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Abstract

Underwater acoustic signals have been studied since the late XIXth century, when they

were used to search for and localize objects, typically submarines. Nowadays, acoustic sig-

nals are also used to communicate, i.e., to convey information wirelessly from one point to

another over distances of the order of kilometers. Such technology is very useful for scien-

tific research in different fields, such as biology, oceanography, and meteorology, to name a

few. It also plays an important role in anti-submarine warfare, coastal surveillance, and oil

spill relief operations.

Nevertheless, the underwater acoustic communications performance, measured so far,

is poor under certain conditions. In this thesis, we identify those conditions, quantify their

effects on the communications system and networks, and we investigate which techniques

can be useful to improve communications and networking performance. In order to do so,

we analyze acoustic and environmental data collected at different times and locations.

Specifically, we evaluate the communications performance and the channel character-

istics, measured during those different experimental trials and we quantify the dynamics

of the communications performance. In order to mitigate the effects of the time-varying

observed conditions, we propose adaptive techniques, which we evaluate by both analysis

and simulation. This analysis is based on Markov chains so as to validate their suitability

as statistical models for representing the dynamics of the channel quality. Since the pro-

posed adaptive techniques require feedback, they give rise to longer delays, higher energy

consumption and overhead. For this reason, we analyze the possibility of predicting the

channel quality, so as to reduce the amount of feedback.

As a consequence of these insights, we are now able to address the future directions of

the research. In particular, we can identify the problems related to the employment of adap-

tive techniques and networking protocols requiring signals exchanges between the source



xvi Abstract

and the destination. In this way, we want to investigate new solutions which are more

suitable for the underwater scenario, i.e., not requiring too much message exchanges. The

results presented in this thesis also lead to useful guidelines for future experimental trials,

in order to collect data more effectively supporting the development of underwater acoustic

communications and networks.



Sommario

I segnali acustici sottomarini sono stati studiati fin dalla fine del XIX secolo, quando veni-

vano impiegati per ricercare e localizzare oggetti, tipicamente sottomarini. Oggi, i segnali

acustici vengono usati anche per comunicare, ossia per trasmettere informazioni tra due

punti a kilometri di distanza l’uno dall’altro senza fili. Tale tecnologia permette di condurre

importanti ricerche scientifiche in svariati ambiti come biologia, oceanografia e meteorolo-

gia. Inoltre, assume un ruolo importante nella sorveglianza delle coste e nelle operazioni di

bonifica in piattaforme petrolifere.

Tuttavia, le prestazioni delle comunicazioni acustiche sottomarine, misurate finora, de-

gradano quando si verificano alcune condizioni. In questa tesi, identifichiamo tali con-

dizioni, ne quantifichiamo gli effetti sui sistemi di comunicazione e analizziamo le tecniche

che possono migliorare le prestazioni delle comunicazioni e delle reti. A questo scopo, ana-

lizziamo dati acustici e ambientali che sono stati raccolti in diversi momenti e luoghi.

Nello specifico, valutiamo le prestazioni delle comunicazioni e le caratteristiche di canale

misurate durante diversi esperimenti e quantifichiamo le dinamiche delle prestazioni di co-

municazione. Allo scopo di mitigare gli effetti delle condizioni tempo varianti osservate,

proponiamo tecniche adattive, che valutiamo sia con l’analisi sia con simulazioni. Tale ana-

lisi si basa sulle catene di Markov, che vangono cosı̀ validate come modelli statistici adatti

a rappresentare le dinamiche della qualità del canale. Siccome le tecniche adattive proposte

richiedono scambio di messaggi, esse danno luogo a ritardi più elevati, consumo maggiore

di energia e aumentato overhead. Per questo motivo analizziamo la possibilità di predire la

qualità del canale, cosı̀ da ridurre la quantità di messaggi da scambiare.

Come conseguenza dei questi studi, siamo ora capaci di identificare le direzioni fu-

ture della ricerca in questo ambito. In particolare, possiamo identificare i problemi legati

all’impiego di tecniche adattive e di protocolli di rete che richiedono scambi di messaggi

xvii



tra la sorgente e la destinazione. In tal modo, vogliamo approfondire lo studio di soluzioni

più adatte allo scenario sottomarino acustico, ossia che non richiedano molto scambio di

messaggi. I risultati presentati in questa tesi, aiutano a identificare alcune linee guida per

i prossimi esperimenti in mare, allo scopo di collezionare dati, in grado di sostenere lo

sviluppo di tecniche di comunicazione e di protocolli di rete per lo scenario acustico sot-

tomarino.
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Chapter1

Introduction

Underwater acoustic communications make it possible to explore and constantly mo-

nitor the ocean, wirelessly and without jeopardizing human lives. Therefore, it represents

one of the most important technologies for ocean-related sciences and military applications.

Nevertheless, they are characterized by harsher and more complex propagation conditions

than terrestrial radio communications, so as to make the optimal solutions developed for

the latter not always suitable for underwater acoustic communication systems. In recent

years, the scientific and military communities have also shown interest in the potentialities

of a network of underwater sensor nodes, able to communicate with each other in order to

convey the required information to a final user, safe onshore. For this reason, researchers

have been investigating and designing communications algorithms and networking proto-

cols, optimized for the underwater acoustic scenario. However, it is not always clear which

assumptions can be made in order to better represent the underwater acoustic scenario.

As a starting point, the characteristics of underwater acoustic propagation which mostly

affect the communications performance have to be identified. Among these features, we

enumerate the propagation delay, the time-variability and the frequency-selectivity. More-

over, from the network point of view, the inter-packet variability of the communications

performance has to be quantified, in order to have insight on the dynamics affecting the

network protocol layers.

In this thesis, we evaluate those channel characteristics and dynamics of the communica-

tions performance, by analyzing three different experimental data sets, containing both en-

vironmental and acoustic data. After having quantified the effects of the environment on the



2 Chapter 1. Introduction

acoustic communications performance, we propose and evaluate two adaptive techniques,

namely Hybrid Automatic Repeat reQuest (HARQ) and Adaptive Modulation (AM), which

effectively mitigate the time-varying communications performance, as proved by both anal-

ysis and simulation. However, such techniques are characterized by message exchanges,

though very short, which increase delivery delays, energy consumption and overhead, thus

reducing the benefits of the proposed adaptive communications schemes. For this reason,

we study the predictability of the channel conditions, which would make it possible to re-

duce the amount of feedback.

For the sake of clarity, we now present the structure of the thesis, so as to guide the

reader through the presented results, from experimental data analysis to model validations

and communications system evaluation.

1.1 Overall Structure of the Thesis

The rest of the thesis is subdivided into four chapters, each containing a specific topic

and the corresponding results, so that each chapter can almost be read separately.

In Chapter 2, we describe the environmental and acoustic data analyzed and used through

the thesis. This chapter can be useful for reference in the following and provides information

about how we used the data and what is available for further analysis.

In Chapter 3, we present the estimates of the channel conditions during the evaluated

data sets, and in particular we highlight and quantify the time fluctuations of the commu-

nications performance. This study is important for a deeper understanding and an accurate

evaluation of the dynamics of channel conditions that can be experienced in the considered

scenarios. The results can also give insight on the relationship between the environment and

the observed fluctuations.

In Chapter 4, we evaluate two adaptive communications schemes, which counteract the

time variability of the communications performance. We also validate analytical models,

which were proposed in the literature for terrestrial wireless communications, and can be

used to evaluate the proposed techniques via both analysis and simulation.

In Chapter 5, we study and characterize the predictability of the communications perfor-

mance of the underwater channel, and we provide insight on the prediction interval. Such
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time interval is very relevant for the design and performance evaluation of networking pro-

tocols and applications.

1.2 Contributions of the Thesis

We conclude by summarizing the main results that can be found in this thesis. First, we

quantify and study the impacts of the channel time variability on communications perfor-

mance. Furthermore, we analyze and model the performance of two techniques, that are

known to be effective on time-varying channel and performance conditions, such as HARQ

and AM. Finally, since these techniques require feedback, which may reduce capacity and

increase energy consumption, we investigate the possibility of reducing the amount of feed-

back by using predictors.

In order to more efficiently use the channel, we analyze and provide solutions to the

time-varying channel conditions by facing the problem from different perspectives. In fact,

we adopt both an inductive approach, when we estimate the channel statistics and the com-

munications performance from the data, and a deductive approach, when we propose and

validate models to represent the system performance. These two approaches are comple-

mentary and both useful to reach the obtained insights, which in particular consist in pro-

ving that adaptive techniques are needed and effective in underwater acoustic links. We also

show that the gains provided by the employment of adaptive techniques could be further

increased by using predictors.





Chapter2

Description of Acoustic and

Environmental Data

2.1 Chapter Overview

Data analysis makes it possible to extrapolate information about the main characteris-

tics of an observed process in order to investigate and understand the causes that generate

the measured effect. Nevertheless, the relationship between the amount of available data

and the amount of information that can be extracted from it is not always evident. For this

reason, this Chapter aims at providing sufficient details on the analyzed data sets, so that

in the future it is clear what type of information can still be inferred. Moreover, this Chap-

ter contains all the references needed to understand the results provided in the following

Chapters.

In this thesis, we consider the Surface Processes andAcoustic Communications Experiment

(SPACE08), Submarine Networks (SubNet09), and Kuaui Acomms MURI (KAM11) sea tri-

als. These experiments were conducted at different times and locations, and they made it

possible to collect extensive acoustic and environmental data sets. Thanks to the human and

financial efforts invested in those experimental campaigns, we could test, validate and infer

models, which are the main topic of Chapters 3, 4, and 5.

First, we describe the scenarios by highlighting the characteristics that make them rep-

resentative of a wider number of cases, so that we can extend the results to other similar

situations. Second, we present the acoustic signals that were sent and recorded, by specify-
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Figure 2.1. A scheme of the testbed deployment off the coast of Martha’s Vineyard Island.

ing the employed center frequencies, bandwidths and modulation schemes. Finally, we list

the differences and analogies among these data sets.

2.2 Scenario

2.2.1 SPACE08

The SPACE08 was conducted from October 18 to 27 in 2008. In the following, we re-

fer to these days by using Julian dates from 292 to 301. The deployment was located at

Martha’s Vineyard Coastal Observatory (MVCO) and operated by Woods Hole Oceano-

graphic Institution (WHOI). The scenario, considered in this thesis1, consists of one trans-

mitter and four fixed receiving stations, each ofwhich is equippedwith several hydrophones.

Figure 2.1 shows the deployment: systems S3 and S4 are 200m from the transmitter in the

Southeast and Southwest directions, respectively, whereas S5 and S6 are 1000m from the

transmitter, again along the Southeast and Southwest directions. Table 2.1 provides the spa-

tial coordinates of the deployment.

This configuration was specifically thought to obtain further insight on how the surface

affects the acoustic propagation in a shallow water scenario. The water column was 15m

1The actual scenario consisted of threemore receivers: a reference hydrophone at 1m and other two receiving

stations at 60m from the transmitter.
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Table 2.1. Spatial coordinates of the deployed devices in SPACE08.

Description Label Latitude Longitude

Source Tx 41 ◦19.492′ N 70 ◦34.021′ W

Vertical array, 24 hydrophones S3 41 ◦19.492′ N 70 ◦34.021′ W

Vertical array, 24 hydrophones S4 41 ◦19.437′ N 70 ◦34.145′ W

Vertical array, 12 hydrophones S5 41 ◦19.018′ N 70 ◦33.663′ W

Vertical array, 12 hydrophones S6 41 ◦19.207′ N 70 ◦34.673′ W
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Figure 2.2. Time series of the wind speed and direction. The solid line shows wind speed while the circles

show wind direction.

deep, the ocean floor of the area can be considered relatively flat and the temperature of

the water column was constant. Therefore, the surface time-varying conditions were the

most important parameter, affecting the acoustic propagation. Since the surface conditions

depend on thewind, its speed and directionweremeasured throughout the experiment. The

collected measurements are represented in Figs. 2.2 and 2.3. On Julian date 300 there was a

storm and we can observe in Fig. 2.3 how the surface height increases in the correspondent

day.
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Figure 2.3. Time series of the significant wave height. The significant wave height is defined as the average

wave height of the one-third largest waves.

2.2.2 SubNet09

The SubNet09 experimental trials were conducted during the summer of 2009, from the

end of May to the beginning of September, off the eastern shore of the Pianosa Island, Italy.

The experiment was operated by NATO Undersea Research Center (NURC). The testbed

consists of one vertical array (VA), with four hydrophones spaced by 20m, and three acous-

tic transmitters (Teledyne-Low Frequency modems [2]) placed on a tripod on the sea floor.

The deployment is shown in Fig. 2.4, where the transmitters, labeled as T1, T2 and T3, were

placed at 1500m from the VA, at a depth of 60m, 2200m from the VA, at a depth of 70m, and

700m from the VA at 80m below the surface, respectively. The hydrophones of the VA were

called H1, H2 and H4 and they were placed at 20m, 40m, and 80m, respectively. The hy-

drophone at 60m, H3, experiencedmalfunctioning during the first of the threemonths of sea

trials and died right thereafter. Table 2.2 provides the spatial coordinates of the deployment.

This configuration was specifically set up to study the behavior of the acoustic channel
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Figure 2.4. SubNet09 deployment.

Table 2.2. Spatial coordinates of the deployed devices in SPACE08.

Description Label Latitude Longitude

Transmitter T1 42 ◦34.4467′ N 10 ◦6.3887′ E

Transmitter T2 42 ◦34.1850′ N 10 ◦6.5442′ E

Transmitter T3 42 ◦35.962′ N 10 ◦7.255′ E

Vertical array, 4 hydrophones VA 42 ◦35.3192′ N 10 ◦6.5735′ E

both when signals travel through the boundary between the mixed layer and the deeper

layers, and when propagation takes place below the mixed layer. Oceanographic instru-

mentation, such as one Acoustic Doppler Current Profiler and one thermistor chain, was

deployed close to the VA. The thermistor chain was designed for finer sampling in the

mixed layer rather than in the lower layers, in order to better track temperature changes

between 0 and 40m of depth. The temperature samples gathered through the thermistors

have been used to estimate the propagation speed of acoustic waves: previous studies on

the physical features of the water in the Pianosa area showed that salinity is very stable over

the whole summer season; therefore, frequent temperature measurements and a salinity

measure taken once through a Conductivity Temperature and Density (CTD) sensor suf-
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Figure 2.5. Average and standard deviation of SSP during experiments on May 30, June 5 and September

2.

fice to compute the Sound Speed Profile (SSP) through the Mackenzie formula, e.g., see [3].

In Fig. 2.5, we show the average value and the standard deviation of the measured sound

speed at different depths in May, June and September. The figure allows us to conclude

that channel conditions were quite stable over time throughout the whole season, and that

the general behavior of the SSP was downward-refractive. As opposed to the stability of

sound speed profiles, the roughness of the sea-surface greatly varied during the experiment

period. The winds were typically calm, even though short periods with winds over 10m/s

were experienced. These winds generated local short-period waves that greatly affected sea

surface roughness, ambient noise levels and sea surface reflections.

2.2.3 KAM11

The KAM11 data set has been collected in 2011, from June 25 to July 9, off the coast of

Kauai Island, Hawaii. The analyzed scenariowas stationary and consists of a source and two

receivers, deployed at almost 40m below the surface. The water column was 100m deep.

The receiving stations consisted of 24 element vertical and linear hydrophones array with
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Figure 2.6. KAM11 deployment.

Table 2.3. Spatial coordinates of the deployed devices in KAM11.

Description Label Latitude Longitude

Transmitter STA03 22 ◦7.842′ N −159 ◦48.4697′ W

Vertical array, 24 hydrophones STA09 (R1) 22 ◦9.3117′ N −159 ◦47.7507′ W

Vertical array, 24 hydrophones STA17 (R2) 22 ◦10.3785′ N −159 ◦46.8372′ W

5 cm spacing between hydrophones. Fig. 2.6 represents the whole deployment involved

in the experiment, however the analyzed data concerns the links between station STA03,

where the transmitter was placed, and stations STA09 and STA17, where the two receivers

were located. We will call these receivers as R1 and R2. Table 2.3 provides the coordinates

of the deployment.

CTD data were collected during the experiments. An example is represented in Fig. 2.7,

in terms of SSP. This particular combination of up and down-refractive parts in the water

column gives rise to different propagation paths, which are very sensitive even to a slight

change of the SSP in time. From the data collected by a thermistor chain, it is possible

to follow those time fluctuations and correlate them with the variations observed in the

channel impulse responses. Thermistor chains were also deployed in the area. In particu-
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Figure 2.7. Sound Speed Profile collected on Julian date 176 off the coast of Kauai Island.

lar, in Fig. 2.8 we present the data from the thermistor at STA04 (Lat. 22 ◦8.113′ N, Long.

−159 ◦48.4712′ W ) close to the transmitter.

2.3 Transmitted Signals and Post-processing

2.3.1 SPACE08

During SPACE08, several types of signals were transmitted. Here, we focus only on

those sent in order to provide an accurate characterization of the channel and the commu-

nications performance. Among these signals, we consider Linear Frequency Modulated

(LFM) pulses and binary maximum length sequences (m-sequence), which is a spectrally

flat pseudo noise signal.

The carrier frequency for the LFM pulses was 13 kHz and the bandwidth was about
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Figure 2.8. Temperature in the water column on Julian date 185 to 190, during KAM11.

8 kHz. These signals are suitable for providing a first estimate of the channel impulse re-

sponse. Three trains, each consisting of 2042 fast pulses, were sent every two hours. Each

fast pulse lasts 25ms. We used this data to represent the amplitude of the channel impulse

response as a function of time.

After the LFM pulses, m-sequences were transmitted. In particular, a file consisting of

multiple repetitions of a 4095 point binary m-sequence was transmitted at a symbol rate of

6.5 kbps. These symbols were modulated according to a Binary Phase-Shift Keying (BPSK)

scheme, at a carrier frequency of 13 kHz. A transmission three minutes in duration was

made once every two hours, thus providing enough data to perform a statistical character-

ization. We first focused on the estimates of the channel impulse response by computing

the correlation between the transmitted signal and the received signal, and then analyzed

the communications performance in terms of SNR, Mean Square Error (MSE) of a Recursive

Least Square (RLS) estimator, and eventually the Bit Error Rate (BER).
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2.3.2 SubNet09

A purpose of SubNet09 was to prove the suitability of a signal format called JANUS [4]

for robust underwater acoustic communications. Indeed, this signal is designed for unso-

licited broadcasting of information relevant to nautical vessels, so that reliability is a require-

ment.

