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ABSTRACT 

Type 2 diabetis mellitus (T2DM) and obesity are global health care problems that are closely 

linked together. The precise mechanisms linking the two conditions remain unclear. Indeed, 

while the close relationship between T2DM and weight gain is well established, not all obese 

subjects are diabetic and this paradox is still unexplained. Impaired tissue perfusion has been 

proposed as one of the common metabolic defects, but little is known about adipose tissue (AT) 

microangiopathy and its possible role in T2DM. In animal models of obesity and diabetes, 

expanding AT microvasculature appears structurally altered and the angiogenetic potential of 

adipose derived stem cells impaired. 

Several studies, in humans, suggest that obesity leads to an impaired angiogenesis and AT 

hypoxia, inducing an inflammatory and a profibrotic response that plays a pivotal role in the 

pathogenesis of metabolic complications related to weight gain, first of all insulin resistance 

and diabetes. Moreover, from a pathophysiological point of view it is well established that 

dysfunctional visceral adipose tissue (VAT) is one of the major determinants of metabolic 

complications of obesity, while subcutaneous depots has been considered metabolically 

healthy. Nevertheless it could be hypothesized that in the progress of obesity through the 

metabolic impairment, SAT could become dysfunctional as VAT.  

On the basis of these data, we planned to study both subcutaneous and visceral adipose tissue 

in terms of adipocytes size, capillary density, adipose tissue stem cells (ASCs), endotelial 

precursor of AT and adipogenic potential, in obese subjects compared to lean subjects and in 

obese patients with a different glyceamic profile. 

We collected subcutaneous (SAT) and/or visceral (VAT) adipose tissue (AT) from 249 patients 

divided in 5 different groups: 18 lean normal weight and normoglycemic subjects (18.5 < BMI 

< 24,9 kg/m2) as control group, 68 normoglycemic obese subjects (ob N), 65 pre-diabetic 

obese subjects (ob pre-T2DM), 57 diabetic obese subjects (ob T2DM) and 41obese patients 

after underwent to a relevant weight loss (ob WL), corresponding to at least 10% of body 

weight. In different representative subgroups of these samples we performed: 1) 

immunohistochemical analysis to evaluate the morphometry of adipocyte and capillary density; 

2) flow cytofluorimetric analysis of stromal vascular fraction (SVF) in order to quantify 

adipose tissue stem cells (ASCs), defined as CD45-CD34+CD31-, and endothelial precursors 

cells (EPs) defined as CD45-CD34+CD31+; 3) in vitro culture of ASCs obtained from SVF, in 

order to estimate the adipogenic potential in the different groups and  different depot of AT; 4) 
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gene expression profile by RT-Real Time PCR of PPRγ, Leptin, VEGFA, VEGF2, HIF1α to 

correlate their expression with previous findings. 

Our study confirm that obese AT is less vascularized than lean AT but T2DM does not 

represent an aggravating factor to the vascular reduction already present in obesity. On the 

contrary, T2DM and also prediabetic condition are able to further modify AT architecture, 

remodeling mature adipocyte size and adipogenic potential mediated by ASCs, importantly 

reducing AT hyperplastic growth capacity. Moreover our results allow us to assume that 

primum movens in development of T2DM must be searched in AT architecture and that both 

depots, SAT and VAT, play a pivotal role in the development of this disease. 

Furthermore, considering the continuous increase in bariatric procedures to treat both weigh 

gain and associated co-morbidities, we plan to evaluate the effects of laparoscopic sleeve 

gastrectomy (LSG) after one year. Indeed, whereas the beneficial effects of this bariatric 

procedure are well known, side effects are lesser known. In particular, postprandial 

hypoglycaemia is a well described side effect after RYGB, but few data are available for LSG.. 

We enrolled a total of 197 consecutive non-diabetic morbidly obese who underwent to LSG in 

our Center for the Study and the Integrated Treatment of Obesity (Ce.S.I.T.O.). All patients 

were studied 12 months before and after LSG and, anthropometrics parameters, medical 

history, clinical examination, complete blood count and complete metabolic panel including a 

3- hour OGTT, were collected. 

One year after LSG, all patients had a significant reduction in weight and BMI, a significant 

improvement in glucose and insulin profile, and a significant decrease in inflammatory 

markers. We found an high incidence of severe hypoglycaemia (32,8%) after a provocative test 

(OGTT). Patients with hypoglycaemic events had a lower weight and BMI and a greater 

%EBML after LSG. compared to patients without hypoglycemic events. Hypoglycaemia was 

more frequent in patients having lower age, lower fasting blood glucose levels and higher 

triglycerides levels before LSG.  
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RIASSUNTO 

L’obesità e il diabete mellito tipo 2 (T2DM) sono due patologie strettamente correlate tra loro 

e, insieme, rappresentano una delle maggiori emergenze sanitarie a livello mondiale. I 

meccanismi fisiopatologici che legano le due patologie, non sono ancora stati completamente 

spiegati. Infatti, mentre sono abbastanza note le alterazioni che portano dall’aumento del peso 

corporeo alla comparsa di T2DM, meno noti sono i motivi per cui non tutti i pazienti obesi 

sviluppano la patologia diabetica. Per spiegare tale paradosso, alcuni studi si sono concentrati 

sulla possibile diversa capacità di espansione del tessuto adiposo (TA). Come tutti i tessuti, 

anche il TA, per poter espandersi, necessita di un’adeguata consensuale vascolarizzazione. E’ 

stato ipotizzato che un’alterata angiogenesi durante l’espansione del TA in alcuni soggetti, e la 

presenza di un danno a livello del microcircolo dello stesso TA, possano influire negativamente 

sul peggioramento del profilo glicemico. In alcuni modelli di animali, affetti da diabete e 

obesità, si sono evidenziate alterazioni a carico del microcircolo del TA e a carico del 

potenziale adipogenico. Consensualmente, alcuni studi sul TA dell’uomo, hanno suggerito che 

l’obesità porta ad una alterazione dell’angiogenesi a livello del TA con contemporanea 

comparsa di uno stato ipossico a sua volta responsabile della risposta infiammatoria e 

profibrotica. Infiammazione e fibrosi, hanno un ruolo fondamentale nello sviluppo 

dell’insulino-resistenza e quindi del T2DM. Inoltre, è noto che il tessuto adiposo viscerale 

(VAT) rappresenta il deposito di TA con maggior grado di infiammazione, mentre il tessuto 

adiposo sottocutaneo (SAT) è considerato un tessuto meno infiammato e in grado di avere un 

ruolo protettivo nei confronti dello sviluppo delle patologie metaboliche. Nonostante ciò, è 

possibile ipotizzare che con l’aumento progressivo del peso corporeo anche il SAT acquisisca 

caratteristiche disfunzionali come il VAT. 

Sulla base di questi presupposti, abbiamo deciso di analizzare le possibili variazioni in termini 

di morfologia, di densità capillare, di quantità di precursori adipogenici, di potenziale 

adipogenetico sia nel SAT che nel VAT di pazienti obesi e di pazienti normopeso 

normoglicemici. Inoltre, tra i pazienti obesi, sulla base delle caratteristiche cliniche e 

biochimiche, abbiamo selezionato coloro che erano normoglicemici (ob N), pre-diabetici (ob 

pre-T2DM) e diabetici (ob T2DM). 

Sono, quindi, stati raccolti campioni di SAT e/o il VAT da 249 pazienti divisi nei 4 gruppi sopra 

descritti: 18 pazienti normopeso e normoglicemici (18.5 < BMI < 24,9 kg/m2), 68 ob N, 65 ob 

pre-T2DM e 57 ob T2DM. Abbiamo, inoltre, avuto l’opportunità di analizzare il SAT di 41 
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pazienti obesi dopo significativo calo ponderale (ob WL). I campioni di TA sono stati studiati 

(1) mediante analisi immunocitochimica, al fine di valutare la morfologia degli adipociti e la 

densità capillare, (2) mediante analisi citofluorimetrica della frazione vasculo stromale (FVS) 

per quantificare la presenza di precursori adipocitari (CD45-CD34+CD31-) e di precursori 

endoteliali (CD45-CD34+CD31+), (3) attraverso la coltura dei preadipociti estratti dalla FVS, 

per valutare il potenziale adipogenetico; (4) mediante espressione genica di leptina, PPRγ, 

VEGFA, VEGF2 e HIF1-α. 

L’analisi dei nostri dati ci ha permesso di confermare che il tessuto adiposo dei soggetti obesi è 

significativamente meno vascolarizzato, sia nel SAT che, dato ad oggi non noto, nel VAT, 

rispetto al tessuto adiposo dei soggetti magri. Diversamente da quanto ipotizzato, la presenza di 

un alterato profilo glicemico, come quello presente nel pre-diabete, o la presenza di un diabete 

franco, non peggiorano ulteriormente la vascolarizzazione del TA, né nel SAT, né nel VAT. Ciò 

che si modifica in maniera significativa e precoce è l’architettura del TA. Infatti, già nei 

pazienti ob pre-T2DM e, anche nei pz ob T2DM, abbiamo osservato un progressivo aumento 

del diametro degli adipociti. Inoltre, nel TA dei pazienti con alterato profilo glicemico abbiamo 

osservato una significativa riduzione sia nella percentuale dei preadipociti presenti nella FVS 

sia nella loro capacità di differenziare in vitro. Questi dati ci permettono di ipotizzare che il TA 

dei pazienti con alterato profilo glicemico cresce maggiormente per ipertrofia che per 

iperplasia e che il ”primum movens” nello sviluppo della patologia diabetica è da ricercare 

nelle modificazioni a carico della cellula adiposa più che nelle modificazioni del microcircolo 

del tessuto adiposo sia nel VAT ma, anche nel SAT. 

Inoltre, considerando il progressivo incremento nell’utilizzo della chirurgia bariatrica per 

trattare sia l’aumento di peso ma anche le complicanze metaboliche a esso correlate, è stato 

eseguito uno studio sugli effetti della sleeve gastrectomy per via laparoscopica (LSG) a 

distanza di un anno dall’intervento.  Mentre gli effetti positivi di questa procedura chirurgica 

sono ormai noti, meno noti sono gli effetti collaterali; in particolare, l’ipoglicemia post 

prandiale è stata ben descritta dopo intervento di by pass gastrico ma resta ancor poco indagata 

dopo intervento di LSG. Abbiamo, pertanto, reclutato 197 pazienti obesi non diabetici 

sottoposti a LSG e li abbiamo studiati prima e a distanza di un anno dall’intervento bariatrico. 

In tutti i pazienti è stata raccolta la storia clinica, è stato eseguito esame obiettivo e sono stati 

eseguiti gli esami bioumorali comprensivi di screening endocrino-metabolico completo, 

incluso OGTT prolungato a 180 minuti, e dosaggio delle citochine infiammatorie. Un anno 
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dopo l’intervento, tutti i pazienti hanno avuto una significativa riduzione del peso corporeo e 

del BMI, un significativo miglioramento dei parametri metabolici, compreso il profilo 

glicemico e insulinemico, e una significativa riduzione delle citochine infiammatorie. Il 32,8% 

dei pazienti ha sviluppato un’ipoglicemia severa dopo test provocativo (OGTT). I pazienti con 

ipoglicemie hanno mostrato un peso e un BMI significativamente minore rispetto ai pazienti 

che non hanno sviluppato ipoglicemia e una percentuale di perdita di BMI significativamente 

maggiore. L’ipoglicemia si è dimostrata essere più frequente in quei pazienti che, prima 

dell’intervento, erano più giovani, con un peso e un BMI inferiore e con livelli di 

trigliceridemia superiori ai pazienti che non avevano sviluppato ipoglicemie dopo LSG.  
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1. INTRODUCTION 

 

Worldwide obesity is doubled since 1980. In 2014, more than 1.9 billion adults, 18 years and 

older, were overweight. Of these over 600 million were obese. Most of the world's population 

live in countries where overweight and obesity kills more people than underweight (WHO, 

2016). The WHO world health statistics report in 2015 shows that in the European region the 

overall obesity rate among adults is 21.5% in males and 24.5% in females. The same report 

states that the prevalence for overweight among children under the age of 5 is 12.4% (WHO, 

2015) 

The impact of obesity on morbidity, mortality and health care cost is profound. Overweight and 

obesity are major risk factors for a number of chronic diseases including diabetes, 

cardiovascular diseases and cancer and, in Europe, is responsible of 6% of health assistance 

cost and it causes 1 million deaths per year (WHO, 2006). Obesity is not just a health issue, but 

a social one as well: it impacts the economical and social system, provoking a decrease in 

productivity (it must be noticed that in the last 50 years young obeses has widely increased), an 

increase of direct and indirect healt-assistence costs and finally social isolation especially 

among young people in Western countries. 

In the recent years, given the large number of people suffering from obesity, exciting advances 

have occurred in all 3 modalities used to treat obesity: lifestyle intervention, pharmacotherapy, 

and weight-loss procedures including bariatric surgery (Garvey WT, 2013). In particular, 

bariatric surgery, has continued to increase in recent years, and over 340.000 procedures were 

performed in the world in 2011 (Buchwald H., 2013). New surgical procedures have been 

developed and refined and aren't known al the long-term effects. 

Moreover, the major disease associated to obesity is type 2 diabetes mellitus (T2DM). It is 

estimated that about 90% of T2DM is attributable to excess weight (Hossain P, 2007), but the 

precise mechanisms linking the two conditions remain unclear. Converging data suggest that an 

impaired function of adipose tissue (AT) could play a pivotal role in T2DM development but 

lot of mechanisms underlying AT dysfunction remain to be established. 

Considering that obesity has become one of the leading causes of disability and death the 

porpoise of our study is to provide a further contribution to knowledge that allow us to better 

understand the pathophysiology of obesity and its complication and the effects of weight loss 

after bariatic surgery. 
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1.1 Obesity Definition and Classification 

Obesity is a chronic disease characterised by an increase of body fat stores. In clinical practice, 

BMI is the parameter commonly use in order to estimate the amount of adipose tissue in human 

body and to classify the severity of obesity. BMI is calculated as measured body weight (kg) 

divided by measured height squared (m
2
). On the base of BMI, it’s possible to stratify the 

population in different categories (Tab. I) where obesity is defined by a BMI ≥ 30 kg/m
2
. 

 

Definition Western BMI 
 

(Kg/m
2
) 

Class Asiatic BMI 
 

(Kg/m
2
) 

Underweight BMI <18,5   

Normoweight 18, 5 ≤ BMI ≤ 24,9  18,5 ≤ BMI ≤ 22,9 

Overweight 25 <BMI ≤ 29,9  23≤ BMI ≤ 24,9 

Obese 30,0 ≤ BMI ≤ 34,9 I 25≤ BMI≤29,9 

 35,0 ≤ BMI ≤ 39,9 II BMI >30 

 BMI ≥ 40,0 III  

Table I: Western and Southeast Asian population weight classification based on BMI. 

 

Nevertheless BMI is not useful either to distinguish between Fatty Free Mass, Fatty Mass and 

liquid or to describe the adipose tissue distribution. For instance with lower BMI values, Asian 

population has a similar cardiovascular risk (CVR) compared to European population and this 

is the reason why lower BMI cut-off points are applied for some ethnic groups as shown in 

table I.  

That proves that BMI can not be used as a singular tool in order to define obesity and stratify 

the risk of developing cardiovascular and metabolic complications. It is likely necessary to 

define obesity with other parameters and to relate its value with geographical distribution 

(Yusuf S., 2005). 

In 1947 Vague defined a gynoid obesity and an android obesity. In gynoid obesity adipose 

tissue is mainly subcutaneous and it is localized in the buttock and the thighs, in android 
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obesity adipose tissue is mainly localized at the level of abdominal organs causing an increase 

of waist. They have different activities and visceral adipose tissue has a greater correlation with 

development of obesity cardiovascular and metabolic complications rather then subcutaneous 

adipose tissue (Zhu S., 2002).  

The amount of abdominal fat can be assessed by waist circumference which highly correlates 

with intra-abdominal fat content. Following WHO recommendations (1995) waist 

circumference is measured with a tailor-meter at the level of the midpoint of the line which 

connects the inferior border of the lowest rib and the superior border of ilium crest.  

The most recent International Diabetes Federation (IDF) consensus defined central obesity 

(also known as visceral, android, apple-shaped or upper body obesity) in Euripides as a WC of 

≥ 94 cm in men and ≥ 80 cm in non-pregnant women. Lower cut-off points for central obesity 

are proposed for different ethnic groups. 

Therefore, in clinical practice, to assess the risks associated with being overweight or obese, is 

necessary to considered both BMI and WC as shown in Table II (NICE guidelines, 2006). 

 

BMI classification Waist circumference 

 Low Hight Very high 

Overweight No increased risk Increased risk High risk 

Obesity Increased risk High risk Very high risk 

For men, waist circumference of less than 94 cm is low, 94–102 cm is high and 

more than 102 cm is very high. 

For women, waist circumference of less than 80 cm is low, 80–88 cm is high and 

more than 88 cm is very high 

 

Table II. Base assessment of the health risks associated with being overweight or obese in adults on 

BMI and waist circumference 
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1.2 Obesity Epidemiology  

For thousands of years obesity was rarely seen (Haslam D., 2007).  It was not until the 20th 

century that it became common, so much so that in 1997 the World Health Organization 

(WHO) formally recognized obesity as a global epidemic (Caballero B., 2007). Once 

considered a problem only of high-income countries, obesity rates are rising worldwide. The 

transfer of Western eating habits from more developed countries to those in developing 

increases the prevalence of obesity but with an important difference: while in developing 

countries the classes with a major risk of obesity are economically privileged because wealth 

and prestige correspond in more food availability, in rich countries the higher level of obesity is 

among deprived groups. The only remaining region of the world where obesity is not common 

is sub-Saharan Africa (Haslam DW., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Age standardized prevalence of obesity in man (A) and woman (B) age 18 years and over, 2014 
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According with the last report of WHO, in 2014,  39% of adults aged 18+ were overweight 

(BMI ≥ 25 kg/m2) (39% of men and 40% of women) and 13% were obese (BMI ≥30 kg/m2) 

(11% of men and 15% of women).  

Thus, nearly 2 billion adults worldwide were overweight and, of these, more than half a billion 

were obese. The prevalence of overweight and obesity is highest in the Region of the Americas 

(61% overweight or obese in both sexes, and 27% obese) and lowest in the South-East Asia 

Region (22% overweight in both sexes, and 5% obese).  

In the European and Eastern Mediterranean Regions and Region of the Americas, over 50% of 

women are overweight, and in all three regions roughly half of overweight women are obese 

(25% in the European region, 24% in the Eastern Mediterranean Region, 30% in the Region of 

the Americas).  

In all WHO regions, women are more likely to be obese than men. In the African, South-East 

Asia and Eastern Mediterranean regions,, women have roughly double the obesity prevalence 

of men (adapted from WHO 2014) (Figure 1). 

 

 

1.3 Obesity Complications 

The development of obesity is correlated with increasing incidence of diseases affecting several 

organs and systems of human body, which may all be considered as complications of obesity. 

The increase of body weight and the condition of low grade chronic inflammation, present in 

the most of obese subjects, lead to alterations of several organs and tissues. 

Common alterations and dysfunction in obese individuals are: 

- development of a state of insulin-resistance and type 2 diabetes; 

- development of hypertension and dyslipidemia; 

- promotion of the atherosclerotic process; 

- development of a pro-thrombotic state; 

- immunological alterations, susceptibility to the development of inflammatory and 

autoimmune diseases; 

 

In table III all the main diseases and alterations connected to obesity are described. 
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Table III: Main obesity complications 

1.3.1 Diabesity 

T2DM and obesity are global health care problems that are closely linked together. The concept 

of diabesity (obesity-T2DM) emerges by the estimation that about 90% of T2DM is attributable 

Organ/System Complication 

Cardiovascular System 

- Hypertension 

- Ischemic Cardiomyopathy 

- Heart Failure 

- Pulmonary Heart Disease 

- Chronic Venous Insufficiency 

- Pulmonary Tromboembolism 

- Ictus 

Respiratory System 

- Dyspean at rest or during exercise 

- Obstructive sleeping Apnoea 

- Pickwich Syndrome 

- Pulmonary Hypertension 

- Increased post-surgical risk 

Metabolic-Endocrine System 

- Insulin-resistance, Diabetes Type II 

- Dyslipidemia 

- Metabolic Syndrome 

- PCOS 

- Alterations in reproductive system 

- Hyperuricemia and Gout 

Central Nervous System 
- Mood Alterations 

- Depression 

- Eating Disorders 

Gastrointestinal System 
- GERD 

- Cholelithiasis 

- Abdominal Hernia 

Muscular-skeletal System - Osteoarthritis 

- 2. Discal Hernia 

Urinary System - Urinary Incontinence 

Neoplastic Diseases 

- Breast 

- Ovary 

- Endometrium 

- Esophagus 

- Stomach 

- Pancreas 

- Bowel 

- Kidney 

- 9.Prostate 
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to weight excess (Hossain P, 2007). As shown in Figure 2, there is a parallel escalation of the 

two diseases. Both these metabolic disorders are characterized by defects of insulin action. 

 

Figure 2: Age adjusted prevalence of obesity and diagnosed diabetes among U.S. Adults 18 years or older 

The classical pathways from obesity to diabetes contemplated that the permanent elevation of 

free fatty acid (FFA) present in obesity, from one side leads to an accumulation of triglycerides 

in liver and in beta-cell, from the other side, leads to a predominant utilization of lipids by 

muscles with a concomitant inhibition of glucose transporter activity. These actions induce a 

diminution glucose uptake by muscles and decreased rates of glycogen synthesis by muscles 

themselves. Chronic hyperglycaemia, developed from these events, further impairs insulin 

sensitivity and leads to an increase of insulin secretion. The result is a pathological glycation of 

circulation proteins and formation of advanced glycation end products that worsen the 

pancreatic beta-cell insulin secretion and lead to beta cell apoptosis. 

