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Abstract

Measuring individuals’ preferences for goods and services has recently ob-

tained considerable attention in both public and private contexts. Individu-

als’ judgments are used for many different purposes, including setting social

policies and forecating the acceptance of a new product in the market. While

preference modeling is a long-studying problem, modern applications, related

to the web, make it an actual topic. Respondents are called to express their

preferences among a set of alternatives and collected data can be represented

in various kinds of matrices. This thesis is focused on some popular meth-

ods to estimate either scores or ranks of a set of alternatives by analyzing

a generalized tournament matrix. The proposed methods are compared via

simulation and some special situations are investigated to detect their relia-

bility. Our aim is to compare methods that assume parametric hypotheses on

data distribution with methods that do not require such hypotheses. When

respondents do not compare directly two alternatives, the matrix represent-

ing their preferences may show one or more missing values. We propose a

method to estimate the missing entries of a generalized tournament matrix

based on the minimization of the sum of its singular values, i.e. the nuclear

norm. We perform some simulation studies to investigate the nuclear norm

minimization effectiveness.





Sommario

Conoscere le opinioni e le preferenze degli individui su beni o servizi, ha da

sempre rivestito notevole importanza, in contesti sia pubblici che privati. Le

preferenze delle persone vengono, infatti, rilevate per diversi scopi, come il

definire nuove politiche sociali o il valutare se un nuovo prodotto potrà essere

recepito sul mercato. Le applicazioni moderne dell’analisi delle preferenze,

connesse al web, lo rendono un argomento attuale. Il punto di partenza

l’espressione da parte di un campione di individui delle proprie preferenze

in merito alle possibili alternative di un insieme. I criteri per rilevare le

preferenze sono numerosi. In questa tesi si presentano alcuni metodi per

stimare i punteggi o i ranghi delle alternative partendo da un matrice con

struttura di rilevazione a torneo generalizzata. Vengono realizzate alcune

simulazioni allo scopo di confrontare i metodi proposti e di investigare alcune

situazioni particolari utili a verificarne la affidabilità. L’obiettivo della tesi è

di confrontare metodi che assumono ipotesi parametriche sulla distribuzione

dei dati e metodi che non richiedono ipotesi. Nella tesi, inoltre, si propone

un metodo per stimare un dato non validamente espresso in una matrice di

torneo generalizzata. Il metodo si basa sulla minimizzazione della somma dei

valori singolari, vale a dire la norma nucleare, della stessa matrice. Inoltre,

sono effettuate simulazioni allo scopo di analizzare l’efficacia del metodo di

stima basato sulla minimizzazione della norma nucleare.
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Chapter 1

Introduction

1.1 Overview

Preference elicitation is a common issue in many different disciplines, such as

economics, sociology, political science and psychology. To elicit preferences,

groups of individuals are called to express their preferences among a set of

alternatives. While preference modeling is a long studying problem, modern

applications, related to the web, make it an actual topic.

There are several methods to elicit preferences: ordering the alternatives,

picking up one or more out of them, rating the alternatives, allocating a

budget among them and comparing them in pairs (Fabbris, 2011). According

to the latter method, alternatives are presented in pairs to one or more judges,

in a random sequence (Kendall & Babington-Smith, 1940). The judge can

choose either one, declare a tie, or express his or her preference on some scale.

The method of paired comparisons presents some advantages with respect

the other tecniques, since most people cannot evaluate many alternatives at

a time. Moreover, in case of very similar alternatives, compare them in pairs

helps to express a preference.

The data, collected through all methods can be represented, sometimes after
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a pre-treatment, in a generalized tournament matrix P , defined as follows

(Moon & Pullman, 1970).

Let A = {A1, A2, . . . , Ak} be a set of k alternatives, P = [πij] is a (k × k)

matrix that satisfies

P + P T = J − I, P ≥ 0.

In this case πij represents the probability that Ai is preferred to Aj and it

can be estimated through pij, the proportion of comparisons in which Ai is

preferred to Aj, provided there are no ties. Hence, pij = 1/2 indicates indif-

ference between Ai and Aj, pij = 1 indicates that Ai is always preferred to

Aj and pij > 1/2 indicates that Ai is preferred to Aj.

Another kind of matrix, widely used in literature (Saaty, 1977, 2008), is the

multiplicative paired comparison matrix M = [mij] in which mij ∈ ]0, c[

represents the preference ratio of Ai over Aj: mij > 1 implies that Ai is

strictly preferred to Aj, whereas mij < 1 expresses the opposite preference

and mij = 1 means indifference.

Starting from a generalized tournament matrix P it is possible to construct a

ranking of the alternatives or to define a set of weights that reflects their rel-

ative importance. There are several methods in literature for these purposes

such as the score-vector (Kendall, 1955; David, 1987; Thurstone, 1927b), the

eigenvector method (Kendall, 1955; Wei, 1952) and the linear models (David,

1988).

The score vector ω(1) is the vector of row sums obtained by

ω(1) = P · e

where e is a column vector of all 1’s. According to this method the alterna-

tives are ranked in the corresponding order. For a generalized tournament

matrix the i-th row sum can be interpreted as the expected score of Ai.

The eigenvector method is based on the eigenvalues and eigenvectors asso-

ciated to the generalized tournament matrix. Suppose P is a positive irre-

ducible matrix, then the Perron-Frobenius theorem guarantees the existence
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of an unique large real eigenvalue λ1 as solution of the characteristic equation

Pω = λ1ω

whose eigenvector ω has strictly positive components (Keener, 1993). ω is

a unique solution of the characteristic equation provided ‖ω‖2 = 1. Its i-th

entry is assumed to represent the relative importance of the i-th alternative

with respect to the others.

The linear paired comparison model (David, 1988) assumes that the k al-

ternatives can be represented along a linear continuum. Each of them has

true rating Vi which determines its position in such representation. The rat-

ing of the i-th item will vary from respondent to respondent and it may be

represented by Yi a continuous variable with mean Vi and distribution called

“sensation distribution”.

The Yi’s (i = 1, . . . , k) are independent and identically distributed variables

with the same variance. Defining Zi = Yi − Vi, we have that Zi − Zj is a

symmetric variable with mean 0 and distribution, named defining distribu-

tion, that depends on the distribution of Yi.

Under these assumptions, the probability of preferring Ai to Aj can be ex-

pressed as follows

πij = FZi−Zj
(Vi − Vj) (i, j = 1, . . . , k)

Hence, to estimate the ratings Vi’s, we have to solve the linear system

dij = V̂i − V̂j = F−1Zi−Zj
(pij)

with k unknown parameters and k(k − 1) equations. If k > 3 the system

results overdetermined and we need to impose some contraints to solve it.

Among the others, the Thurstone & Mosteller model (Thurstone, 1927a;

Mosteller, 1951), assumes that variables Zi − Zj have a normal distribution

and the Bradley & Terry model, assumes a logistic distrubution (Bradley &

Terry, 1952).

Suppose now that the generalized tournament matrix P is incomplete, that

is some of its entries are unknown. This happens for different reasons: for
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example, if the number of alternatives is large and it is not possible to submit

all the possible pairs to the respondents. The topic of missing values in a

preference matrix has been extensively discussed in literature (Harker, 1987;

Carmone et al., 1997; Kwiesielewicz & Van Uden, 2003; Fedrizzi & Giove,

2007; Dittrich et al., 2012).

When a respondent does not compare directly two alternatives, Ai and Aj,

the linear models permit to estimate the preference relation between them

using the information achieved from their comparison with a shared alterna-

tive Al. In practice, linear models allow to obtain pij through pil and plj for

i, j, l = 1, . . . , k and i 6= j 6= l. In particular, if we assume that F−1(p) exists

and is unique for p ∈ (0, 1) then (Latta, 1979)

pij = Pr (Yi ≥ Yj) = F (Vi − Vj)

= F (Vi − Vl + Vl − Vj)

= F [F−1(pil) + F−1(plj)].

1.2 Main Contributions of the Thesis

In this thesis we compare the above-introduced methods proposed for rank-

ing and scoring a set of alternatives. Starting from a generalized tournament

matrix P , the comparison is performed via simulation and some special sit-

uations are investigated to detect the reliability of the methods. The aim

is to compare methods based on distributional parametric hypotheses with

methods that do not require such hypotheses.

When respondents do not compare directly two alternatives, the matrix des-

ignated to represent their preferences is characterized by one or more missing

values. In this thesis, we propose a method to estimate the missing proba-

bilities of a generalized tournament matrix P based only on its valid entries.

The main assumption is that only a few dimensions contribute to individual

preferences, which corresponds to state that P can be well approximated by
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a lower-rank matrix. So, we search for the matrix completion that minimizes

its rank; intuitively, we seek for the simplest completion values that fit the

observed data. Since rank minimization problems result to be unsolvable, it

is possible to use a recent heuristic that minimizes the sum of the singular

values, i.e. the nuclear norm (Fazel et al., 2001).

In literature there are articles on matrix completion based on the minimiza-

tion of the nuclear norm (Candès & Recht, 2009; Gleich & Lim, 2011), es-

pecially for lower-than-full rank matrices, whereas generalized tournament

matrices are of full rank.

Finally, we perform some simulation studies to compare nuclear norm mini-

mization with linears model composition rules.

This thesis consists of six chapters. In Chapter 2 we present a general

background on preference modeling, in particular on elicitation preference

methods. The main focus is on the paired comparison method and on the

matrices used to represent paired comparison preference data. Chapter 3

describes some methods for ranking or scoring alternatives. In Chapter 4 we

present the results of the simulation studies to compare the proposed rank-

ing and scoring methods. Chapter 5 is focused on the estimation of missing

values within a generalized tournament matrix. Thus composition rules as-

sociated to linear models are presented and a procedure based on the nuclear

norm minimization is investigated. In Chapter 6 some concluding remarks

are drawn.





Chapter 2

Background

Measuring individuals’ preferences for goods and services has recently ob-

tained considerable importance for both public and private contexts as a key

element in the decision-making process. Individuals’ judgments are used for

many different purposes, including setting social policies and evaluating the

acceptance of a new product in the market. To give some examples, elicit-

ing public preferences for healthcare results to be fundamental in allocating

resources across competing services. Indeed, given the limited availability

of resources, public opinions are recognized to be a fundamental criterion

for their allocation (Kassirer, 1994; Ryan et al., 2001). Another application

comes from electronic commerce. To increase business success and customer

loyalty it is necessary to offer consumers personalized services. To this end, it

is essential to understand individual customers’ preferences for products and

recommend them the most appropriate ones (Schafer et al., 2001; Devaraj

et al., 2002). Therefore, politicians want to know voters’ opinions; companies

want to know consumers’ preferences and people in general wants to know

what others think about political, social, health and other issues.

There are two main paths to eliciting preferences: either from stated or from

revealed preference analysis (Train, 2003). Stated preferences are choices

that individuals would make from a hypothetical choice set. So, if we want

respondents to state their preferences, we can simply ask them. There is
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a slight difference between choice and preference. Indeed, a choice applies

to expressions such “I choose that option” while a preference applies to “I

prefer this instead of that” (Fabbris, 2013). However, in this thesis the two

terms are used without distinctions because our analyses apply to both.

Revealed preferences, on the other hand, are implicit in individuals’ choice

actions. To reveal respondents’ preferences, we have to observe their actual

choice behaviors. For example, if in a survey we ask a respondent which car

he would buy among a set of three cars, we are eliciting his stated prefer-

ences. On the other hand, if we ask him which car he bought when he last

bought a car, we are revealing his preferences.

Economists generally prefer to analyze revealed preferences. Psychologists

and other social scientists, instead, use mainly stated preference data. In the

following, we refer to stated preferences.

Questionnaires represent the principal mean to collect individuals’ opinions

and preferences. Before expressing their preferences among a fixed set of k

alternatives individuals have to do some mental exercises. First of all they are

implicitely required to create in their own mind a measurement scale based

on their values and social rules. Then, they try to put the alternatives, also

called items or stimuli, on the derived ordinal or cardinal scale and, finally,

they express their choices. During this process respondents may encounter

difficulties. Sometimes, for example, they cannot express a preference among

two alternatives, as they are too similar, or they may not be able to construct

a measurement scale because the question put has no real meaning to them.

Preference data collected from n sample units can be used to estimate either

scores or ranks for the alternatives in the choice set. Ranking procedures

simply return the alternatives in order of importance. Scoring techniques,

instead, assign values to the alternatives, according to a convenient scale.

Ranks can be adopted to define priorities among the choice set, to show hi-

erarchies among items, or to point out if an alternative improves its position

with respect to a previous ranking. Scores may be of interest when quanti-

tative and precise values are needed, for instance, to allot resources among
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the units of the choice set (Fabbris, 2013).

2.1 Methods for Eliciting the Preferences

The questions used to elicit preferences are usually closed questions, with

predetermined answers, and respondents express their preferences within the

given set. There are several techniques apt to elicit preferences among a

fixed set of alternatives. We will examine the following techniques, trying to

emphasize their strengths and weaknesses: ranking, picking the best alterna-

tive, rating, partitioning a constant sum among alternatives and comparing

alternatives in pairs.

2.1.1 Ranking

According to this method, respondents are asked to rank the alternatives

in order of importance. The problem with this method, however, is that

the more numerous the alternatives in the choice set, the more difficult it

is for the respondent to answer (Inglehart & Abramson, 1993). Indeed, this

procedure requires that each respondent evaluates all the items of the set

simultaneously. Ties may be allowed if the researcher perceives that the task

required is too difficult for respondents (Fabbris, 2013).

A typical ranking question asks the respondent to attribute to each of the

k alternatives a number from 1, for the most preferred alternative, to k, for

the least preferred one (See Fig. 2.1).

2.1.2 Pick Up one or more Alternatives

Respondents can be asked to select their one or two most preferred alter-

natives out of the list. This method requires an effort similar but not as

extensive as the ranking technique. This is the simplest way for respondents

to express their preference concerning a set of alternatives. However, no



10 Background

Figure 2.1: Ranking question example

information regarding the relationship among the non-selected alternatives

is derived (Sato, 2004). This method is simple and fast, even in presence

of many alternatives. Among the ones we present, picking up one or more

alternatives is the procedure most similar to choice.

Fig. 2.2 shows a possible question of this type, always referred to the example

presented in Fig. 2.1.