The preamble of this signal consists of three wakeup tones, a 400ms silence, and either a

Hyperbolic Frequency Modulated (HFM) sine wave or a sequence of 30 symbols taken from

a predefined frequency-hopping pattern. The latter is employed as a probe for timing syn-

chronization and for SNR estimation. The actual data are transmitted using a 13-subcarrier

Frequency-Hopping Binary Frequency-Shift Keying (FH-BFSK) modulation with a prede-

fined hopping pattern and a hopping rate of 1 hop per transmitted symbol. The data portion

of the JANUS signal is further divided into a 144-bit header and an optional payload, which

was not sent during the considered experiments.

JANUS signals are partially protected from errors by means of Physical (PHY)-layer For-

ward Error Correction (FEC), implemented through fixed interleaving and a convolutional

channel code of generating polynomials (7538, 5618). In addition, the frequency hopping

sequence is designed to escape multipath patterns featuring long delay spread.

From the preamble of these signals, we estimated the channel impulse response, which

we used in statistical characterization of the channel. Moreover, we inferred the communi-

cations performance, such as the SNR, BER and Packet Error Rate (PER), from the header of

the signal.

2.3.3 KAM11

During the KAM11 experiment, signals similar to those transmitted during SPACE08

were sent, i.e., LFM pulses and m-sequences. Nevertheless, different modulations and cod-

ing schemes were also tested. In particular, we will show the results obtained by analyzing

signals transmitted according to BPSK and Quaternary Phase-Shift Keying (QPSK) modu-

lation schemes. The carrier frequency and bandwidth of the omni-directional source were

13 kHz and 8 kHz, respectively.

We will focus on six sound files, which the source transmitted every two hours. Each file

consists of an initial period of silence, a train of 31 packets, separated in time by 280ms in
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order to avoid interference between contiguous packets, and two longer packets. Overall,

the file lasts one minute (including also silence), and in this study we will focus on the 31

data packets, each containing 6500modulation symbols, transmitted at 6250 symb/s.

We computed a first estimate of the channel impulse response, by exploiting the LFM

signals, whereas we inferred the communications performance, such as the SNR, BER and

PER, from the aforementioned packets.

2.4 Analogies and Differences

In this section, we highlight the aspects that make these data sets interesting and suitable

for statistical analysis, and useful for designing more effective communication algorithms

and networking protocols. In particular, we point out the analogies and the differences that

characterize these data sets.

One of the analogies is the fixed scenario. In fact, from a practical point of view, this is

the easiest way of deploying instruments and collecting data in the ocean or sea. Deploy-

ment operations are not always smooth, especially when the sea conditions are bad. For

this reason, even though the scientific community expresses interest in mobile underwa-

ter acoustic communications, long-term experimental trials still employ stationary nodes.

However, some efforts on mobile deployments are worth mentioning, such as those during

both SPACE08 and SubNet09. In particular, a horizontal array of hydrophones was towed

by either a ship or a vehicle, in order to capture, while moving, the signals sent by the fixed

source. These signals are not considered in this thesis. Instead, we focus on the long-term

recordings from stationary transducers, in order to infer statistics which give some insight

on those dynamics, which communications and network algorithms have to face. In fact,

even though the transmitters and receivers do not move, the environmental conditions in

the experimental area are time-varying. Such conditions vary over time intervals, which are

comparable to the amount of time needed for several packet exchanges, i.e., from a few sec-

onds to a few minutes, thus becoming of interest for upper layers protocol design. Among

those conditions, we showedwind speed and direction, which affect the surface and in band

noise, and the temperature in the water column, which is responsible for the time fluctua-

tions of the sound speed profile.

Another common characteristic is the shallow water scenario, although we can further
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subdivide the scenarios into two categories: very shallow, such as in SPACE08 and shal-

low waters, as SubNet09 and KAM11. This is justified by the growing need for those ap-

plications, such as coastal monitoring and surveillance, which are specifically thought for

shallow water. Moreover, shallow water communications are more prone to harsh channel

conditions than deep water acoustic communications, thus also becoming more challenging

from a technological point of view. It is worth noting that the considered scenarios are rep-

resentative of a quite large variety of coastal areas. In fact, the coastal region can be either

very shallow, with water depth around 15m, such as SPACE08, or shallow, characterized

by a depth around 100m, such as KAM11 and SubNet09. In the thesis, we qualitatively

assess which environmental conditions mostly affect the communications performance in

these two categories.

The employed frequencies and bandwidths are similar in all these data sets. This actually

makes it possible to compare the performance measured in these three different scenarios,

thus providing insight on which conditions most affect the performance. Moreover, the cho-

sen mid-frequencies region (from 7 to 17 kHz) represents a good trade-off between capacity

and the distances that have to be covered. As shown in Fig. 3.3 the employed center fre-

quency and bandwidth are optimal over distances of the order of a few kms. Moreover,

the developed technology works at similar frequencies and bandwidths such as Teledyne

Benthos [2] and WHOI modems [5].

The main difference among the data sets is the time scheduling of the transmissions and

recordings. During SPACE08, files, (each lasting almost one minute), were sent in order to

measure the channel conditions and the communications performance of a specific com-

munication system. In particular, m-sequences are suitable for the analysis of both channel

conditions and communications performance in time, whereas LFM pulses are useful for es-

timating the channel, without much post-processing. However, the time sampling of these

conditions and of the performance is given by the transmission rate of these files, i.e., every

two hours. In this way, we can track the average performance over intervals three minutes

long, every two hours during several days. SubNet09 presents different time sampling char-

acteristics. In fact, even though the deployment lasted for three months, it was exploited on

a few days throughout the entire summer season, in order to transmit a series of JANUS

packets. As explained before, the JANUS format embeds both modulated symbols and an



2.4. Analogies and Differences 17

Table 2.4. Spatial coordinates of the deployed devices in KAM11.

Description SPACE08 SubNet09 KAM11

Carrier frequency 13 kHz 11.5 kHz 13 kHz

Bandwidth 8 kHz 5 kHz 8 kHz

Modulation scheme BPSK FH-BFSK BPSK, QPSK

Maximum depth 15m 80m 100m

Wind monitoring yes yes no

Number of receivers 6 1 2

Number of transmitters 1 3 1

Surface conditions monitoring yes no no

Temperature monitoring no yes yes

Time sampling 3 minutes every 2 hours 1 second every 15 seconds 6 minutes every 2 hours

Duration 10 days several hours (max 9) on different days 14 days

Season October 2008 Summer 2009 June-July 2011

HFM pulse, or a probe sequence, which makes it possible to study both channel condi-

tions and communications performance. However, the presence of multiple sources, rather

than receivers, such as for SPACE08 and KAM11, is not suitable for spatial characterizations

of simultaneous performance. This, on the other hand, is possible for both SPACE08 and

KAM11. The latter is characterized by a similar scheduling as that used during SPACE08,

but consists of longer observation intervals, such as sixminutes instead of threeminutes. For

this reason, this data set is suitable for studies, that want to investigate on the relationship

between environmental conditions, evolving in intervals six minutes long, and communi-

cations performance. Table 2.4 summarizes the main characteristics of the considered data

sets.





Chapter3

Statistical Characterization of the

Underwater Acoustic Channel

3.1 Chapter Overview

This chapter is devoted to presenting a quantitative evaluation of the channel conditions

and qualitative considerations on the relationship between acoustics and the environmen-

tal conditions, measured during the experiments previously described. In order to do so,

we recall the definition of ergodic random process, which is the underlying assumption

throughout the chapter. A random process is defined to be ergodic, if its statistics can be de-

rived from the time series of its realizations. We assume that the CIR is an ergodic random

process.

First, we estimate the CIR from experimental data sets, then we derive the time corre-

lation coefficients and the power delay profiles. Successively, we focus on the impact of

the estimated time-varying CIRs on the measured communications performance in terms

of received SNR. Finally, we verify the Wide Sense Stationarity (WSS) assumption for

the SNR process, and we validate a channel model, which has been proposed for Ultra-

WideBand (UWB) channels in the literature.
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3.2 Motivations and Related Work

The work presented here aims at quantifying the channel characteristics, that affect the

performance of a communications system. The presented channel characterization provides

useful insight for designing suitable solutions both at the PHY and upper layers of the com-

munication stack. Specifically, we want to identify the aspects of the channel, that limit the

performance of the most used communications systems. For this reason, we quantify the

time correlation coefficient, from which the coherence time can be derived, and the power

delay profile, from which the time spread of the channel can be inferred. Coherence time

and time spread are the most important parameters for a receiving system, since they de-

fine how efficiently the channel can be used. Broadly speaking, both these metrics indicate

the level of problems that a receiver has to compensate for, in terms of Doppler shift and

spread, and distortion. Depending on the type of receiver, these phenomena give rise to loss

of synchronization, Inter Symbol Interference (ISI), Inter Channel Interference (ICI).

Similar to these evaluations of the CIR and its second order statistics, we mention the

results shown in [6–9], for various frequencies and using different probe signals. However,

unlike most previous work, we perform here an extensive evaluation, spanning different

durations and periods at different locations, thus providing a richer variety and examples

of possible dynamics. Part of the presented results can be found in [10].

Tackling the problem from a different perspective, i.e., by considering the impact of the

channel on the upper layers of the communication stack, we focus on the temporal beha-

vior of the SNR. Since the SNR metric depends on the chosen receiving system, here, we

deal with coherent and non-coherent receivers, since all receivers fall into any of these two

categories. A coherent receiver is sensitive to the phase changes of the transmitted signal,

whereas the non-coherent receiver is only affected by the amount of energy received in a

symbol time. Moreover, we will present both instantaneous and average SNR estimates,

even though we will focus more on the average communications performance, typically

referred as packet SNR, which have a more relevant impact on the network protocols per-

formance.

This channel characterization is quite different from those, that can be found in [9,11,12],

where the authors showed how accurate the fitting between the statistics of a known Ran-

dom Variable (RV) and the estimates from experimental data can be. In fact, here, we aim
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more at quantifying the quality of the communications systems proposed for underwater

acoustic communications, rather than finding a universal statistical model for the underwa-

ter channel.

In this chapter, we also deal with the assumption of wide-sense stationarity and in parti-

cular we evaluate the time interval over which the evolution of the chosen metric, represent-

ing the channel, can be modeled as a WSS random process. A WSS process is characterized

by time invariant first and second order statistics. Such condition is required whenever an

estimate is performed. This study has a twofold purpose: first, we validate the WSS prop-

erty in order to estimate the second order channel statistics; second, since we envision the

employment of a data adaptive estimator, which is able to predict the quality of the channel,

we need to prove wide-sense stationarity, given that these estimators are optimized under

the assumption that the channel fluctuations can be represented as a WSS random process.

This perspective will be further developed in Chapter5.

In the literature, many stationarity tests, especially focusing on the RF wireless channel,

such those in [13–15], have been performed. However the stationarity properties of the

underwater acoustic channel have not been studied yet. The results presented here, have

been published in [16].

Eventually, we propose a channel model, useful for both simulation and implementation

in coherent equalizers, which make use of channel estimates. In fact, as shown in the fol-

lowing sections, the channel exhibit high attenuation, large channel delay spread, Doppler

spread and, consequently, incur low throughput and reliability. In particular, the large de-

lay spread causes inter-symbol interference (ISI), which can be compensated by equalization

of the received sequence. However, the performance of coherent equalizers is highly sen-

sitive to the availability of accurate channel estimates. To this end, it is crucial to develop

channel estimation strategies that exploit the intrinsic nature of underwater acoustic prop-

agation to improve the estimation accuracy. In a shallow water environment, not only the

channel is characterized by a sparse structure but also by phenomena such as diffuse scat-

tering, diffraction effects and frequency dispersion, which are better represented by a dense

channel. We therefore validate a novel Hybrid Sparse Diffuse (HSD) model, first proposed

in [17] for UWB channels, which describes the channel as the superposition of two indepen-

dent components: the sparse component, which models the resolvable multipath signals,
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owing to the fine delay resolution, and the diffuse component, which models other propa-

gation phenomena, such as dense scattering and frequency dispersion.

In the literature, several underwater acoustic channel estimators based on sparse approx-

imations and compressed sensing have been proposed and successfully employed, such as

those in [18], [19], and [20]. In [21], a comparative study among purely sparse and Least

Squares (LS) channel estimators has been performed, showing that the former, while im-

proving the estimation accuracy when the channel is truly sparse, are robust even when

the channel does not exhibit a sparse nature. However, in many scenarios of interest, e.g.,

shallow water environments, also a dense channel has been observed. For these scenarios, a

purely sparse model does not appropriately represent the channel behavior, which is instead

suitably described by the proposed model. These results have been published in [22].

3.3 Overview on Models for the Underwater Acoustic Channel

3.3.1 Environmental Conditions and Channel Characteristics

We briefly mention the main environmental conditions, that have an impact on the com-

munications performance, especially in the analyzed data sets. As pointed out before, we

exclusively focus on shallow water scenarios, in which acoustic waves travelling from the

source to the destination reach the bottom and/or the surface at least once [23]. In these

scenarios the acoustic waves interact more with the boundaries, both the surface and the

bottom, thus giving rise to more severe channel conditions, since the received signals are

more attenuated and scattered. In particular, the coefficient of absorption of the bottom de-

pends on the bathymetry and on the type of material on the sea floor, which can be sandy,

rocky or muddy, whereas the coefficient of reflection of the surface depends on the rough-

ness of the surface. If waves break on the surface, air bubbles are trapped in the upper layers

of the water column, giving rise to further absorption and scattering phenomena.

Another environmental parameter, that plays a key role in the acoustic propagation, is

the sound velocity over the water column, also called SSP. This measure is defined over

the vertical space, since the ocean is a vertically stratified medium, i.e., the water conditions

vary more heavily in the vertical than in the horizontal space. The SSP is a function of both

time and space, and it determines the propagation paths of the acoustic waves. Finally, the



3.3. Overview on Models for the Underwater Acoustic Channel 23

environmental conditions mostly affecting the acoustic propagation, and therefore the com-

munications performance, in a shallow water scenario are: i) the sound speed profile; ii) the

bathymetry; iii) the type of bottom; iv) the surface roughness, which depends on the wind,

and v) inhomogeneities in the water. It is worth noting that among these environmental con-

ditions the SSP, the surface roughness and the inhomogeneities are time-varying conditions

(though on different time scales).

The characterization of the channel is a key step in the development, design and study

of the performance of communication schemes and networking protocols. Here we will

discuss and analyze the main characteristics of the channel, which are more important to

properly design communication algorithms and networking protocols. In this section, we

want to describe the features of the channel, that can be found in the literature, especially in

studies on the physical layer, such as [18–20,24, 25].

The channel considered here belongs to the class of ultra-wideband (UWB) channels,

since the center frequency has the same order of magnitude as the bandwidth of the system.

Moreover, since the sound speed can be approximated as 1500m/s, i.e., five times faster than

in the air, but two hundred thousands times slower than electromagnetic waves in the air,

the first and last arrivals of the channel reach the receiver separated in time by more than a

symbol period, which means that the channel is frequency-selective. The lack of a channel

model for the UWB case, also in the terrestrial wireless case, limits the development and

improvement of these communication systems. In [18–20] the underwater acoustic channel

is represented as simply sparse, i.e., the arrivals can be distinguished from each other and

there is no energy between two successive arrivals. Frequency-selectivity is one of the main

features of the underwater acoustic channel together with the time-variability.

As underscored in Section 3.3.1, the propagation depends on the environment which

changes in time, thus producing a time-varying channel even though the transmitter and

the receiver are static. Time-variability and frequency-selectivity limit the communications

performance and require the employment of techniques able to compensate for them, such

as equalizers and orthogonal frequency division modulation (OFDM) schemes.

Another peculiarity of the underwater channel is the relationship between the capacity

and the distance, established in [26], by using deterministic functions, representing noise

and attenuation. This relationship states that the longer the link, the smaller the available
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bandwidth. This result is very important when deploying nodes, which then can transmit

up to a certain distance, given the communication bandwidth and center frequency.

Therefore, the main characteristics of the communication channel are:

• frequency selectivity

• time-variability

• capacity dependent on the distance.

In this thesis, we quantitatively evaluate the time variability and frequency selectivity of

the channel, measured during three experimental trials, and we study their effect on the

communication performance.

3.3.2 Models for the Underwater Acoustic Channel

In this section, we discuss the models for the underwater acoustic channel, presented in

the literature so far. In particular, we present here only one model, which gives insight on

the aforementioned relationship between capacity and distance, since this is one of the most

used models to analyze network protocols.

In the literature, we identify three approaches to model the underwater acoustic chan-

nel: deterministic, statistical and hybrid. Deterministic models represent the channel as a

function of different input variables, such as the employed frequencies, the distance, and the

like. Among these deterministic channels, we mention channel simulators and ray tracers,

such as [27], which, based on the environmental characteristics, and by using the physics

of the acoustic propagation, provide a channel impulse response at a certain moment and

position.

Even though these models are useful to better understand the cause-effect relationship

between the environment and the communication performance, they are limited in repre-

senting the time variability and the space distribution of the quality of the channel. For this

reason, statistical models have been proposed in [11, 12], specifically for representing the

time-varying conditions over fixed links. Nevertheless, these models cannot be completely

generalized to different scenarios, e.g., with different bathymetry, sound speed profiles and

surface conditions.
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Therefore, hybrid channel models try to represent both the time-varying conditions and

the deterministic components of the channel impulse response, which could be derived from

the geometry of the scenario. Nevertheless, the usability of these models is limited, since

they require both a sufficient knowledge of the environment, like the deterministic models,

and of the level of time-variability, like statistical models, thus leading to a cumbersome

parameterized model.

We now give an example of a model proposed in [26], that is sufficiently detailed to

give insight, especially for deployment, but general enough to be easily applied on different

scenarios. In the literature, this model is also used to infer the performance of network

protocols, nevertheless, as proved in [28, 29] a channel simulator, properly fed with time-

varying environmental conditions, should be employed in order to obtain more accurate

results.

3.3.3 Example of a Path Loss Model

Path loss A(d, f) is defined as the attenuation on a single path from the transmitter to

the receiver. As part of the transmitted power Ptx is lost, mainly due to spreading loss and

absorption loss, the received power is:

Prx =
Ptx

A(d, f)
(3.1)

Spreading loss is due to the distribution of the fixed amount of transmitted power over

an increasingly larger surface area when the signal propagates away from the source. This

kind of loss is expressed as a polynomial function of the distance between the source and

the destination; its degree (k), called the spreading factor, depends on the geometry of the

propagation. In shallow water waves spread with a cylindrical shape (k = 1) whereas in

deep water waves experience spherical propagation (k = 2).