These pathways supply a good explanation for the close association between weight gain and 

heightened risk of T2DM but they do not explain why not all individuals with obesity become 

diabetic, and certain individuals become diabetic after very minor weight gain. For this reason, 

in recent years an increasing number of works have studied common metabolic aspects and 

molecules in T2DM and obesity as sleep disturbances, androgens, vitamin D, gut hormones and 
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microbiota but the main common flaw between the two diseases probably, must be researched 

in the large individual variation that exist in the size and expandability of different adipose 

tissue depot and in the microvasculare dysfunction that occurs during AT growing.. Indeed, the 

growth and function of AT, depends on its vascularisation. If angiogenesis is inadequate, this 

may result in dysfunction of adipose tissue and it increases the risk of development T2DM. 

Evidences in rodents have shown that rapid adipose tissue growth induced by high-fat diet 

determinates hypoxia in response to expansion of adiposity; these results suggest that the 

response of adipose tissue may be insufficient to elicit sufficient compensatory angiogenesis. 

These data are concordant with some results which have shown how adipose tissue hypoxia is 

associated with fibrosis and inflammation, rather then a compensatory angiogenetic expansion. 

Moreover, alterations of adipokines pattern usually present in obese patients, is involved in the 

development of insulin-resistance up to diabetes type II. Initial condition of insulin-resistance 

is promoted by the reduction of adiponectin associated with increased levels of pro-

inflammatory cytokines, IL-6 and TNF- α. At the same time there is an increased release of 

free fatty acids (FFA) that contributes with a mechanism of lipotoxicity, actually FFAs act on 

pancreas inducing apoptosis of β-cells, as described above.  

Another interesting field of research is how adipose tissue behaves with overt T2DM disease. A 

vicious circle of progressive microvascular dysfunction due to AT inflammation and 

hyperglycaemia could be present. Hyperglycaemia, acting via oxidative stress, inflammation 

and advanced glycation end products, can worsening microvascular angiogenesis and function 

in AT but little is known about it. 

 

1.4 Obesity therapy 

In recent years, exciting advances have occurred in all 3 modalities used to treat obesity: 

lifestyle intervention, pharmacotherapy, and weight-loss procedures including bariatric surgery. 

Clinical trials have established the efficacy of lifestyle and behavioural interventions in obesity; 

moreover, there are now 5 weight-loss medications approved by the US Food and Drug 

Administration (FDA) for chronic management of obesity. Bariatric surgical practices have 

been developed and refined, together with improvements in pre- and postoperative care 

standards, resulting in better patient outcomes. 

Initial treatments are neither pharmacological nor surgical, actually they consist in 

modifications of life-style, based on a low-caloric intake dietary regime and increasing in 
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physical activity. Moreover cognitive behaviour therapy and/or psychological support are an 

integral part of obesity therapy (Europ G L). 

Indeed, the treatment of obesity needs a multidisciplinary skill that involved various specialists 

experienced in obesity management. For these reason on April 2011, at Padua University, was 

opened the Centre for the integrated treatment for obesity (CeSTIO) which comprise various 

operative unit and different specialists as physicians, surgeons, anaesthetists,  psychologists and 

psychiatrists, nutritionists and dieticians. 

1.4.1 Pharmacological Therapy 

As reported on European Guide Lines for Obesity Management in Adult (Rif. Biblio), 

pharmacological treatment should be considered as part of a comprehensive strategy of disease 

management. Pharmacotherapy can help patients to maintain compliance, ameliorate obesity-

related health risks and improve quality of life. It can also help to prevent the development of 

obesity co-morbidities (e.g. type 2 diabetes mellitus). The efficacy of pharmacotherapy should 

be evaluated after the first 3 months. If weight loss achieved is satisfactory (>5% weight loss in 

non-diabetic and >3% in diabetic patients), treatment should be continued otherwise should be 

interrupted. 

Pharmacological treatment is suggested for those patients who have BMI>30 kg/m2 and do not 

show any answer to life-style changes or BMI >27 kg/m2 in presence of complications. 

Mechanisms of action of weight loss medication focus mainly on appetite control. Except for 

orlistat, that acts on pancreatic lipases and so it reduces intestinal lipid absorption, medication 

for obesity acts on arcuate nucleus to stimulate the POMC neurons, which promote satiety. 

The 5 weight-loss medications approved by FDA are: 

- Locarserin 

- Phentermine/Topiramate 

- Bupropion/Naltrexone 

- Liraglutide 

- Orlistat 

The first third one are serotoninergic, as locarserin, no selective inhibitor of dopamine and 

norepinephrine transporters, as bupropione, or dopaminergic and noradrenergic, as 

phentermine.  The combination of phentermine and topiramate, which is a neurostabilizer and 

antiseizure medication, seems to be additive; however, it is unclear how topiramate enhances 
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appetite suppression. Naltrexone, an oppioide receptor antagonist, potentiates the effect of 

bupropione on activation of  POMC neurons. 

Liraglutide is a long acting GLP-1r agonist that acts in different way on the appetite control 

both directly on stomach where slows down gastric emptying and on POMC neuron too. GLP-

1r agonist is widely use in T2DM therapy so it is heavily indicated in obese patients affected by 

T2DM. 

Despite these 5 therapies approved by FDA, EMA (European Medicine Agency) approved just 

orlistat, bupropione/nalexone and liraglutide, while AIFA (Agenzia Italiana del Farmaco) 

approved only orlistat and liraglutide. Due to the unpleasant side effects of orlistat, steatorrhoea 

and fecal urgency, and to high cost of liraglutide, in Italy, pharmacological therapy for obesity 

is not so widespread. 

 

1.4.2 Bariatric Surgery 

Bariatric surgery has continued to increase in recent years, and over 340.000 procedures were 

performed in the world in 2011 (Buchwald H., 2013)  A recent systematic review concluded 

that bariatric surgery leads to a greater improvements in weight loss outcomes and weight 

associated co-morbidities compared with no surgical intervention, regardless of the type of 

procedure used (Colquitt JL., 2014).  

Surgery should be considered for patients aged 18–60 years with a BMI ≥ 40.0 kg/m 2 or with 

BMI between 35.0 and 39.9 kg/m 2 and co-morbidities, in whom surgically induced weight 

loss is expected to improve the disorder (such as type 2 diabetes and other metabolic disorders, 

cardiorespiratory disease, severe joint disease and obesity-related severe psychological 

problems). BMI criterion may be the current BMI or a documented previous BMI of this 

severity (Buchwald H., 2009).  

Recently, the scientific community debating to considered bariatric surgery in patients with a 

BMI lower than 35 Kg/m
2
 affected by T2DM, as there is evidence-based data supporting 

bariatric surgery benefits in regards to T2DM remission or improvement 

Nowadays it is possible to perform bariatric surgical interventions even before 18 years old and 

over 60 years old, when patients are accurately selected, nevertheless these categories are still a 

minority of the total amount of patients. 
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Exclusion criteria for Bariatric Surgery are: 

1. Absence of a period of identifiable medical management. 

2. Patient who is unable to participate in prolonged medical follow-up. 

3. Non-stabilized psychotic disorders, severe depression, personality and eating disorders, 

unless specifically advised by a psychiatrist experienced in obesity. 

4. Alcohol abuse and/or drug dependencies. 

5. Diseases threatening life in the short term. 

6. Patients who are unable to care for themselves and have no long-term family or social 

support that will warrant such care. 

 

Until a few years ago, bariatric  surgery procedures were divided into three groups: 

- Restrictive surgery which reduces the amount of ingested food; 

- Malabsorptive surgery which reduces the absorption of ingested food; 

- Mixed surgery a combination of the two mechanisms described before; 

 

In the first group were included gastric banding, sleeve gastrectomy and vertical gastroplastic, 

in the malasorbitive group were included duodenal-swith and Scopinaro bilio-pancreatic 

diversion and in the last group was included Roux en Y Gastric By Pass. Nowadays this 

classification is still valid but, the knowledges, emerged over time, regarding the effect of 

bariatric surgery on metabolic effects, have partially changed this classification. This is 

particularly true for SG that was considered initially a pure restrictive procedure, but it is now 

considered to act thorough several additional mechanisms as described below. 

All the types of bariatric surgery interventions might be performed with laparoscopic 

procedures, which must be considered as the first option: laparoscopic approach has many 

advantages compared to the laparotomic one, considering both post-surgical outcome and 

complications. Up to now there are not sufficient evidence-based data to suggest how to assign 

a patient to a specific bariatric/metabolic procedure with no evidence in favour of any particular 

procedure, even if several studies demonstrated that some of the bariatric procedures as SG and 

RYGB have early weight-independent metabolic effects on HbA1c, LDL cholesterol, blood 

pressure, prevention and reduced cardiovascular risks and lower surgical risks compared to 

other bariatric procedures (Lee WJ., 2011; Scopinaro N., 2011). For these reason,  in recent 

years, there was a progressive decreased of gastric banding, duodenal switch and bilio 
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pancreatic diversion and a progressive increased in gastric by pass and sleeve gastrectomy as 

shown in Figure 3 (data referring to Italy). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Bariatric surgery procedures from 2008 to 2014 in Italy 

1.4.2.1 Laparoscopic Adjustable Gastric Banding 

Laparoscopic Adjustable Gastric Banding consists of the placement of a silicon ring with a 

pneumathic chamber in the upper part of the stomach, in order to create a small gastric pouch in 

the subcardial area. The pneumathic chamber is connect to a silicon tube which ends up with a 

reservoir located in a subcutaneous position and it allows cutaneous regulation of the banding 

calibre. The goal is to induce early fullness and reduce the amount of ingested food. It is 

reversible and it does not lead to many complications. It determinates a decrease of body 

weight up to 40-50%, nevertheless about 60% of patients regain weight after a while and these 

is the reason why this bariatric procedure has shown a progressive decreased. 

 

1.4.2.2 Laparoscopic Sleeve Gastrectomy (LSG) 

Laparoscopic sleeve gastrectomy has been firstly proposed as the first step of a duodenal switch 

procedure, but subsequently evolved to an isolated procedure and, since 2008, it has markedly 
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increase in prevalence, raising from 5% to 27% of all bariatric procedures  (Buchwald H., 

2013) 

It consists of irreversible resection of 2/3 of the stomach and the cut is performed in order to 

make the stomach gain a tubular shape. The restrict residual volume is around 100-150 ml 

(Figure 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sleeve Gastrectomy 

LSG was considered initially a pure restrictive procedure, but it is now considered to act 

thorough several additional mechanisms (Melissas J., 2007; Dimitriadis E., 2013). The 

mechanisms which lead to the loss of weight, are just partially due to the decrease of volume of 

the stomach, in fact gastric resection determinates alteration of hormonal asset. After LSG there 

is a decrement of ghrelin levels. Ghrelin is a hormone, mainly secreted by the fundus of the 

stomach, which have oroxogenic effects via stimulating neuropeptide Y from the hypothalamus 

and its levels are invertionally proportionate to BMI. Instead after LSG, there is no 

compensatory increase of ghrelin which should be associated to the weight loss, because of the 

gastric resection. Moreover, after LSG, increments of PYY and GLP-1 levels are usually 

observed. These hormones are secreted by the distal part of the intestine, they act on pancreatic 

cells increasing insulin secretion and they inhibit hypothalamic production of neuropeptide Y. 

In this way LSG is involved in inducing an improvement of diabetes type II up to resolution of 
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disease, independently from the weight loss.Weight loss is around 60% of body weight but 

long-term outcome are still unknown, so further investigations are still needed. 

 

1.4.2.3 Roux en Y Gastric Bypass (RYGB) 

Gastric bypass is the most commonly bariatric procedure performed worldwide. It consists of 

the creation of a small, (15–30 mL/1–2 tbsp) thumb-sized pouch from the upper stomach, 

accompanied by bypass of the remaining stomach (about 400 mL and variable). This restricts 

the volume of food which can be eaten. A segment of the small bowel (called the alimentary 

limb) is brought up to the proximal remains of the stomach. On the basis of the lengths of small 

intestine used, there are different degrees of food absorption. The most commonly gastric by 

pass is Roux en Y gastric by pass (Fugure 5) which contemplates the division of the small 

intestine approximately 45 cm below the lower stomach outlet and the  re-arranging into a Y-

configuration, enabling outflow of food from the small upper stomach pouch via a "Roux 

limb". The Roux limb is constructed using 80–150 cm of the small intestine, preserving the rest 

(and the majority) of it from absorbing nutrients. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Roux en Y Gastric Bypass 
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The weight-loss is obtained thanks to the restrictive mechanism and partially to a mild 

malabsorptive mechanism, actually a decrease of ghrelin levels is usually observed. RYGB 

induces fast and sustained weight-loss, up to 60% of total body weight in the first year. It 

reduces global and cardiovascular mortality and obesity-related comorbidities. The mechanisms 

underlying these beneficial effects are multiple. Improvement of insulin-resistance or even to 

resolution of diabetes type II, occur within days after the surgical procedure is performed and 

before any substantial weight-loss, suggesting the hypothesis that the Glycaemic control is 

restored by mechanisms which are related to gut anatomical rearrangement and modification of 

flow of nutrients. Levels of GLP-1 increase rapidly after surgery is performed and not after 

dietary restriction despite similar weight loss, so GLP-1 might play a role in metabolic 

improvement achieved after RYGB. RYGB and LSG are considered similar for weight loss, 

improvement of co-morbidities and intra-operative and early postoperative safety. 

 

1.4.2.4 Hypoglycaemia after bariatric surgery  

In 2005, Service et al (Service GJ., 2005) reported, for the first time, cases of hypoglycaemic 

events occurring months to years after RYGB. Since then, an increasing number of publication 

demonstrated that postprandial hypoglycaemia (PPHG) is not so rare after RYGB and the 

frequency of asymptomatic hypoglycaemia may be over 30% (Goldfine AB., 2007). 

Comparable data for laparoscopic sleeve gastrectomy (LSG) are scantier. Recently, Natoudi et 

al. (Natoudi M., 2014) described the occurrence of severe hypoglycaemic events in 6/29 (37, 

5%) normoglycemic patients 12 months after LSG.  Moreover, Papamargaritis et al. found that 

33% of patients experienced hypoglycaemic events one year after LSG (Papamargaritis D., 

2012). 

Severe hypoglycaemia can lead to dangerous clinical consequences such as seizure, syncope, 

and motor vehicle accidents.  However, also mild-to-moderate hypoglycaemia (plasma glucose: 

2.3-3.9 mmol/L) can have a negative health impact in diabetic and no diabetic subjects.  Thus, 

in diabetic subjects mild-to-moderate hypoglycaemia can be associated with increased risk of 

cardiac arrhythmias. Furthermore, hypoglycaemia may reduce the amplitude of the blood-

oxygenation level dependent (BOLD) responses in primary auditory and visual cortex to simple 

auditory and visual stimuli (Driesen NR., 2007). 

Why some patients develop PPHG while others do not is unclear.  After bariatric surgery, 

alterations of gastrointestinal anatomy and of gastric innervation likely have a profound effect 
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on gastric emptying (Ukleja A., 2005).  Thus, meals are more rapidly transferred from the 

stomach to the small intestine, so that the distal intestine is exposed to higher loads of 

undigested carbohydrates, whereas absorption of glucose into the bloodstream is accelerated.  

The resulting hyperglycaemia stimulates a rapid and excessive secretion of insulin, which can 

in turn trigger late hypoglycaemia.  Other authors (Salehi M., 2011; Ukleja A., 2005) suggested 

the idea that excessive insulin secretion could be in part consequent upon increased incretin 

hormone release, but the role of these hormones in the development of hypoglycaemia remains 

controversial.  An increased secretion of GLP-1 and GIP has been observed after an oral 

glucose challenge in patients after gastric resection, esophagectomy, and RYGB (Romero L., 

2012), and these exaggerated responses have been suggested to induce ß-cell expansion via 

increased expression of islet transcription factors.  By contrast, in a recent paper it has been 

suggested that GLP1 analogs might provide a new treatment option in patients with late PPHG 

(Abrahamsson N., 2013).  Furthermore, it has been postulated that, after RYGB hypoglycaemic 

counterregulation may be dysfunctional, due to lack of inhibition of insulin secretion, 

subnormal response of the anti-insulin hormones, changes in neuronal/ sympathetic activity, 

and/or low glycogen stores (Salehi M., 2015). 

Therefore, recurrent hypoglycaemia of any degree can have clinical relevance and to identify 

predictive risk factors of this late complication of bariatric surgery becomes important. 

Moreover, very is known about PPHG after RYGB but little is known about PPHG after LSG. 

2. Adipose Tissue (AT) 

Adipose tissue was originally viewed as a connective tissue with a storage capacity, presently 

AT is considered an organized endocrine organ, both vascularised and innervated, with a clear 

anatomy and a high degree of plasticity responding to both corporeal and environmental 

changes. 

It was initially found surrounding the viscera in the peritoneal cavity, but later in evolution, 

major depots of adipose tissue were located in subcutaneous sites (Gesta S., 2007). 

Subcutaneous adipose tissue (SAT) is different in thickness and distribution according to sex: in 

women has a typical distribution involving the buttocks, the thighs, the abdomen under the bell, 

as a kind of "fat reserve" to protect the pregnancy; instead, in men, SAT follows a typical 

pattern of distribution which involves the face, the neck, the shoulders and, in particular, the 

abdomen over the bell with an increased risk of cardiovascular diseases (Mathieu P., 2009). 
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In the human body, AT is the only tissue that can expand, in adulthood, many times going from 

5% to 60% of total body weight. The increase of AT may be both hypertrophic and hyperplastic 

(especially but not only in the youth). The ability of adipose tissue to expand has clear 

evolutionary advantages, enabling survival in times of nutrient scarcity; however, concomitant 

with adipose tissue expansion are metabolic alterations that enhance risk of metabolic disease 

(Wajchenberg BL., 2000; Corvera S., 2014). 

In addition to a different distribution of AT, there are also different types of AT. In fact, AT, is 

distinguished in white (WAT), brown (BAT) and beige AT. The white adipocytes are spherical 

cells, large, uniloculate, with relatively low content of mitochondria and they contribute to 

forming deposits of subcutaneous and visceral adipose tissue. The BAT is formed by cells 

multi-vacuolated characterized by a high content of mitochondria with characteristic 

morphology (large size and ridges very developed) and it is well represented in new born baby 

while, in adult, small  residual island of BAT spreaded in WAT (Giordano A., 2014). At least, 

recently, a new cell type, the beige/brite adipocyte, has been described in the white depots of 

adipose organ, whose morphological, molecular and functional properties partly overlap brown 

cells (Wu, 2012). 

Taken as a whole, AT represents a complex organ with several functions. It represents the main 

deposit of triglycerides in human body and it is responsible, also, of triglycerides synthesis and 

release in form of glycerol plus fatty acids. In addition to storing excess triglycerides and 

releasing free fatty acids, AT in the form of white AT or brown/beige AT (BAT) is crucial for 

immune responses, thermo genesis, fertility and lactation (Harms M., 2013; Giordano A., 

2014). 

Then, as described above, the classical functions of adipose tissue are: 

- energetic reserve; 

- protection against mechanic trauma and mechanic support to different organs; 

- body shaping; 

- thermal isolation (white adipose tissue), increase body temperature and elimination of 

nutritional excess throughout thermal energy (brown adipose tissue); 

 

Furthermore, AT has metabolic and endocrine activities and the substances released may be 

divide into: 
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- Energetic compounds (free fatty acids, cheton bodies, glycerol); 

- Steroidal hormones (both androgens and estrogens); 

- Adipocytokines: Adiponectin, leptine,resistine, PAI-I, TNFα, IL-6 

 

2.1 Subcutaneous and Visceral Adipose Tissue 

In the 1950s, Vague was the first to suggest that the regulation of the endocrine and metabolic 

functions of abdominal AT were controlled, in part, by the anatomical distribution of fat with 

“android or male-type” obesity associated with T2DM and atherosclerosis (Vague J., 1956). 

From anatomically point of view, visceral AT (VAT) is centrally located and enclosed by the 

peritoneum, while the subcutaneous AT (SAT) is located directly below the skin. Both 

subcutaneous and visceral depots retain extraordinary growth potential throughout adult life 

(Utzschneider KM., 2004) but there is significant, heritable variation in the relative size of 

these depots (Fox CS, 2007). SAT and VAT differ in their cellular composition, their molecular 

properties, and their role in regulation of the whole body metabolism. 

There are few studies comparing human SAT and VAT, and they are increased in the recent 

years thanking to bariatric surgery. Due to the limitation of reproducible isolation methods and 

standardized cell size measurements, interand intra-individual data regarding depot-specific 

cellular characteristics are few. Adipocytes in general are smaller in VAT as opposed to the SAT 

of obese subjects even if, in some works, this trend is confirmed without a significant 

difference (O. Gealekman, 2011). Considering AT capillarization in different depot, works in 

literature are even less than those concerning adipocyte size. To our knowledge, only Corvera 

S. group has analyzed differences between SAT and VAT capillary density in 7 obese patients 

finding that subcutaneous adipose tissue capillary density is significantly higher compared with 

visceral adipose tissue (O. Gealekman, 2011). Due to the difficult to collect AT from lean 

subjects, especially visceral adipose tissue little is known about VAT and SAT of these patients. 