Figure 2.2: Picking question example

2.1.3 Rating

According to this method, respondents are asked to rate each alternative

using a vote from 1 to a fixed number. Ideally, a rating scale should consist

of enough points to extract the necessary information. Odd numbers of

points have generally been preferred to even numbers because they allow

the middle category to be interpreted as a neutral point. In a literature
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Figure 2.3: Amazon rating system

review, Cox (1980) concluded that there is no single number of points for

a rating scale that is appropriate for all situations. Some researchers claim

that scales consisting of three points are sufficient (Matell & Jacoby, 1971).

However, a 5 option system results often better than a 3 option system, since

it makes possible more accurate predictions (Churchill et al., 1984). For

instance, the five points scale is the most used method in web applications

like Amazon (See Fig. 2.3), Youtube or Netflix. Friedman and Friedman

(1986) concluded that researchers should consider using anywhere from 5-

to 11-point scales. A rating scale can be either unipolar or bipolar. Rating

alternatives method is not particularly affected by the increasing size of the

choice set and it presents the advantage that the scores can be treated roughly

like cardinal measurements. It is characterized by low discriminatory power,

indeed it leads to less differentiation among items, with the possibility that

a respondent rates every item identically.

2.1.4 Constant Sum Question

Another possibility to elicit preferences is to ask respondents to allocate a

budget across the given set of alternatives, up to a cumulative maximum

number of points, usually 100. These points are distributed so as to reflect

the relative importance of the alternatives, revealing the relative difference

between them. Figure 2.4 is a scheme of a question of this kind.

A constant sum question may be useful to differentiate the preference on

the alternatives. Moreover, it allows respondents to assign 0 importance to
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Figure 2.4: Constant sum question

items, which is not possible in other preference elicitation methods. This

method is not reccomended in case of a large choice set, since it requires

long time and large mental energy from respondents. A computer-assisted

interviewing system allows to check the sum of points cumulated after each

assignment (Fabbris, 2013). Conrad et al. (2005) found that running totals

improve the likelihood to reach the desired sum and take the respondents

less time.

2.1.5 Paired Comparisons

In the method of paired comparisons, the k alternatives are presented in

pairs to respondents (Kendall & Babington-Smith, 1940). To control the

order effect, it is important to randomize the presentation order of the pairs

as well as the order of items within each pair (Bock & Jones, 1968). This is

the reason why computer-assisted interviewing systems promoted the use of

paired comparisons methods.

According to this procedure, a judge can choose either one, declare a tie,

or express his or her preference on some scale. The situation in which ev-

ery respondent performs every possible paired comparison is called “balanced

paired-comparison experiment” and corresponds, in sports terms, to a Round

Robin Tournament (David, 1988).

Thanks to the paired comparisons method, it is possible to elicit preferences

based on an attribute that can only be subjective as taste. The judgement

process is simplified, since respondents have to judge a pair of objects at a
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time. Especially when differences between choice alternatives are small, these

methods provide more information with respect to rating methods, since the

paired comparison between the alternatives is as free as possible from ex-

traneous influence. Moreover, it is possible to identify respondents with not

well-defined preferences, through internal consistency checks. If respondents

are consistent in their judgments, the researcher can have much greater con-

fidence in them also for further applications.

The main problem of paired comparison method is that every respondent has

to compare, for k alternatives, k(k−1)/2 distinct pairs of items. For this rea-

son, if k is large, reduced forms of paired comparisons are available, as the

incomplete tournament technique proposed by Fabbris and Fabris (2003).

This procedure involves ordering the alternatives according to a criterion,

submitting for choice firstly the k/2 pairs of adjacent alternatives, then the

k/4 pairs of alternatives preferred at the first level and so on until the most

preferred alternative is sorted out.

The literature on paired comparison modeling is vast and spans various fields.

In the following we give some references on the origins of this popular method.

Paired comparisons techniques have been widely used by psychometricians.

The method was introduced by Fechner (1860; 1966), a German experimen-

tal psychologist, who firstly described and implemented the concept of paired

comparisons in his book “Elemente der Psychophysik”. Fechner suggested

that choice behavior can be considered as a probabilistic phenomenon, since

there exists a probability that a person makes a choice rather than another.

Moreover, he stated that this probability may not equal 1 or 0, as it is often

observed that a person repeatedly presented with the same pair of alterna-

tives will not always make the same choice.

Paired comparisons method was made popular by L.L. Thurstone (1927a),

a prominent psychometrician, who first introduced a scientific approach to

using pairwise comparisons for measurement. In its paper “The law of com-

parative judgment” he provided a method for ordering alternatives along

a continuum (Edwards, 1983). As Fechner, Thurstone (1927c) considered
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choice behavior to be a probabilistic rather than a deterministic process; he

used the normal distribution to estimate the model parameters. A judge may

provide different judgements about the same object on different occasions;

that is, the judgment process does not always provide the same value on a

psychological continuum (Luce, 1959). Although Thurstone focused initially

on paired comparisons, he recognized later that many other types of choice

data, including rankings, could be modeled in a similar way.

Mosteller (1951) considered and extended Thurstone’s model, focusing on a

particular case, i.e. the fifth law of comparative judgments of Thurstone’s

list. The Bradley & Terry model (Bradley & Terry, 1952) was obtained from

the Thurstone & Mosteller model substituting the normal distribution with

the logistic function.

The literature on the method of paired comparisons has grown over the years

and several extensive reviews on method of paired comparisons are now avail-

able (Coombs, 1958; Torgerson, 1958; Bock & Jones, 1968; Kendall, 1970).

Several applications have been in sensory testing, consumer testing, personnel

rating (David, 1988), chess ranking (Joe, 1990), sports tournaments (Chan,

2011) and image quality assessment (Handley, 2001).

2.2 Utilities and Preferences

To describe consumers choices, marketing researchers extended to an econo-

metric context paired comparison models introduced by Thurstone (McFad-

den, 1980; Manski & McFadden, 1981; Berry, 1994). McFadden was one of

the researchers that made these models popular. In his original work on the

San Francisco transit system he used a probabilistic choice model to analyze

individual’s decisions to use various modes of transport such as car, train,

carpooling and bus (McFadden, 1974).

Econometric models of probabilistic choice, also called random utility mod-

els, assume that choice is a discrete event. Consumers, indeed, cannot leave

the supermarket with one half of Coke or one half of Pepsi but they will
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tend to leave with a full can of the chosen brand. Moreover, models assume

that the utility of a brand varies across individuals as a random variable.

Finally, individuals are supposed to be rational agents who make the choice

that possesses the highest utility. So, considering the case of a choice among

two alternatives Ai and Aj, an individual will choose object Ai over object

Aj if the utility of Ai is greater than utility of Aj, that is if Ui > Uj. Dis-

cussion here is in terms of individual utility but similar reasoning applies to

collective choices. The choice between two alternatives reflects paired com-

parison models assumptions but random utility models have been extended

to choice among many possibilities: the preferred alternative is the one with

the highest utility.

Random utility models can be used to describe the relationship between the

outcome, the choice, and some explanatory variables, such as tastes or per-

sonal characteristics.

The utility, for individual h, of alternative Aj, Uhj, is composed from an

observed part, as some known attribute for example its monetary cost, and

an unobserved one, that is everything else that is not specified in the utility.

Formally, utility is given by

Uhj = Vhj + Ehj

where Vhj is the observed part and Ehj is the error term. The assumptions

about the distribution of the error allow the researcher to specify a density

function to estimate the otherwise hidden term. Depending on the assumed

distribution on the utilities, we have different classes of random utility mod-

els.

2.3 Pairwise Comparisons: Inconsistencies

Let us consider the simplest case in which three alternatives Ai, Aj and Al

are compared in pairs: if the respondent creates a continuum in his mind

internally consistent then he expresses transitive preferences over those al-
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ternatives. Assuming ties are not allowed, if the respondent prefers Ai to Al

and Al to Aj then transitivity implies that Ai is preferred to Aj (Fig. 2.5 a).

In this case the three alternatives can be ranked from first to third as follows:

Ai, Al and Aj. Conversely, intransitive preferences occur when, for instance,

the respondent prefers Ai to Al and Al to Aj but Aj to Ai (Fig. 2.5 b).

Transitive preferences allow to position the alternatives along a linear con-

tinuum which expresses the dominance relations among them. A condition

of complete transitivity is difficult to obtain in practice, especially measuring

preferences on a set with a large number of alternatives. On the other hand,

intransitivities occur when the items cannot be listed in a strict hierarchy,

as it happens when alternatives are preferred the same proportion of times.

Intransitivities are called also inconsistencies, or circular triads, since they

produce a loop on preferences in which each alternative is preferred to each

other including itself (Kendall & Babington-Smith, 1940).

Figure 2.5: Preferences relationships among three alternatives

i

l j

(a) Transitive relationships

i

l j

(b) Intransitive relationships

Intransitivities may stem from either the incompetence of the respondent or

the high similarity among the alternatives, or both. Another possible expla-

nation is that the respondent evaluates the alternatives based on more than

one dimension and he cannot order them on a linear scale (David, 1988).

The concept of consistency presented in this section is referred to as inter-

nal consistency, which is different from that of agreement between a set of

respondents or between a respondent and a true ranking, which are named
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rater agreement or external consistency.

Paired comparison experiments, unlike the other preference elicitation meth-

ods, allow researchers to identify respondents with inconsistent preferences.

Researchers may decide to consider whether or not preferences elicited from

these respondents.

2.4 Data Structure

Given a finite set of alternatives A = (A1, A2, . . . , Ak) with k ≥ 2, respon-

dents are called to express their preferences comparing them in pairs. Con-

sider the case that each respondent makes all the k(k − 1)/2 possible com-

parisons. The data collected this way can be represented in several kinds of

matrices introduced in the following sections. For each matrix, a condition of

reciprocity is assumed in such a way that the preference of Ai over Aj can be

derived from the preference of Aj over Ai. Moreover, some condition of con-

sistency is assumed which depends on the different meaning of the elements

of the preference matrix.

2.4.1 Tournament Matrix

A simple structure is the so-called tournament matrix (Moon, 1968), a k× k
zero-one matrix T = [tij] with the following property

T + T T = J − I

where I is the identity matrix of order k and J is a k× k matrix of all ones.

Alternatives are compared each other once and tij equals 1 if and only if the

i-th alternative is preferred to the j-th one, and 0 otherwise. In this case,

tij = 1 − tji. Preferences can be read easily through the rows of a tourna-

ment matrix; for example looking at the following matrix T we can easily

conclude that the first alternative is preferred to the other two, the second

one is preferred to the third and the third one is never preferred.
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T =


0 1 1

0 0 1

0 0 0


Matrix T is fully transitive. In literature, several measure of transitivity

have been analyzed. Kendall and Babington–Smith (1940) proposed a con-

sistency coefficient based on the number of circular triads detected in matrix

T . A set of judgments may be regarded as more consistent than another

if it includes fewer circular triads. The number of circular triads does not

provide a complete description of the circularity of preferences. It would be

necessary to consider cycles of greater amplitude, as 4- or 5- cycles, but no

simple formula is known for their individuation. Slater (1961) proposed as

a measure of inconsistency the minimum number s of preference reversals,

needed to reach an unambiguous ranking of the alternatives.

Also the maximum eigenvalue, λ1, provides a measure of how much transitive

are the represented preferences. More precisely, defining µ = 2λ1/(k−1), we

have that 0 ≤ µ ≤ 1 for every tournament matrix, since 0 ≤ λ1 ≤ (k − 1)/2

(Moon & Pullman, 1970). In particular, in case of perfect transitivity λ1

equals 0 and so does µ. Then, small values of µ correspond to preferences

that are nearly transitive. Large values of µ, on the other side, correspond to

the opposite situation. In the special case of equal row sums, achievable only

for odd k, λ1(T ) equals (k− 1)/2 and µ equals 1. In graph theory language,

in this case, T is called regular tournament. If k is even and half of the row

sums of T equal k/2 and the rest equal (k − 2)/2, then T is called almost

regular.

2.4.2 Generalized Tournament Matrix

If every respondent compares all the alternatives in pairs more than once or

else, if more than one respondent makes all the comparisons independently,

collective preferences can be represented in a generalized tournament matrix
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P = [πij], a k × k matrix that satisfies

P + P ′ = J − I, P ≥ 0

where I is the identity matrix of order k and J is a k × k matrix of all ones

(Moon & Pullman, 1970).

In this case πij represents the probability that Ai is preferred to Aj and it can

be estimated through pij, the number of comparisons in which Ai is preferred

to Aj divided by the total number of performed comparisons, provided there

are no ties. Hence:

• pij = 1/2 indicates indifference between Ai and Aj;

• pij = 1 indicates that Ai is always preferred to Aj;

• pij > 1/2 indicates that Ai is preferred to Aj.

Also in this case, it holds that pij = 1 − pji. Given n respondents, a gener-

alized tournament matrix can be interpreted as the mean of n tournament

matrices representing individual preferences.

For a generalized tournament matrix we can define different degrees of tran-

sitivity. The stochastic transitivity condition holds if, for every triad of

alternatives Ai, Al and Aj, pil ≥ 0.5 and plj ≥ 0.5, imply that pij is greater

than 0.5.

The “strong” stochastic transitivity condition is more stringent. It provides

that, if pil ≥ 0.5 and plj ≥ 0.5, then pij is greater than the maximum of pil

and plj. An intermediate condition is given by the “moderate” stochastic

transitivity which provides that, under the same hypotheses, pij is greater

than the minimum of pil and plj (Coombs, 1958).

Fedrizzi et al. (2007) define a generalized tournament matrix perfectly tran-

sitive if and only if pil = pij +pjl−0.5, ∀i 6= l 6= j = 1, . . . , k. They proposed

a consistency index which takes into account whenever this condition is vio-

lated.

As for tournament matrices, also in this case the maximum eigenvalue, λ1, is
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proportional to internal consistency. Defining µ = 2λ1/(k − 1) (0 ≤ µ ≤ 1),

small values of µ correspond to preferences that are nearly transitive and

large values of µ to the opposite situation (Moon & Pullman, 1970).

2.4.3 Multiplicative Paired Comparison Matrix

Another kind of matrix, widely used in literature (Saaty, 1977, 2008), is the

multiplicative paired comparison matrix M = [mij] in which mij ∈ ]0,+c[

where c ∈]0,+∞[ and

• mij = 1/mji for i, j = 1, . . . , k and i 6= j;

• mii = 1 for i = 1, . . . , k.