The absorption loss is due to the conversion of acoustic pressure into heat. The absorp-

tion loss is computed through the absorption coefficient a(f) which is a function of signal

frequency. This function has been proposed by Thorp, who found a fitting function from

empirical measurements obtained with low-frequency signals.

a(f) = 0.11
f2

1 + f2
+ 44

f2

4100 + f2
+ 2.75 · 10−4f2 + 0.003. (3.2)
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The absorption coefficient for frequency above a few hundreds Hz is presented in Equation

(3.2), and is measured in [dB/km] while frequency is expressed in kHz.

Path loss is described by the equation (3.3) expressed in linear scale.

A(d, f) = dka(f)d (3.3)

where dk is the counterpart of radio attenuation in the air and [a(f)]d is called the absorption

loss.

3.3.4 Noise in Underwater Channel

Themain causes of noise in the underwater environment are turbulence, shipping, wind,

and thermal noise. Thesemajor sources of noise are dominant in different bands of the signal

spectrum. In Figure 3.1 the PSD of noise is depicted with different colors in order to stress

this fact.

Noise PSD is impacted by turbulence in the very low frequency region (f ≤ 10 Hz),

whereas it is influenced by shipping in the band from ten to a hundred Hz. In the following

region, which is the operating region of the majority of acoustic systems, the most important

noise source is wind. Finally thermal noise, which is the noise due to electrical components

in the receiver circuits, is dominant in the region beyond a hundred kHz. These contribu-

tions are expressed in terms of power spectral density.

Nt(f) = 17− 30log(f) (3.4)

Ns(f) = 40 + 20(s− 0.5) + 26log(f)− 60log(f + 0.03) (3.5)

Nw(f) = 50 + 7.5w1/2 + 20log(f)− 40log(f + 0.4) (3.6)

Nth(f) = −15 + 20log(f) (3.7)

3.3.5 Signal to Noise Ratio at the Receiver

From the above model, the SNR can be inferred as the ratio between the received power

usually expressed in µPa and the noise power in the signal band. In the following, we do

not use this model, but we estimate this metric on the available data set. However, this part

of the study is useful to investigate further the relationship between the communications

performance, the distance, and the employed carrier frequency. Assuming that the signal
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Figure 3.1. Power spectral density of noise in the underwater channel.

is transmitted in a sufficiently narrow band, the noise PSD can be approximated with a

constant value. Hence the SNR becomes:

SNR =
Prx

B(d)N(f)
. (3.8)

Combining equation (3.1) with equation (3.8) we get:

SNR =
Ptx

A(d, f)N(f)B(d)
(3.9)

Drawing the quantity 1
A(d,f)N(f) it can be noticed that an optimal transmission frequency

exists that maximizes SNR. This is depicted in Figure 3.2. In this study a piece-wise log-

linear approximation of the optimal frequency and bandwidth derived in [30] is employed.

Figure 3.3 shows the dependence on distance of both the optimal communication frequency

f0(d) and the bandwidth B(d), defined as B(d) = {f : SNR(d, f) ≥ SNR(d, f0)/2}. Since the
actual frequency and bandwidth values are obtained by lengthy numerical integrations, a

piece-wise log-linear approximation for both f0(d) and B(d) is employed. This approxima-

tion is obtained by calculating the coefficients φ0, φ1, of the tangent lines in the actual trend

of f0(d) and B(d) in logarithmic scale, hence frequency (in logarithmic scale) is given by:

f = φ0 + φ1d (3.10)
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Figure 3.2. The quantity (A(d, f)N(f))−1 drawn for some distances.

where d is also in logarithmic scale. The accuracy of these approximations is shown in

Figure 3.3.

3.4 Channel Characterization from Experimental Data

3.4.1 Estimates of Channel Impulse Responses

In this section, we present the estimates of the CIR for the underwater acoustic channels

measured during SPACE08, SubNet09, and KAM11. This study is required for the following

statistical characterization.

We estimate the CIR by using the HFM and LFM pulses, during the three experiments.

Thesewaveforms have been specifically designed to have a peaked autocorrelation function,

so as to provide a first estimate of the channel, by simply applying an energy correlator at the

receiver, i.e., by matching the transmitted waveform with its reversed complex conjugated

replica. It can be noticed that these estimates are accurate only if the SNR is sufficiently high.

We recall that the three experiments have also different observation periods, and therefore

the results are limited to those intervals. However, we will show here plots that juxtapose
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Figure 3.3. Piece-wise log-linear approximation of B(d) and f0(d) as a function of distance.

consecutive channel realizations: the time at which the realization is measured is reported

on the y-axis, whereas the x-axis shows the observation time within a single realization.

In particular, for SPACE08, we consider the train of fast LFM pulses, which lasts almost

one minute and was repeated three times. This experiment was designed in order to obtain

high SNR at the receiver, thus providing accurate estimates of the CIR. The repetition of

three files, each consisting of a train of LFM pulses, makes it possible to constantly estimate

instantaneous realizations of the channel for a time interval of almost three minutes. Since

the time interval between two consecutive pulses is exactly known, the estimates of the

CIRs could be aligned with respect to the first arrival. In this way, it is possible to follow the

fluctuations of each arrival. Figure 3.4 represents the estimates performed on a file received

during Julian date 295 at noon, between the source and the first hydrophone at S5.

For SubNet09, we obtain the CIRs from the HFM, which were embedded in the JANUS

format at the beginning of the packet. However, since the received SNR was not always

sufficient to get accurate estimates for all receivers, we consider only the signals measured at

the deepest hydrophone H4 (80m), at which the received SNRwas sufficient. Transmissions

were made every 30 seconds during a period of up to 9 hours. Nevertheless, the transmitter
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Figure 3.4. Pseudocolor plot of the amplitude of the CIR measured during SPACE08, at S5, which is

1000m from the transmitter.

and the receiver were not synchronized with respect to a shared clock, and therefore it was

not possible to synchronize all the estimates to the first arrival, but rather we aligned them

with respect to the maximum amplitude arrival. In this way we could not track the time

fluctuations of each arrival. From Fig. 3.5, we can observe that link T1–H4 is quite stable:

a second, faint arrival is found between 10 and 20ms, and a very strong main arrival is

sometimes preceded by a smaller reflection.

During KAM11, the same LFM pulses used for SPACE08 were employed, therefore we

could use the same estimation process for this experiment. However, the one minute file

was repeated six times, so as to provide an estimate over an interval lasting six minutes. In

this way, we could get insights on the fluctuations of the CIR over that interval. Figure 3.6

shows a pseudocolor plot of the amplitude of the CIR, measured at receiver R1, which was

3 km from the source. The observation time is about three minutes and a half, since after

that, a synchronization problem occurred.
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Figure 3.5. Pseudocolor plot of measured channel impulse response amplitudes for the link between T1

and H4, during SubNet09, on June 5th.

3.4.2 Time Correlation Coefficient

The correlation coefficient is estimated starting from the CIR. Given the set Cτ of all pairs
of responses separated by a time lapse of τ , we align these responses to the time of arrival

of their respective maximum-amplitude taps, we compute the normalized correlation of

signals within each pair, and finally take the average over all pairs in Cτ as follows [31]

ρ(τ) =
1

|Cτ |
∑

Cτ

∣

∣

∣

∣

∑

t

g∗(t, 0)g(t, τ)

∣

∣

∣

∣

√

∑

t

|g(t, 0)|2
∑

t

|g(t, τ)|2
, (3.11)

where g(t, 0) and g(t, τ) are any two channel responses separated by a time lapse of τ , and

|Cτ | is the cardinality of the set containing such pairs.

The time correlation coefficient measured during SPACE08 on Julian date 295 is shown

in Fig. 3.7. The coefficient ρ is estimated by considering CIRs, presented in Fig. 3.4, for the

links between the source and all the receivers. We can notice that the correlation coefficient
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Figure 3.6. Pseudocolor plot of measured channel impulse response amplitudes at receiver R1 at 3 km

from the transmitter, on Julian date 187, at 8 am GMT, during KAM11.

increases in correspondence to the almost-periodic fourth arrival peak, which occurs every

ten seconds. The same behavior can be observed for signals at S6, whereas less correlated

CIRs are measured at the shorter links, S3 and S4. Here, we showed the correlation coef-

ficient, estimated among the CIRs in only one file, lasting almost one minute. Therefore,

the same study can be applied to all the files, in order to infer the time variability of the

correlation function.

For SubNet09, given the experimental setup, the values of τ we can measure are integer

multiples of 30 s: for instance, for τ = 30 s, we perform an ensemble average of the correla-

tion coefficients between all signals transmitted at (0, 30 s), (30 s, 60 s), and so forth. Fig. 3.8

collects the correlation coefficients of the channel impulse responses as a function of the

time displacement τ for the links between all transmitters and H4. The general behavior of

the curves is to decrease to a fairly stable value, which depends on the transmitter-receiver

pair. By defining the coherence time as the offset after which the correlation coefficient

falls below some practical value (say, 0.8 [7]), we observe that, from the previous evalu-
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Figure 3.7. Channel correlation coefficient ρ as a function of the time lapse τ , during SPACE08, at Julian

date 295, noon (GMT).

ation, we can infer the coherence time for these links. In particular, we note that within

the inter-transmission time interval of 30 s the correlation of the T3–H4 channel falls quite

abruptly, suggesting that the coherence time is indeed short; a higher rate of signal trans-

mission would help estimate the actual coherence time with greater precision.

For KAM11, we replicate the same study as that performed for SPACE08. Here we con-

sider only the closest receiver (R1 at 3 km), at Julian date 187 during the time interval for

which we showed the CIRs. As expected, there is very low correlation between successive

CIRs, separated in time by τ . In fact, during the chosen time window, patterns in the arrivals

structure do not occur.

3.4.3 Power Delay Profile

The analysis of the CIR also provides some insight on its average duration, called the

channel time spread, which is required for tuning the parameters of adaptive signal pro-

cessing algorithms at the receiver. The channel time spread can be inferred from the PDP,

i.e., the mean square value of the amplitude of the CIR. When considering the SubNet09
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Figure 3.8. Channel correlation coefficient ρ as a function of the time lapse τ in June. The considered links

are from each transmitter T1, T2, T3 to hydrophone H4.

data set, we consider arrivals spaced by at least 2ms and carrying at least 1% of the energy

of the peak arrival. All PDPs are normalized to their peak value and aligned to the time of

the strongest arrival. The measured values for all links in June are summarized in Table 3.1.

Table 3.1. Measured time spread inms for all links in June.

tx/rx T1 T2 T3

H1 20 20 3

H2 18 22 5

H4 ∼ 0 15 10

In regard to the SPACE08 and KAM11 data sets, we show here the time series of the

estimated channel time spread, during one specific day. In particular, for SPACE08, we

consider Julian date 296. The time series is shown in Fig. 3.10: each point represent the
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Figure 3.9. Channel correlation coefficient ρ as a function of the time lapse τ , during KAM11, Julian date

187, 8 am, at receiver R1.

measured value of the duration of the power delay profile, estimated over one file every

two hours. The time spread is defined here as the interval of time within which 90% of the

power delay profile lies. From Fig. 3.10, it can be noticed that longer links are less affected by

multipath arrivals, which may be absorbed before reaching the receiver. However, the time

spread does not exceed 3ms at all the receivers, thus representing quite good conditions.

Analogously, we show the results for KAM11, for Julian date 187 and receiver R1. Fig. 3.11

represents the time series of the time spread during one day. It is worth noting how the time

spread varies in one day, from a minimum value of 7ms to a maximum of 20ms. These con-

ditions heavily affect the communication performance in terms of SNR, and consequently

BER and even PER, if proper decoding algorithms are not employed.

3.5 Average Channel Quality Metrics

3.5.1 Instantaneous and Average Signal to Noise Ratio

Here, we show the instantaneous input SNR, estimated from the data collected during

the SubNet 2009 sea trials and the average output SNR, inferred from the KAM11 data set.

We exploit the sent probe signal, a chirp or a set of frequency-hopped frequency-shift keying



36 Chapter 3. Statistical Characterization of the Underwater Acoustic Channel

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
D

e
la

y
 s

p
re

a
d

 [
m

s
]

Time [h]

 

 

S3

S4

S5

S6

Figure 3.10. Time spread estimate τ as a function of time, during the Julian date 296 at receivers S3, S4,

S5 and S6, in SPACE08.

modulation symbols, in order to obtain SNR traces. This SNR is an instantaneous estimate

of the ratio between the received energy, subtracted by the in band noise power, and the

noise power.

We consider the experiment starting at 23:30 GMT on 30 August 2010 and lasted un-

til 8:33 GMT on the following day. For reference, we report in Figure 3.12 an example of

SNR time series, for the links between transmitter T1 and all hydrophones, for an experi-

ment lasting almost 9 hours, where transmissions were performed once every 15 s. From

this figure we observe a higher SNR on average for the T1–H4 link, which is due to the

downward-refractive behavior of the channel during SubNet09; in addition, we observe

that in this particular case all links experience time-varying fading effects, as not only do the

SNR samples oscillate around their average value, but this average value also varies follow-

ing changes in propagation conditions (for example, the SNR over T1–H2 steadily increases

throughout the experiment).

During KAM11, we evaluate both the input andwhat we call output SNR, averaged over

one second. The latter is estimated as the ratio between the energy associated to a transmit-
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Figure 3.11. Time spread estimate τ as a function of time, during the Julian date 187 at receiver R1 in

KAM11.

ted symbol and the power of the noise plus the interference process. We can estimate this

value by considering the software decision at the output of an equalizer. Here, in particular,

we consider a Decision Feedback Equalizer (DFE). We show here the time series of the ob-

served SNRs over an interval of six minutes at 4 am on Julian date 187 and at 00 am on date

188. The length of the observation interval allows us to measure the fluctuations of the SNR

due to both rapid and slow environmental changes.

In Figures 3.13(b) and 3.14(b) we plot the estimated output symbol SNR, averaged over

a packet, at times 4 am and 00 am, respectively. The used parameters for the DFE are: a

feed-forward filter length of 1ms, a feedback filter length of 10ms, and we are combining

the received signals at channels 1, 4, 7 and 10, which respectively are 45.55m, 45.4m, 45.25m

and 45.1m below the surface.

Over the observation interval, the SNR varies between 9 and 17 dB at 4 am, and between

4 and 12 dB at 00 am. We observe a quite smooth and almost periodic fluctuation, in both

Figures 3.13(b) and 3.14(b). In fact, we can see an increased SNR at minutes one and five

in Figure 3.13(b), and at minutes three and five in Figure 3.14(b). This behavior suggests

that it may be possible to predict the communication system performance over subsequent
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Figure 3.12. Time series of SNR in dB for transmissions between T1 and all hydrophones during an

experiment in SubNet09. Moving averages are provided as a solid black line.
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(b) Average output SNR on Julian date 187, at 4

am during KAM11.

Figure 3.13. Julian date 187, at 4 am during KAM11.

packets: we will investigate this topic in Chapter 5.

Figures 3.13(a) and 3.14(a) show the average packet input SNR, which is computed as the

ratio between the average energy of the received packet and the in band noise power mea-

sured before the train of packets. We observe the same fluctuations that we notice for the
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(a) Average input SNR on Julian date 188, at 00 am

during KAM11.

0 1 2 3 4 5 6
4

5

6

7

8

9

10

11

12

13

O
u

tp
u

t 
a

v
e

ra
g

e
 S

N
R

 [
d

B
]

time [minutes]

(b) Average output SNR on Julian date 188, at 00

am during KAM11.

Figure 3.14. Julian date 188, at 00 am during KAM11.

output SNR, even though the input SNR varies between 24 and 30 dB in Figure 3.13(a) and

between 7 and 17 dB in Figure 3.14(a). The correlation between the input and output SNRs is

more evident in Figure 3.13 than in Figure 3.14, because for that epoch the strongest arrival

was not always the most stable. The gap between the input and output SNR represents the

loss due to ISI and shows how strong the most stable arrival is relative to the other arrivals.

We measure and show the input SNR, in order to test and prove that the fluctuations ob-

served for the output SNR were caused by the environment and not by the post-processing

on the data. Given that we observe the same almost periodical behavior for the average

input and output SNRs, we can conclude that those fluctuation are environment-driven.

We can also observe that the decrease or increase rate of the input and output SNR are

slightly different, thus suggesting that the relative strength of the most stable arrival to the

multipaths arrivals is not constant over time, but rather depends on the rapidly varying

not-consistent arrivals, causing ISI. Comparing Figures 3.13 and 3.14, we can also notice

that higher input SNRs, such as those in Figure 3.13(a), do not always correspond to an

equivalent improvement of the output SNRs. For example, we observe a gap between the

input SNRs, at dates 187 and 188 around the sixth minute, of about 16 dB, whereas the corre-

sponding gap between the output SNRs is only about 4 dB. This means that, for the system

under consideration (wide-band, single carrier), if we increase the transmission power, we

do not always get correspondingly better communications performance. This is why, in

a frequency selective scenario, power control and adaptive modulation techniques do not
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have the same performance. In this case, power control would not improve the system per-

formance as much as an updated adaptive modulation scheme would. Also for this reason

we will investigate this technique in Chapter 4.

3.5.2 Channel Energy Time Series

Another metric, proportional to the input SNR, is the channel energy, which we esti-

mated for the SPACE08 data set. Specifically, we analyze its fluctuations in time. Calling

g(t) the estimated channel impulse response measured in the time interval t ∈ [0, NTs], we

estimate the energy as:

Eg = Ts

N−1
∑

i=0

|g(i)|2 (3.12)

where Ts is the sampling interval. We compute the channel estimate over segments of the

received signal that are 400 symbols long (which corresponds to 60 ms). After each esti-

mation we shift the window by 100 symbols, which corresponds to 15 ms, resulting in an

estimate every 15 ms over windows of 60 ms. Figs. 3.15(a), 3.15(b), 3.16(a) and 3.16(b) show

the energy time series during Julian dates from 292 to 301 (which corresponds to days from

October 18 to 27) in a dB scale. We can notice that the energy of the communication channel

between the transmitter and the closest receivers (S3 and S4) is spread in the same interval,

[−26,−38] dB, whereas the energy of links between the source and systems S5 and S6 ex-

hibits greater macro variability1. More specifically the energy of the channel between the

transmitter and S5 is in the interval [−75,−45] dB, and the range of fluctuations at S5 is

much greater than it is at S6. This observation implies that not only the distance but also the

orientation between the transmitter and the receiver matters for underwater acoustic com-

munications. It can be noticed that the four time series have the samemain fluctuations: this

suggests that those macro fluctuations are due to environmental changes which affect the

receivers in the same way.