In literature, there are some more works compare obese's SAT with lean's SAT and they are all 

agree that adipocytes are smaller in lean/overweight as opposed obese (Goossens GH., 2011;  

O. Gealekman, 2011; Pasarica M. 2009). Regarding SAT capillary density between obese and 

lean, is confirm, in different works, that obese's SAT has a significantly lower capillary density 

compared to lean's SAT (Goossens GH., 2011; O. Gealekman, 2011; Pasarica M. 2009). None 

is known about capillary density of lean patients' VAT. From a functional point of view, 

classically, visceral adipose tissue is considered closely connected with the development of 
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insulin-resistance, dyslipidemia and increased cardiovascular risk (Cinti S., 1999). This concept 

is partially true; in the recent years several works have begun to demonstrate how even SAT 

plays an important role in the development of AT inflammation and so in the increased risk of 

insulin-resistance, dyslipidemia and cardiovascular disease. In fact, if on one side it has been 

demonstrated that an increased in abdominal AT is a risk factor for the development of 

metabolic disease, it has to be noted that the association reported between VAT and diseases in 

numerous epidemiological studies, used surrogate indexes of VAT, such as BMI, waist 

circumference, waist-to-hip ratio or waist-to-height ratio. In recent years, it has been shown that 

large subcutaneous fat cells are associated with insulin resistance and with a high risk of 

developing T2DM, and, studies following Roux-en-Y gastric bypass in women, have 

demonstrated that a reduction in SAT fat cell size correlates to improved insulin sensitivity 

(Andersson DP., 2014). Furthermore, in the first mentioned S. Corvera's work, have founded 

that the capacity of SAT to expand its capillary network decreases with morbid obesity and this 

decrease correlates with insulin resistance, suggesting that impairment of subcutaneous adipose 

tissue angiogenesis may contribute to metabolic disease pathogenesis (O. Gealekman, 2011). 

Besides, previous study of Snijder MB, has reported a different role for SAT dependent on its 

localization: SAT in the abdomen is directly associated with the metabolic syndrome in normal-

weight and obese men; while larger gluteo-femoral SAT is inversely associated with metabolic 

syndrome in both obese men and women (Snijder MB, 2005). 

Considering these indicated studies, it can be said that the classical distinction between SAT, as 

the safe AT, and the VAT, as the unhealthy AT it's no longer possible. Certainly, VAT has 

demonstrated to strongly influence the development of obesity-related disease but it is 

necessary, in the future, confirm these results using more specific methods of fat depot 

measurements and, it is necessary to consider also the excess of abdominal SAT as a negative 

event for health. Changing focus from visceral adipose tissue mass as a sole contributor to 

metabolic disease to functional heterogeneity in adipose tissue depots can help better 

understand relationship of adiposity and obesity-related disease. 

2.2 Adipose Tissue Endocrine Function 

The adipose tissue produces differents proteic substances, all together called adipocytokines, 

which are responsible for the interactions between the adipose tissue and other organs and 

systems, for instance the immunological one, the central nervous one and the endocrine one, in 



31 

order to regulate the human body metabolism. Some of these substances are not specific for the 

adipose tissue, for instance estrogens, PAI-1 and angiotensinogen. Some others are more 

specific like IL-1β, IL-6, TNF-α, MCP-1, resistine, and witch are involved in the development 

of insulin-resistance and chronic inflammatory state. Some factors specifically produced by 

adipose tissue, have a positive effect on metabolism, like adiponectin which increases insulin-

sensibility and has a protective role against the development of glucose intolerance and 

diabetes. In our study we measured, in particular, leptin, IL-6 and TNF-α. 

2.2.1 Leptin 

In 1949, a non-obese mouse colony being studied at the Jackson Laboratory produced a strain 

of obese offspring, suggesting that a mutation had occurred in a hormone regulating hunger and 

energy expenditure. In the following years, several studies, lead to discover a new obese-gene 

encoded a novel hormone that circulated in blood and that could suppress food intake: leptin. 

Leptin was the first fat cell-derived hormone (adipokine) to be discovered (Conde J., 2011). 

Leptin is a 167-aminoacids glycoprotein, codified by the gene ob located on chromosome 6. It 

is produced by white adipose tissue, in smaller amount by the muscular and neuronal tissue and 

by the gastric epithelium and mammarian epithelium. It is primarily involved in the regulation 

of food intake and energy expenditure. Although leptin reduces appetite as a circulating signal, 

obese individuals generally exhibit a higher circulating concentration of leptin than normal 

weight individuals due to their leptin-resistance. This leptin-resistance results from different 

mechanisms involving leptin receptor, leptin transport through blood brain barrier and post 

leptin receptor deficit. Normal sieric levels are between 5-21μg/L and they are increased in 

female subjects and in obeses, where leptin levels are directly proportional to the total amount 

of adipose tissue (linked to BMI) and the dimensions of adipocytes. 

Leptin receptors are located in several tissues (CNS, hepatocytes, myocytes, pancreatic cells, 

spleen cells, pulmonary tissue, ovarian tissue ) and also on immunological and endothelial 

cells; it can therefore talk about a pleiotropic role of this molecule (Ahima RS., 2000). One of 

the first leptin function to be discovered was the action on hypothalamic centres,  in particular 

in the hypothalamic arcuate nucleus, where leptin acts to decrease food intake and increase 

energy expenditure (Friedman JM., 1998) through the release of inhibitor neurotransmitter of 

appetite as α-MSH (α-melanocyte-stimulating hormone) and CART (cocaine and amphetamine-

regulated transcript respectively) and through the inhibition of neurotransmitter increased food 
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intake as NPY and with increasing thermo genesis (Vettor R., 2002). However it has been 

confirmed that leptin has multiple functions besides inducing the sensation of fullness, as 

reported in Figure 6. In particular, leptin may contribute to the development of classical risk 

factors of atherosclerosis such as arterial hypertension and diabetes mellitus, it may increase 

inflammation and it promotes platelets aggregation. It is known that leptin secretion by 

adipocytes is stimulated by insulin, so leptin plasmatic levels are closely correlated with insulin 

plasmatic levels. Recent works, have demonstrated that the effect of hypoxia on leptin secretion 

by human adipocytes is particularly marked and may indicate that a reduction in pO2 AT could 

be the primary mechanism for the rise in the production of leptin with obesity (Trayhurn P., 

2008). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Leptin's multiple functions. 
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2.2.2 IL-6 

Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-

inflammatory myokine. It is encoded by the IL6 gene. It has a pleyotropic functions as shown 

on Figure 7 and it is produced by several cellular types (monocytes, macrophages, endothelial 

cells, lynphocytes B and T, neutrophils, eosinophils, smooth muscle cells, skeletal muscle 

cells). The 20-30% of its production comes from adipocytes and this percentage considerably 

increased proportionally with increase of BMI and waist circumference (Park HS., 2005). 

 

Figure 7: Cells secreting IL-6 and cells undergoing its actions. 

IL-6 plays a crucial role in acute phase inflammatory response. It stimulates hepatic production 

of acute phase proteins like CRP and fibrinogen and its production is mainly induced by TNF-α 

and IL-1, two of the most important proinflammatory cytokines (Heinrich PC., 1999). It has 

been demonstrated that IL-6 is also involved in chronic inflammation, because its levels stay 

high in this phase as well (Gabay C., 2006). 

The increasing in inflammation may be the mechanism through IL-6 is involved in the 

pathogenetic process causing atherosclerotic disease, T2DM and every metabolic disease 

obesity-related. For T2DM, for example, IL-6, in addition to its immunoregulatory actions, has 

been supposed to affect glucose homeostasis and metabolism directly and indirectly by action 

on skeletal muscle cells, adipocytes, hepatocytes, pancreatic β-cells, and neuroendocrine cells. 
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Recent studies show that while there is evidence that circulating levels of IL-6 are elevated 

years before onset of type 2 diabetes, the role of IL-6 in precipitating T2DM is still an open 

question.  

In fact, there is no evidence for an independent role of IL-6 in impaired β-cell function and 

progressive β-cell apoptosis; no evidence in vivo demonstrating the role of IL-6 in causing 

impaired insulin-signalling in adipocytes and long-term IL-6 stimulation per se does not seem 

to cause insulin resistance in skeletal muscle. Taken together these results show that IL-6 may 

contribute to, but is probably neither necessary nor sufficient for development of type 2 

diabetes (Kristiansen OP., 2005). 

As leptin, IL-6 secretion by adipocytes is partially stimulated by insulin but some works by 

Trayhurn and also other authors, demonstrated in vitro, that the secretion of IL-6 by adipocytes 

may be partly a direct result of hypoxia within AT (Trayhurn P., 2008) 

 

2.2.3 TNF-α 

TNF-α is one of the most important proinflammatory cytokines, it is produced mainly from the 

macrophages, included macrophages which are located in the adipose tissue and by adipocytes 

themselves. TNF-α has several functions: it induces apoptosis and necrosis throughout inducing 

lyses of the cells, it promotes inflammation stimulating hepatic productions of proteins like 

PCR and it stimulates macrophages with an autocrine mechanism to produce different 

proinflammatory cytokines.  

TNF-α induces insulin-resistance, promotes the production of hormones (epinephrine, 

glucagon, cortisol) which increase gluconeogenesis and decrease glucose reabsorbition from 

skeletal muscle and adipose tissue, in addiction it decreases the production of adiponectin from 

adipocytes and inhibits the production and activation of the proteins which are involved in the 

insulin signalling pathway.  

In obese patients plasmatic levels of TNF-α are higher then in normal-weight subjects, at the 

same time TNF-α levels decrease together with the loss of weight. Plasmatic levels also 

correlate with insulinemia and insulin resistance. 

In vitro hypoxic adipocytes secrete TNF- α while Sun et al. has demonstrated that an enforced 

expression of VEGF in AT significantly down-regulated TNF-alfa expression. Taking together, 

these data shows once again that AT secretion of chemokines could be heavily affected by 

hypoxia. 
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2.3 Adipose Tissue Stem Cells (ASCs) 

Adipose tissue shows an extraordinary ability to change rapidly its dimensions, as otherwise 

just neoplastic tissues do, by hypertrophy (cell size enlargement) and hyperplasia (cell number 

increase), both in animals and in adult humans (Spalding KL., 2008). 

The concept of Mesenchymal Stem Cell was first introduced in the late sixties by isolation from 

bone marrow (BM-MSC) and just in 2000 from adipose tissue (ASC) (Zuk PA., 2001). In 2001 

the team of Zuk firstly described ASCs residing in adipose tissue depots and, actually, we fully 

recognize their real and potential value but their identity still remains elusive. 

Human ASCs are obtained from SVF, a heterogeneous cell population isolated from adipose 

tissue by the enzymatic digestion, centrifugation and removal of the differentiated adipocytes 

layer. Cultured cells show important differences compared to freshly isolated stromal cells, the 

latter one showing different percentages of CD34 positive (CD34+) cells depending on the 

source: adipose tissue specifically expresses higher levels of CD34 compared to bone marrow 

(Sidney LE., 2014). A recent comparative study by Pachon-Pena demonstrated how the surface 

antigens expressed by hASC and BM-MSC are for the major part similar in the 

immunophenotypic profile, differing fundamentally in the expression percentage of each of 

them (Pachon-Pena G., 2011). This observation sets these cellular entities more as a continuum 

rather than two distinct cellular precursors, their distinguishing features arising more from 

experimental settings (ex vivo or in vitro), number of culture cycles, cell proliferation grade, 

origin depot rather than from cellular intrinsic properties.  

ASCs were shown to express CD34 and their in vitro culture expansion leads to its rapid down-

regulation with a concomitant increase in four mesenchymal markers expression, CD13 (APN), 

CD73 (L-VAP-2), CD90 (Thy-1), CD105 (endoglin). The CD44 is another surface marker 

detectable on adipogenic progenitors, both in humans and in mice (Sousa BR., 2013). ASCs lie 

in close contact with other cell types among which pericytes and endothelial cells: pericytes 

belong to the mural cell compartment and carry out important functions especially in vascular 

development and maintenance (Gokcinar-Yagci B., 2015; Geevarghese A., 2014), endothelial 

cells differentiate from endothelial progenitor cells (EPCs), characterized by stem cell features, 

able to promote vascular regeneration by de novo capillary structures formation (Balaji S, 

2013). The close interactions between adipose progenitors, pericytes and endothelial cells and 

the open controversies about their exact origin still leave many questions open. Zimmerlin et al 

described three populations in the SVF: the luminal endothelial progenitor cells (CD45-
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:CD31+:CD34+), the adventitial pericytes (CD45-:CD31-:CD146+) and the supra-adventitial 

adipose stromal cells (CD45-:CD31-:CD146-:CD34+); a fourth subset, identified as 

CD146+:CD34+, showed an intermediate phenotype, being both highly proliferative and with 

an uniform mesenchymal marker profile (Zimmerlin, 2013) (Tallone T., 2011). 

Regarding ASCs and the different AT depot there are always more studies demonstrating how 

preadipocytes exhibit a site-specific gene pattern expression which is able to condition their 

behaviour also after isolation and several in vitro culture passages (Macotela Y., 2012), A four-

way study, in which subcutaneous and visceral adipose tissue were transplanted in SAT or VAT 

respectively, showed that just subcutaneous tissue transplantation into a subcutaneous or 

visceral site lead to beneficial effects, including body weight decrease with total adipose mass 

reduction and whole-body metabolic improvement. Placement of visceral tissue into the donor 

site did not determine relevant effects in terms of metabolic improvement.  

This observation implies the concept of a kind of “origin site cell memory” that can be kept 

despite the settings changes (Tran T.T, 2010). Again comparing human ASCs from abdominal 

SAT and VAT isolated and cultured in vitro, subcutaneous ASCs showed a much greater growth 

rate ability and adipogenic potential compared to visceral ones, by maintaining a high 

expression level of the polycomb gene BMI-1. Through electrophysiological properties 

analysis, the stem cell nature of both V-ASC and S-ASC was confirmed, suggesting that the 

differences between the two depots are probably determined at a stem cell level and 

“memorized” during later expansion (Baglioni S., 2012).  

A greater replicative potential of human subcutaneous preadipocytes compared to omental was 

already demonstrated: the number of subcutaneous precursors and the rate of clonal replication 

were higher with increased adipogenesis ability and lower apoptosis susceptibility (Tchkonia 

T., 2006). Despite this finding, some studies on human obese subcutaneous and visceral adipose 

tissue, demonstrated that also among V-ASCs there is a predominant hyperplasic grow instead 

of hypertrophic grow, this observation could be the response to the increased apoptosis rate 

detectable in this depot; visceral fat is much less malleable than the subcutaneous one, just a 

slight increase in cell size leading to huge changes in terms of metabolic implications. 

Moreover we could hypothesize that hyperplasia in VAT correlates with an abnormal and 

dysfunctional proliferation, nullifying the potential beneficial effects associated with this cell 

growth mechanism. Probably the past concept of hyperplasia as beneficial and hypertrophy as 

detrimental is applicable just in a pure and elementary model, in which “confounding factors” 
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such as location, innervations, vascularisation, epigenetic modulations and others do not need 

to be taken into consideration. 

Moreover, even though white and brown adipose tissue (WAT and BAT) seem to have a 

common mesodermal origin, recent studies shed light on the different adipogenic precursor. 

Indeed brown fat seems to share a common Myf-5 progenitor with skeletal muscle; white 

adipocytes originate from a non-Myf-5 precursor. The commitment through the adipogenic  

non-Myf-5 line or the myogenic Myf-5 one takes probably place at the mesenchymal stem cell 

stage (Wu J., 2013). Also regarding the beige AT, some studies suggest an independent origin of 

white and beige precursors in humans (Di Franco, Guasti et al. 2014). 

Another important notion concerning wit ASCs, is that the concept of stemness has been 

extensively reconsidered, being not just an intrinsic cell property, but rather a feature strictly 

conditioned by microenvironment.  

As for the best known hematopoietic niche, the adipose niche works as a specialized 

microenvironment that contributes to ASCs quiescence, maintaining their stemness, regulates 

their proliferation and differentiation. Extracellular matrix (ECM) forms the physiological and 

plastic scaffold, crucial for determining stem cell behaviour (quiescence versus proliferation 

and differentiation) and promoting proper contacts between ASCs and the other cellular niche 

components.  

Leptin, for example, secreted from mature adipocytes, regulates ECM composition, modulating 

the ASCs gene expression profile and therefore conditioning their behaviour in the adipose 

niche (McCulloch L.J., 2015); this observation provides evidence for a paracrine mechanism by 

which full differentiated cells regulate their own progenitors. The importance of 

microenvironment for the ASCs is well demonstrated in studies of obese AT where, as better 

described below, there is a hypoxia condition due to excessive AT expansion (Cao Y 2013; 

Corvera S., 2014) which further fires up the inflammatory response in a vicious loop. Many 

putative mechanisms seem to play a role in obese adipo-niche hypoxia establishment; although 

many questions still remain unanswered and controversial data are present in literature 

(Trayhurn P. 2013).  

In vitro studies using human ASCs demonstrated an enhanced proliferation in hypoxia (1% of 

pO2) conditions, suggesting that altered oxygen homeostasis could affect the quiescent-

activated ASCs balance (Kakudo N., 2015; Choi JR., 2014). Interestingly, hypoxia induces a 

pro-fibrotic program in ASCs, promoting the HIF1α up regulation on one side and the down 
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regulation of proteins involved in adipogenesis on the other (Rosenow A., 2013), thus 

perpetuating the pathological circle. Contrasting reports have demonstrated that human obesity 

does not show metabolic signs of AT hypoxia (Hodson L., 2013), even reporting data of an 

increased O2 tension (Goossens GH, 2011); however a normal O2 tension cut-off for adipose 

tissue has not been established yet.  

Beyond absolute oxygen tension, these data underlie the relevance of an altered oxygen flux in 

a pathological niche setting. Metabolic signals as well take probably part to the adipo-niche 

alterations. The often obesity-related diabetes development and thereby hyperglycaemia, 

implies advanced glycation products formation (AGEs) both in the extracellular and 

intracellular settings. AGEs are mostly represented by long life proteins, such as albumin, but 

ECM components could be a target of glycosilation too.  

In adipo-niche AGEs negatively affect ASCs pool by inducing cell apoptosis through AGE-

receptor (RAGE), as demonstrated in human ASCs when exposed in vitro to AGE-serum 

albumin (Wang Z., 2015). 

At least, an emerging field of research is represented by weight loss induced by the mean of 

bariatric surgery or long-term caloric restriction. Indeed, the analysis of ASCs properties before 

and after weight loss helps to better understand the role of cell and microenvironment 

contribution in metabolic disease development.  

S-ASCs from ex-obese individuals show a marked adipogenic commitment, probably as 

consequence of a precursors enrichment. This last observation has raised the hypothesis that 

hypertrophic adipocytes, after lipid mobilization in massive weight loss, could dedifferentiate 

again into preadipocytes (Baptista L., 2015), probably through a pericytes involvement in 

recruitment and generation from mature cells; indeed a fourfold increase in SAT supra-

adventitial cells was described in ex-obese patients compared to obese together with an 

increase in pericytes number in both groups compared to lean subjects (Silva K.R., 2015). 

 

2.4 Adipose Tissue Angiogenesis and Hypoxia 

One of the most remarkable features of adipose tissue is its capacity to expand in a 

nonneoplastic manner. While most of the growth of organs and tissues occurs during 

development, and their final size remains relatively constant through adulthood, adipose tissue 

is the unique tissue that can expand many folds also in adulthood.  
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The cellular and molecular mechanisms by which adipose tissue growth are coordinated with 

the expansion of its capillary network are unknown. These mechanisms may underlie the basis 

for adipose tissue dysfunction in metabolic disease. 

In each organ or tissue the angiogenesis comprise the proliferation of endothelial cells, their 

directed migration through the extracellular matrix, the establishment of intercellular junctions, 

the formation of a lumen, the organization of perivascular supporting cells, the anastomosis 

with existing vessels, and the establishment of circulation.  

The main event of angiogenesis is the stimulation of endothelial cells proliferation by Vascular 

Endothelial Grow Factor (VEGF). VEGF-A, acting through its receptor, known with the name 

of VEGF Receptor 2 or KDR, is the most powerful signal for migration and mitogenesis of 

endothelial cells. In response to the increase of the concentration of VEGF-A, the endothelial 

cells are able to divide and to acquire a specific phenotype characterized by the formation of 

branches and numerous filipodi that extend toward the direction where the endothelial cells 

must migrate.  

But, even if the basic steps of angiogenesis are well known, the microenvironment deeply 

influence the angiogenesis and little is known about the mechanism operating in adipose tissue. 

As reported in S. Corvera review (Corvera S., 2014), there are two possible models for the 

stimulation of angiogenesis during adipose tissue growth. The first one contemplates that an 

increasing calorie consumption results in adipocyte hypertrophy and hyperplasia, which can 

generate areas of tissue hypoxia.  

Hypoxia, and/or other factors released from the tissue are able to stimulate angiogenesis. 

Angiogenesis could result in mitigation of hypoxia with an appropriate tissue architecture and 

function. The second one contemplates that the increasing calorie consumption results in 

systemic changes in trophic factors such as insulin, which directly stimulate angiogenesis 

within adipose tissue. Increased angiogenesis facilitates lipid storage in adipocytes and 

adipocytes' hyperplasia.  

The simultaneous expansion of adipocytes and vasculature could prevent development of 

hypoxia and metabolic stress (Figure 8) Which of the two mechanisms is involved, or if they 

are both involved, in AT angiogenesis is not yet known but several studies both on cellular 

cultures, animal models and human adipose tissue, reported that an impaired angiogenesis is 

involved in AT dysfunction and obesity-related diseases. 
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Figure 8: two possible mechanisms of adipose tissue angiogenesis (adapted from S. Corvera review) 

 

Pasarica, Goosens and Gealekman's works have demonstrated a significantly reduction in both 

capillary density and VEGF m-RNA  in obese AT compared to lean AT (Pasarica M., 2009, 

Goossens GH., 2011, Gealkmann O., 2001). 