A matrix entry mij represents the ratio between Ai and Aj preferences:

mij > 1 implies that Ai is preferred to Aj, whereas mij < 1 expresses the

opposite preference and mij = 1 means indifference.

Saaty proposed the use of the multiplicative paired comparison in the Ana-

lytic Hierarchy Process (AHP), a tool to solve multi-criteria decision prob-

lems. The structure of the typical decision problem considered in AHP con-

tains k alternatives and c decision criteria. Each alternative can be evaluated

in terms of the decision criteria and the relative importance of each criterion

can be elicited through pairwise comparisons. The decision-maker has to ex-

press her/his opinion about the value of one single pairwise comparison at a

time, choosing a linguistic option such as Ai is x times more important than

Aj, or Ai is of the same importance as Aj.

A one-to-one mapping between the set of discrete linguistic choices and a

discrete set of numbers representing the importance is defined. According to

the scale introduced by Saaty, the available values for the pairwise compar-

isons are members of the set {9, 8, 7, 6, 5, 4, 3, 2, 1, 1/2, 1/3, 1/4, 1/5, 1/6,

1/7, 1/8, 1/9}.
A multiplicative paired comparison matrix is perfectly transitive if it respects

the multiplicative consistency, that is if mil = mijmjl ∀i 6= j 6= l = 1, . . . , k.

The assumption of the Saaty scale restricts the respondent’s possibility to
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be consistent, in fact if for example mij = 5 and mjl = 3, clearly mil cannot

equals 15. However, Saaty provided a measure of closeness to the consistency

(CI) again in terms of the maximum eigenvalue CI = (λ1−k)/(k−1). Small

values of the index indicate a good level of transitivity. M is fully transitive

if λ1 = k and CI = 0. To determine the goodness of the consistency index,

Saaty proposed to compute the consistency ratio CR given by CR = CI/RI,

where RI is the mean consistency index computed on a sample of randomly

generated matrices using the same matrix dimensionality and scale.

2.4.4 Additive Paired Comparison Matrix

The additive paired comparison matrix D = [dij] is defined as a k×k matrix

in which dij ∈]−∞,∞[ with the following characteristics:

• dij = −dji for i = 1, . . . , k and i 6= j ;

• dii = 0.

Matrix D is such that D = −DT . In this case each element dij represents the

difference of preference between Ai and Aj. Hence, dij > 0 implies that Ai is

preferred to Aj, dij < 0 implies the opposite preference and dij = 0 implies

indifference. The additive paired comparison matrix is known in algebraic

literature as skew symmetric matrix. An additive paired comparison matrix

is perfectly consistent if and only if dil = dij + djl ∀i, j, l = 1, . . . , k and

i 6= j 6= l. The additive paired comparison matrices are sometimes derived

from large-scale modern internet and e-commerce databases.





Chapter 3

Ranking and Scoring Methods

In this chapter we will describe some popular methods suggested in literature

for ranking and scoring the alternatives starting from a generalized tourna-

ment matrix P . Comparing two alternatives, Ai and Aj, a respondent prefers

Ai to Aj with theoretical probability πij, where 0 ≤ πij ≤ 1 for i, j = 1, . . . , k

and i 6= j. Supposing that n respondents compare all the k(k − 1)/2 pos-

sible pairs independently, πij can be estimated through pij, the proportion

of comparisons in which Ai is preferred to Aj. Each respondent is assumed

to be equally informative. From the quantitative estimates of the preference

relations we want to construct a ranking of the alternatives or define a set of

weights that reflect their relative importance.

For each of the proposed methods we give a brief description and some exam-

ples to better understand how it works. Moreover we consider their reliability

in the cases pij equals either 0 or 1.

3.1 Score Vector

The score vector method (Thurstone, 1927b; Kendall, 1955; David, 1987) is

the simplest way to score the alternatives.
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The score vector ω(1) is the (k × 1) vector of row sums obtained as

ω(1) = P · e

where e is a column vector of 1’s. The score vector method is practicable

even if pij equals either 0 or 1.

For a tournament matrix the i-th row sum represents the number of times

the i-th alternative is preferred to the others, while for a generalized tour-

nament matrix it can be interpreted as the expected score of Ai, that is the

expected number of alternatives the i-th one is preferred to the others.

Let us consider the following fully transitive matrix, T , which represents the

preferences expressed by a respondent who compares every pair of alterna-

tives once.

T =


0 1 1

0 0 1

0 0 0


We have that ω(1) = (2, 1, 0)T and the ranking of the alternatives is obviously

A1, A2 and A3, with A1 scoring most.

This ranking agrees with that obtained by the vector of the average probabil-

ity estimates p = (p1., . . . , pk.), whose elements are defined as follows (David,

1988)

pi. =
1

k − 1

∑
j 6=i

pij for i = 1, . . . , k.

In other words, pi. represents the average proportion of comparisons for which

Ai is preferred. In the previous example we have p = (1, 0.5, 0). The sum of

the average probabilities equals (k − 1)/2.

To estimate the score si of the i-th alternative it is possible to use both the

score vector entries and the average probabilities estimates. After being nor-

malized, the estimates ŝi obtained in both cases coincide.
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Consider also the case of intransitive preferences, represented by the follow-

ing matrix T1. It can be associated to the Chinese game of rock (R)-paper

(P)-scissors (S), in which rock breaks scissors, scissors cut paper but paper

covers rock.

T1 =

R S P
R 0 1 0

S 0 0 1

P 1 0 0

The score vector of T1 is given by ω(1) = (1, 1, 1). In this case, it is not

possible to order the alternatives since each of them is preferred the same

number of times. This matrix describes the so called regular tournament in

which, for k odd, all of the row sums equal (k − 1)/2.

To see one more application consider the following generalized tournament

matrix

P1 =



0 0.9 0.9 0.6 0.4

0.1 0 0.8 0.8 0.8

0.1 0.2 0 0.7 0.7

0.4 0.2 0.3 0 0.6

0.6 0.2 0.3 0.4 0


that represents the situation in which n respondents compare independently

5 alternatives in pairs.

Let us remember that every pij is the proportion of comparisons in which

Ai is preferred to Aj. Looking at this matrix, for example, we can say that,

since p12 = 0.9, 9 out of 10 respondents prefer alternative A1 to A2.

The maximum eigenvalue λ1(P1) equals 1.848 and the inconsistency index

µ = 2λ1/(k − 1) equals 0.924 (Moon & Pullman, 1970). Let us remember

that 0 ≤ µ ≤ 1 and that small values of µ correspond to near transitive

preferences while large values to the opposite situation. Then, P1 seems
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characterized by low consistency. Considering also the number of 3-cycles,

we have three over the ten possible triads that result circular.

Table 3.1 shows the row-sums, the average probabilities and the ranking

referred to this specific example.

Table 3.1: Row-sums, average probabilities and ranking derived from P1

Alternatives Row-sums Average probabilities Ranking

1 2.8 0.56 1

2 2.5 0.50 2

3 1.7 0.34 3

4 1.5 0.30 4

5 1.5 0.30 4

It may be noticed that, the last two alternatives have the same row sum and,

consequently, the same position in the alternatives’ ranking.

3.2 Eigenvector Method

Another method apt to scoring a set of alternatives is based on the eigen-

decomposition of the generalized tournament matrix P obtained from a

complete paired comparisons experiment in which n respondents compare

k alternatives in pairs. Since P is a positive irreducible matrix, the Perron-

Frobenius theorem guarantees that a unique large real eigenvalue λ1 exists

as solution of the characteristic equation (Keener, 1993)

Pω = λ1ω

and that the corresponding eigenvector ω has strictly positive components.

The principal eigenvector ω is uniquely determined imposing that ‖ω‖2 = 1,

that is the squared entries sum up to 1. The i-th entry of ω is assumed to

represent the relative importance of the i-th alternative and it can be used to

estimate its score. Moreover, alternatives can be ranked according to these

estimates (Horn & Johnson, 1985).
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The idea of using the eigenvector to score is due to Kendall and Wei (Wei,

1952; Kendall, 1955) and the method has acquired new currency today thanks

to web applications. The web search engine Google (www.google.com) uses

a variant of this idea to measure the importance of a large number of web

sites (Brin & Page, 1998).

As we have seen, the i-th entry of the score vector represents the number

of alternatives which the i-th one is preferred to. The score vector ranking,

then, takes into account only the number of preferred alternatives. Kendall

proposed, as suggested by Wei, to use as measures of strength the row sums

of the power of the matrix P . In fact, the i-th entry of ω(2), defined as

ω(2) = P 2e

where e is a vector of all 1’s, is the sum of the scores of all the alternatives

preferred to the i-th one and so it can be considered as another measure of

relative strength. The more an alternative is preferred to other alternatives

with high row sum, the higher the final score of that alternative.

Iterating the reasoning, we can compute

ω(3) = P 3e

and consider this vector as a further measure of relative strength of the alter-

natives since it contains the sums of the sums of the scores of the preferred

alternatives. According to the power method, for m→∞ we have that

ω(m) = Pme

converges to the principal eigenvector ω for P (Mises, 1929).

Let us consider the matrix analyzed in section 3.1 which represents perfectly

transitive preference probabilities

T =


0 1 1

0 0 1

0 0 0


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As we have seen, if a matrix is completely transitive, the maximum eigenvalue

λ1 is equal to 0. Moreover, for k ≥ 2, the matrix representing completely

transitive preferences, having tij = 1 if and only if i < j, is reducible and so

it has all the k eigenvalues equal to 0 (De Caen et al., 1992). In this case,

then, the eigenvector method does not provide a meaningful ranking and it

may be more convenient to consider the ranking obtainable from the score

vector.

In the opposite case of completely intransitive preferences represented by the

following matrix

T1 =


0 1 0

0 0 1

1 0 0


the eigen-decomposition returns the maximum eigenvalue λ1 = 1 with asso-

ciated eigenvector ω = (0.577, 0.577, 0.577). Also this method returns tied

rankings. For any value of k, in case of regular tournament matrix, the max-

imum eigenvalue λ1 equals to (k− 1)/2 and ωi = 1/
√
k for i = 1, . . . , k. The

eigenvector method may be applied also if pij equals either 0 or 1.

Let us see in detail what happens applying the eigenvector method to the

matrix P considered in Section 3.1

P =



0 0.9 0.9 0.6 0.4

0.1 0 0.8 0.8 0.8

0.1 0.2 0 0.7 0.7

0.4 0.2 0.3 0 0.6

0.6 0.2 0.3 0.4 0


In Table 3.2 we report the score vectors of the power of P , each divided by

its Frobenius norm, so as to obtain the same normalization of the eigenvec-

tor. For completeness, we report, in the last column, also the values of the

principal eigenvector ω of P .
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Table 3.2: Normalized score vectors after each iteration of the power method

applied on P

Alternatives ω(1) ω(2) ω(3) ω(4) ω(5) ω(6) ω

A1 0.604 0.620 0.589 0.602 0.601 0.599 0.600

A2 0.539 0.474 0.496 0.497 0.493 0.495 0.494

A3 0.367 0.338 0.362 0.357 0.355 0.3571 0.357

A4 0.324 0.356 0.362 0.354 0.357 0.3568 0.356

A5 0.324 0.386 0.381 0.372 0.377 0.376 0.376

The last two alternatives have the same row sum but they differ from the

second iteration on. The rankings according to the score vector and the

eigenvector methods agree only for the first two positions. As expected, the

eigenvector method weights more A5 than A4, because, despite having the

same row sum, the last alternative has probability 0.6 to be preferred to A1,

the high ranked alternative.

3.3 Linear Models

Another method, well known in the literature, for ranking and scoring the

alternatives is the linear model. The linear paired comparison model (David,

1988) assumes that any of the k alternatives has true rating Vi which can be

used to determine their ordering. The scores of the k alternatives can be rep-

resented on a continuum. Given the ratings of two competing alternatives,

linear models yield the exact probability that one alternative is preferred to

the other. Such probability could, in theory, be verified if the alternatives

were compared a large number of times.

Every respondent evaluates each alternative more than once and her/his

judgment can vary in each replication. The judgment process may be rep-

resented by a continuous variable Yi defined on the real line, with mean Vi,

whose distribution is called “sensation distribution”.

In a pairwise comparison between two alternatives Ai and Aj, Ai is preferred
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to Aj if and only if Yi ≥ Yj. Let us define Zi and Zi − Zj as follows

• Zi = Yi − Vi is a continuous variable with 0 mean and the same distri-

bution as Yi;

• Zi−Zj is a symmetric variable with 0 mean, whose distribution, called

defining distribution, depends on the sensation distribution of Yi (Latta,

1979).

Under linear models hypotheses it is possible to express the preference prob-

ability πij as

πij = Pr[Yi − Yj > 0]

= Pr[Zi − Zj > −(Vi − Vj)]

= FZi−Zj
(Vi − Vj).

Starting from an estimated generalized tournament matrix, obtained through

a paired comparison experiment in which n respondents compare all the

possible pairs, the aim is to estimate the true ratings Vi’s (Noether, 1960).

Denoting δij = Vi−Vj we have that πij = F (δij), where F is the distribution

function of a symmetric continuous real variable. Denoting with dij the

estimate of δij, it is possible to estimate Vi’s, solving the following linear

system

dij = V̂i − V̂j = F−1Zi−Zj
(pij)

where pij, the estimate of πij, is the proportion of comparisons in which the

respondent prefers Ai to Aj.

This linear system has k unknown parameters, the k ratings, and k(k − 1)

equations. So, for k > 3, the system results overdetermined and we need

to impose some contraints to solve it. Since the origin of the linear scale is

arbitrary, David (1988) suggested to impose

k∑
i=1

V̂i = 0.
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To obtain each V̂i it is sufficient to sum dij over all j 6= i∑
j 6=i

dij = (k − 1)V̂i −
∑
j 6=i

V̂j

= (k − 1)V̂i + V̂i −
k∑
j=1

V̂j

= (kV̂i)

and from this equation it follows that

V̂i =

∑
j 6=i dij

k
.

V̂i’s result to be the unweighted least squares estimates of the Vi’s, since they

minimize the following quantity

S =
k∑
i=1

∑
j 6=i

(dij − (Vi − Vj))2.

