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Abstract  

Over the last years, there has been an increasing demand of shellfish for consumption. 

The ability of traditional capture fisheries to supply bivalves is unlikely to increase 

significantly because of the drops in natural recruitments of seed, which are mainly due to 

overexploitation of natural stocks. Production of bivalve seed in hatcheries is a relatively 

new industry for which empirical approaches were developed, adapting methods across 

species and measuring the resulting effect in terms of growth and survival. To date, only a 

few bivalve species of major aquacultural importance in Europe have benefited from 

newly developed genomic resources (e.g. microarrays and RNA sequencing) and gene 

silencing approaches, which are both expected to significantly improve the biological 

knowledge on these commercially important species in the coming years. 

The present PhD thesis aimed firstly at increasing, through Next Generation Sequencing, 

genomic information available for two emerging species, Venerupis decussata and Pecten 

maximus.  

The second aim was to investigate two main bottlenecks hampering the bivalve 

production in hatchery: efficiency of reproduction and susceptibility to pathogens. By 

means of microarray analysis, a gene expression study on V .decussata oocytes at 

different maturation stages was performed and the major biological processes involved in 

gamete maturation were identified.  

A RNA sequencing experiment was conducted on pathogen-challenged hemocytes and 

unchallenged controls to study the P. maximus immune transcriptome. mRNAs encoding 

proteins with a known immune function were detected and a global analysis of 

differential expression comparing gene-expression levels in stimulated hemocytes against 

controls provided evidence on a large set of transcripts involved in P. maximus immune 

response. 

Finally, reverse genetic and real-time PCR were implemented to investigate the role of 

IkB2 in the Crassostrea gigas immune response against Ostreid herpesvirus type 1. 

Following the injection of a dsRNA targeting IkB2, juveniles were infected with OsHV-1 

and mRNA levels of four immune genes (IkB1, IkB2, Rel, SOCS) were evaluated in 

gonads and gills demonstrating their implication in the Pacific oyster antiviral response.  
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Riassunto 

Nel corso degli ultimi anni, si assistito ad una crescita della domanda di molluschi 

destinati al consumo alimentare, alla quale però la pesca tradizionale non ha saputo far 

fronte, principalmente a causa dell’impoverimento degli stock naturali e alla conseguente 

scarsità di seme. La produzione di seme di bivalvi in schiuditoio è un’attività 

relativamente recente e le attuali metodiche di allevamento non sono altro che protocolli 

già usati in altre specie, adattati e verificati in termini di crescita e sopravvivenza. Ad 

oggi, ad aver beneficiato delle recenti risorse genomiche, come microarry ed RNA 

sequencing, e delle sofisticate strategie di silenziamento genico sono state solo alcune 

specie di bivalvi di notevole interesse alimentare a livello europeo. Tuttavia, si pensa che, 

nel corso dei prossimi anni, questi approcci molecolari possano costituire una risorsa 

importante per lo studio della biologia di numerose specie di bivalvi non ancora allevate 

su larga scala ma di crescente interesse commerciale.           

Il primo obiettivo della presente tesi di dottorato è stato quello di incrementare, mediante 

tecniche di Next Generation Sequencing, le risorse genomiche attualmente disponibili per 

due specie emergenti: la vongola verace Venerupis decussata e la cappasanta atlantica 

Pecten maximus.  

In secondo luogo, si sono considerati due importanti fattori che ostacolano l’allevamento 

dei bivalvi in schiuditoio: l’efficienza riproduttiva e la suscettibilità ai patogeni. 

Utilizzando una piattaforma microarray, sono stati valutati i livelli di espressione genica 

di oociti di V. decussata a due diversi stadi di maturazione. L’analisi dei dati ha quindi 

permesso di identificare i principali processi biologici coinvolti nella maturazione dei 

gameti femminili. Inoltre, al fine di studiare il trascrittoma immunitario di P. maximus, è 

stato effettuato un esperimento di RNA sequencing su emociti immuno-stimolati e di 

controllo. Questo studio ha permesso di identificare trascritti di mRNA che codificano per 

importanti proteine del sistema immunitario. In aggiunta l’individuazione di geni 

differenzialmente espressi in emociti stimolati e controlli ha messo in evidenza un set di 

trascritti potenzialmente implicati nella risposta immunitaria di P. maximus. 

Infine, allo scopo di valutare il ruolo di IkB2 nella risposta immunitaria di Crassostrea 

gigas all’infezione da herpesvirus di tipo 1, è stato effettuato un esperimento di RNA 

interference. In seguito all’iniezione di un RNA a doppio filamento codificante una 

porzione del trascritto IkB2, individui giovani di C. gigas sono stati infettati con un 

omogenato contenente il virus HV-1. Infine, per valutare l’importanza di quattro geni 
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della risposta immunitaria (IkB1, IkB2, Rel, SOCS), i loro livelli di espressione sono stati 

valutati in due diversi tessuti: le gonadi e le branchie.  
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1. Introduction 

Over the last years, there has been an increasing demand of shellfish for consumption. 

The ability of traditional capture fisheries to supply bivalves is unlikely to increase 

significantly because of the drops in natural recruitments of seed, which are mainly due to 

overexploitation of natural stocks. In fact, about 29.9 percent of natural fish stocks are 

being harvested to near maximum rates (Helm et al., 2004), producing lower yields than 

their biological and ecological potential. The overexploitation issue has already been 

discussed during the World Summit on Sustainable Development at Johannesburg (2002), 

resulting in the need of strict management plans for restoring the overexploited stocks to 

the level that can produce maximum sustainable yield by 2015, a target that seems 

unlikely to be met. Moreover, natural spatfall harvesting is vulnerable to adverse impacts 

of natural, socioeconomic, environmental and technological conditions, which lead 

inevitably to “bad” and “good” years for seed supply, determining also a tumbling price.  

The increasing market demand, the unpredictability of bivalve production and the 

concurrent impoverishment of the wild sets generated a great interest in hatchery-

produced, a solution which could meet spat requirements in the bivalve industry, and 

could be applicable to the production of high unit value species such as clams, oysters and 

scallops. Noteworthy, seed supply is already crucial for some species like the hard clam 

Mercenaria mercenaria, for which farmers have to rely entirely on hatcheries because, 

unlike most bivalves, large quantities of their seed cannot be easily harvested in the wild 

(FAO, 2013). Other species, such as Crassostrea gigas, Venerupis philippinarum and 

Argopecten irradians are routinely produced in hatcheries throughout the world and rely 

only partially on wild spatfall. While hatchery technology is relatively well developed for 

these species, other bivalves such as Venerupis decussata, Pecten maximus, Placopecten 

magellanicus and Ostrea edulis proved more difficult to rear on a routine basis. 

Despite academic knowledge is continuously advancing, the production of bivalve seed in 

hatcheries and nurseries is a relatively new issue for which empirical approaches were 

developed, adapting methods across species and measuring the resulting effect in terms of 

growth and survival. Hatchery production is still affected by several limitations, which 

are often species-specific and are encountered at different stages in the biological cycle of 

molluscs, leading to high mortality. The main bottlenecks involve (i) broodstock 

management and gamete quality, (ii) appropriate methods for larval rearing, (iii) 

metamorphosis synchronisation and improvement of settlement, (iv) quality of seed in 

terms of immunity, genetic diversity and sanitary status. 
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Applied research on physiology provided a better understanding of the effects of biotic 

(micro-algal diet, bacterial communities, etc.) and abiotic (temperature, salinity, etc.) 

factors (e.g. Nicolas et al. 2004; Magnesen et al. 2006). However, most of these studies 

only had a limited impact on the bivalve industry. Recent resources that are expected to 

affect the bivalve aquaculture in the coming years are those based on “omic” studies. In 

the last decade, it has been demonstrated that “omic” characterization of bivalves 

revealed many potential applications most notably for pollution biomonitoring (Suarez-

Ulloa et al., 2013). Yet, the relevence of omics for research on bivalve development is 

still poorly explored. To date, only few bivalve species of major aquaculture importance 

in Europe have benefited of omic approaches, like microarrays, high-throughput 

sequencing technologies and 2-dimensional electrophoresis (2-DE). Recent studies 

characterized the larval transcriptome in Crassostrea angulata (Qin et al. 2012) and 

Meretrix meretrix (Huan et al. 2012), providing important and useful information on 

complex and unique early developmental processes. Besides, a 2-DE proteomic approach 

was exploited in order to identify abundant proteins linked to egg quality in the Pacific 

oyster C. gigas, improving the current knowledge upon the proteomic processes involved 

in their developmental competence (Corporeau et al. 2012). Despite a large quantity of 

studies exploiting advanced molecular approaches have been already carried out on the 

aforementioned established species, however there are still several issues to be addressed 

and further studies are still needed. An example is the phenomenon of oyster mass 

mortalities, which since 1970s have occurred at a historically unprecedented rate and they 

are still causing high economic losses in several countries (Harvell et al. 1999, 2002; 

Lafferty et al. 2004; Mydlarz et al. 2006).  

Conversely, in the “emerging species”, for which hatchery-based production of seed is 

still limited in Europe, these promising resources have been poorly exploited. Although 

some studies have been performed, these mainly concern adult tissues rather of 

development stages. Moreover, such investigations are still limited and not 

comprehensive enough to formulate integrated theories about bivalves developmental 

biology.  

In the present PhD thesis, by means of Next Generation Sequencing techniques 

(pyrosequencing and RNA sequencing) a large amount of cDNA sequences were 

obtained for two emerging species V. decussata and P. maximus. Moreover gene 

expression studies were performed to improve the knowledge on the  major biological 
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mechanisms regulating V. decussata oocytes maturation and immune response in P. 

maximus and C. gigas as well. 
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1. Background 

The clam Venerupis decussata is a native European bivalve species and, even if its global 

aquaculture production is still relatively low in Europe (4.137 tons in 2011; FAO), it has 

an high economic value. V. decussata production is economically important in many 

Mediterranean countries, mainly Portugal, Italy and Spain but, due to the difficulties in 

broodstock conditioning and larval rearing (Hamida et al. 2004), the culture of this 

species relies mainly on natural recruitment of seed and it is therefore limited by its 

availability.  

Among the major hurdles reported in the hatchery production of this species, the 

incapacity in controlling the spawning and the deficient gametes are important issues 

which highly affect the hatcheries yield. Notably, the spawning success in the European 

clam is not guaranteed and therefore remains still random. Furthermore the variability of 

eggs quality, defined as the potential of oocytes to produce a viable progeny (Kjorsvik et 

al., 1990) is still too variable to ensure a technically and economically reliable source of 

seed. 

A further factor which strongly limits the hatchery development of V. decussata is the 

impossibility to obtain fertile gametes by gonadal stripping. This practice is widely used 

to collect oocytes, before natural spawning, in some bivalve species (i.e. oysters) whose 

eggs can be fertilized. Indeed, meiotic progression occurring in germ cells is not 

identically regulated in molluscan species. While full-grown oocytes of all bivalves are 

blocked in ovaries at prophase I stage, still differences are present. In bivalves such as 

Spisula or Barnea spawned oocytes are arrested at prophase I and fertilization occurs at 

this stage leading to meiosis reinitiation (Dubé and Guerrier, 1982; Longo, 1983; Colas 

and Dubé, 1998). In contrast, bivalves such as Venerupis and Crassostrea (Osanai and 

Kuraishi, 1988) exit from prophase I and undergo germinal vesicle breakdown (GVBD) 

after spawning and then are further blocked at the first metaphase (metaphase I). The 

release from metaphase I is naturally triggered by fertilization or can be artificially 

induced, however in both cases, it seems that an increase in intracellular [Ca2+] has a 

pivotal role in the meiosis reinitiation (Abdelmajid et al., 1993; Guerrier et al. 1993; 

Moreau et al., 1996). Although both Venerupis and Crassostrea oocytes encounter two 

blockage during meiosis I, their meiotic progression is not completely regulated in the 

same way. Despite naturally spawned oyster oocytes, like in Venerupis, remain at 

metaphase I and wait for fertilization to reenter meiosis, however, isolated oocytes from 

ovaries (stripped) remain at prophase and can be fertilized at this stage (Osanai, 1985). 
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Noteworthy, the reasons why Venerupis oocytes cannot be fertilized at prophase I remain 

still unknown. 

To date, the mechanisms controlling oocytes maturation in V. decussata have been 

scarcely studied (Hamida et al., 2004). Conversely, in other bivalve species meiosis 

occurring in female gametes was explored and few major factors regulating the oocytes 

maturation processes were identified. Notably, it was demonstrated that serotonin (5-HT), 

thought to be the natural inducer of oocyte maturation in bivalves (Deguchi and Osanai, 

1995), triggers in vitro the germinal vesicle breakdown (GVBD) when added to Spisula, 

Barnea, Venerupis (philippinarum) or Crassostrea isolated prophase I oocytes (Osanai, 

1985; Osanai and Kuraishi, 1988; Hirai et al., 1988; Brassart et al., 1988; Dubé, 1988; 

Krantic et al., 1991; Guerrier et al., 1993). Moreover, it has been suggested that in 

Venerupis philippinarum, the mechanisms by which 5-HT promotes GVBD involve an 

increase in intracellular [Ca2+], which is thought to be mediated in turn by inositol 1,4,5-

trisphosphate receptors (IP3r) and specific 5-HT receptors (Guerrier et al., 1996; Gobet 

et al., 1994; Guerrier et al., 1993). Despite these studies pointed out few interesting 

factors driving meiosis progression in bivalves, little is known on the complex regulations 

occurring during gametes maturation in these species. Up to date, only few gene 

expression and proteomic studies have been carried out in bivalve oocytes (e.g. Ni et al, 

2012; Corporeau et al. 2012) and a comprehensive picture of the molecular processes 

characterizing their maturation is still absent. 

Remarkably, when talking about gene expression and mRNA in oocytes, an interesting 

point should be taken into account: at prophase I immature oocytes show a prominent 

nucleus (the germinal vesicle), which contains de-condensed chromatin (Tosti, 2006), 

thus oocytes at this stage are transcriptionally active until meiosis resumption, when 

transcription is generally thought to cease (Heikinheimo and Gibbons, 1998). However, 

translation of the stored mRNAs pool continues throughout the final stages of meiosis 

(Wassarman, 1996) to synthetize proteins that are crucial for supporting not only the 

oocyte maturation (meiotic maturation) but the phase prior to embryonic genome 

activation and the newly fertilized zygote as well (Song and Wessel, 2005, Dheilly et al., 

2012; Eichenlaub-Ritter and Peschke, 2002).  

Besides gamete maturation, several factors are still limiting the hatchery production of V. 

decussata, research is therefore still needed. The absence of established methods for 

larval rearing, a scarce knowledge on the best hatching practises to improve 

metamorphosis synchronization and settlement are only few additional issues of the 
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European clam seed production which is an activity far from being completely technically 

controlled. In this context, the improvement of knowledge on broodstock management 

and gamete maturation’s processes seems to be a key step to improve seed production of 

the emerging bivalve species.  

In the present study, combined Next Generation Sequencing (NGS) technologies were 

employed in order to improve the transcriptomic knowledge on V. decussata, thus 

providing a great number of transcripts for further “omic” studies in this species. A 

microarray platform (8x60,000) for gene expression analysis was then constructed and  a 

dataset of 15 oocytes samples were analyzed and expression profiles characterizing 

spawned oocytes with different competence levels and stripped oocytes were evaluated in 

order to shed light on the molecular processes leading to female gametes maturation and 

competence.  

  



14 

 

2. Methods 

2.1. V. decussata transcriptome: biological samples, assembly and annotation 

Clam tissues, larvae, oocytes and hemocytes were collected in collaboration with the 

Instituto Português do Mar e da Atmosfera (IPMA) and the Instituto de Investigaciones 

Marinas (IIM). All samples were stored in RNAlater at -80°C until RNA purification. 

RNA was isolated with RNeasy Mini Kit (Qiagen), following the manufacturer 

instructions and a DNAse treatment (Qiagen) was carried out. Concentration and purity of 

RNAs were measured using a NanoDrop ND1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, USA). The RNA quality was assessed through the 

Bioanalyzer 2010 instrument (Agilent). 

For the RNA sequencing experiments, 13 non normalized libraries (oocytes, larval stages 

and gonadal stages) were prepared by using Truseq RNA sample prep Kit (Illumina) 

following the manufacture’s instruction and sequencing was carried out with Illumina Hi-

Seq 2000 by running two multiplexed lanes 2x100bp paired ends (BGI Tech, Shenzhen, 

China). All the Illumina reads were analyzed with FastaQC software in order to assess the 

sequences quality. 

Two additional DSN normalized 454 libraries were synthesized, one starting from a pool 

of oocytes/larval stages/adults tissues/hemocytes and a second one by pooling different 

hemocytes sampled at different conditions. The two libraries were sequenced with a 

Roche 454 GS FLX sequencer using the Titanium chemistry (Genomic unit, CCiT-UB, 

Barcelona, Spain) and a sequences quality report was obtained through the 454 Software 

Release 2.6.  

In order to build a transcriptome scaffold, a mixed strategy was preferred. Different 

assembler softwares were employed according to the sequences’ origin (454 or Illumina). 

The 454-sequences were assembled through MIRA3 (default parameters), the reads from 

each of the Illumina libraries were separately assembled by using CLC Genomic 

Workbench 5 (default parameters). Finally, to reduce the redundancy, all the obtained 

contigs plus a set of additional sequences already published in public repositories were 

merged through CAP3 (default parameters). The contigs not merged in CAP3 were joined 

to all the meta-contigs, thus obtaining a final transcriptome scaffold.  

A functional annotation of the assembled transcriptome was attained through blastx 

similarity searches conducted against UniProtKB/SwissProt database and several protein 

databases available on Ensembl Genome Browser (release 68): Homo sapiens, Danio 
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rerio, Drosophila melanogaster, Caenorhabtidis elegans, Ciona intestinalis, 

Strongylocentrus purpuratus, Gasterosteus aculeatus, Daphnia pulex and Nematostella 

vectensis. In addition, to improve the number of annotated contigs, blastx searches against 

two molluscs databases were attempted: oysterDB (Crassostrea gigas) and Lottia 

gigantea V1.0. Alignments with an E-value of at most 1 E-5 were considered significant 

and only the best hit per each contig was taken into account. Finally, Blast2GO software 

(Conesa et al., 2005) was used to assign Gene Ontology terms (Ashburner et al., 2000) to 

all annotated contigs. Default values in Blast2GO were used to perform the analysis and 

ontology level 2 was selected to construct the level pie chart. To avoid redundant results, 

when multiple contigs were annotated with the same UniProtKB/SwissProt accession, 

only the longest one was selected for the Gene Ontology analysis. 

2.2. Microarray platform design 

All databases used for the annotation step were consider to reduce the redundancy in 

annotated contigs. In total 44,333 contigs, found non-redundant in at least one reference 

database, have been considered for microarray design. Of these, 915 contigs showed 

ambiguous orientation considering the homologs gene in reference databases and for each 

of them, two probes with opposite orientations (sense and antisense) were designed. For 

the remaining 43,418 contigs with known orientation, one probe was designed.  

To fill the microarray platform, non-annotated gonads contigs were employed. Basing on 

the sum of gonads stage reads mapped against the assembled reference transcriptome the 

7,376 most highly expressed contigs were considered and for each of them, two probes 

with opposite orientations (sense and antisense) were designed. Probe design was carried 

out using the Agilent eArray interface (https://earray.chem.agilent.com/earray/), which 

applies proprietary prediction algorithms to design 60 mer oligoprobes. A total of 59,951 

out of 60,000 probes were successfully obtained, representing 51,709 putative V. 

decussata contigs. The percentage of annotated transcripts represented in the microarray 

was 85.7%. Probe sequences and other details on the microarray platform can be found in 

the GEO database (http://www.ncbi.nlm.nih.gov/geo/) under accession number 

GPL17766. 

2.3. Biological samples for the microarray analyses 

Clams were sampled in Ria de Aveiro (Western coast of Portugal) and conditioned in 

common garden from May 2013 to June 2013 (one month) in the experimental bivalve 
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hatchery of the National Institute of Biological Resources (IPMA) in Tavira, Portugal, to 

accelerate their gonad development under common rearing facilities. Food regimes 

consisted of different algal mixtures containing 1/3 Isochrysis galbana (clone T-ISO), 1/3 

Skelectonema costatum (Ria Formosa autochthones clone) and 1/3 Chaetoceros 

calcitrans.  

Released oocytes from several females were obtained by a thermal stimulation consisting 

on the exposition to alternate cycles of 29°C (1 hour) and 5°C (30 minutes) (Joaquim et 

al., 2008). As each female begun to spawn it was removed from the spawning tank and 

transferred to an individual spawning beaker with filtered seawater at the same 

temperature (Joaquim et al., 2008). Once the spawning was completed, the obtained 

oocytes were gently washed into a clean glass. The rest of each female spawning was 

mixed with a sperm suspension (from 7 males) during gentle agitation, aiming to obtain 

around 10 spermatozoids by oocyte in a microscopic view (Cesari and Pellizzato, 1990; 

Joaquim et al., 2008). Moreover, to evaluate the quality of the collected oocytes, the D-

larval rate (ratio between the number of free swimming larvae at 48h post fertilization and 

the number of starting eggs) of each eggs batch was registered.  

In addition, gonads from five females were dissected and oocytes were collected through 

a practice known as “gametes stripping”. As the name indicates, this procedure involves 

removal of gamete from gonad tissue. Briefly, fully ripe gonads were slash repeatedly 

with scalpel and washed with filtered seawater to harvest the gametes. Finally, sex 

determination and oocytes appearance were achieved through a microscopy examination. 

About 20,000 oocytes for each spawning/stripping were collected and filtered in a 40 µm 

sieve. The oocytes were transferred into an eppendorf tube and, after a short spin, the 

seawater was removed. To remove the salts, the pellet of oocytes was re-suspended with a 

solution of ammonium formate 3% which was immediately removed after a short spin. 

Then the oocytes were included in 1,5 ml of Extract all solution (Eurobio) and preserved 

in liquid nitrogen until the RNA isolation. 

RNA was purified by following the manufacturer instructions and a DNAse treatment 

was carried out through RTS DNAse Kit (MO-BIO). Samples concentration was 

measured in a NanoDrop® ND-1000 spectrophotometer and the RNA quality was 

assessed through the Bioanalyzer 2010 instrument (Agilent). 

2.4. Labeling and microarray hybridization 
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Sample labeling and hybridization were performed according to the Agilent One-Color 

Microarray-Based Gene Expression Analysis protocol with the Low Input Quick Amp 

Labeling kit. Briefly, for each sample 100 ng of total RNA were linearly amplified and 

labeled with Cy3-dCTP. A mixture of 10 different viral poly-adenilated RNAs (Agilent 

Spike-In Mix) was added to each RNA sample before amplification and labeling, to 

monitor microarray analysis work-flow. Labeled cRNA was purified with the RNAeasy 

Mini Kit (Qiagen) and samples concentration and specific activity (pmol Cy3/µg cRNA) 

were measured in a NanoDrop® ND-1000 spectrophotometer. A total of 600 ng of 

labeled cRNA was prepared for fragmentation adding 5µl 10X Blocking Agent and 1µl of 

25X Fragmentation Buffer, heated at 60°C for 30 min, and finally diluted by addition 

with 25µl 2X GE Hybridization buffer. A volume of 40µl of hybridization solution was 

then dispensed in the gasket slide and assembled to the microarray slide (each slide 

containing eight arrays). Slides were incubated for 17 h at 65°C in an Agilent 

hybridization oven, subsequently removed from the hybridization chamber, quickly 

submerged in GE Wash Buffer 1 to disassembly the slides and then washed in GE Wash 

Buffer 1 for approximately 1 minute followed by one additional wash in pre-warmed 

(37°C) GE Wash Buffer 2. 

2.5. Data acquisition, correction and normalization 

Hybridized slides were scanned at 2µm resolution using an Agilent G2565BA DNA 

microarray scanner. Each slide was scanned two times at two different sensitivity levels: 

XDR Hi 100% and XDR Lo 10%. The two generated images were analyzed together, 

data were extracted and background subtracted using the standard procedures provided in 

the Agilent Feature Extraction (FE) Software version 10.7.3.1. To evaluate goodness and 

reliability of spot intensity estimates the software returns a series of spot quality 

measures. All control features (positive, negative, etc.), except for Spike-in (Spike-in 

Viral RNAs), were excluded from subsequent analyses. 

The fluorescence values were normalized by performing a quantile normalization in R 

statistical software. To improve the reliability of the analysis, only the probes for which 

the reported fluorescence intensity was greater than 10 in at least 5 samples were taken 

into consideration. A log base 2 transformation was applied to all the expression values 

and finally, the parametric Combat algorithm was implemented in R in order to adjust for 

the known between-experiments batch effects (Johnson et al., 2007). A total of 31,862 

probes were used in all the subsequent analyses. 
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2.6. Data analysis 

The analysis was carried out by dividing the oocytes samples in three experimental 

groups, each characterized by a different quality in terms of developmental competency. 

The three groups were the following: unfertile stripped oocytes, spawned oocytes with 

low hatching rate (LHR, 5%-21% of D-larval rate), spawned oocytes with medium 

hatching rate (MHR, 40%-47% of D-larval rate). Samples used in the analyses and the 

relative D-larval rates are reported in Table 1.  

A principal component analysis (PCA), using the TMeV 4.5.1 (TIGR 

MULTIEXPERIMENT VIEWER) (Saeed et al., 2003) was applied, to assess the 

distribution of the studied groups. Hierarchical clustering was performed using TMeV on 

the whole dataset, to group experimental samples based on similarity of the overall 

expression profiling. Statistical tests implemented in the program Significance Analysis 

of Microarray (SAM) were used to identify differentially expressed probes between the 

stripped oocytes and the two groups of spawned oocytes with different hatching rates. 

A one-way ANOVA parametric test was used to identify the probes whose expression 

changed between the three tested groups, using a p-value cut-off of 0.05 and a minimum 

fold change (FC) of 1.5. 

A more systematic, functional interpretation for significant gene was then obtained using 

an enrichment analysis from the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) software (Huang et al., 2009). “KEGG Pathway”, “Biological 

process”, “Molecular function” and “Cellular component” annotation were carried out by 

setting the gene count equal to 3 and the ease equal to 0.1. Because DAVID database 

contains functional annotation data for a limited number of species, it was necessary to 

link the V. decussata transcripts with sequence identifiers that could be recognized in 

DAVID. This process was accomplished using UniProtKB/SwissProt feature identifiers 

corresponding to each probe. These identifiers were used to define a “gene list” and a 

“background” in the bioinformatic tool DAVID, corresponding to differentially 

transcribed clam genes and to all the transcripts that were represented on the array, 

respectively. 

Stripped oocytes Low hatching rate oocytes (LHR) Medium hatching rate oocytes (MHR) 

P1 P2 P3 P4 P5 
X14  

(12%) 
X30 

(21%) 
X37 

(14%) 
X44 

(11%) 
X59 
(5%) 

X3 
(44%) 

X5 
(41%) 

X9 
(40%) 

X27 
(47%) 

X32 
(46%) 

Table 1. Microarray samples dataset. The oocytes samples used for the microarray analysis were 
divided in three experimental groups: stripped oocytes, low hatching rate oocytes and medium 
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hatching rate oocytes. The D-larval rates obtained after the fertilization of each spawning were 
reported in round brackets.  
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3. Results 

3.1. Sequencing results 

NGS technologies, RNA sequencing and Roche-454, were applied to sequence several 

cDNA libraries originating from oocytes, hemocytes, larval stages and adult tissues of V. 

decussata. Sequences across the entire length of the mRNA transcripts expressed in the 

target tissues were attained and two different assembly algorithms were used to obtain a 

whole scaffold transcriptome. In order to eliminate the redundant sequences, all the 

contigs produced by CLC bio (850,812) and MIRA3 (98,180) were submitted to the 

CAP3 software, obtaining a final scaffold of 503,705 sequences. Sequencing results and 

the de novo assembly’s statistics are summarized in Table 2, while the size distribution of 

the transcripts after contigs construction is resumed in Figure 1. 

A. ILLUMINA Sequencing 

    Sample Lane n° Total reads 

    Oocytes (stripped) 1 65 981 907 

    Oocytes (released) 1 32 722 892 

    D-larvae (48 hpf) 1 36 465 121 

    Larvae ready to settle (17 dpf) 1 51 967 552 

    Larvae settled (21 dpf) 1 47 752 218 

    1 month old seed (30 dpf) 1 45 800 062 

    Gonads Stage I 2 41 797 128 

    Gonads Stage II ♀ 2 49 187 996 

    Gonads Stage II ♂ 2 47 737 182 

    Gonads Stage III ♀ 2 44 891 188 

    Gonads Stage III ♂ 2 52 204 184 

    Gonads Stage IV ♀ 2 54 690 184 

    Gonads Stage IV ♂ 2 52 009 646 

B. 454 - Sequencing 

    Sample Run Total reads 

    Hemocytes naive and in vivo/vitro stimulated 1/2 457 559 

    Larval stages/Oocytes/Hemocytes/Adult tissues 1/2 471 192 

C. Assembly’s statistics  
   CAP3 inputated contigs 990 111 

   CAP3 metacontigs 69740 

   CAP3 singletons 433 965 

   complete scaffold 503 705 

   total nt 408 246 936 

   mean lenght 810 

   max lenght 29 774 

   min lenght 40 

Table 2. Statistics. Number of reads obtained from the Illumina (A) and 454 (B) sequencing. Total 
number of contigs inputted to CAP3 software and statistics of the final scaffold (C). 
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Figure 1. Contigs length distribution. Histogram reporting the number of contigs (y axis) with a 
specific length range (x axis)   

3.2. Whole transcriptome analysis 

Putative identities of assembled contigs and meta-contigs were obtained by running 

Blastx similarity searches on several protein databases (see methods). Giving the lack of a 

reference clam genome as well as the presence of specific sequences features such as high 

density repetitive regions and increased levels of polymorphism, this approach provided a 

significant match for 141,728 contigs, leading to a 27% of annotated transcripts.  

In order to characterize the annotated transcripts in the de novo assembly, Gene ontology 

(GO) terms were extracted. Cellular Component (GO CC), Molecular Function (GO MF) 

and Biological Process (GO BP) terms at ontology level 2 are summarized in pie charts 

(Figure 2). The GO analysis showed that 39% of the GO CC terms were included in the 

“cell” class and 27% in the “organelle” class. Concerning the GO BP, “cellular process” 

(23%), “metabolic process” (18%) and “biological regulation” (12%), were the most 

represented classes. Also the terms “biological regulation”, “response to stimulus” and 

“multicellular organismal process” were reported. Finally, within the GO MF, the two 

most represented groups were “binding” (49%) and “catalytic activity” (33%). 
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Figure 2. Summary of predicted gene product function and location using level 2 gene ontology 
terms. Gene ontology sorted into the three main categories: Cellular Component (A), Molecular 
Function (B) and Biological Process (C). The GO subcategories are indicated in the legend and 
the percentage relative to the total number of extracted terms is indicated in the pie chart. 