3.6 Wide Sense Stationarity Validation

In this section, we address the problem of validating the wide-sense stationarity assump-

tion, which is usually made when estimating the statistics of a process. First, we will briefly

1For macro variability we mean fluctuations over intervals of several hours
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(a) Channel energy time series at S3 from Julian

Date 295 to 301.

(b) Channel energy time series at S4 from Julian

Date 295 to 301.

Figure 3.15. Channel energy of the link between the source and receiving stations S3 and S4 (200 m

Southeast and Southwest).

(a) Channel energy time series at S5 from Julian

Date 295 to 301.

(b) Channel energy time series at S6 from Julian

Date 295 to 301.

Figure 3.16. Channel energy of the link between the source and receiving stations S5 and S6 (1000 m

Southeast and Southwest).

present the methodology that we used and the results regarding the channel energy for the

SPACE08 data set, which is the one presenting the most stable time series of the commu-

nication performance. The same study could be applied to the SubNet09 and KAM11 data

sets, which however have not been considered here. In fact, the former is not suitable for

this study, since the intervals of observations were too long (15 s), whereas the latter has just

been collected and work is in progress.
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3.6.1 Stationarity Test

The used procedure is described in detail in [32] but is also briefly presented here. The

method aims at determining the stationarity time scale of a signal by comparing the local

spectra statistics to the global spectrum, obtained by marginalization. We compute the local

spectra by using the multitaper spectrogram defined as:

Sg,K(t, f) =
1

K

K
∑

k=1

Sg
(hk)(t, f), (3.13)

where Sg
(hk)(t, f) is the spectrogram computed with the k-th Hermite function, and is given

by:

Sg
(hk)(t, f) =

∣

∣

∣

∫

g(s)hk(s− t)e−i2πfsds
∣

∣

∣

2
. (3.14)

The symbol hk(t) stands for the k-th Hermite function, whose length is Th. We will vary

Th in order to test the stationarity for different time intervals. Usually what one can do

is to consider the variability of the local spectra with respect to the global spectrum but,

given that a variability is always observed, we need to compare these variations to those

between the local and global spectra of the surrogate data. A surrogate data set is a station-

arized version of the experimental data set. It is obtained by multiplying the amplitude of

the Fourier transform of the original time series by an independent identically distributed

phase sequence and then applying the inverse Fourier transform. In this way the correlation

function of the obtained process depends only on the interval between two sequences and

not on the absolute times at which they are taken. What we compute are just realizations of

the random process, therefore computing more realizations by randomization improves the

test. We will call the number of randomizations J . Then we compute the distance between

the local spectra and the Global Spectrum (GS) obtained by marginalization, which can be

expressed as:

GS = E[Sg,K(t, f)]t =
1

T

T
∑

i=1

Sg,K(i, f). (3.15)

The distance we compute is defined as a combination of the Kullback-Leibler divergence

and the log-spectral deviation, respectively defined as [33]:

DKL(L,G) =

∫

Ω
(L(f)−G(f)) log

L(f)

G(f)
df, (3.16)



3.6. Wide Sense Stationarity Validation 43

DLSD(L,G) =

∫

Ω

∣

∣

∣ log
L(f)

G(f)

∣

∣

∣df, (3.17)

where L(f) and G(f) are respectively the local and the global spectrum, and f is the fre-

quency variable over the space Ω. The combination that we consider is the following:

D(L,G) = DKL(L̃, G̃) · (1 +DLDS(L,G)) (3.18)

where L̃ and G̃ are the normalized versions of L and G. We compute the N distances be-

tween the N local spectra and GS, and for each surrogate data we do the same, i.e., we have

J sets withN distances each. We consider the variance of each set ofN distances, hence only

a value for the original data which we will indicate as Θ1 and J values for the surrogates,

which we will indicate as a vector Θ0. The authors in [32] showed that the elements of Θ0

can be thought as realizations of a random variable γ distributed according to a Gamma

distribution, which can be represented by the following probability distribution function:

f(x; a, b) = xa−1 exp
−x
b

baΓ(a)
for x ≥ 0, (3.19)

where a and b are two positive parameters. Thanks to this result, we can estimate the param-

eters of the Gamma distribution from the variances computed on surrogates. We choose a

probability of failure of the test (in our case 5%) and, from the cumulative distribution func-

tion, we determine the threshold of the variance such that the probability that the variance

is less than or equal to that threshold is 95% (we will call this threshold α). Then the test can

be written as:

d(x) =







1 if Θ1 > α : non stationary;

0 if Θ1 ≤ α : stationary.
(3.20)

When the hypothesis of stationarity is rejected, a measure of non-stationarity, which is called

index of non-stationarity (INS) is defined as

INS :=

√

Θ1

E[γ]
, (3.21)

where E[γ] is the average value of the random variable, which we approximate as the av-

erage of the elements in the vector Θ0. Given that the INS depends on the length of the

Hermite window Th, the authors in [32] defined a scale of non-stationarity (SNS) which is

the normalized value of Th such that the INS is maximum:

SNS =
1

T
argmax

Th

INS(Th). (3.22)
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This scale of non-stationarity gives a measure of how variable the process is. In this work

we do not compute this measure, because we are primarily interested in the stationarity

interval, but leave it as an interesting topic for future study.

3.6.2 The Interval of Stationarity

In this subsection, we present the results of the stationarity test and the estimate of the

interval of stationarity. In particular, we are interested in assessing the wide-sense station-

arity over different time scales: a short time scale (of the order of tenths of a second) which

concerns physical layer applications, and a long time scale (of the order of tens of seconds)

for upper layer applications, such as Automatic Repeat reQuest (ARQ), medium access con-

trol (MAC) and routing protocols. For example, we want to understand whether or not we

can assume stationarity in case we want to develop a predictor of the link quality in the

second layer of the ISO/OSI architecture, which is responsible for packet reliability and for

medium access control. In this case we can trigger decisions, such as not to access the chan-

nel in the next step because the predicted channel quality is bad. Nevertheless, for a scenario

where the distances of nodes are between some hundreds of meters to a few kilometers, the

packet travel time 2 is between tenths of seconds to one second 3, so that, considering the

feedback and possible retransmissions allowed in the protocol, the delivery time becomes

of the orders of a few seconds.

In the implementation of the procedure [34], we test the stationarity of the process in a

time window 90 s long, and we choose to compute J = 50 randomizations. Th is varied

from 1001 to a third of the length of the time series, with increments of 500 samples at every

iteration. We estimate the spectrum by using the first 10Hermite functions and we estimate

the Gamma distribution parameters as maximum-likelihood estimates.

The test, performed on the whole data set, gives as a result that the process is stationary

for all the considered Th. Therefore the process is stationary over at least a three-minute

period. This is verified for all the receiving systems. This implies that we can study data

adaptive estimators for both the physical and the upper layers, assuming stationarity for the

received energy process. Moreover, thanks to this result, we can estimate the power spectral

2The travel time is the time that the sound wave needs to propagate from the transmitter to the receiver.
3We consider here a sound speed of 1500 m/s, and distances between 200 m and 1500 m
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density of the overall energy over three-minute intervals, in order to see how variable the

spectrum is over time.

3.7 Validation of a Hybrid Sparse Diffuse Channel Model for Un-

derwater Acoustic Channels

In this section, we show the numerical results on the validation of a channel model,

which has been proposed for ultra wideband channels in [1, 17, 35]. Underwater acoustic

channels are actually ultra wideband, i.e., the bandwidth is comparable to the central fre-

quency, as in the considered data sets. We also prove in Section 3.4.3 that the CIR can be

thought as sparse, as also studies in [19,20] confirm. Here, we validate an hybrid sparse and

diffuse channel, by using the SPACE08 data set, and we quantify how accurate this model

is compared to the purely sparse or diffuse models.

3.7.1 Brief Model Overview

We consider a point-to-point underwater acoustic channel. The source transmits a se-

quence ofM pilot symbols, x(n), n = −(L−1), . . . ,M−L, over a channel h(l), l = 0, . . . , L−1

with known delay spread L ≥ 1. The received discrete-time, baseband signal over the cor-

responding observation interval of length N = M − L+ 1, is given by

y(n) =
L−1
∑

l=0

h(l)x(n− l) + w(n), n = 0, . . . , N − 1,

where w(n) ∈ CN (0, σ2
w) is Independent and Identically Distributed (IID) circular Gaussian

noise.

By collecting the N received, noise and channel samples in the column vectors

y = [y(0), y(1), . . . , y(N − 1)]T

w = [w(0), w(1), . . . , w(N − 1)]T ∈ C
N

h = [h(0), h(1), . . . , h(L− 1)]T ∈ C
L

respectively, and lettingX ∈ C
N×L be theN×L Toeplitz matrix associated with the pilot se-

quence, with the vector of the transmitted pilot sequence [x(−i), x(1− i), . . . , x(N − 1− i)]T
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as its ith column, i = 0, . . . , L− 1, we have the following matrix representation:

y = Xh+w. (3.23)

The discrete baseband channel vector h is modeled according to the HSD model developed

in [1, 17] for UWB systems, i.e.,

h = as ⊙ cs + hd, (3.24)

where as ⊙ cs is the sparse component, and hd is the diffuse component. In particular, as ∈
{0, 1}L is the sparsity pattern, whose entries are equal to one in the positions correspond-

ing to the resolvable multipath components, and zero otherwise; its entries are drawn IID

from a Bernoulli RV with parameter q ,B(q), where q ≪ 1 so as to enforce sparsity. The

sparse coefficient vector cs is modeled as a deterministic and unknown vector. Finally, we use

the Rayleigh fading assumption for the diffuse component, hd ∼ CN (0,Λd), where Λd is

diagonal, with diagonal entries given by the PDP Pd(k), k = 0, . . . , L− 1.

Remark 3.7.1. We assume that cs is a deterministic and unknown vector, because the statis-

tics of the specular components, that vary according to the large scale fading, are usually

difficult to estimate. On the other hand, the Rayleigh fading assumption for the diffuse

component is consistent with the fact that it arises from the contribution of multiple paths

in a single resolvable delay bin. Its amplitude and phase vary according to the small scale

fading. Its PDP can be accurately estimated by averaging the fading over subsequent real-

izations of the fading process. This information may then be used to estimate the channel

via the linear Minimum Mean Square Error (MMSE) estimator [36], which improves the

accuracy over LS.

In [1, 17] a three-step channel estimator is developed, and it is based on the HSD model:

1. The sparse coefficient vector cs is estimated via LS, giving the estimate ĉs = hLS .

2. The sparsity pattern as is estimated via M (MAP) [36], giving the estimate âs. We will

indicate this estimate as G-Thres, which means generalized thresholding estimator.

3. The diffuse component hd is estimated via MMSE, based on the residual estimation

error after removing the estimated sparse component, (1− âs)⊙ hLS .
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3.7.2 Power Delay Profile Modeling

In this section, we model the PDP of the diffuse component. In particular, we assume

an exponential PDP, and we measure the fitting of this model to the sample PDP estimated

from the data, based on the SPACE08 data set.

The source transmits a pseudo-noise sequence of length 60 s, with symbols drawn from

{−1, 1} at rate 6510 symbols/s. The corresponding received sequence is divided into sub-

sequences of length 30ms each, corresponding to N = 194 samples. Let y(i) be the obser-

vation vector from the ith sub-sequence, andX(i) be the Toeplitz matrix associated with the

corresponding pilot sequence. A time series of LS channel estimates with delay spread 15ms

(L = 97 samples) is generated as h
(i)
LS =

(

X(i)∗X(i)
)−1

X(i)∗y(i). This time series therefore

represents the samples of the time-varying channel spaced in time 30ms apart.

The sample PDP is computed by averaging over Nch = 1878 subsequent channel real-

izations, corresponding to an observation window of 56 s. We have

P̂sample(k) =
1

Nch

Nch−1
∑

i=0

∣

∣

∣h
(i)
LS(k)

∣

∣

∣

2
. (3.25)

We now evaluate the exponential model for the PDP of the diffuse component, and we

compare it with the sample PDP estimated from the data. At this point, since we are not

assuming any a priori model for the PDP, and therefore we cannot distinguish the specular

components from the diffuse background, which is unknown, we keep the sparse compo-

nent to compute the sample PDP and the exponential fitting.

Let Pd(k) = βe−ωk, k = 0, . . . , L− 1 be the exponential PDP as a function of the channel

delay. This is parameterized by the power β, and the decay ω. Notice that lnPd(k) = lnβ −
ωk = ρ − ωk, where we have defined ρ = lnβ. These parameters can be estimated by

computing a linear fitting of ln P̂sample(k), i.e., by solving

{ρ̂, ω̂} = argmin
ρ,ω

∑

k

∣

∣

∣ln P̂sample(k)− ρ+ ωk
∣

∣

∣

2
. (3.26)

We then determine the fitting error of the estimated exponential PDP with the sample PDP

estimate as

f
(

P̂sample

)

=
∑

k

∣

∣

∣ln P̂sample(k)− ρ̂+ ω̂k
∣

∣

∣

2
. (3.27)
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Figure 3.17. Fitting error of the sample PDP, estimated from the data, to the exponential PDP. The smaller

the error, the better the fitting of the sample PDP to the exponential model.

Figure 3.17 shows the fitting error for the two receivers S3 and S5, respectively, over

a representative subset of the SPACE08 data set. We notice that S5, which is the receiver

farther away from the transmitter, fits the exponential PDP better than receiver S3. This may

be due to a multiplicative loss at each water surface or bottom bounce and an exponential

absorption loss of the propagation medium.

Figure 3.18 shows a typical diffuse PDP for receivers S3 and S5, respectively. We ob-

serve that receiver S5 exhibits a more diffuse channel than receiver S3, and a good fitting

to the exponential model. On the other hand, for receiver S3 a clustered model, where few

strong resolvable multipath components are followed by a cluster of arrivals, seems more

appropriate.

Let dTR be the distance between transmitter and receiver, hT the depth of the transmit-

ter/receiver pair below the sea level, hB their height above the seabed, and c ≃ 1.5 km/s

the speed of the sound wave in the water. The line of sight component reaches the receiver

with a delay dTR

c . The echo reflected by the sea surface reaches the receiver with a de-

lay

√
d2
TR

+4h2
T

c , ideally assuming that the reflection occurs at distance dTR

2 from the source
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(a similar expression holds for the echo reflected by the seabed). Therefore, the interar-

rival time between the line of sight and the echo reflected by the sea surface is given by

τinter(dTR) =

√
d2
TR

+4h2
T
−dTR

c , which is a decreasing function of dTR. Therefore, the further

away the receiver from the transmitter, the smaller the interarrival time, the richer the in-

teraction of the multipath components, and the more diffuse the nature exhibited by the

underwater acoustic channel.

3.7.3 Numerical Results

We now present some numerical results, and we compare the mean squared prediction

error of the received sequence using HSD, LS, and a purely sparse estimator, as a function

of the SNR. In order to generate all the SNR values of interest, we add the underwater

acoustic noise sequence w(i), scaled by a factor
√
S
−1

> 0, to the received sequence y(i) in

the estimation phase, so as to induce SNR dependent channel estimation errors. Letting ĥ(i)

be the ith channel estimate, estimated from the noisy received sequence y(i) +
√
S
−1

w(i),

y(i+1) be the observed sequence that we want to predict, and X(i+1) be the Toeplitz matrix

associated with the corresponding pilot sequence, the MSE for the prediction of y(i+1) is

defined as

E

[

∥

∥

∥y
(i+1) −X(i+1)ĥ(i)

∥

∥

∥

2

2

]

, (3.28)

where the expectation is computed with respect to the realizations of the noise (intrinsic

noise in the experimental data set and additional noisew(i)) and of the channel. The overall

mean squared prediction error is computed by averaging the sample squared error term
∥

∥

∥y(i+1) −X(i+1)ĥ(i)
∥

∥

∥

2

2
over the sub-sequence index i, and over multiple received sequences,

each 60 s long, collected over different times and environmental conditions.

For the HSD model, we consider the G-Thres estimator, with α = ln
(

1−q̃
q̃

)

, q̃ = 0.001.

We consider two different cases for the estimate of the PDP of the diffuse component:

the sample PDP estimate, averaged over Nch = 1878 subsequent channel realizations, cor-

responding to a temporal window of 56 s; and the exponential PDP model, based on only

one channel realization. In the latter case, we employ the Expectation-Maximization (EM)

algorithm [37] developed in [1], which exploits the HSD structure of the channel to jointly

estimate the sparse and diffuse components, and the power β and decay rate ω of the ex-

ponential PDP of the diffuse component. One realization of the channel is sufficient in this
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case, due to the structure of the PDP which makes it possible to average the fading over the

delay dimension, rather than over subsequent channel realizations.

As to the purely sparse case, we employ the G-Thres estimator assuming no diffuse

component, to allow a fair comparison with the HSD model. This estimator, due to its

thresholding operation, generates a sparse channel structure.

Figures 3.19 and 3.20 show the mean squared prediction error for receivers S3 and S5 for

the G-Thres estimator, respectively. In particular, the labels ”G-Thres data” and ”G-Thres

model” refer to the G-Thres estimators using the sample estimate of the PDP of the diffuse

component and the exponential PDP model, respectively.

We notice that both the G-Thres and the sparse estimators perform better than LS, as

observed in [18, 19, 21] for other sparse estimators. Moreover, in the low SNR region the

G-Thres and the purely sparse estimators achieve the same prediction error. In fact, in this

region, the diffuse component hd is below the noise floor, and cannot thus be distinguished

from the noise. Therefore, an accurate estimate of hd is not possible in this regime, and the

HSD model does not bring any advantage over a purely sparse one. On the other hand, in

the high SNR region all the estimators converge to the prediction error of LS. This can be

explained with the fact that, when the noise level is negligible compared to the signal level,

the prior knowledge about the channel structure provides no useful information. Moreover,

the prediction error floor for high SNR is the result of intrinsic noise in the experimental

data set, and of channel perturbations over subsequent observation intervals (notice that

the prediction error floor is different for receivers S3 and S5, due to the fact that they incur

different noise levels and rate of channel variations).

The G-Thres estimators outperform the purely sparse estimator in the medium SNR

range. In fact, although based on a simplified model of the diffuse and the sparse compo-

nents, they are able to capture further diffuse structure of the underwater acoustic channel,

which is discarded by a purely sparse estimator.

Comparing the two G-Thres estimators (with sample PDP estimate of the diffuse compo-

nent and exponential PDP model), we observe that the best prediction accuracy is achieved

by the G-Thres estimator with the sample estimate of the PDP. However, the G-Thres esti-

mator based on the exponential model for the PDP performs very close to this lower bound,

although some performance loss can be observed in the medium SNR range, due to a non



3.7. Validation of a Hybrid Sparse Diffuse Channel Model for Underwater Acoustic
Channels 51

perfect fitting of the data to the model.