Indeed, deriving S with respect Vi we have

δS

δVi
= −2

∑
j 6=i

(dij − Vi + Vj) + 2
∑
j 6=i

(dji − Vj + Vi)

= −4
∑
j 6=i

(dij − δij)

= −4(
∑
j 6=i

dij − kVi)

that, if the derivative is set to 0, gives V̂i =

∑
j 6=i dij

k
.

3.3.1 Thurstone & Mosteller Model

In the first linear model for paired comparisons by Thurstone (1927c), deci-

sion behaviors are accounted for in probabilistic terms. Consequently, also

apparent inconsistencies are explained in the same terms. According to Thur-

stone’s model, every respondent, when compares two alternatives, chooses the
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one with the greater rating.

The variables Yi’s for i = 1, . . . , k, which model judgments on the i-th alter-

native, are normally distributed.

Thurstone stated different versions of its approach listed below

• CASE I. Only one respondent compares the alternatives more than

once. Yi’s for i = 1, . . . , k are equicorrelated normal variables with

mean Vi, variance σ2
i and common correlation coefficient ρ;

• CASE II. The assumption in case I of more than one comparison by the

same respondent is generalized such that more respondents compare the

alternatives indipendently. Yi’s (i = 1, . . . , k) are ever equicorrelated

normal variables with mean Vi, variance σ2
i and common correlation

coefficient ρ;

• CASE III. Thurstone simplified its model assuming that the common

correlation coefficient ρ equals 0. So, the Yi’s are independent variables

with mean Vi and variance σ2
i ;

• CASE IV. The model is further simplified assuming that the Yi’s vari-

ances are related through the following σi = σj + d for i, j = 1, . . . , k

and i 6= j. Furthermore, d is assumed small;

• CASE V. This corresponds to the most famous version of the Thur-

stone’s model, subsequently reconsidered by Mosteller (Mosteller, 1951),

in which the Yi’s are assumed to be independent normal variables with

mean Vi and common variance σ2. Under this assumption, the overlap

of the distributions of the two alternatives provides a measure for the

distance between the mean of the alternatives.

In the following, we refer to the Thurstone & Mosteller model meaning the

Thurstone’s model CASE V. So in this case, Zi−Zj has a normal distribution

with 0 mean and variance 2σ2 and

πij = Φ

(
Vi − Vj√

2σ

)
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where Φ is the distribution function of a standard normal variable. From the

previous relation we can estimates the ratings using the relations

dij√
2σ

=
V̂i − V̂j√

2σ
= Φ−1(pij)

for i, j = 1, . . . , k and i 6= j.

If pij equals 0 or 1 it is not possible to estimate dij since the inverse of the

standard normal distribution in these points equals, respectively, −∞ and

+∞.

3.3.2 Bradley & Terry Model

Another method for paired comparisons was proposed by Bradley & Terry

(1952) whose main assumption is that

πij =
πi

πi + πj

where πi, for i = 1, . . . , k, is a reparameterization of the true rating Vi of

alternative Ai, such that
∑k

i=1 πi = 1. Imposing that Vi = log(πi), the

Bradley & Terry model can be expressed as a linear model.

Even in this case we assume that n respondents compare the k alternatives

in a complete paired comparison experiment. We replace the normal dis-

tribution, assumed in Thurstone & Mosteller model, with the logistic one.

Following the steps specified for the previous method, assuming i, j = 1, . . . , k

and i 6= j, we have to specify the following assumptions:

• The judgment processes can be represented by continuous independent

random variables Yi’s with Gumbel distribution and parameters (Vi, 1)

which correspond to a mean equalling Vi + γ where γ is the Eulero-

Mascherano constant, and a variance equal to π2/6;

• Zi = Yi − Vi has a Gumbel standard distribution with mean γ and

variance π2/6;
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• Zi − Zj results to be a standard logistic variable with mean 0 and

variance π2/3.

So, we have that

πij = FZi−Zj
(Vi − Vj) =

1

2
+

1

2
tanh

(
Vi − Vj

2

)
and inverting the relation

Vi − Vj = 2 arctanh(2πij − 1).

Using the formula atanh(x) = 1
2

ln
(
x+1
x−1

)
we obtain

δij = Vi − Vj = ln

(
πij
πji

)
.

V̂i’s can be obtained through the following algorithm

V̂i =
∑
j 6=i

ln

(
pij
pji

)
= ln

∏
j 6=i

(
pij
pji

)
.

The V̂i’s estimated parameters are such that
∑k

i=1 V̂i = 0 by construction.

Under the Bradley & Terry reparameterization Vi = log(πi), we get that∑k
i=1 log πi = 0 and

∏k
i=1 πi = 1, and not the Bradley & Terry restriction∑k

i=1 πi = 1. For this reason, it is necessary to make a scale reparametrization

π′i =
πi∑
πi
.

Also in this case, if pij equals either 0 or 1, it is not possible to estimate Vi,

since log
(
0
1

)
=∞ and log

(
1
0

)
is undefined.

Likelihood estimation of the Bradley-Terry Model

To estimate the ratings πi of the k alternatives, under the Bradley & Terry

assumptions πi ≥ 0 and
∑
πi = 1, it is possible to use a maximum likelihood

approach.

Because of the indipendence of all comparisons, the probability of observing
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αij preferences for Ai in comparisons with Aj is(
n

αij

)(
πi

πi + πj

)αij
(

πj
πi + πj

)n−αij

.

The likelihood function L is the product of such probabilities for any
(
k
2

)
independent pairings and, after some computations, it may be expressed in

terms of the row sums ai as

L = C

∏k
i=1 π

ai
i∏

i<j (πi + πj)n

where C =
∏

i<j

(
n
αij

)
and ai =

∑
j αij. Since C is independent of πi’s, we

have that ai’s are sufficient statistics for the πi’s. For any generalized tour-

nament matrix with πij > 0, with i 6= j all the scores are sufficient statistics

under the Bradley & Terry model.

Differentiating logL with respect to πi we obtain the maximum likelihood

estimates pi. They are functions of the ai and do not involve the individual

αij in contrast with what happens fot the estimates of the Vi’s.

We can write the likelihood equations in the form

pi =
ai

n
∑

i<j (pi + pj)−1

and we find the solutions using an iterative process. Starting with a set of

trial solutions (p
(0)
1 , p

(0)
2 , . . . , p

(0)
k ) we can obtain p

(1)
i , (i = 1, 2, . . . , k) from

p
(1)
i =

ai
n

[
1

p
(0)
i + p

(1)
1

+ · · ·+ 1

p
(0)
i + p

(1)
i−1

+
1

p
(0)
i + p

(0)
i+1

+ · · ·+ 1

p
(0)
i + p

(0)
k

]

and continuing the iterative process until the deviation between p
(r+1)
i and

pri is sufficiently thin. This procedure has a slow convergence.

The pi’s obtained with the maximum likelihood estimates do not add to one

and so they need to be reparameterized. Zermelo (1929) pointed out that the
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ranking achieved by the maximum likelihood estimates is always the same

as that obtained with the score vector method.

3.3.3 Cauchy Model

The Cauchy model assumes that

• Yi’s for i = 1, . . . , k are independent continuous variables with Cauchy

distribution and location and scale parameters, respectively, Vi and σ2;

• Yi − Vi for i = 1, . . . , k is an independent continuous variable with

Cauchy distribution and location and scale parameters, respectively,

equal to 0 and σ2;

• Zi−Zj for i = 1, . . . , k and i 6= j is an independent continuous variable

with Cauchy distribution and location and scale parameters 0 and 2σ2

respectively. Changing scale, we can say that Zi − Zj has a Student’s

t distribution with 1 degree of freedom.

By these hypotheses we have

πij = FZi−Zj
(Vi − Vj) =

1

2
+

1

π
arctan(Vi − Vj)

from which we obtain

Vi − Vj = tan [π(πij − 1/2)]

where π is the pi greek constant.

It is possible to obtain V̂i, for i = 1, . . . , k, substituting the observed prefer-

ence proportions pij to the theoretical probabilities πij and solving the linear

system under the usual restriction that
∑
V̂i = 0.

It has to be noted that the event pij = 0 leads to dij = tan
(
−π

2

)
= −∞,

while pij = 1 leads to dij = tan
(
π
2

)
=∞.
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3.3.4 Uniform Model

The uniform model assumes that Zi−Zj for i = 1, . . . , k and i 6= j are inde-

pendent variables with uniform distribution on the interval
(
−1

2
, 1
2

)
. Then,

we have that

πij = F (Vi − Vj) = Vi − Vj +
1

2

from which we can easily obtain

Vi − Vj = πij −
1

2
.

Finally, the estimates of Vi are given by

V̂i =
1

k

∑
j 6=i

(pij −
1

2
)

=

[
ai −

1

2
n(k − 1)

]
where ai is the row sum associated to the i-th alternative. David (1988)

points out that, from the point of view of estimating the ratings Vi, using

this distribution to model πij is equivalent to using the row sums of P .

3.3.5 Exponential Model

The exponential model assumes that Zi−Zj for i, j = 1, . . . , k and i 6= j are

indipendent variables with standard Laplace distribution, so that

πij = FZi−Zj
(Vi − Vj) =

1

2
[1 + sign(Vi − Vj)(1− exp(−|Vi − Vj|))]

from which, supposing without loss of generality that Vi ≥ Vj, we have

Vi − Vj = ln (−2(πij − 1))−1 .

It is possible to obtain the estimate of the Vi’s in the usual way solving the

linear system

dij = V̂i − V̂j =
1

2
[1 + sign(Vi − Vj)(1− exp(−|Vi − Vj|))]
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under the constraint that
∑

i V̂i = 0.

The sensation and defining distributions corresponding to the linear models

just described are summarized in the synoptic Table 3.3.

Table 3.3: Sensation and defining distributions of the examined linear models

Model Sensation Distribution Defining Distribution

Thurstone&Mosteller Normal Normal

Bradley& Terry Gumbel Logistic

Cauchy Cauchy Cauchy

Uniform Uniform Triangular

Exponential Exponential Laplace



Chapter 4

Ranking the alternatives: A

simulation study

In the following, we will analyze the methods presented in Chapter 3 for

ranking or scoring the alternatives, starting from a generalized tournament

matrix P = [pij], obtained from a paired comparison experiment in which

n respondents compare the k alternatives in pairs. We assume that every

respondent performs all the k(k − 1)/2 possible comparisons.

The analysis of matrix P allows to estimate the relative position of the al-

ternatives on a continuum, as well as their ranks. Scoring methods attribute

a numerical value to each alternative, which quantifies their relative impor-

tance. Ranking methods intend to capture the ordinal aspects by assigning

a rank to the alternatives, ignoring quantitative information on how much

an alternative is important relatively to the others.

To perform the comparison between the methods, we will rely on properties

of ranking. For this purpose, we have performed some simulation studies

using various data generation systems. In particular, we used two different

approaches: simulating directly the matrices (Section 4.1) and starting from

the random variables that model the preference relations under the linear

model hypotheses (Section 4.2).
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4.1 Simulating Typical Matrices

4.1.1 Random Matrices

First of all, we generated randomly some generalized tournament matri-

ces. For every k × k matrix P we obtained k(k − 1)/2 observations x =

(x1, . . . , xk(k−1)/2) from a continuous uniform variable X ∼ U(0, 1). These

values compose the upper triangular block of P , whose entries pij are such

that i < j and j = 2, . . . , k. The lower triangular block is computed using

the relation pji = 1−pij. So, each matrix is obtained according to the scheme

represented in P .

P =



0 x1 x2 x3 ... ... xk−1

1− x1 0 xk xk+1 ... ... ...

1− x2 1− xk 0 ... ... ... ...

1− x3 1− xk+1 ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... 0 xk(k−1)/2

1− xk−1 ... ... ... ... 1− xk(k−1)/2 0


We computed the rankings, respectively, with

• the score vector method (SV);

• the eigenvector method (EV);

• the linear models: Thurstone & Mosteller (T&M), Bradley & Terry

(B&T), Cauchy (CAU), Uniform (UNI), Exponential (EXP)

and we studied the association between the rankings obtained with the dif-

ferent methods by means of the Spearman’s Rank-Order Correlation ρ.

Defining ymi the rank of the i-th alternative according to the method m, for

every couple of methods m and n we have

ρmn =

∑
i(ymi − ȳm)(yni − ȳn)√∑
i(ymi − ȳm)

∑
i(yni − ȳn)

with i = 1, . . . , k.
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The Rank-Order Correlation coefficient ρ can take values between −1 and

1; ρ equals 1 if the rankings are in perfect agreement, ρ = −1 if they are in

perfect disagreement and ρ = 0 signifies that there is no relationship (Spear-

man, 1904).

This step is performed just for exploratory purposes, so to understand which

methods give similar results. However, the method least correlated with the

others could be the more reliable method.

In the following we present the mean values of Spearman’s correlation coeffi-

cients between the rankings obtained with the different methods over n = 500

replications for some values of k, in particular k = (8, 16, 24).

Table 4.1: Mean Spearman’s correlation coefficient, ρ̄, for n = 500 replica-

tions and k = 8 (s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

SV – 0.954 0.945 0.917 0.667 1.000 0.925

– (0.047) (0.066) (0.088) (0.241) (0.000) (0.082)

EV – – 0.920 0.893 0.647 0.954 0.902

– – (0.080) (0.098) (0.252) (0.047) (0.092)

T&M – – – 0.983 0.782 0.945 0.955

– – – (0.028) (0.176) (0.066) (0.055)

B&T – – – – 0.823 0.917 0.951

– – – – (0.154) (0.088) (0.055)

CAU – – – – – 0.667 0.773

– – – – – (0.241) (0.170)

UNI – – – – – – 0.925

– – – – – – (0.082)

As expected (See Table 4.1), the ranking obtained with the score-vector

method corresponds to that obtained with the uniform linear model. The

method least correlated with the others is the Cauchy linear model. The
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Table 4.2: Mean Spearman’s correlation coefficient, ρ̄, for n = 500 replica-

tions and k = 16 (s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

SV – 0.977 0.960 0.933 0.590 1.000 0.945

– (0.016) (0.029) (0.049) (0.193) (0.000) (0.038)

EV – – 0.947 0.921 0.583 0.977 0.932

– – (0.032) (0.051) (0.190) (0.016) (0.041)

T&M – – – 0.988 0.717 0.960 0.969

– – – (0.012) (0.151) (0.029) (0.022)

B&T – – – – 0.766 0.933 0.965

– – – – (0.129) (0.049) (0.024)

CAU – – – – – 0.590 0.719

– – – – – (0.193) (0.142)

UNI – – – – – – 0.945

– – – – – – (0.038)

highest mean value of the Spearman’s correlation coefficients, ρ̄, is between

the Thurstone & Mosteller and the Bradley & Terry methods (ρ̄ = 0.983).

