if the right number of units is reached, as is the case 

of some α/β-solenoids. 

 

 

 

 

 

 

 

 
Figure	49	Closed	Box	3k4xA	

 

In 2012 Kajava proposed a structural classification representation, in were we 

could identify subclasses based on unit length. In Figure	 50, we can see a 

similar representation but it includes new subclasses present in RepeatsDB 2.0. 

As we can see in the figure and comparing length values with the ones 

stipulated by Kajava, the average length of repeat units defined before are 

pretty similar to the ones presented in RepeatsDB 2.0 (Table	9), which allowed 

us to confirm the values accuracy (Andrey V. Kajava 2012a) 

 
Table	9	Comparison	of	repeat	unit	length	of	2012	and	2016	by	class 

Residues in the repeat unit 2012 2016 
Elongated Structures (III) 5 to 45 residues 21 to 37 

Closed structures (IV) 35 to 65 26 to 65 
Beads on String (V) 30 to 60 / 100 - 130 31 to 100 

   
   

In class V, we can observe two particular cases, subclass V.3 (α/β-beads) that 

has a shorter average length of 31.36 with respect to the estipulate by Kajava. 

And also in subclass IV.5 (α/β-prism) we see a unit length of 65.16, which is 

also out of the estipulate length possible values. We hypothesized that these 

results were not in the previous ranges because of the new structures and 

therefore not observed in 2012, and not because of a mistake in observations.   
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Figure	50	Representation	of	structural	classification	of	repeatsDB	2.0		

 

4.3. α-Solenoids	ensembles		

After filtering and curating processes (see methods 4.3), we got 740 units and 

aligned them structurally using TMalign (Zhang Y and Skolnick J. 2005). Then 
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we created a new network of 740 nodes shown in Figure	51 in where each node 

represents a repeat unit and each edge is the TM-score value. In it we used a 

value of 0.7 of TM-score as threshold and we were able to identify 7 clusters, 

each related to a specific unit structure. Unit clusters are colored by PFAM 

assignments showing an almost perfect separation. The nodes in grey are ones 

in which no Pfam code is assigned (not recognized as part of a known family).  

 
Figure	51	Network	based	on	the	613x613	matrix		

 

 

Looking at clusters in the network we were able to relate each cluster with a 

different type of structure, Figure	 52. There are four clusters related with a 

specific conformation, while there are three mixed clusters, in two of them the 

presence of Importin is noticed. Importin is the only family that does not form its 

own cluster but is mixed only with HEAT or with Armadillo. In the Ankyrin cluster 

different sub-families coexist. 

We took all units inside each of the clusters and analyzed them separately. In 

each of the clusters we calculated the multiple structural alignment using 

Mustang-MR structural Sieving Server (Konagurthu et al. 2006). For each 

structural alignment we exploited the corresponding sequence alignment to 

build a Hidden Markov Model (HMM) by using HMMer (R. D. Finn, Clements, 

and Eddy 2011). Then we also created the corresponding sequence logo 

(Crooks 2004) and calculated the secondary structure consensus. We started 

our analysis with a cluster with only one Pfam family: SEL (yellow), PPTA 

(purple), Pumilio (magenta) and TPR (red).  To calculate the secondary 
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structure, we took all the aligned units inside each of the clusters and using 

DSSP (Touw et al. 2015) in each of them we found a secondary structure 

consensus using a threshold of 70% of the units in the clusters in order to 

decide what was the secondary structure of each of the residues. To do the 

analysis we decided to use The Residue Interaction Network Generator (Ring), 

(Piovesan, Minervini, and Tosatto 2016), and with it identified interactions at an 

atomic level in the structures. 

  

 
Figure	52	Ensembles	with	their	corresponding	unit	structure		

	
	
	

4.3.1. 	SEL1	(PF08238)	
	

Pfam defines SEL1 family (PF08238) as TPR clan (CL0020) member 

that is mostly found across eukaryote and bacteria species, its HMM logo 

has a length of 38 residues. InterPro (Robert D. Finn et al. 2017) 

identifies Sel1-like repeats (IPR006597) as tetratricopeptide repeat 

sequences originally identified in Caenorhabditis eleagans receptor 

molecule, which is the key negative regulator of the Notch pathway.  
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Our secondary structure consensus model shows  (Figure 53) that their units 

are formed by two α-helices, with a hydrogen bond in the middle and a 

bend near the C terminal. In the HMM Logo (Figure 53) we can observe how 

alanine (A), an aliphatic and hydrophobic residue is almost always 

present in the third position of the first α-helix. It seems that together with 

glycine (G) and leucine (Leu), present on the middle of the second helix, 

it contributes to stabilize the protein fold. In Figure 54 we show the 

conserved residues in color green and black, considering a 55% of 

sequence identity the conserved residue are the previously mentioned. 

We can also observe in the figure how these conserved residues seem 

to give the protein structure a specific twist. However in order to prove 

our hypothesis we might need to do mutagenesis experiments. 

 

 

 

 

 
 
 
 
 
 

 
Figure	53	SEL1	logo	representation	and	units	structures	aligned		

	
	
	
	

 
 
 

 

 

 
Figure	54	SEL1	1ouvA	structure	showing	mostly	conserved	residues	in	the	logo(position	5,	12,	16,	

24,25,31)		
 

We decided to take one particular protein of the cluster, 1OUV chain A 

(PDB Helicobacter cysteine rich protein C) and align all its repeat units 

using Jalview (Konagurthu et al. 2006). In this specific case we observe 
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how with a sequence identity of 55% we have even more conserved 

residues (Figure 55). If we see all these residues in the structure we will see 

how a lysine (K) positively charged together with a negatively charged 

residue aspartic Acid (D), seem to be interacting (Figure 56, Figure 57,  Figure 56). 

 

 

 

 

 

 

 

 

 
Figure	55	SEL1	1ouvA	sequence	alignment	of	structural	units		

 

 

 

 

 

 
	Figure	56	SEL1	1ouvA	structure	showing	most	conserved	residues		

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	57	SEL1	1ouvA	structure	showing	interactions	between	conserved	residues	between	two	units		
 
 
 

Inside this cluster the shorter unit has 27 residues and the longest unit 

has 37 residues. The average length is 34,4 considering a total of 17 

different units that form SEL1 cluster.  Values coherent with the ones 
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from Pfam that have a 38 residues long and three of those residues have 

a 25% probability of being part of an insertion. 

	
4.3.2. 	PPTA	(PF01239)	

 

PPTA family (PF01239), protein prenyltransferase α subunit, is defined 

by PFAM as a member of TPR clan (CL0020) and it is mostly present in 

eukariota. This family corresponds to an InterPro entry defined as 

“posttranslational attachment of either a farnesyl or a geranylgeranyl 

group via thioether linkage to a cysteine or near carboxyl terminus of the 

protein” (IPR002088). Its secondary structure consensus shows that its 

units are usually formed by two α helices and in the middle there is a 

hydrogen bond. In PPTA Logo (Figure 58), we can observe a high quantity of 

leucine (L) all around the repeat unit. We also notice presence of other 

four residues highly represented:  glutamic acid (E). One position before 

the beginning of the second helix, we can also observe asparagine (N) a 

polar residue.  The tryptophan, the largest among amino acids, is highly 

present in the second α helix. Finally the arginine (R), a positively 

charged residue is also present in the middle of the second α helix. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	58	PPTA	logo	representation	and	units	structures	aligned		
 

Again we observe a particular protein 1JCQ chain A (PDB Crystal 

structure of Human Protein farnesyltransferase complex with farnesil 

diphosphate and the peptidomimetic inhibitor L-739,750) of the cluster to 

see if conserved residues  interactions were the reason for the folding 

type and looking at Figure 59 we can confirm how interactions between 
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conserved residues of the unit seems to be responsible for this particular 

twist of the protein (Figure 60). 

 
Figure	59	PPTA	1jcqA	sequence	alignment	considering	an	identity	of	55	and	the	structure	showing	the	

conserved	residues		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	60	PPTA	1jcqA	structure	showing	interactions	between	conserved	residues	between	two	units	
	

Inside this group, the shorter unit has 32 residues while the largest has a 

length of 41. Average length is 35.1, considering all 29 units of the group. 

This average length is pretty different to the length in Pfam, 28 residues 

long. The reason for this difference is the definition of the repeat unit; our 

first six residues are ignored by Pfam and ignored as a part of their unit.  

Comparing our values to those of SEL1, we could say that even that both 

repeat units are composed by two α helices, each one has a different 

length and conformation, in where repeat units of PPTA are longer than 

units of SEL1.   

	
4.3.3. 	Pumilio	(PF00806)	

 
Pfam defines Pumilio family (PF00806) binding repeat (Puf repeats) as 

necessary and sufficient for sequence specific RNA binding in proteins 
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(fly Pumilio and worm FBF-1 and FBF2) that function as translational 

repressors in early embryonic development by binding sequences. In this 

particular case the logo (Figure 61) does not show any particular conserved 

position, this is why we also present the sequence alignment of the 

cluster units to have a better level of detail (Figure 62).  The secondary 

structure shows three α helices, two of a longer length in the N-terminus 

and C-terminus and a smaller one in the middle. 

 

 

 

 

 

 

	
	
	
 

 
Figure	61	Pumilio	logo	representation	and	units	structures	aligned		

 

This family is also part of TPR clan (CL0020) and is usually found in 

eukariota. The alignment shows the presence of not only leucine (L) but 

also Isoleucine and valine (V) around repeat units, three amino acids that 

have hydrocarbon side chains. We also observe that Glycine (G) an 

aliphatic residue is highly present as is the case of glutamine (Q) an 

uncharged residue and glutamic acid (E), a charged residue. All this 

might explain why the protein has this twist and its units seem to be 

almost parallel. We also observed a particular protein of this family, 

3GVT chain B (Structure and RNA binding of the mouse Pumilio-2 Puf 

domain), and in the structure we can see how conserved residues are in 

the inner and outer parts of the protein.  This is probably the reason why 

there is this curve in the structure and why the units seem to be almost 

parallel between each other. 
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Figure	62	Pumilio		sequence	alignment	showing	an	identity	of	55		
 

 

 

 

Figure	63	Pumilio		3gvtA	sequence	and	structure	with	conserved	residues		
	

Looking at the same structure but only coloring the residues conserved in 

the logo Figure 64 we can see how all these residues interactions are the 

ones causing the semi closure of the structure. In this group we have 29 

units, from which the shortest has 29 residues and the longest has 40 

residues and average length of 35.1 residues, same value of PPTA unit 
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average length but with a different number of α helixes.  Pfam presents a 

length of 35 residues length, almost the same than our results.  