The impaired AT angiogenesis could be the primum movens of AT dysfunction with particular 

regard to insulin-resistance and diabetes. Indeed, microvasculature plays a central role in 

glucose homeostasis: an impaired capillary recruitment and capillary rarefaction may reduce 

glucose uptake and contribute to insulin resistance (Levy BI, 2008). 

Even if in human AT, contrasting results regarding AT pO2 are reported, several studies showed 

that AT is hypoxic but this hypoxia is inadequate to sustain the neoagiogenetic response 

however triggers AT fibrosis contributing to a worse metabolic profile (Sung HK, 2013). 

Indeed, structural and functional abnormalities, such as lower capillary density (Pasarica M, 

2009; Gealekman O, 2011), increased adipocyte-capillary distance due to adipocyte 

hypertrophy (Halberg N, 2009) and increased cell O2-consumption (Lee YS, 2014), have been 
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postulated as mechanisms leading to AT hypoxia.  Furthermore low oxygen tension induces 

hypoxia-inducible factor 1 alpha (HIF1α) pathway that, in obese AT, was found to be higher 

than in lean AT. HIF1α is a transcriptional regulator of more than 100 different genes. Encoding 

for proteins involved in a multiplicity of cellular process, including glucose utilization, 

inflammation, ECM metabolism and apoptosis. 

In AT, HIF1α is unable to induce an angiogenic program but, the presence of HIF1α induces an 

alternative transcriptional program, mainly entailing enhanced synthesis of ECM components, 

leading eventually to the development of fibrosis. As it has been well explained by Sun in its 

review published on Cell Metabolism (Figure 9), hypoxia and then, HIF1α, unregulated  a 

whole set of ‘‘fibrotic response’’ gene. This regulation results in the abnormal development of 

ECM, leading to local fibrosis, which triggers necrosis of adipocytes. The dead adipocytes then 

attract classically activated proinflammatory M1 macrophages, which ultimately lead to 

inflammation and metabolic dysfunction. Moreover HIF1a may also directly induce 

proinflammatory factors, such as IL6 and MIF, which in turn causes M1 macrophage 

infiltration.  

 

Figure 9: Proposed Models for the Sequential Steps Leading to Adipose Tissue Fibrosis and Metabolic 

Dysfunction 
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The preadipocytes, macrophages, and interactions between these cell types ultimately produce 

fibrotic components, which eventually cause pathological expansion of fat pads (Sun K. 2013). 

These two mechanisms, able to explain the linking between obese fat expansion, hypoxia and 

metabolic disease, are well demonstrated in cultured cells and in mice-models but not 

thoroughly in human. 
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3.  AIMS  

3.1 AIMS (1) 

Type 2 diabetis mellitus (T2DM) and obesity are global health care problems that are closely 

linked together. The precise mechanisms linking the two conditions remain unclear. Indeed, 

while the close relationship between T2DM and weight gain is well established, not all obese 

subjects are diabetic and this paradox is still unexplained.  

We hypothesized that adipose tissue (AT) and its microvascularization could play a pivotal role 

in this paradox. 

Therefore, our project primary aims to characterize AT, through ex vivo/in vitro studies, in 

terms of adipocytes size, capillary density, adipose tissue stem cells (ASCs), endotelial 

precursor cells (EPs) of AT and adipogenic potential, in obese subjects compared to lean 

subjects; secondary, aims to find the possible differences between the two distinct adipose 

tissue depot, subcutaneus and visceral adipose tissue (SAT and VAT) both in obese and in lean 

subjects; finally, aims to discover if there are any differences, in the same terms describe 

above, in SAT and VAT of obese patients with different glycaemic profile. Moreover, in a small 

number of patients, we aim to characterize SAT after a significant weight loss in terms of ASCs 

and EPs compared to obese patients SAT and lean patients SAT. 
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3.2 AIMS (2) 

 

Currently, bariatric surgery is the most effective therapy for weight loss and and weight 

associated co-morbidities.  

Among bariatric surgery procedures, laparoscopic sleeve gastrectomy (LSG) is markedly 

increased in prevalence, raising from 5% to 27% of all bariatric procedures, in the recent years. 

The beneficial effects of this bariatric procedure are well known, while are lesser known side 

effects. In particular, postprandial hypoglycaemia, is a well described side effect after RYGB 

but few data are available for LSG. 

Primary aims of this study are: verify the prevalence of provocative hypoglycaemia after LSG 

in a large number of non diabetic obese patients and  identify any predictors of these events 

before surgery. 

Secondary aims are: evaluate the effects of LSG, after one year, in the same population and if 

there are any differences in anthropometric and metabolic parameters after LSG between 

patients with and without hypoglycaemic events . 
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4. MATERIALS and METHODS 

 

4.1 MATERIALS and METHODS (1) 

 

4.1.1 Ethic Statements 

The Padua Ethical Committee for Clinical Research approved the study involving patients and 

each subject gave informed written consent for adipose tissue biopsy (2892P). 

 

4.1.2 Human Subjects 

We collected subcutaneous (SAT) and/or visceral (VAT) adipose tissue (AT) from 249 patients 

divided in 5 different groups: 18 lean normal weight and normoglycemic subjects (18.5 < BMI 

< 24,9 kg/m2) as control group, 68 normoglycemic obese subjects (ob N), 65 pre-diabetic 

obese subjects (ob pre-T2DM), 57 diabetic obese subjects (ob T2DM) and 41obese patients 

underwent to a relevant weight loss (ob WL), corresponding to at least 10% of body weight.  

All obese patients were enrolled in our (Ce.S.I.T.O.) from January 2014 to June 2016. Every 

obese subject received a baseline clinical evaluation which included collection of clinical 

history, physical examination, anthropometry, blood pressure measurement and blood 

samplings (complete blood count, liver, kidney and thyroid function markers, TNF-α, IL-6, hs-

CRP, leptin and lipid profile). Moreover a 3-hour 75 g OGTT for blood glucose (BG), insulin 

plasma levels, c-peptide was performed. In diabetic patients fasted blood glucose, insulin (for 

non-insulin treated subjects) and HbA1c was determined. Insulin sensitivity was estimated by 

HOMA IR. All biochemical analysis were performed as described below (Materials and 

Methods 2, Patients). On the basis of the glycaemic profile according to ADA criteria (ADA, 

2016) obese patients were classified in 3 groups: ob N, ob pre-T2DM and ob T2DM. AT 

samples from obese patients were collected during bariatric surgery by the same chirurgical 

team (Bernate P., 2006). 

Lean subjects were enrolled, as control group, in the General Surgery Unit or in Clinical 

Surgery I of Padua Hospital, and SAT and VAT samples were harvested during abdominal 

surgery as laparoscopic cholecystectomy or fundoplication surgery, or SAT alone during plastic 

surgery for minor abdominal wall defects. For each lean subject we collected clinical history, 

anthropometry, blood pressure measurement and blood samplings (complete blood count, liver 

and kidney function markers and fasting glucose). The exclusion criteria for the selection of 
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lean subjects were: a history of malignancy (the patients included in the study must be free of 

the disease for at least 5 years), chronic inflammatory diseases, infectious diseases in progress 

and T2DM. 

After sampling, tissues were partly immediately frozen in liquid nitrogen and stored at -80°C 

before further assays and partly formalin fixed for immunohistochemical analysis (HIC). 

Moreover, when sufficient tissue was available, it was used to isolate stromal vascular fraction 

(SVF) cells to set up adipocytes primary cultures and/or to flow cytometry analysis.  

 

4.1.3 Histological and Immunohistochemical Analysis  

SAT and VAT samples of 5 ob N, 5 ob pre-T2DM, 5 ob T2DM and 6 lean subjects were 

formalin fixed, paraffin embedded, sectioned 5 μm thick and floated onto charged slides.  

4.1.3.1 Adipose Tissue Capillarization 

Paraffin-embedded AT sections were stained with a specific endothelial marker (Monoclonal 

Mouse Anti-Human CD31, Clone JC70A, Dako) and observed under Leica DM LB2 

microscope. Digital images were captured with the use of a Leica DFC450C digital camera, in 

at least 10 random fields at 20X magnification (at least 200 random adipocytes per tissue 

biopsy were counted). The number of capillaries for every adipocyte were manually counted 

and the capillary density was expressed as number of capillaries per mm
2
 and as average 

adipocyte area (μm
2
) sprayed by one capillary (adipocyte area/capillary). 

4.1.3.2 Adipocyte Size  

Adipocyte area was measured on the same digital images captured with the use of a Leica 

DFC450C digital camera, in the same samples and fields used for the analysis of AT 

capillarization. Area of each adipocyte was manually counted using LAS software (Leica 

Microsystems). Approximately 200 adipocytes per sample were measured. 

 

4.1.4 Human Adipocytes Primary Cultures and Flow Cytometry Analysis 

4.1.4.1 Stromal Vascular Fraction Extraction  

SAT and VAT were minced, digested in collagenase type II solution (1 mg/ml) (Sigma-Aldrich, 

St. Louis, MO, USA) on a shaking water bath at 37°C for 1 h, centrifuged 10 minutes at 350 

xg, and red blood cells were lysed using lysis buffer (NH4Cl 1.545 M, KHCO3 100 mM, EDTA 

1.27 mM) as previously described (Sanna M., 2009).  
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4.1.4.2 Flow Cytometry Analysis 

SAT samples of 24 ob N, 18 ob pre-T2DM, 23 ob T2DM, 5 lean subjects and 17 ob WL and 

VAT samples of 26 ob N, 25 ob pre-T2DM, 30 ob T2DM and of 10 lean subjects were used to 

isolate SVF and to perform multiparameter flow cytometry.  

10
5 

SVF cells freshly isolated from SAT and VAT of the indicated patients were washed whit 

cold FACS buffer (2% BSA in PBS 1X), collected by centrifugation at 350 xg for 8 minutes, 

and simultaneously incubated in the dark for 10 minutes at room temperature with the 

following monoclonal primary antibodies, as indicated in Figure 10: CD31-FITC and -PE, 

CD45-FITC, CD34-PerCP-Cy5.5, CD44-PE, CD73-APC, CD90-PE, CD105-APC, CD271-

APC, CD146-PE (BD Biosciences) specific for membrane markers used to quantify and 

characterize Adipose Stem Cells (ASCs), endothelial precursor and mature cells and 

pericytes/mural cells (Zimmerlin L, 2010; Tallone T, 2011).  

 

Figure 10 . Schematic protocol for antibody staining for multiparametric FACS analysis. 

After washing with FACS buffer (2% BSA in PBS 1X), cells were collected by centrifugation 

at 350 xg and resuspended in 200 µL of FACS buffer. As negative control, the fluorescence 

signals were detected using isotype-matched PE-IgG1, FITC-IgG1, APC-IgG1 and PerCp-

Cy5.5-IgG1 monoclonal antibodies. Cells were analyzed by FACS Canto Flow Cytometer (BD 

Biosciences, San Jose, CA, USA). 

This method allows to determine ex vivo the percentage of cells in the SVF that co-express the 

different markers in the absence of expression alterations due to culture conditions. 

 

4.1.4.3 Human Adipocyte Primary Cultures  

SAT samples of 18 ob N, 15 ob pre-T2DM, 14 ob T2DM and VAT samples of 20 ob N, 25 ob 

pre-T2DM, 23 ob T2DM were used to isolate SVF to perform human adipocytes primary 

culture in order to evaluate the in vitro adipogenic potential.  

1x10
5
 SVF cells/well were seeded in duplicate in 96-well plate (BD Biosciences) in human-

standard medium (h-SdM): 10% FBS DMEM F12 supplemented with 150 U/ml streptomycin, 

Tube FITC PE PerCP-Cy5.5 APC

1

2 ms IgG1 isotypic control  ms IgG1 isotypic control  ms IgG1 isotypic control  ms IgG1 isotypic control  

3 CD45   CD31     CD34     

4 CD31 CD13    CD34 CD29     

5 CD31 CD90  CD34   CD73 

6 CD31   CD146    CD34    CD271

FVSc



49 

200 U/ml penicillin, 2 mM glutamine, 1 mM HEPES (Thermo Fisher Scientific). At cell 

confluence (1-2 days after seeding), medium was replaced with human-adipogenic medium (h-

AdM): DMEM F12 (with 150 U/ml streptomycin, 200 U/ml penicillin, 2 mM glutamine, 1 mM 

HEPES) containing 66 nM insulin, 100 nM dexamethasone, 1 nM T3, 10 μg/ml transferrin, 33 

μM biotin, 17 μM pantothenate, 0.25 mM IBMX, 10 μM rosiglitazone. IBMX and 

rosiglitazone were removed after 3 days of culture, cells were further differentiated in h-AdM 

until day 9 when the percentage of mature adipocytes per well was estimated by optical 

microscopy using a Leica DM IL LED Microscope equipped with camera. 

 

4.1.5 RNA Extraction and RT-Real time PCR 

Total RNA from matched SAT and VAT samples of 20 ob N, 22 ob pre-T2DM, 22 ob T2DM, 

13 ob WL and of 6 lean subjects was extracted using RNeasy Mini Kits (QIAGEN, GmbH, 

Hilden, Germany) according to supplier instructions. RNA content was quantified using 

NanoDrop technology (Fisher Scientific SAS, Illkirch Cedex, France) and quality-checked 

using an Agilent 2100 Bioanalyzer (Agilent Technologies, PaloAlto, USA).  

RNA samples were then treated with DNase Treatment & Removal Reagents (Ambion, Inc, 

Austin, TX, USA) and reverse-transcribed for 1 h at 37° C with 150 ng random primers, 0.5 

mM dNTPs, 20 units of RNAsin Ribonuclease Inhibitor and 200 units of M-MLV RT 

(Promega, Madison, WI, USA). Real Time PCR was carried out with SYBR Select MasterMix 

(Thermo Fisher) on an Applied Biosystems 7900HT Fast Real-Time PCR System. Duplicate 

samples (5 ng of cDNA) were normalized by the indicate reference gene and reported as 

arbitrary units ratio.  

Primers sequences and reaction conditions were reported in Table IV. 

Table IV. Primes sequences and real time PCR reaction conditions used. 

GENE FORWARD (5'-3') REVERSE (5'-3') ANNEALING (°C) PRIMER (F/R nM) AMPLICON (bp) 

RPLP0 GCAGCATCTACAACCCTGAA CAGACAGACACTGGGAACAT 60 300/300 95 

PPARg2 ACCCAGAAAGCGATTCCTTCA AGTGGTCTTCCATTACGGAGAGATC 60 900/900 87 

LEPTIN GTGCGGATTCTTGTGGCTTT GGAATGAAGTCCAAACCGGTG 63 100/100 174 

VEGFA TCACCATGCAGATTATGCGGA TGTTGTGCTGTAGGAAGCTCA 58 300/300 75 

VEGFR1 
(FLT1) 

CGCCGGAAGTTGTATGGTTAAAA AGCCACGAGTCAAATAGCGAG 58 300/300 72 

VEGFR2 (KDR) CCGTTAAGCGGGCCAATGGA TTCAGCCGGTCTCTGGGGAA 60 300/300 142 

HIF1A TTACCATGCCCCAGATTCAG GGTTCTTTGCTTCTGTGTCTTC 58 300/300 180 
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4.1.6 Statistical Analysis 

In dependence of their distribution according to Shapiro Wilk normality test data, are presented 

as mean ± SD or median, minimum and maximum values. Statistical significance was 

determined using test t for normal distributed variables and Mann-Whitney non parametric test 

for skewed data. Differences were considered significant with p < 0.05.Correlation analysis 

was performed using both linear correlation and Spearman’s rank correlation coefficient 

calculation by STATISTICs Software (StatSoft 7.1)  

 

4.2 MATERIALS and METHODS (2) 

4.2.1 Ethic Statements 

The Padua Ethical Committee for Clinical Research approved the study involving patients and 

each subject gave informed written consent for adipose tissue biops y (2892P). 

 

4.2.2 Patients 

We analysed a total of 197 consecutive non-diabetic morbidly obese patients (140 women and 

57 men, BMI 47.4 ± 7.3 Kg/m
2
, mean ± SD) who underwent to laparoscopic sleeve 

gastrectomy (LSG) in our Center for the Study and the Integrated Treatment of Obesity 

(Ce.S.I.T.O.).  

All patients were studied 12 months before and after LSG. LSG was performed by the same 

surgical team with the same procedures (Bernate P., 2006) in patients with a BMI greater than 

35 Kg/m
2
 in the presence of co-morbidities or with a BMI greater than 40 Kg/m

2
, according to 

the NIH consensus criteria for bariatric surgery (NIH, 1991).  

Pre-operative evaluations included anthropometrics parameters, medical history, clinical 

examination, dietary counselling, complete blood count, complete metabolic panel including a 

3- hour OGTT for blood glucose (BG), insulin plasma levels and c-peptide, interleukin-6 (IL-

6), tumor necrosis factor alpha (TNF-α) and highly sensitive C-reactive protein (hs-CRP). 

Abdominal ultrasound, upper gastrointestinal endoscopy and upper gastro-intestinal barium x-

ray were also performed before surgery.  

Patients with a history of T2DM according to ADA criteria (ADA 2016) were excluded from 

the present analysis. One year after surgery all patients were evaluated with the same blood 

analysis, anthropometrics parameters and clinical examination. All blood tests were done after 

8 hours fasting. Plasma glucose, insulin and C peptide were collected at basal time and after 
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30, 90, 120, 150, 180 minutes after glucose load (180 ml of syrup with 82.5 g glucose 

monohydrate equal to 75 g of glucose). Hypoglycaemia was defined as the detection of a BG 

level ≤ 2.7 mmol/l at any time during OGTT.  

Blood samples were used for the biochemical determinations, performed with standard 

diagnostic kit: glucose (Glucose HK Gen.3 Cobas C System, Roche Diagnostic, USA), insulin, 

IL6, TNFα (IMMULITE 2000 Insulin, IMMULITE 1000 Immunoassay System, IL-6 and 

TNFα, Siemens Healthcare GmbH, Germany), hsCRP (Cardiophase Flex reagent Cartridge, 

Dimension Vista, Siemens) and Leptin (RIA – CT, Mediagnost, Germany) was standardized 

according to WHO First International Reference Standard.  

Glucose and insulin areas under the curve (AUC) were calculated. The homeostasis model 

assessment (HOMA) was calculated and used as insulin resistance index (Bonora A, 2000). 

Ideal body weight was calculated as weight which give patients an hypothetical BMI of 25 

Kg/m
2
and it was used to calculate the percentage of the excess BMI (%EBMI) and the 

percentage of excess BMI loss (%ELBMI).  

 

4.2.3 Statistical Analysis 

Data are expressed as mean ± standard deviation, except as otherwise indicated. The 

frequencies of hypoglycaemic events and severe hypoglycaemic events are expressed in 

percentage. Differences in the frequencies of hypoglycaemic events observed before and after 

LSG were tested by Chi-square test.  

Numerical data at baseline and after 12 months were compared with the use of a paired 

Student’s t- test. Patients with and without hypoglycaemic events were compared with unpaired 

Student’s t- test. Predictors of hypoglycaemic events were investigated with the use of a 

multiple logistic regression analysis model.  

In this model, the occurrence of hypoglycaemia (BG <3.3 mmol/l) at any time during the test 

was used as the dependent variable. Sex (male =0; female =1), age, BMI before surgery, and 

the baseline variables found to have a significant difference between patients with and without 

hypoglycaemic events after surgery were entered as independent variables in the multiple 

regression analysis. In all statistical analysis, a p-value <0.05 was considered to be significant. 

Statistical analysis was performed by using the SSPS statistical package, version 21.0 (SSPS, 

Chicago, IL). 
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5. RESULTS 

 

5.1 RESULTS (1) 

5.1.1 Patients 

5.1.1.1 Clinical Evaluation of Obese Patients 

We analyzed SAT and/or VAT samples from 190 consecutive obese patients underwent to 

bariatric surgery, whose main demographic, anthropometrics and metabolic parameters are 

reported in Table V. On the basis of their glycaemic profile, patients were divided in three 

different groups, 68 patients were normoglycemic (ob N), 65 were pre-diabetics (ob pre-

T2DM) and 57 were diabetics (ob T2DM). The three groups did not statistically differed in 

terms of BMI (46 ± 8; 47 ± 7; 48 ± 8 kg/m
2
) and Leptin plasma levels (40 ± 15; 40 ± 16; 35 ± 

16 μg/l), while ob T2DM showed a waist circumference (WC) larger than ob N and ob pre-

T2DM (137 ± 16; 127 ± 13; 128 ± 20 cm; p < 0,001 and p < 0,05 respectively). Moreover, ob 

T2DM were older than ob N and ob pre-T2DM and also ob pre-T2DM were older than ob N 

(52 ± 9; 47 ± 11; 40 ± 10 yrs; ob T2DM vs ob N p < 0,00001; ob pre- T2DM vs ob N p < 

0,001; ob pre-T2DM vs ob T2DM p < 0,01).  

The three co-morbidities considered, blood hypertension, dyslipidemia and Obstruction Sleep 

Apnea Syndrome (OSAS), have seen a progressive increase in terms of percentage of patients, 

from ob N to ob T2DM groups. Indeed, hypertension was present in the 37% of ob N, in the 

54% of ob pre-T2DM and in the 91% of ob T2DM; half of ob N and ob pre-T2DM patients 

were affected by dyslipidemia which was present in the 77% of ob T2DM. Finally, OSAS was 

present in only 5% of patients in ob N group, increasing to 28% in the ob pre-T2DM and 42% 

in the ob T2DM groups. 