Also the eigenvector and the score vector methods are highly correlated

(ρ̄ = 0.954).

We highlight that, while increasing k, results substantially do not change

(See Tab. 4.2). The correlations between the Cauchy and the other rank-

ings further decrease, while all the correlations among the rankings obtained

with the other methods increase. The highest averages of Spearman’s corre-

lation coefficients are between the Thurstone & Mosteller and the Bradley &

Terry methods (ρ̄ = 0.988) and between the eigenvector and the score vector

methods (ρ̄ = 0.977).
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Table 4.3: Mean Spearman’s correlation coefficient, ρ̄, for n = 500 replica-

tions and k = 24 (s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

SV – 0.986 0.963 0.939 0.524 1.000 0.950

– (0.009) (0.020) (0.033) (0.170) (0.000) (0.029)

EM – – 0.956 0.932 0.520 0.986 0.943

– – (0.023) (0.035) (0.174) (0.009) (0.031)

T&M – – – 0.991 0.660 0.963 0.976

– – – (0.007) (0.138) (0.020) (0.013)

B&T – – – – 0.711 0.939 0.973

– – – – (0.123) (0.033) (0.014)

CAU – – – – – 0.524 0.668

– – – – – (0.170) (0.131)

UNI – – – – – – 0.950

– – – – – – (0.029)

Table 4.3 shows the mean values of Spearman’s correlation coefficients be-

tween the rankings obtained with the different methods over n = 500 repli-

cations for k = 24. The results confirm the findings obtained with the other

values of k considered.

4.1.2 First Raw Dominant Matrices

Consider the case in which the set of k alternatives can be partitioned in two

classes I and J such that each alternative in I is preferred to every alterna-

tive in J by more than 50% of the respondents (pij > 0.5 ∀i ∈ I, j ∈ J).

In order for the resulting ranking to be consistent, each member of I should

also be preferred to any member of J .

In the particular case in which only the first alternative belongs to the class

I while the others belong to J , we should expect that a good ranking method
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would place the earliest alternative at the first place, since it is always pre-

ferred to the others. In many practical contexts the first objective in eliciting

preferences from a sample of respondents is to identify the best alternative.

For this reason the examination of this particular situation is crucial.

To analyze the behavior of the proposed ranking methods, we simulated some

generalized tournament matrices imposing that the elements of the first row

be greater than 0.5. We imposed the first alternative as the always preferred,

just for representation convenience. We could bring any matrix with an alter-

native dominant to this just permuting the rows and columns of the matrix

itself.

So, for each matrix, we obtained k − 1 observations u = (u1, . . . , uk−1) from

a continuous uniform variable U ∼ U(0.5, 1) that constitute the first domi-

nant row. The other elements x = (x1, . . . , x(k−1)(k−2)/2) of the upper trian-

gular block of the matrix are obtained from a continuous uniform variable

X ∼ U(0, 1). The lower triangular matrix can be filled using the relation

pji = 1− pij. P shows the fill pattern of each simulated matrix

P =



0 u1 u2 ... ... ... uk−1

1− u1 0 x1 x2 ... ... ...

1− u2 1− x1 0 ... ... ... ...

... 1− x2 ... 0 ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... 0 xt

1− uk−1 ... ... ... ... 1− xt 0


whith t equals (k − 1)(k − 2)/2.
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As an example, let us consider the following matrix P1

P1 =



0.00 0.75 0.85 0.82 0.86 0.66 0.83 0.93

0.25 0.00 0.18 0.99 0.32 0.38 0.58 0.58

0.15 0.82 0.01 0.72 0.55 0.16 0.43 0.05

0.18 0.00 0.28 0.00 0.26 0.46 0.68 0.88

0.14 0.68 0.45 0.74 0.00 0.17 0.66 1.00

0.34 0.62 0.84 0.54 0.83 0.00 0.03 0.04

0.17 0.42 0.57 0.32 0.34 0.97 0.00 0.62

0.07 0.42 0.95 0.12 0.00 0.96 0.38 0.00


The first alternative results dominant since p1j ≥ 0.5 ∀j = 2, . . . , 8, while

the other rows are obtained completely at random. Rankings achieved from

matrix P1 are presented in Table 4.4.

Table 4.4: Ranking obtained with the different methods applied to matrix

P1

Alternatives SV EV T&M B&T CAU UNI EXP

A1 1 1 1 1 3 1 1

A2 4 5 3 3 2 4 3

A3 7 6 6 6 5 7 6

A4 8 8 8 8 8 8 8

A5 2 2 2 2 1 2 2

A6 5 3 5 5 6 5 5

A7 3 4 4 4 4 3 4

A8 6 7 7 7 7 6 7

In this specific example all the methods but the Cauchy one classify alterna-

tive A1 as first.

We simulated 500 matrices for different values of k = (8, 16, 24) and we

computed the rankings obtained with the different methods. Then, for each
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Table 4.5: Proportion of first alternative well classified for each method for

n = 500 replications and k = 8, 16, 24

SV EV T&M B&T CAU UNI EXP

k=8 0.962 0.978 0.914 0.882 0.444 0.962 0.968

k=16 0.984 0.988 0.968 0.954 0.208 0.984 0.994

k=24 1 1 0.994 0.986 0.170 1 1

method, we computed the proportion of trials in which alternative A1 ranked

first (Table 4.5).

The Cauchy method has again the worst performance with very low pro-

portions of always preferred alternative classified as first and the eigenvector

method is the best performer. Increasing k, the matrix dimensionality, all

the methods improve their performance except the Cauchy one that aggra-

vates its results. Among the linear models, the exponential one shows the

best performance. For k = 24 some methods recognize, in all the performed

replications, the always preferred alternative at the first position. In partic-

ular, we are referring to the score vector and the eigenvector methods and

the uniform and exponential linear models.

In order to better detecting the ability of the considered methods in recogniz-

ing the dominant alternative, we allowed the probability of preferring the first

alternative to vary. We simulated some matrices imposing that the elements

of the first row are greater than a treshold t with t=(0.5,0.6,0.7,0.8,0.9). So,

for each matrix we obtained k− 1 observations from the continuous uniform

variable U2 ∼ U(t, 1) that constituted the first dominant row, while the other

elements of the upper triangular block of the matrix were obtained at random

as before. The lower triangular matrix is filled using the relation pij = 1−pji.
We simulated n = 500 matrices for each value of t. In Figure 4.1 we can ob-

serve the resulting proportion of well classified first alternative, on the y-axis,

for different values of the treshold t (on the x-axis). Three values of k are

considered (8, 16, 24).
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Figure 4.1: Proportions of first alternative well classified for each method for

n = 500 replications and different values of the treshold t
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Increasing the treshold probability t all the methods improve their perfor-

mance. For example, for k = 8 and t ≥ 0.7 all the methods but the Cauchy

one classify the first alternative A1 as the best alternative in all the repli-

cations. Cauchy method deserves a separate discussion, since it is the only

method whose performance deteriorates as k, the matrix dimensionality, in-

creases and that for high values of t does not achieve satisfactory results.

Among the others, eigenvector method seems to have the best performance

and the Bradley & Terry approach the worst.
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4.1.3 Strictly Ordered Matrices

Now we consider the case in which alternative A1 is preferred to all the oth-

ers, alternative A2 is preferred to all the alternatives but A1, alternative A3 is

preferred to all the alternatives but A1 and A2, and so on. In this situation,

the consistent ranking should be from first to last A1, A2, . . . , Ak. Indeed, for

a ranking to be consistent, if pij is greater than 0.5, alternative Ai should be

ranked higher than Aj.

For each matrix we obtain k(k − 1)/2 observations u = (u1, . . . , uk(k−1)/2)

from a continuous uniform variable U ∼ U(0.5, 1). These elements will con-

stitute the upper triangular block of the matrix while the corresponding lower

triangular matrix is filled using the relation pji = 1− pij. P shows how such

a matrix is constructed.

P =



0 u1 u2 ... ... ... uk−1

1− u1 0 uk uk+1 ... ... ...

1− u2 1− uk 0 ... ... ... ...

... 1− uk+1 ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... 0 uk(k−1)/2

1− uk−1 ... ... ... ... 1− uk(k−1)/2 0


Just as an example, consider the following matrix P1

P1 =



0.000 0.508 0.645 0.900 0.898 0.780 0.656 0.842

0.492 0.000 0.937 0.656 0.867 0.616 0.742 0.746

0.355 0.063 0.000 0.736 0.670 0.775 0.696 0.723

0.100 0.344 0.264 0.000 0.835 0.504 0.831 0.640

0.102 0.133 0.330 0.165 0.000 0.910 0.870 0.907

0.220 0.384 0.225 0.496 0.090 0.000 0.973 0.996

0.344 0.258 0.304 0.169 0.130 0.027 0.000 0.894

0.158 0.254 0.277 0.360 0.093 0.004 0.106 0.000


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The upper triangular matrix elements are all greater than 0.5. Table 4.6

shows the corresponding rankings.

Table 4.6: Ranking obtained with the different methods applied to matrix

P1

SV EV T&M B&T CAU UNI EXP

A1 1 1 1 1 2 1 1

A2 2 2 2 2 3 2 2

A3 3 3 4 4 6 3 3

A4 4 4 6 6 5 4 5

A5 5 6 5 5 4 5 6

A6 6 5 3 3 1 6 4

A7 7 7 7 7 7 7 7

A8 8 8 8 8 8 8 8

As we can see, in this example, only the Cauchy ranking method does not put

A1 in the first position. More in general only the score vector and the uniform

linear model recognize the consistent ranking A1, A2, . . . , Ak. We compute

the Spearman correlation coefficients between the rankings obtained with the

different methods and the consistent ranking. Spearman’s ρ treats all ranks

equally, to give more importance to top ranks than lower ones, we computed

also a weighted version of the Spearman’s ρ correlation coefficient, named rw

(Pinto da Costa & Soares, 2005) given by

rw = 1− 6
∑

i(ymi − yni)(2k − ymi − yni + 2)

k4 + k3 − k2 − k

where ymi and yni are the i-th ranks obtained respectively with method m

and n. This correlation coefficient weights ranks in proportion to how high

they are, assuming that the higher rank is 1, and that it corresponds to

the best element in the ranking. The weighted correlation coefficient rw

can take values in the range [−1, 1]; rw equals 1 if the rankings are same,



50 Ranking the alternatives: A simulation study

rw = −1 if they are in perfect disagreement and rw = 0 indicates that there

is no relationship. Table 4.7 shows the weighted and unweighted correlation

coefficients referred to this example.

Table 4.7: Spearman’s ρ and weighted correlation coefficient rw between

ranking methods and “true” ranking obtained for matrix P1

SV EV T&M B&T CAU UNI EXP

ρ 1 0.976 0.833 0.833 0.548 1 0.929

rw 1 0.981 0.836 0.836 0.468 1 0.937

The score vector method and the uniform linear model are perfectly corre-

lated. Among the others, the method most correlated with the consistent

ranking is the eigenvector (ρ = 0.976, rw = 0.981) and the least correlated

method is once again the Cauchy model (ρ = 0.548, rw = 0.468).

To understand better the behavior of the ranking methods in the hypothized

situation, we performed 500 simulations for different values of k, in particular

k = 8, 16, 24. For each matrix, we computed the rankings with the different

methods and we measured the correlation between these rankings and the

“consistent” ranking (Tables 4.8, 4.9, 4.10).

Table 4.8: Mean Spearman’s ρ̄ and mean weighted correlation coefficient, r̄w,

between ranking methods and true ranking over 500 replications and k = 8

(s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

ρ̄ 0.954 0.942 0.926 0.914 0.738 0.954 0.957

(0.037) (0.046) (0.054) (0.061) (0.152) (0.037) (0.037)

r̄w 0.954 0.952 0.926 0.914 0.740 0.954 0.958

(0.040) (0.038) (0.060) (0.067) (0.158) (0.040) (0.040)

All the methods but Cauchy provide good results, with mean correlation and

mean weighted correlation coefficients larger than 0.9. Also in this case, then,
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Cauchy model has the worst performance. Among the more consistent meth-

ods, the exponential linear model is the most correlated with the consistent

ranking. The weighted correlation coefficient does not change substantially

the results.

Table 4.9: Mean Spearman’s ρ̄ and mean weighted correlation coefficient, r̄w,

between ranking methods and true ranking over 500 replications and k = 16

(s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

ρ̄ 0.974 0.966 0.957 0.947 0.733 0.974 0.974

(0.012) (0.016) (0.020) (0.023) (0.110) (0.012) (0.014)

r̄w 0.974 0.974 0.957 0.947 0.734 0.974 0.974

(0.013) (0.013) (0.021) (0.025) (0.121) (0.013) (0.015)

Increasing k, all the methods improve their results, except the Cauchy linear

model which aggravate its results. The methods most correlated with the

consistent ranking are the score vector and the eigenvector methods and the

uniform and exponential linear models.

Table 4.10: Mean Spearman’s ρ̄ and mean weighted correlation coefficient r̄w,

between ranking methods and true ranking over 500 replications and k = 24

(s.e. in parenthesis)

SV EV T&M B&T CAU UNI EXP

ρ̄ 0.982 0.976 0.970 0.964 0.741 0.982 0.982

(0.007) (0.009) (0.011) (0.013) (0.087) (0.007) (0.007)

r̄w 0.982 0.982 0.970 0.964 0.741 0.982 0.982

(0.008) (0.007) (0.012) (0.015) (0.093) (0.008) (0.008)

Considering all the k values, only for the eigenvector method, the weighted
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correlation coefficient registers a slight improvement compared to the Spear-

man’s ρ.