 

 

 

 

 

 

 

 

 

 
Figure	64	Pumilio		3gvtA	structure	showing	conserved	residues	of	the	logo		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
Figure	65	Pumilio		3gvtA	structure	showing	interactions	between	conserved	residues	between	two	

units	
 

	
4.3.4. 	TPR	(PF07719)	

 

Finally, Pfam has 21 different Tetratricopeptide repeat families, we based 

our observations using TPR_2 (PF07719) because of the resemblance 

with our logo and also because it is the one with less insertions. InterPro 

defines this entry (IPR013105) as: “ a structural motif present in a wide 

range of proteins. It mediates protein-protein interactions and the 

assembly of multiprotein complexes “.  



83	
	

Observing our logo (Figure 66) we can say that there are many aliphatic 

amino acids as is the case of alanine (A) that is highly conserved at the 

beginning of the second helix. Also present all around the logo are 

leucine (L), another aliphatic non-polar amino acid, together with the 

glycine (G). Another highly conserved amino acid present at the end of 

the logo is the proline (P). In the TPR families from Pfam we can observe 

almost the same conserved residues than in our Logo, the differences 

are in the level of conservation of the residues and the possible 

insertions and deletions, which affects the length. 

 

Figure	66	TPR	logo	representation	and	units	structures	aligned		
 

We can see that the unit is formed by two α helices and in the middle 

there is a hydrogen bond, pretty similar to SEL1 units but with out the 

bend at the end. For this family we evaluated 1W3B (PDB: Superhelical 

TPR domain of O-linked GLCNAC transferase reveals structural 

similarities to importin alpha) protein chain A and we identified some 

conserved residues (Figure 67) that seem to be responsible for the protein 

structure fold, as shown in Figure 68.  Furthermore it appears that the 

conserved residues give a particular twist to the protein structure (Figure 69). 

In these clusters we found more diversity in the units so we have a total 

of 89 from which the shortest has a length of 28 residues and the longest 

has 37 residues. Average length of the units is 33,76 residues, the 

smallest value comparing to the previously mentioned average lengths. 



84	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	67	TPR	sequence	alignment	of	1w3bA	repeat	units	
 

 

 

 

 

 

 
Figure	68	TPR	1w3bA	structure	with	the	conserved	residues	marked		

 
 

 

 

 

 

 

 

 

 
Figure	69	TPR	1w3bA	structure	showing	interactions	between	conserved	residues	between	two	units	

 
 

SEL1, PPTA, Pumilio and TPR are the four simplest clusters of our network. All 

their average unit lengths are inside a range of 33.7 to 35.1 residues. And while 

Pumilio has three α-helices inside the repeat unit, all the others have only two. 

The complete structure of PPTA and Pumilio seem to have the same arc shape. 
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In the units that have no twist as is the case of TPR and SEL1, we can observe 

a twist in the whole structure.  

In the network (Figure 52) there are three more complex clusters. Armadillo and 

HEAT are both mixed with Importin, while Ankyrin cluster has some nodes 

inside marked by Pfam as well as different related famililies. Some of this 

classes are Adeno knob (PF00541), CC2-LZ (PF16516), 

Peptidase_C14(PF00656), among others.  

	
4.3.5. 	Ankyrin		
Ankyrin repeat family (PF00023) is a 33 residues motif in proteins and 

one of the most commonly known. It consists in two α helices separated 

by loops; it was discovered at first in signaling proteins in yeast and 

Drosofphila Notch. Domains of this type mediate protein-protein 

interactions. They are usually present in bacteria, archaeal and mostly in 

eukaryotic proteins. Pfam states that this family is member of clan Ank 

(CL0465) together with other four ankyrin repeats. In this case, we use 

structural alignment of the units to see the differences inside the cluster 

(Figure	70) and we were able to observe that the differences are mostly in 

the N-terminal and C-terminal regions. This observation is confirmed by 

looking at the corresponding sequence alignment (Figure	 71) where we 

can see that gaps are present at N and C terminal regions and also that 

in the last section there are two single gaps present. As we preferred a 

perfect alignment without internal gaps for our analysis, we decided to 

work separately on this cluster, increasing TM-score threshold.  

 
 

	
	
	
	

	
	
	
	
	
	

	
	
	

Figure	70	Not	perfect	structure	alignment	of	Ankyrin	units		
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Figure	71	Not	perfect	sequence	alignment	of	Ankyrin	units		
	

Then using a TM-score value higher or equal than 0.91, we obtained two 

different clusters, one containing all the defined by PFAM such as 

ankyrin  (Figure	 72) and the other containing a mix of different families 

with also some ankyrin units (Figure	73). 

 

	
	
	

Figure	72	Ankyrin	sub	cluster	1	sequence	and	structural	alignment		
	

	
	
	
	
	
	
	
	
	
	
	

Figure	73	Ankyrin	sub	cluster	2	sequence	and	structural	alignment		
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Between sub-clusters there are observable similarities and differences 

but in general the glutamine (Q) is one of the residues mostly present in 

the second sub cluster, together with lysine (K), arginine (R) and aspartic 

acid  (D) (Figure	 74). While in the first sub cluster, proline is mostly 

present together with the histidine (H) (Figure	75). 

	

	

	

	

	

	

	

	

	
Figure	74	Ankyrin	Logo	of	sub	cluster	2		

 

 

 

 

 

 

 

 

 
Figure	75	Ankyrin	Logo	of	subcluster	1		

	
For our first sub cluster, the one containing only ankyrin or undefined 

units, we decided to replicate our analysis using 3IXE chain A protein 

(PDBStructural basis of competition between PINCH1 and PINCH2 for 

binding to the ankyrin repeat domain of integrin-linked kinase). In it we 

can see how residues are aligned (Figure	 76;Figure	 77) and how they 

interact (Figure	 78). For the cluster we have an average length of 34 

residues, while Pfam has a 32 residue length for ankyrin family and 

considers many possible insertions. In general the HMM logo of the sub 

cluster 1 is almost the same than the Pfam ankyrin HMM logo. 
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Figure	76	Ankyrin	3ixeA	protein		alignment	

 

 

 

 

 

 

 
Figure	77	Ankyrin	3ixeA	protein	structure	

 

 

 

 

 

 

 

 

 

 
Figure	78	Ankyrin	3ixeA	protein		interactions	

 
	

4.3.6. 	Armadillo		

 

Another cluster with mixed families is the Armadillo/β catenini like repeat  

(PF00514). Repeats of this family are usually a 40 amino acid repeated 

sequence motif. It was first identified in drosophila melanogaster 

segment (InterPro domain IPR000225). Pfam presents 3 families of 

armadillo: Armadillo/β catenin like repeat (Arm), Armadillo like (Arm_2, 
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PF04826), Atypical Arm repeat (Arm_3, PF16186) and another set for 

ARM-DNA-bind. An interesting observation in this case is the Atypical 

Armadillo repeat. Pfam states that: “this kind of repeat appears at the 

very C-terminus of eukaryotic proteins such as importin subunit α2, as 

the last of the repeating unit” and InterPro (IPR032413) states the same. 

So in a way they are related in structure, which led us to believe that 

there is no mistake in the unit definition and this is the reason why we 

obtained a mixed cluster. We decided to increase the TM-score to a 

value higher or equal to 0.86 and we obtained three different sub clusters 

shown in Figure	79, Figure	80 and Figure	81. 

	
 

 
Figure	79	Armadillo	sub	cluster	1	sequences	Logo	and	structural	alignment		

	
	
	

	

	
	

Figure	80	Armadillo	sub	cluster	2	sequences	Logo	and	structural	alignment	
	
	
	

	
	

	
	

Figure	81	Armadillo	sub	cluster	3	sequences	Logo	and	structural	alignment	
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This new clusterization, gave us three different unit structures, with 

different conserved residues and clearly a cleaner sequence alignment. 

An interesting observation is that all their secondary structures have 

three α-helices but in each one a different twist is present. 

The average length of the unit is 47 residue while in PFAM the average 

length is 40, we think that this difference if because of the Importin 

present in our clusters which is the reason why we did try to separate 

them in a different cluster but we did not succeeded, the motive is that 

the units of armadillo and importin are pretty similar in sequence and 

structure based on our observations. 

	
4.3.7. 	HEAT		
Finally the last cluster contains HEAT plus Importin, structural alignment 

of all units (Figure	82) shows us that the unaligned regions are mostly in 

the N and C terminal regions. So we decided to use a TM-score value 

higher of equal than 0.76, and obtain two sub clusters, shown in Figure	

83 and Figure	84. 

 

 

 

 

	
	
	
	
	
	
	

Figure	82	Heat	all	cluster	units	structural	alignment		
	
	

	
	

Figure	83	HEAT	subc	luster	1	sequences	Logo	and	structural	alignment	
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Figure	84	HEAT	sub	cluster	2	sequences	Logo	and	structural	alignment	

	
	

In the new sub clusters we still have Importing mixed with HEAT units, 

but different unit structures in each of them. For the HEAT family, PFAM 

presents four different families, HEAT (PF02985) and HEAT_2(PF13646) 

as HEAT repeats and HEAT_EZ(PF13513) together with 

HEAT_PBS(PF03130) as HEAT-like repeat. Interpro (IPR000357) states 

that: “it is a tandemly repeated of 37-47 amino acid long that occurs in 

cytoplasmatic proteins, including proteins as huntingtin. Arrays of this 

ensemble consist of 3 to 36 units forming a rod-like helical structure and 

appear to function as protein-protein interaction surface. And they can be 

also involved in intracellular transport processes”. In the sub cluster 1, 

we can observe two α-helices while in the second sub cluster it seems 

two have three α-helices yet in reality the second α-helix has a turn. 

Another interesting observation is that both sub clusters present almost 

the same conserved residues but in different percentages. Looking at the 

whole structure it seems that the units are parallel between themselves 

with just a little angle of separation that seems to be the effect of the 

interactions.  