Notice that a similar behavior of the estimators can be observed for receivers S3 and S5,

despite the fact that receiver S3 exhibits a sparser channel structure than receiver S5. We

conclude that the G-Thres estimator is robust, and achieves good estimation accuracy even

in channels which do not exhibit a diffuse nature.

Finally, in Figures 3.21 and 3.22 we plot the outputs of the G-Thres estimator, with the

estimate of the sparse and diffuse components, for a channel realization at receivers S3 and

S5, respectively, and for the high and medium SNR regimes. We notice that only one spec-

ular component is detected at receiver S5 at high SNR. In fact, receiver S5 exhibits a more

diffuse channel, and a good fitting to the exponential PDP model, as discussed in Section

3.7.2. On the other hand, a larger number of sparse components are detected at receiver S3,

which exhibits a sparser structure (Figure 3.18).
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Figure 3.18. A typical sample PDP for receivers S3 and S5, with the exponential PDP estimated by linear

fitting, and the PDP estimate based on the EM algorithm [1].
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Figure 3.19. Mean square prediction error of the observed sequence for receiver S3, G-Thres estimator.
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Figure 3.20. Mean square prediction error of the observed sequence for receiver S5, G-Thres estimator.



3.7. Validation of a Hybrid Sparse Diffuse Channel Model for Underwater Acoustic
Channels 55

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

channel delay [ms]

|h
|

 

 

Sparse component

Diffuse component

sqrt of PDP of diffuse comp.

(a) SNR=10dB

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

channel delay [ms]

|h
|

 

 

Sparse component

Diffuse component

sqrt of PDP of diffuse comp.

(b) SNR=50dB

Figure 3.21. G-Thres estimator, estimated sparse and diffuse components for receiver S3.
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Figure 3.22. G-Thres estimator, estimated sparse and diffuse components for receiver S5.



Chapter4

Adaptive Communications Schemes

and Model Validation

4.1 Chapter Overview

This Chapter is devoted to presenting analytical and simulation results on the perfor-

mance of two adaptive communications schemes, namely HARQ and AM, proposed to

mitigate the effects of the time-varying channel conditions. As observed in the previous

chapter, the communications performance heavily varies with time. For this reason, we also

evaluate and validate statistical models for HARQ and AM techniques.

More specifically, we present a comparative study between the performance obtained via

simulation and those computed by analytical models, thus validating the proposed models.

Results show that these models, which have been proposed for terrestrial wireless commu-

nications, are good candidates for representing the average performance of the aforemen-

tioned techniques also in the underwater acoustic scenario.

4.2 Motivations and Related Work

We perform these studies in order to fill the gap between modeling and technological

development of underwater acoustic communications systems. In particular, to the authors’

knowledge, the characterization of the packet error process cannot be found in the litera-
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ture, and techniques such as HARQ or adaptive modulation have spurred the interest of the

community only recently.

First, we study the packet error process and its statistics, since it affects the performance

of all the upper layers protocols, thus representing a key metric in assessing the design and

performance of network protocols. We discuss the suitability of Markov models for repre-

senting the temporal evolution of the realizations of the packet error process. This study

aims at defining an accurate model for the PER process, to be used in networks simulators,

and to provide insight on the type of assumptions that can be made about the statistics of

the PER in further studies. Given the lack of extensive data, it is hard to find contributions

about this aspect for the underwater acoustic case, whereas this approach and models are

broadly accepted for terrestrial wireless communications.

Second, we investigate the problem of reliable underwater communications, which re-

quire, possibly more than other traditionally lossy channels such as the terrestrial radio or

the satellite channel, the employment of effective error control. The two basic techniques

over time-varying channels are FEC, which is based on the use of error-correction codes

without any retransmission, and pure ARQ, which adopts retransmissions without coding.

In this study, we considered a combined approach, so as to realize what is usually referred

to as a HARQ scheme [38]. This solution, if properly designed, is able to combine the best

of both techniques, namely to protect the data sent with error correcting codes already from

the first transmission, yet allowing retransmissions if needed; this spares the need for in-

troducing unnecessarily high amounts of redundancy in the codeword, which would be

inefficient in underwater channels. The rationale is to find a suitable technique for counter-

acting the time-variability of the channel conditions. In fact, the problem of channel code

design arises when dealing with applications for underwater networks, requiring reliability.

Nevertheless, the underwater channel often causes heavy loss of information and high er-

ror correlation. We believe that a deep understanding of HARQ techniques over the acoustic

channel is necessary in order to properly model the performance of the applications of inter-

est. In the literature, Markov chains are generally recognized as a useful means to represent

wireless channels and analytically characterize techniques such as ARQ / HARQ operating

on top of them [39, 40]. Many papers evaluate the performance of ARQ or HARQ over a

Markov channel: for example, the authors of [41] analyze HARQ schemes representing a
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fading channel through a Markov chain, whereas in [42] the delay statistics of HARQ are

evaluated when both the arrivals and the channel error process are Markov. The approach

considered here is different from these related works, since we aim at identifying whether

a Markov representation may be appropriate for the underwater acoustic channel, when

HARQ is used on top of it, and in this case how the parameters of the Markov chain should

be set.

Finally, we consider AM techniques, which tune the constellation size of the used mod-

ulation, depending on the available information about the channel state, e.g., as perceived

by the transmitter or as fed back by the receiver. The purpose of AM is two-fold: to achieve

higher spectral efficiency (by using more efficient modulations whenever the channel so al-

lows) and to reduce the chance of outage events (by avoiding the use of complex schemes

when the channel cannot support them). While AM is a well established technique for link

adaptation in terrestrial radio networks [43–46], it has received comparatively much less at-

tention in underwater acoustic networks. However, a few works do propose the use of AM.

In particular, [47] focuses on variable-rateMary Frequency-Shift Keying (FSK) modulations,

where the proper rate is chosen based on a preliminary exchange of control packets for SNR

estimation. Adaptive modulation and coding has also been analyzed in [48], where the au-

thors post-process data collected during the AUVfest 2007 campaign. A transmit array of 10

elements and a receive array of 8 elements were deployed in the Gulf of Mexico; different

modulation (from BPSK to multi-level PSK) and turbo coding rates (from 7/8 down to 1/3)

were employed to modulate the subcarriers of a multitone transmit signal in both a Single-

Input Single-Output (SISO) and a Multiple-Input Multiple-Output (MIMO) configuration.

The overlooking of AM can be at least partially explained by the difficulty of implement-

ing such schemes in real-time systems today. However, the next generations of underwater

devices will be likely able to support real-time variable-rate modulation. Here, we assume

that the channel SNR process is updated once for every received packet, and that the cor-

responding SNR value is fed back to the transmitter so that the adaptation of the modula-

tion scheme can be performed prior to the subsequent transmission. As we will detail in

the following, the transmissions of our dataset are sufficiently spaced to make a per-packet

modulation update process feasible. However, in order to simulate a less ideal case where

greater delay affects the feedback from the receiver, we also consider the availability of only
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outdated channel estimates. In any event, the system considers instantaneous (instead of av-

erage) SNR samples to be fed back to the transmitter. Starting from SNR traces, we discuss

their fitting using Rayleigh as well as Nakagami-m distributions, and use the models to ob-

tain the performance of simple BPSK as well as more complex Mary quadrature amplitude

modulation (M -QAM) schemes with square constellation. We note that perfect Channel

State Information (CSI) at the transmitter is assumed here: given that the only information

required to run the AM scheme is the SNR of the current transmission, this assumption is

reasonable.

4.3 Analysis of SNR and packet error rate

This section is devoted to the analysis of the PER measured during SubNet09, we call

experiment A and experiment B, the experiments carried out on May 30 and August 30, re-

spectively. We start by analyzing PER as a function of SNR for the JANUS waveforms being

considered. The correctness of the packet is inferred through a CRC check at the receiver

after standard processing, i.e., detection of signal probe, reconstruction of the hopping pat-

tern, non-coherent detection of BFSK symbols, de-interleaving and soft Viterbi decoding of

the PHY-level convolutional code. Fig. 4.1 plots PER against SNR for all experiments listed

in the previous subsection, for all transmitter-receiver links. The figure has been obtained by

considering SNR bins of size 0.5 dB and by calculating the relative frequency of packet errors

for all packets whose SNR falls in the same bin. Different markers and colors correspond

to different transmitters. Fig. 4.1 also includes a linear regression fitting the relationship

between PER and SNR expressed in dBs, i.e.,

PER = α · SNR+ β. (4.1)

A negative-slope line adequately fits data in this case, in accordance to the approximate

performance of incoherent BFSK detection in the high SNR regime and in the presence of

frequency-flat fading (recall that the frequency hopping pattern is designed to help escape

multipath). Fig. 4.1 suggests that the closest link (i.e., from T3, in green) yields different

performance with respect to the links from T1 and T2: this is due to the harsher multipath

footprint, whereby secondary paths yield significant power with respect to the main arrival

path. As a consequence, the line that fits only the outcomes from T3 (light grey) has lower
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Table 4.1. Coefficients of PER fitting lines.

TX nodes Slope (α) Intercept (β) MSE (same TX) MSE (all TX)

T1+T2 −0.035 0.775 0.0101 0.0164

T1+T2+T3 −0.026 0.676 0.0136 0.0136

T3 −0.019 0.580 0.0095 0.0197
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Figure 4.1. Log-scale scatterplot of PER as a function of SNR for varying transmitter and all receivers.

Linear fits of the joint scatterplot of all transmitters as compared to the joint scatterplot of T1 and T2, as

well as the scatterplot of T3, are also provided.

slope than the other lines. Depending on the required degree of accuracy, one may decide

to use the T1+T2+T3 fit, which considers data from all transmitters while providing an ac-

ceptably higher MSE with respect to the MSE of the linear fit of T3 points (see Table 4.1).

As a first approximation, we may incorporate fitted PER curves into a simulator so as

to reproduce the PER for matching modulation and receiver processing and in similar en-

vironments as the shallow summer waters of Pianosa. However, we would still need to

factor in the correlation among SNR values, including those experienced between the same

fixed transmitter and receiver: assuming uncorrelated SNR realizations may actually be too

strong an assumption. This is exemplified in Figs. 4.2 and 4.4, which show the SNR time se-

ries for the signals transmitted by T2 during experiments A and B, respectively, as received
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Figure 4.2. Time series of SNR for transmissions from T2 during experiment A. Moving averages over 50

samples are provided as a solid black line.
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Figure 4.4. Time series of SNR for transmissions from T2 during experiment B. Moving averages over 50

samples are provided as a solid black line.

by all hydrophones of the VA. For better clarity, a moving average over 50 samples of the

trace is also shown as a black solid line. The figures show that some links are quite stable

throughout the duration of the experiment, whereas others experience greater instability.

For instance, the link T2–H1 in Fig. 4.2 is stable almost throughout the whole experiment,

with the exception of a slight increase towards the end, as we will explain later. The same

applies to the T2–H2 link as well. On the contrary, the link T2–H1 in Fig. 4.4 remains stable

around an average SNR of 7 dB for roughly 6 hours, then experiences an abrupt improve-

ment as its SNR increases to more than 20 dB, before falling back to roughly 13 dB. Similar

observations apply to the T2–H2 link as well. Some oscillations of up to 10 dB in the value

of SNR over the T2–H4 link can be observed in both figures; however it should be noted that

the SNR remains very high, hence oscillations are not expected to have a significant impact

on PER. We will elaborate on this point in the following section.

The most significant variations on the SNR in Figs. 4.2 and 4.4 cannot be ascribed to

noise, because different hydrophones of the VA are differently affected. To give at least a

partial explanation, wemust therefore observe the time series of the sound speed at different
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depths (SSP) in the water column close to the VA.1 Fig. 4.3 reports the sound speed samples

taken every twominutes for the whole duration of experiment A.We observe a sound speed

increase in the upper water layers from 6 to 7 hours after the beginning of the experiment;

this changes the way acoustic waves are refracted, and in this case allows more power to

be bent toward hydrophones closer to the surface (H1 and H2). For the same reason the

SNR over the T2–H4 link decreases (H4 is the deepest hydrophone). Unfortunately, due to

thermistor chain down time, we cannot display a similar plot for experiment B.

The variations of the average SNR over macroscopic time scales discussed above mo-

tivates us to analyze whether such variations can be profitably tracked through synthetic

models such as Markov models (MMs) and Hidden Markov Model (HMM)s, which incor-

porate memory of past events. The following section is devoted to the discussion of their

applicability to the proposed scenario.

4.4 Markov models

To keep track of channel memory, we consider three different models: a 2-state Markov

channel, which keepsmemory of one previous event (MM1); an extension of the samemodel

bearing a memory of 2 previous events and resulting in a 4-state channel (we will refer to

this model as MM2), and a 2-state HMM. The accuracy of these models is then compared

to an IID error model and to real channel traces.2 To evaluate the accuracy of the models,

we consider the predicted average error probability ε, the probability mass function (pmf)

of the length of an error burst (i.e., the probability pb(k) that the number b of consecutive

errors (i.e., an error burst) is equal to k) and them-step error correlation (i.e., the probability

ξn,m = P[packet n+m erroneous|packet n erroneous]). We choose these metrics because

i) the average error probability ε is the primary check for the correctness of an estimated

model; ii) an accurate approximation of the pmf of error bursts is important to assess the

1We recall that the testbed deployment included a thermistor chain, which is used to indirectly measure

sound speed at different depths by virtue of the Mackenzie formula [49] and by assuming that water salinity

does not vary significantly throughout the summer season.
2The MM1 model was also considered in a comparative study [50] focused on N -states Markov channel

models, where however the number of states tracks changes in the SNR level instead of providing explicit

memory of past error events; in addition, we note that the study in [50] considers an iso-velocity medium and

trains models using simulated channel traces instead of field measurements.
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impact of the model on network protocols, other than being tightly related to the chosen

model (e.g., a 2-state Markov model exhibits a geometric burst length pmf [51]); finally iii)

second-order statistics such as them-step error correlation ξn,m have a significant impact on

network protocols and may lead to design guidelines (e.g., protocols should not insist on

transmitting over a channel whose errors are still highly correlated for highm).

4.4.1 2-state Markov model (MM1)

This model is characterized by two states, labeled 0 and 1, where 0 represents a correct

packet reception event. The model is trained by estimating the transition probabilities of the

matrix

P2 =





p00 p01

p10 p11



 , (4.2)

which regulates the transition between correct and wrong receptions, and where the sub-

script 2 refers to the number of states. Let us call π = [π0 π1] the vector containing the

steady-state distribution of the Markov chain, i.e., the solution to the system of equations

πj =
∑

i πipij under the constraint that
∑

i πi = 1. In this case, the error probability is

ε2 = π1 = p01/(p01 + p10); moreover, we have pb(k) = pk−1
11 p10, and ξn,m = p

(m)
1,1 , where p

(m)
1,1

is the element in position (1, 1) of the m-step transition matrix, Pm.

4.4.2 4-state Markov model with memory of two past events (MM2)

This model expands the 2-state model by explicitly incorporating further memory of

past events within states. Four states are defined, i.e., (00), (01), (10) and (11), where 0

and 1 represents again a correct and a wrong packet reception; the transition probabilities

between these states are thus arranged into a 4 × 4 matrix P4, with elements of the kind

p(k−1 k) , (k k+1), where the event with index k is in common between the pair before and

after the transition. In this case, the average probability of error is ε = π01 + π11; the pmf of

the burst length is found by considering the evolution of the Markov process from the only

state leading to errors after a successful packet reception, i.e., state (10):

pb(k) =







p01,10 k = 1

p01,11p
k−2
11,11p11,10 k ≥ 2

(4.3)
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Similarly, ξn,m is found as

ξn,m =
π01

(

p
(m)
01,01 + p

(m)
01,11

)

+ π11

(

p
(m)
11,01 + p

(m)
11,11

)

π01 + π11
. (4.4)

4.4.3 2-state hidden Markov model

HMMs assume that a non-observable state structure lies beneath observed values for

a certain random process [52]. In this case, we observe erroneous or correct packet recep-

tion, and make the assumption that the probability of such events actually depends on the

(hidden) state of the channel. As in the hidden Gilbert-Elliot model [53, 54], the state may

represent a different level of goodness of the channel, corresponding to a different probabil-

ity of receiving a packet correctly.

HMMs can be described in terms of a transition probability matrix PH (whose structure

is the same as P2 in this case); furthermore, by defining φi(j) as the probability that event j

is observed in state i, we can define the following diagonal observation probability matrices

C =





φ0(0) 0

0 φ1(0)



 E =





φ0(1) 0

0 φ1(1)



 , (4.5)

which respectively model correct (matrix C) and erroneous (matrix E) packet reception in

either state [51, 52]. Since the state of the chain is hidden, all statistics must be averaged

through the stationary distribution of the underlying Markov process.

Therefore, the average probability of error is ε = πEe, where e = [1 1]T , and we recall

that π is the steady-state probability distribution vector of the hidden Markov chain. In

addition, we remark that the matrix products PHE and PHC yield the joint probability

of making a transition and observing an erroneous or correct packet, respectively, after the

transition has been completed. The burst length probability distribution can be found in

accordance to the previous definitions:

pb(k) =
πC(PHE)kPHCe

πCPHEe
(4.6)

The conditional probability ξn,m is found by considering k-step spaced error events, by aver-

aging over the probability of being initially in state 0 or 1, and by conditioning on the event

that an error was in fact observed on the initial state, i.e.,

ξn,m =
πEPm

HEe

πEe
, (4.7)

where we note that both terms of the fraction are scalar.
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Figure 4.5. m-step error correlation. Link T2–H1, experiment A.

4.4.4 Comparison among Markov Models and Channel Traces

We begin by comparing the average probability of successful packet reception, 1 − ε,

as predicted by the models and as measured from data traces. This test is a basic check

that the models are correct; however, it is worth noting that a simple slotted Stop-and-Wait

Automatic Repeat reQuest (ARQ) protocol, would exhibit a throughput of 1−ε, normalized

to the round-trip time. The results of the evaluation are reported in Table 4.2 and show good

accordance with measurements.

Consider now the k-step error correlation ξn,m defined in Section 4.4. Figs. from 4.5

to 4.10 show this metric for the links between T2 and all hydrophones during experiments

A and B, respectively. The figures compare ξn,m as predicted by all models against the prob-

ability of having an erroneous packet using an IID model and against measured traces. The

pictures suggest that non-hidden models perfectly reproduce short-term correlation (i.e.,

where their inherent memory of past errors allows a correct representation of the channel

behavior); however, they converge very quickly to their stationary behavior, as indicated by

the fact that predicted error correlation quickly reaches the IID floor; on the contrary, the
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Figure 4.6. m-step error correlation. Link T2–H2, experiment A.
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Figure 4.7. m-step error correlation. Link T2–H4, experiment A.
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Figure 4.8. m-step error correlation. Link T2–H1, experiment B.
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Figure 4.9. m-step error correlation. Link T2–H2, experiment B.
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Figure 4.10. m-step error correlation. Link T2–H4, experiment B.