4.2 Simulating the Yi’s

Linear models assume that every alternative Ai (i = 1, . . . , k) has a true

merit Vi which determines its position in their ranking. In a complete bal-

anced paired comparison experiment n respondents perform their compar-

isons indipendently. So, for each alternative, the judgment process can be

represented by a continuous variable Yi with mean Vi. We would like to check

whether the ranking methods are affected by the distribution of the Yi’s, for

i = 1, . . . , k or by the closeness of the alternatives.

For this purposes, we simulated Vi’s from a uniform distribution Ut ∼ U(0, t)

where t = (4, 3, 2, 1), so that the larger t is, the more the alternatives should

be spaced. Then we obtained Yi’s from different distributions (Normal, Gum-

bel, Cauchy, Uniform and Exponential) and assuming as centrality parame-

ters the Vi’s. We describe more in detail the used procedure in the following:

• We simulated k = 8 values from a uniform variable U ∼ U(0, t). The

values, sorted in decreasing order, constitute the true ratings Vi’s of

the k alternatives. Thus V1 is the highest rating and the associated

alternative A1 should be ranked first;

• For each alternative Ai, i = 1, . . . , k, we obtained n = 100 replications

from a continuous variable Yi with normal distribution, mean Vi and

unit variance;

• Each matrix element pij is obtained as aij/n where aij is the number

of times Yi is greater than Yj in the simulated sample;

• We get m = 500 matrices following the above procedure. For each of

them we computed the rankings based on the selected methods;
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• For each method, we computed ρ̄ and r̄w, the mean values of Spear-

man’s and the mean weighted correlation coefficients, between the cor-

responding ranking and the “true ranking”, by construction, A1, . . . , Ak;

• This procedure is reiterated changing the distribution of Yi at point

two of the list.

4.2.1 Normal Distribution

Table 4.11 shows the mean values of Spearman’s correlation, ρ̄, and weighted

correlation coefficients, r̄w, computed over 500 replications using the proce-

dure already explained. Vi’s values for i = 1, . . . , 8 are obtained from a

uniform variable Ut ∼ U(0, t). Yi’s are normally distributed with mean Vi

and unit variance.

Table 4.11: Mean Spearman’s, ρ̄, and mean weighted correlation coefficient,

r̄w, for Yi ∼ N (Vi, 1) (s.e. in parenthesis)

t SV EV T&M B&T CAU UNI EXP

4

ρ̄ 0.978 0.976 0.974 0.972 0.957 0.978 0.973

(0.030) (0.031) (0.031) (0.032) (0.048) (0.030) (0.033)

r̄w 0.978 0.977 0.974 0.973 0.958 0.978 0.973

(0.030) (0.031) (0.031) (0.033) (0.054) (0.030) (0.034)

3

ρ̄ 0.968 0.967 0.967 0.966 0.959 0.968 0.964

(0.037) (0.038) (0.038) (0.039) (0.049) (0.037) (0.039)

r̄w 0.968 0.967 0.966 0.966 0.959 0.968 0.964

(0.041) (0.042) (0.043) (0.044) (0.055) (0.041) (0.043)

2

ρ̄ 0.947 0.946 0.946 0.946 0.944 0.947 0.944

(0.058) (0.058) (0.058) (0.058) (0.058) (0.057) (0.060)

r̄w 0.948 0.947 0.947 0.947 0.945 0.948 0.946

(0.060) (0.061) (0.061) (0.061) (0.062) (0.060) (0.061)

1

ρ̄ 0.882 0.881 0.880 0.880 0.880 0.882 0.871

(0.108) (0.108) (0.108) (0.108) (0.109) (0.108) (0.116)

r̄w 0.886 0.885 0.884 0.884 0.883 0.886 0.875

(0.106) (0.107) (0.107) (0.107) (0.109) (0.106) (0.115)

The closer the alternatives, decreasing t, the larger the difficulties of meth-



54 Ranking the alternatives: A simulation study

ods in identifying the true ranking. The weighted version of the correlation

coefficient gives substantially the same results. Anyhow, all methods provide

rankings highly correlated with the true ranking and results which are very

similar.

4.2.2 Gumbel Distribution

Let us assume Yi’s are continuous variables with a Gumbel distribution, with

parameters (Vi, 1) which correspond to a mean equalling Vi+γ, where γ is the

Eulero-Mascherano constant, and a variance equal to π2/6. The mean values

of Spearman’s correlation coefficients, ρ̄, and the mean values of weighted

correlation coefficients, r̄w, between the rankings obtained with the examined

methods and the true ranking are presented in Table 4.12. As previously, we

consider different values of t = 4, 3, 2, 1 and k = 8.

Table 4.12: Mean Spearman’s ρ̄ and mean weighted correlation coefficient r̄w

for Yi ∼ Gum(Vi, 1) (s.e. in parenthesis)

t SV EV T&M B&T CAU UNI EXP

4

ρ̄ 0.974 0.970 0.971 0.970 0.959 0.974 0.972

(0.031) (0.036) (0.035) (0.036) (0.046) (0.031) (0.034)

r̄w 0.975 0.972 0.973 0.972 0.963 0.975 0.973

(0.033) (0.036) (0.036) (0.036) (0.044) (0.033) (0.036)

3

ρ̄ 0.964 0.962 0.963 0.962 0.957 0.964 0.960

(0.042) (0.043) (0.042) (0.043) (0.045) (0.042) (0.043)

r̄w 0.965 0.963 0.964 0.963 0.959 0.965 0.960

(0.042) (0.043) (0.042) (0.043) (0.047) (0.042) (0.044)

2

ρ̄ 0.943 0.941 0.942 0.942 0.941 0.943 0.941

(0.061) (0.062) (0.062) (0.061) (0.063) (0.061) (0.058)

r̄w 0.944 0.943 0.943 0.943 0.942 0.944 0.941

(0.067) (0.067) (0.067) (0.067) (0.068) (0.067) (0.064)

1

ρ̄ 0.867 0.866 0.867 0.867 0.867 0.867 0.861

(0.112) (0.112) (0.112) (0.112) (0.111) (0.112) (0.110)

r̄w 0.869 0.867 0.868 0.868 0.868 0.869 0.861

(0.114) (0.114) (0.114) (0.114) (0.113) (0.114) (0.115)



4.2 Simulating the Yi’s 55

As the closeness among the alternatives increases, all the methods worsen

their performance. We do not observe substantial differences in the results

from the normal assumption case (Table 4.11), but a slight deterioration

appears for all methods.

4.2.3 Cauchy Distribution

Table 4.13 shows the mean values of Spearman’s correlation coefficients, ρ̄,

and the mean values of weighted correlation coefficients, r̄w, computed over

500 replications obtained following the usual procedure. In this case Yi are

continuous variables with a Cauchy distribution, location parameter Vi and

scale parameter 1.

Table 4.13: Mean Spearman’s ρ̄ and mean weighted correlation coefficient r̄w

for Yi ∼ Cau(Vi, 1) (s.e. in parenthesis)

t SV EV T&M B&T CAU UNI EXP

4

ρ̄ 0.949 0.949 0.947 0.947 0.942 0.949 0.948

(0.053) (0.049) (0.053) (0.053) (0.055) (0.053) (0.056)

r̄w 0.949 0.951 0.948 0.947 0.942 0.949 0.949

(0.057) (0.053) (0.057) (0.057) (0.059) (0.057) (0.057)

3

ρ̄ 0.936 0.936 0.935 0.934 0.933 0.936 0.937

(0.056) (0.056) (0.058) (0.058) (0.058) (0.056) (0.058)

r̄w 0.935 0.937 0.934 0.934 0.933 0.935 0.937

(0.059) (0.059) (0.061) (0.061) (0.061) (0.059) (0.062)

2

ρ̄ 0.894 0.892 0.893 0.893 0.892 0.894 0.893

(0.095) (0.097) (0.096) (0.096) (0.096) (0.095) (0.094)

r̄w 0.896 0.895 0.895 0.895 0.895 0.896 0.895

(0.099) (0.100) (0.100) (0.100) (0.100) (0.099) (0.096)

1

ρ̄ 0.778 0.778 0.777 0.777 0.778 0.778 0.770

(0.165) (0.166) (0.166) (0.166) (0.166) (0.165) (0.168)

r̄w 0.779 0.778 0.777 0.777 0.778 0.779 0.770

(0.173) (0.175) (0.175) (0.175) (0.175) (0.173) (0.177)

As the alternatives get closer, both the unweighted and the weighted correla-

tion coefficients decrease. With respect the other distribution assumptions,
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we can globally observe lower values of both the correlation coefficients.

4.2.4 Uniform Distribution

Table 4.14 shows the mean of Spearman’s correlation coefficients, ρ̄, and

the mean values of weighted correlation coefficients, r̄w, obtained over 500

replications for k = 8 and different values of t. Yi’s are assumed to be

continuous variables with a uniform distribution, mean Vi and unit variance.

Table 4.14: Mean Spearman’s, ρ̄, and mean weighted correlation coefficient,

r̄w, for Yi ∼ U(Vi, 1) (s.e. in parenthesis)

t SV EV T&M B&T CAU UNI EXP

4

ρ̄ 0.977 0.977 0.976 0.975 0.967 0.977 0.976

(0.033) (0.031) (0.033) (0.034) (0.044) (0.033) (0.034)

r̄w 0.977 0.977 0.976 0.975 0.967 0.977 0.976

(0.037) (0.035) (0.038) (0.039) (0.049) (0.037) (0.037)

3

ρ̄ 0.968 0.967 0.968 0.967 0.961 0.968 0.965

(0.040) (0.038) (0.038) (0.039) (0.039) (0.040) (0.040)

r̄w 0.968 0.967 0.968 0.967 0.961 0.968 0.965

(0.043) (0.042) (0.042) (0.043) (0.044) (0.043) (0.043)

2

ρ̄ 0.950 0.949 0.949 0.949 0.947 0.950 0.946

(0.050) (0.051) (0.051) (0.051) (0.054) (0.050) (0.054)

r̄w 0.950 0.950 0.950 0.949 0.947 0.950 0.947

(0.053) (0.054) (0.054) (0.054) (0.055) (0.053) (0.058)

1

ρ̄ 0.878 0.877 0.877 0.877 0.877 0.878 0.873

(0.105) (0.105) (0.106) (0.106) (0.106) (0.105) (0.102)

r̄w 0.877 0.877 0.877 0.877 0.876 0.877 0.873

(0.107) (0.107) (0.108) (0.108) (0.108) (0.107) (0.106)

Also in this case, as the closeness of the alternatives increases, both corre-

lation coefficients decrease. We obtained for both the mean of Spearman’s

correlation coefficients, ρ̄, and weighted correlation coefficients, r̄w, values

close to those obtained in simulations conducted under the assumptions of,

respectively, Normal and Gumbel distributions (Tables 4.11, 4.12) and better
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than the case of assumed Cauchy distribtion (Table 4.13).

4.2.5 Exponential Distribution

Suppose Yi has assumed exponential distribution with mean Vi and vari-

ance V 2
i . The variance is not constant for all Yi’s, (i = 1, . . . , k) but it is

proportional to the mean, by hypothesis.

Table 4.15: Mean Spearman’s ρ̄ and mean weighted correlation coefficient r̄w

for Yi ∼ Exp(1/Vi) (s.e. in parenthesis)

t SV EV T&M B&T CAU UNI EXP

4

ρ̄ 0.938 0.939 0.933 0.931 0.904 0.938 0.933

(0.072) (0.073) (0.074) (0.078) (0.109) (0.072) (0.075)

r̄w 0.925 0.927 0.919 0.916 0.883 0.925 0.921

(0.088) (0.088) (0.091) (0.095) (0.133) (0.088) (0.090)

3

ρ̄ 0.945 0.946 0.940 0.937 0.911 0.945 0.940

(0.062) (0.063) (0.068) (0.071) (0.106) (0.062) (0.064)

r̄w 0.935 0.937 0.928 0.925 0.892 0.935 0.930

(0.076) (0.076) (0.082) (0.085) (0.127) (0.076) (0.077)

2

ρ̄ 0.942 0.943 0.938 0.935 0.909 0.942 0.938

(0.068) (0.067) (0.070) (0.072) (0.102) (0.068) (0.071)

r̄w 0.931 0.932 0.925 0.921 0.889 0.931 0.925

(0.085) (0.082) (0.088) (0.090) (0.124) (0.085) (0.089)

1

ρ̄ 0.936 0.938 0.933 0.929 0.900 0.936 0.931

(0.079) (0.080) (0.078) (0.082) (0.113) (0.079) (0.088)

r̄w 0.924 0.925 0.919 0.915 0.877 0.924 0.918

(0.097) (0.097) (0.095) (0.100) (0.138) (0.096) (0.106)

Differently from the other assumed distributions, all ranking methods were

not affected by the closeness of the alternatives. All methods provided good

results with mean values of Spearman’s correlation coefficients, ρ̄ ≥ 0.9 for all

t values and methods (Table 4.15). The mean values of weighted correlation

coefficients, r̄w, provide slight worse results.





Chapter 5

Estimation of Missing Values in

a Matrix

In a paired comparison experiment alternatives are presented in pairs to re-

spondents, who have to indicate the one they like most. Given a set of k

alternatives A = {A1, A2, . . . , Ak}, the results of these evaluations can be

naturally recorded in a k× k matrix, in which the (i, j) entry represents the

outcome of the comparison between Ai and Aj. As we have seen, there are

various kinds of matrices suitable for this purpose.

When respondents do not compare directly two alternatives, the matrix

designated to represent their preferences is characterized by one or more

missing values. The topic of missing values in a preference matrix has

been extensively discussed in literature (Harker, 1987; Carmone et al., 1997;

Kwiesielewicz & Van Uden, 2003; Fedrizzi & Giove, 2007).

In the following section we analyze the main reasons for which some compar-

isons may be missing.

5.1 Possible Causes of Missing Observations

In Dittrich et al (2012) authors identify six specific types of scenarios that

can cause missing data in paired comparison experiments. In the following
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we will analyze each of the proposed causes.

1. Missing paired comparisons by design. In a completely balanced paired-

comparison experiment, respondents have to compare all possible pairs

of alternatives. Indeed, for k alternatives, each respondent have to

compare k(k−1)/2 pairs of alternatives so that, increasing k, the num-

ber of required comparisons increase exponentially. For instance, in

a full complete design, for k = 4, respondents compare 6 pairs while

k = 15 provides 105 paired comparisons. If k is large, this technique

is unapplicable, that is why received criticism from several researchers

(Kendall & Babington-Smith, 1940; David, 1988; Fabbris, 2013). Each

respondent has to perform an excessive number of comparisons which

leads to an increase of the response error because of respondent’s fa-

tigue. To contain this problem, it is necessary to reduce the number

of required comparisons by design. The researcher will choose which

comparisons have to be performed and which other not.