As expected by the selection criteria used, the 3 groups differed significantly in fasting blood 

glucose level, mmol/l (5 ± 0,4; 5,9 ± 0,5; 9,4 ± 4; p < 0,000001), and ob N compared to ob pre-

T2DM showed higher levels of basal insulin mU/l (16,5 ± 9,7; 25,8±19,4; p < 0,001) and lower 

levels of HOMA -IR (3,7 ± 2,3; 6,8 ± 5,7: p < 0,0001). We did not evaluate insulin levels and 

HOMA -IR in ob T2DM patients because 20 out of 57 patients were on therapy with insulin. 

The others ob T2DM were treated with metformin (46/57) alone or associated to insulin or 

other hypoglycemic drug treatment as sulfonylureas (3/57), thiazolidinedione (1/57), GLP-1r 

agonist (4/57); 4 ob T2DM patients were not on therapy at the time of blood tests and 3 were 

started on metformin therapy, while just 1 was following diet therapy till the surgery. Among 
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ob T2DM 24 out of 57 patients had a history of T2DM longer of 5 years, 13 out of 57 had a 

history of T2DM lesser than 5 years, 20 out of 57 had a history of T2DM lesser than 1 year. 

HbA1c levels in ob T2DM was 66 ± 21 mmol/mol (range 38-122 mmol/mol). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V. Demographic, anthropometrics and metabolic parameters of obese patients analyzed by AT 

biopsies collection. BMI: Body Mass Index. Hyp: blood hypertension. DLP: dyslipidemia. OSAS: obstructive 

sleep apnea syndrome. BMI: Body Mass Index. HOMA-IR: Homeostasis Model Assessment. T-CHL: total 

cholesterol. HDL: High Density Lipoproteins. LDL: Low Density Lipoproteins. TGL: triglycerides. hs-PCR: High 

sensitive C-Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor Necrosis Factor-alpha. Results were reported as 

means ± DS; statistical analysis was performed by paired Student’s t-test. 

 

In regard to systemic inflammation markers statistical differences were obtained between ob N 

compared to ob T2DM in term of TNF-  7,7 ± 2,3; 9,9 ± 6,7 ng/l; p < 0,05) and between ob N 

compared to ob T2DM (3,4 ± 2,4; 4,4 ± 2,4 ng/l; p < 0,05) and ob pre-T2DM compared to ob 

T2DM (3,3 ± 1,3; 4,4 ± 2,4 ng/l; p < 0,001) in term of IL-6. Blood level of hsPCR was not 

significantly different among the 3 groups of patients (7,8 ± 15,9; 7,6 ± 4,2; 7,6 ± 3,2 mg/l).  

Finally, concerning the lipid profile, significant differences were observed only in diabetic 

patients (ob T2DM) which displayed lower levels of HDL-cholesterol (43 ± 11 mg/dl; 48 ± 12; 

p < 0,05) and higher level of triglycerides (166 ± 89; 115 ± 57 mg/dl; p < 0,05) when compared 

with normoglycemic obese subjects (ob N). We have to notice that there was a progressive 

worsening in the lipid profile from ob N, ob preT2DM to ob T2DM groups taking into account 

 ob N 

 

 

(n = 68) 

ob pre-

T2DM 

 

(n = 65) 

ob T2DM 

 

 

(n = 57) 

p 

 
ob N 

 vs   

ob pre-

T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-T2DM 

vs  

ob T2DM 

 

Sex (F/M) 55/13 50/15 32/25    

Age (years) 40 ±10 47 ± 11 52 ± 9 <0,001 <0,00001 <0,01 

HYP (n; %) 25 (37%) 35 (54%) 52 (91%)    

DLP (n; %) 34 (50%)  34 (52%) 44 (77%)    

OSAS (n; %) 5 (7%) 18 (28%) 24 (42%)    

BMI (Kg/m
2
) 46 ± 8 47 ± 7 48 ± 8 ns ns ns 

Waist(cm) 127 ± 13  128 ± 20 137 ± 16 ns <0,001 <0,05 

Blood Glucose (mmol/l) 5 ± 0,4 5,9 ± 0,5 9,4 ± 4 <0,0000 <0,0000 <0,0000 

Insulin (mU/l) 16,5 ± 9,7 25,8±19,4 - <0,001 - - 

HOMA-IR 3,7 ± 2,3 6,8 ± 5,7 - <0,0001 - - 

HbA1c (mmol/mol) - - 66 ± 21 - - - 

T-CHL (mg/dl) 186 ± 29 193 ± 37 184 ± 43 ns ns ns 

HDL (mg/dl) 48 ± 12 46 ± 12 43 ± 11 ns <0,05 ns 

LDL (mg/dl) 116 ± 25 121 ± 36 110 ± 37 ns ns ns 

TGL (mg/dl) 115 ± 57 139 ± 77 166 ± 89 ns <0,05 ns 

hsPCR (mg/l) 7,8 ± 15,9 7,6 ± 4,2 7,6 ± 3,2 ns ns ns 

TNF-α (ng/l) 7,7 ± 2,3 8,7 ± 7,4 9,9 ± 6,7 ns <0,05 ns 

IL-6 (ng/l) 3,4 ± 2,4 3,3 ± 1,3 4,4 ± 2,4 ns <0,05 <0,01 

Leptin (ug/l) 40 ± 15 40 ± 16 35 ± 16 ns ns ns 

 



54 

that ob N patients were not treated and, on the contrary, 3 out of 65 ob pre-T2DM patients and 

20 out of 57 ob T2DM patients underwent to statin therapy. 

5.1.1.2 Lean Subjects and Obese Patients After Weight Loss. 

We collected SAT and/or VAT samples from 18 non-diabetic lean subjects and 41 obese 

patients after weight loss (ob WL), whose main demographic, anthropometrics and metabolic 

parameters are reported in Table VI.  

Nine SAT and/or VAT biopsies of lean subjects were collected during cholecystectomy, 3 SAT 

and/or VAT biopsies were collected during colonic resection for diverticular disease, 3 SAT and 

/or VAT biopsies during laparoscopic fundoplication, 2 SAT and /or VAT biopsies during 

umbilical hernia repair and 1 SAT and /or VAT biopsies during rectal prolapse surgery. Lean 

subjects displayed a mean value of 48 ± 12 years old (range 21-64 years), BMI of 24 ± 2 

Kg/m
2
 (range 20-26), fasting blood glucose of 5 ± 0,7 mmol/l (range 4,7-6,6). Among lean 

subjects 1 was affected by hypertension and 1 by dyslipidemia. When compared with the 3 

groups of obese patients, BMI resulted, significantly lower in lean subjects (p < 0,00001); 

mean value of age was not different between lean subjects and ob pre-T2DM and ob T2DM, 

while it was higher in lean when compared to ob N (p < 0,02); mean value of fasting blood 

glucose of lean subjects was comparable to that of ob N, while it was lower in respect to ob 

pre-T2DM (p < 0,01) and ob T2DM groups (p < 0,00001) (data not show).  

 

 

 

 

 

 

Table VI. Demographic, anthropometrics and metabolic parameters of lean patients and obese patients 

after weight loss (ob WL) analyzed by AT biopsies collection. BMI: Body Mass Index. Hyp: blood 

hypertension. DLP: dyslipidemia. OSAS: obstructive sleep apnea syndrome. BMI: Body Mass Index. EBMIL: 

excess BMI loss. Results were reported as means ± DS; statistical analysis was performed by paired Student’s t-

test. 

 

Nine SAT and VAT biopsies of obese patients after weight loss were collected during 

cholecystectomy, while the others 32 SAT biopsies were collected during plastic surgery. 

Weight loss (WL) was obtained in 23 patients by laparoscopic sleeve gastrectomy, in 9 patients 

by gastric banding, in 1 patient by duodenal switch, in 1 patient by intragastric balloon and in 7 

patients by caloric restriction and physical activity. Ob WL patients displayed a mean value of 

 lean 

 

(n =18) 

  ob WL      

 

(n = 41) 

Sex (F/M) 11/7 33/8 

Age (years) 48 ± 12 47 ± 12 

HYP (n; %) 1 (5%) 5 (12%) 

DLP  (n; %) 1 (5%) 7 (17%) 

OSAS  (n; %) 0 (0%) 0 (0%) 

BMI (Kg/m
2
)  24 ± 2 31 ± 6 

Blood Glucose (mmol/l) 5 ± 0,7 5 ± 0,7 
%EBMIL - 74 ± 25 
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47 ± 12 years old (range 21-69), BMI of 31 ± 6 Kg/m
2 

(range 22,5-48), percentage of excess 

BMI loss (% EBMIL) of 74 ± 25 % (range 23-119), fasting blood glucose of 5 ± 0,7 mmol/l 

(range 3,4-6,4). Among ob WL patients, 5 were affected by hypertension and 7 by 

dyslipidemia. Before WL 6 patients were diabetics and after WL 5 have experienced a 

remission of T2DM and only 1 remained diabetic. When compared with the 3 groups of obese 

patients, BMI resulted significantly lower in ob WL patients (p < 0,00001); mean value of age 

was not different between ob WL patients and ob pre-T2DM, while was higher in ob WL when 

compared to ob N (p < 0,01) and lower in ob WL when compared to ob T2DM (p < 0,05); 

mean value of fasting blood glucose of ob WL patients was comparable to mean value of 

fasting blood glucose of ob N, while it was lower than that of ob pre-T2DM (p < 0,05) and ob 

T2DM (p < 0,00001) (data not show). 

5.1.2 Histology and Immunohistochemistry 

We performed immunohistochemical analysis (IHC) of SAT and VAT samples from 6 lean 

subjects  and from 15 obese patients (5 ob N, 5 ob pre-T2DM, 5 ob T2DM) whose main 

demographic, anthropometrics and metabolic parameters are reported in Table VII.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VII. Demographic, anthropometrics and metabolic parameters of lean patients and obese patients 

analyzed by IHC. BMI: Body Mass Index. Hyp: blood hypertension. DLP: dyslipidemia. OSAS: obstructive sleep 

apnea syndrome. BMI: Body Mass Index. HOMA-IR: Homeostasis Model Assessment. T-CHL: total cholesterol. 

HDL: High Density Lipoproteins. LDL: Low Density Lipoproteins. TGL: triglycerides. hs-PCR: High sensitive C-

Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor Necrosis Factor-alpha. Results were reported as means ± DS; 

statistical analysis was performed by paired Student’s t-test. 

 Lean 

 

 

(n = 6) 

ob N 

 

 

(n = 5) 

ob pre-

T2DM 

 

(n = 5) 

ob 

T2DM 

 

(n = 5) 

p 

 
lean 

 vs   

ob N 

p 

 
ob N 

 vs   

ob pre-

T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-

T2DM 

vs  

ob T2DM 

 

Sex (F/M) 2/4 4/1 4/1 2/3 - - - - 

Age (years) 55±6 42 ±9 56 ± 9 44 ± 13 <0,05 <0,05 ns <0,01 

HYP (n/tot goup) 2/6 1/5 4/5 4/5 - - - - 

DLP (n/tot goup) 0/6 3/5 4/5 5/5 - - - - 

OSAS (n/tot goup) 0/6 0/5 3/5 1/5 - - - - 

BMI (Kg/m
2
) 23,7±1,3 54 ± 19 47 ± 6 57 ± 9 <0,01 ns ns 0,05 

Waist(cm) - 127 ± 19  129 ± 14 154 ± 16 - ns 0,06 <0,05 

Blood Glucose (mmol/l) 5,2±1,02 4,8±0,18 5,6 ± 0,9 10 ± 4,3 ns ns <0,05 <0,05 

Insulin (mU/l) - 15 ± 9  23 ± 18 - - ns - - 

HOMA-IR - 3,3 ± 1,9 5,9 ± 5,7 - - ns - - 

HbA1c (mmol/mol) - - - 73 ± 26 - - - - 

T-CHL (mg/dl) - 193 ± 27 202 ± 47 225 ± 47 - ns ns ns 

HDL (mg/dl) - 51 ± 9 50 ± 13 41 ± 8 - ns ns ns 

LDL (mg/dl) - 123± 17 128 ± 35 154 ± 38 - ns ns ns 

TGL (mg/dl) - 93 ± 26 120 ± 62 223 ± 77 - ns <0,01 <0,05 

hsPCR (mg/l) - 4,3 ±2,6 9,1 ± 8,4 9,3 ± 1,8 - ns <0,01 ns 

TNF-α (ng/l) - 8,4± 2,9 10 ± 4,5 10,7±2,9 - ns ns ns 

IL-6 (ng/l) - 3,2 ±1,5 3,1 ± 1,6 4,5 ± 2,3 - ns ns ns 

Leptin (ug/l) - 33 ± 17 43 ± 8 38 ± 18 - ns ns ns 
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5.1.2.1 Adipocyte Size 

In SAT and VAT samples, as showed in Figure 11, median adipocyte area (μm
2
) was lower in 

lean patients compared to obese patients, regardless of group division (p < 0,001).   

In SAT, adipocyte area of ob N was significantly smaller than that of ob pre-T2DM (p < 0,01) 

and of ob T2DM (p < 0,001) while no significant differences were present between adipocyte 

area of ob pre-T2DM and ob T2DM. In VAT, adipocyte area of ob N was significantly smaller 

than that of ob T2DM (p < 0,001) and adipocyte area of ob pre-T2DM was significantly 

smaller than that of ob T2DM (p < 0,01), while no significant differences were between 

adipocyte area of ob N and ob pre-T2DM. Taken together these data show that among obese 

patients, there is an increasing trend in adipocytes area from ob N to ob T2DM both in SAT and 

in VAT showing that adipocytes coming from ob T2DM patients are largest in both depots. 

 

Figure 11. Adipocyte size (μm
2
) in subcutaneous, A, (SAT) and visceral, B, (VAT) adipose tissue in the 4 groups of 

patients: lean (n=6), obese normoglycemic (ob N=5), obese pre-diabetic (ob pre-T2DM= 5) and obese diabetic (ob 

T2DM=5) (*p <0,01; **p<0,001). C, adypocite size in SAT (indicated by white box) vs VAT (indicated by grey box) in 

the 4 groups of patients (*p <0, 01; **p<0,001). Representative SAT (D) and VAT (E) sections from lean, ob N, ob pre-

T2DM and ob T2DM subjects stained with Monoclonal Mouse Anti-Human CD31, Clone JC70A. Adipocyte size was 

measured in at least 10 random fields at 20X magnification (at least 200 random adipocytes per tissue biopsy were 

counted). Median adipocyte area was calculated in each group. Results are reported as box plot graph with median, 

minimum and maximum values; statistical analysis was performed by Mann-Whitney test.  
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When we compared SAT and VAT we observed that in all 4 groups considered adipocyte area 

is larger in SAT than in VAT (p < 0,01 for lean subjects, p < 0,001 for obese patients) 

according to what previously described in the literature, considering obese patients regardless 

the presence of metabolic complications.  

5.1.2.2 Capillary Density 

Regarding to the capillary density quantification (Figure 12), we observed that lean subjects 

displayed an higher number of vessels per mm
2
 both in SAT and in VAT compared to obese 

patients (p < 0,001) despite an higher degree of variability observed in the VAT capillaries’ 

number. On the contrary we did not showed any significant variation in SAT and VAT 

vascularization between the 3 obese patients group (ob N, ob pre-T2DM and ob T2DM). 

 

Figure 12. Capillary density (n° capillaries/mm
2
) in subcutaneous, A, (SAT) and visceral, B, (VAT) adipose 

tissue in the 4 groups of patients: lean (n=6), obese normoglycemic (ob N=5), obese pre-diabetic (ob pre-T2DM= 

5) and obese diabetic (ob T2DM=5) (**p<0,001). C, capillary density in SAT (indicated by white box) vs VAT 

(indicated by grey box) in the 4 groups of patients (*p <0, 01; **p<0,001). Representative VAT (D) sections from 

lean and ob pre-T2DM subjects stained with Monoclonal Mouse Anti-Human CD31, Clone JC70A. Capillary 

density was measured in at least 10 random fields at 20X magnification (at least 200 random adipocytes per tissue 

biopsy were counted). The value for each patient was the average number of lumens per field. Results are reported 

as box plot graph with median, minimum and maximum values; statistical analysis was performed by Mann-

Whitney test.  
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Moreover, we found that VAT is more vascularized than SAT both in lean and in obese patients 

(p < 0, 01 for lean, p < 0,001 for obese). An interesting data to be emphasized is that, while the 

number of vessels per mm
2 

decreased of 40% between lean and obese SAT, the parallel 

reduction resulted higher in VAT, amounting to the 54, 5%. 

To further explore TA vascularization we calculated the number of capillaries per adipocyte 

and we observed that both in SAT than in VAT lean group displayed a ratio slightly higher that 

obese groups; moreover there was an increasing trend in this ratio in obese patients with 

increasing metabolic complications. Indeed, in SAT the number of vessels per adipocyte was 

significantly higher in ob pre-T2DM and in ob T2DM compared to ob N (p< 0, 0001), while no 

differences were noted between ob pre-T2DM and ob T2DM. Similarly in VAT there was a 

higher number of vessels per adipocyte in ob pre-T2DM (p<0, 05) and in ob T2DM (p<0, 

0001) compared to ob N. Moreover, there was a significant difference also between ob pre-

T2DM an ob T2DM (p<0, 05).  

 

Figure 13. Number of capillaries per adipocyte in subcutaneous, A, (SAT) and visceral, B, (VAT) 

adipose tissue in the 4 groups of patients: lean (n=6), obese normoglycemic (ob N=5), obese pre-diabetic 

(ob pre-T2DM= 5) and obese diabetic (ob T2DM=5) (*p<0, 05; **p<0, 01; ***p<0,001). C, number of 

vessels per adipocyte in SAT (indicated by white box) vs VAT (indicated by grey box) in the 4 groups of 

patients. Median adipocyte area supplied by a single capillary in SAT, D, and VAT, E, in the 4 groups 

of patients: lean (n=6), ob N (n=5), ob pre-T2DM (n= 5) and ob T2DM (n=5) (**p<0,001). F, number of 

vessels per adipocyte in SAT (indicated by white box) vs VAT (indicated by grey box) in the 4 groups of 

patients (*p<0, 01; **p<0,001). Results are reported as box plot graph with median, minimum and 

maximum values; statistical analysis was performed by Mann-Whitney test.  
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Lean patients showed an elevated ratio (vessels /adipocyte) both in SAT and in VAT in 

comparison with ob N group (p < 0, 01) whereas no differences were found with other obese 

groups. No significantly differences appeared comparing SAT and VAT depots. Finally, we 

calculated the median adipocyte area supplied by a single capillary and we did not find 

significantly differences in the 3 obese groups, whereas both in SAT and in VAT of lean patients 

a single capillary vessel supplies a smaller adipocyte area compared to obese patients (p < 

0,001) (Figure 13). When SAT and VAT samples were compare in each group, we observed that 

a single capillary vessel supplies a higher adipocyte area in SAT than in VAT (p < 0, 01 for lean 

and p < 0,001 for obese). Median adipocyte size was positive correlated with BMI (R = 0,7 in 

SAT; R = 0,5 in VAT; p<0,05) and IL-6 ( R = 0,5 in SAT; R = 0,6 in VAT; p<0,05) both in SAT 

and in VAT; with waist in SAT (R = 0,7; p<0,05) and in VAT, median adipocyte size, negatively 

correlated with capillary density (R = -0,6; p<0,05) as showed in Figure 14. 

 

Figure 14. Correlation between adipocyte area and clinical parameters. Median adipocytes area positively 

correlated with BMI and IL-6 both in subcutaneous (SAT) (R=0, 7 and R= 0, 5 respectively), A-B, and in 

visceral (VAT) (R=0, 5 and R=0, 6 respectively), D-E, adipose tissue. In SAT median adipocyte area positively 

correlated with waist, C, (R=0, 7). In VAT median adipocyte area was inversely correlated with capillary 

density, E, (R=-0, 6). Spearman's rank correlation was performed and a value of p<0,05 was considered 

significant. 

SAT

Adipocyte area – BMI Adipocyte area – IL-6 Adipocyte area – waistA B C

VAT

Adipocyte area – BMI Adipocyte area – IL-6 Adipocyte area – capillary/mm2D E F
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In conclusion, we showed that adipocytes area is smaller in lean than in obese patients both in 

SAT than in VAT. In obese patients, there is an increasing adipocytes area that parallel the 

worsening of metabolic conditions. Moreover, VAT resulted more vascularized, quantifying the 

number of capillaries, compared to SAT. Both SAT and VAT of lean subjects appeared more 

vascularized than AT depots from obese subjects. In obese patients the capillary density and the 

median adipocytes area supply by a single vessel did not differ if we considered T2DM 

progression among groups. In these 3 groups the only difference, regarding vascularization, 

consists in the ratio number of capillary per adipocyte that increases with T2DM progression in 

both depots.  