HMM achieves a much better reproduction of long-term error correlation, at the price of

only a slight approximation of short-term correlation.

By comparing the results from Figs. 4.5 to 4.10 to those in Figs. 4.2 and 4.4, we can note

that channel traces are not always representative of a hiddenmodel. For example, the T1–H1

and T2–H2 links in Fig. 4.2 are quite stable even on a long time scale, and can be successfully

modeled by non-hidden approaches as well. Conversely, such links as T2–H4 in Fig. 4.2 as

well as all links in Fig. 4.4 exhibit much larger oscillations, which an HMM is expected

to capture more effectively. Figs. 4.7 and 4.8– 4.10 confirm this intuition by showing that

HMMs adhere better to measured error correlation values on the long term. Indeed, while

in some cases HMMs also converge to the IID floor faster than measured data (e.g., Figs. 4.8

and 4.9), they do so slower than non-hidden models do.

The goodness of HMMs is also suggested by the observation of the pmf of the length of

an error burst, pb(k). We focus again on transmitter T2 and on experiments A and B, whose

results are reported from Figs. 4.11 to 4.16. These figures compare pb(k) as predicted by the

models against the pdf estimated from real data (represented by red star-shaped markers).

The figures show that in general the best approximation of data is yielded byMM2, followed
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Figure 4.11. Probability of observing k consecutive errors. Link T2–H1, experiment A.

by HMM and MM1, with occasionally similar performance on some of the links. To further

support this assertion, we have reported in the legend of each picture the Kullback-Leibler

divergence (KLD) of predicted pmfs from the pmf estimated from data traces. In almost all

cases the divergence is smaller for the MM2 and HMM models than for the MM1 and IID

models, with the exception of Fig. 4.12, where the KLD of the HMM slightly exceeds that of

non-hidden models. Along with the satisfactory approximation of long-term error correla-

tion, this suggests that HMM models are good candidates for a synthetic model of acoustic

channels. We remark that we have focused only on transmissions from T2 in experiments A

and B, but these results are representative of all other experiments and links, which would

allow to draw the same conclusions.

4.5 Performance of the Hybrid ARQ technique

4.5.1 Channel Model

For the present discussion, we consider transmissions subject to an HARQ error control

mechanism described as follows. Nodes transmit information frames, where each frame is
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Figure 4.12. Probability of observing k consecutive errors. Link T2–H2, experiment A.

actually derived from a long codeword of a low-rate code. Each frame is composed of mul-

tiple HARQ packets, or fragments, which for simplicity are assumed to be all of the same

size. In addition, we assume that each fragment, if correctly received, is sufficient to re-

cover the whole codeword. Every time a packet is sent, the receiver replies with a feedback

Acknowledgment (ACK) or Not Acknowledgment (NACK) message, respectively indicat-

ing correct or incorrect packet reception. In the following, we will consider both Type I

and Type II HARQ [55]. In Type I HARQ, only one coded fragment is sent per informa-

tion frame, actually resulting in a FEC strategy to protect the frame against errors; in case

a transmitter receives a NACK, it provides a retransmission of the same HARQ fragment.

In Type II HARQ, instead, every information frame is associated to multiple HARQ frag-

ments, and NACKs trigger the transmission of a new fragment each time: therefore, sub-

sequent detection attempts are based on the availability of additional redundancy, and the

corresponding scheme is usually referred to as Incremental Redundancy Hybrid Automatic

Repeat reQuest (IR-HARQ).

In what follows, we will match the transmission SNR traces gathered during the Sub-

Net09 campaign with the HARQ framework described above, by assuming that each packet
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Figure 4.13. Probability of observing k consecutive errors. Link T2–H4, experiment A.

transmission actually carries one HARQ fragment formed by resorting to “good” Low Den-

sity Parity Check (LDPC) code ensembles such as those considered in [56]. The performance

of these codes can be characterized from an information-theoretic point of view in terms of

SNR thresholds: for a single transmission, a single threshold can be found that determines if

decoding is immediately successful or not; for multiple transmissions, each bearing a differ-

ent SNR in general, a reliable region can be defined as outlined in the following section [56].

The purpose of the following analysis is to determine reliable SNR regions for LDPC

transmission over the links between the acoustic modems and the hydrophones. We re-

mark that these depend on channel conditions, which in these cases are those experienced

during the experiments listed at the end of the previous section. Starting from this anal-

ysis, we estimate a Markov model of the channel following the guidelines in [57] for the

optimal quantization of the reliable SNR region and use the model for characterizing the

performance of an IR-HARQ scheme based on the discussed LDPC code.
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Figure 4.14. Probability of observing k consecutive errors. Link T2–H1, experiment B.

4.5.2 Reliable SNR regions

The reliable regionmodel for characterizing the performance of good code ensembles [56,

58] assumes that multiple fragments are transmitted sequentially, and that at the kth trans-

mission decoding is based on all k fragments received so far, each bearing its own SNR value

s1, . . . , sk. The reliable region R(k) is defined as the subset of Rk containing the k-tuples of

SNR values for which the decoding failure probability asymptotically vanishes as the code-

word length increases. Any reliable region R(k) has the property that if a k-tuple of SNR

values (s1, . . . , sk) ∈ R(k) then the k-tuple (s1, . . . , s
′
k) ∈ R(k) as well for every s′k > sk [56].

This directly follows from the fact that if sk suffices to enable correct decoding, any greater

s′k would suffice as well. In turn, this makes it possible to define the reliable region using a

threshold model, where the minimum value the SNR of the kth transmission should have to

ensure successful decoding depends on the sequence s(k−1) of all previous k−1 SNR values.

Such a threshold takes the form

ϑ(s(k−1)) = inf{sk : (s1, . . . , sk−1, sk) ∈ R(k)} (4.8)
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Figure 4.15. Probability of observing k consecutive errors. Link T2–H2, experiment B.

which can be used to verify whether correct decoding occurred at the kth transmission, i.e.,

by checking if sk ≥ ϑ(s(k−1)) or not.

If the joint PDF or, equivalently, the joint distribution of the SNRs is known, the proba-

bility distribution of a given SNR k-tuple can be derived; analogously, SNR regions in R
k

can be mapped into probability regions using the Cumulative Distribution Function (CDF)

of the SNR [57]. The PDF of the SNR can be derived by fixing a link and analyzing the SNR

time series over that link throughout the duration of an experiment. An example of an SNR

time series is shown in Fig. 4.17, depicting the time evolution of the SNR over the links from

all transmitters to hydrophone H1. A moving average of the time series taken over 25 sam-

ples is also shown as a solid black line. From the figure we see that the T3–H1 link (T3 is

the closest to H1) experiences high SNR which is also quite stable over time, despite some

events at the beginning of the experiment where the SNR drops 5 to 10 dB below its overall

average value. These events are mainly due to environmental phenomena such as currents,

causing temporary drops in the temperature of the upper water layers, which in turn affect

how the acoustic energy propagates. We recall that H1 is placed at a depth of 20m, and is

therefore more vulnerable to changes in superficial layer propagation parameters than other
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Figure 4.16. Probability of observing k consecutive errors. Link T2–H4, experiment B.

hydrophones. Nevertheless, the average SNR level is quite high over the T3–H1 link, as the

dominating effect here is the short distance (and the consequent low attenuation) between

T3 and H1. A different behavior is observed over the T1–H1 and T2–H1 links, respectively

the intermediate and longest distance links. In particular the larger distance causes the vari-

ance of the SNR to increase, and makes the links more sensitive to oceanographic phenom-

ena, as the average value of the T1–H1 SNR oscillates from roughly 5 dB down to 0 dB or

less and then increases again up to 15 dB. While a more accurate model of SNR distribution

would consider the changes in the SNR average value and variance over time, it would also

complicate the analysis of the system below, without yielding significantly better insight.

Therefore, in the following we will take a simpler approach and estimate the statistics of the

SNR as if they were stationary over the whole duration of the experiments. However, we

will also validate the model by training it over a subset of the SNR traces and comparing the

results to simulations carried out over a different portion of the same experiment.

In this light, Figs. 4.19, 4.20 and 4.21 show the empirical PDF of the SNR over the links

from all transmitters (T1 to T3) to receiver H1 (the hydrophone placed at a depth of 20m).
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Figure 4.17. Measured time series of the SNR over the links from all transmitters to hydrophone H1. A

moving average taken over 25 samples is superimposed to the SNR time series as a solid black line.

Each figure also shows a fit performed using a Gaussian PDF of the form

fΓ(γ) =
1

σ
√
2π

exp

(

−(γ − µ)2

2σ2

)

, (4.9)

where the average value µ and variance σ2 have been estimated to best fit the data in a least-

squares sense; both µ and σ are reported in the legend. From (4.9), the probability that the

SNR lies in any interval [a, b] is then found straightforwardly as
∫ b
a fΓ(γ) dγ. Starting from

the SNR distribution, the reliable region of good LDPC code ensembles can be derived using

the threshold model mentioned before and following the approach described in [56]. The

reliable regions in the probability domain for links from T1, T2 and T3 to H1 are depicted

in Figs. 4.22, 4.23 and 4.24, respectively, by considering two subsequent HARQ fragments.

The reliable region lies to the upper right of the boundary curve shown as a solid black line;

note that s1 and s2 represent the values taken by the cumulative distribution functions of

the SNR of the first and second transmissions, respectively. Note that the reliable region is

larger when the SNR distribution has higher average and lower variance. In particular, due

to the very high average SNR experienced by the T3–H1 link, the reliable region tends to
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Figure 4.18. Time series of the SNR over the links from all transmitters to hydrophone H2 throughout

experiment A. A moving average of the time series taken over 25 samples is superimposed to the SNR

scatterplot as a solid black line.

occupy the whole space, and the unreliable region correspondingly collapses into the (0, 0)

point.

Figs. 4.22 to 4.24 refer to a specific experiment, and to a single receiver, but are repre-

sentative of all other experiments and links between T1–T3 and the hydrophones: in fact,

a generally good accordance between the SNR pdf and a proper Gaussian fit (albeit with

different µ and σ for different experiments and links) was found to hold in all cases.

On top of the reliable region model, we construct a channel model following the guide-

lines for channel state quantization described in [57]. The procedure is briefly summarized

in the following. Before channel quantization, a vector of channel states has the form s(k),

as defined above, where each element can take infinitely many values in R. Quantizing

channel states translates s(k) into a k-tuple of discrete values, that evolve according to a

Finite-State Markov Chain (FSMC). IfN thresholds α1, . . . , αN divideR intoN +1 intervals

I0, . . . , IN , where Ij = [αj , αj+1[, and we define α0 = 0 and αN+1 = +∞, any real value
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Figure 4.19. Empirical PDF of the SNR and Gaussian fit over the T1–H1 link.

becomes mapped into the discrete index j of the interval Ij it falls within. To formalize this

mapping, define d(sk) as the function returning the interval of R where sk is contained, i.e.,

d(sk) = j if sk ∈ Ij . Now, by grouping the mappings for all elements of an SNR k-tuple s(k)

into a vector, we can write d(k) = (d(s1), . . . , d(sk)), thereby establishing a map between ev-

ery k-tuple s(k) and an element of the set Zk
N+1, where ZN+1 = {0, 1, . . . , N}. In more detail,

the vector d(k) represents the fact that s(k) ∈ Id(s1) × Id(s2) × · · · × Id(sk) = I(d(k)) ⊂ R
k.

An FSMC channel model entails the assumption that the statistics of the SNR have the

Markov property (a common means of describing correlated SNR evolution over time [39]);

the model can then be derived from the distribution of the SNR, which in this case is given

by the Gaussian fitting discussed above. If the pdf of the SNR, denoted with γ, is called

fΓ(γ), the state space of the channel is ZN+1, and the steady-state distribution is given by

πi =

∫ αi+1

αi

fΓ(γ) dγ, i = 0, . . . , N. (4.10)
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Figure 4.20. Empirical PDF of the SNR and Gaussian fit over the T2–H1 link.

Analogously, the probability that a transition between state i and j occurs, tij , can be derived

as follows

tij =

∫ αi+1

αi
fΓ(γ0)

∫ αj+1

αj
fΓ(γ|γ0) dγ dγ0

∫ αi+1

αi
fΓ(γ0) dγ0

, i, j ∈ ZN+1 (4.11)

where fΓ(γ|γ0) is the conditional pdf of the SNR γ given the previous SNR value γ0.

The channel transition probability matrix is then defined asT = (tij) for i, j ∈ ZN+1. We

remark that given the limited size of the available SNR data sets, estimating a close-form fit

of conditional distributions may yield little significance. We therefore resort to direct esti-

mation of channel transition probabilities from the data, by taking the relative frequencies

of SNR transitions between any two intervals Ii, Ij , where i, j ∈ ZN+1 represent the indices

of the starting and ending intervals respectively.

It is worth noting that the transition probabilities strongly depend on the number of

states used to quantize the channel, and therefore on the number of thresholds used for
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Figure 4.21. Empirical PDF of the SNR and Gaussian fit over the T3–H1 link.

delimiting SNR intervals (or, equivalently, SNR probability intervals). We will employ only

two thresholds, resulting in a total of three channel states. This choice results in a very

simple channel model, but still provides sufficient quantization accuracy, as shown by the

numerical results.

4.5.3 Models for HARQ Schemes

The previous section focused on describing how a FSMC model of the channel can be

derived from experimental data. We now focus on how to employ this FSMC to model an

HARQ error control process based on the good LDPC code ensembles the FSMC has been

matched to. Recall that T denotes the transition probability matrix of the FSMC. The FSMC

has in general N + 1 states 0, 1, . . . , N , if N thresholds are chosen to quantize the channel

behavior. With no loss of generality, assume that 0 is the best state, i.e., the one associated
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Figure 4.22. Reliable regions for the T1–H1 link.

to the highest values of the SNR, whereas N is the worst state. Let us define a map g(j)

which associates each state index j, j = 0, . . . , N , to an “error level” a packet would incur if

transmitted while the channel is in state j. The error level is a non-decreasing function of the

state index, and is employed to describe the usefulness of the packet being transmitted for

the decoding of the LDPC codeword at the receiver as follows. Recall from the beginning

of Section 4.5.1 that every information frame is encoded and divided in HARQ fragments,

to be transmitted sequentially, and that a single correct HARQ fragment is always sufficient

to successfully decode the whole information frame. However, corrupted fragments may

still be used at the receiver, according to the type of HARQ scheme, as will be explained in

detail later. To model this HARQ feature, we assume that a successful decoding takes place

after reception of HARQ fragment k only if the overall error level (which is defined as the

error level of fragment k for Type I HARQ, and as the sum of the error levels of all HARQ

fragments received so far for IR-HARQ) is lower than or equal to a certain threshold θk [38].
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Figure 4.23. Reliable regions for the T2–H1 link.

With the above in mind, and for a fixed SNR statistics over the link, the performance of

the HARQ scheme only depends on the round-trip time of the channel,m, and on the maxi-

mum number of retransmissions allowed before an information frame is discarded, denoted

by F [38]. Recall that our data set contains transmissions performed once every 15 s, which

is much larger than the average propagation delay, given the distances between the transmit

and receive hardware. Hence, we have to fix m = 1 for our data set, which corresponds to

assuming that a slotted approach is taken, whereby each slot is long enough to accommo-

date the maximum round-trip time (that between T2 and the VA) and the time required for

acoustic reverberation to fade out. Taking higher values for m would correspond to assum-

ing that the links span a distance of more than 22.5 km, which would make the measured

SNR statistics meaningless. Finally, note that setting m = 1 means that transmitted frames

are actually sent only after receiving the ACK/NACK feedback related to the previous mes-

sage, so that at every time instant there is at most one message in flight over the channel (i.e.,
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Figure 4.24. Reliable regions for the T3–H1 link.

the ARQ scheme is Stop-and-Wait). Due to the long propagation delay, we also assume that

each corrupted packet can be retransmitted only once, i.e., F = 1, and if the retransmission

also fails the packet is discarded.

In general, at each time we need to keep track of the number of retransmissions already

made and of the correspondingly accumulated error level, as well as of the channel state.

The resultingmodel can be derived in general form following the approach described in [38].

In the following subsections we will instead focus on a simpler model for the Type I and

Type II HARQ schemes in the specific case F = 1,m = 1, N = 2.

4.5.4 Type II (Incremental Redundancy) HARQ

We start with the description of the Type II HARQ (IR-HARQ) scheme. We employ

two thresholds to describe the channel behavior, resulting in three channel states, namely 0

(error-free state), 1 (some recoverable errors), 2 (worst state with unrecoverable errors). In
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general, each state j is associated to a different error level incurred by a fragment transmitted

when the channel is in that state through the map g(j) (see Section 4.5.3). According to the

above description, we simply set g(j) = j.

If the transmission of the first fragment occurs when the channel is in state 0 (error-free

state), the frame is correctly received and no retransmission is needed. If instead the first

fragment is in error, a new fragment is transmitted, and the frame can still be recovered if

the pair of states for the two attempts is (1, 0), (1, 1) or (2, 0), whereas we assume that the

situations (2, 1), (1, 2), and (2, 2) correspond to toomany errors, and do not lead to successful

frame recovery. This corresponds to the set of thresholds θ0 = 0 and θ1 = 2.

Hence, we represent the system state with a pair (S, r), where S represents the previous

channel state (required to track the evolution of the Markov channel) and r denotes the

number of transmissions alreadymade for the current frame, i.e., r = 0 for the first fragment

and r = 1 for a retransmission. In this simplified model, there is no need for an explicit

variable tracking the error level of the packet, as it is identical to S. Note also that there are

only five possible states (S, r), although S and r can take three and two values, respectively.

Indeed, the combination S = 0, r = 1 is invalid as it would correspond to the retransmission

of a correctly received frame.