2. Respondents may not complete the paired comparison experiment,

since for different reasons, for instance fatigue or information overload,

s/he has to interrupt the procedure after completing only a portion

of the paired comparison tasks. Also this situation is motivated by

the excessive number of comparisons, but in this case the respondent

chooses which comparisons avoiding.

3. The researcher prematurely halts the paired comparison experiment for

a particular respondent, since he judges s/he not to take the experiment

seriously. We state that the actual problem, in this situation, are not

the missing values but the given responses, thought of as improper.

4. Respondent fails to answer to a comparison due to his/her insufficient

knowledge of the alternatives being compared. This can happen, for

example, when highly technical objects are being compared. Also in

this case the matter is how to consider the given responses, since the

respondent is considered unreliable.
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5. Respondents are unable to compare two alternatives since they cannot

distinguish among them. This outcome is likely if two objects are

equally preferred, and there is no “no preference” possibility in the

response set.

6. The respondent has made a preference choice, but s/he knows that the

choice can be socially disapproved and s/he is reluctant to express that

preference. An example would be preferring a far right political party

to a mainstream party.

Missing data can be classified in three different categories (Schafer & Gra-

ham, 2002). Data can miss completely at random (MCAR) if a missing

observation for an individual cannot depend either on the value of other

dected variables nor on any observed or missing response. Missing data are

defined at random (MAR) if a missing observation can depend on the value

of the other variables and on observed responses made, but not on the value

that would have been observed. Finally, missing are not at random (MNAR)

if the missing observation also depends on the value that would have been

observed.

Under this classification hypotheses, missing paired comparisons by design

can be considered completely at random, since the missing data mechanism

is determined before the data collection. The second and third cases, of early

interruption of the experiment, can be considered missing at random, as miss-

ing data depend on the performed comparisons. Also the fourth scenario is

missing at random, since missing data depend on respondents’ knowledge.

Finally, the last two cases are missing not at random as missing observations

depend on the responses that would be given.

5.2 Estimating the Missing Values

Consider the case in which n respondents elicit, independently of each other,

their preferences on a set of k alternatives using paired comparisons. Data



62 Estimation of Missing Values in a Matrix

collected can be naturally represented in a generalized tournament matrix

P = [pij], a k × k matrix whose elements pij can be viewed as the propor-

tions of comparisons in which the i-th alternative Ai is preferred to the j-th.

Respondents’ preferences are collected in order to determine a ranking or to

define a system of weights that reflect the relative importance of the alter-

natives.

Computerized questionnaires can insist on a respondent to answer a question,

so as missing data from the last two scenarios can be avoided. Moreover, data

collected on unreliable respondents, or with insufficient knowledge about the

alternatives, can be at all not considered. The main cause of missing data,

then, remains the excessive number of pairwise comparisons, which occur

increasing k, the number of alternatives. Mathematical constraints impose a

minimum of only k−1 comparisons to establish the ranking for k attributes,

but paired comparisons methods use k(k − 1)/2 comparisons. To semplify

the procedure, the number of required comparisons may be reduced so as to

be between k − 1 and k(k − 1)/2.

In the following sections, we propose two methods to estimate the missing

cells in a generalized tournament matrix P , within which cells are missing

by design. First, we analyze an estimation method associated with the linear

models. Then, we propose a procedure based on the minimization of the sum

of the singular values of P .

5.3 Composition Rules for Linear Models

The linear paired comparison model (David, 1988) assumes that each of the k

alternatives has true rating Vi which can be used to determine their ordering.

We are considering the case in which n respondents evaluate the alternatives

independently. The judgment process may be represented by a continuous

variable Yi with mean Vi whose distribution is called “sensation distribution”.

In a pairwise comparison between two alternatives Ai and Aj, Ai is preferred

to Aj if and only if Yi ≥ Yj. So, each preference probability πij represents the
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probability that Yi is greater than Yj and it can be estimated through pij,

the proportion of comparisons in which Ai is preferred to Aj. Let us define

Zi and Zi − Zj as follows

• Zi = Yi − Vi is a continuous variable with zero mean and the same

distribution as Yi;

• Zi − Zj is a symmetric variable with zero mean, whose distribution,

called defining distribution, depends on the sensation distribution of Yi

(Latta, 1979).

We have immediately that πij = FZi−Zj
(Vi−Vj), where F is the distribution

function of Zi − Zj.
When respondents do not compare directly two objects, Ai and Aj, linear

models permit to estimate the preference relation between them using the

information achieved from their comparison with a shared alternative Al. In

practice, it is possible to obtain p̂ij through pil and plj for i, j, l = 1, . . . , k

and i 6= j 6= l.

The function which relates p̂ij with pil and plj, called composition rule, may

be written in a general form as

p̂ij,l = G(pil, plj).

For values of pil and plj ∈ (0, 1), G(pil, plj) ∈ [0, 1]. So, under linear models

assumptions we have (Latta, 1979)

p̂ij,l = Pr (Yi ≥ Yj) = F (Vi − Vj)

= F (Vi − Vl + Vl − Vj)

= F [F−1(pil) + F−1(plj)]

= G(pil, plj).

5.3.1 Composition Rules’ Properties

In Latta (1979) composition rules are formally defined and several properties

are presented. In the following we list the main ones.
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• In generalized tournament matrices pij = 1− pji. Then, since

p̂ij,l = G(pil, plj)

p̂ji,l = G(pjl, pli) = G(1− plj, 1− pil)

we have that G(pil, plj) = 1−G(1− plj, 1− pil) for pil, plj ∈ (0, 1) and

i 6= l 6= j = 1, . . . , k.

• From the previous property it follows that, for pil ∈ (0, 1)

G(pil, 1− pil) = 1−G(1− pli, 1− pil)

= 1−G(pil, 1− pil)

=
1

2

• Consider a tern of probability estimates pij, pjl, pil with i, l, j = 1, . . . , k

and i 6= l 6= j. Each of them can be expressed as function of the others

through the composition rules as follows

p̂ij,l = G(pil, 1− pjl)⇔ p̂il,j = G(pij, pjl)⇔ p̂jl,i = G(1− pij, pil)

Proof of the above property is available in Latta (1979).

• From the last two properties we obtain that, for plj ∈ (0, 1)

G

(
1

2
, plj

)
= p̂lj

G

(
plj,

1

2

)
= p̂lj

Indeed, let us suppose without loss of generality that

p̂ij,l = G

(
1

2
, plj

)
.

Then, by previous property

G(pij, pjl) =
1

2

from which we obtain pij = 1 − pjl = plj. Second equality is proved

similarly.
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• Composition rules are symmetric, monotonic and continuous functions.

• Since G(pil, plj) is a monotonic function and G
(
1
2
, plj
)

= p̂lj, we have

that if pil and plj are greater than 1
2

then G(pil, plj) is greater than the

maximum of pil and plj. For the same reason, if pil and plj are smaller

than 1
2

then G(pil, plj) is smaller than their minimum.

These last two properties are particularly meaningful, as they show

that linear models’ composition rules follow the strong transitivity con-

dition. Let us remember that, for a generalized tournament matrix, we

can define different degrees of transitivity. We constate that the strong

stochastic transitivity condition holds if, for every triad of alternatives

Ai, Aj and Al, if pil ≥ 0.5 and plj ≥ 0.5, then pij is greater than the

maximum of pil and plj (Coombs, 1958).

Thurstone & Mosteller Model

Under the Thurstone & Mosteller model assumptions, (Thurstone, 1927c;

Mosteller, 1951) pij can be estimated using pil and plj through the following

formula

p̂ij,l = Φ
[
Φ−1(pil) + Φ−1(plj)

]
where Φ is the distribution function of a standard normal variable.

Bradley & Terry Model

Bradley & Terry model (1952) assumes that F is the distribution function

of a standard logistic variable, that is

F (x) =
1

2
+

1

2
tanh

(x
2

)
.

Inverting this relation we have

F−1(p) = ln

(
p

1− p

)
.
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So the corresponding composition rule is

p̂ij,l = F

(
ln

(
pil

1− pil

)
+ ln

(
plj

1− plj

))
=

1

2
+

1

2
tanh

(
1

2
ln

(
pilplj

(1− pil)(1− plj)

))

=
1

2
+

1

2

exp
{

1
2

ln
(

pilplj
(1−pil)(1−plj)

)}
− exp

{
−1

2
ln
(

pilplj
(1−pil)(1−plj)

)}
exp

{
1
2

ln
(

pilplj
(1−pil)(1−plj)

)}
+ exp

{
−1

2
ln
(

pilplj
(1−pil)(1−plj)

)}
=

1

2
+

1

2

pilplj − (1− pil)(1− plj)
pilplj + (1− pil)(1− plj)

=
pilplj

pilplj + (1− pil)(1− plj)
.

Cauchy Model

Cauchy model assumes that F is the distribution function of a Student’s T

variable with 1 degree of freedom. Since

F (x) =
1

2
+

1

π
arctan(x)

the corresponding composition rule is given by

p̂ij,l = F (F−1(pil) + F−1(plj))

= F (tan(π(pil − 1/2)) + tan(π(plj − 1/2))

=
1

2
+

1

π
arctan

[
tan
(
π pil −

π

2

)
+ tan

(
π plj −

π

2

)]
.

Latta (1979) suggests to equale p̂ij,l to 1 if
√

2(1− pil) +
√

2(1− plj) ≤ 1.

Uniform Model

Suppose F is the distribution function of a continuous uniform variable

U ∈
(
−1

2
, 1
2

)
so that

F (x) = x+
1

2
.
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The corresponding composition rule results

p̂ij,l = F (F−1(pil) + F−1(plj))

= F (pil −
1

2
+ plj −

1

2
)

= pil + plj −
1

2
.

Latta (1979) proposed the following composition rule for the uniform model:

p̂ij,l = pil + plj −
3

2
+
√

2(1− pil) +
√

2(1− plj)− 2
√

(1− pil)(1− plj)

if pil ≥
1

2
, plj ≥

1

2
and

√
2(1− pil) +

√
2(1− plj) ≥ 1

= pil − plj −
1

2
+
√

2plj −
√

2(1− pil) + 2
√
plj(1− pil)

if 1 > pil ≥ 1− plj ≥
1

2
.

Latta’s composition rule is only partially defined. In the following cases

• pil, plj ≤ 1
2
;

• 1− plj ≥ pil ≥ 1
2
;

• pil ≤ 1− plj ≤ 1
2
;

• 1− plj ≤ pil ≤ 1
2

it can be constructed using the following property

G(pil, plj) = 1−G(1− plj, 1− pil). (5.1)

Exponential Model

The Exponential model assumes that F is the distribution function of a

standard Laplace variable. Since

F (x) =
1

2
(1 + sign(x)(1− exp−|x|))

we have that

F−1(p) = −sign
(
p− 1

2

)
ln

(
1− 2

∣∣∣∣p− 1

2

∣∣∣∣) .
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The resulting composition rule is

p̂ij,l = 1− 2(1− pil)(1− plj) if pil ≥
1

2
, plj ≥

1

2

= 1− 1

2

(
1− pil
plj

)
if pil ≥ 1− plj ≥

1

2
.

Similarly to the uniform model, the composition rule of the exponential model

is only partially defined and can be reconstructed using property 5.1.

5.4 Rank Minimization Problems

Matrix completion problems have received a great deal of attention in the

algebraic literature (Laurent, 2001; Lee & Seol, 2001; Cravo, 2009). These

kind of problems arise in a variety of applications, such as statistics, chem-

istry and systems theory. Matrix completion issue tries to answer whether

a given partial matrix can be completed according to specified rules. For

example, the positive definite completion problem asks which partial Her-

mitian matrices have a positive definite completion. A variety of matrix

properties have been studied. Laurent (2001) considers the following matrix

completions: positive (semi)definite matrices, distance matrices, completely

positive matrices, contraction matrices and matrices of given rank.

Rank matrix completion problems are concerned with determining whether

or not a partial matrix can be completed so that its rank is maximized or

minimized. Searching for the completion which minimizes the rank of the

matrix corresponds, intuitively, to complete the matrix with values that best

fit the observed data.

Our aim is to recover an incomplete generalized tournament matrix P which

represent the preference relations among a set of k alternatives. Preference

data could be modeled through factor models, which assume that only a very

small number of factors influences the preferences. Computationally, factor

models are equivalent to low rank approximation of the matrix of observed

data. So, assuming that only a few dimensions contribute to individual pref-

erences, our goal is to produce a low-rank matrix that respects the observed



5.4 Rank Minimization Problems 69

elements of P or at least minimizes the deviation from them.

Unfortunately, the rank minimization problem is unsolvable and all known

algorithms that provide an exact solution require a computing time doubly

exponential in the dimension k of the matrix in both theory and practice

(Chistov & Grigor’ev, 1984).

Let us present a recent heuristic introduced by Fazel et al. (2001), that min-

imizes the nuclear norm ‖P ‖∗ over the constraint set. The nuclear norm,

also known as “trace norm”, is defined as

‖P ‖∗ =
k∑
i=1

σi.

where σi for i = 1, . . . , k are the singular values of P , defined in the following

section.

5.4.1 Singular Value Decomposition

Given a k × k generalized tournament matrix P , the singular value decom-

position is a factorization of the form

P = UΣV T

where U is a k×k real unitary matrix, such that U tU = UU t = I, where I

is the identity matrix, Σ is a k×k diagonal matrix with nonnegative elements

on the diagonal and V T is another k × k real unitary matrix. We name the

diagonal entries σi of Σ as the singular values of P , the k columns of U and

V are respectively the left-singular and the right-singular vectors of P . The

singular value decomposition and the eigen-decomposition of a matrix are

closely related. Namely:

• The left-singular vectors of P are eigenvectors of PP T ;

• The right-singular vectors of P are eigenvectors of P TP ;

• The non-zero-singular values of P , found on the diagonal entries of

Σ are the square roots of the non-zero eigenvalues of both P TP and

PP T .
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Nuclear Norm Minimization

Assuming that the generalized tournament matrix P we want to recover can

be well approximated by a low-rank matrix, we consider the missing entries

in P as variables x1, . . . , xp and we obtain them by minimizing the nuclear

norm as a function of these variables. To give an example consider the fol-

lowing 4 × 4 matrix P1 which represents a paired comparison experiment

performed by n respondents on 4 alternatives. Let us suppose that indi-

viduals make 11 of the 12 possible comparisons. Supposing, without loss of

generality, that the comparison between the first and the fourth alternative

was not performed, P has two missing entries which correspond to positions

(1, 4) and (4, 1).