39%
14%

27%

10%

7%
1%

1%
1%

Cellular Component

cell

membrane

organelle

macromolecular complex

membrane-enclosed lumen

extracellular region

cell junction

synapse

A

23%

18%

8%

12%

6%7%
5%

6%

6%1%

1%

1%

2%
1%

1%

1%

1%

1%

Biological Process
cellular process

metabolic process

response to stimulus

biological regulation

developmental process

multicellular organismal process

signaling

localization

cellular component organization or biogenesis

cell proliferation

immune system process

locomotion

death

reproduction

growth

multi-organism process

biological adhesion

other

B

49%

33%

3%2%

2%

5%

2%

2%

2%

Molecular Function
binding

catalytic activity

structural molecule activity

nucleic acid binding transcription factor activity

receptor activity

transporter activity

enzyme regulator activity

molecular transducer activity

protein binding transcription factor activity

C



23 

 

3.3. Clustering analysis 

A Principal Component Analysis (PCA) was applied to the selected gene expression 

dataset (31,862 probes, see Methods) of the 15 oocytes samples (Figure 3). A clear 

clustering of the three different groups of samples was observed. Stripped eggs, LHR 

eggs and MHR eggs were clearly separated along the x axis, which explained 29% of the 

variation. The expression profiles were also separated along the y axis (11% of the 

variation), but in this case stripped oocytes and MHR oocytes didn’t showed a marked 

divergence in expression patterns, while the separation of LHF eggs was remarkable. 

Notably, the expression patterns of the 5 stripped oocytes appeared to be similar, while 

spawned eggs of the two groups  seemed less homogeneous.  

 

Figure 3. Principal Component Analysis. Samples belonging to the same experimental group are 

identified by a coloured circle: green for MHR (medium hatching rate) oocytes, red for LHR (low 

hatching rate) oocytes and blue for stripped oocytes. 

Hierarchical clustering of the whole set of probes, using Pearson’s correlation, is reported 

in Figure 4. The analysis identified two main clusters: stripped oocytes and spawned 

oocytes. Within the spawned oocytes cluster, samples were further divided in relation to 

their mean D-larval rate, leading to a definitive separation of the three experimental 

groups. 

X axis=1; Y axis=2 
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Figure 4. Hierarchical clustering analysis. Stripped oocytes are identified by the “P” letter, 
while spawned oocytes are labelled with the “X” letter. Red and green rectangles define LHR 
(low hatching rate) oocytes and MHR (medium hatching rate) oocytes, respectively.  

3.4. Comparison between stripped and spawned oocytes 

In order to compare gene expression profiles between V. decussata oocytes, a two-class 

unpaired Significance Analysis of Microarray (SAM) test was carried out on 

normalized/log transformed (base 2) data (FDR<1.5%; FC>1.5). The number of 

significant probes obtained from the two comparisons are summarized in Table 3 

 ANALYSIS 1 ANALYSIS 2 
Stripped oocytes VS LHR 

oocytes 
Stripped oocytes VS MHR 

oocytes 
Up-regulated transcripts 105 4,166 
Down-regulated transcripts 372 4,594 
Total DEGs (unique 
transcripts) 

477 (217) 8,760 (4,772) 

Table 3. Differential expression analysis. Number of significant probes (FDR<1.5%, FC>1.5) 
determined through a two-class unpaired SAM (Significance Analysis of Microarray). Unique 
transcripts refer to the annotation against UniProtKB/SwissProt database. LHR: low hatching 
rate oocytes; MHR: medium hatching rate oocytes; DEGs: differentially expressed genes. 

A comparison between the significant probes in the two analyses allowed us to identify a 

set of 439 transcripts which were differentially expressed between stripped and spawned 

oocytes, independently of the D-larval rate. A putative UniProtKB/SwissProt accession 

IDs was obtained for 235 probes corresponding to 198 unique genes (reported in 

Appendix A1) that were differentially expressed between the two oocytes conditions. 

Among the differentially expressed genes (DEGs), important transcripts encoding 

regulators of sex steroids synthesis and activity, such as a progestin and adipoQ receptor 

family member 3 (PAQR3) and steroid 17-alpha-hydroxylase/17,20 lyase (CYP450-C17), 

were expressed at a higher level in the stripped oocytes. Gene expression of enzymes 
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involved in the metabolism of ceramide, a signal sphingolipid thought to influence the 

oocytes maturation and quality, showed significant variations: sphingomyelin 

phosphodiesterase and neutral ceramidase B were expressed at a higher level in the 

stripped oocytes, while a putative sphingomyelinase transcript was more abundant in 

spawned oocytes. 

Interestingly, also a putative vitellogenin (Vg), the major egg yolk protein precursor, was 

more abundant in released oocytes.  

Moreover two transcripts encoding proteins suggested to be involved in regulating the 

maternal mRNAs transcription were differentially expressed. Putative translin-associated 

protein X and a oocyte zinc finger protein XlCOF28 were reported to be more and less 

abundant in ovarian oocytes, respectively.  

Also the regulation of intracellular calcium levels seemed to highly differentiate the 

ovarian from the spawned oocytes: putative homologs of C. gigas calcium-activated 

chloride channel regulator 4 (two probes), regucalcin and calmodulin were more abundant 

in stripped oocytes, while sodium/calcium exchanger 3 had an higher expression level in 

spawned oocytes. 

All putative annotated DEGs were used to define a gene list for functional annotation 

with DAVID. Enrichment analysis showed 7 CC terms, 16 BP terms, 9 MF terms and 1 

KEGG to be significantly over-represented (Appendix A2). The only significant KEGG 

pathway was “ribosome” (dme03010), represented by 3 more abundant transcripts in the 

stripped oocytes: 60S ribosomal protein L3, 60S acidic ribosomal protein P1 and 40S 

ribosomal protein S9. “Mitotic cell cycle” (GO:0000278), “translation” (GO:0006412), 

“WNT receptor signalling pathway” (GO:0016055) and “dephosphorylation” 

(GO:0016311) were the most represented in the enriched BP terms. Among the DEGs 

belonging to the biological processes above, 5 M-phase inducer phosphatases (MPIP), a 

MPIP-like protein, frizzled 8, four-jointed protein and protein WNT-4 were found. With 

regard to the CC terms, one of the most represented ones was “ribonucleoprotein 

complex” (GO:0030529), which in oocytes is involved in the storing and 

compartmentalization of inactive mRNA incompletely polyadenylated, thus rendering 

them inactive until the resumption of meiosis (de Moor and Richter, 1997; Mendez et al., 

2000). Significant MF terms concerned activities which are classically involved in the 

cell cycle regulation such as peptidase (GO:0008233) and phosphatase (GO:0016791) 

activities, and the action of molecules which contribute to the structural integrity 

(GO:0005198). 
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3.5. Comparison between LHR and MHR oocytes 

In order to identify the probes whose expression changed in relation to different oocytes 

competence, a SAM quantitative correlation analysis was carried out on normalized/log-

transformed data (FDR<5%). A total of 930 differentially expressed probes were 

detected, 453 of them were more abundant in oocytes with the highest D-larval rate and 

477 in LHR oocytes. A putative annotation in the UniProtKB/SwissProt database was 

obtained for 587 probes that were differentially regulated in relation to the oocytes 

competence. The protein names corresponding to the 555 unique UniProtKB/SwissProt 

accession IDs, out of the 587 matches, were reported in Appendix A3. Genes encoding 

proteins putatively involved in the oocytes and embryo development were detected. The 

whole set of annotated transcripts were used to define a gene list for functional annotation 

with DAVID. Enrichment analysis showed 31 BP terms, 17 CC terms, 18 MF terms and 9 

KEGG to be significantly over-represented (Appendix A4). Notably, with 19 genes the 

BP term “biological adhesion” (GO:0022610) was the most represented. A further BP 

term significantly enriched was “male gamete generation” (GO:0048232) represented by 

putative homologs positively correlated with the D-larval rate such as diaphanous and 

sperm-associated antigen 6 (Spag6). An additional enriched KEGG was “negative 

regulation of cell cycle” (GO:0045786) represented, among other, by a cyclin-dependent 

kinase 20 (two probes positively correlated with the oocytes quality).  

As concern the CC terms, in addition to the “extracellular region” (GO:0005576), 

enriched also in the comparison between stripped and spawned oocytes, the cellular 

compartment showing a consistent enrichment was those sustaining the vesicular 

trafficking. Genes annotated with CC terms like “Golgi-associated vesicle membrane” 

(GO:0030660), “early endosome” (GO:0005769) and “vesicle coat” (GO:0030120) were 

listed among the genes whose expression changed in relation to the oocytes competence 

on larval development. Interestingly, the 136 genes belonging to the enriched MF term 

“ion binding” (GO:0043167) reflected the important role of charge regulation in oocytes 

development, most notably of calcium (GO:0005509). Furthermore, the importance of 

calcium was confirmed by the oocytes quality-correlated mRNA expression of 

sodium/calcium exchanger members 2 and 3, calcineurin (higher expression in MHR 

oocytes) and IP3r, resulting in the enriched KEGG pathway “calcium signalling pathway” 

(rno04020). IP3r and calcineurin, together with adenylate cyclase led also to the over-

representation of the KEGG pathway “oocyte meiosis” (rno04114). Moreover, within the 

Panther database, the most represented enriched pathways (p-value<0.01) was “WNT 
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signalling pathway” (P00057), a molecular pathway that also characterized part of the 

differences between stripped and spawned oocytes. Notably the most interesting probes 

belonging to this pathway and positively correlated with the oocytes quality were those 

putatively encoding the WNT proteins receptors frizzled-4 and frizzled-10, and the 

calcium-dependent cell adhesion molecules cadherins type 4, 7 and 23.  

3.6. ANOVA one way analysis 

To investigate the set of probes whose expression level increased or decreased in relation 

to the increment of oocytes competence (stripped oocytes=null; LHR oocytes=low; MHR 

oocytes=medium), an ANOVA one way analysis was carried out on all samples from the 

three experimental groups. The analysis allowed to obtain a list of 14,118 probes with a 

significant change in expression between at least two groups (pval<0.5). A total of 568 

probes for which the transcriptional variations were positively correlated to the oocytes 

competence were detected by selecting probes with a maximum expression value in MHR 

oocytes, intermediate in LHR oocytes and minimum in stripped oocytes. The same 

approach was adopted to find a list of 1,505 probes inversely correlated to the 

competence level (maximum expression value in stripped oocytes, intermediate in MHR 

oocytes and minimum in LHR oocytes). Finally, to provide a more comprehensive 

functional interpretation of the genes putatively involved in the biological mechanisms 

regulating the acquisition of oocytes competence, an enrichment analysis was carried out. 

Out of 2,073 probes, positively or negatively correlated to the oocytes competence, 1,342 

annotated transcripts were used to define a gene list in DAVID. Results reported the over-

representation of 3 KEGG, 48 BP terms, 16 CC terms and 31 MF terms (Appendix A5). 

Among KEGG pathways the higher fold enrichment was shown for “ribosome” 

(dme03010 and hsa03010), a term found significantly enriched also in the comparison 

between stripped and spawned oocytes, attesting the important involvement of the 

ribosomal activities during the oocytes development. Looking at the BP terms, “response 

to corticosteroid stimulus” (GO:0031960), spindle organization (GO:0007051 and 

GO:0000022), “steroid metabolic process” (GO:0008202) and sperm-egg recognition 

(GO:0035036 and GO:0007339) were significantly over-represented. Furthermore, 

enriched general mechanisms such as “translation” (GO:0006412), adhesion 

(GO:0007155 and GO:0022610) and oxidation reduction (GO:0055114) were identified.  
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4. Discussion  

The gene expression analysis and the evaluation of DEGs between oocytes at different 

maturation stage and quality pointed out some interesting results and provided a first 

overview on the molecular mechanisms responsible for stripped oocytes infertility and 

oocytes competence. Among the 198 annotated DEGs between stripped and spawned 

oocytes, several transcripts were implicated in the regulation of the cell cycle. Notably V. 

decussata stripped ovarian oocytes have already replicated their DNA and are blocked at 

the germinal vesicle stage during late prophase of the first meiotic division. Conversely in 

spawned oocytes meiosis reinitiates and during metaphase I occurs a second block which 

is only released upon fertilization or artificial activation (Lippai et al. 1995). Several 

proteins are involved in the regulation of prophase I arrest occurring in ovarian oocytes, 

the most crucial factor being the maturation promoting factor (MPF) (Jones, 2004). MPF, 

a key G2/M phase regulator in eukaryotic cells consisting of cdc2 kinase (known also as 

cdk1) and cyclin B (Nurse, 1990), is induced during the meiosis resumption and its 

activity is regulated by the phosphorylation of cdc2 kinase. Cdc2 kinase is activated when 

M-phase inducer phosphatases (cdc25) dephosphorylate threonin-14 and tyrosine-15 sites 

(Millar et al., 1991; Strausfeld et al., 1991; Trunnell et al., 2011), leading, in turn, to 

MPF activation and meiosis resumption. In this study, six probes coding for cdc25 or 

cdc25-like proteins were reported to be more abundant in released oocytes, suggesting a 

prominent role of these phosphatases in the resumption of the meiotic cell cycle 

progression in V. decussata. The controlling function of cdc25 phosphatases in the 

meiosis I progression has been proposed in a wide range of species (e.g. Kim et al., 2010 

in Caenorhabditis elegans; Alphey et al., 1992 in Drosophila; Kishimoto, 2011 in 

startfish; Oh et al. 2010 in mouse; Gaffrè et al., 2011 in Xenopus). In mouse, both 

cdc25A and cdc25B were demonstrated to be critical for meiotic maturation and 

metaphase I spindle formation of oocytes (Solc et al., 2008). In mice cdc25B−/− knockout 

female are sterile because their oocytes cannot exit developmental arrest at meiosis 

prophase 1 (Lincoln et al., 2002), whereas cdc25A−/− mice exhibit early embryonic 

lethality (Ray et al., 2007), indicating that they are required for the control of oocyte 

meiotic cell cycle and embryonic mitotic cell cycle, respectively. Interestingly, among the 

six phosphatases differentially expressed between stripped and spawned oocytes, three 

followed a trend of expression correlated to the D-larval rate and their expression values 

were lower in stripped oocytes, intermediate in LHR oocytes and higher in MHR oocytes. 

Unfortunately in the European clam these proteins have not been studied yet and the 
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number of cdc25 isoforms is still unknown, but these findings allowed to hypothesize that 

in V. decussata more than one cdc25 family members exist and that they may function as 

distinct but related cell cycle regulators. Moreover, despite a role in meiosis I resumption, 

it seems that, at least for a few putative members, also the transcript abundance is 

fundamental for the maturation processes leading to a correct embryo development. 

A crucial role in the molecular processes which differentiate stripped and spawned 

oocytes was predicted also for a few members of the WNT signalling pathway 

(GO:0016055), a powerful signalling pathways that play crucial roles in the animal life by 

controlling the genetic programs of embryonic development and adult homeostasis 

(Grigoryan et al., 2008). Recently, in mammalians WNT pathway signalling has been 

implicated in ovarian development, oogenesis, and early development. Multiple WNT 

signalling pathway genes are expressed in mouse oocytes and pre-implantation stage 

embryos, as revealed by microarray analyses (Wang et al., 2004; Zeng et al., 2004), and 

this has led to the hypothesis that WNTs may function in early cell fate determination 

events (Wang et al., 2004). Other studies, however, indicate that WNT signalling 

pathways are likely not functional in the early embryo (Kemler et al., 2008), raising the 

possibility that expression of WNT signalling genes in oocytes and early embryos are 

most likely related to functions in oogenesis (e.g., oocyte growth or maturation) (Zheng et 

al., 2006). In the present study the expression levels of three probes putatively encoding a 

WNT proteins receptor, frizzled-8, were more abundant in released oocytes. This data 

might suggest that frizzled-8 expression supports the WNT signalling pathway activation 

by favouring the recognition of WNT proteins. Moreover, our results reported that a 

putative ortholog of C. gigas WNT4 was less abundant in the female gametes extracted 

from mature gonads, in comparison with the released oocytes, and its mRNA expression 

tended to increase with the eggs quality. These findings suggest that not only WNT4 

transcript could be implied in the V. decussata oocytes development but it could also be 

an important transcript whose abundance affects the oocyte quality, like it has been 

proposed in mouse. Notably, mice null for WNT4 exhibit sex reversal and a reduced 

number of oocytes in new-born ovaries (Jeays-Ward et al., 2004). In the same species, 

ovaries of WNT4-mutant females were characterized by a scarce amount of oocytes and 

these were in the process of degenerating (Vainio et al., 1999) and the 80% of WNT4 

deficient germs cells failed to enter meiosis (Naillat et al., 2010). Finally a putative four 

jointed protein (Fj) encoding transcript was significantly (FDR<1.5%) more expressed in 

spawned oocytes than in stripped ones, and its expression, similarly to what reported for 
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WNT4, has the highest level in MHR oocytes. The role of Fj has been poorly investigated 

in both vertebrates and invertebrates. However, few studies focusing on this gene have 

been performed in D. melanogaster, where it has been demonstrated that this protein 

directly interacts with WNT4 and they act synergistically to induce planar polarity during 

early development (Lim et al., 2005; Bosveld et al., 2012). Considering the lack of 

functional information concerning Fj, it’s difficult to establish a specific role of this gene 

in V. decussata, nevertheless it can be suggested that its expression in oocytes maturation 

is probably linked to the oocytes competence on fertilization and larval development.  

Interestingly, the pivotal role suggested for the WNT signalling pathway was confirmed 

by the expression patterns evaluated in LHR and MHR oocytes, in which the mRNA 

abundance of a few putative frizzled receptors and cadherins was correlated to the 

developmental competence level. Notably, in vertebrates a cross-talk between WNT-

mediated signals and cadherins have been reported to have a major role in morphogenesis 

and tissue formation (Marie and Haÿ, 2013). Taken together these results allowed us to 

hypothesize that also in V. decussata oocytes, the amount of mRNAs encoding proteins 

involved in the WNT signalling could be extremely important to permit the complete 

oocytes maturation and fertilization. 

Another interesting finding was the significant change in expression of a putative Vg 

transcript. Vgs are the major precursor of the egg-yolk proteins, vitellins (Vn), which are 

stored in developing oocytes and are required for oocyte growth and maturation 

(Kanungo et al., 1990; LaFleur et al., 2005). In addition, yolk storage proteins are 

traditionally regarded as the energy reserve for nourishment of the developing embryos 

(Zhang et al., 2011; Li et al., 1998a, 1998b). Vgs have been shown to be present in 

almost all species of oviparous animals ranging from nematodes to vertebrates, and 

extensive sequence conservation is observed among these groups (Chen et al., 1997). To 

date, full length sequence characterization and gene expression levels of Vg have mainly 

focused on insects, crustaceans and fish (LaFleur et al., 1995, Mouchel et al., 1996; 

Okuno et al., 2002; Tsutsui et al., 2000). As regards molluscs, only a few studies were 

reported and Vg transcriptional levels were mainly evaluated in the gonadal tissue (Osada 

et al., 2003, 2004; Matsumoto et al., 1997, 2003, 2008; Zheng et al. 2012). In 

Patinopecten yessoensis and C. gigas, it has been demonstrated that the synthesis of Vg 

mRNA occurs in auxiliary cells inside the ovary (hetero-synthetic synthesis pathway), 

and is controlled by 17beta-estradiol (E2) and vitellogenesis promoting factor (VPF) via 

estrogen receptor (ER) (Osada et al., 2003, 2004; Matsumoto et al., 1997, 2003). 
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Conversely, studies performed in Mytilus edulis and C. gigas suggested that yolk proteins 

are synthesized in developing oocytes through an auto-synthetic pathway (Pipe, 1987; 

Suzuki et al, 1992). However, there has not been direct evidence on Vg synthesis, and it is 

still unclear whether the synthesis of a major yolk protein occurs through an auto- or 

hetero-synthetic pathway in bivalve molluscs. The fact that in the present study Vg 

mRNA was detected in the oocytes, let us thinking that in V. decussata Vg is synthesized 

through an  auto-synthetic pathway. Despite that, we cannot exclude that in V. decussata 

a hetero-synthetic synthesis occurs, thus further investigations are needed. In addition, a 

higher level of Vg transcript was reported in the spawned oocytes. Despite the importance 

of Vg during oocytes growth/maturation and embryonic development has been 

demonstrated mainly at a protein level, this result might suggest that also Vg mRNA 

levels play a pivotal role, probably by providing a reserve of transcripts ready to be 

translated into functional protein. Thus it can be hypothesized that highest levels of 

stocked Vg mRNA in released oocytes provide a resource to support maturation and 

following embryo development. However, since the site of Vg synthesis in molluscs is 

not yet clarified and major regulations seem to occur at a protein level, gene expression 

results reported here cannot be sufficient to propose general conclusions regarding the 

involvement of Vg in V. decussata released oocytes.  

Nonetheless, the presence of Vg mRNA stocks in bivalves was demonstrated also by 

Osada and colleagues (2004), who observed high level of Vg mRNA in P. yessoensis 

gonads through the spawning stage. A possible explanation they proposed, hypothesized 

also in Xenopus liver cell (Brock and Shapiro, 1983), is that Vg mRNA might be 

stabilized and remained un-translated, resulting in the retained high amount of Vg 

mRNA. The mechanism supposed to be involved in the retention of Vg mRNA requires 

the activity of RNA-binding proteins, which are known to function as translational 

repressors in the cytoplasm of several eukaryotic cells (Wilkinson and Shyu, 2001; 

Wickens et al., 2002). This mechanism is supposed to be crucial in oocytes since, during 

oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form 

and are activated either upon re-entry into the meiotic divisions or after fertilisation (Song 

and Wessel, 2005, Dheilly et al., 2012). In Xenopus oocyte maturation and early 

embryogenesis, translin, a RNA-binding protein, was demonstrated to play a major role to 

repress maternal mRNA translation (Castro et al., 2000). Notably in this study, a translin-

associated protein X, supposed to be involved in the nuclear transport of translin in mice 

(Aoky et al., 1997; Cho et al., 2004), was expressed in all the oocytes condition and 
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particularly abundant in stripped oocytes. The relevance of mRNA translation in oocytes 

was demonstrated also by the significant variations reported for a  putative homolog of 

the Xenopus oocyte zinc finger protein XlCOF28 whose mRNA amount was more 

abundant in spawned oocytes. The Xenopus zinc finger protein XlCOF28 belongs to the 

family of C2H2 zinc finger proteins, which are known to function as RNA-binding 

molecules (Hall, 2005). Noteworthy, it has been recently reported that proteins belonging 

to this family are required for regulation of maternally supplied mRNAs during 

oogenesis, oocyte to embryo transition, and early embryogenesis in both vertebrates and 

invertebrates (Yamamoto et al., 2013; Kaymak and Ryder, 2013). Consistent with these 

evidences, it can be hypothesized that C2H2 zinc finger proteins take part to the 

mechanisms which regulate mRNAs silencing in V. decussata oocytes. 

A further interesting result concerns the differential expression of several transcripts 

involved in calcium (Ca2+) signalling. There has been a long-standing debate as to 

whether Ca2+ signals are required for oocyte meiosis and numerous conflicting studies 

argue that the relationship between Ca2+ and oocyte maturation is complex (Sun and 

Machaca, 2004, Tosti et al., 2006). The role that external calcium, through voltage-gated 

channels, might play in the induction of GVBD was first reported in molluscs that are 

both fertilized at the PI stage (Allen, 1953; Dubè, 1988; Deguchi and Osanai, 1994), or 

undergo the second arrest in MI (Dubé and Guerrier Guerrier, 1982; Cuomo et al., 

2005). It was soon recognized that also the intracellular calcium increase plays a crucial 

role in almost all species studied independently from their peculiar meiotic arrest 

(Deguchi and Osanai, 1994; Juneja et al., 1994; Guerrier et al., 1993). In particular, the 

interplay between external and internal calcium currents is evident in Venerupis, where a 

serotonin-induced surge of intracellular calcium was shown to trigger maturation even in 

the absence of external calcium (Guerrier et al., 1993). In the present study, the 

differences in the amount of mRNA encoding putative calcium-activated chloride channel 

regulator 4 confirmed that the regulation of intracellular Ca2+ plays an important role in 

V. decussata oocytes maturation. Likewise in the present work, a putative sodium/calcium 

exchanger 3 was reported to be more abundant in the released oocytes and homologs of 

C. gigas regucalcin and calmodulin showed higher expression levels in ovarian oocytes. 

Calmodulin and regucalcin are calcium-binding proteins supposed to contribute to the 

meiosis regulation (Wasserman and Smith, 1981; van der Voet et al, 2009) and their 

mRNA variations suggest an involvement in maintaining the calcium homeostasis in 

immature oocytes. Interestingly, the regucalcin mRNA was expressed at lowest level in 
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the MHR oocytes, thus indicating that low levels of this transcript could be related to 

higher quality eggs. Despite little is known about the molecular regulation of intracellular 

Ca2+ occurring during oocytes maturation in bivalves, these preliminary results pointed 

out a few important genes possibly involved in such a complex mechanism. 

In the present study, changes in mRNA levels were reported also for putative PAQR3 and 

CYP450-C17, which were both more abundant in ovarian oocytes. Progestin and adipoQ 

receptor family is a group of G protein-coupled receptors including membrane 

progesterone receptors (mPRs) that mediate a variety of rapid cell surface-initiated 

progesterone actions in the reproductive system involving activation of intracellular 

signalling pathways. Cytochrome P450-C17 is an enzyme involved in the synthesis of E2 

during steroidogenesis. Despite in invertebrates there have been conflicting lines of 

evidence concerning the existence of enzymes necessary to synthesize vertebrate steroids 

and related nuclear receptors (Scott, 2013), several studies suggested a role of E2 and 

progesterone in gonadal development, oocytes maturation and spawning in several 

bivalve species (Li et al., 1998a; Matsumoto et al., 1997; Osada et al., 2003, 2004; Reis-

Henriques and Coimbra, 1990; Varaksina and Varaksin, 1991; Varaksina et al. 1992; 

Wang and Croll, 2004). Consistent with these studies, we demonstrated that, during V. 

decussata oocytes maturation, significant variations of transcripts involved in the sex 

steroids synthesis and activity occurred. In particular the highest PAQR3 and CYP450-

C17 mRNAs levels in ovarian oocytes may be associated to an higher E2 synthesis and 

progesterone activity in comparison with released oocytes. Accordingly, evidences 

indicate that sex steroids have a pivotal role in the pre-spawning stage since the have 

stimulatory effects on gamete release in P. yessoensis and Placopecten magellanicus 

(Osada et al., 1992; Wang and Croll, 2003; Wang and Croll, 2007). 

Another metabolic process possibly implied in the oocytes maturation events in V. 

decussata was the regulation of ceramide levels. The enzymes controlling the metabolism 

of ceramide in oocytes have been poorly studied in molluscs and only recently sequences 

of genes associated with ceramide metabolism and signalling have been investigated in 

the Pacific oyster (Timmins-Schiffman and Roberts, 2012). Conversely, in vertebrates 

quite a few studies have been focused on the role of ceramide in oocytes and two main 

hypotheses have been suggested (Coll et al., 2007). First, it has been proposed that the 

generation of ceramide is a part of the signal transduction pathway activated in response 

to progesterone and that the increase in ceramide is likely to be functionally important in 

the resumption of the meiotic cycle (Strum et al., 1995; Morrill and Kostellow, 1998; 
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Buschiazzo et al. 2011). Second, it has been recently demonstrated that ceramide induces 

the default apoptosis process in oocytes and it has a central role in the age-related 

decrease of eggs quality (Perez et al., 2005; Miao et al., 2005). In the present study, at 

least three enzymes involved in the ceramide metabolism were found differentially 

expressed between stripped and spawned oocytes: a ceramide synthase, less abundant in 

ovarian oocytes, a ceramidase and a spyhgomyelinase, both less abundant in released 

oocytes. In addition, the expression of the sphingomyelinase and a sphingosine kinase 

were higher in stripped oocytes and lower in MHR oocytes, suggesting that a low amount 

of mRNAs encoding these enzyme could be somehow linked to higher eggs quality. Since 

no data are available on the normal ceramide homeostasis in bivalve oocytes, a 

comprehensive interpretation of the reported mRNA fluctuations is particularly 

challenging. Thus we can only legitimately conclude that, also in V. decussata, the 

ceramide metabolism most likely plays an important role in oocytes maturation and 

competence development.   

A second aim of the present study was the identification of molecular mechanisms 

possibly involved in the development of oocytes competence once fertilization occurred. 

Since a high variability occurs in the spawned oocytes quality, we hypothesized that 

differences among the mRNA abundance of some transcripts could affect the oocyte 

maturation and the acquisition of developmental competence. Notably, mature oocytes of 

marine invertebrates contain a set of messenger RNAs which are not translated to a 

significant extent until after fertilization, when they provide most of the metabolic 

resources and information required for the early development of zygotes (Watson, 2007). 

The analysis of the expression profiles of LHR and MHR oocytes allowed us to identify a 

total of 930 probes whose fluorescence intensity was positively or negatively correlated to 

the eggs quality, measured by the D-larval rate following oocytes fertilization. A 

functional annotation of those probes was carried out and it pointed out some interesting 

results.  

Important variations occur in the abundance of transcripts encoding proteins regulating 

the oocyte meiosis, such as adenylate cyclases (ADCY), IP3r-1, IP3r-2 and the catalytic 

subunit alpha isoform of protein phosphatase 2B. ADCYs are membrane-associated 

enzymes that catalyse the formation of the secondary messenger cyclic adenosine 

monophosphate (cAMP) which is thought to have a pivotal role in the meiotic maturation 

in several species (Richard, 2007). In fact, accumulated evidence indicates that the 

release from prophase I arrest is accompanied by a decrease in oocyte intracellular levels 
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of cAMP, which is most probably a major prophase-I-arresting factor in amphibian and 

mammalian oocytes. Despite some exceptional cases seem to exist, such as the oocytes of 

the bivalve Spisula solidissima, in which the onset of meiosis reinitiation is associated 

with an increase in cAMP levels (Yi et al., 2002), it is generally accepted that an almost 

universal decrease in oocyte cAMP is sufficient to trigger the release of oocytes from 

prophase I arrest or at least positively affects it. In the present study the mRNA transcripts 

encoding ADCY type 5 and 6 were more abundant in oocytes with a lower developmental 

competence. Thus, despite cAMP levels are regulated also by other factors, such as 

progesterone and mPRs, more likely ADCYs have a key role in cAMP balancing and 

meiotic progression in V. decussata. 