Define now σSr as the steady-state probability of being in state (S, r). If tij denotes

the probability of making a transition from channel state i to state j, the balance equations

between such steady-state probabilities can be found as follows

σ00 =
2
∑

i=0

σi0ti0 +
2
∑

i=1

σi1ti0 (4.12)

σS0 =
2
∑

i=1

σi1tiS for S = 1, 2 (4.13)

σS1 =

2
∑

i=0

σi0tiS for S = 1, 2 (4.14)

These equations can be put into a system which can be solved by imposing the additional

condition that the sum of all σSr equals 1. After solving the system, one can directly compute

the throughput, Θ (average number of successful frames per slot), the average number of

retransmissions per correctly decoded information frame, Nfr , and the probability that a
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frame is discarded, Pfd (i.e., the fraction of frames that are not correctly received), as

Θ =
2
∑

i=0

σi0ti0 +
2
∑

i=1

σi1ti0 + σ11t11 = σ00 + σ11t11 , (4.15)

Nfr =
σ11t10 + σ11t11 + σ21t20

∑2
i=0 σi0ti0 +

∑2
i=1 σi1ti0 + σ11t11

, (4.16)

Pfd =

∑2
i=0 σi0(ti1t12 + ti2(1− t20))

∑2
i=0 σi0

. (4.17)

Eq. (4.15) is derived by summing the probabilities of all transitions that correspond to a suc-

cessful frame in a slot, which include all cases in which a transmission occurs in channel

state 0, plus the case in which a retransmission in state 1 follows an erroneous transmission

that was itself in state 1. (Note the simplification allowed by the balance equation (4.12).)

Eq. (4.16) is again obtained by enumerating all events that correspond to the successful de-

livery of a frame in a slot: the sum of the probabilities of these events is the denominator of

(4.16), whereas the numerator is the sum of the probabilities of only those that correspond to

a success after retransmission. (Note that the denominator in this case is the throughput Θ.)

Finally, Eq. (4.17) is derived as follows. When the first fragment of a frame is transmitted,

we must have r = 0, so that the only three possible states are (S, 0), S = 0, 1, 2. Given that

the channel state is S, the probability that the frame is discarded is the probability that the

two transmission attempts have an error level that is not sufficient for decoding, which is

equal to tS1t12 + tS2(1− t20). The final result is obtained by averaging this probability over

the normalized distribution of the channel state, σS0/
∑2

i=0 σi0.

4.5.5 Type I HARQ

As a term of comparison, we also consider a Type I hybrid HARQ where only one

HARQ fragment is actually transmitted per information frame, so that encoding provides

only some protection against channel errors over a single packet transmission. However, no

more than one HARQ fragment is considered at every decoding attempt: therefore, further

retransmissions can help the decoding process only by providing more chances to incur a

sufficiently high SNR value. This entails the definition of a single threshold which is equal

to the noise threshold of the LDPC code ensemble, and leads therefore to two cases: if the

SNR is above the threshold, the frame is correctly decoded; otherwise, it is retransmitted
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once, and if again the SNR threshold is not met, it is discarded. For a fair comparison, we

keep the maximum number of retransmissions as F = 1 in this case as well.

This situation can be modeled using the same set of balance equations as before. How-

ever, in Eqs. (4.15)–(4.17) the effect of incremental redundancy must be removed, i.e., two

subsequent transmissions of the same frame that both experience channel state 1 no longer

yield a correct decoding, and therefore any term that relates to this event is to be counted as

a failure rather than a success. In this case we have

Θ = σ00 , (4.18)

Nfr =
σ11t10 + σ21t20

Θ
, (4.19)

Pfd =

∑2
i=0 σi0(ti1(1− t10) + ti2(1− t20))

∑2
i=0 σi0

. (4.20)

4.5.6 Results

We now show a comparison of throughput, probability of frame discarding and average

number of HARQ fragments per correctly decoded frame as derived by the analysis dis-

cussed above. The analysis is compared to simulation results obtained by reproducing the

evolution of the Type I and II HARQ over the SNR traces employed to derive the Markov

models.

All results are plotted as a function of the average transmit power: for each point on

the curve, SNR traces are offset in order to simulate a different transmit power; in turn, this

changes the average value of the distribution of the SNR, affecting the size of the reliable

code region, and the performance of the decoding process. All other parameters are set as

discussed above.

4.5.7 Training over a complete SNR trace

Figs. 4.25, 4.26 and 4.27 show the throughput Θ, average number of retransmissions

Nfr and probability of frame discarding Pfd , respectively. The T1–H1 and T3–H1 links are

considered. For this evaluation, the Markov models have been trained over the whole SNR

traces of the experiment: this is meant as a general sanity check for the use of such models in

the context of underwater networks. Later in this section we will also validate the results by
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Figure 4.25. Throughput Θ as a function of the average SNR for links T1–H1 and T3–H1.

training the model over a portion of the dataset in order to obtain analytical results, while

performing simulations over a different portion of the traces of the same experiment.

We start by considering throughput in Fig. 4.25. The curves show two expected behav-

iors, namely i) that the performance of error control schemes improves with higher average

SNR (which increases the length of sojourns in favorable states of the Markov model); ii)

that Type I HARQ is consistently outperformed by Type II HARQ which is in line with

common wisdom (e.g., see [42]).

In addition, we observe that the analysis fits simulation results quite accurately; this

suggests that Markov models are in fact a good choice to achieve a high-level representation

of the channel behavior as they can correctly reproduce the statistics of the SNR process.

The SNR distribution significantly impacts the behavior of the curves: in fact, the slope

of the transitional portion of the curve (when throughput increases from 0 to 1) is steeper for

more stable links, and milder for links exhibiting greater variance. For example, compare

HARQ performance with the behavior of SNR over time as seen in Fig. 4.17: note that while

T3 experiences high, fairly stable SNR, T1 is subject to an initially lower SNR that however

increases after roughly 4 hours since the beginning of the experiment. Nevertheless, due

to the greater dispersion of data over a larger interval of SNR values throughout the ex-
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periment, T1’s SNR distribution has higher variance than T3’s. Therefore, the throughput

increase over the T3–H1 link is steeper, and T3’s throughput eventually tops T1’s. While

not shown here due to lack of space, other links (e.g., from T1 and T3 to H4) show gener-

ally similar trends. In particular, links from closer transmitters consistently exhibit better

performance, and in addition more stable links show steeper transitions in the throughput

curves.

Consider now Figs. 4.26 and 4.27 showing the number of retransmissions and the proba-

bility of frame discarding, respectively, for the T1–H1 and T3–H1 links. The general trends,

in terms of the relative performance of the two links, reflect that observed for throughput.

However, Fig. 4.26 shows a further difference between the Type I and Type II HARQ poli-

cies: as long as the average SNR is low, the number of retransmissions incurred by Type I

HARQ is 0.5, whereas that of Type II HARQ is 1. In fact, Nfr is conditioned on having cor-

rectly decoded an information frame: in unfavorable channel conditions this event is so rare

that Type I HARQ experiences a success during the first fragment transmission or during the

first retransmission with equal probability. With Type II HARQ, instead, the transmission

of a second fragment always improves the decoding performance, making it more likely to

successfully decode after the first retransmission, thereby shifting Nfr to 1. Fig. 4.27 sup-

ports this interpretation by showing that Type II HARQ indeed yields a lower probability of

frame discarding.

4.5.8 Model Validation

In all figures discussed above, the simulation results match the analysis quite accurately.

This is a consequence of having trained the Markov models over the full SNR traces, and

of having performed simulation runs over the same traces. In this subsection, we validate

the accuracy of the models by training over a different portion of data set than used in the

simulation. In any event, all portions belong to the same experiment. We consider first a

mildly non-stationary case, whereby the model is trained over the portion from one half to

three quarters of the SNR time series obtained at H1, whereas simulations are run on the

last quarter of the same time series. We observe from Fig. 4.17 that, e.g., the T3–H1 link is

very stationary during this portion of the experiment, while T1 undergoes broader changes

as the average SNR oscillates and tends to decrease toward the end of the experiment. This
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Figure 4.26. Number of retransmissions per correctly received frame, Nfr , as a function of the average

SNR for the links T1–H1 and T3–H1.

case is covered by Figs. 4.28, 4.29 and 4.30 showing throughput, number of retransmissions

and probability of frame discarding, respectively. The limited amount of variations in the

SNR traces from the portion used in the analysis and that used in simulations reflects into

a very good agreement between simulation and analysis for both the T3–H1 link and the

T1–H1 link. The only slight disagreement comes from T1–H1’s Nfr metric (Fig. 4.29) for an

average SNR of 1 to 4 dB, and is due to an insufficient number of correctly received packets,

leading to lower statistical significance of the expectations performed to calculate the value

of the metric.

For comparison, we also considered a non-stationary case, whereby the model is trained

over the first half, whereas simulations are run on the second half of the SNR time series

of H1. In this case, both the T3–H1 and the T1–H1 links experience variations, which are

limited for T3–H1, but of greater entity for T1–H1, whose average SNR increases by about

10 dB in the second half of the experiment, with respect to the first half. This case is covered

by Figs. 4.31, 4.32 and 4.33 where we observe that the model is acceptably accurate for the

T3–H1 link, and less accurate for T1–H1. In any event, despite some disagreement, the

accuracy is still acceptable for the model to work at least as an approximation of the link

behavior. This may still make it suitable, e.g., to be implemented in a network simulator.
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Figure 4.27. Probability of discarding a data frame, Pfd , as a function of the average SNR for links T1–H1

and T3–H1.
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Figure 4.28. Model validation, mildly non-stationary case: model trained over the third quarter, simu-

lations run over the fourth quarter of the SNR time series. Throughput, Θ.
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Figure 4.29. Model validation, mildly non-stationary case: model trained over the third quarter, simu-

lations run over the fourth quarter of the SNR time series. Average number of retransmissions, Nfr .
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Figure 4.30. Model validation, mildly non-stationary case: model trained over the third quarter, simu-

lations run over the fourth quarter of the SNR time series. Probability of frame dropping, Pfd .

4.6 Adaptive Modulation

4.6.1 SystemModel and Performance Analysis

We consider an adaptive modulation system using BPSK andM -ary Quadrature Ampli-

tude Modulation (M -QAM) constellations signaling over Nakagami-m fading channels. In
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Figure 4.31. Model validation, non-stationary case: model trained over the first half, simulations run

over the second half of the SNR time series. Throughput, Θ.

−10 −5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average SNR [dB]

R
e

tr
a

n
s
m

is
s
io

n
s
 p

e
r 

c
o

rr
e

c
tl
y
 r

e
c
e

iv
e

d
 f

ra
m

e

 

 

T1−H1 Analysis, HARQ−II
T1−H1 Analysis, HARQ−I
T1−H1 Simulation, HARQ−II
T1−H1 Simulation, HARQ−I
T3−H1 Analysis, HARQ−II
T3−H1 Analysis, HARQ−I
T3−H1 Simulation, HARQ−II
T3−H1 Simulation, HARQ−I

Figure 4.32. Model validation, non-stationary case: model trained over the first half, simulations run

over the second half of the SNR time series. Average number of retransmissions, Nfr .

particular, we assume that a finite set of J +1modulation schemes can be chosen, each hav-

ing a different constellation size {M0,M1, . . . ,MJ}, and leading to a different probability of
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Figure 4.33. Model validation, non-stationary case: model trained over the first half, simulations run

over the second half of the SNR time series. Probability of frame dropping, Pfd .

error as a function of the receive SNR and a different spectral efficiency, in terms of bits trans-

mitted per channel use. For the purposes of the present study, let M ∈ {2, 4, 16, 64, 256}:3

therefore J = 4. While we refer the reader to [43] for details on variable-rate adaptive M -

QAMmodulation under the ideal CSI assumption, we remark here that the rationale behind

the adaptation of the modulation signaling is to exploit the changes in the channel propa-

gation gain to the system’s advantage, i.e., by pushing a larger number of bits per symbol

through a constellation with a higher number of levels when the SNR is favorable, while

backing off to more robust constellations (such as BPSK’s or QPSK’s) whenever the SNR

drops below an acceptable value for higher-order modulations. To this end, a straightfor-

ward solution is to choose the modulation for the current transmission in an opportunistic

fashion, i.e., by choosing the modulation j, with Mj levels, whenever the measured SNR

γ falls within a prescribed interval of the form [γ∗j , γ
∗
j+1). The thresholds γ∗j and γ∗j+1 are

chosen so that the SNR is at least as high as required to ensure a prescribed performance

level with modulation j (e.g., a BER of no more than a desired level P ∗
b ), yet insufficient to

3We note that these modulations are standard in digital video transmission, e.g., 4- to 64-QAM are used in

the European Telecommunications Standards Institute (ETSI)’s DVB-T standard, whereas the 16- to 256-QAM

schemes are adopted in the DVB-C standard [59].
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achieve the same performance using the higher spectral efficiency modulation j + 1. Some

hysteresis may be built into the switching scheme to prevent continual level changing [60],

but this solution, though practical, does not yield additional insight to the analysis we carry

out in the following, and is therefore not considered here. The spectral efficiency achieved

by choosing modulation j is then log2Mj bits per channel use, j = 0, . . . , J .

From a practical standpoint, given a transmitter-receiver pair, the receiver is assumed

to provide a measure of the SNR γ to the transmitter, which will then take the highest j

such that the modulation with Mj levels has a BER Pb(γ) < P ∗
b , where P ∗

b is some desirable

value.4 For BPSK, as well as forM -QAM the exact formula of the BER is given in

QAMper (4.21)

[61], where Q(x) ,
∫∞
x e−t2/2 dt/

√
2π is the Gaussian-Q function. Whenever the SNR falls

below the value required to guarantee a BER of no more than P ∗
b to the most robust mod-

ulation with M0 = 2 levels, the system is said to be in outage. However, note that such

definition of outage is only valid under an instantaneous channel knowledge assumption.

We will relax this later by accounting for outdated knowledge, and therefore extend the

concept of outage correspondingly.

For now, assume that the SNR, ideally estimated at the receiver, is sent back to the trans-

mitter on an error-free delayed channel. Also, recall that the channel fading effects are mod-

eled by a Nakagami-m process. Let Es denote the symbol energy (averaged over the distri-

bution of fading),N0/2 the two-sided power spectral density of the additive white Gaussian

noise process at the receiver, and h the fading gain, assumed to have a Nakagami-m distri-

bution. Because the instantaneous SNR can be written as γ = |h|2Es/N0 its PDF fγ(γ) and

its CDF Fγ(γ) are respectively given by [62, pp. 21–24]

fγ(γ) =
mmγm−1

γmΓ(m)
exp

(

−mγ

γ

)

, (4.22)

Fγ(γ) = 1−
Γ
(

m, mγ
γ

)

Γ(m)
, (4.23)

for γ ≥ 0, where Γ( · ) is the Gamma function, γ = E
[

|h|2
]

Es/N0, is the mean SNR, and m

is the Nakagami-m fading parameter, which ranges from 1/2 to +∞.

For a given maximum target BER, typical performance metrics for adaptive modulation

systems are the average Spectral Efficiency (SE), defined as the average number of bits per

4In the following evaluation, P ∗

b will be fixed to 10
−2.
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channel use allowed by the adaptation scheme, and the Bit Error Outage (BEO), defined as

the probability that the system cannot satisfy the prescribed performance in terms of bit er-

ror rate. We consider both metrics in the following, and provide their analytical expressions

in the presence of both instantaneous and outdated channel knowledge at the transmitter.

4.6.2 Instantaneous CSI

Ideal adaptive modulation systems are said to be in outage whenever the SNRmakes the

most robust modulation M0 achieve a BER worse than P ∗
b . When ideal CSI (perfect channel

estimation and instantaneous channel knowledge) is available at the transmitter, the BEO

can be evaluated as the probability of experiencing an SNR level lower than the minimum

threshold γ∗0 :

Po(P
∗
b ) = P

{

P
(0)
b (γ) > P ∗

b

}

= Fγ (γ
∗
0) . (4.24)

The average SE can be expressed in terms of the number of bits per symbol in each modula-

tion, averaged over the probability of choosing that modulation:

η =
J−1
∑

j=0

M̃j P
{

γ∗j < γ ≤ γ∗j+1

}

+ M̃J P {γ∗J < γ}

=
J−1
∑

j=0

M̃j

[

Fγ(γ
∗
j+1)− Fγ(γ

∗
j )
]

+ M̃J [1− Fγ(γ
∗
J)] , (4.25)

where M̃j = log2Mj . We also define the throughput of the system, denoted as G in the

following, by taking the product of the spectral efficiency of either modulation and the re-

lated probability of correct bit reception, averaged over the values of the SNR for which that

modulation is chosen. We have

G =
J
∑

j=0

M̃j

∫ γ∗

j+1

γ∗

j

[

1− P
(j)
b (γ)

]

fγ(γ) dγ , (4.26)

where we let γ∗J+1 = +∞.5

4.6.3 Outdated CSI

We now evaluate the effect of delayed channel knowledge on the system performance.

To this end, we assume that the information about the value of the SNR γ, estimated by

5We note that the analysis is conceptually equivalent if we consider the packet error probability instead of

the bit error probability.
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the receiver at a given time t, will be available at the transmitter only after a delay τ , i.e.,

at time t + τ . Therefore, the opportunistic choice of the constellation size will still be based

on the value of γ, but when such a constellation will be used, i.e., at time t + τ , the SNR

will have evolved to a different value γτ = |hτ |2Es/N0
6. At this point, if γ < γτ , the SNR

is underestimated and, compared to the instantaneous knowledge case, a too conservative

constellation size might be chosen for transmission. On the contrary, when γ > γτ , the

SNR is overestimated, and the chosen modulation level might not meet the prescribed BER

requirements. In other words, although γ ∈ [γ∗j , γ
∗
j+1), leading to the choice of modulation

j, γτ might be such that P
(j)
b (γτ ) > P ∗

b . In the latter case, the system is also in outage. In

particular, an outage event occurs if γ < γ∗0 or γ ≥ γ∗0 , γ ∈ [γ∗j , γ
∗
j+1) (hence, modulation j is

chosen), but γτ < γ∗j . Then, the BEO can be written as

Po = Fγ (γ
∗
0) +

J
∑

j=0

Po|j , (4.27)

where Po|j denotes the joint probability that the current SNR is not sufficient to withstand

the requirements of modulation j, and is found by integrating the distribution of γτ over

[0, γ∗j ) (i.e., where modulation j is in outage) and that γ was sufficient to enable the use of

modulation j:

Po|j =

∫ γ∗

i+1

γ∗

i

∫ γ∗

j

0
fγτ |γ (γτ ) fγ(γ) dγτ dγ , (4.28)

where we let γ∗J+1 = +∞, and fγτ |γ(γτ ) is the PDF of γτ conditioned on γ. This distribution

can be found as [63]

fγτ |γ (γτ ) =
m

(1− ρτ )γ

(

γτ
ρτγ

)(m−1)/2

× Im−1

(

2m
√
ρτγγτ

(1− ρτ )γ

)

exp

(

m(ρτγ + γτ )

(1− ρτ )γ

)

, (4.29)

where Im−1 (·) is the modified Bessel function of the first kind and orderm−1 [64], and ρτ is

the correlation factor between the SNR process and its τ -lagged version, which is estimated

as

ρτ =

∑N−1
t=0 (γt − γ)(γt+τ − γ)

√

∑N−1
t=0 (γt − γ)2

∑N−1
t=0 (γt+τ − γ)2

, (4.30)

6In the following we assume that the channel is stationary and thus assume t = 0 with no loss of generality.