P =


0 p12 p13 x1

1− p12 0 p23 p24

1− p13 1− p23 0 p34

1− x1 1− p24 1− p34 0


Hence, we wish to recover the data matrix by solving the following optimiza-

tion problem

minimize ‖X‖∗
subject to xij = pij (i, j) ∈ Ω

X + XT = J − I

where P is the matrix expected to recover, X is the matrix after recovering

and Ω is the set of positions corresponding to the observed entries, that is

(i, j) ∈ Ω if pij is observed. Moreover, J is a square matrix of all 1’s and

I is the identity matrix and the second constraint sets the structure of a

generalized tournament matrix.

The values that minimize the nuclear norm are not necessarily those that

minimize the rank, but they are consistent with the hypothesis of a good

approximation of a low-rank matrix. Indeed, it can be shown that the rank
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of a generalized tournament matrix P of order k is either k or k−1 (Brualdi,

2006).

The nuclear norm is a convex function, which can be optimized efficiently. It

is the best convex lower approximation of the rank function over the set of

matrices with spectral norm less than or equal to one. Intuitively, while rank

counts the number of nonvanishing singular values, nuclear norm sums their

amplitude. In case of symmetric and positive semidefinite matrix, nuclear

norm minimization is equivalent to the trace minimization, the trace of a

positive semidefinite matrix being the sum of its singular values.

Nuclear norm minimization is often used to recover a matrix from a sam-

ple of its entries, provided the matrix is low-rank or approximately low-

rank (Candès & Recht, 2009). Applications include dimensionality reduction

(Linial et al., 1995; Weinberger & Saul, 2004), inference with partial infor-

mation (Rennie & Srebro, 2005). Rank minimization plays a key role in the

study of embeddings of discrete metric spaces in Euclidean space (Donoho &

Tanner, 2005). In some applications, such as sensor localization, the matrix

has exactly low rank, i.e., only the top few of its singular values are nonnull.

However, the matrix can be full rank, and well approximated by a low-rank

matrix.

Differently from the case in which observed entries are selected at random

and no information is available about the matrix to be recovered, we know

that diagonal elements of a generalized tournament matrix P are ever equal

to 0. Moreover, we have to consider that if p comparisons are missing, then

the matrix P contains 2p unknown elements, due to the reciprocity condition

pij = 1− pji.

5.5 The Single Missing Comparison Case

Let us assume that only the entry that defines the preferability between

alternatives Ai and Aj, i 6= j, is missing. Then pij and pji = 1 − pij are
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unknown in the k× k matrix P . Consider the simple case represented in the

following matrix according to which A1 is preferred to A2 and A2 is preferred

to A3, while nothing is known about the preferability between A1 and A3.

P1 =


0 1 x

0 0 1

1− x 0 0


For preferences to be internally consistent, alternative A1 should be preferred

to A3, and then, x should be equal to 1. In Fig 5.1 it is represented the

nuclear norm of P1 for x ∈ [0, 1]. As we can see, the nuclear norm reaches

its minimum, as expected, if x = 1.

Figure 5.1: Nuclear norm of P1

Suppose otherwise that, matrix P2 represents the situation in which both

A1 and A3 are absolutely preferred to A2. In this case, it is not possible to

express a forecast on the preference relation between A1 and A3.

P2 =


0 1 x

0 0 0

1− x 1 0


Also in this case, we represent the nuclear norm for x ∈ [0, 1] (See Fig. 5.2).

As we can see, ‖P2‖∗ reaches its minimum in x = 0.5, which means that it

is impossible to express a preference in any direction.
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Figure 5.2: Nuclear norm of P2

5.5.1 Comparison between Composition Rules and Nu-

clear Norm Minimization

To better understand the nuclear norm minimization procedure, we com-

pare, via simulation, its behavior with linear models’ composition rules.

Just to give an example, consider the following matrix P3, representing a

paired comparison among 4 alternatives, obtained assuming Yi’s normally

distributed with mean Vi’s ∈ (0, 1) and unit variance. In particular, given

V = (0.46, 0.60, 0.75, 0.88), we get

P3 =


0.00 0.47 0.44 0.36

0.53 0.00 0.44 0.40

0.56 0.56 0.00 0.44

0.64 0.60 0.56 0.00

 .

To verify the different methods reliability, we simulate the darkening of p14,

and of its symmetric entry p41 = 1 − p14, and we try to estimate p14 as if

they were missing.

Linear models permit to estimate pij using the information achieved from the

comparison ofAi andAj with a shared alternativeAl with i 6= j 6= l = 1, . . . , k.

So, in this case, we can estimate the preference relation between A1 and A4

using the information achieved from their comparisons with, respectively, A2
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and A3. So, it is possible obtain p̂14,l through the following

• p̂14,2 = G(p12, p24);

• p̂13,4 = G(p13, p34).

The final estimate of pij is the mean of all the possible estimates p̂ij,l with

i 6= j 6= l = 1, . . . , k

p̂ij =
1

k − 2

∑
l 6=i,j

p̂ij,l.

In this specific example, the estimate of p14 is given by

p̂14 =
1

2
(p̂14,2 + p̂14,3) .

Finally, p14 is estimated through the nuclear norm minimization procedure

(NNM), imposing p14 = x and solving the usual optimization problem

minimize ‖X‖∗
subject to xij = pij (i, j) ∈ Ω

X + XT = J − I

where P3 is the matrix we would recover, X is the matrix once recovered

and Ω is the set of positions corresponding to the observed entries, that is

(i, j) ∈ Ω if pij is observed. The second constraint imposes that p12 = 1−p21.
Among the linear models, we consider the following

• Thurstone & Mosteller (T & M)

• Bradley & Terry (B & T)

• Cauchy (CAU)

• Uniform (UNI)

• Exponential (EXP)
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Table 5.1: p14 estimates

T&M B&T CAU UNI EXP NNM

p̂14 0.376 0.377 0.379 0.385 0.382 0.375

Table 5.1 shows the p̂14 obtained with the examined estimation methods.

Once estimated the missing entries, to evaluate their goodness, we can com-

pute the mean square error, defined as

MSE = E[(p14 − p̂14)2].

Table 5.2 shows the mean square error referred to this specific example. As

we can see, the nuclear norm minimization provides good results, even better

than the Thurstone & Mosteller linear model, although P3 was created under

its assumptions.

Table 5.2: Mean square errors of p̂14

T&M B&T CAU UNI EXP NNM

MSE 0.00027 0.00028 0.00035 0.00060 0.00047 0.00023

To extend our considerations, we obtained 500 matrices assuming different

distributions for the Yi’s and k = 8. The simulation scheme is described as

follows:

• We simulated k = 8 values from a uniform variable U ∼ U(0, 1);

• For each alternative Ai, i = 1, . . . , k, we obtained n = 100 replica-

tions from a continuous variable Yi with normal distribution, centrality

parameters Vi and unit variance;

• Each matrix element pij is obtained as aij/n where aij is the number

of times Yi is greater than Yj in the simulated sample;
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• We get m = 500 matrices following the above procedure;

• The procedure is iterated considering other values of k and different

distributions for the Yi’s (Normal, Gumbel, Cauchy, Uniform and Ex-

ponential).

• The specific assumptions for each assumed distribution are the same

as those described Section 4.2.

For each matrix, a cell at a time is assumed missing and its estimate is ob-

tained through the linear models’ composition rules and the nuclear norm

minimization. Then, for each method, we computed the mean square error

over all the 500 replications. Tables 5.3, 5.4, 5.5 show the results obtained

assuming respectively k = 8, 16, 24. In the first column the assumed distri-

bution is specified.

Table 5.3: Mean square errors of p̂ij over 500 replications and k = 8 (s.e. in

parenthesis)

Distribution T&M B&T CAU UNI EXP NNM

Normal
0.00123 0.00123 0.00127 0.00127 0.00126 0.00125

(0.00207) (0.00208) (0.00212) (0.00210) (0.00211) (0.00209)

Gumbel
0.00107 0.00107 0.00111 0.00111 0.00112 0.00106

(0.00150) (0.00150) (0.00154) (0.00157) (0.00154) (0.00148)

Cauchy
0.00113 0.00113 0.00114 0.00112 0.00115 0.00113

(0.00159) (0.00159) (0.00160) (0.00159) (0.00162) (0.00158)

Uniform
0.00105 0.00105 0.0011 0.00109 0.00109 0.00106

(0.00146) (0.00146) (0.00151) (0.00150) (0.00149) (0.00150)

Exponential
0.00125 0.00136 0.00288 0.00306 0.00176 0.00254

(0.00196) (0.00227) (0.00475) (0.01447) (0.00295) (0.00363)
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Table 5.4: Mean square error of p̂ij over 500 replications and k = 16 (s.e. in

parenthesis)

Distribution T&M B&T CAU UNI EXP NNM

Normal
0.00086 0.00086 0.00088 0.00092 0.00088 0.00090

(0.00119) (0.00119) (0.00121) (0.00129) (0.00121) (0.00128)

Gumbel
0.00092 0.00092 0.00096 0.00094 0.00096 0.00093

(0.00140) (0.00140) (0.00145) (0.00143) (0.00147) (0.00142)

Cauchy
0.00099 0.00099 0.00099 0.00101 0.00099 0.00100

(0.00127) (0.00127) (0.00125) (0.00128) (0.00126) (0.00128)

Uniform
0.00080 0.00080 0.00085 0.00088 0.00085 0.00081

(0.00103) (0.00103) (0.00108) (0.00116) (0.00108) (0.00105)

Exponential
0.00096 0.00101 0.00226 0.00229 0.00131 0.00216

(0.00132) (0.00150) (0.00368) (0.01396) (0.00197) (0.00338)

Table 5.5: Mean square error of p̂ij over 500 replications and k = 24 (s.e.

in parenthesis)

Distribution T&M B&T CAU UNI EXP NNM

Normal
0.00083 0.00083 0.00087 0.00091 0.00087 0.00086

(0.00122) (0.00122) (0.00129) (0.00134) (0.00129) (0.00125)

Gumbel
0.00101 0.00101 0.00103 0.00104 0.00104 0.00106

(0.00132) (0.00132) (0.00136) (0.00139) (0.00137) (0.00138)

Cauchy
0.00094 0.00094 0.00094 0.00095 0.00095 0.00094

(0.00133) (0.00133) (0.00135) (0.00136) (0.00135) (0.00133)

Uniform
0.00088 0.00088 0.00090 0.00093 0.00091 0.00092

(0.00134) (0.00134) (0.00135) (0.00139) (0.00136) (0.00138)

Exponential
0.00100 0.00101 0.00210 0.00292 0.00127 0.00148

(0.00151) (0.00150) (0.00339) (0.01201) (0.00194) (0.00257)

The nuclear norm minimization provides very similar results to linear mod-

els composition rules. These results are meaningful, especially considering

that in these analyses matrices are simulated starting from the same assump-

tions as linear model. The composition rules associated to the Thurstone &
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Mosteller and the Bradley & Terry linear models provide the same results,

except for the assumed Exponential distribution. As k increases, we can not

observe any regularity in the results. The composition rule associated to the

Thurstone & Mosteller linear model seems to be the best method to estimate

missing values in a generalized tournament matrix, in case of one missing ob-

servation and data generated under linear model assumptions. However it

could be interesting to compare linear models’ composition rules and nuclear

norm minimization in case of two or more missing entries and on real data.



Chapter 6

Conclusions

The first aim of this thesis was to compare methods based on distributional

parametric hypotheses with methods that do not require such hypotheses.

For this reason, some simulation studies have been performed and the re-

sults analyzed. We are now able to state that the Cauchy model is the only

ranking method characterized by an unreliable behavior. In fact, in the case

of first raw dominant matrices it is characterized by very low proportions

of always to-be-preferred alternative classified as first. For strictly ordered

matrices, the Cauchy model is again the least correlated with the consistent

ranking.

With regard to the other methods, they give similar outcomes. These results

are confirmed also by considering the correlations between the examined

ranking methods for random matrices. The method least correlated with the

others is always the Cauchy linear model while all the remainings are highly

correlated. However, we can observe slight differences among other models.

The eigenvector method, for instance, is the best performer in identifying

the dominant alternative, for all considered values of k and of to-be-preferred

probability. The exponential linear model provides reliable estimates in case

of strictly ordered matrices.

We notice that the eigenvector and the score-based ranking methods, which

do not require any distributional assumption, give results very similar to
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linear models, even when matrices are generated under the linear models as-

sumptions.

We can finally affirm that the effectiveness of the examined methods does

not depend on the assumed distribution.

Hence, apart from the advice to avoid the Cauchy model, the choice of the

ranking method depends essentially on the researcher’s objectives. If the

goal is to get only a ranking of the alternatives, we advise to use the eigen-

vector method. On the other hand, linear models can be used to describe

the relationship between the preference probabilities and some explainatory

variables, such as personal characteristics of the respondents, useful for the

estimation of individual data.

It was not possible to compare the different methods for scoring purposes,

since scores obtainable with the score vector and the eigenvector methods

are expressed on a different scale than linear models.

We proposed a method to estimate missing values within a generalized tour-

nament matrix. This method is based on the minimization of the nuclear

norm. It assumes that only a few dimensions contribute to individual pref-

erences and searches for values that appraise and respect the valid elements

of the matrix, minimizing the deviation from them.

Some simulations are performed to compare the nuclear norm minimization

rule with the composition rules associated to linear models. The nuclear

norm minimization provides results similar to composition rules. These re-

sults are meaningful, especially considering that in these analyses matrices

are simulated starting from the same assumptions as linear model.

For further research, it would be interesting to compare composition rules

and the nuclear norm minimization extending the comparison to two or more

missing entries and larger matrices. In particular, it would be important to

study whether the examined methods are affected by a larger proportion of

missing entries within a generalized tournament matrix.
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