5.1.3 Flow Cytofluorimetric Analysis of Stromal Vascular Fraction  

SAT samples of 24 ob N, 18 ob pre-T2DM, 23 ob T2DM, 5 lean normal weight and 

normoglycemic subjects (18.5 < BMI < 24,9 kg/m2) and 17 obese patients  underwent to a 

relevant  weight loss ( ob WL), corresponding to at least 10% of body weight, were used to 

isolate SVF and to perform multiparameter flow cytometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VIII. Demographic, anthropometrics and metabolic parameters of obese patients analyzed by flow 

cytometry of SAT biopsies. BMI: Body Mass Index. Hyp: blood hypertension. DLP: dyslipidemia. OSAS: 

obstructive sleep apnea syndrome. BMI: Body Mass Index. HOMA-IR: Homeostasis Model Assessment. T-CHL: 

total cholesterol. HDL: High Density Lipoproteins. LDL: Low Density Lipoproteins. TGL: triglycerides. hs-PCR: 

High sensitive C-Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor Necrosis Factor-alpha. Results were 

reported as means ± DS; statistical analysis was performed by paired Student’s t-test. 

 ob N 

 

 

(n = 24) 

ob pre-

T2DM 

 

(n = 18) 

ob T2DM 

 

 

(n = 23) 

p 

 
ob N 

 vs   

ob pre-T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-T2DM 

vs  

ob T2DM 

 

Sex (F/M) 19/6 15/3 15/9    

Age (years) 40 ±11 47 ± 11 52 ± 11 <0,05 <0,001 ns 

HYP  (n/tot goup) 13/24 9/18 21/23    

DLP (n/tot goup) 13/24 11/18 20/23    

OSAS (n/tot goup) 3/24 7/18 11/23    

BMI (Kg/m
2
) 48 ± 10 48 ± 8 49 ± 9 ns ns ns 

Waist(cm) 131 ± 15  135 ± 12 138 ± 16 ns ns ns 

Blood Glucose 
(mmol/l) 

4,9 ± 0,4 5,9 ± 0,7 8,8 ± 2,8 <0,00001 <0,0000 <0,0001 

Insulin (mU/l) 17 ± 12 32 ± 27 - <0,05 - - 

HOMA-IR 3,7 ± 2,8 8,7 ± 7,8 - <0,01 - - 

HbA1c (mmol/mol) - - 63 ± 17 - - - 

T-CHL (mg/dl) 188 ± 28 201 ±  34 193 ± 51 ns ns ns 

HDL (mg/dl) 45 ± 12 48 ± 11 42 ± 12 ns ns ns 

LDL (mg/dl) 118 ± 28  124 ± 33 121 ± 42 ns ns ns 

TGL (mg/dl) 135 ± 69 154 ± 87 175 ± 82 ns ns ns 

hsPCR (mg/l) 5,7 ± 3,7 8,1 ± 4,9 8,2 ± 2,5 ns <0,05 ns 

TNF-α (ng/l) 8,5 ± 2,3 8,5 ± 2,7 10,3 ± 3 ns <0,05 ns 

IL-6 (ng/l) 3,3 ± 1,5 3,7 ± 1,5 4 ± 2,5 ns ns ns 

Leptin (ug/l) 41 ± 16 42 ± 13 39 ± 17 ns ns ns 
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VAT samples of 25 ob N, 25 ob pre-T2DM, 30 ob T2DM and of 10 lean normal weight and 

normoglycemic subjects (18.5 < BMI < 24, 9 kg/m2) subjects were used to isolate SVF and to 

perform multiparameter flow cytometry. Main demographic, anthropometrics and metabolic 

parameters of obese groups are reported in Tables VIII and IX.  

Table IX. Demographic, anthropometrics and metabolic parameters of obese patients analyzed by flow 

cytometry of VAT biopsies. BMI: Body Mass Index. Hyp: blood hypertension. DLP: dyslipidemia. OSAS: 

obstructive sleep apnea syndrome. BMI: Body Mass Index. HOMA-IR: Homeostasis Model Assessment. T-CHL: 

total cholesterol. HDL: High Density Lipoproteins. LDL: Low Density Lipoproteins. TGL: triglycerides. hs-PCR: 

High sensitive C-Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor Necrosis Factor-alpha. Results were 

reported as means ± DS; statistical analysis was performed by paired Student’s t-test. 

 

 

5.1.3.1 Glucose Impairment Early Affects Adipose Stem Cells in Obesity. 

SAT and VAT derived adipose stem cells (ASCs) were quantified ex vivo as CD34+CD31-

CD45- cells by FACS analysis in normal weight lean subjects, ob N, ob pre-T2DM and ob 

T2DM patients. Freshly extracted SVFs obtained from AT specimens were analyzed and on the 

basis of forward/side scatter morphological gate was considered in order to exclude cellular 

fragments, aggregates and immune cells, and cell positive for CD45 staining (Figure 15).  

 ob N 

 

 

(n = 25) 

ob pre-

T2DM 

 

(n = 25) 

ob T2DM 

 

 

(n = 30) 

p 

 
ob N 

 vs   

ob pre-T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-T2DM 

vs  

ob T2DM 

 

Sex (F/M) 19/6 15/3 15/9    

Age (years) 38 ±11 47 ± 11 52 ± 10 <0,05 <0,00001 ns 

HYP (n/tot goup) 13/25 9/25 21/30    

DLP (n/tot goup) 13/25 11/25 20/30    

OSAS (n/tot goup) 3/25 7/25 11/30    

BMI (Kg/m
2
) 48 ± 10 49 ± 9 49 ± 9 ns ns ns 

Waist(cm) 130 ± 14  135 ± 11 136 ± 16 ns ns ns 

Blood Glucose 
(mmol/l) 

4,9 ± 0,4 5,8 ± 0,6 9,8 ± 4,3 <0,00000 <0,0000 <0,00001 

Insulin (mU/l) 17 ± 11 30 ± 24 - <0,05 - - 

HOMA-IR 3,7 ± 2,5 7,9 ± 6,9 - <0,005 - - 

HbA1c (mmol/mol) - - 66 ± 20 - - - 

T-CHL (mg/dl) 185 ± 28 196 ± 40 194 ± 46 ns ns ns 

HDL (mg/dl) 45 ± 11 48 ± 12 42 ± 13 ns ns ns 

LDL (mg/dl) 115 ± 28  122 ± 43 122 ± 39 ns ns ns 

TGL (mg/dl) 130 ± 66 153 ± 97 176 ± 81 ns <0,05 ns 

hsPCR (mg/l) 10 ± 21 8,2 ± 5,3 7,9 ± 2,8 ns ns ns 

TNF-α (ng/l) 8,6 ± 3,3 8,6 ± 3,3 9,8 ± 3 ns ns ns 

IL-6 (ng/l) 3,7 ± 2,8 3,5 ± 1,3 4,2 ± 2,6 ns ns ns 

Leptin (ug/l) 41 ± 15 44 ± 16 37 ± 16 ns ns ns 
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Figure 15. Dot plot of FSC (forward scatter) against SSC (side scatter) on a linear scale. 

Morphologic localization of CD34 + and CD45 + cells. 

 

As shown in Figure 16, SAT of ob N patients appears to be enriched of ASCs in comparison 

with lean subjects, although the high variability of data from normal weight controls. SAT 

ASCs obtained from ob pre-T2DM and ob T2DM patients were lower than those obtained from 

ob N patients (respectively 28.9 % (10.1-43.9%), 31.2% (10.5-44.7%) vs 40.6% (19-78.7%), 

p<0.05). Interestingly, after significant weight loss SAT further increases its content of 

adipogenic precursors (62.4% 46.7-87.6%) in comparison with both lean subjects (11.5% 0.3-

47.3%; p<0, 05) and obese patients (p<0,001). Consensually in VAT a clear decreasing trend of 

ASCs number in ob pre-T2DM and ob T2DM in respect to ob N patients was observed 

(p<0,001). In all obese patients VAT displays a significantly higher number of ASCs in 

comparison with control (Ob N 47.4% (19.1-64%), Ob preT2DM 42% (21.6-58.9%) vs lean 

29.4% (9.6-40.7%); p<0,001; Ob T2DM 39.6% (25.1-59.2%) vs lean 29.4% (9.6-40.7%); 

p<0.05); it is worth noting that control group has a high sample number (n=10) and a relatively 

low variability: VAT collection is easier in normal weight patients and provides a higher 

amount of tissue in comparison with SAT. Comparing the two deposits, VAT contains a higher 

number of ASCs in respect of SAT in all obese groups while controls do not present 

differences; moreover it is to underlie the major decrease of ASCs number of ob pre-T2DM 

and ob T2DM in respect to ob N patients in SAT (ob pre T2DM vs ob N reduction of 28.8%; 

ob T2DM vs ob N reduction of 23.2%) than in VAT (ob pre T2DM vs ob N reduction of 11.4%; 

ob T2DM vs ob N reduction of 16.5%).  

Even if ob T2DM and ob pre T2DM were older than ob N, we didn’t found any correlation 

between ASCs and age nor in SAT neither in VAT (data not show). Moreover, adipogenic 
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precursors were not correlated with anyone of anthropometric and metabolic parameters 

considered in our population. 

 

Figure 16. Median percentage of CD45-CD34+CD31- in subcutaneous, A, (SAT) and visceral, B, (VAT) 

adipose tissue in the 5 groups of patients: lean, obese normoglycemic (ob N), obese pre-diabetic (ob pre-T2DM), 

obese diabetic (ob T2DM) and, only in SAT, obese after weight loss (ob WL), (*p<0, 05; **p<0,001). C, Median 

percentage of CD45-CD34+CD31- in SAT (indicated by white box) vs VAT (indicated by grey box) in the first 4 

groups of patients. Representative SAT (D) and VAT (E) dot plots of analysis of CD34-31-, CD34-31+, 

CD34+31-, CD34+31+ immunologic subpopulations from lean, ob N, ob pre-T2DM, ob T2DM and ob WL 

subjects. Numbers of AT samples analyzed per each group are reported under every box. Results are reported as 

box plot graph with median, minimum and maximum values; statistical analysis was performed by Mann-

Whitney test.  

 

ASCs phenotype was also analyzed in the CD34+ CD31- immunological gate. CD90, CD73 

and CD44 result similarly expressed by ASCs of obese patients (see Table X). A greater 

percentage of SAT derived ASCs express CD90 than VAT in all groups. 

CD105 is a mesenchymal marker that is believed to be always expressed by mesenchymal stem 

cells (MSCs). Differently, only 30-70% of ASCs both in lean and obese subjects expresses 

CD105 without differences among groups (Figure 17, A-B-C). In obese but not in lean subjects 

VAT ASCs display a significantly higher expression of CD105 in comparison with SAT. 

SAT

VAT

Lean ob N ob pre-T2DM ob T2DM Ob WLD

E

SAT CD45-34+31- (morphologic gate)

C
D

4
5

-3
4

+
3

1
- 

ce
lls

 (
%

)

0

20

40

60

80

100

lean

n=5

ob N

n=24

ob pre-T2DM

n=18

ob T2DM

n=23

ob WL

n=17

**
**

*

*
*

* **

A VAT CD45-34+31- (morphologic gate)

C
D

4
5

-3
4

+
3

1
- 

c
e

lls
 (

%
)

0

20

40

60

80

100

lean

n=10

ob N

n=26

ob pre-T2DM

n=25

ob T2DM

n=30

**
*

**

**

**

B
SAT vs VAT

C
D

4
5

-3
4

+
3

1
- 

c
e

ll
s
 (

%
)

0

20

40

60

80

100

lean ob N ob pre-T2DM ob T2DM

*

* **

C



64 

CD271 represents an additional marker used to characterize a subpopulation of MSC in bone 

marrow; it was evaluated only in obese patients due to the limited material available in lean 

subjects. ASCs from obese patients showed a high expression of CD271 (Table XI) with the 

major percentage in VAT (Figure 18, D-E-F). 

 

Table X. Percentage of CD34+CD31- cells expressing the mesenchymal markers CD90, CD73 and 

CD44 in SAT and VAT from normoglycemic (Ob N), prediabetic (Ob preT2D) and diabetic obese patients. 

Data are reported as median and minimum-maximum values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table XI. Percentage of CD34+CD31- cells expressing the mesenchymal markers CD105 and 

CD271 in SAT and VAT from lean, normoglycemic (ob N), prediabetic (ob preT2D) and diabetic obese 

patients (ob T2DM). SAT: subcutaneous adipose tissue; VAT: visceral adipose tissue. Data are reported as 

median and minimum-maximum values. 

CD34+CD31- CD90+ % (min-max) CD73+ % (min-max) CD44+ % (min-max) 

SAT VAT SAT VAT SAT VAT 

Ob N 97.7 (82.3-99.7) 95.5 (70-98.8) 97.8 (87.9-99.5) 94.3 (83.7-98.6) 94.1 (90-98.2) 93.6 (90.2-99.3) 

Ob preT2D 99 (87.7-99.7) 95 (59-99.5) 96.3 (88.7-97.8) 93.9 (82.8-99.2) 94 (92.3-96.8) 88.9 (61.1-97) 

Ob T2DM 91.2 (74.8-100) 95.7 (65.7-99.7) 92.9 (85.3-96.2) 93.9 (81.8-97.8) 99.1 (94.5-99.9) 93.6 (67.8-98.4) 

CD34+CD31- CD105+ % (min-max) CD271+ % (min-max) 

SAT VAT SAT VAT 

Lean 42.2 (24.9-59.4) 48.9 (29.7-87.2) - - 

Ob N 29.3 (1.8-71.9) 62.6 (6.5-88.8) 37.3 (11.6-54.3) 70.5 (47.8-92.7) 

Ob preT2D 42 (4.2-76.8) 63.4 (32.3-88.4) 42.3 (22.7-45.5) 68.2 (38.7-96.7) 

Ob T2DM 29.7 (2.7-75.9) 66.8 (7.9-79.2) 28.9 (8.5-60.1) 55.1 (23.1-80.4) 

Ob WL 20.9 (4.5-60.1) - 28.3 (7.5-55.9) - 
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Figure 17. Median percentage of CD34+CD31- cells expressing CD105+ in subcutaneous, A, (SAT) and 

visceral, B, (VAT) adipose tissue in the 5 groups of patients: lean, obese normoglycemic (ob N), obese pre-

diabetic (ob pre-T2DM), obese diabetic (ob T2DM) and, only in SAT, obese after weight loss (ob WL), (*p<0, 

05). C, Median percentage of  CD34+CD31- cells expressing CD105+ in SAT (indicated by white box) vs VAT 

(indicated by grey box) in the first 4 groups of patients (*p<0,05; **p<0,001). Median percentage of 

CD34+CD31- cells expressing CD271+ in SAT, D, and VAT, E in the 4 groups of patients: ob N, ob pre-T2DM, 

ob T2DM and, only in SAT, ob WL (*p<0,05).  F, Median percentage of  CD34+CD31- cells expressing CD271+ 

in SAT (indicated by white box) vs VAT (indicated by grey box) in the first 3 groups of patients (*p<0,05; 

**p<0,001). Numbers of AT samples analyzed per each group are reported under every box. Results are reported 

as box plot graph with median, minimum and maximum values; Mann-Whitney test was performed. 

 

A deep debate exists about the relationship between ASCs and pericytes in term of a common 

or distinct origin (Cai, 2011; Zimmerlin, 2012. For this reason CD146, commonly used as 

pericyte marker, has been also evaluated ex vivo in SFVs. This subpopulation represents a 

relatively high fraction of the AT SVF and the majority of the cells positive for CD146 stains 

negatively for CD34 and CD31. In VAT CD146+ cells display a similar behavior of ASCs 

being significantly higher in all obese patients with a decreasing trend within the 3 groups 

(Lean 1% (0.4-3.5); ob N 5.2% (1.7-13.7%); ob pre-T2DM 3.05% (1.3-7.6); ob T2DM 1.7% 

(0.8-8.2)). In SAT CD146+ cells have been quantified in a smaller number of obese subjects 

and not in control due to the low sample amount. In this depot we do not show differences 

among obese groups and in weight loss group (ob N 6.6% (19.3-2.6%); ob pre-T2DM 10.8% 

(3.2-11.8); ob T2DM 7.2% (2.6-11.5); Ob WL 6.5% (1-11.5)). Comparing the two AT depots, 
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SAT is enriched of CD146+ cells in respect of VAT in all obese subjects, similarly to 

endothelial precursors (see below) (Figure 18).  

 

 

Figure 18. Median percentage of CD146+ in subcutaneous adipose tissue (SAT), A, in obese 

normoglycemic (ob N), obese pre-diabetic (ob pre-T2DM), obese diabetic (ob T2DM) and obese after 

weight loss (ob WL) patients, and visceral adipose tissue(VAT), B,  in lean, ob N, ob pre-T2DM and ob 

T2DM (*p<0,05). C, Median percentage of CD146+ in SAT (indicated by white box) vs VAT (indicated 

by grey box) in the 3 groups of obese patients. Numbers of AT samples analyzed per each group are 

reported under every box. Results are reported as box plot graph with median, minimum and maximum 

values; Mann-Whitney test was performed. 

 

 

5.1.3.2 Endothelial Progenitors are progressively altered by Obesity and Overt Diabetes.  

Endothelial precursors cells (EPs) were defined as CD34+ CD31+ CD45- cells. In SAT, ob N 

EPs number increased in respect of lean subjects and was similar in ob pre-T2DM (Lean: 5.8% 

(0.6-15.5%); Ob N 17.4% (3-55.8%); Ob preT2DM 24% (4.3-41.1%); Ob T2DM 15.9% (0.8-

29.6%); Ob WL 9.5% (3.8-28.5%)), differently from what seen with ASCs percentage. 

With overt diabetes (patients from ob T2DM group) EPs decreased significantly in comparison 

with ob pre-T2DM. Interestingly after weight loss EPs revert to lean control level. In VAT EPs 

displayed the same trend of SAT-extracted precursors, although for VAT we do not have the 

possibility to analyze weight loss effect.  

A part from lean subjects, in all obese patients SAT shows a significantly higher angiogenetic 

potential than VAT as indicated by EPs quantification (Figure 19). 

EPs percentage inversely correlated with age, both in SAT than in VAT (R = -0,2; R= - 0,3 

respectively; p≤0,05) and positively correlated with BMI only in SAT (R = 0,3 R= - 0,3 

respectively; p≤0,05). No other statistically significant correlation was found between EPs 

percentage and anthropometric and metabolic parameters considered. 
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Figure 19. Median percentage of CD45-34+31+ in subcutaneus, A, (SAT) and visceral, B, (VAT) adipose tissue 

in the 5 groups of patients: lean, obese normoglycemic (ob N), obese pre-diabetic (ob pre-T2DM), obese diabetic 

(ob T2DM) and, only in SAT, obese after weight loss (ob WL), (*p<0, 05; **p<0,001). C, Median percentage of 

CD45-CD34+CD31+ in SAT (indicated by white box) vs VAT (indicated by grey box) in the first 4 groups of 

patients (*p<0, 05; **p<0,001). Numbers of AT samples analyzed per each group are reported under every box. 

Results are reported as box plot graph with median, minimum and maximum values; statistical analysis was 

performed by Mann-Whitney test. 

 

5.1.4 In vitro Evaluation of Adipogenic Potential of Stromal Vascular Fraction Obtained 

from Adipose Tissue depots. 

In vitro capacity to differentiate towards the adipogenic lineage was analyzed in the 3 obese 

groups studied (in SAT: ob N=18; ob preT2DM=15; ob T2DM=14. In VAT: ob N=20; ob 

preT2DM=25; ob T2DM=23). Main demographic, anthropometrics and metabolic parameters 

of obese groups are reported in Tables XII and XIII.  

Freshly isolated SVFs were cultured in adipogenic medium and after 9 days of culture the 

percentage of mature adipocytes cells containing large lipid droplets was measured by optical 

microscope analysis.  

SVFs obtained from SAT of ob preT2DM and, unless in a minor extent, ob T2DM derived 

ASCs display a lower adipogenic potential in comparison to ob N group (median value: 66%, 

range 25-99% in ob N; 40%, range 12-80% in ob pre-T2DM; 55%, range 12-98% in ob 

T2DM) (Figure 20).  

SVFs isolated from VAT display a lower adipogenic potential in culture conditions used which 

were not able to disclose relevant differences among the obese groups, despite the high number 

of obese patients studied (median value: 15%, range 5-70% in lean; 21%, range 5-70% in ob 

N; 22%, range 2-85% in ob pre-T2DM; 22%, range 1-85% in ob T2DM) . 
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Table. XII. Demographic, anthropometrics and metabolic parameters of obese patients in witch SAT 

samples were collected for in vitro evaluation of adipogenic potential. BMI: Body Mass Index. Hyp: blood 

hypertension. DLP: dyslipidemia. OSAS: obstructive sleep apnea syndrome. BMI: Body Mass Index. HOMA-IR: 

Homeostasis Model Assessment. T-CHL: total cholesterol. HDL: High Density Lipoproteins. LDL: Low Density 

Lipoproteins. TGL: triglycerides. hs-PCR: High sensitive C-Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor 

Necrosis Factor-alpha. Results were reported as means ± DS; statistical analysis was performed by paired 

Student’s t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 ob N 

 

 

(n = 18) 

ob pre-

T2DM 

 

(n = 15) 

ob T2DM 

 

 

(n = 14) 

p 

 
ob N 

 vs   

ob pre-T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-T2DM 

vs  

ob T2DM 

 

Sex (F/M) 15/5 13/2 9/5    

Age (years) 38 ±11 46 ± 10 48 ± 10 <0,05 <0,01 ns 

HYP (n/tot goup) 6/18 6/15 13/14    

DLP (n/tot goup) 11/18 8/15 13/14    

OSAS (n/tot goup) 1/18 4/15 5/14    

BMI (Kg/m
2
) 49 ± 12 50 ± 9 52 ± 7 ns ns ns 

Waist(cm) 129 ± 15  135 ± 14 144 ± 14 ns <0,05 ns 

Blood Glucose 
(mmol/l) 

4,9 ± 0,4 5,8 ± 0,7 11,6 ± 5,5 <0,00001 <0,00001 <0,005 

Insulin (mU/l) 18 ± 12 36 ± 26 - <0,01 - - 

HOMA-IR 4,1 ± 2,9 9,6 ± 7,7 - <0,01 - - 

HbA1c (mmol/mol) - - 71 ± 24 - - - 

T-CHL (mg/dl) 187 ± 30 197 ± 27 193 ± 49 ns ns ns 

HDL (mg/dl) 45 ± 13 48 ± 11 41 ± 14 ns ns ns 

LDL (mg/dl) 119 ± 30  121 ± 31 124 ± 43 ns ns ns 

TGL (mg/dl) 138 ± 77 155 ± 80 190 ± 79 ns <0,01 ns 

hsPCR (mg/l) 11 ± 25 7 ± 3,4 8,3 ± 3 ns <0,01 ns 

TNF-α (ng/l) 8,3 ± 2,7 8,9 ± 3,7 16,3± 24,5 ns ns ns 

IL-6 (ng/l) 2,8 ± 1 4 ± 1,2 11,5 ± 25 <0,01 ns ns 

Leptin (ug/l) 40 ± 17 46 ± 17 39 ± 15 ns ns ns 
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Table XIII. Demographic, anthropometrics and metabolic parameters of obese patients in witch VAT 

samples were collected for in vitro evaluation of adipogenic potential. BMI: Body Mass Index. Hyp: blood 

hypertension. DLP: dyslipidemia. OSAS: obstructive sleep apnea syndrome. BMI: Body Mass Index. HOMA-IR: 

Homeostasis Model Assessment. T-CHL: total cholesterol. HDL: High Density Lipoproteins. LDL: Low Density 

Lipoproteins. TGL: triglycerides. hs-PCR: High sensitive C-Reactive Protein. IL-6: Interleukin-6. TNF-α: Tumor 

Necrosis Factor-alpha. Results were reported as means ± DS; statistical analysis was performed by paired 

Student’s t-test. 