Moreover, the variations in the mRNA levels reported for IP3 receptors could provide 

interesting information concerning the bivalve oocytes maturation. IP3r are membrane 

glycoprotein complexes acting as Ca2+ channels and are activated by inositol 

trisphosphate (IP3), which has been strongly implicated in the conversion of external 

stimuli to intracellular Ca2+ signals (Yoshida and Imai, 1997). IP3r have been shown to 

have a predominant role also in oocytes, in both the formation and propagation of Ca2+ 

waves at fertilization (Kume et al., 1993) and it has been demonstrated that intracellular 

injections of IP-3 triggered GVBD in Spisula (Bloom et al., 1988) and Venerupis 

(Guerrier et al., 1996). In the present work, putative orthologs of the mammalian IP3r-1 

and IP3r-2 were differentially expressed in relation to the oocytes competence. In 

particular the IP3r-1 was more abundant in the MHR oocytes, while IP3r-2 expression 

decreased as the oocytes quality increased. The opposite trend of expression reported for 

the two IP3r types allows us to think that in the European clam oocytes, at least two IP3r 

are expressed and that not only the presence of this receptor is crucial in determining a 

complete oocytes maturation and fertilization, but most probably also the isoform 

identity. While the isoform-specific cellular function of these channel proteins have not 

been investigated in molluscs, conversely in mammals IP3r isoforms, their subcellular 

distribution and peculiar functions have been studied (e.g. Vanlingen et al., 2000; 

Vermassen et al., 2004). Thus these preliminary results suggest the importance of IP3r 

messengers during the oocytes maturation phases occurring after the spawning in V. 

decussata. 

A further interesting gene differentially expressed in released oocytes and implied in the 

meiotic maturation was the one coding for the catalytic subunit alpha isoform of a protein 

phosphatase 2B, known also as calcineurin. This enzyme is a calcium/calmodulin-
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dependent phosphatase and plays a major role in the transduction of calcium signals in a 

variety of cell types from fungi to vertebrates (Stewart et al., 1982 and Aramburu et al., 

2000). The significant role of calcineurin in meiotic maturation has been demonstrated in 

invertebrates (Takeo et al., 2006; Takeo et al., 2010) and in lower vertebrates (Nishiyama 

et al., 2007; Mochida and Hunt, 2007), while there is very limited information about 

calcineurin expression and distribution in mammalian oocytes. In pig oocytes, specific 

inhibitors of calcineurin affect the in vitro maturation of both growing pig oocytes with 

partial meiotic competence and fully grown pig oocytes with full meiotic competence 

(Petr et al., 2013; Tumova et al., 2013). These calcineurin inhibitors affected the exit of 

oocytes from the metaphase I of meiotic maturation. However, the role of calcineurin in 

the regulation of oogenesis and meiosis of gametes of mammalian females remain 

unclear. In Drosophila it has been demonstrated that oocytes lacking family members of 

positive regulators of calcineurin (RCANs) are arrested in anaphase of meiosis I (Takeo et 

al., 2006; Takeo et al., 2010). Consistent with these evidences, we found that calcineurin 

mRNA was more abundant in high quality oocytes, paving an important function of this 

enzyme also in V. decussata meiotic maturation.   

Beside Ca2+ regulation, also cyclin-dependent protein kinases (cdks) have a crucial role 

during the oocytes maturation, since they regulate cell cycle transitions (Morgan, 1995; 

1997). The importance of cdc2 kinase (cdk1) for the meiosis progression has been 

previously discussed. Interestingly, variations in the mRNA expression of a putative 

cyclin-dependent kinase 20 (cdk20 or p42) pointed out an additional mark differentiating 

oocytes with different developmental competence. In fact, the amount of cdk20 RNA 

messenger showed a positive correlation with the oocytes quality, suggesting an 

involvement of this kinase in the mechanisms promoting a correct gametes maturation 

and fertilization. The role of cdk20 has been recently investigated in mammals and it has 

been demonstrated that it is essential for the phosphorylation and consequent activation of 

cdk2 (Liu et al., 2004). Cdk2 is thought to be essential in the mammalian cell cycle, by 

driving cells through the G1/S transition (Heichman and Roberts, 1994), and in the 

Drosophila early embryogenesis as well (Knoblich et al, 1994). However, several lines of 

evidence indicated that cdk2 was essential in meiosis, but not in mitosis in mice (Ortega 

et al., 2003). Consistent with this hypothesis, cdk2 knockout mice grew normally, but 

both male and female mice were sterile due to meiotic defects (Berthet et al., 2003). Cdk2 

activity is thought to be essential also in porcine oocytes, in particular for the first to 

second meiosis transition (Sugiura et al., 2005). Furthermore a recent study in the giant 
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prawn Macrobrachium rosenbergii suggested that cdk2 kinase might have an essential 

role during the meiotic maturation also in invertebrates (Chen et al., 2013). Despite the 

role of cdk20 is not fully resolved, not even in vertebrates, these studies allow us to 

propose that its abundance in MHR clam oocytes could be implicated in a major 

activation of cdk2, thus being one of the several factors which contribute to the their 

higher developmental competence.  

The acquisition of oocytes competence in V. decussata seemed to be regulated also by 

other important factors. One of them was the diaphanous protein, a formin required for 

cytokinesis in both mitosis and meiosis. It has been demonstrated in Drosophila that it 

has a role in actin cytoskeleton organization and is essential for many, if not all, actin-

mediated events involving membrane invagination (Castrillon and Wasserman, 1994). 

Moreover a role as a mediator between signalling molecules and actin organizers at 

specific phases of the cell cycle (e.g. contractile ring) has been proposed (Afshar et al., 

2000). The importance of diaphanous during the meiotic maturation has been 

demonstrated by Castrillon and Wasserman (1994) that reported that mutated alleles of 

this gene affected spermatogenesis and oogenesis. Later, Bione and colleagues (1998) 

proposed that the homolog of Drosophila diaphanous in human is one of the genes 

responsible for premature ovarian failure and that it affects the cell divisions that lead to 

ovarian follicle formation. In molluscs this transcripts has never been reported but, since 

its mRNA abundance was significantly correlated to V. decussata oocytes quality, we can 

suppose that this protein may have an important role in cytokinesis and other actin-

mediated morphogenetic processes that are required in early steps of development.  

A further transcript showing the same expression pattern as diaphanous was Spag6, a 

protein, mostly expressed in testis, thought to be important for structural integrity of the 

central apparatus in the sperm tail and for flagellar motility in mouse (Sapiro et al., 2000). 

In the same species, this protein has been later implicated in mouse infertility (Sapiro et 

al., 2000) since mice lacking Spag6 produced sperm with marked motility defects, 

morphological abnormalities, disruption of flagellar structures, including loss of the 

central pair of microtubules and disorganization of the outer dense fibers. It’s intriguing 

that a similar transcript has been detected in V. decussata oocytes with the highest quality. 

We can suppose that most probably this transcript encodes a protein with functions 

similar to Spag6 in male gametes and thus is implied in the gamete structural integrity.  

Finally, in the present study, a pivotal role of the WNT signalling pathway in the oocyte 

maturation process was suggested. In fact, the abundance of few transcripts 
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corresponding to putative frizzled receptors and cadherins was correlated to the 

developmental competence. Notably, in vertebrates a cross-talk between WNT-mediated 

signals and cadherins have been reported to have a major role in morphogenesis and 

tissue formation (Marie and Haÿ, 2013). Thus, this results allowed us to hypothesize that 

also in V. decussata released oocytes, the amount of stocked mRNAs encoding proteins 

involved in the WNT signalling could be extremely important to permit the complete 

oocytes maturation and fertilization.  

5. Conclusion 

The gene expression analysis performed in this study allowed to identify a few important 

mechanism which could have an key role in the process of bivalve oocyte development. 

Differences in the mRNA expression of some important genes have been detected and the 

enrichment analysis helped in the interpretation of the DEGs lists, providing a more 

comprehensive picture of the key processes affecting V. decussata oocytes maturation and 

competence acquisition. Noteworthy, the transcripts which seemed to play a major role in 

the female gametes maturation and competence acquisition were those encoding proteins 

involved in the cell cycle progression, calcium regulation and WNT signalling.  

Despite the analyses performed within this study provided first interesting findings, 

however more detailed investigations are still required and alternative molecular 

approaches should be implemented. For example, to deeply characterize specific events 

leading to the completion of meiosis and to elucidate the activity of target transcripts, 

reverse genetic experiments should be exploited.  

Notwithstanding the fact that V. decussata reproduction is still far from being completely 

controlled in hatchery, as far as we know, this study represents the most effective attempt 

to improve the knowledge of oocytes maturation processes in this species. 
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1. Background 

The king scallop, Pecten maximus (Linnaeus, 1758), also known as great scallop, is a 

native European species of great commercial importance. Global production is based on 

both fisheries and aquaculture with 63,702 and 74 tons in the year 2011 respectively 

(FAO Fisheries Department, 2013). These data do not reflect the increasing relevance of 

scallop aquaculture production. Hatchery-produced seed is more and more used for 

enhancement programmes of wild scallop populations, notably in France and Ireland. 

Unfortunately, hatchery production of great scallop is still hampered by rearing 

conditions that are not optimal yet. One of the major bottlenecks in scallop hatcheries is 

the high susceptibility of this species to bacterial infections, leading to highly variable 

survival rates. Especially during the early larval stages, mortalities of up to 100% are 

often observed. Since the early 90s, to investigate the causes of mass mortality in P. 

maximus, a few studies were conducted. Nicolas et colleagues in 1996 (Nicolas et al. 

1996) identified four main bacterial strains involved in outbreaks, pointing out that the 

major causative agents were Vibrios. Few years later, Lambert et al. (Lambert and 

Nicolas, 1998) published a study demonstrating the presence of Vibrio pectenicida in 

dying larvae in French hatcheries. More recently, Sandlund et co-workers (Sandlund et 

al., 1996), by means of immunohistochemistry, confirmed that Vibrio splendidus and V. 

pectenicida were pathogenic to scallop larvae, and that the Pseudoalteromonas strain 

could act as a secondary opportunistic bacterium (Sandaa et al., 2008). Similarly, in 

farmed northern Chilean scallop Argopecten purpuratus, Vibrio anguillarum (Riquelme et 

al. 1995) and Vibrio alginolyticus (Riquelme et al. 1996a,1996b) were reported to cause 

high mortality. More in general, opportunistic bacteria, mainly Vibrio spp, are considered 

the main cause of mortality in bivalves (Nicolas et al. 1996; Torkildsen et al. 2000, 2002, 

2005; Lacoste et al. 2001; Gómez-León et al., 2005; Garnier et al. 2007) and it is also 

well documented that, besides bacteria, viruses (e.g. Herpes-like virus, Retroviridae, 

Picornaviridae), protozoan (e.g. Marteilia, Bonamia, Perkinsus, Mycrocytos) and 

metazoan parasites can cause diseases and severe mortalities in bivalves at different life 

stages (Gestal et al., 2008). 

As other invertebrates, they lack a specific immune response and immunological 

memory, therefore they rely entirely on the innate immune system to fight against 

pathogens and eventually overcome disease. The immune response of scallop is mediated 

by both cellular and humoral immune components. The former comprises of various 

immunocytes, mainly hemocytes, which are circulating cells with phagocytic and 
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cytotoxic activities, while the latter contains a variety of immune effector such as 

antimicrobial peptides (AMPs), lysozyme, antioxidant enzymes and heat shock proteins 

(HSPs). The initial step of immune response is the discrimination of non-self from self, 

generally known as immune recognition. Bivalves can recognize potential dangerous 

substances mainly via pattern recognition receptors (PRRs). These PRRs can sense the 

pathogen-associated molecular patterns (PAMPs), and its binding can trigger intracellular 

signaling cascades to activate the transcription of immune effectors (Akira et al., 2006; 

Lemaitre and Hoffmann, 2007). In the past decades, various families of conserved PRRs 

have been identified in molluscs and the important roles in immune recognition have been 

verified for Toll-like receptors (TLRs), lectins, lipopolysaccharide (LPS) and b-1,3-

glucan binding protein (LGBP) and scavenger receptors (SRs). Among them, Toll-like 

receptors are a family of great interest since they are found throughout the animal 

kingdom from basal metazoans to vertebrates (Leulier and Lemaitre, 2008). TLRs 

recognize microbial structures via the extracellular leucine-rich-repeat (LRR) domain and 

signal transduction takes place by the intracellular toll-interleukin-domain (TIR) domain 

and TIR domain containing adaptor molecules. Investigations of bivalve TLRs identified 

a single TLR in Mya arenaria (Mateo et al., 2010) and Chlamys farreri (Qiu et al., 2007) 

but recent studies, performed in specie for which deep sequencing techniques have been 

already exploited, demonstrated that a large TLR repertoire could be present in bivalves. 

Notably, 4 and 23 TLR members were identified in C. gigas (Zhang et al., 2013) and 

Mytilus galloprovincialis (Toubiana et al., 2013), respectively. 

Moreover, to improve the general knowledge on bivalve immunology, several 

experiments evaluating the immune response against pathogen infections have been 

reported in different species, mostly in oysters C. gigas (e.g. Genard et al., 2013; Renault 

et al., 2011), C. virginica (Dorrington et al., 2011), and Ostrea edulis (Martin-Gomez et 

al., 2012), but also in mussels, clams, and scallops (e.g. Costa et al., 2009; Ji et al., 2013; 

Araya et al., 2010; Ramses Ramirez-Castillo et al., 2011). Despite these studies have 

provoked advances in the knowledge of molecular mechanisms involved in the response 

against pathogen infections, genomic information regarding bivalve immunity remains 

still very scarce and fragmentary. In the last years, the employment of genome-scaled 

sequencing technologies opened the doors to genomics in bivalves species, thus leading 

to the discovery of an increasing number sequences related to the immune function. To 

date, high-throughput transcriptomic data on bivalves immunity have been obtained in 

oysters (Rosa et al., 2012; Fleury et al., 2009; Wang et al., 2011), mussels (Moreira et 
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al., 2013; Venier et al., 2009; Philipp et al., 2012), and clams (Milan et al., 2011; 

Moreira et al., 2012), although not all studies were specifically targeted to discovery of 

immune-relevant genes. As concern scallops, recent experiments conducted in 

Patinopecten yessoensis and C. farreri (Hou et al., 2011; Wang et al., 2013; Chen et al., 

2013; Wang et al., 2011) attest an increasing interest in immunity of Pectinidae. 

However, very scarce information is available on P. maximus immune-related genes and, 

to date, the limited knowledge of the king scallop immune defense derives mostly from 

immuno-histochemical and biochemical assays (Sandlund et al., 1996; Hauton et al., 

2001; Hannam et al., 2010).  

Recently, the research activity funded by the European project “ReProSEED” (Research 

to improve Production of SEED), has been working in order to stabilize and optimize the 

hatchery production of emerging bivalve species, through a comprehensive strategy 

linking pure and applied approaches. Critical aspects have been considered, including 

reproduction, development, rearing conditions, nutrition and susceptibility to pathogens. 

In this context, the goal of the present study was to characterize the transcriptome of P. 

maximus hemocytes by means of Illumina RNA sequencing technology. Untreated and 

stimulated hemocytes with heat-inactivated V. anguillarum and several PAMPS were 

collected and three different cDNA libraries were prepared and sequenced in order to 

allow the identification of immune-related transcripts and biological processes involved 

in the great scallop innate response. To our knowledge, this is the first transcriptome 

analysis of immune-related genes in the great scallop P. maximus. 
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2. Methods 

2.1. Challenge and sampling  

P. maximus scallops were obtained in the Ría de Vigo (Galicia, Spain). The animals were 

maintained in open circuit filtered sea water tanks, 20L, at 15°C and fed daily with 

Phaeodactylum tricornutum and Isochrysis galbana. Prior to the experiments, scallops 

were acclimatized to aquaria conditions for one month.  

For in vivo stimulation 3 adult scallops were injected intramuscularly with 100 µl of 106 

CFU/ml of heat inactivated Vibrio anguillarum. Other 3 adult scallops were used as 

controls and injected with 100 µl of filtered sea water (FSW). Hemolymph (6 mL per 

scallop) was collected with a 0.8 mm diameter (21G) disposable needle 24 hours after 

bacterial injection. Hemolymph was then centrifuged at 3000 rpm at 3°C for 5 min, the 

obtained pellet was re-suspended in 0.5 ml of RNAlater® (Ambion), maintained one night 

at 4°C and then stored at -80°C until RNA purification.  

For in vitro challenge, a sample of 3 mL of hemolymph was withdrawn from the adductor 

muscle of 10 scallops with a siliconized (sigmacote, SL2, Sigma-Aldrich) syringe and 0.8 

mm diameter (21G) disposable needle and pooled in siliconized tubes. Siliconized 

surfaces significantly reduced the formation of big aggregates, facilitating the subsequent 

settlement of hemocytes. Hemolymph was 2-fold diluted in FSW and then distributed in 

6-well plates, 5 ml per well, in a total of 8 wells, 2 biological replicates for each 

treatment. Hemocytes were allowed to settle for 60 min at 15°C. Then, hemolymph and 

not settled hemocytes were discarded and wells were filled with 5 mL of FSW. 

Hemocytes were incubated overnight at 14°C to allow small aggregates to form a 

monolayer. The day after, hemocytes were rinsed with 5 mL FSW and stimulated for 3 h 

at 14°C with Polyinosinic:polycytidylic acid (Poly I:C), LPS, Lipoteichoic acid (LTA) or 

Zymosan (Zym), one stimulus per well, at a final concentration of 50 µg/mL. All PAMPs 

were purchased from Sigma. After sampling, cells were pelleted by centrifugation at 3000 

rpm at 3°C for 5 min, and stored in 0.5 ml of RNAlater® as described before. 

2.2. RNA isolation and sequencing 

RNA was isolated with RNeasy Mini Kit (Qiagen), following the manufacturer 

instructions and a DNAse treatment (Qiagen) was carried out. Concentration and purity of 

RNA were measured using a NanoDrop ND1000 spectrophotometer (NanoDrop 

Technologies). The RNA quality was assessed through the Bioanalyzer 2100 instrument 
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(Agilent Technologies). Finally, RNAs were pooled to obtain three samples each 

representing a specific condition: in vivo stimulation (inactivated V. anguillarum), in vitro 

stimulation (mix of PAPMs), and in vivo control. 

Three non-normalized libraries for RNA sequencing experiments were prepared by using 

Truseq RNA sample prep Kit (Illumina) following the manufacture’s instruction and a 

paired end sequencing 2x100bp was carried out on a Illumina Hi-Seq 2000 (BGI Tech, 

Shenzhen, China). Raw Illumina sequencing data have been deposited in GenBank (SRA) 

with the accession numbers SRR1009240, SRR1009241 and SRR1009242. All Illumina 

reads were analyzed with FastaQC software in order to assess sequence quality. 

2.3. Transcriptome assembly and annotation 

All reads obtained from each of the Illumina libraries were assembled together using CLC 

Genomic Workbench 5, with default parameters. All assembled contigs were then further 

clustered using CAP3 with default parameters.  

Contigs from the final assembly were annotated through blastx similarity searches 

conducted against the UniProtKB/SwissProt database and selected protein databases 

available in the Ensembl Genome Browser, respectively for Homo sapiens, Danio rerio, 

and Drosophila melanogaster. In addition, to further increase the number of annotated 

contigs, blastx searches were carried out against sequence databases for two mollusc 

species, C. gigas (http://oysterdb.cn/) and Lottia gigantea V1.0 (http://genome.jgi-

psf.org/Lotgi1/Lotgi1.home.html). Alignments with an e-value of at least 1 e-5 were 

considered significant and the best hit for each contig was used for annotation. In the case 

of TLRs, all known bivalve TLR protein sequences were used as queries against the 

scallop transcriptome in a series of tBlastn searches. Contigs showing a e-value lower 

than 1 E-10 were manually checked and, when possible, prolonged at 5’ and 3’ ends by 

overlapping P. maximus sequences which were previously obtained, through a Roche 454 

GS FLX+ System, starting from a pool of adult tissues, larvae and hemocytes 

(unpublished data). Open reading frames (ORFs) were inferred and used for further 

analysis. Putative LRRs, LRR-carboxy terminal (LRR-CT), LRR-amino terminal (LRR-

NT), TIRs and trans-membrane domains were obtained using SMART (http://smart.embl-

heidelberg.de/) and HMMer software (Eddy, 2011), while signal peptide regions were 

predicted by SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/).  
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The tools described above have also been employed to acquire structural information 

concerning differentially expressed transcripts for which the annotation process did not 

achieve significant hits. 

In addition, the Blast2GO software (Conesa et al., 2005) was used to assign Gene 

Ontology terms (Ashburner et al., 2000) to annotated contigs. Default values in Blast2GO 

were used to perform the analysis and ontology level 2 was selected to construct the level 

pie charts. To avoid redundant results, when multiple contigs were annotated with the 

same UniProtKB/SwissProt accession, only one was used for the Gene Ontology analysis 

(GO analysis). Finally, a list of keywords and GO immune-related terms were used to 

find contigs that are putatively involved in immune system function.  

2.4. Phylogenetic analyses 

Evolutionary relationships were calculated by using a Maximum-Likelihood approach 

(PhyML 3.1) and trees robustness was assessed with 1000 bootstrap interactions. The 

phylogenetic analyses were based on multiple sequence alignments obtained using 

MAFFT 7 alignment program (http://mafft.cbrc.jp/alignment/serve4r/) and further refined 

to include only reliably aligned positions by using Gblocks (Castresana, 2000). A model 

test (http://darwin.uvigo.es/software/prottest2_server.html) was carried out to select the 

model of protein evolution that best fits the given set of sequences. 

2.5. Mapping and differential expression analysis 

Sequence reads obtained from each hemocyte cDNA library were mapped against the 

whole transcriptome assembly by performing a RNA-seq analysis in CLC Genomic 

Workbench 5 (default parameters). Differential expression analysis was carried out by 

comparing the expression levels in in vitro and in vivo stimulated hemocytes against 

controls, using the NOISeq package in R (Tarazona et al., 2011). In order to evaluate the 

differential expression, the software provides a q value corresponding to the probability 

for contigs of being differential expressed. As suggested by NOISeq authors, since no 

biological replicates were available, NOIseq-sim algorithm has been preferred 

(parameters: k= 0.5, norm= tmm, pnr = 0.2, nss = 5, v = 0.02, lc = 1) and the q value 

threshold has been set to 0.9.  

2.6. Enrichment analysis 
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A functional interpretation of the set of differential expressed genes following the in vivo 

stimulation was obtained by performing an enrichment analysis with the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) software (Huang et al., 

2009). Enriched “Biological process”, “Molecular function” and “Cellular component” 

terms were carried out by setting the gene count equal to 2 and the ease equal to 0.1. 

Among the accepted databases used for the annotation, the selected one was 

UniProtKB/SwissProt because it provided the higher percentage of annotated transcripts. 

UniProtKB/SwissProt accessions corresponding to differential expressed genes as well as 

all the transcripts that were represented on the whole hemocytes transcriptome were then 

used to define a “gene list” and a “background” in the bioinformatics tool DAVID.  



54 

 

3. Results 

3.1. De novo transcriptome assembly and functional annotation 

Over 200 millions Illumina sequence reads originating from three scallop hemocyte 

cDNA libraries were assembled into 73,732 contigs. Sequencing results and assembly 

statistics are summarized in Table 1. Putative annotation of assembled contigs was 

obtained by sequence similarity. Table 1 reports the number of contigs annotated against 

individual databases. The highest percentage of matches is obtained against the two 

molluscan genomes of C. gigas and L. gigantea. Merging all data, a putative annotation 

was obtained for 22,858 contigs (31%). Gene Ontology (GO) terms referring to cellular 

localization (Cell Component, GO_CC), molecular function (GO_MF), and biological 

process (GO_BP) were associated to annotated contigs using Blast2GO. Figure 1 shows 

pie charts summarizing the most represented GO_CC, GO_MF and GO_BP. 

 

Illumina library Total reads 

Hemocytes in vivo 67,643,592 

Hemocytes in vivo stimulated (heat-inactivated V. 

anguillarum) 

70,855,070 

Hemocytes in vitro stimulated (PAMPs) 77,946,012 

Hemocytes transcriptome assembly 

Total number of contigs 73,732 

Mean length (bp) 502.6 

Median length (bp) 328 

Max length (bp) 16,205 

Min length (bp) 200 

Annotation (database) 
n° annotated contigs 

(%) 

Swiss-prot database 13,883 (18.8%) 

Ensemble H. sapiens 15,239 (20.7%) 

Ensemble D. melanogaster 12,402 (18.2%) 

Ensemble D. rerio 16,118 (21.9%) 

OysterDB 20,355 (27.6%) 

L. gigantea v1.0 18,076 (24.5%) 

Table 1. Statistics. Summary of the Illumina sequencing, assembly and annotation data. 
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Figure 1. Gene ontology pie charts. Percentages of occurrences of Cellular component (A), 
Molecular process (B) and Biological process (C) terms. Besides each pie chart the colours 
correspondence to GO terms is reported.  
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3.2. Mining the scallop transcriptome for immune-relevant genes 

A dedicated analysis discovered 934 contigs that encode proteins with a putative role in 

immune response. These proteins could be grouped into several functional categories, as 

follows: i) PRRs;  

ii) immune effectors; iii) signal transduction; iv) proteins related with apoptosis; v) 

complement and C1q-like proteins; vi) cytokine-related molecules; vii) cell surface 

receptors and cell adhesion molecules; viii) other immune-related transcripts (Appendix 

B1). 

PRRs are involved in sensing PAMPs, which are generic molecular signatures for 

potential pathogens, microbial organisms, and endogenous signals. A total of 109 contigs 

coding for putative PRRs have been identified, including lectins, TLRs, SRs, glucan-

binding proteins and peptidoglycan recognition proteins. Further in silico analysis (see 

section 2.3) revealed at least four complete scallop TLRs. Two multiple cysteine cluster 

(mcc) TLRs, named here PmTLR1 and PmTLR2, and two single cysteine cluster (scc) 

TLRs, which were denominated PmTLR3 and PmTLR4 (Figure 2A). The intra-cellular 

domain of PmTLR2 was characterized by the unusual presence of two TIR domains. The 

C-terminal one showed a canonical TIR domain signature, which was readily recognized 

with SMART and the second one, which is located closer to the trans-membrane domain, 

displayed a lesser degree of conservation compared to canonical TIR domains, yet it 

could be still identified based on sequence similarity (Figure 2A).  

In addition to the four putative full-length scallop TLRs, other eight sequences showed 

consistent similarities to bivalve TLRs. However, not all predicted domains could be 

detected, either because they were missing or due to incomplete sequence information. 

Two partial copies (PmTLR5 and PmTLR6) that contained a TIR domain are shown in 

Figure 2A. The remaining six partial sequences contained only putative extra-cellular 

domains with high similarity (e-value lower than 1 E-10) against the corresponding 

region of bivalve TLRs. These likely represent additional candidates, but require further 

analysis for reliable classification as scallop TLRs. Scallop TLRs were also classified by 

considering the architecture of ectodomains as reported in Toubiana et al., 2013, where 

M. galloprovincialis sscTLRs have been divided in three subgroups, based on ectodomain 

complexity (cluster 1, 2 and 3), and all mcc TLRs have been attributed to a single group 

(cluster 4) (Figure 2B). It is important to specify that there is no accepted nomenclature 

for TLRs in molluscs, therefore the number attributed in this study to each TLR is 

arbitrary.  
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Figure 2. (A) Structure of P.maximus TLRs homologs. Schematic structure of TLRs identified in 
P. maximus hemocytes derived using SMART online server. The structure of the partial TLR6 
lacks LRR domains but the presence of SCOP domain_d1a9na, a superfamily of less regular 
structures consisting of variable repeats like LRRs, may suggest that this partial sequence 
encodes a Toll-like receptor. TLR classification is based on both cysteine cluster multiplicity (scc 
or mcc TLRs) and ectodomain complexity as reported in Toubiana et al., 2013. (B) Classification 
based on ectodomain architecture in M. galloprovincialis. Cluster 1 is characterized by the 
presence of LRR domains only (e.g., TLR-u), cluster 2 by LRR-NT (e.g., TLR-t), cluster 3 by LRR-
CT (e.g., TLR-n) and cluster 4 by the presence of mccTLR only (e.g., TLR-b).  
*  Domain identity determined by  blast similarities searches in SMART. ** Sequence not completely 
obtained. However the high percentage of aa identity (85%) of the translated contigs number 4021 and 
8142 to the N-terminal and C-terminal sections of C. farreri TLR (GenBank: DQ350772) respectively, 
allowed the hypothesis that they are both partial sequences belonging to the same mRNA transcript. 
Despite a scan of all the transcriptome resources obtained within this study and in previous sequencing 
runs, the complete sequence has not been detected. 

In order to analyze the evolutionary relationship of P. maximus TLRs in the context of 

other mollusc TLRs, a phylogenetic tree was constructed (Figure 3). Such analysis 

showed four large clusters (A-D) and two pairs of sequences located in a basal position 

(PmTLR6-MgTLRa, PmTLR5-CgTLR3). Notably, only clusters B and C were supported 
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by a good bootstrap value, for this reason the relationships between the six main branches 

cannot be completely resolved. With regard to PmTLR5 and PmTLR6, they reasonably 

represent the orthologs of CgTLR3 and MgTLRa, respectively. Looking at cluster A, 

PmTLR1 clustered together with MgTLR-b, CgTLR1 and the single TLRs identified (to 

date) in C. farreri, Haliotis discus discus and Hyriopsis cumungii, suggesting that they are 

all orthologous copies, i.e. they derive from the same TLR gene that was present in the 

common ancestor of these species. All cluster A TLRs belong to the mcc TLR group 

(cluster 4). In the same cluster A, PmTLR2 is the ortholog of mussel TLR-i. Cluster B 

contains a large number (9) of mussel TLRs, while PmTLR4 is the sister group to this set 

of sequences. The most plausible interpretation is that a single TLR copy homologous to 

PmTLR4 existed in the ancestral lineage, which underwent several duplication events 

after the divergence of mussel from scallop. Cluster C is likewise characterized by a 

multiplicity of mussel TLRs, which likely represent another case of repeated duplications, 

although it is not clear which is the putative orthologous in other bivalves. Cluster D 

includes different TLRs from oyster and mussel, and a single scallop gene. Orthology 

relationships within cluster D appear difficult to establish, yet multiplicity of TLRs is 

evident again in mussel. 
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Figure 3. Phylogenetic tree of molluscs TLRs homologs. Maximum-likelihood tree evaluating 
the evolutionary relationships of scallop transcripts containing both TIR and trans-membrane 
domains.  The phylogenetic analysis was based on a multiple sequence alignment further refined 
to include only reliably aligned positions (Gblocks) yielding a total of 149 aligned amino-acids. 
Only significant bootstrap values for the lineages are shown (>50%). Shells correspond to each 
species. Numbers contained in the shells (1-4) refer to the cluster classification based on 
ectodomains organization as reported in M. galloprovincialis (Figure 2B). TLRs homologs 
identified in this study are in bold and those with a partial sequence were labelled with an 
asterisk (*). Sequences included in this analysis and GenBank accessions were the following: 
Chamys farreri (CfTLR: DQ350772), Crassostrea gigas (CgTLR1/2/3/4: KC700617-KC700620; 
CgTLR1old: ADV16385), Haliotis discus discus (HdTLR: AGJ03555), Hyriopsis cumingii 
(HcTLR: unpublished sequence) and Mytilus galloprovincialis (MgTLRs: JX173687-90, 
KC357777-80, KC413022-31).  