 

After analyzing all the clusters separately, we are able to say that a new 

structural sub classification should be proposed, not only for the α-solenoids but 

probably also for the rest of the structural subclasses. But in general this 

analysis is important because we are able to relate lengths (Table	10), residues 

type and positions with a specific type of repeat unit which could help us a lot 

not only in the understanding of the protein and its function but also in their 

design.  
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Table	10	Statistics	for	units	in	each	cluster	 

Ensemble Units in cluster Average length Std dev 
Ankyrin 306 32,71 2,00 

Armadillo 195 44,13 3,90 
HEAT 78 38,23 1,73 
TPR 89 33,95 1,71 

PPTA 29 35,10 1,78 
Pumilio 27 35,30 2,23 

SEL1 17 34,41 3,57 
 
Table	11	Seeds,	sequences	and	units	found	after	a	HMMER	search	using	our’s	HMMs	and	Pfam’s	 

  HMM PFAM 
ensemble 

name Ankyrin 

Seed 438 1554 
Uniprot 122160 Unable to retrieve 

Units 
Unable to 
retrieve Unable to retrieve 

  HMM PFAM 
ensemble 

name Armadillo 

Seed 245 378 
Uniprot 10838 20355 
Units 37398 Unable to retrieve 

  HMM PFAM 
ensemble 

name HEAT 

Seed 109 937 
Uniprot 99732 Unable to retrieve 

Units 
Unable to 
retrieve Unable to retrieve 

  HMM PFAM 
ensemble 

name TPR 

Seed 108 3112 
Uniprot 61087 Unable to retrieve 
Units 41214 Unable to retrieve 

  HMM PFAM 
ensemble 

name PPTA 

Seed 48 834 
Uniprot 2694 3306 
Units 9192 12996 

  HMM PFAM 
ensemble 

name Pumilio 

Seed 36 50 
Uniprot 5796 6880 
Units 30169 34457 

  HMM PFAM 
ensemble 

name SEL1 

Seed 17 170 
Uniprot 22343 32706 
Units 65948 111678 
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Trying to proof the efficiency of our models, we ran our HMM against UniprotKB 

and the results show that our models are more efficient than the PFAM ones. 

Using HMMER search (R. D. Finn, Clements, and Eddy 2011) we found, in 

most of the cases, more than 70% of Pfam sequences but using much less 

units as seed (Table	 11). This led us to believe that maybe if we increase our 

dataset to all 1329 α-solenoids in RepeatsDB we probably might be able to find 

as much sequences as Pfam but using more efficient HMM. 

	

4.4. Manipulating	proteins	structures	with	Victor	library	
	

(L. Hirsh et al. 2015), Victor library is provided as a GitHub repository with 

source files and unit test, it also includes extensive online documentation, 

including a Wiki with help files and tutorials, examples and Doxigen 

documentation. It is composed of more than 60000 lines of code and is still 

expanding. All the code is the result of a refactoring process in which all the 

components of the library maintain the same internal structure. During this 

refactoring process we include comments for all the methods and a 

documentation of how they work and communicate. The refactoring process 

was really complex because we had 15 years of code to evaluate, this is the 

reason why we also include unit test and examples for the methods. The 

complexity of Victor is now reduced to different packages; in that way we have 

encapsulated information that will enable inexperienced users to develop 

advanced tools. The first package is Biopool, the Biopool class contains 

methods to parse PDB files. It is the main module of the library.   

 

To demonstrate the range of possible applications Victor provides three main 

components: Energy, Align and Lobo. Energy contains everything necessary to 

evaluate protein structures.  Using implemented methods it is possible to obtain 

solvation potential, torsion angles from a PDB and its normalized energy. 

Included in this section of the library are two published methods FRST (S. C. E. 

Tosatto 2005), (http://protein.cribi.unipd.it/frst/), that serves to validate energy 

inside of a protein structure by computing both, an overall and a per-residue 
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energy profile of a protein structure. The second method is TAP (S. C. Tosatto 

and Battistutta 2007), that serves to validate local torsion angles of a protein 

structure calculating both an overall conformational score of a protein structure 

and a confidence estimate. Both published methods can be used as a guide to 

develop new methods.  

 

More examples can be found in the Align directory, this package provides basic 

sequence alignment algorithms (S. C. E. Tosatto et al. 2006). Align is a tool 

designed for performing sequence alignments in a wide variety of combinations. 

It implements sequence-to-sequence, sequence to profile and profile to profile 

alignments with optional support of secondary structure. Different alignment 

options are freely selectable and include alignment types like local, global, free-

shift and number of sub-optimal results to report. The secondary structures can 

be either provided by the user or automatically performed by the server using 

PSIPRED.  Different profile-profile scoring schemes (Wang and Dunbrack 2004) 

used in CASP to detect homologous protein sequences are also implemented. 

In Align we can also find variable gap penalties with additional terms for 

sequence to structure fit and advance weight scheme such as PSIC (Sunyaev 

et al. 1999) all default values are optimized by and extensive benchmark.   

 

Finally the Lobo component contains and application of ab initio loop modeling 

using a fast divide and conquer algorithm (S. C. E. Tosatto et al. 2002) . It is a 

fast ab-initio method for modeling local segments in protein structures. The 

algorithm uses a database of recalculated look-up tables, which represent a 

large set of possible conformations for loop segments of variable length. The 

target loop is recursively decomposed until the resulting conformations are 

small enough to be compiled analytically. The algorithm, which is not restricted 

to any specific loop length, generates a ranked set of loop conformations in 20 - 

180 seconds on a desktop PC. The prediction quality is evaluated in terms of 

global RMSD. Depending on loop length the top prediction varies between 1.06 

A RMSD for three-residue loops and 3.72 A RMSD for eight-residue loops. Due 

to its speed the method may also be useful to generate alternative starting 

conformations for complex simulations. Using the methods its possible to not 

only obtain the torsion angles from a PDB, but also to cluster angle data, 
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generate clusters lookup tables, generate LUTs using Ramachandran clustered 

data, analyze backbone geometry of a PDB, and of course identify and model 

loops in a PDB.  It could be easily extended for structure prediction in 

combination with statistical potentials as target function.  

 

By all means, this open source project is devoted to the structural bioinformatics 

community and provides a unique combination of methods for sequence and 

structure manipulations and considering all published research we are able to 

confirm the accuracy of the library and its capability to be extended, this is the 

reason why, in the future, it will be the main tool for developing a homology 

modeler of repeat proteins using repeat unit fragments as template. 
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5. Conclusions	and	future	work	
 

Over the last decade, numerous studies have demonstrated the fundamental 

importance of tandem repeat proteins (TRP) in many biological processes 

(Andrade, Perez-Iratxeta, and Ponting 2001). It is known that repeat proteins 

are a widespread class of non-globular proteins carrying heterogeneous 

functions involved in several diseases. One of the most frequent problems in 

study of biology is the functional characterization of a protein and it is usually 

solved by analyzing the three-dimensional (3D) structure. The experimental 

determination of the 3D structure is time consuming and technically difficult. For 

this reason structure prediction by homology modeling offers a fast alternative 

to experimental approaches. However homology modeling is not feasible for 

tandem repeats proteins because it is known that these kind of proteins are 

degenerated and usually it is hard to find a template based on sequence 

similarity.  

 

For these reasons, this document is focused on algorithms oriented toward 

repeat unit prediction, presented three different publications (Paladin et al. 

2016; Layla Hirsh et al. 2016; L. Hirsh et al. 2015) and one unpublished work 

that are the first steps of a much bigger picture and future research.  

To increase Repeats DB annotations we adopted an innovative approach and 

created ReUPred (Layla Hirsh et al. 2016), a predictor that identifies repeat 

units and classifies repeat protein structures. One of the results of this approach 

is the construction of the Structural Repeat Unit Library that contains different 

repeat unit fragments representing the structure diversity of known TRPs. This 

library is continuously updated and optimized, as soon as new structures are 

deposited in the PDB we execute the predictor and new unit fragments are 

included in SRUL. This library and the predictor are two products that will be 

continuously updated and optimized. ReUPred and RepeatsDB provide new 

information about repeat units and new unclassified repeat protein structures, 

which will increase our knowledge about repeat proteins. As the quality of 

SRUL increases predictions of ReUPred will also get better and our information 

will be more accurate.  
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The manual curation process should be also done because it is the only way in 

which new subclasses can be identified. However, it should be considerably 

faster than before since ReUPred predictions can guide expert curators. 

Furthermore, as long as new subclasses are identified, the TRPs schema 

(Figure	50) can be updated as is the case of the box and align prism. 

 

The next step with ReUPred is, as mentioned before, to create a web service 

for the identification of repeats based on the sequence thanks to the generated 

HMM. In addition, we want to provide more information of the residue 

conservations and the positions of structural twist and turns. Moreover, we will 

provide information about the function by exploiting annotation available from 

SRUL templates. 

ReUPred is based in the Victor C++ (L. Hirsh et al. 2015) library that allows us 

to manipulate proteins. The final goal of the library is to be able to provide ab 

initio modeling of repeat proteins. This is a long-term goal, but this library 

represents the first step to do so.  

Another important result of ReUPred is the large-scale generation of high 

quality data that allowed us to update RepeatsDB, increasing the amount of 

annotated TRPs 20 times. RepeatsDB 2.0 (Paladin et al. 2016) has now more 

than 50% of the entries with unit definition manually validated by expert 

curation. Our final goal is to have 100% of RepeatsDB entries manually curated 

and an automatic pipeline for its continuous update. To further improve 

RepeatsDB quality we decided to provide a finer classification at the subclass 

level. We focused on α-solenoids that represent the most abundant fold in 

repeat proteins. Our hypothesis that inside this subclass repeats unit share 

same structure was confirmed and we were able to create different hidden 

Markov models (HMM) for each ensemble (structural cluster). This are based in 

the unit structures of already known and identify repeat proteins and will give us 

the possibility of classify proteins using just their sequence. Moreover, it will be 

possible to include these HMMs in the ReUPred predictor thus reducing the 

execution time and increasing the quality of the predictions. Furthermore, the 

SRUL fragments can be used for ab initio modeling by softwares like Rosetta 

and for protein engineering in general. So far the subclass analysis was limited 

to α-solenoids but will be extended to the rest of RepeatsDB subclasses. The 
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structure of the units seems to be defined mainly by specific conserved 

residues. We hypothesize that this is true for all subclasses and that this 

information is the key for TPR design.  