 

Percentage of mature adipocyte cells, after 9 days of culture inversely correlated with IL-6 both 

in SAT and in VAT (R = -0,3 in SAT and in VAT; p≤0,05) No other statistically significant 

correlation was found between EPs percentage and anthropometric and metabolic parameters 

considered. 

 ob N 

 

 

(n = 20) 

ob pre-

T2DM 

 

(n = 25) 

ob T2DM 

 

 

(n = 23) 

p 

 
ob N 

 vs   

ob pre-T2DM 

 

p 

 
ob N 

 vs   

ob T2DM 

 

p 

 
ob pre-T2DM 

vs  

ob T2DM 

 

Sex (F/M) 17/3 21/4 13/10    

Age (years) 42 ±8 47 ± 10 52 ± 10 ns <0,001 ns 

HYP (n/tot goup) 7/20 11/25 21/23    

DLP (n/tot goup) 11/20 14/25 20/23    

OSAS (n/tot goup) 2/20 7/25 10/23    

BMI (Kg/m
2
) 49 ± 11 48 ± 8 50 ± 9 ns ns ns 

Waist(cm) 128 ± 15  133 ± 12 138 ± 18 ns ns ns 

Blood Glucose 
(mmol/l) 

5,0 ± 0,3 5,7 ± 0,6 10,1 ± 4,7 <0,0001 <0,0001 <0,001 

Insulin (mU/l) 17 ± 11,5 30 ± 24 - <0,05 - - 

HOMA-IR 3,9 ± 2,8 7,8 ± 6,9 - <0,05 - - 

HbA1c (mmol/mol) - - 63,3 ± 22 - - - 

T-CHL (mg/dl) 191 ± 28 202 ± 40 192± 48 ns ns ns 

HDL (mg/dl) 48 ± 9 49 ± 12 40 ± 12 ns <0,05 <0,05 

LDL (mg/dl) 123 ± 24  127 ± 45 120 ± 40 ns ns ns 

TGL (mg/dl) 117 ± 46 159 ± 96 171 ± 73 ns <0,01 ns 

hsPCR (mg/l) 5,3 ± 3,5 8 ± 4,5 8,1 ± 2,8 <0,05 <0,01 ns 

TNF-α (ng/l) 7,7 ± 2,5 8,3 ± 3 9,7 ± 3 ns <0,05 ns 

IL-6 (ng/l) 2,9 ± 1,2 3,5 ± 1,1 4,6 ± 2,5 <0,01 <0,01 ns 

Leptin (ug/l) 41 ± 17 43 ± 16 38 ± 16 ns ns ns 
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Figure 20. In vitro evaluation of adipogenic potential of stromal vascular fraction cells in obesity. Freshly 

isolated SVFs from SAT (A) and VAT (B) of the indicated groups were grown in adipogenic medium and after 9 

days of culture percentage of differentiated cells were evaluated by optical microscope analysis (*p<0,05). C, 

percentage of differentiated cells in SAT vs VAT (*p<0, 05; **p<0,001).  In D), E) and F) representative images of 

in vitro differentiated mature adipocytes at optical microscope at day 9 of adipogenic culture. In D, image of in 

vitro differentiated mature adipocytes in SAT of an ob N; in E, image of in vitro differentiated mature adipocytes 

in SAT of an ob T2DM and in F image of in vitro differentiated mature adipocytes in VAT of an ob T2DM  Ob N: 

normoglycemic obese (SAT n= 18, VAT n= 20), ob pre-T2DM: prediabetic obese (SAT n= 15, VAT n= 25); ob 

T2DM: diabetic obese (SAT n= 14, VAT n= 23). Results are reported as box plot graph with median, minimum 

and maximum values; statistical analysis was performed by Mann-Whitney test, * p< 0.05. 

 

5.1.5 Gene Expression Profile by RT-Real Time PCR. 

We quantified the mRNA expression of several genes in SAT and VAT biopsies obtained from 

lean subjects and obese patients during surgical intervention. We observed in obese patients an 

increased expression of PPARγ, the transcription factor that mainly regulates adipogenesis and 

controls the expression of several adipose specific genes as Adiponectin (Adipo Q) and FABP4. 

Both in SAT and in VAT the ob T2DM group displayed a lower PPARγ expression in 

comparison with ob N and ob pre T2DM group suggesting a further reduction of the in vivo 

adipogenic potential and hyperplastic growth. Also the ob WL group showed a lower PPARγ 

expression as compared with that of ob N and ob pre-T2DM groups. We did not observed 

significant differences between PPARγ expression in the 2 depots analyzed neither in lean nor 
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in obese subjects (Figure 21). VEGFA expression resulted higher and more heterogeneous in 

normal weight subjects, especially in VAT, as reported in Figure 21. No significant differences 

were evident among the 3 obese groups that displayed a different degree of metabolic 

complications. The ob WL group showed a slightly increased in VEGFA expression even if 

statistically significant only when compared with ob pre-T2DM group.  

 

Figure 21. Gene expression profile in adipose tissue depots of lean subjects and obese patients. PPAR  (A, B, 

C) and VEGFA (D, E, F) expression were quantified in SAT (A, D) and VAT (B, E) biopsies of lean, obese 

normoglycemic (ob N), obese pre-diabetic (ob pre-T2DM), obese diabetic (ob T2DM) and obese after weight loss 

(ob WL) and normalized to RPLPO mRNA content. In panels C and F SAT (white plots) and VAT (grey plots) 

expressions were compared. The number of patients analyzed are reported in every plots (n=).Results were 

reported as box plot graph with median, minimum and maximum values. Statistical analysis was performed by 

Mann-Whitney test (*p<0,05;**p<0,01;***p<0,001). 

 

Focused on the expression profile of the 3 obese groups in VAT, the AT depot highly 

vascularized, (Figure 22) we observed that ob pre T2DM and ob T2DM, even if had a similar 

BMI and Leptin blood level, displayed a significant higher quantity of Leptin mRNA than ob N 

group suggesting a different adipocyte function. Moreover we observed in Figure 22 a higher 

VEGF-R2 (KDR) expression in VAT of ob-pre-T2DM compared with ob N patients; this 

increase could represent a tentative to counteract the vasculature impairment that ob-T2DM 

patients were not able to further sustain. HIF1A displayed a similar expression profile in VAT 
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of obese patients correlating with its physiological role in stimulating the angiogenic processes 

(Figure 22).  

 

 

Figure 22. Gene expression profile in VAT of obese patients characterized by different metabolic 

complications. Leptin (A), VEGF-R2 (B) and HIF1α (C) expression were quantified in VAT biopsies of obese 

normoglycemic (ob N), obese pre-diabetic (ob pre-T2DM) and obese diabetic (ob T2DM) patients and normalized 

to RPLPO mRNA content. The number of patients analyzed are reported in every plots (n=). Results were 

reported as box plot graph with median, minimum and maximum values. Statistical analysis was performed by 

Mann-Whitney test (*p<0,05;**p<0,01;***p<0,001). 
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5.2 RESULTS (2) 

5.2.1 Anthropometric and Metabolic Parameters one year after LSG 

After surgery, 180 patients completed the OGTT. 11 patients didn’t complete the test for gastric 

intolerance. In 6 patients the test was stopped earlier for the occurrence of a severe 

symptomatic hypoglycaemic event. Data analysis was performed on 180 patients who were 

able to complete the OGTT. Demographic, anthropometrics and metabolic parameters before 

and after LSG are reported in Table XIV.  

 Before After P value 

Age, year 43 ± 11 44 ± 11 / 

Female, n., % 140 (71%) / / 

Waist, cm 132 ± 16 103 ± 16 < 0.0001 

Weight, Kg 133 ± 27 92 ± 22 < 0.0001 

BMI, Kg/m
2
 47.4 ± 7.3 32.7 ± 6.4 < 0.0001 

%EBMIL / 68.4 ± 22.8 / 

Blood Glucose, mmol/l 5.4 ± 0.7 4.6 ± 0.4 < 0.0001 

Insulin, mU/l 19.9 ± 13.6 7.6 ± 5.8 < 0.0001 

HOMA-IR 4.9 ± 3.6 1.6 ± 1.4 < 0.0001 

Total Cholesterol, mg/dl 189 ± 38 180 ± 35 < 0.001 

HDL-Cholesterol, mg/dl 49 ± 13 58 ±14 < 0.0001 

Triglycerides, mg/dl 114 ± 60 77 ± 32 <0.0001 

hs-PCR, mg/l 8.9 ± 7.8 2.6 ± 3.2 <0.0001 

IL-6, ng/l 3.19 ± 2.93 2.69 ± 2.5 <0.02 

TNF-α, ng/l 8.51 ± 3.6 6.8 ± 3.48 <0.0001 

Leptina ug/L 42 ± 15 14 ± 11 <0.0001 

Table XIV Demographic, anthropometrics and metabolic parameters before and after LSG. LSG: 

Laparoscopic Sleeve Gastrectomy. BMI: Body Mass Index. EBMIL: Excess Body Mass Index Loss. HOMA-IR: 

Homeostasis Model Assessment.  LDL: Low Density Lipopreteins. HDL: High Density Lipoproteins. Hs-PCR: 

High sensitive C-Reactive Protein. IL-6: Interleukin-6.  TNF-α: Tumor Necrosis Factor-alpha. Paired Student’s t-

test was performed. 

 

In all patients there was a significantly weight loss, with a %EBMIL amounting to 68.4 ± 

22.8% (range 23-131%) one year after LSG. A highly significant improvement in HOMA-IR 

(4.9 ± 3.6 vs 1.6 ± 1.4; p<0.0001) and in lipid profile occurred. All inflammatory parameters 

(IL-6, TNF-α and hs-PCR) decreased significantly after weight loss. Glucose and insulin 

curves during OGTT performed before and after surgery are shown in Figure 23. Both 
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parameters and, in addition, c-peptide curve during OGTT (data not show), improved after 

surgery.  

Figure 23 Glucose (A) and insulin (B) curves during OGTT performed before and after LSG. Dotted line 

indicates values obtained before LSG and solid line values obtained after LSG. Paired Student’s t-test: *p<0.001; 

**p<0.05. 

 

5.2.2 Prevalence of OGTT-related Hypoglycaemia one year after LSG 

Before LSG, 2, 5% (5/197) of the patients experienced a hypoglycaemic event during the 3 

hour OGTT. After surgery, the proportion of patients experiencing at least one hypoglycaemic 

event increased to 30, 6% (55/180) (p<0.001) (Figure 24 A), rising to 32, 8% considering the 

six patients in whom OGTT was suspended. After LSG, no patient had a hypoglycaemic and/or 

severe hypoglycaemic episode fasting and 30 minutes after glucose load. The highest 

frequency of hypoglycaemic events and severe hypoglycaemic events were observed 150’ after 

OGTT, in 27/66 (40.9%) subjects and 9/66 (13.6%) subjects respectively (Figure 24 B). 

 

Figure 24. LSG and hypoglycaemia. Percent of patients affected by severe hypoglycaemia (A) and their 

distribution (B) during OGTT before (grey) and after (black) LSG. *p<0.001 

*

***
** *

*
* *

*

*
* *

*
* *

A B

*

***
** *

*
* **

***
** *

*
* *

*

*
* *

*
* *

*

*
* *

*
* *

A B

0

5

10

15

20

25

30

35

2,5

30,6

%

*A

90 120 150 180

0

5

10

15

20

25

0

0,5 0,5
1,5

2,8

11,7

20,2

8,6

B

0

5

10

15

20

25

30

35

2,5

30,6

%

*A

0

5

10

15

20

25

30

35

2,5

30,6

%

*

0

5

10

15

20

25

30

35

2,5

30,6

%

*A

90 120 150 180

0

5

10

15

20

25

0

0,5 0,5
1,5

2,8

11,7

20,2

8,6

B

90 120 150 180

0

5

10

15

20

25

0

0,5 0,5
1,5

2,8

11,7

20,2

8,6

B



76 

5.2.3 Anthropometric and Metabolic Parameters, before and one year after LSG, in 

Patients With and Without Hypoglycaemic Events 

We then divided our population in two groups: patients with (Hip) and without (N-Hip) a 

hypoglycaemic event after LSG (blood glucose levels ≤ 2.7 mmol/L). Baseline characteristics 

of these two groups were analysed in Table XV.  

  Without  

hypoglyceamia 

With 

hypoglyceamia 

P value 

 

Age, year 

 

46±10 

 

40±11 

 

0.001 
Waist, cm 134±16 130±16 n.s. 

Weight, Kg  136±29 128±22 0.05 

BMI, Kg/m
2 

48.4±7.9 46±5.7 0.02 

Blood glucose, mmol/l  5.5±0.7 5.2±0.6 0.09 

Insulin, mU/L 19.4±14.2 22.3±13.3 n.s 

HOMA-IR 4.8±3.8 5.3±3.6 n.s. 

Total Cholesterol, mg/dl 193 ± 39 184 ± 36 n.s. 

LDL-Cholesterol, mg/dl 122±35 114±31 n.s. 

HDL-Cholesterol, mg/dl 50±13 46±16 0.05 

Triglycerides, mg/dl 109±59 132±65 0.02 

hs-PCR, mg/l 9.1±8.1 8.9±7.5 n.s. 

IL-6, ng/l 3.0±1.8 3.7±4.7 n.s. 

TNF-α, ng/l 8.6±4 8.5±3 n.s. 

Leptina ug/L 41,9±15.9 41.6±15.8 n.s. 

 

Table. XV: Baseline characteristics of patients with and without a hypoglycaemic event after LSG (blood 

glucose levels ≤ 2.7 mmol/l). LSG: Laparoscopic Sleeve Gastrectomy. BMI: Body Mass Index. HOMA-IR: 

Homeostasis Model Assessment. LDL: Low Density Lipopreteins. HDL: High Density Lipoproteins. Hs-PCR: 

High sensitive C-Reactive Protein. IL-6: Interleukin-6.  TNF-α: Tumor Necrosis Factor-alpha. Unpaired Student’s 

t-test was performed. 

 

There was no difference between the two groups in terms of waist, fasting blood glucose, 

plasma insulin, HOMA-IR, total-cholesterol, LDL-cholesterol, hs-PCR, IL-6, TNF-α and 

leptina. Hip patients were, at baseline, younger than N-Hip patients (40±11 yrs vs 46±10 yrs; 

p<0,001), with a lower weight, Kg, and BMI, Kg/m
2
, (128±22 vs 136±29;   46±5.7 vs 

48.4±7.9; p<0,05) and with a worse lipid profile; indeed, Hip patients had lower HDL 

cholesterol, mg/dl, and higher triglycerides, mg/dl, compared to N-Hip (46±16 vs 50±13 and 
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132±65 vs 109±59 respectively; p<0,05). Blood glucose and plasma insulin curves after OGTT 

before and after LSG in these two groups are shown in Figure 25 A-B.  

 

Figure. 25 Glucose (A) and insulin (B) curves during OGTT performed before LSG in patients with (Hip) 

and without (NHip) hypoglycaemic events. Dotted line indicates NHip patients and solid line values obtained in 

Hip patients. There are no significant differences. Unpaired Student’s t-test was performed; p<0, 05. 

 

Glucose AUC before surgery was significantly lower in patients with hypoglycaemic events 

after LSG compared to patients without hypoglycaemic events after LSG (glucose AUC Hip vs 

NHip: 1278±246  vs 1355±222 mmol/L/h, p=0.05); while insulin AUC before surgery did not 

differed between the two groups (insulin AUC Hip vs NHip: 17529 ± 8935 vs 15735 ± 9206 

mU/L/h, p= 0.23). 

 

 

 

Figure 26 Glucose (A) and insulin (B) curves during OGTT performed after LSG in patients with (Hip) 

and without (NHip) hypoglycaemic events. Dotted line indicates NHip patients and solid line values 

obtained in Hip patients. Unpaired Student’s t-test was performed; *p<0, 0001; **p<0,005. Unpaired Student’s 

t-test was performed.  
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Considering the results of the OGTT performed one year after LSG, patients with a 

hypoglycaemic event after LSG had significantly lower levels of  blood glucose from fasting 

state and during all OGTT (Figure 26, A). Insulin plasma levels were higher at 15, 30, 60 

minutes after glucose load and lower at 150 minutes after glucose load in Hip patients (Figure 

26, B). A similar pattern has been observed for c-peptide levels (data not shown). Glucose 

AUC after surgery was lower in patients with hypoglycaemic events (887±179 vs 1135±666 

mmol/L/h, p<0.05), whereas insulin AUC was not different (11150±4974 vs 10218±6741 

mU/L/h, p<=0, 38) compared to NHip patients. 

Table XVI Anthropometrics and metabolic parameters after LSG in patients with and without 

hypoglycaemic events. LSG: Laparoscopic Sleeve Gastrectomy. BMI: Body Mass Index. EBMIL: Excess Body 

Mass Index Loss. HOMA-IR: Homeostasis Model Assessment.  LDL: Low Density Lipoproteins. HDL: High 

Density Lipoproteins. Hs-PCR: High sensitive C-Reactive Protein. IL-6: Interleukin-6.  TNF-α: Tumor Necrosis 

Factor-alpha. Unpaired Student’s t-test was performed. 

 

Patients experiencing hypoglycemic events after surgery had a significantly higher weight loss 

than patients without events (%EBMIL: 80±20 vs 62±21 %; p<0.0001) and a lower waist 

circumference (95±13 vs 107±16 cm; p<0.0001), weight (83±17 vs 97±22 Kg, p<0, 0001), 

BMI (29±4.8 vs 34±6.3 Kg/m
2
) and leptin (9.7±6.7 vs 16.2±12.9 ug/l, p<0, 0001). Moreover, 

Hip had lower plasma levels of hs-PCR compared to NHip (1.7±2.7 vs 3.0±3.5 mg/l) as 

  Without  

hypoglyceamia 

With 

hypoglyceamia 

P value 

Waist, cm 107±16 95±13 0.0001 

Weight, Kg  97±22 83±17 0.0001 

BMI, Kg/m
2 

34±6.3 29±4.8 0.0001 

%EBMIL 62±21. 80±20 0.0001 

Blood glucose, mmol/l  4.7±0.4 4.4±0.4 0.0001 

Insulin, mU/L 7.9±5.6 7.4±6.9 0.02 

HOMA-IR 1.7±1.2 1.5±1.7 n.s. 

Total Cholesterol, mg/dl 184 ± 35 175 ± 36 n.s. 

LDL-Cholesterol, mg/dl 110±32 103±33 n.s. 

HDL-Cholesterol, mg/dl 59±14 57±12 n.s 

Triglycerides, mg/dl 77±31 77±34 n.s 

hs-PCR, mg/l 3.0±3.5 1.7±2.7 0.009 

IL-6, ng/l 2.7±2.5 2.7±2.8 n.s. 

TNF-α, ng/l 7.0±3.6 6.4±3.5 n.s. 

Leptin ug/L 16.2±12.9 9.7±6.7 0.0001 
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showed in Table XVI. The delta weight and delta BMI was higher in Hip than in NHip group 

one year after the operation. 

5.2.4 Predictors of Hypoglycaemic Events before Surgery 

In order to find the independent predictors of the occurrence of a hypoglycaemic event after 

surgery, we considered  all parameters significantly different between Hip and NHip subjects 

before LSG, included fasting blood glucose  and glucose levels 120' after glucose load because 

they were lower in Hip than in NHip subjects even if no significantly (p=0,09 and p=0,06). The 

independent predictors were investigated with the use of a multiple logistic regression analysis 

model (see Statistical Analysis).  

Low age (p<0, 05), low fasting blood glucose levels (p<0, 05), and high triglycerides levels 

(p<0, 01) before LSG, were found to be independent predictors of the occurrence of a 

hypoglycaemic events after surgery (r
2
=0,131) (Table XVII) 

 

 

Table XVII: Multivariate prediction of hypoglycaemic events after LSG (blood glucose levels ≤ 2.7 mmol/l). r2 = 

0.13. The occurrence of hypoglycaemia was used as the dependent variable. Sex (male =0; female =1), age, BMI 

before surgery, and the baseline variables found to have a significance difference between patients with a without 

hypoglycaemic events after surgery were entered as independent variables in the multiple regression analysis. 