As concerns immune effectors, 154 contigs showed a putative functional annotation 

corresponding to HSP subunits 70 and 90, and antioxidant enzymes. Among the 

antioxidant enzymes, all glutathione S transferase isoforms (Alpha, Kappa, Theta, Pi, Mu 
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and Omega), prostaglandin reductase 1 and ceruloplasmin were detected. One contig 

encoded a putative full-length copy of big defensin (BD). BD is an AMP initially 

characterized in the horseshoe crab Tachypleus tridentatus, and then reported in various 

molluscan species. The putative P. maximus BD (PmBD) is encoded in a polypeptide of 

127 amino acids. The deduced protein shows  high sequence similarity (70.25%) with 

Argopecten irradians defensin BD (AiBD) and it shares the common features of BD 

family, including signal peptide (SP), amino-terminal antimicrobial domain (N-AMD) 

and carboxyl-terminal β-defensin domain (cβDD) (Figure 4).  

 

 

Figure 4. P. maximus big defensin. Amino acid sequence alignment of big defensins from P. 
maximus and A. irradians (GenBank: ABC61319). The conserved cysteine residues are evidenced 
with grey backgrounds. The predicted signal peptide, Hydrophobic N-terminal domain (N-AMD) 

and C-terminal cysteine-rich domain (CβDD) are indicated. The putative loop between N-AMD 

and CβDD domains is in bold. Asterisks (*) indicate identical amino acid residues. 

 

A phylogenetic tree was constructed (Figure 5) based on the multiple alignment of all 

available mollusc BDs. Among bivalves, a major cluster joined together two groups, one 

for BDs in Mytilidae and one for Ostreidae BDs. In each of these two sub-clusters, 

multiple BD copies were observed in M. galloprovincialis and C. gigas. The closest 

sequences to the major Ostreidae-Mytilidae cluster were the single BDs found in the 

Veneridae V. philippinarum and in the Arcidae Scapharca broughtonii. More distantly 

related were the two Pectinidae, A. irradians and P. maximus, whereas the most distant 

was H. cumingii, which belongs to the Paleoheterodonta. 
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Figure 5. Big defensins phylogenetic tree. Maximum likelihood tree of several amino acid 
sequences of big defensins. Only significant bootstrap values are shown (>50%). GenBank 
accession of the sequences included in this analysis were the following: Crassostrea gigas 
AEE92768 (CgBD1), AEE92775 (CgBD2), AEE92778 (CgBD3), EKC19784.1 (CgBD) and C. 
virginica CV133156.1 (CvBD*); Mytilus galloprovincialis AFC37168.1 (MgBD), CCC15007.1 
(MgBD1), CCC15008.1 (MgB2), CCC15009.1 (MgBD3a), CCC15010.1 (MgBD3b), CCC15011.1 
(MgBD3c), CCC15012.1 (MgBD4), CCC15013.1 (MgBD5), CCC15014.1 (MgBD6) and M. 
californianus GE759807.1 (McBD*); Hyriopsis cumingii AEP26934.1 (HcBD); Venerupis 
philippinarum AEK78068.1 (RpBD); Scapharcha broughtonii AFQ02696.1 (SbBD); Argopecten 
irradians ABC61319 (AiBD); horseshoe crabs Tachypleus tridentatus P80957.2 (TtBD) and 
Carcinoscorpius rotundicauda CK086629 (CrBD); amphioxus Branchiostoma floridae 
ADH03419 (BfBD). Asterisks (*) indicate big defensins deduced by translating EST sequences 
homologous to big defensins in different mollusc species in the GenBank database.  

 

With regard to signal transduction molecules, 3 contigs showed high similarity with 

Myeloid differentiation 88 (MyD88), an adaptor molecule involved in the TLR pathway, 

while 30 contigs encoded TNF receptor associated factors (TRAFs).  

As concerns immune proteolytic cascades, 8 contigs were annotated as cathepsins (B, F, 

L and Z) and additional 49 encoded various proteases and proteases inhibitors.  

Transcripts coding for apoptosis-related peptides were 229, including various caspase 

isoforms (2, 3, 6, 7, 8 and 10), baculoviral IAP repeat-containing proteins, β1-arrestin, 

autophagy-related proteins, death domain-associated proteins, Bcl-like proteins and 

several other apoptosis regulators.  

While not all complement components could be identified, complement C3 and four 

proteins similar to C1q-like protein 4 were reported. Cytokine signaling was represented 
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by 67 contigs, encoding interleukins, interleukin receptors, interferon-related proteins, 

TNF-receptors, and TNF-ligands. A relevant number (79) of transcripts encoded cell-

surface receptors or cell-adhesion molecules, which included putative integrins 

α and β, TGF-β receptor, and hemicentin-1 (HEM-1), a large extracellular member of the 

immunoglobulin superfamily.  

Other 197 contigs showed significant homology with immune-related proteins such as 

tetraspanins and Tripartite Motif containing (TRIM) proteins. Tetraspanins, a superfamily 

of integral membrane proteins, are involved in regulating molecular recognition at the cell 

surface and in the generation of an efficient immune response, while TRIM proteins 

participate in the regulation of pathogen-recognition and transcriptional pathways in host 

defence. 

3.3. Unstimulated hemocyte transcriptome analysis  

RNA-seq reads originating from unchallenged hemocytes were mapped against the 

reference transcriptome yielding expression levels for individual transcripts. The list of 

the 150 genes showing the highest expression value (Appendix B2) comprised 

constitutive genes such as actins, alpha and beta tubulins, collagen, and key components 

of protein synthesis such as ribosomal proteins and elongation factors, together with more 

genes encoding immune-specific proteins. The latter included allograft inflammatory 

factor 1 (AIF1), HSP70B2, ferritin and ceruloplasmin. 

3.4. Differentially expressed genes in stimulated hemocytes  

First of all it should be noted that the quantitative data obtained within this study derived 

from a single replicate, thus the results must be considered as preliminary and need to be 

confirmed by further analyses. Notwithstanding the fact that the analysis was not 

statistically supported by the presence of biological replicates, it should be taken in 

consideration that each sample was a pool of at least three independent samples, thus 

partly reducing individual variation. Moreover, to minimize the risk of misleading results, 

the DEGs were calculated through an algorithm (NOIseq-sim; see section 2.5) that is 

appropriate for datasets lacking replicates. This method simulates technical replicates 

from a multinomial distribution and, even though it relies on an approximation, it permits 

to identify at least those genes showing the highest fluctuation between conditions.  

RNA-seq data from stimulated hemocytes and controls were compared by focusing just 

on up-regulated transcripts. The analysis revealed respectively 1,576 and 3,347 
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differentially expressed genes (DEGs) after in vivo and in vitro stimulation. Annotated 

DEGs against the Pacific oyster genome database were 373 (23.7%) for the in vivo 

challenge and 611 (18.3%) for in vitro one. Since control hemocytes were obtained 

following an in vivo stimulation with FSW, DEGs identified after in vitro challenge might 

show the effects inherent to laboratory culture conditions in addition to those generated 

by exposure to PAMPs. For this reason, a conservative approach was preferred and only 

those transcripts which were regulated  also after the in vivo challenge were considered in 

the analysis. A common set of 192 transcripts were up-regulated after both stimulations 

(Fisher’s exact test P < 0.001 ). Among these common DEGs there were PmBD, 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), TRIM45, and 

regucalcin. Most of common DEGs (167), however, were represented by un-annotated 

contigs. Detailed analysis of putative open ORFs identified in these 167 contigs revealed 

that 76 ORFs have a protein region with significant homology to a known protein 

domain. Of these, noteworthy is contig number 1442, which contained a LCCL domain. 

The LCCL domain is characterized by a conserved C-terminal motif including a highly 

conserved hystidine and is thought to be an autonomously-folding domain which has been 

also proposed to be involved in LPS binding (Trexler et al., 2000). Eight additional ORFs 

encoded by common DEGs carried a significantly recognizable signal peptide (SP). The 

presence of SP indicates that the protein is targeted to the extracellular space, either to be 

exposed on the cell surface or to be secreted. A SP is typically present in AMPs. Two of 

the ORFs carrying a SP also showed a suggestive similarity with the “defensin” domain 

when analyzed with SMART, although the associated probability was above the default 

significance threshold. 

A specific analysis of scallop TLR expression after the in vivo bacterial challenge showed 

that PmTLR1 was unchanged, while PmTLR6 expression level was significantly reduced. 

On the opposite, PmTLR2 was more abundant, although with marginal probability values. 

No significant change was detected for PmTLR3 and PmTLR4., the putative ortholog of 

MgTLR-a.  

A more systematic evaluation of DEGs after the in vivo challenge was carried out using 

enrichment analysis, revealing over-representation of several biological processes that are 

involved in innate immunity. Enriched GO terms and PANTHER biological processes 

(BPs) are reported in Appendix B3. 6 GO_CC, 50 GO_BP, and 25 GO_MF terms showed 

significant enrichment. Enriched GO_BPs included “innate immune response” 

(GO:0045087), “defense response” (GO:0006952), and “cytokines-mediated signalling 
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pathway” (GO:0019221). Using PANTHER database, 14 BPs showed a significant fold-

enrichment (FE) > 2. Among them, “cell communication” (BP00274), “cell surface 

receptor mediated signal transduction” (BP00103), and “receptor mediated endocytosis” 

(BP00132) revealed a FE >3. Additional relevant BPs were “immunity and defense 

(BP00148)”, “apoptosis” (BP00179), “signal transduction” (BP00102), “cell adhesion” 

(BP00124), and “G-protein mediated signalling” (BP00104).  
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4. Discussion 

Despite the increasing interest in bivalve immunity due to their economic importance, the 

catalog of immune genes in this taxonomic group is still quite limited. The main reason is 

the large phylogenetic distance of molluscs from the major model species such as fruitfly, 

earthworm, mouse, zebrafish, which makes difficult to isolate specific genes based on 

sequence similarity across taxa. This is especially true for immune-related genes, which 

are known to be often highly variable. Deep transcriptome sequencing using next 

generation sequencing (NGS) is emerging as a powerful approach to rapidly increase 

sequence information in non-model species. NGS-generated transcritptome information is 

not entirely immune from the problem of limited sequence conservation. In fact, less than 

one third of scallop contigs (31%) were found to match a known protein coding gene in 

other species. Nonetheless, a large set of genes could be identified, which belong to all 

major functional groups of immune-related proteins (Appendix B1), confirming that the 

main immune pathways are conserved in bivalves, including pathogen recognition and 

binding, phagocytosis and microbial membrane lysis, apoptosis, cell-cell communication 

and signal transduction. Moreover the NGS technique employed in this study (RNA 

sequencing by Illumina) concurrently provided quantitative data and although the analysis 

was restricted to one library per condition, the adopted pooling strategy and statistical 

analysis (Tarazona et al., 2011) allowed to obtain preliminary information on 

transcriptional regulations in response to immune stimulation. 

With respect to host/pathogen interactions, the large number of putatively identified PRRs 

(109) highlights the importance of immune recognition mechanisms in scallop. In the past 

decades, various families of conserved PRRs have been identified in molluscs and their 

role in immune recognition has been demonstrated (Wang et al., 2013). In the present 

study, considerable substantial set of transcripts showed high sequence similarity to 

endothelial cells scavenger receptor (SREC) and macrophage mannose receptor 1 

(MRC1). This evidence suggests that several isoforms of SREC- and MRC1-like proteins 

are expressed in scallop hemocytes. In the Pacific oyster genome, the number of predicted 

gene scaffolds corresponding to MRC1 and SREC was 11 and 21 respectively, supporting 

the hypothesis that multiple isoforms of these transcripts exist. Noteworthy, in humans, 

the multiplicity of scavenger receptors has been recently reported (Greaves and Gordon, 

2009). Scavenger receptors (SRs) mediate non-opsonic phagocytosis by recognizing a 

wide range of ligands including microbial surface constituents and intact microbes, and 

are involved in various processes of host defense, apoptosis, autoimmunity, inflammation 
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and lipid metabolism (Berwin et al., 2003; Mukhopadhyay and Gordon, 2004). At 

present, knowledge on molecular function of SRs in invertebrates is quite scarce and only 

in Drosophila (Ramet et al., 2001; Kocks et al., 2005), in the sea urchin 

Strongylocentrotus purpuratus (Rast et al., 2006) and in the scallop C. farreri (Liu et al., 

2011) they have been identified and studied. Here 9 expressed sequences with high 

similarity to the oyster homolog endothelial cell SR and 2 sequences similar to class F 

scavenger receptors were identified. Another important receptor that was identified in the 

scallop transcriptome is the mannose receptor (MR). MR is known to recognize mannose, 

fucose, and N-acetylglucosamine in a Ca2+-dependent manner and it is expressed by most 

macrophage populations (Taylor et al., 2005), which are the vertebrate counterpart of the 

hemocytes in invertebrates. In addition to endogenous glycoproteins, MR plays an 

important role in pathogen recognition, antigen internalization and presentation. In 

bivalves MR has not been studied in detail, but a putative MR homolog was reported in 

the Mediterranean mussel M. galloprovincialis (Venier et al., 2011) and in the Pacific 

oyster C. gigas (Zhang et al., 2012).  

Another immune pathway that comprised a high number of contigs was apoptosis. 

Programmed cell death has a key immune-modulatory role and is essential for normal 

functioning of the immune system (Hildeman et al., 2007; Birge and Ucker, 2008). 

Studies using NGS have recently provided evidence of a link between immune defense 

and programmed cell death in bivalves (Moreira et al.. 2012; Romero et al., 2011). The 

considerable number (229) of apoptosis-related genes identified in the present study 

suggests that also in P. maximus hemocytes programmed cell death is essential in the 

maintenance of immune system homeostasis. 

TLRs were the focus of a more detailed analysis, since these proteins play a pivotal role 

in the immune system and the activation of their signalling cascade leads to the 

translocation of the transcription nuclear-factor-kB (NF-kB) inside the nucleus, where it 

induces a variety of immune-related effector genes involved in building up the front-line 

against invading pathogens (Kopp and Medzhitov, 1999; Cornwell and Kirkpatrick, 

2001). However, great structural and functional divergence between mammalian TLRs 

and invertebrates Tolls has been reported, thus making TLR-mediated innate immune 

response an on-going area of controversy (Leulier and Lemaitre, 2008). Interestingly, the 

most striking difference between mammal TLRs and Drosophila Tolls (the invertebrate 

species for which more comprehensive data are available) is the ability to direct recognize 

their ligands. In the present study, accurate phylogenetic analysis was carried out to 
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identify putative orthologs for scallop TLRs in other bivalve species. A complex 

evolutionary pattern for this protein family in molluscs was observed as already reported 

in other taxonomic groups, with ancient duplications as well as recent increase in TLR 

copy number for specific lineages. Once the evolutionary framework is established, 

transcriptional response to immune challenge can be compared across species, although 

quantitative expression data represent a single time point and a unique biological replicate 

(n=1 pool of at least three independent samples). PmTLR2 showed a two-fold increase in 

response to the in vivo challenge, in agreement with evidence from its putative ortholog in 

mussel, MgTLR-i (Toubiana et al., 2013). Concordant evidence between the two species, 

although of opposite sign, was found for PmTLR6. PmTLR6 was strongly down-

regulated after in vivo challenge and its putative mussel ortholog, MgTLR-a, was under-

expressed following in vivo stimulation with V. anguillarum (Toubiana et al., 2013). 

Noteworthy, down-regulation of TLRs after bacterial challenge has also been reported in 

hemocytes from the clam Mya arenaria (Mateo at al., 2010) and in the disk abalone 

subjected to LPS injection (Elvitigala et al, 2013). While further studies are needed in P. 

maximus to analyse TLRs expression at different time points after stimulation, 

preliminary evidence seems to confirm a divergent pattern for individual TLRs, yet 

conserved for orthologous copies across bivalve species. 

As already mentioned, NGS allowed transcriptome characterization in several bivalve 

species (e.g. Philipp et al., 2012; Milan et al., 2011; Moreira et al., 2012; Hou et al., 

2011; Zhang et al., 2012). However, so far the most frequently used approach has been 

based on 454 Roche pyrosequencing technology, which provided long sequence reads (up 

to 500 bp), but was limited in terms of sequencing depth, as typically 1-2 million reads 

were obtained for each library. Therefore, transcripts abundance could not be reliably 

assessed. Illumina sequencing technology produces over 300 millions reads per run, 

which enables quantitative analysis of gene expression by counting sequence reads 

mapped against a reference transcriptome. Such approach was applied here first to 

evaluate highly expressed transcripts in un-stimulated scallop hemocytes. Apart from 

constitutive genes, several highly represented contigs encoded proteins involved in 

immune function. AIF-1, a calcium-binding cytokine, which has been recently cloned and 

studied in oysters (Li et al., 2013; Zhang et al., 2013). These studies demonstrated that 

oyster AIF-1 is constitutively expressed in various tissues and enriched in hemocytes. In 

sea urchin Sterechinus neumayeri (Ovando et al., 2012) and clam V. philippinarum 

(Zhang et al., 2011) there is functional evidence that AIF-1 is involved in hemocyte 
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activation and inflammatory response. Other highly expressed genes were HSP70, 

ceruloplasmin (CP) and ferritin (FT). HSPs are ubiquitous proteins that help organisms to 

modulate stress response and protect them from environmentally-induced cellular 

damage. A great number of HSPs have been identified from molluscs and their 

involvement in bivalve immunity is widely proven (Wang et al., 2013; Liu and Chen, 

2013).. More specifically, some studies showed that HSP70 in bivalves might be 

regulated not only by thermal stress, but also by bacterial challenges (Song et al., 2006; 

Cellura et al., 2006) and that HSP70 gene is abundantly transcribed also at a 

physiological state (Zhou et al., 2013). CP and FT have both a ferroxidase activity. CP in 

mammals is produced also by macrophages and its ferroxidase activity, by converting 

Fe2+ to Fe3+ plays an important role in iron metabolism and transport and also exhibits 

ferroxidase-dependent bactericidal activity (Klebanoff, 1992). In addition, CP inhibits 

ferrous ion-mediated production of reactive oxygen species (ROS) and thus it possesses a 

potent antioxidant activity (Bakhautdin et al., 2013). Like CP, FT has antioxidant 

properties, but it is also involved in iron storage and iron-withdrawal with antimicrobial 

effects, as demonstrated in the Pacific white shrimp Litopenaeus vannamei (Ruan et al., 

2010) and in bay scallop A. irradians (Li et al., 2012). High expression of CP and FT 

suggests that scallop hemocytes, even in absence of specific stimuli, possess strong 

activation of anti-oxidant defense. Even though ROS production in molluscan hemocytes 

has been mostly studied for its engagement in killing of encapsulated microorganisms 

(Donaghy et al., 2009), ROS may also be involved in cellular homeostasis and thus be 

produced in unchallenged hemocytes, as demonstrated in oyster by Lambert and co-

authors (Lambert et al., 2003). While quantitative analysis of gene expression in un-

stimulated hemocytes already provided substantial information, the most relevant 

evidence was obtained when analysing immune-challenged hemocytes, with a large set of 

significant DEGs identified after stimulation. The list of significant DEGs presented here 

should be regarded as a starting point for future analysis, since a detailed discussion on all 

DEGs is beyond the reach of a single paper. Nonetheless, functional enrichment analysis 

might help summarising the main features of transcriptome changes as part of the scallop 

immune response.  

In in vivo challenged hemocytes enrichment of BPs such as “cell communication”, “cell 

surface receptor mediated signal transduction” and “receptor mediated endocytosis” 

suggests activation of immune signalling pathways, which are triggered by hemocyte-

microbe interaction and amplified by hemocyte-hemocyte communication. For instance, 
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among DEGs belonging to these BPs, CEACAM1 and MR1 were observed. The role of 

MR1 has been already discussed above and, by homology with vertebrates, it is 

implicated in hemocyte response against pathogens through binding and phagocytosis of 

micro-organisms with surface mannose residues and soluble mannose-containing 

glycoproteins (Stein et al., 1992). Conversely, CEACAM1 is a surface adhesion molecule 

belonging to the CEA-family, a group of glycoproteins that is poorly studied in 

invertebrates. In mammalian, CEACAM glycoproteins are expressed by certain epithelial, 

endothelial, lymphoid and myeloid cells (Gray-Owen and Blumberg 2006) and are known 

to play an important role in adhesion, phagocytosis, oxidative burst, degranulation, and 

regulation of apoptosis. CEACAMs also function as receptors for pathogenic bacteria and 

viruses (Gray-Owen and Blumberg 2006; Pańczyszyn and Wieczorek, 2012). At least in 

humans, the latter function deserves a special attention since a variety of Gram-negative 

bacteria have the ability to target CEACAMs possibly allowing them to colonize tissues 

by mediating adhesion and by exploiting immunosuppressive functions of CEACAM 

receptors and thus evading host defense (Klaile et al., 2013). In particular, CEACAM 

members have been widely investigated in light of their binding with Neisseria spp 

surface proteins responsible for bacterial adherence, entry into host cells and interactions 

with the immune system (Sadarangani et al., 2011). In this context, it has been reported 

that CEACAM expression can be up-regulated by neisserial LPS and pro-inflammatory 

pathogen-induced cytokines (Gorvel, 2004). Moreover, Klaile et co-workers (Klaile et al., 

2013) demonstrated that, in primary normal human bronchial epithelial cells, CEACAM1 

mRNA transcript and protein were up-regulated by polyI:C and type I and type II 

interferons. Therefore, evidence that scallop CEACAM1 mRNA is induced in hemocytes 

24h post bacterial challenge, as well as after in vitro stimulation, should prompt further 

studies to clarify its function in bivalve immune response as well as its potential role in 

pathogen immune-evasion. 

Another interesting example of DEG is glutathione S-transferase omega-1 (GSTO1), an 

enzyme involved in the biotransformation of compounds including toxic substances and 

oxidative stress products, transport of ligands, and regulation of signalling pathways 

(Burmeister et al., 2008). GSTO1 transcript was found in the Pacific oyster gills and 

digestive gland (Boutet et al., 2004) and in disk abalone tissues (Wan et al., 2009), and it 

was over-expressed in the skin mucus of Atlantic cod challenged with V. anguillarum 

(Rajan et al., 2013). The role of antioxidant proteins in immune response has been 

already mentioned. In the case of GSTO1, considering its specific function, it might be to 
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counteract reactive oxygen metabolites induced by bacterial infection, as shown in a 

study where the measurement on enzyme activity complemented gene expression data 

(Canesi et al., 2010). Killing of pathogens by hemocytes is usually accompanied by a 

sudden release of ROS (Bugge et al., 2007; Segal et al., 2005). However, ROS generation 

would disrupt the homeostasis of redox balance in hemocytes and the induction of 

GSTO1 more likely counteracts the pathogen-induced oxidative stress. 

DEGs identified after in vitro challenge should be interpreted with some caution, since 

the differential expression analysis was carried out by using as control condition 

unchallenged hemocytes collected in vivo. Nevertheless, a set of DEGs was in common 

with those reported after the in vivo challenge. Such overlap might be due to the fact that 

stimulation included LPS, either as a component of V. anguillarum in the in vivo 

challenge, or as purified molecule in the PAMP mixture. It might be possible, however, 

that the common list of 192 DEGs might be represent part of a “core” response to 

immune stimuli. In either case, shared DEGs are of special interest. In fact, one of these 

DEGs encoded a putative BD (PmBD), a well-known AMP. In molluscs, data on AMPs 

come mainly from M. edulis and M. galloprovincialis defensin, mytilin, myticin and 

mytimycin (Mitta et al., 2000; Roch et al. 2008; Vera et al., 2011; Gerdol et al., 2012). 

However potential AMPs have been also identified from other bivalve including oysters 

Crassostrea madrasensis and Saccostrea cucullata (Sathyan et al., 2012), C. gigas 

(Schmitt et al., 2012), clams V. decussata (Gestal et al., 2007) and M. mercenaria 

(Perrigault et al., 2009), scallops C. farreri (Li et al., 2007) and A. purpuratus (Tapia et 

al., 2011). Notably, even if some studies have investigated such peptides in scallop, no 

data are available in P. maximus and to our knowledge, this is the first AMP transcript 

reported for this species. The amino acid sequence alignment with the A. irradians BD 

(Figure 4) evidenced a high percentage of identity and a similar protein structure. The two 

spatially distinct structural domains that can fold and function in isolation could be 

recognized. N-AMD comprises half of the molecule and is rich in hydrophobic residues 

(Kouno et al., 2009). As demonstrated by Saito and colleagues in T. tridentatus (Saito et 

al., 1995), while N-AMD has selective activity against Gram-positive bacteria, the C-

βDD domain is active on Gram-negative bacteria and it perfectly corresponds to a β-

defensin with six identical cysteines to form three disulfide bridges. Structurally, as in A. 

irradians BD, the C-βDD domain is separated from the N-AMD domain by a small loop 

that represents a major target for insertion/deletion (indel) mutations within this family. 

Evolutionary analysis confirmed the close relationship between A. irradians and P. 
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maximus BDs, and demonstrated that the two Pectinidae clustered separately from 

mussels and oysters, even though they all belong to the subclass Pteriomorphia, 

suggesting that BDs in scallops are highly divergent in terms of sequence evolution.  

The large group of Pteriomorphia was further split in three branches dividing clams, 

mussels and oysters. While the existence of additional homologs that they have not been 

detected yet cannot be ruled out, multiplicity of BDs could be observed especially in M. 

galloprovincialis, with repeated events of gene duplication, resulting in a wide set of 

BDs. 

There is a clear contrast between C. gigas and M. galloprovincialis, where multiple BDs 

were found, and P. maximus, where a single BD could be identified. Despite targeted 

Blast searches were carried out using defensins and AMPs from several species as a 

query, and ORFs were carefully evaluated to find AMP motifs, no other putative AMPs 

could be detected. While the hypothesis that additional, canonical AMPs exist in P 

maximus, but were not present in the obtained sequences, cannot be entirely ruled out, it 

seems unlikely considering the broad representation and large sequencing depth of the 

scallop transcriptome. Alternatively, a single canonical AMP is present in the arsenal of 

antimicrobial defenses for the great scallop. It has been already observed that multiplicity 

of genes encoding immune effectors is often found in species known to be robust against 

microbial infections, as is the case of Mediterranean mussel, while a limited repertoire 

might lead to increase susceptibility to pathogens. P. maximus is notoriously a highly 

susceptible species to bacterial infections, which might be linked to the evidence of a 

single AMP. On the other hand, it could be that non-canonical peptides are expressed in 

scallop, bearing insufficient sequence conservation to be easily identified as AMPs. In the 

present study, two ORFs coding for short peptides, characterized by a SP and marginal 

similarity to defensin-like domains, were discovered. The corresponding mRNAs were 

significantly up-regulated after either in vitro or in vivo challenge, similar to what 

observed for the single bona fide scallop AMP, PmBD. Several previous studies 

conducted in different species confirm that over-expression of AMPs follows exposure to 

immune stimuli. Zhao and coworkers (Zhao et al., 2007) demonstrated that relative 

expression level of A. irradians BD in hemolymph was up-regulated with a drastic 

increase 32 h after challenge with V. anguillarum. In the Pacific oyster, circulating 

hemocytes showed significant increase in C. gigas BD1 and BD2 12 h after stimulation 

with a mix of heat-killed Gram-positive and Gram-negative bacteria (Rosa et al., 2011). 

A further study performed in C. gigas hemocytes reported no differential representation 
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of BDs following challenge with diverse virulent Vibrio spp in comparison with the 

corresponding inactivated strains, suggesting that BD expression is induced by the 

presence of the pathogen itself, in a way that does not dependent on bacterial virulence 

(de Lorgeril et al., 2011). The same trend of induction has been observed also for BD in 

vivo challenged clams V. philippinarum (Zhao et al., 2010) and S. broughtonii (Li et al., 

2012). 

5. Conclusions 

Deep sequencing of the scallop immune transcriptome demonstrates the great potential 

for such an approach to rapidly increase our knowledge on bivalve immunity. An 

extensive number of transcripts was sequenced, allowing the annotation of most major 

proteins involved in various mechanisms of innate immune response, such as pathogen 

recognition and binding, phagocytosis and microbial membrane lysis, apoptosis, cell-cell 

communication and signal transduction. At the same time, preliminary functional 

characterization of all expressed transcripts could be obtained through the use of ultra 

high-throughput NGS technology and the comparison of different hemocyte samples, 

either un-stimulated or challenged. Besides the identification of conserved immune genes, 

it was shown that in-depth data mining through specific motif searches might lead to 

isolate novel immune-relevant molecules.  

These finding provided information on the great scallop innate immunity and may 

contribute to develop strategies for management of diseases and for long-term 

sustainability of P. maximus aquaculture. 
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1. Background 

Since the mid-1970s, large-scale episodic events such as disease epidemics, mass 

mortalities, and harmful algal blooms and other population explosions have been 

occurring in marine environments at a historically unprecedented rate (Harvell et al. 

1999, 2002, Lafferty et al. 2004, Mydlarz et al. 2006). Ecologically and economically 

important invertebrates have been affected by large-scale mass mortalities, generally 

related to infectious diseases (Mydlarz et al. 2006). The case of summer mortality 

syndrome of Crassostrea gigas is emblematic. Significant mortality in Pacific oyster has 

been experienced during the summer months in several countries (e.g. France, United 

States, Australia and Ireland), and is a major concern for oyster aquaculture. Notably, in 

France a multidisciplinary approach has been adopted to assess the causes of C. gigas 

summer mortality and to propose solutions that maximize survival, leading to the 

hypothesis that this phenomenon is multifactorial since it results from a complex 

interaction between environment, oysters and pathogens (Samain & McCombie 2008). 

Looking at the environmental factors, hypoxia/anoxia, high concentration of hydrogen 

sulfur (H2S), supposedly due to the presence of anaerobic bacteria in sediments, and 

increase in water temperature have been shown to affect both the growth and the survival 

of oysters (Le Moullac et al., 2007b, Le Moullac et al., 2007a). Most of all, the 

temperature has been reported to affect the physiology of oysters since it could activate 

the gametogenesis and thus the reproduction. Noteworthy gametogenesis demands high 

energy resources and considerably weakens the immune system (Fleury et al., 2010), 

seriously decreasing the oysters survival chances. As evidence, a positive correlation 

between survival rate and reproductive efforts has been suggested (Huvet et al., 2010). 