 

Finally during the curation process, we identified new structural subclasses, as 

is the case of “Sandwich beads” (class V) and “αβ-trefoil” (class IV) among 

others. We suspect that as new structures are deposited in PDB we will be able 

to create a new level of structural classification. Maybe by using a unit’s 

secondary structure, or the idea of having a limited possible number of repeat 

units or a infinitive number, but in any case, this analysis would be also part of a 

future research. 

 

In conclusion, this document is just the starting point to understand repeat 

proteins, how they work, how they can be modeled and designed. Without 

doubt, to understand how they are related to diseases and their function.     	
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6. Publications	

6.1. RepeatsDB	2.0:	improved	annotation,	classification,	
search	and	visualization	of	repeat	protein	structures		

	

Authors: Lisanna Paladin, Layla Hirsh, Damiano Piovesan, Miguel A. 

Andrade-Navarro, Andrey V. Kajava and Silvio C.E. Tosatto.  

Journal: Nucl. Acids Res. (2016) doi: 10.1093/nar/gkw1136 

	

6.1.1. Abstract	

RepeatsDB 2.0 (URL: http://repeatsdb.bio.unipd.it/) is an update of the 

database of annotated tandem repeat protein structures previously 

featured in the NAR Database Issue. Repeat proteins are a widespread 

class of non-globular proteins carrying heterogeneous functions involved 

in several diseases. Here we provide a new version of RepeatsDB with 

an improved classification schema including high quality annotations for 

about 5,400 protein structures. RepeatsDB 2.0 features information on 

start and end positions for the repeat regions and units for all entries. 

The extensive growth of repeat unit characterization was possible 

exploiting the novel ReUPred annotation method over the entire Protein 

Data Bank. The quality of the data is guaranteed by an extensive 

manual validation for more than 60% of the entries. The updated web 

interface includes a new search engine for complex queries, a new entry 

page for a better overview of structural data. It is possible to compare 

unit positions, together with secondary structure, fold information and 

Pfam domains. Moreover, a new classification level has been added on 

top of the existing classification scheme as an independent layer for 

sequence similarity relationships at 40%, 60% and 90% identity.  

6.1.2. Introduction	
 

Tandem repeat regions in proteins are characterized by a repeated 

sequence that codes for a modular architecture, where structural 
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modules are called “units”. Proteins with tandem repeats play important 

functional roles (1), are abundant in nature and related to major health 

threats (2–6). Detecting and annotating them appropriately may 

increase our understanding of mechanisms of pathogenicity (e.g. 

virulence factors (7)), allow the design of scaffold proteins for 

engineered ligand binding with multiple applications (e.g. cancer therapy 

(8)) and generally expand our knowledge of the function and structure of 

many proteins (e.g. the mineralocorticoid receptor (9)). It is widely 

accepted that domain structural and functional complexity evolved 

through fusion, recombination, accretion and repetition of a very small 

set of elementary functions (10, 11). Therefore, units in tandem repeat 

proteins represent a fundamental source of information to explain 

contemporary structural diversity and the physic-chemical properties of 

highly designable folds (12). However, the identification of the periodicity 

at the sequence level is an extremely hard task, since repetitive proteins 

evolve quickly, due to two main reasons. The first is the error-prone 

process of duplication that originates new repeats , and the second is 

the intrinsic tendency of flanking identical units to diverge (13). A 

number of structure-based methods for the identification of repeats has 

been developed to fill this gap (14–17). RepeatsDB (18), was proposed 

in 2014 as a database of repeat protein structures and as a resource for 

high-quality repeat structure annotation. The data was collected with 

RAPHAEL (19), a state-of-the-art method for the detection of Protein 

Data Bank (PDB) (20) structures containing repeat regions. The entries 

were classified into repeat structural classes (21) and further divided into 

subclasses. The five repeat classes are mainly distinguished by repeat 

unit length and general structural arrangement, and the subclasses by 

the secondary structure assignment of the repeat unit. The shortest one 

or two residue-long repeats, form crystallites and are typically harmful or 

non-functional in natural organisms. No example of their structure is 

deposited in the PDB and consequently in RepeatsDB. Class II 

structures are fibrous proteins with very short units stabilized by 

interchain interactions, typically collagens and α-helical coiled coils. This 

second subclass presents various arrangements described in (22). 
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Class III contains the most typical examples of repeats, elongated 

structures where repetitive units require one another to maintain 

structure. The most numerous subclasses in class III are β-, α/β- and α-

solenoids. Class IV includes all closed repeat structures. Widespread 

across all types of organisms, this class includes the TIM-barrel and β-

propeller subclasses. Both class III and IV contain units with a length 

between 10 and 50 residues. The last class V, with unit length > 40 

residues, groups “beads on a string” repeats, whose repeat units are 

large enough to fold independently. 

All repeat subclasses are characterized by a strong structural 

conservation in repeat units frequently not clearly reflected in sequence. 

This is the reason why domain sequence databases such as Pfam (23) 

and SMART (24) fail to detect a large number of repeats (25), as most 

of the largest clusters of human sequence regions not covered by Pfam 

were found to be repeated (25, 26). RepeatsDB was developed to fill 

this gap and provides the community with a high-quality resource of 

reliable datasets of repeat structures for various purposes. The first and 

most obvious goal that was achieved was to compare the structural 

classification of repeat with the sequence-based one (26). Other uses of 

RepeatsDB are the extraction of repeat datasets to discuss specific 

features (27, 28), the testing of both sequence- and structure-based 

repeat detection methods and the discussion of the role of proteins with 

repeats (17, 29–33). The high-quality manually annotated set of 

RepeatsDB units, the Structural Repeat Unit Library (SRUL), was 

exploited Repeat Unit Predictor (ReUPred) (34), an algorithm to predict 

both unit position and classification of repeat regions in a group of 

entries predicted as repeated. By running ReUPred on the output of 

RAPHAEL (19), an algorithm designed to detect repeats in protein 

structures, a number of new entries were identified, classified and 

annotated with unit positions. RepeatsDB 2.0 includes new annotations, 

an improved classification and completely redesigned web server and 

interface, to guarantee the intuitive availability of data and a better user 

experience in terms of database usability and look-and-feel.  
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Retrieving RepeatsDB data. RepeatsDB data can be retrieved in three different ways. (A) The 

‘Browse’ page provides the entry point for both the structural hierarchy and sequence clusters. 

(B) The ‘Search’ page allows the user to perform advanced queries against a range of 

RepeatsDB-specific and third-party search fields. The input can be simple text or numeric (single 

value or range) according to the field type and multiple queries can be combined by boolean 

operators (AND, OR, NOT). Both the ‘Browse’ and ‘Search’ pages redirect to the results page 

(C). This page provides a table with the list of retrieved entries and can be further filtered (and 

sorted) through column header fields. Results can be displayed by PDB chain (default), region or 

UniProt. 

6.1.3. Database	description	
 

RepeatsDB 2.0 data have been completely regenerated taking 

advantage of the new ReUPred predictor (34) for automatic detection of 

tandem repeat units. In the new database version, all entries are 

annotated at the unit level, i.e. providing start end position for each 

repeated segment, and classified at the subclass level. Compared to the 

old version, unit annotation have grown by more than an order of 

magnitude. A detailed description of the RepeatsDB annotation pipeline 

follows. 

6.1.4. Data	curation	
	

The initial dataset for RepeatsDB is the entire PDB (20). Repeat 

candidates are extracted with RAPHAEL (19) and processed with 
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ReUPred (34) to confirm the presence of repeat regions and provide 

detailed unit information. ReUPred is a predictor able to identify the 

position of repeated fragments by performing iterative structural 

alignments against a manually refined library of representative units. 

ReUPred is also able to assign the class and subclass by transferring 

this information from the unit library.  

 

 
 
Screenshot of RepeatsDB sample entry page for PDB code 1ialA. The top part of the page (A) 

reports structure information from the PDB and cross-references to third-party databases 

including UniProt, MobiDB, SCOP, CATH and Pfam (when available). RepeatsDB annotations 

are available for download both in text and JSON formats on the top-right corner. (B) A table 

provides region details such as structural classification, start/end position, number of units, 

repeat period and cluster families. (C) The feature viewer summarizes available annotation for 

the PDB reference sequence, i.e. the SEQRES field in the PDB file. An overview of RepeatsDB 

information (regions, units and insertions) along with secondary structure (DSSP), Pfam, SCOP 

and CATH tracks (when available) are shown. (D) A detailed view of RepeatsDB annotations is 

highlighted in the sequence and PDB viewers. 
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The final dataset available in RepeatsDB 2.0 is the result of an iterative 

process where the ReUPred library has been refined manually multiple 

times to resolve conflicts, to improve its ability to generalize and to 

include newly discovered subclasses. At the end of the process an 

extensive validation and refinement of the predictions has been carried 

out by expert visual inspection. More than 60% of the entries has been 

reviewed and 5 new subclasses created, three for class IV (closed 

structure) and two for class V (beads on a string). 

6.1.5. Implementation	
	

RepeatsDB was designed as a multi-tier architecture, with three 

modules managing data storage, processing and presentation, 

respectively. Data are stored in a MongoDB database, and processed 

with Node.js. The server is accessible through a web interface or 

programmatically exploiting a RESTful architecture. The web interface is 

designed using Angular.js and Bootstrap frameworks. Dynamic and 

interactive elements of the entry page are developed using PV for the 

structure visualization and Bio.js for the sequence features viewer, 

respectively. Both the database structure and the Node.js server have 

been completely rewritten to improve efficiency and data reliability. 

Moreover, all data derived from third party resources have been 

processed and stored locally to prevent broken dependencies. 