 

 

Indepent variables Correlation Coefficents P value 

 

Age, years 

 

 

-0.057 

 

0.002 

BMI, Kg/m2 

 

0.063 n.s. 

Fasting BG, mmol/l 

 

-0.711 0.018 

BG 120’ after glucose load, 

mmol/L 

 

0.035 n.s. 

HDL-Cholesterol, mg/dl -0.040 n.s. 

Triglycerides, mg/dl 0.008 0.009 
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6 DISCUSSION 

 

6.1 DISCUSSION (1)  

T2DM and obesity are global health care problems that are closely linked together. The 

concept of diabesity (obesity-T2DM) emerges by the estimation that about 90% of T2DM is 

attributable to weight excess (Hossain P, 2007), and this is the reason because it has been 

applied both in research and clinical settings. The precise mechanisms linking the two 

conditions remain unclear. In recent years an increasing number of works have studied 

common metabolic defects in T2DM and obesity with a particular focus on microvascular 

dysfunction. Indeed, microvasculature plays a central role in glucose homeostasis: an impaired 

capillary recruitment and capillary rarefaction may reduce glucose uptake and contribute to 

insulin resistance development (Levy BI, 2008).  

Expanding AT requires new vasculature to receive an adequate oxygen supply to sustain tissue 

growth both by hypertrophy and by hyperplasia. Several studies suggest that obesity leads to an 

impaired angiogenesis and AT hypoxia, inducing an inflammatory and a profibrotic response 

that plays a pivotal role in the pathogenesis of metabolic complications related to weight gain, 

first of all insulin resistance and diabetes (Corvera S, 2014; Cao Y, 2013; Lee BC, 2014). 

Structural and functional abnormalities, such as lower capillary density (Pasarica M, 2009; 

Gealekman O, 2011), increased adipocyte-capillary distance due to adipocyte hypertrophy 

(Halberg N, 2009) and increased cell O2-consumption (Lee YS, 2014), have been postulated as 

mechanisms leading to AT hypoxia. Furthermore low oxygen tension activates HIF1α pathway 

that, in obesity, is inadequate to sustain the neoagiogenetic response but triggers AT fibrosis 

contributing to a worse metabolic profile (Sung HK, 2013). 

Moreover it is well showed in mice that obesity greatly affects adipose derived stem cells 

(ASCs) behaviour, impairing self renewal and plasticity (Pérez LM, 2013). How diabetes plays 

its role in this settings is widely unexplored. Recent evidences showed an alteration of 

angiogenetic potential and gene expression profile of ASCs in diabetic animals (Ferrer Lorente 

R, 2014; Rennert RC, 2014). All these recent findings highlight the close link between AT, 

microcirculation, angiogenesis and diabetes but utilized animal models or only few human 

subjects without a deep clinical evaluation of metabolic parameters and focusing mainly on 

subcutaneous AT (SAT). From a pathophysiological point of view it is well established that 

dysfunctional visceral AT (VAT) is one of the major determinant of metabolic complications of 
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obesity (Gesta S, 2007) while subcutaneous depots has been considered “metabolically 

healthy”. Nevertheless it could be hypothesized that in the evolution of obesity into diabesity 

,through metabolic impairment, SAT could become dysfunctional as VAT.  

On the basis of these data, we planned to characterize both SAT and VAT  measuring 

adipocytes size, capillary density, ASC and endotelial precursor number, and stromal vascular 

franction (SVF) adipogenic potential,  in lean subjects and in obese patients divided in 3 

groups: Normoglycemic (ob N), prediabetic (pre-T2DM) and Diabetic (T2DM) on the basis of 

clinical and laboratory evaluations. . 

According with the literature (Pasarica M, 2009; Gealekman O, 2011), we found that in SAT 

obese patients had significant decreased in capillary density compared to lean subjects and, 

also in VAT, a depot which has not yet previously investigated in humans, at least to our best 

knowledge. An interesting result to be emphasized is that, while the number of vessels per mm
2 

decreased of 40% between lean and obese SAT, the parallel reduction in VAT resulted higher, 

amounting to 54,5%. This finding supports both the hypotheses that obese AT is less 

vascularized than healthy AT and that SAT, from the point of view of vascularization, is less 

damaged than VAT. Differently from data showed by  S. Corvera’ group we found that VAT has 

a higher number of capillary per mm
2 

both in lean subjects and in obese patients. In contrast to 

our expectations, we did not found any significant differences in capillary density among the 3 

obese patient groups: neither in ob pre-T2DM compared to ob N nor in ob T2DM compared to 

both ob N and ob pre-T2DM (Figure 12).  

Accordingly with these results, the VEGFA expression largely parallel the capillary density 

measured by histological vessel staining, confirming a reduction of vascularization in obesity 

both in SAT than in VAT and failing to shown a worsening effect of the metabolic 

complications and of overt T2DM on vascularization. Instead, we found significant differences 

in adipocyte size. In fact, adipocyte area (μm
2
) was smaller in lean subjects than in obese 

patients both in SAT than in VAT and, more importantly, adipocyte size had an increasing trend 

in the 3 groups both in SAT and in VAT showing that adipocytes coming from ob T2DM 

patients are the largest ones ( Figure 11). This result is particularly interesting because allow us 

to correlate the adipocyte size with the onset and the development of metabolic complications, 

suggesting that AT is further able to expand by hypertrophy probably generating fat cells more 

and more insulin resistant, independently of patient’s BMI. In fact, as reported in (Table VII), 

ob N and ob T2DM patients selected for histological analysis displayed similar BMI and ob 
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OB pre-T2DM OB T2DMOB NLean

Progressive and continous remodeling

Mature adipocyte

Extracellular matrix Proinflammatory cells

Capillary

Adipocyte area

Capillary density

pre-T2DM had a lower BMI than the other two obese groups. The drawing of Figure 27 well 

recapitulates our findings and represents our pathogenetic hypothesis for diabesity evolution at 

AT level. Moving from an healthy AT, of lean subjects, to an unhealthy AT, of obese patients 

and finally to an metabolic complicated-unhealthy AT, of obese T2DM patients , we observed a 

significant decrease in capillary density only in the first step and a progressive increase in fat 

cell size which characterize all steps analyzed. Regarding the AT vasculature, we have to take 

into account that our observation were only quantitative and we cannot exclude that capillary 

of ob N and of ob T2DM obese patients could differ in perfusion function or angiogenic factors 

responsiveness.  

 

 

Figure 27. Schematic drawing of adipocytes and vasculature remodelling during diabesity. 

 

On the other hands, the findings related to adipocytes are partially in agreement with previous 

report of Lundgren et al. (Lundgren M., 2007) which examined the relationship between fat 

cell size and insulin sensitivity in diabetic and non-diabetic subjects with a wide range of age 
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and BMI. This study showed that fat cell enlargement is associated with insulin resistance in 

non-diabetic individuals but not in T2DM subjects. Moreover, we observed that adipocyte area 

positively correlated with IL-6 blood level, underling the relationship between adipocyte 

hypertrophy and inflammation. It is worth noting that our findings are concordant both in SAT 

and in VAT, reinforcing the idea that not only VAT, but also SAT could be dysfunctional. F. H. 

J. Van Tienen and collaborators  (Van Tienen FHJ, 2011) observed that the presence of large 

adipocytes is an indicator of decreased adipogenic potential in SAT and can be the trigger for 

increased macrophage infiltration and inflammatory process activation. 

In fact these authors found that among T2DM subjects, preadipocytes isolated from abdominal 

SAT displayed decreased expression of genes involved in adipogenic differentiation. 

Consistent with these data, our results further showed that adipogenic differentiation 

impairment is already present in a pre-diabetic condition; in fact  SVFs obtained from SAT of 

ob preT2DM and, unless in a minor extent, from ob T2DM displayed a lower adipogenic 

potential in comparison to ob N group (Figure 20). 

More importantly, the ex-vivo quantification of ASCs( CD34+CD45- CD31- cells), Figure 17 

showed that a pre-diabetic condition is sufficient to cause a significant decrease in the ASC, 

that persists also in T2DM obese patients, both in SAT and in VAT. It is interestingly that 

glucose impairment early affects ASCs; this could explain, at least in part, why patients with 

metabolic alterations preferentially expand their AT by hypertrophy than by hyperplasia. ASCs 

isolated from stromal vascular fraction (SVF) of our samples, were lower in lean patients 

compared to obese patients.  

Accordingly with our results, the group of Isakson P. (Isakson, 2009) showed that the number 

of CD133-positive cells, containing pluripotent cells able to differentiate into adipose cell, 

isolated from SAT SVF positively correlate with BMI, suggesting that obese individuals could 

present a differentiation impairment rather than a precursors cells reduction. 

Comparing the two AT depot, we found that VAT is more enriched of ASCs than SAT in all 

obese groups and in lean subjects. Differently, in mice underwent to high fat diet, Joe at al. 

(Joe, 2009),  showed that adipogenic precursors were found eightfold more abundant in SAT 

compared to VAT, consistent with the observation of a prevalent SAT growth by hyperplasia 

and VAT growth by hypertrophy. However recent studies focused on VAT, both in diet-induced 

obese mice (Jeffery, Church et al. 2015) (Wang, Tao et al. 2013) and, more importantly, in 

humans (Arner, Andersson et al. 2013), showed a predominant expansion through hyperplasia 
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rather than hypertrophy, underlying the central role of ASCs in the pathogenesis of obesity in 

both depots.  

As previously reported, we found that the in vitro adipogenic potential of SVF obtained from 

VAT is lower than that obtained from SAT, but this finding was not correlated to the VAT ASCs 

number. It is likely that the VAT microenvironment deeply affects the differentiation capacity 

of ASCs to mature adipocytes. In addition, we found that in obese, but not in lean subjects, 

VAT ASCs display a significantly higher expression of CD105 and CD271 in comparison with 

SAT. The differences of surface marker expression profile of ASCs, could account for a 

differential, depot-specific function, of precursors cells.  

Van Harmelen and colleagues (Van Harmelen V., 2004) found that age correlated negatively 

with proliferation only in SAT preadipocytes and not in the omental depot and he supposed that 

aging has distinct effects on preadipocytes from different fat depots and it could explain the 

loss of SAT and relative preservation of omental fat with aging.  

In our study, even if ob T2DM were older than ob pre T2DM and ob N we did not find any 

correlation between age neither with percentage of ASCs, nor with percentage of mature 

adipocyte cells, after 9 days of culture. Considering the high numbers of samples analysed, we 

can affirm that not age but glucose profile affects both pre-adipocyte and their ability to 

differentiate, certainly in SAT and probably in VAT. 

Moreover, in our study we observed that the number of endothelial precursors cells (EPs), 

defined as CD34+ CD31+ CD45- cells, was higher in SAT of obese patients compared with 

lean subject, whereas in VAT there were no significant differences (Figure 19). Both in SAT 

than in VAT, EPs did not differ in ob pre-T2DM and ob T2DM compared to ob N and this 

underlines that angiogenic potential is lesser affected by glucose impairment than adipogenic 

counterpart, as it was also observed with immunohistochemical analysis.  

In SAT and VAT, EPs showed an opposite trend compared to ASCs; indeed, in obese groups, 

EPs were lower in VAT than in SAT. These results could suggest that VAT expansion is 

achieved preferentially by hypertrophy due to the reduction of the angiogenic potential which 

did not parallel the adipogenic potential represented by the in vivo higher number ASCs in 

comparison with SAT.  

Another interesting result comes from our studies concerning ASCs of obese patients after 

weight loss (ob WL). Consistent with previous data, we found that ASCs are significantly 

higher in ob WL group compared both to obese groups and lean subjects, whereas, EPs are 
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significantly lower in ob WL than the 3 obese groups characterized by different metabolic 

profile. Moreover ob WL group showed a lower PPARγ expression as compared with that of ob 

N and ob pre-T2DM groups. We can supposed that in these patients the relevant WL achieved 

could stimulates the increase of ASCs as a reaction to important fat mass reduction, but the AT 

expansion and hyperplasia are counteracted by the lowering of PPARγ expression and by the 

concomitant limitation of EPs number. Another hypothesis to explain the high percentage of 

ASC quantified in AT of ob WL is that hypertrophic adipocytes, after lipid mobilization due to 

massive WL, could dedifferentiate again into preadipocytes as postulated by Baptista L. et al. 

(Baptista L., 2015), probably through the involvement of pericytes (Silva K., 2015).  

In fact,  a fourfold increase in SAT supra-adventitial cells was described in ex-obese patients 

compared to obese together with an increase in pericytes’s number in both groups compared to 

lean subjects (Silva K., 2015). Many recent studies support the idea that ASCs tend to maintain 

their features even after drastic WL, probably due to epigenetic modulations occurred during 

the obese state, partially explaining the mechanisms involved in weight regain over time. Even 

if microenvironment changes in inflammatory status have been described in SAT after WL due 

to surgical intervention, with a decrease in some cytokines levels, such as IL-6 and C-reactive 

protein, post-bariatric ASCs seem to maintain high levels of other factors such as MCP-1, 

partly sustaining a macrophages tissue infiltration (Silva K., 2015).  

However, the metabolic improvement observed after WL partly depends on the restoration of 

AT from features present before the obesity development. A comparative study of SAT from 

obese, obese underwent to WL due to diet intervention and normal weight subjects suggested 

that a full adipose cell re-programming has been induced after weight loss, with a reduced 

DNA-damage and consequent longer cell survival, an extended replicative lifespan and a 

reduced adipogenic commitment.  

The variables that probably strongly determine adipose cell behavior after WL, causing a 

minimal, partial or complete pre-obesity cell pattern restoration, could be represented by the 

duration of the disease and the presence/absence of obesity-associated comorbidities, which 

contribute to a stabilization of epigenetic modifications and thereby to a cell memory 

reinforcement (Mitterberger MC,. 2014). 

In conclusion, our study, confirmed that obese AT is less vascularized than lean AT and showed 

for the first time that T2DM does not represent an aggravating factor to the vascular reduction 

already present in obesity. On the contrary T2DM and also prediabetic condition are able to 
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further modify the AT architecture, remodeling the mature adipocyte size and the adipogenic 

potential mediated by ASCs importantly reducing the AT hyperplastic growth capacity. Our 

results allow us to assume that the primum movens in the diabesity evolution at AT level has to 

be searched more in the adipocyte/preadipocytes remodeling than in the 

vasculature/angiogenesis impairment and that both depots, SAT and VAT, equally play a pivotal 

role in the metabolic disease progression. 

 

6.2 DISCUSSION (2)  

Hypoglycemic events are a well-established complication of upper gastro-intestinal surgery. In 

particular is well known that the frequency of asymptomatic hypoglycemia after RYGB may be 

over 30% (Service GJ., 2005). Similar outcomes are reported for LSG in only two studies 

(Papamargaritis D., 2012; Natoudi M., 2014) in a small number of patients and little none is 

known about clinical predictors.  In our study we aimed to identify how many subjects develop 

hypoglycemia after LSG and if we can find any predictors of these events before surgery in 

non-diabetic obese patients.  

We observed that 5 of 197 (2, 5%) patients, have experienced at least one severe hypoglycemic 

event (BG ≤ 2.7 mmol/L) during 3 hour OGTT before bariatric surgery. This data is consistent 

with data present in literature for obese patients where hyperinsulinemic hypoglycemia is 

described (Pigeyre M., 2015).  

After LSG, 61 of 186 (32, 8%) patients have experienced at least one hypoglycemic episode 

during OGTT. These data are just partly comparable with the results reported by 

Papamargaritis and Natoudi (Papamargarits D., 2012; Natoudi M., 2014) because both authors 

had subjected patients to a 2 hour OGTT and have found 4 of 12 (33%) patients with BG ≤ 3, 3 

mmol/L at 90 or 120 minutes after glucose load and 6 of 30 (37, 5%) patients with BG ≤ 3, 3 

mmol/L at 90 or 120 minutes, respectively. In our study the highest frequency of severe 

hypoglycemic events were observed 150’ after OGTT, in 20,2% of subjects, while, at 90' and 

120' minutes after glucose load, 2,8% and 11,7% of our patients have had a  hypoglycemic 

events.  

In our recent study (Nannipieri M., 2016), we demonstrated that all patients with 

neuroglycopenic symptoms had, at least one value of blood glucose level ≤ 2, 7 mmol/L during 

OGTT. Certainly, OGTT overestimates hypoglycemic events but, considering a lower cut-off 

of hypoglycemia compared to other studies (2,7 mmol/L vs 3,3 mmol/L), and,  considering the 
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large number of patients included in this study, we can  affirmed that hypoglycemia is a 

common complication one year after LSG. Moreover, even if we didn't any specific test in 

order to quantify the number of patients reporting hypoglycemic symptoms under free-living 

conditions, after blood exams, all patients did a medical interview, and, about one third of our 

patients have reported  symptoms consistent with hypoglycemia, in particular, headache, 

dizziness, irritability and sweating. Most of symptomatic patients were those who, during 

OGTT, had blood glucose levels ≤ 2, 7 mmol/L; indeed, only 4 patients who reported 

symptoms consistent with hypoglycemia had, during OGTT, glucose levels > 2, 7 mmol/L. 

Therefore, we can conclude that mild hypoglycemia after OGTT does not reflect the real 

clinical status and we can suggest that OGTT could be a good diagnostic test if carried out over 

3 hours and if the diagnostic threshold for hypoglycemia is lowered at 2.7 mmol/L. 

Moreover, several studies described an early dumping syndrome after RYGB ( Hamer H.F., 

2012); even if we didn’t apply any questionnaire for dumping, we find hypoglycemia later than 

one hour and it could be explain because in LSG the pyloric valve and the duodenal feedback 

inhibition of gastric empting are preserved.  

These two anatomical differences in LSG could slow down gastric empting and so avoid the 

typical symptoms of early dumping syndrome. Recently, Lee Clare J (Lee CJ., 2015) on the 

basis  of validate questionnaires, demonstrated that RYGB confers some increased risk 

between  the presence  of hypoglycemia symptoms before and after surgery while these risk 

was not find in subjects underwent to LSG. So we can think that LSG could be seen as a good 

potential alternative. Moreover, these findings are according with Papamargaritis work that 

demonstrated an increase of late dumping symptoms at 6 and 12 months after LSG. 

Another aim of our study was to analyze the differences in clinical and metabolic 

characteristics between non diabetic morbidly obese patients who developed or not post-OGTT 

hypoglycaemia one year after LSG. According with the recent work of Papamagaritis 

(Papamergaritis D., 2016) performed on 18 non diabetic obese patients six month after LSG, 

we found that patients experienced hypoglycemia had a greater weight loss and a greater 

reduction in waist compared with NHip patients (Table XVI).  

After bariatric surgery, an increase risk of traumatic deaths and an increase in depression have 

been described in patients with hypoglycemia. In rare cases, pancreasectomy for untreatable 

severe hypoglycemia has been required years after RYGB. For these reasons, it is very 

important to identify patients at high risk of hypoglycemia in order to educate them to 
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recognize symptoms and to use adequate nutritional habits. Our findings highlight that patients 

with greater weight loss and lower BMI after surgery have a higher risk to develop 

hypoglycemic events after surgery, but the identification of baseline pre-operative predictors 

remains elusive. In fact, even if in our study we found that baseline younger age, lower fasting 

blood glucose and higher triglycerides have been shown to be independent predictors of 

hypoglycemia after surgery, their predictive power is really small.  

The identification of more reliable predictors would require a more extensive investigation of 

the pathophysiological events leading to the development of hypoglycemia after LSG.  As we 

described in our recent, in a smaller group of patients (Nannipieri M., Belligoli A., 2016), in all 

subjects, LSG anticipated the time of post-OGTT glucose peak and lowered the plasma glucose 

nadir through more rapid dumping of gastric contents into the small bowel.  In the Hip 

subjects, however, the features predisposing to hypoglycemia were accentuated as compared 

with NHip subjects.  The relative potency of these factors probably varies among subjects and 

is difficult to gauge.  Firstly, post prandial hypoglycemia (PPHG) may be detected beyond the 

time frame of the current study.  

Secondly, in some individuals a lesser weight loss might protect against PPHG despite a high 

load of predisposing factors; in yet other subjects, gastrointestinal hormone release or action 

may be defective or pre-existing insulin sensitivity be impaired.  Thirdly, gastric emptying may 

change over time because of long-term adaptations of motility or ensuing autonomic 

neuropathy (e.g., long-term and/or uncontrolled diabetes).  Finally, the pattern of predisposing 

factors may differ depending on whether PPHG manifests itself only once or repeatedly and 

whether it is mild-moderate or severe. Additional factors that were not measured in our study 

might have had a part.  

For example, (1) lack of reduction of ß–cell mass, which was constitutively increased during 

the obese state prior to surgery, (2) gut hormonal activation of new ß-cell formation due to 

surgically induced changes in the secretion of insulinotropic incretins, or other regulatory 

peptides, (3) abnormal counterregulatory hormonal responses, (4) changes in gut microbiota, 

and (5) changes in bile acid composition. 

In conclusion, these findings confirm a high incidence of severe hypoglycemia after a 

provocative test (OGTT) 1-year after LSG. Patients with hypoglycemic events have a lower 

weight and BMI and a greater %EBML after LSG. Hypoglycemia is more frequent in patients 

having lower age, lower fasting blood glucose levels, and higher triglycerides levels before 
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LSG but these predictors do not have such a marked correlation to contraindicate LSG.  

Whether hypoglycemic events are so frequent in daily life of patients underwent LSG as shown 

by OGTT is something that needs a deep investigate and we need to deep investigate also the 

pathophysiological events leading to the development of hypoglycemia after LSG. 
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