Besides physiology, also genetic has been shown to play an important role in determining 

oysters’ mortality or survival (Degremont et al., 2005, 2007, 2010). A high heritability 

was estimated for resistance to summer mortality, which provided an opportunity to 

develop lines of oysters that were resistant (R) or susceptible (S) to the syndrome. 

Recently, to investigate the molecular bases underneath the host resistance to summer 

mortality, a genome-wide expression profiling study of R and S gonads, gills and muscle 

has been carried out through a microarray platform (Fleury et al., 2010; Fleury and 

Huvet, 2012). Among the 9,058 unigenes analyzed, a great number appeared to be 

differentially expressed between R and S “lines” during the 3-months period preceding a 

summer mortality outbreak. Interestingly, the gene ontology analysis of these genes 

revealed that reproduction allocation, energy metabolism, antioxidant defense and 
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immune system are constitutive pathways that operate differentially between R and S 

oysters. In addition, a significant over-representation of immune-related genes at the date 

preceding the mortality lets the authors thinking that immune defense, mainly through the 

nuclear factor kB (NF-kB) pathway, is one of the main determinant of resistance in the 

field.  

The third interacting factor is pathogens, above all Vibrio spp and herpesvirus. Vibrio 

genera are commensal bacteria of the digestive tract in oysters (Colwell and Liston, 1960) 

but it has been demonstrated that, in the presence of environmental or physiological 

stressing conditions, V. splendidus and V. aestuarianus are two important causative 

agents of the summer mortality syndrome (Lacoste et al. 2001; Le Roux et al. 2002; 

Waechter et al. 2002; Gómez-León et al., 2005; Garnier et al. 2007). While the relevance 

of Vibrio spp in bivalves mortality outbreaks has been always recognized, the role of 

herpesvirus appeared crucial since spring 2008. Until this year it was generally accepted 

that pathogens were mainly opportunistic giving more importance to host and 

environment in the interaction, high temperature and reproduction stage having the most 

important causative effects in C. gigas summer mortality. Then, in 2008, evidences 

demonstrated that mortality occurred below the previously established temperature 

threshold (Pernet et al., 2012) and it has been hypothesized that Oyster herpesvirus type I 

(OsHV1, Renault et al., 1994) was most likely the main triggering factor as almost 

always observed in summer outbreaks. Consistent with this hypothesis recent studies 

identified a new virus variant, OsHV1µ variant, and recognized it as responsible of 

several mortality episodes (Segarra et al., 2010, Cochennec-Laureau et al., 2011). 

Nevertheless, the identification of implicated factors still remains an open issue and the 

complexity of this phenomenon is attested by recent studies suggesting that the principal 

cause of oyster mass mortality may consist on a co-infection of V. splendidus and OsHV-

1, rather than a single pathogen infection (Dégremont, 2011; Pernet et al, 2012).In 

invertebrates, such as oysters, the defense against infectious microorganisms is guided by 

the innate immune system, which relies on basic mechanisms, conserved throughout 

much of the animal kingdom (Hoffmann et al., 1999), of pathogen recognition and 

activation of the response. Recent studies have revealed striking similarities in the 

signaling pathway used by mammals and molluscs to activate their innate immune 

responses (e.g. Montagnani et al., 2004, Green and Barnes, 2009; Koutsogiannaki and 

Kaloyianni, 2010; De Zoysa et al., 2010). In both cases, infection leads to the induction of 

the NF-kB pathway, in which the most significant feature is the central role of the 



85 

 

Rel/NF-kB family of transcriptional activator proteins. The Rel/NF-kB family of 

transcription factors is composed of a set of structurally related and evolutionarily 

conserved DNA binding proteins (Baldwin, 1996) that are involved not only in immune 

and inflammatory responses but also in the control of a large number of cellular processes 

such as development, cellular growth and apoptosis (Hayden et al., 2004). Since they are 

evolutionary conserved, several components of the Rel/NF-kB signaling pathway have 

been cloned and characterized from pearl oysters (Xiong et al., 2008; Zhang et al., 2009), 

abalone (Jiang et al., 2007) and squid, which strongly suggest the presence of the 

Rel/NF-LB pathway in molluscs.  

In most cell types, Rel/NF-kB transcription complexes are present as latent, cytoplasmic 

forms that can be induced to enter the nucleus and activate gene expression (Ghosh et al., 

1998). The cytoplasmic sequestration of Rel/NF-kB is regulated by a family of IkB 

inhibitors (Thompson et al., 1995; Whiteside et al., 1997). This interaction blocks the 

ability of NF-kB to bind to DNA and results in the NF-kB complex being primarily in the 

cytoplasm due to a strong nuclear export signal in IkB. Many of the signals known to 

activate Rel/NF-kB also lead to the activation of Toll-like receptors, which in turn initiate 

intra-cellular signaling cascades that culminate in phosphorylation, ubiquitination and 

degradation of IkB (Figure 1). Serine kinases termed IKKs (IkB kinases) have been 

shown to phosphorylate IkB in response to signals known to activate the NF-kB cascade 

(Régnier et al., 1997; Woronicz et al., 1997; Cohen et al., 1998; Lu et al., 2001). Once 

released, NF-kB is located preferentially into the nucleus and activates target genes 

through binding to 10 bp DNA sites (kB sites) as dimers (Chen and Ghosh, 1999). All the 

Rel/NF-kB proteins are related through a highly conserved 300 amino acid region called 

the Rel homology domain (RHD) that is involved in DNA binding and dimerization 

(Ghosh et al., 1998). The RHD also contains the nuclear localization site (NLS) that 

consists of a stretch of four or five basic residues and is responsible for the nuclear 

translocation of the protein. Further, Rel/NF-kB proteins can be divided into two classes 

based on sequences C-terminal to the RHD. Members of class I (p100 and p105 in 

mammals and Relish in Drosophila) have long C-terminal domains that contain multiple 

copies of ankyrin repeats (similar to those present in IkB proteins) which act to inhibit 

themselves. Thus, members of this class are generally not activators of transcription, 

except when they form dimers with members of the second class of Rel/NF-kB 

transcription factors. Members of class II (cRel, RelA, RelB in mammals; Dorsal, Dif in 

Drosophila) contain C-terminal activation domains, which are often not conserved at the 



86 

 

primary sequence level across species, even though they can activate transcription. In its 

most basic form, therefore, the pathway consists of receptor and receptor proximal 

signaling adaptor molecules, the IKK complex, IκB proteins and NF-κB dimers.  

As concern the Pacific oyster C. gigas, several conserved genes from the Rel/NF-kB 

signaling pathway have been characterized and in Figure 1 similarities of oyster Rel/NF-

kB pathway with vertebrates and Drosophila are highlighted. It has been demonstrated 

that two proteins, an IkB kinase-like (oIKK) and a Rel homolog (Cg-Rel1), shared 

structural and functional properties with their mammalian and insect counterparts 

(Escoubas et al., 1999; Montagnani et al., 2004). Moreover, the presence of two IkB 

homologs (Cg-IkB1 and Cg-IkB2) and their ability to inhibit NF-kB/Rel transcriptional 

activity has been reported (Zhang et al., 2011). In addition, Green et co-workers (Green et 

al., 2014) recently evaluated the immune response in circulating hemocytes from poly:IC-

injected oysters and, by means of microarray, they demonstrated that oysters rely on a 

cellular response to minimize viral replication, involving recognition of virus-associated 

molecular patterns to induce host cells into a Rel/NF-kB-mediated antiviral state. 

Notably, in this study the mRNA expression of a Toll-like receptor, MyD88, IkB1 and 

Rel, was significantly induced.  

 

Figure 1. In vertebrates and in Drosophila the Rel/NF-kB pathways are conserved at the 
molecular level from transmembrane receptors (Toll, TLR for Toll-Like receptor, IL-1R for 
interleukin-1 receptor) to Rel proteins (Dif, NF-kB). Ligand binding to TLR leads to the activation 
of adapter proteins (MyD88, Tube) then to the activation of kinases (Pelle, IRAK, IKK) and to the 
phosphorylation and degradation of Rel inhibitory proteins (cactus, IkB). The phosphorylated 
inhibitors are degraded to release Rel transcription factors. The different components 
characterized in oyster are shown (Cg-MyD88, Cg-TRAF, Cg-ECSIT, oIKK and Cg-IkB). DD, 
death domain; KD, kinase domain; TIR, Toll/IL-1 receptor homology domain. The figure was 
reported in Montagnani et al., 2004. 
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Despite the Rel/NF-kB family and its regulation is an important field of research, we still 

have a very little understanding of the complex in vivo dynamics of this pathway in 

molluscs.  

To date, biochemical and molecular approaches have been employed to unravel the 

Rel/NF-kB pathway functioning and, more in general the mechanisms driving the 

bivalves immune response. In the last decade, reverse genetic and “omic” tools, most of 

all transcriptomic, have been widely exploited to investigate bivalve immunology. A 

promising technique which could help in understanding the specific functions of Rel/NF-

kB proteins is the RNA interference (RNAi). RNAi is a highly evolutionally conserved 

process of post-transcriptional gene silencing by which double-stranded RNA (dsRNA), 

when introduced into a cell, causes sequence-specific degradation of homologous mRNA 

sequences (Almeida et al., 2005). It was firstly described in plants and Caenorhabditis 

elegans (Jorgensen et al., 1990; Fire et al., 1998) but later also recognized as process 

existing in fungi and animals (Elbashir et al., 2001; Romano et al., 1992). Following 

these observations, RNAi-based applications have generated substantial enthusiasm and 

became a powerful tool for reverse genetic studies. Since classic functional genetic 

approaches such as mutagenesis are not yet available for bivalve molluscs, RNAi has 

emerged as a powerful alternative technique for determining the loss-of-function 

phenotype of a gene (Elbashir et al., 2001). Despite that, in molluscs, this technique is 

still scarcely used and it remains a technical challenge (Fabioux et al., 2009; Suzuki et al., 

2009). Conversely, RNAi has been widely used in vitro and in vivo in vertebrate and 

invertebrate species (Berns et al., 2004; Robalino et al., 2004; Dash et al., 2008). 

In this study, based on the recent development of RNA interference in C. gigas (Fabioux 

et al.2009; Huvet et al., 2012), dsRNA targeting the Cg-IkB2 gene was injected in vivo 

into oysters following a OsHV-1 challenge, survival being of the main knock-down 

phenotype of interest in the present study. The real-time PCR technique was employed to 

evaluate the expression levels of IkB2 itself and three important immune-related 

transcripts, Cg-IkB1, Cg-Rel1 and a Cg-SOCS (Suppressor of cytokines signaling) in 

gonads and gills. 
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2. Methods 

2.1. Biological Material 

Healthy naïve oyster spat (i.e. free of mortality, negative for OsHV-1 and Vibrio sp) were 

produced in May 2012 at the IFREMER (French Research Institute for Exploitation of the 

Sea) hatchery in Argenton (Finistère, France). The progeny was cultured at the Ifremer 

station in Bouin (Poitou-Charentes, France) as described in Petton et al. (2013). At the 

end of November 2012, 900 oysters (with a mean weight of 4 g) were transferred to the 

IFREMER station in Brest (Finistère, France) and they were placed in 20-µm-filtered 

seawater at 20°C, until the experiment begun (4 days later). 

2.2. dsRNA synthesis  

The procedure was similar to that described by Fabioux et al. (2009). A pool of RNA 

from different oyster tissues was used as a template in a RT-PCR reaction to obtain a 

cDNA sample. Starting from this cDNA, a PCR reaction allowed to amplify a fragment 

from position 144 to 456 of Cg-IkB2 cDNA (Genbank: HQ650768). The primer used to 

obtain the 312 bp fragment were the following: forward: 5’-

GGATTTGAACGACCTGGAAG-3’, reverse: 5’-GCAGACGACTCGTTTTCATC-3’. 

The fragment was then sub-cloned into pCR4-TOPO vector (Invitrogen) which was 

subsequently used to transform chemically competent Escherichia coli cells (TOP10 One 

Shot® competent cells, Invitrogen). Bacteria have been plated in LB solid culture 

medium containing ampicillin in a final concentration of 75 µg/mL and incubated 

overnight at 37°C. The following day, colonies were picked, transferred in LB liquid 

culture medium (amplicillin 75 µg/mL) and incubated overnight at 37°C. The 

recombinant plasmid was extracted and purified from bacteria by using the Plasmid DNA 

purification Kit NucleoBond®Xtra Midi (Macherey-Nagel) and the DNA concentration 

and purity were estimated through the Nanodrop ND -1000 spectrophotometer (Thermo 

Fisher Scientific). In order to verify the cloning success the plasmid was digested with 

EcoRI (4 hours at 37 °C). The digestion products were analyzed by agarose 1% gel 

electrophoresis. The plasmid was also sequenced to confirm the effective insertion of the 

312 bp fragment of Cg-IkB2 coding sequence. In order to prepare the templates for the 

fragment transcription, the plasmid was linearized with NotI or SpeI enzymes (Promega, 

Madison, WI), then phenol-chloroform extracted and finally ethanol-precipitated and 
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suspended in RNAse-free water. The linearization products were verified by agarose gel 

electrophoresis.  

Both strands of the purified plasmid were transcribed in vitro by using T7 and T3 

MEGAscript® Kits (Ambion, Austin, TX, USA) to produce Cg-IkB2 sense and antisense 

single-stranded RNA (ssRNA). The two strands were phenol-chloroform extracted, 

ethanol-precipitated and resuspended in RNAse water. In order to obtain a solution of 

dsRNA 2 µg/µl, equimolar amounts of sense and antisense ssRNA were heated to 100°C 

for 1 minute and left to cool at room temperature for 10 hours for annealing.  Finally the 

agarose gel electrophoresis allowed ensuring that the synthesized dsRNA corresponded of 

a single band of 312 bp. 

2.3. dsRNA administration and sampling 

Oysters were anesthetized in MgCl2 solution (3/5 fresh water 2/5 seawater with 50 g/L 

MgCl2) overnight (Suquet et al., 2009). Anesthetized oyster were injected at T0, either 

with Cg-IkB2 dsRNA (1 µg for each gram of oyster mean weight) diluted in 100 µl Tris-

NaCl saline solution (n=186) or with the same volume of saline solution for the control 

(n=186). Half of the solution volume (i.e. 50µL) was injected in the gonad and half in the  

adductor muscle sinus, one of the most important sinuses (Cheng, 1981), expecting 

targeting the circulating haemolymph. After injection, oysters were placed in 30-liters 

tanks (3 tanks for each condition) containing 1 µm-filtered sea water. Rearing conditions 

were the one described in Schikorski et al. (2011). At 5 and 24 hours after dsRNA 

injection, dsRNA injected (N=15) and control animals (N=15) were sampled. A solution 

containing 105/µL of herpesvirus OsHV-1 was prepared by dissecting and pooling tissues 

from naturally infected oysters, as described in Schikorski et al. (2011). Twenty-eight h 

after the dsRNA injection, the shells of the remaining oysters were grinded and animals 

were intramuscularly injected with 100 µL of a solution containing 104/uL particles of 

herpesvirus OsHV-1. Control oysters were injected with 100 µL of sterile sea water 

(SSW). Two additional sampling (N=15 in each of the 2 following conditions, 

dsRNA+OsHV-1 and TrisNaCl+OsHV-1) were performed at 20 and 44 hours post-

infection, corresponding to 48 and 72 hours after dsRNA injection, respectively. After 

each sampling, gonads and gills were immediately dissected, froze and store in liquid 

nitrogen until subsequent total RNA extraction.  
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During the dissection at 72 hours, a piece of mantle was also dissected for each collected 

animal and conserved in ethanol for further DNA extraction and assay, through real-time 

PCR, of the number of viral copies in each oyster.  

Mortality has been visually estimated two times per day (early morning and late 

afternoon) overall the experiment (10 days). The visual parameter used to determine the 

mortality was the oysters’ ability to close valves once they were removed from the water. 

Dead/moribund oysters were dissected and a piece of mantle was collected and conserved 

in ethanol for subsequent DNA extraction and viral load assay.   

2.4. RNA isolation and cDNA synthesis  

The gonad and gills tissues were individually crushed to a fine powder at 196°C with a 

Dangoumau mill and about 30 mg of powder was included in 2 ml tubes containing 1,5 

ml of Extract-all solution (Eurobio). Total RNA of each sample was isolated according to 

the manufacturer’s instructions. Total RNAs extracted from gonads required an additional 

precipitation step with sodium acetate in order to purify them from contaminant 

substances adsorbing at 230 nm. Then, all the samples were treated with RTS DNAse Kit 

(MO-BIO) according to the manufacturer’s instructions. RNAs concentration and quality 

were measured using a Nanodrop ND -1000 spectrophotometer (Thermo Fisher 

Scientific) at 260 nm and RNA integrity was assessed through RNA nanochips and 

Agilent RNA 6000 nanoreagents (Agilent). In order to verify the success of the DNAse 

treatment (i.e. the absence of DNA carryover), RNA samples were all diluted 1:10 and 

analyzed in real time PCR by using a couple of primers reported in Fabioux et al., 2004 

and specifically amplifying the elongation factor 1 (Cg-EF1) (see below for real time 

PCR protocol).     

The first-stand synthesis was carried out following the Sigma MMLV (Moloney Murine 

Leukemia Virus) RT usage recommendations and using the DNAse-treated RNA as 

template and oligo-dT as primers (as described in Fabioux et al., 2004). RNA samples 

were denatured at 70°C for 10 minutes and retro-transcription was performed at the 

following thermal conditions: 25°C for 15 min, 42°C for 50 min and 94°C for 5 min. 

2.5. Quantification of immune-related gene expression 

Real-time RT-PCR was performed with the iQ™ SYBR® Green Supermix (Biorad) on a 

MyIQ2 Biorad thermal cycler to investigate the expression of immune-related genes, 

including Cg-IkB1, Cg-IkB2, suppressor of cytokine signaling (Cg-SOCS) and the 

transcription factor Rel1 (Cg-Rel1) (protocol in Huvet et al., 2004). The PCR efficiency 
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(E) for each primer pair was determined by performing standard curves from serial 

dilutions to ensure that E ranged from 98% to 102%. The primer sequences used in this 

assay are shown in Table 1. Relative mRNA levels of the target genes in gonads were 

calculated by using the comparative Ct method (Livak and Schmittgen, 2001) and 

normalized to Cg-EF1, as no significant differences of Ct values were observed for Cg-

EF1 between dsRNA and Tris-NaCl injected oysters over time (One-way Anova: F=0.59, 

p>0.05). Whit regard to Cg-EF1 expression values in gills, the variance analysis 

demonstrated a significant variation between groups (One-way Anova: F=3.8, p<0.05). 

Despite that, also in gills the target genes expression was normalized to Cg-EF1, since the 

post hoc test Tukey HSD showed that differences were restricted to the comparison 

among oyster collected at 5 and 72 hours post injection, a contrast which is scarcely 

relevant, considering the goal of the study. All data were given in terms of relative 

mRNA expression level (Relative Quantification = RQ) as means ± S.D (n=15) 

Primer Sequence Length Efficency (%) 
Cg-IkB1 Forward 5’-GATATCGCCCTGATCTTGCT-3’ 20 

99.3 
Cg-IkB1 Reverse 5’-AGGTTGGCTCCTGACATCAC-3’ 20 
Cg-IkB2 Forward 5’-CAGCATTCACTGACGACGAT -3’ 20 

98.2 
Cg-IkB2 Reverse 5’-TCTGCCTCAGTTTGTCGTTG -3’ 20 

Cg-SOCS Forward 5’-ATCAGCCGATTCATCCTCAG -3’ 20 
100 

Cg-SOCS Reverse 5’-TGCTGGAATGTGTAGGCAAC -3’ 20 
Cg-Rel1 Forward 5’-GGTTAGACGAGACAAAGACAG -3’ 21 

98.9 
Cg-Rel1 Reverse 5’- GCATCCAGTGAGGAAATGA-3’ 19 
Cg-EF1 Forward 5’-GATTGCCACACTGCTCACAT-3’ 20 

100 
Cg-EF1 Reverse 5’-AGCATCTCCGTTCTTGATGC-3’ 20 

Table1. Primers used for the real-time PCR amplification 

2.6. Detection and quantification of OsHV-1 

Total DNA was extracted from mantle tissues for real-time PCR assay analyses as 

described in Schikorski et al. (2011). The detection and quantification of OsHV-1 DNA 

was carried out in triplicate using real-time PCR according to Pepin et al. (2008), with 

specific primers that amplified both reference and µVar types. Briefly, absolute 

quantification of OsHV-1 DNA copies was carried out by comparing the Ct values 

obtained for tested samples with a standard curve based on a ten-fold dilution of a stock 

solution of OsHV-1 genomic DNA (5 × 106 copies/µL) extracted from purified virus 

particles. The results were expressed as virus DNA copy numbers per ng total DNA. 

Standardization of OsHV-1 genomic DNA quantity was reached using DNA 

concentrations measured using an ND-1000 spectrophotometer (Nanodrop Technologies) 

at 260 nm with the conversion factor of 1 OD = 50 µg/mL DNA (Schikorski et al., 2011). 
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2.7. Statistical analyses  

In order to evaluate the survival rate at the different tested conditions, Cox proportional 

hazards model have been implemented with the statistical software STATGRAPHICS 

Centurion XVI v. 16.2.03.  

Following the logarithmic transformation of the RQ values, a variance analysis (two way 

ANOVA) was performed in RGui by using a linear mixed model where “time” and 

“condition” are fixed effects and “tank” is a random effect. Normality and variance of 

residuals were checked (see Appendix C1 for gonads and Appendix C2 for gills). After 

ANOVA, a Tukey’s HSD multi comparison test (Confidence interval: 95%; p-

value<0.05) was performed to evaluate differences i) between controls and dsRNA-

injected at each sampling time and ii) between sampling times within each condition. 

As concern the viral load, the estimates of OsHV-1 DNA copies were highly variable, and 

followed an asymmetric distribution that appeared to be neither normal nor Poisson, even 

after classical normalization transformations. Values were consequently log-transformed 

and a non-parametric Kolmogorov-Smirnov test was performed in order to evaluate 

differences between groups. In addition the viral load was compared to the gene 

expression data through the assessment of Spearman's rank correlation coefficients. Both 

statistical analyses were carried out by using the software STATGRAPHICS Centurion 

XVI v. 16.2.03. 
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3. Results 

3.1. Evaluation of mortality 

In infected oysters previously injected with the control solution TrisNaCl, mortality 

appeared at 44h after the viral infection. At 68h after viral infection the survival 

probability was 0.71 and at the end of the experiment (260h after viral infection), when 

the number of dead oysters in each tank was 28, 27 and 24 respectively, the survival 

probability was less than 2%. Conversely, in the experimental group treated with the 

dsRNA a total of four oysters died and the survival probability at the end of the 

experiment was nearly 90%. As concern controls animals (dsRNA and TrisNaCl oysters 

injected with sterile seawater, SSW), a single mortality event was registered at 128h post 

infection in the tank containing oysters injected with TrisNaCl/SSW. Figure 2 represents 

the survival rate calculated through the Cox proportional hazards model. 

 
Figure 2. Cox proportional hazards model of the survival distribution obtained each day in the 
three tanks used per treatment, for the dsRNA and TrisNaCl groups injected either with the 
herpesvirus OsHV-1 or Sterile SeaWater (SSW). In the x axis survival time is expressed in hours 
post Os-HV1 or sterile seawater (SSW) injection. 

3.2. Gene expression  

As concern the oysters treated with the IkB2 dsRNA (grey bars in Figure 3B), the 

expression levels of IkB2 didn’t show any significant variation in gonads neither after the 

dsRNA injection, neither after the herpesvirus injection. The same trend was reported for 

IkB1, Rel1 and SOCS transcripts, for which no differences appeared over time. 

Conversely, in the animals treated with the control solution TrisNaCl (black bars in 

Figure 3), significant changes were reported over the time course of the sampling. As 

concern IkB1, the mRNA level exhibited a slight decrease, with a Fold Change (FC) of  
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Figure 3. Relative expression of IkB1 (A), IkB2 (B), Rel1 (C) and SOCS (D) in gonads. 
Significance evaluated through two way mixed model ANOVA and Tukey’s HSD multicomparison 
test. Black bars represent the oysters injected with TrisNaCl and grey bars represent oysters 
injected with dsRNA. A common letter for two groups means that post-hoc tests detected no 
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significant differences for gene expression levels between them. The lightning symbol indicates 
the beginning of the viral challenge. 

1.72, at 24h after the injection of the control solution TrisNaCl and a substantial 

increment in the two times following the virus injection. IkB2 showed, at 20h after the 

virus infection, an  

increase in the expression level (FC:4.95) which remained stable at 44h. A similar 

behavior, but less evident (FC:1.85), was observed for Rel1. 

For SOCS gene, the expression appeared up-regulated later, at 44h after the virus 

injection (statistical significance for the comparison between 24h and 72h after the 

beginning of the experiment).  

Looking at the comparison between the mRNA levels reported in the two conditions at 

each sampling time, interesting results were evidenced. While at 5h post injection no 

differences occurred, at 24h post injection the quantity of transcript encoding IkB1 and 

IkB2 was statistically higher in the gonads of the group of oysters treated with the 

dsRNA. Notably, once the TrisNaCl-injected oysters were exposed to the herpesvirus, 

they showed a higher expression of all the target genes, despite a statistical significance 

was reported only for IkB2 and Rel1 at 20h post infection and for all genes except for 

SOCS at the last sampling time. 

In gills, the 4 target genes showed variation of mRNA levels similar to that seen in 

gonads. Oysters treated with the IkB2 dsRNA (grey bars in Figure 4), exhibited a slightly 

significant increase in the expression of Rel1 at 24h after the dsRNA injection. The 

behavior of the other 3 genes remained stable over time. Instead, the animals treated with 

the control solution TrisNaCl (black bars in Figure 4), evidenced significant changes in 

the expression level of all the genes evaluated. IkB1, similarly to what observed in 

gonads, was slightly down-regulated (FC:1.52) at 24h after the injection of the control 

solution and considerably up-regulated (FC:3.05) at 20h after the virus injection. Like 

IkB1 but at a greater extent (FC:4.31), IkB2 was induced after the virus infection and the 

increment remained stable at 44h post challenge. A similar behavior, but less evident, was 

observed for SOCS for which a FC of 1.55 was reported. Notably, if compared to what 

seen in gonads, the Rel1 transcript seemed to have a different regulation: in fact it was 

2.76 times more expressed at 20h after the virus injection but its mRNA level 

immediately decreased at the last sampling time. As concern IkB2, Rel1 and SOCS, any 

significant variations were recorded before the virus challenge. 

With regard to gene expression analyzed at each sampling time, differences between the 

two experimental groups were reported. While at 5h post injection no significant 
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differences were evidenced between the two tested conditions, at 24h the expression of all 

the target genes was lower in the control group (black bars in Figure 3), but statistically 

significant only for IkB1 and Rel1. As seen in the gonads, the greater changes occurred 

after OsHV-1 infection. In fact, in the control animals treated with TrisNaCl, the amount 

of mRNAs of all the four genes was statistically higher at 20h after the challenge, with a 

greater difference reported for IkB2 (FC:2.86). At 44h post infection, differences in the 

expression level of SOCS remained stable, while the variations observed for IkB1 and 

IkB2 became greater, with a fold change of 2.13 and 3.07, respectively. As concern Rel1 

expression at 44h post infection, any statistical variation was highlighted.  
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Figure 4. Relative expression of IkB1 (A), IkB2 (B), Rel1 (C) and SOCS (D) in gills. Significance 
evaluated through two way mixed model ANOVA and Tukey’s HSD multicomparison test. Black 
bars represent the oysters injected with TrisNaCl and grey bars represent oysters injected with 
dsRNA. A common letter for two groups means that post-hoc tests detected no significant 
differences for gene expression levels between them. The lightning symbol indicates the beginning 
of the viral challenge. 

3.3. Viral load 

At 20h post infection the estimated log number of viral genome per ng of total DNA 

extracted from mantle was 4.71±0.74 and 1.26±1.38 in oysters injected with TrisNaCl 

(controls) and dsRNA (treated), respectively; a Kolmogorov-Smirnov test demonstrated 

that this difference was highly significant (K-S test= 0.92; pval < 0.001). At 44h the viral 

load was 5.90±0.46 and 1.61±0.62 in control and treated oysters, respectively, thus the 

estimated difference remained high and significant (K-S test= 1; pval < 0.001). Moreover 

the viral load was evaluated also in the oysters which died during the experiment, 

demonstrating that the log number of virus particles was significantly higher in the mantle 

of died control animals in comparison with those reported in died oysters treated with 

dsRNA (K-S test= 0.88; pval < 0.001).  

With regard to the correlation between virus load and gene expression, correlation 

coefficients are reported in Table 2.   

 Gonads Gills 
 IkB1 IkB2 Rel SOCS IkB1 IkB2 Rel SOCS 

Spearman's rank 
correlation coefficient 

0.82 
*** 

0.71 
*** 

0.67 
*** 

0.54 
*** 

0.67 
*** 

0.67 
*** 

0.33 
* 

0.58 
*** 

Table 2. Spearman test describing the correlation between virus load (measured in mantle) and 
gene expression (measure in gonads and gills) of the four target genes. *** p-value<0.001; * p-
value<0.5.  
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4. Discussion  

In the present study, it has been reported a RNAi experiment targeting IkB2, an important 

gene though to play a pivotal role in the Pacific oyster immune defense, and its 

involvement in the response against OsHV-1 infection has been investigated. Since a 

strong association between reproductive efforts and resistance to summer mortality was 

previously suggested in oysters (Fleury and Huvet, 2012; Fleury et al., 2010; Huvet et 

al., 2010; Samain and McCombie, 2008), we originally chose gonad as target tissue to 

administrate the dsRNA and to evaluate variations in the genes expression levels as well. 

Indeed, gonad was also demonstrated to be a good tissue to target and administrate 

dsRNA. Moreover, considering the role of IKB2 in immunity (Zhang et al. 2011), we also 

decided to inject dsRNA into adductor muscle sinus, one of the most important sinuses 

(Cheng 1981), expecting to target hemocytes, cells conveyed by hemolymph and having a 

key role in the immune defense against pathogens (Bachère et al., 2004; Le Foll et al., 

2010; Venier et al., 2011). Thus, since gills are bathed by hemocytes (Gonzalez et al., 

2007; Seo et al., 2005), gills have been sampled in this study as target tissue for the gene 

expression analysis.  