 

6.1.6. Innovations	
 

Apart from the new annotation pipeline, several bugs have been fixed 

and many improvements have been introduced since the last 

RepeatsDB release. All positional annotations are now based on SIFTS 

(35) making them consistent with both PDB (20) and UniProt (36) 

references. The search engine has been completely redesigned. An 

intuitive interface allows to perform complex queries using logical 

operators and guides the user through all possible searching fields. A 
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new classification level has been added to include evolutionary 

relationships among different repeat regions. An all-vs.-all alignment of 

the repeat regions allowed to group them according to sequence 

similarity and to identify different repeat families. The new classification 

has been implemented as an independent layer on top of the existing 

structural features, and it is available at three different identity 

thresholds (40, 60 and 90%). The web interface allows to navigate entry 

clusters and so providing an overview of the sequence 

representativeness inside each structural subclass. 

 

 
 
RepeatsDB growth. RepeatsDB 2.0 is compared to the previous release. Entries have unit and 

subclass annotation, with more than 60% manually reviewed (blue). For the old version, only a 

tiny fraction of entries have unit definition (cyan) and the rest is mostly annotated only at the 

class level (yellow). 

6.1.7. Database	usage	
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The user interface presents an intuitive summary table providing direct 

access to all entries by structural class directly from the home page. For 

a finer search, the user can visit either the “Browse” page that provides 

subclass access or the “Search” page for generating complex queries 

(Figure 1, panel A and B). All entry points redirect to the same result 

page listing the retrieved proteins in a table (Figure 1, panel C). The 

table can be further filtered by providing additional matching strings in 

the column headers. The “Browse” page provides also direct access to 

sequence clusters, where entries are grouped by sequence similarity. 

The entry page (Figure 2) is much more informative compared to the 

previous RepeatsDB version, including several cross-links to third party 

resources. It also integrates several structural features useful for 

comparing CATH, SCOP, Pfam and DSSP annotations with RepeatsDB 

data. Regions, units and insertions are provided for all entries and are 

correctly mapped both to UniProt and PDB reference (SEQRES field in 

the PDB file) sequences thanks to the SIFTS service. A correct mapping 

strongly improves RepeatsDB impact since it is now very easy to link 

repeat data with other sequence features like mutations or post-

translational modifications. Thanks to a RESTful architecture, all 

RepeatsDB data are accessible from external APIs and third party 

resources through HTTP URLs. Please refer to the ‘Help’ section of the 

website for details on using the RepeatsDB web services. Customized 

datasets can be downloaded in JSON or text format using the browse 

function or RESTful web services. 

6.1.8. Statistics	
 

RepeatsDB provides high quality annotation for about 5,400 entries. 

Figure 3 compares the current RepeatsDB content to the previous 

version. The chart shows the total number of entries belonging to each 

class. However, the new version provides unit definition and subclass 

classification for all entries whereas the old version only for a tiny 

fraction, 327 entries (cyan bar). Moreover, in RepeatsDB 2.0 more than 

60% of the entries has been manually reviewed by expert curators (blue 
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segment). Further details as the number of regions, units and genes are 

available in the “Stats” page of the web site. 

6.1.9. Conclusion	and	future	work	
 

RepeatsDB was presented in 2014 with the goal to provide the 

community with a central resource for high-quality tandem repeat protein 

structure annotation. RepeatsDB has been cited in a number of different 

studies regarding repeat proteins, and has been used to extract 

databases for repeat proteins analysis and to test algorithms for repeat 

proteins annotation. The detailed annotation of entries performed by 

RepeatsDB curators led to the building of a high quality Structure 

Repeat Unit Library (SRUL). This library was exploited by the ReUPred 

algorithm (34) as a gold standard to define unit position in new entries.  

The new release of RepeatsDB includes a new annotation pipeline, 

combining the RAPHAEL algorithm for repeat detection (19) and 

ReUPred for annotation (34), producing extensive annotation for all 

entries. The pipeline is fully automated and allows the easy regular 

update of the database. The iterative execution of the pipeline already 

demonstrated its efficacy both because it identified a large number of 

new entries, and because new subclasses were identified and added to 

the structural classification scheme. RepeatsDB will benefit from regular 

updates, which will steadily increase the number of available 

annotations.    

6.2. Identification	of	repetitive	units	in	protein	structures	
with	ReUPred		

	
Authors:	 Layla	 Hirsh,	 Damiano	 Piovesan,	 Lisanna	 Paladin,	 and	 Silvio	 C.E.	

Tosatto	
Journal:	Amino	Acids,	 June	2016,	Volume	48,	Issue	6,	pp	1391–1400.	DOI:	

10.1007/s00726-016-2187-2	
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6.2.1. Abstract	
 

Motivation: Over the last decade, numerous studies have 

demonstrated the fundamental importance of repeat proteins in many 

biological processes. A plethora of new repeat structures have also 

been solved. However, a detailed structural characterization of repetitive 

elements is completely missing. A first attempt to remedy this has been 

recently provided by RepeatsDB, but since repeat unit annotation is 

generated through time consuming manual curation it covers only 3% of 

the bona fide repeat proteins. 

 
Results: The Repeat Protein Unit Predictor (ReUPred) for the fast 

automatic prediction of repeat units and the repeat classification is an 

algorithm exploiting an extensive Structure Repeat Unit Library (SRUL) 

derived from RepeatsDB. ReUPred finds repetitive elements through an 

iterative structural search against the SRUL using a divide and conquer 

strategy. Taking solenoid proteins as a test case, ReUPred outperforms 

the state of the art for prediction of the unit position, with an accuracy 

increase of about 9%. It is the first predictor for the finer classification of 

solenoid structures. 

 

Availability: ReUPred is implemented in Python and supported on 

Linux. The source code is distributed under the GPL license and freely 

available from URL: http://protein.bio.unipd.it/reupred/ 

6.2.2. Introduction	
 

Tandem repeat (TR) proteins are characterized by a repetitive 3D 

structure successfully exploited by nature in a myriad different cellular 

pathways and organisms (E M Marcotte et al. 1999). They are widely 

distributed in archeal, bacterial and eukaryotic proteomes and prevalent 

in complex organisms. An association was suggested between TR 

spread and the evolution of multicellularity (Edward M. Marcotte et al. 

1999)(Edward M. Marcotte et al. 1999). Characterized by repetitions in 
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their coding sequence, they are believed to have arisen from the 

duplication of short coding DNA segments (Andrade et al. 2001). These 

repetitions in sequence account for a peculiar modular fold architecture 

(Andrey V. Kajava 2012). Each structural module of this architecture is a 

“unit”, the assembly of at least three of these building blocks forming a 

repeat “region” (Di Domenico et al. 2014b).  TR protein classification is 

based on repeat unit length (Andrey V Kajava 2012), which can vary 

from one or two residues in crystallites (class I) to more than 50 

residues in beads-on-a-string (class V), TR proteins built from the 

repetition of small globular domains (Andrey V Kajava 2012). The 

middle ground comprises elongated (class III) and closed (class IV) 

structures, but it is dominated by the presence of a subtype of elongated 

structures, called solenoids (B. Kobe and Kajava 2000; A. V. Kajava 

2001). Mainly due to stabilizing intra-unit short-range interactions, these 

proteins can be extended and refolded when subjected to a mechanical 

stretch force  (Kim et al., 2010). In addition, they easily tolerate insertion 

of new units and possess an easily tunable horseshoe shape. These 

exceptional properties render them very efficient for protein-protein 

interaction (Andrade et al. 2001), and accounts for their widespread in 

cellular pathways. There has been an increasing interest in TR proteins, 

and solenoids in particular, over the last few years, mainly due to their 

relevance in health (Fournier et al. 2013; de Wit et al. 2011) and for 

engineering applications (Grove, Cortajarena, and Regan 2008; Höcker 

2014; Brunette et al. 2015). However, this class of proteins still belongs 

to the “dark matter” of the protein universe being characterized by non-

canonical sequence-structure relationships. Indeed, solenoid sequences 

evolve quickly while maintaining their fold, hampering detection by 

traditional methods for sequence analysis. The same holds for modeling 

and functional characterization, which usually relies on well conserved 

sequence features. As a result, specialized methods were built for the 

identification of non-globular proteins (Pellegrini 2015). Some strategies 

are sequence-based, and usually rely on self-comparison, pattern 

recognition or complexity measurement (Pellegrini 2015). Other 

approaches try to recognize TR proteins  based on the modularity of 
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their 3D structure (Abraham, Rocha, and Pothier 2008; Sabarinathan, 

Basu, and Sekar 2010; Walsh et al. 2012). RepeatsDB (Di Domenico et 

al. 2014b) represents the state-of-the-art for the annotation of tandem 

repeat. The database adds to the typical classification a subclass level 

based on secondary and tertiary structure features. Existing methods for 

TR protein identification do not deal with the TR structures classification 

problem, which was based on manual assignment in RepeatsDB. The 

database includes manually curated annotation of a subset of entries. 

This includes the position of each repeat unit and consequent 

identification of sequence repeats. This particular problem was 

addressed by few automatic methods. ConSole (Hrabe and Godzik 

2014)  exploits the modularity of protein contact maps and TAPO (Do 

Viet, Roche, and Kajava 2015) the periodicities of atomic coordinates 

and other types of structural representation. Both are available through 

a web server interface that allows the user to evaluate one protein at a 

time. The automatic identification of units inside a TR protein structure 

allows to scale up this type of information.  

 

The newly available data could be a powerful tool to understand TR 

evolution and to assess conservation at the sequence level. 

Furthermore, the collection of an “alphabet” of TR units can be useful for 

protein engineering applications (Brunette et al. 2015). Here we present 

a new Repeat Protein Unit Predictor (ReUPred) for the classification and 

identification of repetitive elements in TR proteins. ReUPred 

outperforms the state of the art methods (TAPO and ConSole) for the 

unit identification problem and provides subclass assignment for the 

87% of the test set with 89% accuracy. 

A new metric has been adopted to evaluate correct unit identification 

considering both phase and unit length. Parameter optimization has been 

performed manually exploiting a curated dataset from RepeatsDB. 

Table 1. Current RepeatsDB annotation of solenoid proteins 
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Class Units Detailed Classified Predicted 

β 367  41 128  

α/β 180  19   70  

α 388  48  875  

Total 935 108 1,073 7,948 

 

Units lists the number of single defined repeat units. Detailed proteins 

have the unit position identified manually. Classified are those protein for 

which the subclass assignment is known, including “manually” and “by 

similarity”. Predicted proteins are not yet classified. 

 

 

This work concentrates on the solenoid proteins since it is one of the 

most abundant class of tandem repeat proteins in nature (A. V. Kajava 

2001). 

RepeatsDB (Di Domenico et al. 2014b) represents the state-of-the-art for 

the annotation of tandem repeat proteins. RepeatsDB provides the start 

and end position of repetitive units only for a small subset ( “detailed”) 

which are manually annotated. Another group of proteins is provided only 

with the manual classification or by sequence similarity. The rest of the 

structures (“predicted”) lacks any classification and each represents the 

majority of the data. The aim of ReUPred is to extend the detailed 

annotation for all classified proteins and possibly for all predicted 

repeats. Table 1 summarizes the RepeatsDB classification for solenoids. 

6.2.3. Methods	
 

ReUPred is a predictor for the classification of a tandem repeat proteins 

and identification of the composing repeat units. Its input is a target 

protein structure and a structural repeat unit library (SRUL). The output 

is a list of fragments corresponding to the predicted unit positions in the 

structure and the class assignment according to the RepeatsDB 
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definition (Di Domenico et al. 2014b). In this work, only solenoid repeat 

proteins (i.e. classes III.1 to III.3 in RepeatsDB) have been considered 

as they represent the most abundant class of repeat proteins in nature 

(A. V. Kajava 2001). The algorithm explores iteratively the input 

structure using a template library using a divide and conquer strategy to 

improve both accuracy and speed, requiring on average ca. two minutes 

on a standard laptop. ReUPred was optimized by filtering SRUL, fine 

tuning parameters to choose the best alignment and detect insertions 

between units as well as identifying separated repeat regions in the 

input protein. Each step is described in the following. 

6.2.4. SRUL	
 

The Structural Repeat Unit Library (SRUL) constitutes a fundamental 

part of the ReUPred input and represents the conformational space and 

diversity of bona fide repeat units. It has been generated by extracting 

all structural unit fragments from the “detailed” solenoid proteins in 

RepeatsDB. after filtering units shorter than 10 residues and larger than 

90. After filtering units shorter than 10 residues and larger than 90, the 

solenoid SRUL is composed of 916 structural unit fragments from 108 

different proteins and non-redundant at the sequence level. After 

clustering the sequences with CD-HIT (Fu et al. 2012) at 40% identity 

cutoff, 531 clusters are obtained. The largest cluster contains 17 units 

from 5 proteins and the others have less than 10 units each. From the 

structural point of view, SRUL is biased towards α-helical units. All-

against-all structure similarity has been measured by TM-Align (Zhang 

and Skolnick 2005). Clustering at 0.6 TM-score generates 362 clusters, 

where the majority of α units (319) fall inside a single cluster.  

6.2.5. ReUPred	algorithm	
 

The algorithm exploits evolutionary history of tandem repeat proteins. 

Solenoid units have been demonstrated to evolve from a single 

representative units to multiple copies through repeated duplications (A. 
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K. Björklund, Ekman, and Elofsson 2006)(Å. K. Björklund, Ekman, and 

Elofsson 2006). Units of a solenoid protein show a different degree of 

similarity which is strongly correlated to the distance from the middle of 

the repeat region. This is consistent with the observation that units at the 

edges are more degenerated (E M Marcotte et al. 1999). ReUPred 

exploits this knowledge and tries to mimic evolution. The objective is to 

predict adjacent units, i.e. to minimize the number of residues between 

predicted flanking units and to obtain at least three repeated elements. 

This is important since in known RepeatsDB solenoid structures, 

insertions of non-repeat fragments are rare and mostly observed inside 

and not between units. 

See Figure 1 for  a schematic description.ReUPred uses an iterative 

divide and conquer approach. Each iteration corresponds to a structural 

search, i.e. structural alignment of the query structure against all SRUL 

elements to identify a unit. The predicted unit corresponds to the aligned 

region in the query. At each cycle the algorithm forks (divide). Two new 

input structures are created, corresponding to the N- and C-terminal 

flanking fragments of the predicted unit and two new cycles (structural 

searches) are performed. After the first cycle, i.e. after the “master” unit 

is found, SRUL is no longer used. Instead, a new ad hoc library is 

created on the fly. At the beginning of the second cycle only the “master” 

unit populates the ad hoc liberary and all newly predicted units are 

included for search in the following cycles. The algorithm stops when the 

entire input protein is consumed, i.e. new input fragments are too short, 

or the structural search does not provide any new valid alignment. At 

this point the predicted units are collected and evaluated together 

(conquer). If the result does not satisfy a set of rules, the structural 

alignment filters for the “master” unit are relaxed and the entire iterative 

part is repeated from the beginning for up to four increasingly relaxed 

iterations. This strategy allows to predict both easy and difficult cases 

automatically. A valid solution for ReUPred is obtained when at least 

three units are found and their proximity in sequence is ensured by at 

least one of two simple rules to measure unit proximity: (i) the total 

number of gaps between units is less than 40 residues, (ii) the number 
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of non-adjacent units divided by the total number of predicted units is 

less or equal to 0.25. 

 

 
Fig. 1. Schematic overview of the ReUPred algorithm. The input is a PDB structure (PDB 

1IQ1, chain C) and the output is a list of unit positions and the predicted subclass. In the 

structures the “master” unit is in red and the “secondary” units in green and yellow. 

 

 

Replacing the original SRUL with an ad hoc library from the second cycle 

onwards improves both computational cost and accuracy. SRUL is very 

big, with 997 unit templates. Instead, the ad hoc liberary reaches the 

maximum size at the end of the algorithm and corresponds to the number 

of predicted units, drastically reducing the number of structural 

alignments. On the other hand, using only units from the query structure 

itself increases accuracy as units of the same protein are structurally 

more similar to each other than units from other proteins (data not 

shown). The class assignment is provided by simply reporting the 

classification assigned to the first “master” unit identified from 

SRUL.ReUPred accuracy strongly depends on the quality of the 

structural alignments at each cycle. In particular, it is very important to 

correctly predict the first “master” unit because errors propagate. 

Alignments have to abide a set of rules and constraints that are much 

more stringent for the “master” search compared to successive cycles. 

Structural alignments are calculated using TM-Align (Zhang and Skolnick 

2005), filtering by TM-Score, RMSD, alignment length and number of 

gaps. Tables 2 and 3 list all cutoff values for the cascaded four runs used 

to select valid alignments for the “master” and “secondary” units, 

executed on cascade until a valid solution is found. 

 



123	
	

 

Fig. 2. Unit prediction evaluation. In panel A two wrong predictions (gray) and the reference (blue). 

In panel B the definition adopted in this work to define correct (red) and wrong (gray) predicted 

residues. 

Table 2. Structural alignment constraints for the “master” unit. 

Iterati

on 

TM-

Score 

RMSD 

(A) 

Alignment 

(residues) 

Unit gaps 

(%) 

1 ≥ 0.52 ≤ 1.6 > 21 < 10 

2 ≥ 0.47 ≤ 1.9 > 17 < 20 

3 ≥ 0.30 ≤ 2.5 > 16 < 50 

4 ≥ 0.23 ≤ 3.0 > 14 < 50 
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TM-Score and RMSD are the same provided by TM-Align. Coverage and 

gap are calculated as described in the manuscript. Different columns 

correspond to different algorithm runs that are performed on cascade 

until a valid solution is found. 

Table 3. Structural alignment constraints for the “secondary” units. 

Iteration TM-

Score 

RMSD 

(A) 

Alignment 

(residues) 

Unit gaps 

(%) 

Length 

ratio (%) 

1 ≥ 0.35 ≤ 1.8 ≤ 1.20 < 40 ≥ 70 

2 ≥ 0.30 ≤ 2.0 ≤ 1.15 < 40 ≥ 70 

3 ≥ 0.30 ≤ 2.5 ≤ 1.15 < 40 ≥ 70 

4 ≥ 0.30 ≤ 3.0 ≤ 1.10 < 50 ≥ 70 

 

Columns are as in Table 2. The length ratio is calculated as the unit 

length divided by the length of the first “master” unit. 

6.2.6. Performance	evaluation	
 

Evaluating the quality of a prediction is not easy as it is necessary to 

define a metric to measure the correct matching of the predicted units 

(reference). Figure 2 shows a comparison between two predictions 

(gray) with the RepeatsDB reference (blue). Both predictions are wrong 

as the first has a wrong phase (all units are shifted forward) while the 

second predicts units with the correct phase but double size. A new 

strategy was implemented that takes into consideration both aspects 

when evaluating a prediction by measuring the overlap of predicted units 

with each reference unit. In the second panel of Figure 2 another 

example is reported and correct and wrong predicted residues are 

highlighted in red and gray respectively. To perform this type of 

evaluation correctly, before generating the confusion matrix, it is 

necessary to match predicted units with the reference counterpart using 

a maximum overlap criterion. For example in panel B of the figure the 
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last predicted unit is compared with the last unit of the reference since 

the overlap is greater compared with the preceding unit.  

 

In the example of Figure 2 (panel B) the predicted true positive residues 

correspond to the red area of the units whereas the true negatives 

correspond to red fragments outside the repeat region. False positives 

are gray areas inside the units, while false negatives are represented by 

the gray segment, i.e. structure fragments with units in the reference but 

not predicted. 

Filtering the parameters for filtering structural alignments has been 

performed manually, maximizing test set coverage. The number of 

repeat proteins for which a valid output is provided, and prediction 

accuracy, i.e. correct unit position assignment. The training set was built 

considering all solenoid proteins in RepeatsDB for which unit annotation 

is provided (“detailed” entries). Since SRUL has been generated from 

the same protein set to evaluate ReUPred ability to generalize, all units 

coming from the target itself and all similar units were removed at each 

step from the SRUL. Template similarity was measured at sequence 

level by setting a cutoff of 30% of sequence identity. 

For the unit centric evaluation, true positives (TP), false positives (FP), 

true negatives (TN) and false negatives (FN) are calculated as 

described in Section 2.5. For classification, given a solenoid subclass 

TP is the number of proteins with correct assignment, FN are proteins 

assigned the wrong class, FP are class assignments to wrong targets. 