In this study we have shown that the injection of a dsRNA specific to Cg-IkB2 mRNA 

acts to modify the antiviral response against OsHV-1 infection in C. gigas, providing a 

markedly reduced mortality after OsHV-1 injection (Figure 2). Conversely, oysters 

treated with the control solution TrisNaCl experienced a high mortality and the viral load, 

evaluated in the mantle of died animals, was significantly more abundant in the control 

group than in the dsRNA-injected oysters (at 20h post infection: K-S test= 0.92, pval < 

0.001; at 44h post infection: K-S test= 1; pval < 0.001). Furthermore, the significant 

positive correlation reported, in both gonads and gills, between the viral load and the gene 

expression levels of all the four genes (Table 2) demonstrated that the mRNA level of 

these four immune genes increased in response to the spread of OsHV-1 infection. These 

results allowed us to think that the genes evaluated in the present study are more likely 

involved in the antiviral response in C. gigas. In addition, we can also assert that the 

death occurred as a consequence of the virus infection, as expected following the 

challenge employed to reproduce OsHV-1 infection in laboratory conditions (Schikorski 

et al., 2011). Despite the objective of this study was to evaluate the role of IkB2 in the 

response against OsHV-1 infection, the relative quantification obtained for this transcript 

was not sufficiently informative to provide substantial information regarding the 

involvement of this gene in the antiviral response in gonads and gills. While a down-
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regulation of IKB2 was expected after the dsRNA injection, nevertheless the expression 

data didn’t show an effective silencing of the IkB2 transcript (Figures 2B and 3B), at least 

at 24h after the dsRNA injection, which is the only sampling time suitable collected to 

eventually appreciate a variation induced exclusively by the RNAi. It could be still 

possible that a IkB2 slightly down-regulation occurred but it was transient and restricted 

to time-points for which gene expression analyses have not been planned, such as in the 

first five hours or between 5h and 24h post injection. Nonetheless, the IkB2 silencing 

could have been immediately counteracted through feedback regulation mechanisms, well 

established in the Rel/NF-kB pathway (Tieri et al. 2012), that rapidly restored the 

targeted transcript expression. In accordance with this hypothesis, the transient silencing 

of IkB2 could have temporally released the Rel/NF-kB pathway by liberating the Rel1 

transcription factor which was then translocated to the nucleus to activate a cascade of 

genes involved in the antiviral response. In turn, this activation could have determined the 

small increment of the Rel1 transcript reported in gills after the dsRNA transfection (grey 

bars in Figure 4C). Despite the transcription factors belonging to the Rel/NF-kB family 

are mainly regulated at a post-translational level (e.g. by IkB proteins), few studies 

showed an up-regulation of their mRNA following the activation of the Rel/NF-kB 

pathway triggered by experimental infections. In C. gigas hemocytes, real-time PCR 

analyses demonstrated an accumulation of Cg-Rel transcript at 3h and 9h after bacterial 

challenge (Montagnani et al., 2004); in scallop Chlamys farreri the temporal expression 

of Rel mRNA in hemocytes increased at 6h, 24h and 48h after LPS stimulation (Wang et 

al., 2011). Despite this evidence, considering that variations observed for the other target 

genes were not consistent either before or after the challenge, and that dsRNA-injected 

oysters were resistant to herpesvirus infection, we can suppose that, if a transient 

activation of Rel/NF-kB occurred, more likely it could have regulated a set of genes (not 

evaluated in this study) which were involved in the antiviral response. 

A second hypothesis which can be proposed is that the IkB2 silencing occurred later than 

24h post injection but we couldn’t appreciate it since at 48h post injection we performed 

the virus challenge, which clearly prevented the evaluation of the IkB2 silencing. 

Notably, the sampling times of the experiment have been decided basing on evidences in 

C. elegans, in which a first reduction of a targeted gene appeared within 24 hours (Fire et 

al., 2008). Although RNAi generally occurs within 24h of transfection, both onset and 

duration of RNAi is species-specific and depend on the turnover rate of the protein of 

interest, as well as the rate of dilution and longevity of the dsRNA (Mocellin and 
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Provenzano, 2004). For example, in a RNAi study performed in Chlamys farreri, an 

efficient knock-down of a Cf-TLR (Toll-like receptor) was appreciated at 48h post 

dsRNA injection (Wang et al., 2011). RNAi effectiveness and timing also depend on the 

mode of administration and the targeted tissue, this is the reason why in the present study 

both gonad and muscle sinus were injected. Nonetheless following the dsRNA 

administration, any relevant differences in the Cg-IkB2 mRNA expression between the 

two targeted tissues have been reported. Going back to the second hypothesis, if we admit 

that the IkB2 silencing occurred later than 24h post injection, the interpretation of the 

sampling times after the viral challenge becomes much more complex since the relative 

quantification outcomes could be the result of two different kind of regulations, one 

provoked by the gene silencing and one induced by the OsHV-1 infection. 

Finally a third hypothesis could be suggested and it is based on the assumption that the 

IkB2 knock-down failed, nevertheless the injection of a dsRNA induced in oysters an 

unspecific immune response which conferred resistance to OsHV-1 infection. It is well 

based in vertebrates that cells recognize dsRNA (viral or synthetic) via toll-like receptor 

3, which triggers a complex signal-transduction pathway resulting in the translocation of 

transcription factors (NF-kB and interferon regulatory factor) to the cell nucleus and the 

up-regulation of a number of genes, principally interferon. Interferon exerts an antiviral 

state in neighbouring cells by inducing the expression of antiviral proteins, such as 

protein kinase R (PKR), 2’,5’-oligoadenylate synthetase (OAS), and Myxovirus 

resistance protein (Mx) (Randall and Goodbourn, 2008). With regard to invertebrates, it 

was a generally accepted paradigm that they can recognize dsRNA as a virus-associated 

molecular pattern, resulting in the activation of an innate antiviral response, even in the 

absence of interferon-signalling pathway (Robalino et al., 2004). Recently this paradigm 

was disproved by the detection of interferon-related genes in genomic and expressed 

sequence tag (EST) databases (Huang et al., 2008; Sodergren et al., 2006; Zhang et al., 

2012; Philipp et al., 2012). Moreover, in pearl oyster (Pinctada fucata) an homolog of 

interferon regulatory factor 2 (IRF-2) was characterized (Huang et al., 2013) and in C. 

gigas the expression levels of interferon-induced protein 44-like (IFI44) and IRF-2 in 

response to poly I:C and herpesvirus stimulation were evaluated (Green and Montagnani, 

2013). Notably, the study conducted by Green and Montagnani also demonstrated that 

the injection of Polyinosinic:polycytidylic acid (poly I:C), an immuno-stimulant 

structurally similar to a dsRNA, could induce C. gigas spats into an antiviral state that 

provided protection against subsequent OsHV-1 µvar infection. In addition, following the 
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herpesvirus infection, in the poly I:C injected-oysters the viral load was less abundant 

than in the control group, as demonstrated here for the dsRNA-injected animals. In 

parallel, they measured in the whole oyster tissues the expression level of nine putative 

antiviral genes. In accordance to what we have seen in gills following the dsRNA 

transfection (grey bars in Figure 4C), the expression level of Cg-Rel was found to be 

significantly up-regulates at 24h after the poly I:C injection. Furthermore, in channel 

catfish Ictalurus punctatus it has been reported that a poly I:C injection, either directly or 

through the prior induction of IFN, upregulates gene products that function individually 

and/or collectively to inhibit virus replication (Milev-Milovanovic et al., 2009). Lastly, a 

very recent study has been performed at Ifremer (Plouzané, France) mimicking the 

present experiment but with an additional condition represented by oysters treated with a 

dsRNA targeting the Green Fluorescent Protein (GFP). In the aforementioned study, as 

observed here, mortality appeared very low for dsRNA-IkB2 injected oysters, compared 

to the high mortality observed in the control oysters, thus confirming our results. 

Interestingly, mortality also appeared low and similar in dsRNA-GFP and dsRNA-IkB2 

injected oysters reinforcing the third hypothesis. Taken together these results support the 

idea that the low viral load reported in oysters after the infection was due to the activation 

of immune-related genes hampering the viral replication and thus conferring resistance to 

OsHV-1. 

Moreover, taken in consideration the expression values reported for IkB2 in gonads and 

gills (grey bars in Figures 3B and 3B) we can suggest that the induction of an unspecific 

antiviral response triggered by dsRNA could slightly involve also IkB2, which was more 

abundant at 24h post dsRNA injection, despite the difference was not statistically 

significant (p>0.05). 

Since this study aimed to evaluate the expression of a restricted number of genes though 

to be regulated by the IkB2 silencing, we didn’t obtained data concerning the regulation 

of several other genes which could have been involved in the unspecific antiviral 

response more likely provoked by the dsRNA targeting IkB2. However, to gain more 

information concerning the antiviral response, it could be interesting to evaluate the 

expression of genes implicated in the different steps occurring during the viral infection 

such as entry of virus, nuclear translocation, viral genetic mechanisms and particle 

formation, virus life cycle. Notably, in wild C. gigas it has been recently demonstrated 

that a consistent set of genes was differentially regulated in infected and uninfected 
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oysters, influencing susceptibility or resistance against the virus infection (Jouaux et al., 

2013). 

With regard to the OsHV1 infected oysters injected with the control solution TrisNaCl, 

the mild down-regulation of IkB1 occurring in both the target tissues (black bars in 

Figures 3A and 4A) let us thinking that the injection itself slightly induced an immune 

response activation at the mRNA levels. Despite we didn’t carry out the real-time PCR 

analyses at T0, we believe that after the injection (5h), the transcription of IkB1 

immediately increased, followed by a statistically significant decrease at 24h. A similar 

trend for both IkB1 and IkB2 was reported by Zhang and colleagues (2011) in C.gigas 

hemocytes challenged with Vibrio alginolyticus. Moreover, it is well established that the 

activation of the immune response through Rel/NF-kB pathway leads to a transient 

induction of IkBs, which are involved in generating auto-regulatory feedback loops in the 

NF-kB response (Oeckinghaus and Ghosh, 2009).  

While the injection softly activated the immune system, resulting in a mild up-regulation 

of the sole IkB1, the OsHV-1 infection definitely had a greater impact on the transcription 

of both IkB1 and IkB2, either in gonads either in gills (black bars in Figures 3B, 3C, 4B 

and 4C). As suggested below, IkBs are involved in negative feedback regulation of NF-

kB. Despite Cg-IkB1 and Cg-IkB2 have not an identical pattern of expression, it has been 

already demonstrated that their up-regulation is likely to contribute to appropriate 

inhibition of NF-kB/Rel activation upon pathogens invasion, which may be a mechanism 

for keeping balance between protecting the host and killing pathogens in C. gigas (Zhang 

et al., 2011). Whereas the overexpression of IkBs following bacterial infections has been 

widely reported in bivalves (Zhang et al., 2011; Yang et al., 2011; Kasthuri et al., 2013), 

their role during viral infections has been poorly investigated and to our knowledge this is 

the first study evaluating the response of IkBs following herpesvirus infection in oysters. 

Noteworthy, an important evidence attesting the involvement of IkBs in the innate 

immune response was provided by Fleury and Huvet (2012) and Zhang et al. (2011). In 

this paper the authors showed, by means of microarray, that less abundant IkB1 and IkB2 

transcripts are associated to resistance to summer mortality. Moreover, an extra immune-

relevant transcript which was less expressed in survived oysters was SOCS, which is 

expected to limit NF–κB signaling following a classical negative feedback system that 

regulates cytokine signal transduction. Here we showed that the transcription of IkB1, 

IkB2 and SOCS have a prominent role in the oyster innate immune response and, in 
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accordance to what demonstrated by Fleury and Huvet (2012), the abundance of these 

transcripts are associated to the survival competence.  

Moreover in this study we also evidenced that the transcription of Rel1 is involved in the 

C. gigas antiviral response, as previously demonstrated in this species (Green and 

Montagnani, 2013). In fact, as seen for IkBs and SOCS, Rel1 expression was induced 

after the viral infection. As discussed above, is well established that this transcription 

factor is up-regulated after bacterial challenge in C. gigas and C. farreri (Montagnani et 

al., 2004; Wang et al., 2011) but little is known about its involvement in the response 

against virus infection. Conversely in vertebrates the role of Rel/NF-kB signaling has 

been well documented. In humans, NF-kB is activated by multiple families of viruses, 

including HIV-1, HTLV-1, hepatitis B virus (HBV), hepatitis C virus (HCV), EBV, and 

influenza virus. This activation may serve several functions: to promote viral replication, 

prevent virus-induced apoptosis, and mediate the immune response to the invading 

pathogen (Hiscott et al., 2001). Recent findings reported that NF-kB function is limited to 

a key early phase after virus infection by playing a crucial role in the production of type I 

interferon (Wang et al., 2010), essential molecules for limiting virus replication and 

promoting clearance. 

Take together these results, we suggest that in oysters the role of the Rel/NF-kB pathway 

in the antiviral response could have striking similarities to what observed in vertebrates. 

Finally we reported that the regulation of  Rel1 and SOCS is similar but not identical in 

the two target tissues. In fact, in gills, compared to what seen in gonads, the induction of 

SOCS transcription appeared earlier (at 20h post infection) and the fold increase of both 

SOCS and Rel1 was more substantial. This is not surprisingly if we consider that gills 

were characterized as one of the target organ, second only to the mantle, for the viral 

replication of the Ostreid herpesvirus 1 implicated in some summer mortality outbreaks 

(e.g. Schikorski et al. 2011). 

5. Conclusion 

In the present study we discussed the effects of a dsRNA targeting IkB2 in oysters 

exposed to OsHV-1 infection, an important causative agent of the summer mortality 

syndrome. Despite it remains still unclear if the IkB2 knock-down was successful limiting 

our first goal to specific the role of Cg-IKB2, the increased survival rate of dsRNA-

injected oysters in comparison with the controls (TrisNaCl-injected) demonstrated that 

dsRNA molecules more likely induce an antiviral state which prevent the virus 

replication, as recently observed following poly I:C injection. As concern the relevance of 
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IkB2 in the Pacific oyster antiviral response, further studies are required to shed light in 

the mechanisms by which the Rel/NF-kB pathway is regulated. Alternative molecular 

techniques should be employed to investigate the IkB2 role and avoid a simultaneous 

non-specific immune response. A promising “gene editing” strategy which seems to be 

exceptionally precise and efficient, and thus could be implemented in C. gigas immune 

studies, is the one called “CRISPRs” (Clustered Regularly Interspaced Short Palindromic 

Repeats). Yet a developing technology, CRISPRs derived from bacteria and has been 

recently employed in eukaryotes to delete (end eventually substitute) a target DNA region 

through the action of a specific enzyme called CAS9.  

In conclusion, these findings point out some important issues concerning the bivalve 

innate immunity and confirm the possibility, recently paved, of employing dsRNAs in 

these species as therapeutical agent against virus which cause severe economic losses in 

aquaculture. However, despite the enormous potential of this approach, more studies are 

needed and many obstacles must still be overcome before this technique finds practical 

application in aquaculture. In addition it has been demonstrated that, following 

herpesvirus infection, the transcription of IkBs, Rel1 and SOCS is stimulated, providing 

preliminary data concerning the involvement of the Rel/NF-kB pathway in the Pacific 

oyster antiviral response.  
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General conclusions 

In the present thesis NGS expression analyses and RNA interference were employed to 

improve the understanding on transcriptional events characterizing three bivalve species: 

V. decussata, P. maximus and C. gigas. The obtained results provided important evidence 

on molecular mechanisms regulating immune response and gamete maturation in 

bivalves, thus improving the knowledge on these commercially important species. This 

work demonstrated that NGS approaches and data mining, besides increasing the genomic 

knowledge on bivalves, might lead to isolate novel immune-relevant molecules. 

Moreover gene expression analyses may shed light into complex molecular networks 

implied in the bivalve immune response, and possibly resistance, against pathogens 

occurring in both wild and farm conditions. Moreover, this kind of studies could provide 

important information to improve the efficiency of reproduction in species for which 

hatchery-based production is more difficult on a routine basis. 

In conclusion, this thesis represents an example of how genomic analysis and gene 

expression studies may contribute to control reproduction and gametes quality, to develop 

strategies for management of diseases and for long-term sustainability of bivalve 

aquaculture. 
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Appendix A1 

A. Up-regulated genes 

A-kinase anchor protein 9 

Apolipophorins 

Transforming growth factor-beta-induced protein ig-

h3 

Complement C1q-like protein 4 

Ceramide synthase 6 

Contactin 

Chordin-like protein 2 

DC-STAMP domain-containing protein 1 

Protein dispatched homolog 1 

Exosome complex component RRP40 

Coagulation factor IX 

Protein four-jointed 

Forkhead box protein E4 

Fumarate hydratase, mitochondrial 

Frizzled-8 

Frizzled-8 

Frizzled-8 

Indole-3-acetic acid-amido synthetase GH3.4 

Zinc finger protein GLIS1 

G-protein coupled receptor 64 

Serine-enriched protein 

Lymphoid-specific helicase 

Immunoglobulin superfamily member 10 

Kelch-like protein 5 

Low-density lipoprotein receptor-related protein 4 

Meteorin-like protein 

Monocarboxylate transporter 12 

Monocarboxylate transporter 14 

M-phase inducer phosphatase 1 

M-phase inducer phosphatase 1 

M-phase inducer phosphatase 3 

M-phase inducer phosphatase 3 

M-phase inducer phosphatase 

Unconventional myosin-X 

Sodium/calcium exchanger 3 

Poly(rC)-binding protein 3 

PH domain leucine-rich repeat-containing protein 

phosphatase 2 

Piwi-like protein 2 

Ras-related C3 botulinum toxin substrate 1 

Retinal homeobox protein Rx1 

Tubulin monoglycylase TTLL3 

Cdc25-like protein phosphatase twine 

E3 ubiquitin-protein ligase UBR4 

Vitellogenin 

Protein Wnt-4 

Uncharacterized 51.9 kDa protein in rps4-rps11 

intergenic region 

Protein PF14_0175 

UPF0392 protein C33H5.2 

Oocyte zinc finger protein XlCOF28 

B. Down-regulated genes 

Phospholipase D LhSicTox-alphaIA2aviii 

Acetylcholinesterase 

2-amino-3-carboxymuconate-6-semialdehyde 

decarboxylase 

Aminoacyl tRNA synthase complex-interacting 

multifunctional protein 1 

Allantoicase 

Protein arginine N-methyltransferase 7 

AP-2 complex subunit sigma 

D-arabinose 1-dehydrogenase 

Sphingomyelin phosphodiesterase 

Asparagine synthetase domain-containing protein 1 

Ankyrin repeat, SAM and basic leucine zipper domain-

containing protein 1 

Ubiquitin-like-conjugating enzyme ATG10 

UDP-GalNAc:beta-1,3-N-

acetylgalactosaminyltransferase 2 

Biliverdin reductase A 

Protein BolA 

Cadherin-87A 

Cathepsin L2 

Cathepsin S 

Coiled-coil domain-containing protein 150 

Coiled-coil domain-containing protein 84 

Parafibromin 

Cytidine deaminase 

Transmembrane protein C5orf28 homolog 

Cholinesterase 

Cingulin 

UPF0696 protein C11orf68 homolog 

Calcium-activated chloride channel regulator 1 

Calcium-activated chloride channel regulator 4 

Ceroid-lipofuscinosis neuronal protein 6 homolog 

Putative ATP-dependent Clp protease proteolytic 

subunit, mitochondrial 

Collagen alpha-1(VIII) chain 

Collagen alpha-1(XII) chain 

Conserved oligomeric Golgi complex subunit 5 

COMM domain-containing protein 4 

COMM domain-containing protein 4 

Steroid 17-alpha-hydroxylase/17,20 lyase 

Cytochrome P450 2U1 

Crystallin J1A 

Crystal protein 

Cysteine sulfinic acid decarboxylase 

DDB1- and CUL4-associated factor 17 

Deoxycytidylate deaminase 

DnaJ homolog subfamily B member 5 

Probable D-tyrosyl-tRNA(Tyr) deacylase 2 

Enoyl-CoA delta isomerase 1, mitochondrial 

Epithelial cell-transforming sequence 2 oncogene-like 

Elongation of very long chain fatty acids protein 5 

Crossover junction endonuclease EME1 

Failed axon connections homolog 

Low affinity immunoglobulin epsilon Fc receptor 

Glutamate decarboxylase-like protein 1 

Glutamate decarboxylase-like protein 1 

Guanine nucleotide-binding protein subunit beta-2-

like 1 

GPN-loop GTPase 1 

Glutathione peroxidase 2 

Glutamate receptor 1 

Glutathione S-transferase 1 

Glutathione S-transferase 3 

Translation factor Guf1, mitochondrial 

Hemagglutinin/amebocyte aggregation factor 
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3-hydroxybutyryl-CoA dehydrogenase 

Helicase with zinc finger domain 2 

Histone-binding protein N1/N2 

5-hydroxyisourate hydrolase 

3-hydroxypropionyl-coenzyme A dehydratase 

4-hydroxyphenylpyruvate dioxygenase 

Isocitrate dehydrogenase [NAD] subunit beta, 

mitochondrial 

Importin subunit alpha-2 

Chromosome-associated kinesin KIF4B 

LSM domain-containing protein 1-B 

Ragulator complex protein LAMTOR3-B 

Malate dehydrogenase 

Mediator of RNA polymerase II transcription subunit 

30 

TRAF3-interacting protein 1 

MLX-interacting protein 

MAGUK p55 subfamily member 6 

mRNA turnover protein 4 homolog 

Methylthioribulose-1-phosphate dehydratase 

Myosin regulatory light polypeptide 9 

Myeloid zinc finger 1 

Nascent polypeptide-associated complex subunit 

alpha 

Sodium-dependent glucose transporter 1 

N-acetylated-alpha-linked acidic dipeptidase-like 

protein 

Neutral ceramidase 

Neutral ceramidase B 

NADH dehydrogenase [ubiquinone] flavoprotein 1, 

mitochondrial 

Neprilysin 

Nardilysin 

Nardilysin 

U8 snoRNA-decapping enzyme 

Nucleoporin Nup37 

Protein odr-4 homolog 

GDP-fucose protein O-fucosyltransferase 1 

Progestin and adipoQ receptor family member 3 

PDZ and LIM domain protein 1 

Prefoldin subunit 5 

Phytanoyl-CoA dioxygenase domain-containing 

protein 1 homolog 

PIH1 domain-containing protein 1 

Perlucin-like protein 

Protection of telomeres protein 1 

Peptidyl-prolyl cis-trans isomerase A 

Palmitoyl-protein thioesterase 1 

Profilin-4 

Prostasin 

Periodic tryptophan protein 1 homolog 

Regucalcin 

60S ribosomal protein L3 

60S ribosomal protein L3 

60S ribosomal protein L3 

60S ribosomal protein L4 

60S acidic ribosomal protein P1 

60S acidic ribosomal protein P1 

40S ribosomal protein S26-B 

40S ribosomal protein S26 

40S ribosomal protein S3 

40S ribosomal protein S9 

40S ribosomal protein S9 

Solute carrier family 25 member 45 

3-oxo-5-alpha-steroid 4-dehydrogenase 1 

Selenium-binding protein 1 

S-crystallin SL20-1 

Vesicle transport protein SEC20 

N-lysine methyltransferase setd6 

Protein SET 

Protein slit 

T-complex protein 1 subunit gamma 

L-threonine 3-dehydrogenase 

L-threonine 3-dehydrogenase 

Testis-expressed sequence 10 protein homolog 

General transcription factor 3C polypeptide 4 

E3 ubiquitin-protein ligase TRIM63 

Probable tRNA (uracil-O(2)-)-methyltransferase 

Tryptase 

Thrombospondin-type laminin G domain and EAR 

repeat-containing protein 

Tetraspanin-9 

Translin-associated protein X 

Alpha-tocopherol transfer protein-like 

Demethylmenaquinone methyltransferase 

Ubiquitin carboxyl-terminal hydrolase 20 

Ubiquitin carboxyl-terminal hydrolase isozyme L5 

Probable uridine nucleosidase 2 

U3 small nucleolar RNA-associated protein 18 

homolog 

Vacuolar protein sorting-associated protein 33A 

WD repeat-containing protein 36 

Xylose isomerase 

Uncharacterized protein YMR196W 

YrdC domain-containing protein, mitochondrial 

Zinc finger protein 385D 

GATA-type zinc finger protein 1 

  



115 

 

Appendix A2 

BP terms Count PValue FE 

GO:0016055~Wnt receptor signaling pathway 6 0.00 6.02 

GO:0009310~amine catabolic process 5 0.01 5.98 

GO:0006470~protein amino acid dephosphorylation 6 0.01 4.10 

GO:0016311~dephosphorylation 6 0.03 3.55 

GO:0006414~translational elongation 4 0.03 5.78 

GO:0006567~threonine catabolic process 2 0.03 62.17 

GO:0046395~carboxylic acid catabolic process 5 0.03 4.09 

GO:0016054~organic acid catabolic process 5 0.03 4.09 

GO:0009063~cellular amino acid catabolic process 4 0.04 5.29 

GO:0051329~interphase of mitotic cell cycle 4 0.04 5.29 

GO:0051325~interphase 4 0.04 5.18 

GO:0006566~threonine metabolic process 2 0.05 41.45 

GO:0051187~cofactor catabolic process 3 0.05 8.11 

GO:0006412~translation 8 0.05 2.32 

GO:0000278~mitotic cell cycle 8 0.08 2.14 

GO:0000279~M phase 8 0.09 2.07 

GO:0000226~microtubule cytoskeleton organization 5 0.09 2.93 

GO:0009066~aspartate family amino acid metabolic process 3 0.10 5.65 

CC terms Count PValue FE 

GO:0022626~cytosolic ribosome 4 0.00 11.18 

GO:0005576~extracellular region 15 0.01 2.13 

GO:0005840~ribosome 7 0.01 3.54 

GO:0044445~cytosolic part 5 0.02 4.51 

GO:0044421~extracellular region part 8 0.04 2.43 

GO:0033279~ribosomal subunit 4 0.05 4.89 

GO:0030529~ribonucleoprotein complex 10 0.09 1.82 

MF terms Count PValue FE 

GO:0005198~structural molecule activity 12 0.00 3.06 

GO:0003735~structural constituent of ribosome 7 0.00 4.91 

GO:0004725~protein tyrosine phosphatase activity 6 0.01 4.93 

GO:0004721~phosphoprotein phosphatase activity 7 0.01 3.64 

GO:0070011~peptidase activity, acting on L-amino acid peptides 10 0.04 2.15 

GO:0016831~carboxy-lyase activity 3 0.04 8.92 

GO:0008233~peptidase activity 10 0.05 2.04 

GO:0016791~phosphatase activity 7 0.06 2.44 

GO:0004175~endopeptidase activity 7 0.07 2.43 

KEGG pathways Count PValue FE 

dme03010:Ribosome 3 0.00 30.13 
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Appendix A3 

A. Genes negatively correlated with D-larval rate  

Protein AATF 

Abl interactor 1 

Angiotensin-converting enzyme 

Activated CDC42 kinase 1 

Acetyl-coenzyme A synthetase, cytoplasmic 

Adenylate cyclase type 5 

Adenylate cyclase type 5 

Adenylate cyclase type 6 

Androgen-induced gene 1 protein 

Alpha-ketoglutarate-dependent dioxygenase alkB 

homolog 3 

Membrane primary amine oxidase 

Membrane primary amine oxidase 

Allene oxide synthase-lipoxygenase protein 

Anucleate primary sterigmata protein B 

ADP-ribosylation factor-like protein 1 

Arylsulfatase B 

Activating signal cointegrator 1 complex subunit 1 

Alkali-sensitive linkage protein 1 

Autophagy-related protein 9A 

L-azetidine-2-carboxylic acid acetyltransferase 

Transforming growth factor-beta-induced protein ig-

h3 

Brefeldin A-inhibited guanine nucleotide-exchange 

protein 1 

Baculoviral IAP repeat-containing protein 7 

BUD13 homolog 

Complement component C1q receptor 

Cholesterol 25-hydroxylase-like protein 1, member 2 

Dipeptidyl peptidase 1 

Cathepsin D 

COBW domain-containing protein 2 

Coiled-coil domain-containing protein 103 

Coiled-coil domain-containing protein 39 

Coiled-coil domain-containing protein 51 

Cysteine-rich DPF motif domain-containing protein 1 

Centrosomal protein of 192 kDa 

Ceramide synthase 6 

Cytoskeleton-associated protein 5 

Putative uncharacterized protein C12orf63 

Chloride channel CLIC-like protein 1 

H(+)/Cl(-) exchange transporter 3 

CAP-Gly domain-containing linker protein 3 

UPF0568 protein C14orf166 homolog 

Cytosolic non-specific dipeptidase 

Collagen alpha-3(VI) chain 

Collagen alpha-1(XII) chain 

Coatomer subunit alpha 

Coatomer subunit alpha 

UPF0585 protein C16orf13 homolog A 

Cytochrome P450 2U1 

Copine-8 

Uncharacterized protein C17orf53 homolog 

Uncharacterized protein C17orf53 homolog 

Crooked neck-like protein 1 

Transcriptional repressor CTCF 

Cysteine synthase 1 

Disheveled-associated activator of morphogenesis 1 

Doublecortin domain-containing protein 5 

Malonyl-CoA decarboxylase, mitochondrial 

DC-STAMP domain-containing protein 2 

DDRGK domain-containing protein 1 

DENN domain-containing protein 3 

Estradiol 17-beta-dehydrogenase 11 

Dehydrogenase/reductase SDR family member 11 

Putative ATP-dependent RNA helicase DHX33 

Probable dimethyladenosine transferase 

Disrupted in renal carcinoma protein 2 homolog 

Dynamin-1-like protein 

DPH3 homolog 

Dolichol-phosphate mannosyltransferase 

Dentin sialophosphoprotein 

Dynein heavy chain 1, axonemal 

Dynein heavy chain 8, axonemal 

Dynein beta chain, flagellar outer arm 

Transcription factor E2F4 

Elongation factor 1-beta 

Ankyrin repeat domain-containing protein EMB506, 

chloroplastic 

Enolase 

Ectonucleotide pyrophosphatase/phosphodiesterase 

family member 2 

Ectonucleotide pyrophosphatase/phosphodiesterase 

family member 3 

Ectonucleotide pyrophosphatase/phosphodiesterase 

family member 3 

Ectonucleoside triphosphate diphosphohydrolase 1 

Ero1-like protein 

Electron transfer flavoprotein subunit beta 

Protein FAM63A 

Fumarylacetoacetase 

Focal adhesion kinase 1 

Protein FAN 

F-box only protein 7 

FCH and double SH3 domains protein 2 

Focadhesin 

Tyrosine-protein kinase Fyn 

UDP-glucose 4-epimerase 

Galactokinase 

GRIP and coiled-coil domain-containing protein 2 

Glutamine synthetase 2 cytoplasmic 

G-protein coupled receptor 98 

G patch domain-containing protein 1 

Glutathione S-transferase 1 

Gametocyte-specific factor 1 

3-hydroxybutyryl-CoA dehydrogenase 

Histone deacetylase 8 

Heme-binding protein 2 

Homocysteine-responsive endoplasmic reticulum-

resident ubiquitin-like domain member 2 protein 

Histone-binding protein N1/N2 

Hydroxyacid-oxoacid transhydrogenase, 

mitochondrial 

Hydroxyacid-oxoacid transhydrogenase, 

mitochondrial 

Heat shock protein beta-1 

Voltage-gated hydrogen channel 1 

Hydantoin utilization protein A 

E3 ubiquitin-protein ligase IAP-3 
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33 kDa inner dynein arm light chain, axonemal 