TN is always zero since the test set contains only classified proteins. For 

all evaluations, the measures recall (or sensitivity; TP/(TP+FN)), 

precision ( TP/(TP+FP)) and accuracy ((TP+TN)/(TP+FP+TN+FN)) are 

used. ReUPred is compared to the methods TAPO (Do Viet, Roche, and 

Kajava 2015) and ConSole (Hrabe and Godzik 2014). TAPO predictions 

have been generated from the web server (default parameters) 

considering only the first solution. ConSole predictions were generated 

locally by the stand-alone software (default parameters). The RAPHAEL 

period is provided in the RepeatsDB entry metadata. For all evaluations, 

ReUPred has been benchmarked after removing from SRUL units 
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coming from the test protein or structurally similar units (see Section 

2.5). The comparison with TAPO and ConSole has been performed on 

the set of proteins for which all methods predict at least one unit, i.e. 89 

out of 108 proteins.  

 

Fig. 3.  ReUPred unit prediction for Plakophilin-1 (PDB code 1XM9, chain A). The structure 

is shown in cartoon representation in the top part with the schematized sequence below. 

Predicted units are represented in black and grey. Dashed lines represent missing residues in the 

PDB file (residues 388-396 and 481-508). The N- and C-terminal residues flanking the missing 

residues are shown as spheres in the structure. 

Three different datasets have been used. The first has been generated 

from the “detailed” RepeatsDB entries (108 proteins) and represents the 

reference for unit prediction evaluation. Another set with all “classified” 

and “by similarity” entries (1,075 proteins) has been used to test the 

ability to automatically classify repeat proteins and compare unit length 

prediction with RAPHAEL (Walsh et al. 2012). A third dataset has been 

used to test the discrimination of negative examples, i.e. non-repeat 

proteins. In this case, the dataset is from the RAPHAEL paper (Walsh et 

al. 2012), i.e. 247 non-solenoid proteins with different topologies and no 

detectable sequence similarity. 

ReUPred was developed to predict both unit position and classify repeat 

proteins in order to automate the time-consuming manual annotation 
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process of “detailed” annotation in RepeatsDB. See Figure 3 for an 

example on Plakophilin-1. Before benchmarking the main novel 

features, it is worthwhile to investigate whether ReUPred is able to 

correctly discriminate real repeats from non-repeat proteins. For this 

purpose, it has been compared with RAPHAEL (Walsh et al. 2012) on 

the original dataset with 247 non-repeats. ReUPred correctly provides 

no prediction in 238 cases, corresponding to a specificity of 96.36%. 

This is only marginally lower than RAPHAEL at 97.2% on the same 

dataset. A better result could be obtained for ReUPred by setting a 

stronger filter on the last step of the algorithm, but that would affect 

coverage on the positive dataset. Even though ReUPred was designed 

to predict unit positions in tandem repeat proteins, this result 

demonstrates that the tool is also effective in discriminating repeat/non-

repeat proteins.  

Table 4. ReUPred ability to predict solenoid classification 

Class Recall Precision F-Measure Accuracy 

All-β 0.81 0.74 0.78 0.63 

Mixed α/β 0.55 0.65 0.60 0.43 

All-α 1.00 0.99 1.00 0.99 

Total 0.94 0.94 0.94 0.89 

 

6.2.7. Repeat	classification	
 

ReUPred predicts units and fine classification for 83% (893 proteins) of 

the test set. The class assignment is obtained by simply transferring this 

information from the master unit found in SRUL. This approach has 

been proven to be effective as shown in Table 4. ReUPred works very 

well for the α class (III.3 in RepeatsDB). Instead, it is more difficult to 

correctly assign α/β and β examples. The low recall indicates that the 
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cause of the problem is detecting units that do not have a good template 

in SRUL.  

Table 5. Unit prediction evaluation 

Class Method Recall Precision F-Measure Accuracy 

All-β TAPO 0.47 0.59 0.53 0.47 

 ConSole 0.39 0.69 0.50 0.46 

 ReUPred 0.62 0.64 0.64 0.56 
Mixed α/β TAPO 0.66 0.70 0.68 0.59 

 ConSole 0.62 0.69 0.66 0.57 

 ReUPred 0.84 0.84 0.84 0.78 
All-α TAPO 0.64 0.78 0.70 0.57 

 ConSole 0.50 0.74 0.59 0.46 

 ReUPred 0.74 0.79 0.74 0.62 
Total TAPO 0.58 0.70 0.64 0.53 

 ConSole 0.48 0.71 0.58 0.49 

 ReUPred 0.71 0.75 0.73 0.62 

Performance evaluation is reported for all RepeatsDB solenoid structures 

(All) and for the three subclasses separately (β, α/β and α) 

 

This is an important result, as it indicates which RepeatsDB entries are 

worth manually annotating at the “detailed” level to improve ReUPred 

sensitivity and SRUL representation of the repetitive structural element 

universe. Low precision for β and α/β classes is generated by a high 

number of false positive assignments. Looking at the data in detail, we 

found some ambiguous class assignments. E.g. PDB code 3ZYI, chain 

A, is annotated as α/β solenoid in RepeatsDB but there are no helix 

elements except for a small fragment (residues 309-318) which is not 

repeated in the units. Since ReUPred predicts the class by transferring 

annotation from SRUL, if a SRUL element is misclassified the error 

propagates. ReUPred could be very useful to guide the manual 

refinement of RepeatsDB class annotations. 
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Fig. 4.  Number of predicted units on the RepeatsDB detailed dataset. The manually curated 

reference (RepeatsDB) is shown next to the three prediction methods. ReUPred predicts more 

repeat units than the other two methods. 

6.2.8. Unit	prediction	accuracy	
 

ReUPred has been evaluated for unit prediction using the metric 

described in methods section, i.e. penalizing predictions with a wrong 

phase or/and a wrong length. Table 5 shows a comparison with TAPO 

and ConSole in terms of predicted repeat residues on the “detailed” 

solenoid entries in RepeatsDB. Results are reported for each of the 

three main solenoid classes and for all proteins together. ReUPred 

always outperforms the other methods for all evaluation measures. In 

particular, the greatest improvement is observed for the α/β subclass, 

with an increase of 19% accuracy compared with TAPO. The high 

accuracy for this class can be explained by the fact that mixed α/β units 

represent more structurally complex elements compared to all-α units. 

More information is coded in the structure unit, making it easier to 

discriminate wrong structural alignments. On the other hand, the most 

problematic subclass is all-β. Both recall and precision are lower for all 

methods compared with other subclasses. This may be explained by the 

fact that β solenoid units are more degenerated in the same protein than 

other solenoids and present a greater structural diversity with many 
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insertions (data not shown). Moreover, they are shorter compared with 

all-α, generating worse structural alignments.  

  

Fig. 5.  Repeat unit periodicity box plot distribution on the RepeatsDB detailed dataset. 
The manually curated reference (RepeatsDB) is shown next to the three prediction methods. 

 

In addition to evaluating repeats annotations at the residue level, it is of 

interest to benchmark repeat units and their length distributions. Figure 

4 shows the number of repeat units being identified by each method. 

Here again, ReUPred predicts more units than the other two methods. 

Both ConSole and TAPO generate units with the same size for a given 

structure and this may limit their ability to deal with insertions in solenoid 

proteins. ReUPred may therefore be better able to adapt to the irregular 

aspects of solenoid repeats. 

Figure 5 shows a box plot for the distribution of predicted repeat 

periodicities against the RepeatsDB reference set. The median repeat 

length and standard deviations of ReUPred are very similar to the 

reference definition and on average match better than TAPO and 

ConSole. TAPO appears to under-predict the repeat length in β 
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structures, probably because it also uses sequence information. 

ConSole on the other hand appears to have more difficulty with α-

helices. 

 

Fig. 6. Large-scale periodicity predictions on the RepeatsDB classified dataset. The 

original RAPHAEL periodicities are compared to ReUPred unit lengths as box plot. 

6.2.9. Expanding	the	universe	of	known	solenoids		
	

Given the good performance of ReUPred for its intended purpose, i.e. 

classifying solenoid repeats and annotating their component units, it can 

be used to automatically expand the knowledge contained in 

RepeatsDB. The first step consists in establishing the baseline against 

the existing RAPHAEL annotations on the “classified” dataset. This 

contains annotations for solenoid class and predicted average repeat 

length. Since this dataset does not provide unit annotation, the simplest 

way to evaluate the performance is to compare the length of the 

predicted units with the repeat period predicted by RAPHAEL. This is 

the number of residues for which the symmetry signal is maximized, 

generating a single period for each protein. This is a big limitation, as it 

does not reflect the real situation where unit sizes vary inside a protein 

due to insertions which are frequent in solenoids. In particular, it is very 
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relevant for the all-β class where almost all proteins have insertions. 

Figure 6 compares the distribution of ReUPred predicted unit length and 

RAPHAEL period for each solenoid class. Overall, both are very similar, 

with ReUPred having a wider range of periodicities as it is able to 

recognize irregularities in single repeat units. Only the distributions for 

all-β repeats differs more markedly. This class contains many structures 

with insertions which RAPHAEL struggles to summarize in a single fixed 

periodicity.  

 
Fig. 7. Scatter plot of RAPHAEL and ReUPred periodicities on the RepeatsDB classified 

dataset. RAPHAEL produces a single periodicity per protein, whereas all predicted units were 

considered for ReUPred. 

 

The scatter plot in Figure 7 shows the correlation between the 

RAPHAEL period and ReUPred mean unit length calculated on each 

predicted protein. The two methods correlate strongly, with a Pearson 

correlation coefficient of 0.88 (P-value = 4.59*10-290). On average, 

ReUPred predicts shorter units than the RAPHAEL period, 33.7 (SD 6.5) 

and 34.2 (SD 5.3) residues respectively. When the RAPHAEL period is 

much larger (extreme points above the diagonal), ReUPred wrongly 

predicts two units instead of a single unit which would better represent 

the repetitive symmetry (e.g. PDB code 3L3F, chain X). For opposite 
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cases happens the contrary, i.e. ReUPred predicts a pair of units as a 

single element (e.g. PDB code 3PET, chain A). 

In order to expand the annotation in RepeatsDB, ReUPred has been 

used to predict all repeat units for “classified” RepeatsDB solenoids. 

Since no comparison no structural validation is possible, we chose to 

compare the annotation to Pfam. Figure 8 shows the very substantial 

increase in annotations both in terms of for bona fide solenoids proteins 

and especially in the number of identified repeat units. The latter yields 

an increase of an order of magnitude compared to state-of-the-art 

sequence-based annotation in Pfam. 