Iduronate 2-sulfatase 

Insulin-like growth factor 2 mRNA-binding protein 3 

Interferon-induced protein 44-like 

Mitochondrial inner membrane protein 

Inositol 1,4,5-trisphosphate receptor-like protein A 

Isopenicillin N synthase 

Inorganic pyrophosphatase 

Inositol 1,4,5-trisphosphate receptor type 2 

Inositol 1,4,5-trisphosphate receptor type 2 

Uncharacterized protein KIAA0895 

Arginine kinase 

Kielin/chordin-like protein 

Kinesin heavy chain 

Ribosomal protein S6 kinase alpha-1 

Arachidonate 5-lipoxygenase 

Lysosomal alpha-mannosidase 

NADP-dependent malic enzyme 

CDK-activating kinase assembly factor MAT1 

DNA replication licensing factor mcm2 

Mitotic spindle assembly checkpoint protein MAD2A 

Mechanosensory protein 2 

Mediator of RNA polymerase II transcription subunit 

14 

Methyltransferase-like protein 9 

Major facilitator superfamily domain-containing 

protein 7-b 

Mitochondrial folate transporter/carrier 

E3 ubiquitin-protein ligase MIB2 

E3 ubiquitin-protein ligase MIB1 

Meiosis-specific nuclear structural protein 1 

Monocarboxylate transporter 13 

Macrophage mannose receptor 1 

Maestro heat-like repeat-containing protein family 

member 1 

Motile sperm domain-containing protein 1 

Motile sperm domain-containing protein 2 

Methionine-R-sulfoxide reductase B3, mitochondrial 

Methylthioribulose-1-phosphate dehydratase 

Metaxin-1 

Nicotinamide phosphoribosyltransferase 

NADPH-dependent diflavin oxidoreductase 1 

NADH dehydrogenase [ubiquinone] 1 beta 

subcomplex subunit 2, mitochondrial 

Neuropilin and tolloid-like protein 2 

Neurofibromin 

Nuclear factor interleukin-3-regulated protein 

Nuclear hormone receptor family member nhr-23 

Nucleolar protein of 40 kDa 

Neurogenic locus notch protein homolog 

Neuropeptide FF receptor 2 

Nuclear receptor subfamily 1 group I member 2 

Peroxisomal NADH pyrophosphatase NUDT12 

Nuclear RNA export factor 1 

Outer dense fiber protein 3-B 

Opioid growth factor receptor-like protein 1 

Otoferlin 

Calcium/calmodulin-dependent 3',5'-cyclic nucleotide 

phosphodiesterase 1C 

Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic 

phosphodiesterase subunit delta 

Probable pyridoxine biosynthesis SNZERR 

Protein pelota 

Prefoldin subunit 3 

Post-GPI attachment to proteins factor 2 

Geranylgeranyl transferase type-2 subunit beta 

GPI transamidase component PIG-S 

Placenta-specific gene 8 protein 

Perilipin-2 

Protein O-linked-mannose beta-1,4-N-

acetylglucosaminyltransferase 2 

Membrane-associated tyrosine- and threonine-

specific cdc2-inhibitory kinase 

Polyprenol reductase 

Presqualene diphosphate phosphatase 

Serine/threonine-protein phosphatase with EF-hands 

2 

Pre-mRNA-processing factor 6 

Pituitary tumor-transforming gene 1 protein-

interacting protein 

Pregnancy zone protein 

Queuine tRNA-ribosyltransferase subunit qtrtd1 

Ras-related protein Rab-20 

Ras-related protein Rab-7L1 

Cell cycle checkpoint protein RAD17 

Cell cycle checkpoint protein RAD17 

DNA double-strand break repair Rad50 ATPase 

RCC1 domain-containing protein 1 

Protein Red 

60S ribosomal protein L13 

60S ribosomal protein L17 

60S ribosomal protein L17 

39S ribosomal protein L48, mitochondrial 

RING finger protein 37 

RING finger protein 44 

RRP12-like protein 

40S ribosomal protein S20 

Radial spoke head protein 4 homolog A 

Radial spoke head protein 3 homolog 

28S ribosomal protein S27, mitochondrial 

28S ribosomal protein S29, mitochondrial 

Protein RTF2 homolog 

Solute carrier family 15 member 4 

Sal-like protein 1 

Selenium-binding protein 1 

Protein transport protein Sec31A 

Translocation protein SEC62 

Nucleoporin seh1 

15 kDa selenoprotein 

E3 ubiquitin-protein ligase SHPRH 

Sodium/hydrogen exchanger 8 

Structure-specific endonuclease subunit SLX4 

Protein SMG9 

Survival motor neuron protein 1 

Smoothened homolog 

Solute carrier organic anion transporter family 

member 4C1 

Spermatogenesis-associated protein 5-like protein 1 

Pre-mRNA-splicing factor SPF27 

Signal recognition particle 54 kDa protein 

Serine/threonine-protein kinase 17A 

Cytosolic sulfotransferase 1 

Sushi, von Willebrand factor type A, EGF and 

pentraxin domain-containing protein 1 
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Mitochondrial translocator assembly and 

maintenance protein 41 homolog 

TBC1 domain family member 23 

Methylcytosine dioxygenase TET2 

Tuftelin-interacting protein 11 

Transforming growth factor-beta receptor-associated 

protein 1 

TIMELESS-interacting protein 

Transmembrane protein 104 

Transmembrane protein 41B 

Tankyrase-1 

E3 ubiquitin-protein ligase TRIM33 

Tripartite motif-containing protein 45 

Transient receptor potential cation channel subfamily 

A member 1 homolog 

Hamartin 

Protein teashirt 

Tetratricopeptide repeat protein 21B 

Thioredoxin domain-containing protein 16 

Uncharacterized protein U88 

Ubiquitin-conjugating enzyme E2-17 kDa 

Demethylmenaquinone methyltransferase 

Ubiquitin carboxyl-terminal hydrolase 15 

Ubiquitin carboxyl-terminal hydrolase 47 

Ubiquitin carboxyl-terminal hydrolase 4 

Ufm1-specific protease 2 

DP-glucose:glycoprotein glucosyltransferase 1 

E3 ubiquitin-protein ligase UHRF1 

Vacuolar protein sorting-associated protein 16 

homolog 

Vacuolar protein sorting-associated protein 16 

homolog 

Vacuolar protein sorting-associated protein 4B 

Vesicle transport through interaction with t-SNAREs 

homolog 1A 

von Willebrand factor A domain-containing protein 9 

pre-mRNA 3' end processing protein WDR33 

WD repeat domain-containing protein 83 

WD repeat-containing protein 90 

Zinc finger protein Xfin 

DNA repair protein XRCC1 

Putative serine/threonine-protein kinase/receptor 

R826 

Zinc finger CCCH domain-containing protein 14 

Zinc finger protein 184 

Zinc finger protein 704 

Zinc finger protein 740 

Zinc finger and SCAN domain-containing protein 29 

B. Genes positively correlated with D-larval rate 

14-3-3 protein beta/alpha 

Serine/threonine-protein phosphatase 2A 56 kDa 

regulatory subunit alpha isoform 

SH3 domain-binding protein 5 

Putative glucose-6-phosphate 1-epimerase 

Protein AAR2 homolog 

ATP-binding cassette sub-family B member 7, 

mitochondrial 

Abhydrolase domain-containing protein 16A 

Activator of basal transcription 1 

Acetylcholine receptor subunit alpha-type acr-16 

Neuronal acetylcholine receptor subunit alpha-9-I 

Acidic repeat-containing protein 

Phosphoacetylglucosamine mutase 

Phosphoacetylglucosamine mutase 

A-kinase anchor protein 9 

Potassium channel AKT3 

Aldose reductase 

Ankyrin repeat and FYVE domain-containing protein 1 

Ankyrin-3 

Ankyrin repeat domain-containing protein 7 

Ankyrin repeat domain-containing protein 6 

Ankyrin repeat domain-containing protein 6 

Ankyrin repeat and SAM domain-containing protein 3 

Protein arginine N-methyltransferase 2 

Annexin A7 

Amyloid beta A4 precursor protein-binding family B 

member 2 

AT-rich interactive domain-containing protein 5B 

Armadillo repeat-containing protein 8 

Aryl hydrocarbon receptor nuclear translocator 

homolog 

Actin-related protein 6 

Arylsulfatase J 

Abnormal spindle-like microcephaly-associated 

protein homolog 

Abnormal spindle-like microcephaly-associated 

protein homolog 

Abnormal spindle-like microcephaly-associated 

protein homolog 

Beta-1,4-galactosyltransferase 1 

BTB and MATH domain-containing protein 38 

Tyrosine-protein kinase BAZ1B 

B-cell lymphoma/leukemia 11A 

Beta,beta-carotene 9',10'-oxygenase 

Baculoviral IAP repeat-containing protein 7-A 

Baculoviral IAP repeat-containing protein 2 

Bloom syndrome protein 

BMP-binding endothelial regulator protein 

BCL2/adenovirus E1B 19 kDa protein-interacting 

protein 3 

BTB/POZ domain-containing protein 6 

Bystin 

Cadherin-23 

Cadherin-4 

Cadherin-7 

Uncharacterized protein C2orf16 

Cytosolic carboxypeptidase 6 

CREB-binding protein 

Cyclin-dependent kinase 20 

Cyclin-dependent kinase 20 

Calcium-dependent protein kinase 4 

Ceramide kinase 

Ceramide kinase 

Uncharacterized protein C11orf63 homolog 

Chloride channel protein 2 

CAP-Gly domain-containing linker protein 4 

Uncharacterized protein C14orf166B 

2',3'-cyclic-nucleotide 3'-phosphodiesterase 

Centriolin 

Phosphopantothenoylcysteine decarboxylase 

Cartilage oligomeric matrix protein 

Cartilage oligomeric matrix protein 

Coatomer subunit delta 

Coatomer subunit gamma-2 
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High affinity copper uptake protein 1 

Cytochrome P450 4F6 

Cleavage and polyadenylation specificity factor 

subunit 5 

Carnitine O-palmitoyltransferase 1, liver isoform 

Cysteine sulfinic acid decarboxylase 

Cysteine-rich protein 2-binding protein 

Alpha-catulin 

Citron Rho-interacting kinase 

CUE domain-containing protein 1 

Cullin-3 

DNA damage-binding protein 2 

Probable ATP-dependent RNA helicase DDX43 

RNA polymerase II degradation factor 1 

17-beta-hydroxysteroid dehydrogenase 14 

Deleted in autism protein 1 homolog 

Protein diaphanous 

DnaJ homolog subfamily C member 10 

DnaJ homolog subfamily C member 11 

DnaJ homolog subfamily A member 2 

DnaJ homolog subfamily C member 8 

DNA polymerase alpha catalytic subunit 

Dynein light chain, cytoplasmic 

Dynein light chain 1, cytoplasmic 

Dual specificity tyrosine-phosphorylation-regulated 

kinase 2 

Dystonin 

Ecdysone-induced protein 78C 

Early endosome antigen 1 

EF-hand calcium-binding domain-containing protein 

4A 

Iron(II)-dependent oxidoreductase EgtB 

Transcription elongation factor 1 homolog 

Ankyrin repeat domain-containing protein EMB506, 

chloroplastic 

Protein FAM160B1 

Protein FAM194A 

Protein FAM200A 

E3 ubiquitin-protein ligase FANCL 

Protein FAN 

Fibroblast growth factor 18 

Glutamate carboxypeptidase 2 

Fucolectin-1 

Frizzled-10 

Frizzled-4 

Frizzled-4 

Growth arrest and DNA damage-inducible protein 

GADD45 alpha 

Glutamate decarboxylase-like protein 1 

Probable N-acetylgalactosaminyltransferase 9 

Gelsolin-like protein 2 

D-glucuronyl C5-epimerase 

PTB domain-containing engulfment adapter protein 1 

Core histone macro-H2A.1 

Histone H3.3 

Putative nuclease HARBI1 

HSPB1-associated protein 1 

HSPB1-associated protein 1 

Delta-aminolevulinic acid dehydratase 

Protein HEXIM2 

Hippocampus abundant transcript 1 protein 

Hemicentin-1 

HRAS-like suppressor 3 

Hydroxylysine kinase 

Interferon regulatory factor 2-binding protein 2-A 

Interferon-induced protein 44 

Interferon-induced helicase C domain-containing 

protein 1 

Leukocyte elastase inhibitor 

Mitochondrial inner membrane protease subunit 1 

Inhibitor of growth protein 4 

Integrator complex subunit 1 

Integrin alpha-7 

Integrin alpha-7 

Inositol 1,4,5-trisphosphate receptor type 1 

Protease inhibitor bitisilin-3 

Uncharacterized protein KIAA0513 

Uncharacterized protein KIAA0556 

Uncharacterized coiled-coil domain-containing 

protein KIAA1984 

cAMP-dependent protein kinase regulatory subunit 

Kv channel-interacting protein 4 

KH domain-containing, RNA-binding, signal 

transduction-associated protein 2 

Kinesin-like protein KIF9 

Kinesin-like protein KIFC3 

Kynurenine 3-monooxygenase 

KRR1 small subunit processome component homolog 

Ribosomal protein S6 kinase alpha-5 

Large neutral amino acids transporter small subunit 4 

Protein lin-10 

Lipase maturation factor 1 

Lon protease homolog 2, peroxisomal 

Leucine-rich repeat and death domain-containing 

protein 1 

Leucine-rich repeat flightless-interacting protein 2 

Putative helicase Mov10l1 

Beta-mannosidase 

Beta-mannosidase 

Metallo-beta-lactamase domain-containing protein 1 

Multidrug resistance protein 3 

Mechanosensory protein 2 

Multiple epidermal growth factor-like domains 

protein 10 

Malignant fibrous histiocytoma-amplified sequence 1 

Alpha-1,3-mannosyl-glycoprotein 2-beta-N-

acetylglucosaminyltransferase 

Mitochondrial genome maintenance exonuclease 1 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase B 

Microtubule-associated proteins 1A/1B light chain 3C 

Carbohydrate-responsive element-binding protein 

Mitochondrial inner membrane organizing system 

protein 1 

Monocarboxylate transporter 14 

Dual specificity mitogen-activated protein kinase 

kinase 4 

Melatonin receptor type 1B-B 

Monocarboxylate transporter 12-B 

Myotubularin-related protein 3 

Crossover junction endonuclease MUS81 

Muscle, skeletal receptor tyrosine protein kinase 

Probable exonuclease mut-7 homolog 

Myb-like protein X 
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Myosin-VIIa 

Myosin heavy chain, clone 203 

NEDD4-binding protein 2-like 2 

Sodium-dependent nutrient amino acid transporter 1 

Sodium/calcium exchanger 3 

Neuron navigator 3 

Kinetochore protein NDC80 homolog 

Neudesin 

NHL repeat-containing protein 2 

Nuclear hormone receptor family member nhr-48 

Nischarin 

Non-specific lipid-transfer protein 

Nephrocystin-3 

Nitrogen permease regulator 2-like protein 

Cytosolic Fe-S cluster assembly factor nubp1 

8-oxo-dGDP phosphatase NUDT18 

Orcokinin peptides type B 

Serine/threonine-protein kinase OSR1 

Polyadenylate-binding protein 1 

Poly [ADP-ribose] polymerase 14 

Platelet-derived growth factor receptor beta 

Probable phosphoglucomutase-2 

PHD finger protein 3 

Phytanoyl-CoA dioxygenase domain-containing 

protein 1 

Phytanoyl-CoA dioxygenase domain-containing 

protein 1 

Pleckstrin homology domain-containing family G 

member 7 

Fibrocystin-L 

Serine/threonine-protein kinase PLK2 

Serine/threonine-protein kinase PLK4 

Plexin-B1 

Serine/threonine-protein phosphatase 2B catalytic 

subunit alpha isoform 

Intestinal-type alkaline phosphatase 

Alkaline phosphatase, tissue-nonspecific isozyme 

Alkaline phosphatase, tissue-nonspecific isozyme 

PQ-loop repeat-containing protein 3 

PR domain zinc finger protein 16 

Prominin-1-A 

Patched domain-containing protein 3 

Receptor-type tyrosine-protein phosphatase eta 

Receptor-type tyrosine-protein phosphatase mu 

Peroxidasin 

R3H domain-containing protein 2 

Ras-related protein Rab-1 

Double-strand-break repair protein rad21 homolog 

Ribonucleoprotein PTB-binding 2 

Putative Rab-43-like protein ENSP00000330714 

Pre-mRNA-splicing factor RBM22 

Retinol dehydrogenase 7 

RAD52 motif-containing protein 1 

Ras-GEF domain-containing family member 1B 

Regulator of G-protein signaling 22 

Rho-related GTP-binding protein RhoU 

Retinaldehyde-binding protein 1 

39S ribosomal protein L4, mitochondrial 

39S ribosomal protein L53, mitochondrial 

RING finger protein 207 

RING finger protein 24 

Nuclear receptor ROR-beta 

Rap guanine nucleotide exchange factor 4 

Ribonuclease P protein subunit p40 

Protein RRP5 homolog 

Probable RNA-directed DNA polymerase from 

transposon BS 

Electrogenic sodium bicarbonate cotransporter 1 

Sodium- and chloride-dependent betaine transporter 

Sodium- and chloride-dependent neutral and basic 

amino acid transporter B(0+) 

Sodium- and chloride-dependent glycine transporter 2 

Sodium- and chloride-dependent taurine transporter 

Sideroflexin-2 

Small integral membrane protein 13 

Mothers against decapentaplegic homolog 6 

Mothers against decapentaplegic homolog 6 

SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin subfamily A member 5 

SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin subfamily E member 1 

Single-strand selective monofunctional uracil DNA 

glycosylase 

Sperm-associated antigen 6 

Survival of motor neuron-related-splicing factor 30 

Secretion-regulating guanine nucleotide exchange 

factor 

Sporozoite surface protein 2 

Sulfotransferase 1A1 

Nesprin-1 

Transmembrane protein 184B 

TGF-beta-activated kinase 1 and MAP3K7-binding 

protein 3 

Very-long-chain enoyl-CoA reductase 

Telomerase protein component 1 

Testis-expressed sequence 11 protein 

Metalloprotease TIKI1 

Mitochondrial import inner membrane translocase 

subunit tim16 

Translation machinery-associated protein 16 

Transmembrane protein 5 

Troponin C, isoform 1 

Targeting protein for Xklp2-B 

E3 ubiquitin-protein ligase TRIM33 

Tripartite motif-containing protein 59 

Transient receptor potential cation channel subfamily 

V member 5 

Thrombospondin-4 

UPF0184 protein 

Ubiquitin carboxyl-terminal hydrolase 15 

LIM domain-containing protein unc-97 

Intracellular protein transport protein USO1 

Williams-Beuren syndrome chromosomal region 27 

protein 

WD repeat and HMG-box DNA-binding protein 1 

WD repeat-containing protein 35 

WW domain-containing oxidoreductase 

Xanthine dehydrogenase 

Xanthine dehydrogenase/oxidase 

Xanthine dehydrogenase 

Uncharacterized protein STK_23830 

Putative ankyrin repeat protein RF_0381 

Uncharacterized protein DDB_G0292642 

Zinc finger and BTB domain-containing protein 17 
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Palmitoyltransferase ZDHHC2 

Zinc finger protein 37 

Zinc finger protein 62 

Zinc finger protein 718 

Zinc finger protein 43 

DNA annealing helicase and endonuclease ZRANB3 
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Appendix A4 

BP terms Count PValue FE 

GO:0030514~negative regulation of BMP signaling pathway 4 0.00 17.56 

GO:0030510~regulation of BMP signaling pathway 4 0.00 12.55 

GO:0050878~regulation of body fluid levels 6 0.01 4.88 

GO:0048232~male gamete generation 13 0.02 2.15 

GO:0007283~spermatogenesis 13 0.02 2.15 

GO:0009166~nucleotide catabolic process 5 0.02 4.77 

GO:0006012~galactose metabolic process 3 0.02 13.17 

GO:0006997~nucleus organization 5 0.02 4.57 

GO:0009187~cyclic nucleotide metabolic process 5 0.02 4.39 

GO:0007600~sensory perception 13 0.02 2.04 

GO:0046677~response to antibiotic 4 0.03 5.85 

GO:0034656~nucleobase, nucleoside and nucleotide catabolic process 5 0.03 4.07 

GO:0034655~nucleobase, nucleoside, nucleotide and nucleic acid catabolic process 5 0.03 4.07 

GO:0006884~cell volume homeostasis 3 0.04 9.41 

GO:0043154~negative regulation of caspase activity 3 0.04 9.41 

GO:0007601~visual perception 8 0.04 2.44 

GO:0050953~sensory perception of light stimulus 8 0.05 2.41 

GO:0010466~negative regulation of peptidase activity 3 0.05 8.23 

GO:0044270~nitrogen compound catabolic process 5 0.06 3.43 

GO:0009143~nucleoside triphosphate catabolic process 3 0.06 7.32 

GO:0016567~protein ubiquitination 7 0.06 2.48 

GO:0009791~post-embryonic development 11 0.07 1.89 

GO:0007155~cell adhesion 19 0.07 1.54 

GO:0007599~hemostasis 4 0.07 4.18 

GO:0022610~biological adhesion 19 0.07 1.53 

GO:0050954~sensory perception of mechanical stimulus 6 0.07 2.69 

GO:0034728~nucleosome organization 5 0.07 3.14 

GO:0007517~muscle organ development 9 0.08 2.00 

GO:0009968~negative regulation of signal transduction 8 0.08 2.12 

GO:0050890~cognition 13 0.08 1.69 

GO:0045786~negative regulation of cell cycle 5 0.09 2.97 

CC terms Count PValue FE 

GO:0030663~COPI coated vesicle membrane 4 0.02 6.16 

GO:0030126~COPI vesicle coat 4 0.02 6.16 

GO:0000267~cell fraction 28 0.03 1.51 

GO:0005625~soluble fraction 10 0.03 2.24 

GO:0030137~COPI-coated vesicle 4 0.04 5.39 

GO:0044433~cytoplasmic vesicle part 8 0.04 2.53 

GO:0000786~nucleosome 4 0.04 5.07 

GO:0005626~insoluble fraction 23 0.06 1.49 

GO:0030662~coated vesicle membrane 6 0.06 2.81 

GO:0030120~vesicle coat 5 0.06 3.26 

GO:0032993~protein-DNA complex 5 0.06 3.26 

GO:0012506~vesicle membrane 8 0.06 2.24 

GO:0005769~early endosome 6 0.06 2.75 

GO:0030659~cytoplasmic vesicle membrane 7 0.08 2.32 

GO:0005578~proteinaceous extracellular matrix 9 0.09 1.96 

GO:0030660~Golgi-associated vesicle membrane 4 0.09 3.75 

GO:0005576~extracellular region 26 0.10 1.36 

MF terms Count PValue FE 

GO:0043167~ion binding 136 0.00 1.24 

GO:0043169~cation binding 133 0.00 1.22 

GO:0046332~SMAD binding 5 0.00 7.68 

GO:0046872~metal ion binding 131 0.00 1.22 

GO:0004035~alkaline phosphatase activity 3 0.01 16.12 

GO:0005509~calcium ion binding 33 0.02 1.52 

GO:0070410~co-SMAD binding 3 0.02 12.90 

GO:0070412~R-SMAD binding 3 0.02 12.90 

GO:0005328~neurotransmitter:sodium symporter activity 4 0.04 5.06 
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GO:0005179~hormone activity 3 0.05 8.06 

GO:0015293~symporter activity 9 0.05 2.20 

GO:0015171~amino acid transmembrane transporter activity 5 0.05 3.47 

GO:0005518~collagen binding 3 0.06 7.17 

GO:0005326~neurotransmitter transporter activity 4 0.06 4.30 

GO:0015298~solute:cation antiporter activity 4 0.06 4.30 

GO:0004879~ligand-dependent nuclear receptor activity 5 0.07 3.16 

GO:0005343~organic acid:sodium symporter activity 3 0.09 5.86 

GO:0015297~antiporter activity 5 0.09 2.90 

KEGG pathways Count PValue FE 

rno04020:Calcium signaling pathway 5 0.01 6.28 

rno04720:Long-term potentiation 4 0.01 8.37 

rno04114:Oocyte meiosis 4 0.01 8.37 

bta00790:Folate biosynthesis 2 0.08 25.11 

rno04270:Vascular smooth muscle contraction 3 0.08 6.28 

rno00230:Purine metabolism 3 0.08 6.28 

rno04912:GnRH signaling pathway 3 0.09 5.79 

rno04540:Gap junction 3 0.09 5.79 

rno04020:Calcium signaling pathway 5 0.01 6.28 

Panther pathways Count PValue FE 

P00057:Wnt signaling pathway 14 0.00 2.66 

P00012:Cadherin signaling pathway 7 0.03 2.82 
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Appendix A5 

BP terms Count PValue FE 

GO:0007156~homophilic cell adhesion 14 0.00 3.38 

GO:0006412~translation 37 0.00 1.88 

GO:0016337~cell-cell adhesion 20 0.00 2.44 

GO:0006414~translational elongation 12 0.00 3.03 

GO:0007155~cell adhesion 40 0.00 1.60 

GO:0022610~biological adhesion 40 0.00 1.60 

GO:0051258~protein polymerization 9 0.01 3.16 

GO:0006576~biogenic amine metabolic process 10 0.01 2.59 

GO:0051384~response to glucocorticoid stimulus 7 0.02 3.04 

GO:0007005~mitochondrion organization 12 0.03 2.07 

GO:0034621~cellular macromolecular complex subunit organization 27 0.03 1.52 

GO:0042402~biogenic amine catabolic process 4 0.03 5.43 

GO:0030855~epithelial cell differentiation 9 0.03 2.33 

GO:0032535~regulation of cellular component size 17 0.04 1.71 

GO:0031960~response to corticosteroid stimulus 7 0.04 2.72 

GO:0055114~oxidation reduction 53 0.04 1.29 

GO:0045022~early endosome to late endosome transport 4 0.04 4.83 

GO:0009143~nucleoside triphosphate catabolic process 4 0.04 4.83 

GO:0051231~spindle elongation 4 0.04 4.83 

GO:0000022~mitotic spindle elongation 4 0.04 4.83 

GO:0009310~amine catabolic process 10 0.05 2.09 

GO:0008202~steroid metabolic process 15 0.05 1.73 

GO:0034622~cellular macromolecular complex assembly 23 0.06 1.47 

GO:0022411~cellular component disassembly 6 0.06 2.72 

GO:0015904~tetracycline transport 3 0.07 6.52 

GO:0042891~antibiotic transport 3 0.07 6.52 

GO:0015893~drug transport 4 0.07 3.95 

GO:0070585~protein localization in mitochondrion 4 0.07 3.95 

GO:0007338~single fertilization 4 0.07 3.95 

GO:0042219~cellular amino acid derivative catabolic process 4 0.07 3.95 

GO:0006626~protein targeting to mitochondrion 4 0.07 3.95 

GO:0007218~neuropeptide signaling pathway 6 0.07 2.61 

GO:0007017~microtubule-based process 28 0.07 1.38 

GO:0001503~ossification 7 0.08 2.31 

GO:0006979~response to oxidative stress 11 0.08 1.78 

GO:0007051~spindle organization 8 0.09 2.07 

GO:0060348~bone development 7 0.09 2.24 

GO:0007272~ensheathment of neurons 5 0.09 2.86 

GO:0008366~axon ensheathment 5 0.09 2.86 

GO:0006022~aminoglycan metabolic process 5 0.09 2.86 

GO:0051341~regulation of oxidoreductase activity 4 0.09 3.62 

GO:0007229~integrin-mediated signaling pathway 6 0.10 2.42 

GO:0032271~regulation of protein polymerization 7 0.10 2.17 

GO:0050999~regulation of nitric-oxide synthase activity 3 0.10 5.43 

GO:0035036~sperm-egg recognition 3 0.10 5.43 

GO:0032768~regulation of monooxygenase activity 3 0.10 5.43 

GO:0007339~binding of sperm to zona pellucida 3 0.10 5.43 

GO:0046620~regulation of organ growth 3 0.10 5.43 

CC terms Count PValue FE 

GO:0033279~ribosomal subunit 14 0.00 2.97 

GO:0022626~cytosolic ribosome 9 0.00 4.36 

GO:0005840~ribosome 24 0.00 2.11 

GO:0022625~cytosolic large ribosomal subunit 6 0.00 6.79 

GO:0030529~ribonucleoprotein complex 49 0.00 1.55 

GO:0044421~extracellular region part 33 0.00 1.74 

GO:0015934~large ribosomal subunit 9 0.00 3.52 

GO:0005576~extracellular region 59 0.00 1.45 

GO:0005829~cytosol 73 0.01 1.35 

GO:0019866~organelle inner membrane 28 0.02 1.57 
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GO:0005615~extracellular space 16 0.03 1.83 

GO:0031012~extracellular matrix 18 0.03 1.73 

GO:0005743~mitochondrial inner membrane 26 0.03 1.54 

GO:0044445~cytosolic part 12 0.05 1.88 

GO:0005578~proteinaceous extracellular matrix 16 0.06 1.65 

GO:0031966~mitochondrial membrane 30 0.07 1.37 

MF terms Count PValue FE 

GO:0003735~structural constituent of ribosome 22 0.00 2.69 

GO:0005198~structural molecule activity 43 0.00 1.91 

GO:0030246~carbohydrate binding 21 0.00 2.22 

GO:0005529~sugar binding 14 0.00 2.50 

GO:0015238~drug transporter activity 6 0.01 4.67 

GO:0019843~rRNA binding 6 0.01 4.08 

GO:0048029~monosaccharide binding 6 0.01 4.08 

GO:0016782~transferase activity, transferring sulfur-containing groups 9 0.01 2.72 

GO:0008146~sulfotransferase activity 8 0.02 2.90 

GO:0005509~calcium ion binding 57 0.02 1.33 

GO:0015298~solute:cation antiporter activity 6 0.03 3.27 

GO:0004222~metalloendopeptidase activity 11 0.04 2.07 

GO:0008237~metallopeptidase activity 17 0.04 1.71 

GO:0005518~collagen binding 4 0.04 4.84 

GO:0001968~fibronectin binding 3 0.04 8.17 

GO:0015297~antiporter activity 8 0.05 2.36 

GO:0004175~endopeptidase activity 24 0.06 1.45 

GO:0015300~solute:solute antiporter activity 7 0.07 2.38 

GO:0015307~drug:hydrogen antiporter activity 3 0.07 6.54 

GO:0004062~aryl sulfotransferase activity 3 0.07 6.54 

GO:0005220~inositol 1,4,5-trisphosphate-sensitive calcium-release channel activity 3 0.07 6.54 

GO:0015520~tetracycline:hydrogen antiporter activity 3 0.07 6.54 

GO:0008095~inositol-1,4,5-trisphosphate receptor activity 3 0.07 6.54 

GO:0005506~iron ion binding 26 0.07 1.40 

GO:0001871~pattern binding 6 0.08 2.51 

GO:0030247~polysaccharide binding 6 0.08 2.51 

GO:0043167~ion binding 233 0.09 1.07 

GO:0004551~nucleotide diphosphatase activity 3 0.10 5.45 

GO:0005537~mannose binding 3 0.10 5.45 

GO:0042895~antibiotic transporter activity 3 0.10 5.45 

GO:0008493~tetracycline transporter activity 3 0.10 5.45 

KEGG pathways Count PValue FE 

dme03010:Ribosome 4 0.01 8.64 

hsa03010:Ribosome 3 0.07 6.48 

hsa01040:Biosynthesis of unsaturated fatty acids 3 0.07 6.48 

mmu05016:Huntington's disease 5 0.09 2.84 
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Appendix B1 

Category and gene identity (C.gigas 

proteins) 

Num. 

contigs 

PATTERN RECOGNITION RECEPTORS (PRRs) 

LECTINS  

Collectin-11  1 

Collectin-12  3 

Contactin  6 

C-type lectin domain family 10 member A  2 

C-type lectin domain family 5 member A  1 

C-type lectin isoform 1  1 

Endoplasmic reticulum lectin 1  1 

Lectin  1 

Hepatic lectin  1 

Fucolectin  1 

Fucolectin-5  1 

Galectin-4  4 

Galectin-9  3 

L-rhamnose-binding lectin CSL3  2 

C-type mannose receptor 2  1 

Macrophage mannose receptor 1  13 

Cation-dependent mannose-6-phosphate 

receptor  

5 

Perlucin 5 

Calreticulin  1 

Calnexin  1 

Malectin  1 

Sushi, von Willebrand factor type A, EGF 

and pentraxin domain-containing protein 

1 

22 

Ficolin-2 2 

Ficolin-1 1 

TOLL-LIKE RECEPTORS  

Toll-like receptor 2  1 

Toll-like receptor 2 type-2  2 

Toll-like receptor 3  3 

Toll-like receptor 4  2 

Toll-like receptor 6  1 

Toll-like receptor 13  1 

Protein toll 6 

GLUCAN BINDING PROTEINS  

Beta-1,3-glucan-binding protein 2 

PEPTIDOGLYCAN RECOGNITION 

PROTEINS 

 

Peptidoglycan-recognition protein SC2  1 

Peptidoglycan recognition protein  1 

SCAVENGER RECEPTORS  

Endothelial cells scavenger receptor  9 

IMMUNE EFFECTORS 

HEAT-SHOCK PROTEINS  

60 kDa heat shock protein, mitochondrial  1 

Activator of 90 kDa heat shock protein 

ATPase-like protein 1  

2 

Heat shock 70 kDa protein 12A  21 

Heat shock 70 kDa protein 12B  17 

Heat shock 70 kDa protein 13  1 

Heat shock 70 kDa protein 14  1 

Heat shock protein 70 B2  11 

Heat shock protein 75 kDa, mitochondrial, 

partial  

2 

Heat shock protein beta-1  1 

Heat shock protein beta-11  1 

Heat shock protein HSP 90-alpha 1  2 

Hsp70-binding protein 1  1 

HSPB1-associated protein 1  1 

ftsj methyltransferase domain-containing 

protein 1  

2 

S-adenosyl-L-methionine-dependent 

methyltransferase ftsjd2  

1 

DNAJ-like protein subfamily A members 2 

DNAJ-like protein subfamily B members 16 

DNAJ-like protein subfamily C members 36 

ANTIMICROBIAL PEPTIDES  

Big defensin 1 

ANTIOXIDANT ENZYMES  

Catalase  4 

Ceruloplasmin 6 

Glutathione peroxidase  1 

Glutathione peroxidase 1  1 

Glutathione peroxidase 7  1 

Glutathione S-transferase A  1 

Glutathione S-transferase C-terminal 

domain-containing protein  

2 

Glutathione S-transferase kappa 1  1 

Glutathione S-transferase omega-1  3 

Glutathione S-transferase P 1  1 

Glutathione S-transferase theta-1  2 

Glutathione S-transferase Y1, partial  1 

Microsomal glutathione S-transferase 1  2 

Microsomal glutathione S-transferase 2  2 

Microsomal glutathione S-transferase 3  2 

Prostaglandin reductase 1 4 

SIGNAL TRANSDUCTION 

TRAFS AND MyD88  

E3 ubiquitin-protein ligase TRAF7  6 

TNF receptor-associated factor 2  2 

TNF receptor-associated factor 3  19 

TNF receptor-associated factor 6  1 

TRAF and TNF receptor-associated protein  2 

Myeloid differentiation primary response 

protein MyD88  

3 

PROTEASES AND PROTEASE INHIBITORS 

Cathepsin B  2 

Cathepsin F  2 

Cathepsin L  1 

Cathepsin Z  3 

A disintegrin and metalloproteinase with 

thrombospondin motifs 16  

5 

Disintegrin and metalloproteinase with 

thrombospondin motifs 2  

2 

Disintegrin and metalloproteinase with 

thrombospondin motifs 6  

2 

Disintegrin and metalloproteinase with 

thrombospondin motifs 7  

2 

Disintegrin and metalloproteinase with 

thrombospondin motifs 9  

5 

Disintegrin and metalloproteinase 

domain-containing protein 10  

1 

Zinc metalloproteinase nas-15  1 

Zinc metalloproteinase nas-36  1 

Zinc metalloproteinase nas-37  1 
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Matrix metalloproteinase-17  1 

Matrix metalloproteinase-19  6 

Cysteine protease ATG4B  1 

Putative serine protease F56F10.1  1 

Signal peptide peptidase-like 2B  1 

Signal peptide peptidase-like 3  1 

Thymus-specific serine protease  2 

Reelin  6 

Agrin  4 

Kazal-type serine protease inhibitor 

domain-containing protein 1  

1 

Metalloproteinase inhibitor 1  1 

Metalloproteinase inhibitor 3  1 

Legumain 1 

Serpin B8  2 

APOPTOSIS 

Apoptosis 1 inhibitor  6 

Apoptosis 2 inhibitor  1 

Apoptosis inhibitor 5  1 

Inhibitor of apoptosis protein  9 

Apoptosis inhibitor IAP  5 

Baculoviral IAP repeat-containing protein 

2  

1 

Baculoviral IAP repeat-containing protein 

3  

2 

Baculoviral IAP repeat-containing protein 

5  

1 

Baculoviral IAP repeat-containing protein 

6  

12 

Baculoviral IAP repeat-containing protein 

7  

2 

Baculoviral IAP repeat-containing protein 

7-A  

21 

BAG family molecular chaperone 

regulator 1  

2 

BAG family molecular chaperone 

regulator 2  

1 

BAG family molecular chaperone 

regulator 4  

1 

Regucalcin  9 

TP53-regulated inhibitor of apoptosis 1  1 

Arrestin domain-containing protein 2  3 

Arrestin domain-containing protein 3  9 

Beta-arrestin-1  2 

Apoptosis-inducing factor 1, 

mitochondrial  

1 

Apoptosis-inducing factor 3  2 

Apoptosis-stimulating of p53 protein 1  4 

Apoptosis regulator BAX  3 

Programmed cell death protein 2  2 

Programmed cell death protein 2-like 

protein  

1 

Programmed cell death protein 4  1 

Programmed cell death protein 5  2 

Programmed cell death protein 6  2 

Programmed cell death 6-interacting 

protein  

2 

Programmed cell death protein 7  1 

Programmed cell death protein 10  1 

Autophagy-related protein 2-like protein 

A  

9 

Autophagy-related protein 2-like protein 

B  

5 

Autophagy-related protein 3  1 

Autophagy-related protein 7  2 

Autophagy-related protein 9A  2 

Autophagy-related protein 10  1 

Autophagy-related protein 13  1 

Autophagy-related protein 16-1  1 

Beclin-1  1 

Bcl-2-like protein 1  2 

Bcl-2-like protein 13  3 

B-cell lymphoma 3-encoded protein  2 

B-cell lymphoma 6-like protein  2 

B-cell CLL/lymphoma 7 protein family 

member A  

2 

B-cell lymphoma/leukemia 11A  1 

B-cell lymphoma/leukemia 11B  2 

BCL-6 corepressor  2 

BCL9-like protein  3 

Putative Bcl-2-like protein 

antagonist/killer 2  

1 

Caspase  5 

Caspase-2  6 

Caspase-3  1 

Caspase-6  5 

Caspase-7  13 

Caspase-8  3 

Caspase-10  1 

CASP8 and FADD-like apoptosis regulator  1 

CASP8-associated protein 2  1 

Cell death regulator Aven  1 

Cell division cycle and apoptosis regulator 

protein 1  

1 

APAF1-interacting protein  1 

c-myc promoter-binding protein  2 

c-myc-binding protein  1 

Death domain-associated protein 6  1 

Death domain-containing protein CRADD  2 

Death effector domain-containing protein  1 

Death-associated protein 1  1 

Death-associated protein kinase 1  1 

Macrophage erythroblast attacher  1 

MAP kinase-activating death domain 

protein  

5 

Ankyrin repeat and death domain-

containing protein 1A  

2 

Apoptosis regulator R1  2 

Ski oncogene 2 

Growth arrest and DNA-damage-inducible 

proteins GADD45 gamma  

5 

Apoptosis regulatory protein Siva  1 

NAD-dependent deacetylase sirtuin-1  3 

Tumor proteins 6 

COMPLEMENT AND C1q-LIKE PROTEINS 

complement C1q tumor necrosis factor-

related protein 6  

1 

complement C1q-like protein 4  4 

complement C3  1 

complement component 1 Q 

subcomponent-binding protein, 

mitochondrial  

1 

Heavy metal-binding protein HIP  2 

CELL SURFACE RECEPTOR AND CELL ADHESION 

CELL SURFACE RECEPTORS  
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Angiopoietin-2  3 

Angiopoietin-4  2 

B-cell receptor CD22  1 

B-cell receptor-associated protein 31  1 

Macrophage colony-stimulating factor 1 

receptor 2  

2 

Protein SET  2 

Stabilin-1  1 

Stabilin-2  2 

TGF-beta receptor type-1  1 

Thrombospondin-1  1 

Thrombospondin type-1 domain-

containing protein 4  

2 

Thrombospondin-3b  1 

CELL ADHESION  

Carcinoembryonic antigen-related cell 

adhesion molecules 

6 

Hemicentin-1 36 

Scavenger receptor class F member 2  2 

Integrins (alpha and beta) 16 

CYTOKINE-RELATED MOLECULES 

Allograft inflammatory factor 1  2 

Alpha-2-macroglobulin receptor-

associated protein  

1 

BTB/POZ domain-containing protein 

TNFAIP1  

1 

C3 and PZP-like alpha-2-macroglobulin 

domain-containing protein 8  

2 

Gamma-interferon-inducible lysosomal 

thiol reductase  

1 

Inhibitor of nuclear factor kappa-B kinase 

subunit alpha  

2 

Inhibitor of nuclear factor kappa-B kinase 

subunit epsilon  

3 

Interferon regulatory factor 2  4 

Interferon regulatory factor 8  2 

interferon-induced helicase C domain-

containing protein 1  

2 

interferon-induced protein 44  1 

interferon-induced protein 44-like protein  16 

interleukin enhancer-binding factor 2-like 

protein  

1 

interleukin-1 receptor-associated kinase 1  2 

interleukin-1 receptor-associated kinase 4  2 

interleukin-17 receptor D  4 

interleukin-17D  2 

Lipopolysaccharide-induced tumor 

necrosis factor-alpha factor-like protein  

2 

Nuclear factor interleukin-3-regulated 

protein  

2 

SPRY domain-containing protein 3  1 

SPRY domain-containing SOCS box protein 

3  

2 

SPRY domain-containing SOCS box protein 

4  

1 

TNFAIP3-interacting protein 2  2 

tumor necrosis factor ligand superfamily 

member 10  

2 

tumor necrosis factor ligand superfamily 

member 11  

1 

tumor necrosis factor receptor 

superfamily member 16  

1 

tumor necrosis factor receptor 

superfamily member 1B  

1 

tumor necrosis factor, alpha-induced 

protein 3  

2 

tumor necrosis factor, alpha-induced 

protein 8  

2 

OTHER  

EF-hand calcium-binding domain-

containing protein 2  

1 

EF-hand calcium-binding domain-

containing protein 6  

1 

EF-hand calcium-binding domain-

containing protein 7  

2 

HemAgglutinin/amebocyte aggregation 

factor  

6 

LysM and putative peptidoglycan-binding 

domain-containing protein 2  

1 

LysM and putative peptidoglycan-binding 

domain-containing protein 3  

1 

Lysosome-associated membrane 

glycoprotein 1  

1 

Macrophage migration inhibitory factor  1 

Metallothionein  2 

Monocyte to macrophage differentiation 

protein  

2 

Multiple coagulation factor deficiency 

protein 2-like protein  

1 

N-terminal EF-hand calcium-binding 

protein 1  

1 

Prothrombin, partial  1 

Soma ferritin  3 

Stress response protein nhaX  3 

T-cell immunomodulatory protein  2 

Transcription factor AP-1 1 

Proto-oncogene tyrosine-protein kinase 

FER  

1 

Proto-oncogene tyrosine-protein kinase 

FYN 

1 

B-Raf proto-oncogene serine/threonine-

protein kinase  

1 

Caveolin-1 1 

Clathrin heavy chain 1 3 

Dual oxidase 7 

Dual oxidase 2 3 

Glutaredoxin-C6 2 

Glutaredoxin  1 

Glutaredoxin-3 3 

Nucleoredoxin 4 

Hypoxia-inducible factor 1-alpha inhibitor 1 

Hypoxia-inducible factor 1 alpha 3 

Plexin-A4 6 

Tripartite motif containing (TRIM) 

proteins 

99 

Thioredoxin 1 

Tetraspanins 29 

Syntenin-1 1 
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Appendix B2 

Annotation in vivo control library 

C. gigas ID C. gigas gene description 
Total gene 

reads 
RPKM 

CGI_10022730 Actin 2513347 83345.7 

CGI_10022730 Actin 386694 27604.5 

na na 814491 25171.5 

CGI_10024999 Tubulin alpha-1C chain 310666 15610.5 

CGI_10012474 Elongation factor 1-alpha 380027 11676.5 

CGI_10019752 Tubulin beta chain 95595 8318.5 

na na 103014 7699.5 

CGI_10025348 Matrix metalloproteinase-19 161719 7458.1 

CGI_10027591 Soma ferritin 82011 6754.3 

CGI_10023099 60S ribosomal protein L30 46723 6731.2 

CGI_10001493 40S ribosomal protein S24 61021 6284.7 

CGI_10013084 60S ribosomal protein L27a 65033 6021.7 

CGI_10019752 Tubulin beta chain 122635 5836.3 

CGI_10027605 Allograft inflammatory factor 1 104954 5623.4 

CGI_10009952 Blastula protease 10 99002 5153.9 

CGI_10010647 Heat shock protein 70 B2 136690 5148.6 

CGI_10003625 Poly [ADP-ribose] polymerase 1 41480 4665.1 

CGI_10004554 60S ribosomal protein L24 64067 4539.5 

CGI_10025548 hypothetical protein CGI_10025548 85677 4450.5 

CGI_10007104 40S ribosomal protein S8 66992 4394.2 

CGI_10010647 Heat shock protein 70 B2 125247 4306.1 

CGI_10022234 60S ribosomal protein L13 25884 3869.3 

CGI_10000147 60S ribosomal protein L21 42731 3671.5 

CGI_10024998 Tubulin alpha-1C chain 21410 3659.3 

CGI_10025348 Matrix metalloproteinase-19 70352 3638.6 

CGI_10015910 Transforming growth factor-beta-induced protein ig-h3 172319 3378.8 

CGI_10018366 na 46733 3243.8 

CGI_10003072 60S ribosomal protein L37a 26909 3192.0 

na na 31565 3142.4 

na na 42030 3069.3 

CGI_10014767 60S ribosomal protein L23a 51599 3064.2 

CGI_10021165 60S ribosomal protein L18, partial 44958 3062.7 

CGI_10018105 Hemicentin-1 44788 3051.1 

CGI_10008425 hypothetical protein CGI_10008425 40816 3022.3 

na na 47354 2959.5 

CGI_10025934 Guanine nucleotide-binding protein subunit beta-2-like 1 66679 2715.3 

CGI_10012002 40S ribosomal protein S10 28018 2506.7 

CGI_10014112 Y-box factor-like protein, partial 89885 2447.9 

CGI_10013164 Tropomyosin 64731 2447.9 

CGI_10026412 60S ribosomal protein L18a 30345 2383.9 

CGI_10001571 Elongation factor 1-gamma 39565 2340.8 

CGI_10022820 na 36594 2317.4 

CGI_10015715 na 21761 2280.6 

CGI_10006637 Cdc42-like protein 46946 2256.7 

CGI_10020449 40S ribosomal protein S7 29244 2245.6 

CGI_10021672 na 40459 2238.2 

CGI_10021852 40S ribosomal protein SA 53323 2232.4 

CGI_10003531 T-cell acute lymphocytic leukemia protein 1 61572 2157.3 

CGI_10022083 Matrix metalloproteinase-19 56286 2155.9 

na na 31179 2148.6 

na na 37246 2129.6 

CGI_10028140 40S ribosomal protein S23 22030 2063.9 

CGI_10006923 Ceruloplasmin 95728 2060.9 

CGI_10005445 X-box-binding protein 1 50156 2046.0 

CGI_10022058 60S ribosomal protein L7a 52347 2006.6 

na na 27797 1990.3 

CGI_10028514 na 15062 1967.8 
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CGI_10010474 40S ribosomal protein S28 11010 1966.4 

CGI_10024065 60S ribosomal protein L23 20046 1939.0 

CGI_10010163 Tubulin beta chain 20427 1936.5 

CGI_10020592 Proline-rich transmembrane protein 1 33316 1930.4 

CGI_10012475 transport protein Sec61 subunit gamma 23667 1919.4 

CGI_10020922 Heterogeneous nuclear ribonucleoprotein A/B 47222 1918.1 

CGI_10020628 Metalloproteinase inhibitor 1 95242 1890.0 

na na 25101 1867.3 

na na 14282 1855.7 

CGI_10012808 60S ribosomal protein L14 22856 1786.7 

na na 16580 1780.7 

CGI_10000595 60S ribosomal protein L12 24832 1759.5 

CGI_10009326 60S acidic ribosomal protein P1 15371 1753.5 

na na 15889 1745.8 

CGI_10025208 Putative ferric-chelate reductase 1-like protein 42587 1734.2 

CGI_10028812 60S ribosomal protein L26 18264 1691.1 

CGI_10000077 60S ribosomal protein L17 22654 1690.6 

CGI_10027192 60S ribosomal protein L5 34372 1681.1 

CGI_10019706 40S ribosomal protein S3a 40992 1667.9 

CGI_10022234 60S ribosomal protein L13 13401 1651.3 

CGI_10026160 Actophorin 57092 1629.3 

CGI_10020975 na 37246 1617.6 

CGI_10014579 Putative 60S ribosomal protein L37-A 14033 1604.7 

CGI_10023721 Murinoglobulin-2 22432 1603.7 

na na 12852 1596.0 

CGI_10025410 Fascin 60506 1580.1 

CGI_10015747 B2 bradykinin receptor 28014 1566.1 

CGI_10012822 Blastula protease 10 27070 1564.7 

CGI_10015917 Calreticulin 59432 1532.8 

CGI_10011577 60S acidic ribosomal protein P2 14837 1524.8 

CGI_10008101 na 19059 1494.8 

CGI_10006874 Pregnancy zone protein 89218 1494.4 

CGI_10013164 Tropomyosin 33980 1449.3 

CGI_10017178 hypothetical protein CGI_10017178 57699 1440.5 

CGI_10017178 hypothetical protein CGI_10017178 26275 1438.5 

CGI_10025378 Calponin-2 43122 1358.2 

CGI_10025348 Matrix metalloproteinase-19 42305 1351.2 

CGI_10026239 Ornithine decarboxylase antizyme 1 32339 1348.0 

CGI_10022808 Cyclic AMP-dependent transcription factor ATF-5 40106 1342.1 

CGI_10019268 Transcription factor BTF3-like protein 4 25734 1333.9 

CGI_10010682 60S acidic ribosomal protein P0 16254 1322.7 

na na 9113 1308.9 

CGI_10016741 40S ribosomal protein S4, X isoform 37905 1301.3 

na na 8426 1300.3 

CGI_10025401 ADP,ATP carrier protein 30139 1297.1 

CGI_10026636 
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit 

gamma-7 
17567 1296.7 

CGI_10006923 Ceruloplasmin 27560 1294.8 

na na 9567 1292.4 

na na 67539 1290.8 

CGI_10027081 hypothetical protein CGI_10027081 31977 1267.5 

CGI_10018335 na 50521 1265.3 

CGI_10003923 60S ribosomal protein L38, partial 10808 1257.0 

CGI_10010679 hypothetical protein CGI_10010679 16670 1240.1 

CGI_10017187 na 8394 1216.6 

na na 7124 1208.9 

CGI_10008615 Embryonic polyadenylate-binding protein B 37581 1190.0 

CGI_10020851 Putative ribosome biogenesis protein RLP24 20326 1169.2 

CGI_10009651 40S ribosomal protein S5 22285 1167.8 

CGI_10003396 na 13204 1151.1 

CGI_10010682 60S acidic ribosomal protein P0 13816 1137.9 

na na 18119 1126.5 
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CGI_10027951 Ras-related protein RAP-1b 30361 1124.9 

CGI_10010805 Prostaglandin reductase 1 23767 1103.6 

CGI_10015086 hypothetical protein CGI_10015086 45173 1103.5 

CGI_10020662 Adenosylhomocysteinase A 36215 1098.6 

CGI_10020961 40S ribosomal protein S16 13539 1072.5 

CGI_10009700 hypothetical protein CGI_10009700 10144 1070.2 

na na 6524 1069.1 

na na 15164 1063.4 

na na 12292 1050.5 

CGI_10025609 Actin-related protein 2/3 complex subunit 1A 18679 1039.4 

CGI_10007702 40S ribosomal protein S19 8651 1036.5 

na na 12177 1008.1 

CGI_10018930 Tubulin alpha-3 chain 32163 999.2 
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Appendix B3 

BP terms Count PValue FE 

GO:0007155~cell adhesion 17 0.00 4.03 

GO:0022610~biological adhesion 17 0.00 4.03 

GO:0007160~cell-matrix adhesion 5 0.00 8.72 

GO:0031589~cell-substrate adhesion 5 0.00 8.45 

GO:0046271~phenylpropanoid catabolic process 3 0.00 27.04 

GO:0046274~lignin catabolic process 3 0.00 27.04 

GO:0009808~lignin metabolic process 3 0.01 23.18 

GO:0009698~phenylpropanoid metabolic process 3 0.01 18.03 

GO:0019748~secondary metabolic process 5 0.01 5.41 

GO:0007259~JAK-STAT cascade 3 0.02 14.75 

GO:0007166~cell surface receptor linked signal transduction 14 0.02 2.01 

GO:0042335~cuticle development 3 0.02 12.48 

GO:0019221~cytokine-mediated signaling pathway 3 0.02 12.48 

GO:0007600~sensory perception 6 0.02 3.65 

GO:0007186~G-protein coupled receptor protein signaling pathway 7 0.03 3.08 

GO:0034614~cellular response to reactive oxygen species 3 0.03 11.59 

GO:0050877~neurological system process 10 0.03 2.3 

GO:0055114~oxidation reduction 17 0.03 1.73 

GO:0050890~cognition 7 0.03 2.87 

GO:0030818~negative regulation of cAMP biosynthetic process 2 0.04 54.08 

GO:0030803~negative regulation of cyclic nucleotide biosynthetic process 2 0.04 54.08 

GO:0030800~negative regulation of cyclic nucleotide metabolic process 2 0.04 54.08 

GO:0030815~negative regulation of cAMP metabolic process 2 0.04 54.08 

GO:0030809~negative regulation of nucleotide biosynthetic process 2 0.04 54.08 

GO:0016337~cell-cell adhesion 5 0.04 3.81 

GO:0019439~aromatic compound catabolic process 3 0.05 8.54 

GO:0042219~cellular amino acid derivative catabolic process 3 0.05 8.54 

GO:0030336~negative regulation of cell migration 3 0.05 8.54 

GO:0006892~post-Golgi vesicle-mediated transport 3 0.05 8.11 

GO:0040013~negative regulation of locomotion 3 0.05 8.11 

GO:0030814~regulation of cAMP metabolic process 3 0.05 8.11 

GO:0045087~innate immune response 4 0.05 4.7 

GO:0042423~catecholamine biosynthetic process 2 0.05 36.05 

GO:0045980~negative regulation of nucleotide metabolic process 2 0.05 36.05 

GO:0006952~defense response 6 0.05 2.9 

GO:0034599~cellular response to oxidative stress 3 0.06 7.73 

GO:0051271~negative regulation of cell motion 3 0.06 7.37 

GO:0007156~homophilic cell adhesion 3 0.07 6.76 

GO:0019853~L-ascorbic acid biosynthetic process 2 0.07 27.04 

GO:0002696~positive regulation of leukocyte activation 3 0.08 6.49 

GO:0030799~regulation of cyclic nucleotide metabolic process 3 0.08 6.49 

GO:0050867~positive regulation of cell activation 3 0.08 6.49 

GO:0016044~membrane organization 8 0.08 2.14 

GO:0007268~synaptic transmission 5 0.08 3.04 

GO:0006140~regulation of nucleotide metabolic process 3 0.08 6.24 

GO:0006575~cellular amino acid derivative metabolic process 5 0.09 2.97 

GO:0007565~female pregnancy 3 0.09 5.79 

GO:0000302~response to reactive oxygen species 3 0.09 5.79 

GO:0006470~protein amino acid dephosphorylation 5 0.10 2.85 

GO:0016358~dendrite development 3 0.10 5.59 

MF terms Count PValue FE 

GO:0031177~phosphopantetheine binding 4 0.00 16.21 

GO:0016597~amino acid binding 5 0.00 8.5 

GO:0043176~amine binding 5 0.00 7.53 

GO:0048037~cofactor binding 12 0.00 2.74 

GO:0019842~vitamin binding 8 0.00 3.8 

GO:0016682~oxidoreductase activity, acting on diphenols and related substances as 

donors, oxygen as acceptor 3 0.01 26.35 

GO:0008471~laccase activity 3 0.01 26.35 
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GO:0005509~calcium ion binding 16 0.01 2.11 

GO:0043169~cation binding 58 0.01 1.31 

GO:0043167~ion binding 58 0.01 1.3 

GO:0016679~oxidoreductase activity, acting on diphenols and related substances as 

donors 3 0.01 17.56 

GO:0008066~glutamate receptor activity 3 0.01 15.81 

GO:0046872~metal ion binding 56 0.02 1.28 

GO:0000036~acyl carrier activity 3 0.03 11.29 

GO:0001642~group III metabotropic glutamate receptor activity 2 0.04 52.69 

GO:0005507~copper ion binding 4 0.04 5.27 

GO:0016651~oxidoreductase activity, acting on NADH or NADPH 4 0.04 5.14 

GO:0016655~oxidoreductase activity, acting on NADH or NADPH, quinone or similar 

compound as acceptor 3 0.05 8.32 

GO:0004725~protein tyrosine phosphatase activity 5 0.05 3.56 

GO:0031406~carboxylic acid binding 5 0.05 3.56 

GO:0001640~adenylate cyclase inhibiting metabotropic glutamate receptor activity 2 0.06 35.13 

GO:0046920~alpha(1,3)-fucosyltransferase activity 2 0.09 21.08 

GO:0004348~glucosylceramidase activity 2 0.09 21.08 

GO:0016831~carboxy-lyase activity 3 0.09 5.85 

GO:0003950~NAD+ ADP-ribosyltransferase activity 3 0.09 5.85 

Panther BP terms Count PValue FE 

BP00124:Cell adhesion 12 0.00 5.11 

BP00103:Cell surface receptor mediated signal transduction 14 0.00 3.55 

BP00120:Cell adhesion-mediated signaling 8 0.00 6.01 

BP00102:Signal transduction 24 0.00 2.05 

BP00199:Neurogenesis 9 0.00 4.67 

BP00246:Ectoderm development 9 0.00 4.39 

BP00274:Cell communication 11 0.00 3.17 

BP00193:Developmental processes 16 0.00 2.2 

BP00104:G-protein mediated signaling 6 0.02 3.61 

BP00132:Receptor mediated endocytosis 4 0.03 5.86 

BP00148:Immunity and defense 9 0.03 2.37 

BP00129:Endocytosis 6 0.03 3.29 

BP00287:Cell motility 5 0.05 3.53 

BP00179:Apoptosis 6 0.10 2.41 
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Appendix C2 

    



Al Prof. Tomaso Patarnello che ha reso possibile questa esperienza. 
  
A Luca, per la fiducia che ha sempre riposto in me e per le numerose opportunità offerte in questi 

tre anni. 
 
Al mio “capetto” Massimo che mi aperto le porte della trascrittomica e mi ha iniziata al magico 

mondo dei microarray, “La scienza esatta e intramontabile” (!!!).    
 
A Lisa e Serena, perché confrontarmi con loro è sempre stata occasione di crescita professionale 

e umana. Insostituibili!   
 
A  Rafaella, Sara, Francesco e Massimiliano perché ognuno di loro, ha saputo arricchire questo 

percorso.  
 
Ad Arnaud per avermi dato la preziosa opportunità di lavorare nel suo gruppo.  
 
A Charlotte, per le numerose chiacchierate scientifiche (…e non!) che mi hanno permesso di 

imparare il francese. 
 
A Jean-Yves, Philippe e Virgile per le importanti competenze che hanno saputo trasmettermi. 
 
A Mauro, perché sotto la sua guida ho fatto i primi passi nel mondo della ricerca e perché oggi è 

fiero di vedermi camminare.  
 
A tutti i colleghi che ho avuto il piacere di incontrare in questi anni e che in qualche modo hanno 

contribuito alla mia formazione. 
    
 