 

 

Fig. 8. Venn diagram of available annotations for RepeatsDB classified dataset. (A) 

compares proteins with bona fide solenoid assignments. (B) shows the number of annotated 

repeat units in the dataset. The total number of repeat units in the dataset is unknown. ReUPred 

is able to increase the annotation by an order of magnitude in both cases. 

6.2.10. Conclusion		
	

Tandem repeat unit prediction and classification are difficult problems 

currently tackled by expert manual curation which at the time of writing 

is available in RepeatsDB for only 3% of the total putative repeat protein 

structures. ReUPred provides both the prediction of the repetitive units 

and a fine classification up to the subclass level is the RepeatsDB 

classification scheme. The algorithm works by exploiting a structure 

repeat unit library (SRUL) and an iterative exploration of the input 

structure. While we tested the performance on the solenoid class, the 

method also works for other repeat types. ReUPred has been compared 

with other state-of-the-art methods, TAPO and ConSole, adopting an 

evaluation metric which takes into consideration both phase and size of 
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the predicted units. Testing on a manually curated data set obtained 

from the “detailed” RepeatsDB entries, ReUPred achieved the highest 

accuracy for all type of solenoids (β, α/β and α) with an overall increase 

of 9% over TAPO and 13% over ConSole. To provide an extended 

evaluation, a larger dataset has been created by collecting RepeatsDB 

entries for which only the classification is available without unit 

annotation. With this in hand, it was possible to test ReUPred ability of 

classifying solenoid structures and the correlation with periods predicted 

by RAPHAEL. ReUPred extended unit annotation and classifies at the 

subclass level. Almost all solenoids have high precision and accuracy. 

Moreover, the average unit length predicted by ReUPred strongly 

correlates with RAPHAEL, confirming the high quality of the predictions. 

Mixed α/β unit diversity is underrepresented in SRUL compared to the α 

and β classes. This means that improving SRUL could correspond to a 

better recall and therefore an even higher accuracy. ReUPred has also 

the ability to detect the unit diversity inside a given target protein. It 

recognizes fragment insertions that are not part of the repeat elements. 

This work demonstrates that repeat protein annotation can be faced by 

repetitive template based structural searches. Moreover, it shows that 

this approach can be applied reliably on a large scale, i.e. over all 

uncharacterized RepeatsDB entries, unveiling new scenarios for the 

analysis of the entire repeat protein universe.  

It is also able to discriminate with good accuracy between repeat and 

non-repeat proteins, making ReUPred a good candidate to replace 

RAPHAEL in the detection of proteins containing tandem repeat 

domains 
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6.3.1. Abstract		

Motivation: Protein sequence and structure representation and 

manipulation require dedicated software libraries to support methods of 

increasing complexity. Here, we describe the VIrtual Constrution TOol 

for pRoteins (Victor) Cþþ library, an open source platform dedicated to 

enabling inexperienced users to develop advanced tools and gathering 

contributions from the community. The provided application examples 

cover statistical energy potentials, profile–profile sequence alignments 

and ab initio loop modeling. Victor was used over the last 15 years in 

several publica- tions and optimized for efficiency. It is provided as a 

GitHub repository with source files and unit tests, plus extensive online 

documentation, including a Wiki with help files and tutorials, examples 

and Doxygen documentation.  

Availability and implementation: The Cþþ library and online 

documentation, distributed under a GPL license are available from URL: 

http://protein.bio.unipd.it/victor/. 

6.3.2. Introduction		

Structural bioinformatics methods require valid software libraries to 

represent and manipulate proteins efficiently. A number of widely used 

tools have been developed over the years to visualize proteins, e.g. 

Chimera (Huang et al., 2014), Swiss-PdbViewer (Guex et al., 2009), 

MolIDE (Canutescu and Dunbrack, 2005) and VMD (Humphrey et al., 

1996) to name a few. Software libraries to ma- nipulate proteins 

efficiently provide basic data representation and more advanced 

functionality with a different focus each. ESBTL (Loriot et al., 2010) is 

mainly a Protein Data Bank (PDB) file parser. Biskit (Gru ̈ nberg et al., 

2007) additionally provides functionality for analysis of molecular 

dynamics simulations, while PTools (Saladin et al., 2009) focuses on 

molecular docking. OpenStructure (Biasini et al., 2010) places more 
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attention on structure visualization and en- ergy calculation. The latter is 

also supported by MSL (Kulp et al., 2012) and Tinker (Shi et al., 2013), 

while BALL (Hildebrandt et al., 2010) in addition provides many 

advanced optimization algorithms.   

Finally, StrBioLib (Chandonia, 2007) extracts sequence information from 

the protein structure and can be used as an interface to several 

available third-party tools.  

The critical assessment of techniques for protein structure pre- diction 

(CASP) series of experiments (Moult et al., 2014) demon- strates that 

structure prediction is increasingly becoming an engineering problem, 

where sophisticated methods have to be com- bined into extensive 

pipelines to provide state-of-the-art results (Khoury et al., 2014). This 

has raised the barrier for entry into the field to a point where little new 

developments are possible, consider- ing that most software libraries 

used in CASP are proprietary and not available as open source. Here, 

we propose the open-source VIrtual Constrution TOol for pRoteins 

(Victor) Cþþ library as a way to mitigate this problem. Victor is both an 

efficiently designed Cþþ library, able to manipulate protein structures 

with minimal computing time, and a collection of advanced components 

for pro- tein sequence and structure manipulation. In particular, Victor  

provides three sample applications: profile–profile sequence align- 

ments (Wang and Dunbrack, 2004), statistical potentials (Tosatto, 2005) 

and loop modelling (Tosatto et al., 2002). Each of these three 

applications has been extensively described in the literature and is 

beyond the scope of this article. To the best of our knowledge, nei- ther 

is available as an open-source Cþþ library yet. Profile–profile sequence 

alignments, in particular, have been widely used to im- prove target-

template alignment in CASP (Kryshtafovych et al., 2014). Victor is 

composed of >60 000 lines of code and still expand- ing as it is used in 

the main author’s teaching. It was developed in- house over the last 15 

years with the contribution of tens of devel- opers and has reached a 

high level of maturity. Victor is released to provide a platform for 
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contributions from the interested community. It provides extensive online 

material in the form of a Wiki with help files, tutorials, Doxygen 

documentation and a list of applications built using Victor can be 

accessed from the URL: http://protein.bio. unipd.it/victor/. The actual 

GitHub repository with Cþþ source files, a precompiled Ubuntu 64-bit 

version and unit tests are avail- able from URL: 

https://github.com/BioComputingUP/Victor.  

6.3.3. Core	library		

The Victor Cþþ library currently contains two components for data 

representation and manipulation in separate directories: tools and 

Biopool. Tools provide basic manipulation methods, e.g. vector co- 

ordinates and file I/O. The core of the library is provided by the Biopool 

module, which defines all relevant data structures and algo- rithms to 

represent protein structures and manipulate them at a higher level of 

abstraction. The core data structures were carefully developed using 

design patterns (Gamma et al., 1995), to provide an elegant and simple, 

yet powerful set of Cþþ classes. To allow the simple manipu- lation of 

protein structure through the more intuitive torsion angles, automating 

low-level geometric transformations, atom positions are coded both 

explicitly in 3D coordinates and as a position relative to the previous 

atom on a graph structure. This ensures consistency in the structure, 

while allowing the programmer to change the protein conformation 

rotating a torsion angle with a single line of code. Computational 

efficiency is guaranteed by updating the corresponding Cartesian 

coordinates only when necessary. All low-level geometrical 

transformations remain transparent to the user. Biopool is able to read 

properly all existing PDB files. Additional tools are also pro- vided, such 

as protein secondary structure automatic assignment with an ad hoc 

implementation of the original DSSP algorithm (Kabsch and Sander, 

1983). Extensive online documentation allows the inter- ested 

programmer to learn how to manipulate the Biopool data structures.  
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6.3.4. Applications		

	
	

The Victor library provides three main examples to demonstrate the 

range of possible applications, which are included as separate sub- 

directories: Energy, Align and Lobo. Extensive documentation, including 

detailed tutorials, is provided online to allow users to be- come familiar 

with the software and build on existing knowledge. Energy contains 

everything that is necessary to develop statistical potentials to evaluate 

protein structures. Two sample implementa- tions of published methods 

included in the library, FRST (Tosatto, 2005) and TAP (Tosatto and 

Battistutta, 2007), can serve as a guide to develop additional methods. 

Both are contained in the Energy subdirectory and functioning code is 

provided both to generate the statistical potential itself as well as to use 

it on a PDB structure to calculate the potential energy. The interested 

user can thus easily de- velop additional statistical potentials. The Align 

directory provides basic sequence alignment algorithms (Tosatto et al., 

2006) augmented with secondary structure element (Fontana et al., 

2005). Many different profile–profile scoring schemes (Wang and 

Dunbrack, 2004) are implemented, which have been ex- tensively used 

in CASP to detect remotely homologous protein se- quences. Code is 

also provided for variable gap penalties with additional terms for 

sequence to structure fit (Madhusudhan et al., 2006) and advanced 

weighting schemes such as PSIC (Sunyaev et al., 1999). Alignment 

parameters have been extensively benchmarked and the default 

parameters are optimized for performance.  

Last but not least, the Lobo directory contains an application of ab initio 

loop modeling using a fast divide and conquer algorithm (Tosatto et al., 

2002). This makes extensive use of the functions to construct novel 

amino acids and manipulate the protein structure lo- cally, providing 

sample code for more complex structural manipula- tions. It can easily be 

extended for ab initio structure prediction in combination with statistical 

potentials as target function.  
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6.3.5. Conclusions		

The Victor library is an open source project devoted to the structural 

bioinformatics community. It provides a unique combination of methods 

for sequence and structure manipulation. Expansion is on- going both 

through in-house development, as it is the basis for sev- eral more 

recent publications [e.g. RING (Martin et al., 2011) and NeEMO (Giollo 

et al., 2014)], and as part of the author’s teaching activities, which 

include software development projects for students. We hope that the 

Victor library will contribute towards an easier de- velopment of 

advanced methods for structural bioinformatics.  

 

 

 

 

 

 

 

	