From a practical standpoint, this translates into considering a portion of the experiment within a limited time

window, during which the channel exhibits an approximately stationary behavior.
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where N is the length of the dataset over which the estimation is performed, and depends

on the time coherence of the SNR process. We note that in (4.30) we are estimating the

correlation of the power envelope of the fading process, and therefore remove the average

value from the SNR time series [65]. The Nakagamim-parameter can finally be estimated as

m =
γ2

E[(γ − γ)2]
. (4.31)

The spectral efficiency η must be computed by considering the joint distribution of γ and

γτ . In particular, in the present analysis, we define η as the spectral efficiency of the chosen

modulation whenever the SNR γτ (which affects the actual transmission) is sufficient to

support the modulation, and 0 otherwise. Therefore, we have

η =
J
∑

j=0

M̃j

∫ γ∗

j+1

γ∗

j

∫ +∞

γ∗

j

fγτ |γ (γτ ) fγ(γ) dγτ dγ (4.32)

and, similarly to the instantaneous knowledge case, the throughput is found as

G=

J
∑

j=0

M̃j

∫ γ∗

j+1

γ∗

j

∫ +∞

γ∗

j

[

1−P
(j)
b (γτ )

]

fγτ |γ (γτ ) fγ(γ) dγτ dγ . (4.33)

4.6.4 Analysis and Simulation Results

We start the description of our results by considering spectral efficiency, for the exper-

iment and the links already presented in Figure 3.12. We focus on this specific subset of

results because it shows a highly time-varying channel set.

Figures 4.34, 4.35 and 4.36 detail the spectral efficiency against average SNR for links

from T1 to H1, H2 and H4, respectively. The average SNR is computed by taking the ex-

pectation of the SNR time series over the experiment (or a portion thereof), and is varied

by adding a constant value: note that this corresponds to simulating a different transmit

power than actually employed in the experiments. We consider only instantaneous chan-

nel knowledge for the moment. The figures contain both theoretical and simulated curves.

In particular, theoretical performance is obtained by estimating the parameters of the cor-

related Nakagami-m model (in terms of the coefficient m and the correlation ρ) and then

using the statistics of the model to obtain performance figures as per the analysis in Sec-

tion 4.6.1. On the contrary, simulations take the SNR time series (offset by the same constant

value used in the analysis to simulate different transmit power) and reproduce the behavior
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Figure 4.34. Comparison between theoretic and simulated spectral efficiency vs. SNR over link T1–H1 in

the instantaneous knowledge case.

of the system over that time series. Analytical curves are provided in the figures as solid

black lines, whereas simulation results are depicted using grey markers. In order to show

that moderate time variations of the SNR statistics do not impact substantially on the re-

sults of the estimation, we have chosen a window of 100 minutes in Figure 3.12, from 2:30

to 4:10 from the beginning of the experiment. In this window, T1–H1’s and T1–H2’s SNRs

are almost constant, whereas T1–H4’s experiences more abrupt ups and downs spanning

10 dB (see Fig. 3.12). Nevertheless, simulations adhere quite accurately to analysis, in par-

ticular for the adaptive scheme. Non-adaptive schemes also show a very good accordance

of analysis and simulations. Note that the adaptive scheme does not closely follow the en-

velope of the non-adaptive ones: this is expected because the SNR is not fixed, but rather

follows a Nakagami-m pdf whose mean is reported in the abscissa of the graphs. In the

presence of instantaneous channel knowledge, this may allow the use of modulations of

larger constellation size, yielding a higher average spectral efficiency than achieved by the

best non-adaptive scheme for the same average SNR.

The next metric of interest for our comparison is bit error outage (BEO), which suggests

whether the adaptive scheme is successful enough at compensating for changes in the chan-

nel by adapting the modulation rate. We remark that, when affected by delayed channel
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Figure 4.35. Comparison between theoretic and simulated spectral efficiency vs. SNR over link T1–H2 in

the instantaneous knowledge case.

knowledge, adaptation is expected to be less effective, as while channel knowledge is ac-

quired, not only the absolute value, but also the statistics of the channel fading phenomena

will have changed. Figures from 4.37 to 4.39 show the BEO metric for the links from T1 to

H1, H2 and H4, respectively. The different behaviors observed in Figure 3.12 for the channel

SNR traces reflect in different outage probability in the figures. We provide both simu-

lated curves and analytical predictions, for both the instantaneous and the delayed channel

knowledge cases; for the latter, different delays are provided. The first result is that while the

BEO of instantaneous knowledge steadily decreases for increasing SNR, delayed knowledge

causes outage events to be likely even for high SNR, creating a sort of floor effect whereby

the BEO does not decrease below 0.1 in all figures, until the average SNR is higher than

roughly 30 dB. In addition, we observe that more stationary SNR trace chunks (i.e., where

the statistics of the SNR do not change much within the interval where the estimation of

the model parameters is performed), do not show substantial difference between the model

and simulation results. However, m and ρ are key to a correct prediction, which is by itself

inaccurate for two reasons: short windows contain few samples and thus do not allow to

correctly estimate the statistics of the signal; longer windows contain enough samples, but

may incur state changes in the channel behavior, which would also deviate the estimated
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Figure 4.36. Comparison between theoretic and simulated spectral efficiency vs. SNR over link T1–H4 in

the instantaneous knowledge case.

channel parameters. For these reasons, the predicted performance in the presence of de-

layed knowledge correctly estimates the level of the BEO floors, but shows some offset in

the oscillations around such floors.

Figures 4.40–4.42 show the average BEO evolution over time for the T1–H1 link. In terms

of hours and minutes from the beginning of the experiment, Figure 4.40 refers to the time

interval from 0:00 to 1:40, Figure 4.41 to the interval from 3:20 to 5:00 and Figure 4.42 to the

interval from 5:00 to 6:40. We observe that the behavior of the channel changes considerably,

both in terms of the parameterm of the Nakagami model (impacting BEO oscillations when

the SNR ranges from 10 to 30 dB) and in terms of the correlation among samples when

delayed channel knowledge versions are considered (impacting the level of the BEO floor

before high SNR is reached, as low correlation leads to a higher chance of choosing the

wrong modulation.

The last metric we evaluate is the link throughput for the adaptive modulation scheme,

G, defined as the spectral efficiency multiplied by the probability of success, averaged over

the probability of selecting a specific modulation. Figures 4.43, 4.44, and 4.45 detail the beha-

vior of the throughput for links from T1 to H1, H2, and H4, respectively. The figures report

both the instantaneous and the delayed channel knowledge cases. We observe that the lack
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Figure 4.37. Bit error outage probability as a function of the average SNR for link T1–H1 ,m = 3.

of timely knowledge impairs the throughput performance, as a consequence of higher bit

error rates (bit error outage is a more likely event). This effect is amplified by greater delays,

though as expected the loss of correlation makes high delays equally inconvenient. How-

ever, this decrease is still acceptable, especially in stationary scenarios where the correlation

is sufficiently high, as is the case for links T1–H1 and T1–H2. We note in fact that all figures

refer to the time window in the middle of the experiment, from 4:10 to 5:50 after the begin-

ning. In this phase, we observe a quite stationary behavior over the T1–H1 and T1–H2 links,

which results in very good match between analysis and simulation. On the other hand, the

T1–H4 link experiences long-term variations of larger amplitude over the considered time

window (see Figure 3.12), which result in a poorer match between analytical and simulated

results, especially in case of delayed channel knowledge. However, even in this case, ana-

lytical curves are still sufficient to achieve a coarse estimate of the throughput behavior.
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Figure 4.38. Bit error outage probability as a function of the average SNR for link T1–H2, m = 5.

Table 4.2. Comparison of average correct packet reception probabilities

Receiver IID / Data MM1 MM2 HMM

Experiment A

H1 0.578 0.580 0.579 0.580

H2 0.569 0.568 0.567 0.568

H4 0.924 0.923 0.922 0.910

Experiment B

H1 0.370 0.369 0.369 0.369

H2 0.690 0.692 0.691 0.695

H4 0.924 0.9231 0.922 0.910
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Figure 4.39. Bit error outage probability as a function of the average SNR for link T1–H4, m = 2.
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Figure 4.40. Bit error outage probability as a function of the average SNR for link T1–H1. Analysis and

simulation shown for both the instantaneous and the delayed channel knowledge case. Time window from

0:00 to 1:40. Estimatedm = 3.



4.6. Adaptive Modulation 105

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

Average SNR [dB]

B
it 

e
rr

o
r 

o
u
ta

g
e
 p

ro
b
a
b
ili

ty

 

 

Sim, instantaneous CSI

Sim, delayed CSI, τ=15s, ρ=0.31

Sim, delayed CSI, τ=30s, ρ=0.32

Sim, delayed CSI, τ=2min, ρ=0.11

Sim, delayed CSI, τ=10min, ρ=0.053

Sim, delayed CSI, τ=15min, ρ=0.0088

Analysis

Figure 4.41. Bit error outage probability as a function of the average SNR for link T1–H1. Analysis and

simulation shown for both the instantaneous and the delayed channel knowledge case. Time window from

3:20 to 5:00. Estimatedm = 2.
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Figure 4.42. Bit error outage probability as a function of the average SNR for link T1–H1. Analysis and

simulation shown for both the instantaneous and the delayed channel knowledge case. Time window from

5:00 to 6:40. Estimatedm = 3.
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Figure 4.43. Throughput as a function of the average SNR for both the instantaneous and the delayed

channel knowledge case. For link T1–H1, estimatedm = 3.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Average SNR [dB]

T
h
ro

u
g
h
p
u
t,
 G

 [
b
its

/s
/H

z]

 

 

Sim, instantaneous CSI

Sim, delayed CSI, τ=15s, ρ=0.6

Sim, delayed CSI, τ=30s, ρ=0.64

Sim, delayed CSI, τ=2min, ρ=0.55

Sim, delayed CSI, τ=10min, ρ=0.37

Sim, delayed CSI, τ=15min, ρ=0.32

Analysis

Figure 4.44. Throughput as a function of the average SNR for both the instantaneous and the delayed

channel knowledge case. For link T1–H2, estimatedm = 2.
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Figure 4.45. Throughput as a function of the average SNR for both the instantaneous and the delayed

channel knowledge case. For link T1–H4, estimatedm = 2.





Chapter5

Predictability of the channel quality

5.1 Chapter Overview

In this chapter, we study the predictability of the underwater acoustic communications

performance. In fact, the adaptive communications schemes that have been analyzed in the

previous chapter require control message exchanges, which result in increased latency and

energy consumption, thus leading to inefficiency. For this reason, we analyze both KAM11

and SPACE08 data sets, in order to evaluate the predictability of the communications per-

formance over time interval of tens and hundreds of seconds and to determine whether the

amount of signaling can be reduced.

5.2 Motivations and Related Work

We assess the predictability of the communication channel quality, so as to determine

the classes of feedback and adaptive communications techniques that are most suitable for

the underwater environment. The time scales of interest (several seconds to a few minutes)

are very relevant to the performance of adaptive communications schemes and network

protocols requiring control signaling.

Assessing the most appropriate techniques for providing and exploiting feedback is par-

ticularly important for the many half-duplex underwater acoustic communications systems

such as those in [2] and [5]. In such systems, the use of feedback reduces the capacity of

the link and increases energy consumption. Nevertheless feedback (or control messages)
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is necessary to many communication techniques, such as AM, power control, Automatic

Repeat reQuest (ARQ), and to networking protocols. Therefore, unlike for the wireless ter-

restrial counterpart, not affected by the same restrictive constraints, it is important to assess

the trade-off between the benefits of adaptive techniques and the drawback of using more

resources, such as energy, time and bandwidth.

In contrast to the study in [66], we focus on the predictability of the communications

performance (output SNR), rather than of the channel impulse response. Measures of com-

munications performance such as output SNR are more practical to send over an acoustic

feedback channel and are more important when determining the next transmission parame-

ters in an AdaptiveModulation and Coding (AMC) context. In addition, we focus on perfor-

mance averaged over the length of transmission packets because techniques like AMC are

driven by conditions that change over inter-packet intervals. In [67], the authors provide a

study on the predictability of the SNR computed on the received signal, which will be called

input SNR later on, for the closed loop power control technique. As we will show in the fol-

lowing, for single carrier wide-band modulation schemes, such as that considered in [67],

closed loop power control may not be as effective as it is commonly thought. Moreover,

our work differs from the work in [67], in the considered environment and in the observed

metric: in fact, even if assessing the predictability of the input SNR or of the output SNR

is qualitatively equivalent, quantitatively it is not. The authors of [68] performed the first

study taking into account outdated CSI, but they did not study the possibility of decreasing

the feedback rate. Moreover, none of the studies on underwater network protocols, such

as [69], [70], [71], [72] and [73] deals with or takes advantage of time correlated channel

conditions. Indeed, differently from the terrestrial radio communications, where the trans-

mission rates and propagation delays are negligible with respect to the time-varying channel

conditions in a stationary scenario, the underwater case is more heavily affected by environ-

mental changes of the order of several seconds, so that these effects should be considered

when optimizing or designing new networking protocols. This approach appears, for the

first time, in [74], where the authors observe via simulation that changes in the sound speed

profile conditions affect the performance of MAC and routing protocols. Nevertheless, they

do not study the predictability of such varying conditions, but they rather suggest to use

more control messages.
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5.3 Predictability over Intervals a few Seconds Long

In this section, we show the time evolution of PSDs, estimated over intervals three min-

utes long, by using SPACE08 data. The main contributions here are to provide evidence of

the non-stationarity of the communications performance over long time intervals as well as

to give evidence of the periodical behavior of the channel quality during specific time in-

tervals. We recall that for this study we exploit the time series of the channel energy, which

however is a metric proportional to the SNR.

5.3.1 The PSD of the Channel Energy

Here, we show the PSD estimated over a time interval three minutes long, during which

we have tested the stationarity. Specifically, we consider systems in the middle range S3 and

S4, at which the intensity of the fluctuations over periods of a few seconds is more evident

than at systems S5 and S6, where the acoustic waves are more attenuated. We represent the

PSD only for positive frequencies, because the spectrum is a symmetric function, given that

the energy time series is a sequence of positive real numbers. Specifically, we want to focus

on the intensity of variations of the order of few seconds, therefore we will show the PSD in

the range [0, 1]Hz. The PSD is estimated as

S(m, f) =
Ts

N

∣

∣

∣

N
∑

t=1

Eg(t)w(t) exp(−i2πft)
∣

∣

∣

2
(5.1)

where w(t) is the Hamming window, Eg(t) is the channel energy process, andm is the index

of the epoch of the measurement.

Figures 5.1 and 5.2 show the pseudocolor plot of the estimated PSD: frequencies are

shown in the x-axis, while Julian dates, at which data were collected, are indicated in the

y-axis. We observe that the PSD for system S4 reveals a peak at 0.3Hz, which corresponds to

a three seconds period of the intensity fluctuations of the channel. This is observed at dates

292, 295 and 298. Similar considerations apply also for system S3, although the peaks are

less evident.

Figure 5.3 shows the pseudocolor plot of the magnitude of the impulsive channel re-

sponse during Julian date 298 at 4 AM for system S4. It can be noticed that the second

arrival has almost three peaks every ten seconds, which corresponds to a peak at frequency
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Figure 5.1. Pseudocolor plot of the estimated PSD (linear scale) of the channel energy at system S3, from

October 18 to 27. The white periods correspond to a lack of measured data.

0.3Hz in the PSD. This behavior can be explained by considering the environmental condi-

tions, and in particular the wind driven wave energy in the surface wave spectra between

0.2Hz and 0.6Hz, which is shown in Figure 5.4.

During the periods of low wind driven waves, as those at dates 292, 295 and 298, the

surface wave is coherent over a large spatial region. This results in a greater area of coher-

ent reflection, which is modulated by the regular periodicity of the surface roughness. This

area of coherent reflection gives rise to large and periodic fluctuations of the overall energy,

such as those observed in Figure 5.3. On the other hand, when there are higher wind waves,

such as those during dates 293, 296 and 300, the coherence of the scattering off the surface

is broken, decreasing the area of coherent reflection. This causes many individually fluctu-

ating but smaller intensity arrivals, whose overall energy fluctuations are slower and less

intense. From Figures 5.1 and 5.2 we can see how variable the spectrum is over long peri-

ods of time, which shows that the problem of understanding the stationarity time scale was

well-founded even for static underwater channels. This study shows the importance of the
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Figure 5.2. Pseudocolor plot of the estimated PSD (linear scale) of the channel energy at system S4, from

October 18 to 27. The white periods correspond to a lack of measured data.

hypothesis evaluation, in order to both construct predictors and develop better models for

shallow water propagation.

5.4 Predictability over Intervals a few Minutes Long

5.4.1 SystemModel

Figure 5.5 represents the considered Single InputMultiple Output (SIMO) systemmodel.

Modulation symbols, a(n), are transmitted over the channel, c(t, τ), which introduces distor-

tion, and they are received with additive noise w(t) at the receiver side at different depths.

At the receiver side, after synchronization, the received signals are re-sampled, combined,

and processed by a DFE. Then, the output symbol SNR, γ, is estimated from the software

decision at the output of the equalizer, s̃(n), and is then fed back. The transmitter, based on

a predefined Quality of Service (QoS) requirement, decides for the largest constellation size

which assures such QoS. In our case, we consider constant modulus constellations, such as



114 Chapter 5. Predictability of the channel quality

Figure 5.3. Pseudocolor plot of the channel impulse response at S4, during Julian date 298.

Figure 5.4. Time series of the wind driven surface wave energy.
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Figure 5.5. System model. The SNR, γ(t − 1), is estimated after the equalizer and is fed back to the

receiver. The symbol r(t) represents the vector of the received symbols at different receiver elements.

M -ary Phase-Shift Keying (M -PSK), with M ∈ {2, 4, 8}, and we choose as QoS the max-

imum BER, here 10−3, for the transmitted bit stream. We compute the BER as a function

of the average symbol SNR γ, by assuming that the received s̃(n), inside a packet, is af-

fected by only Additive White Gaussian Noise (AWGN), so that we can use the following

equations [75]:

Pb(M ; γ) =



























Q
(√

2γ
)

, M = 2

Q
(√

γ
)

, M = 4

2
3Q
(√

2γ sin (π/8)
)

, M = 8.

(5.2)

Given a maximum BER, we compute the set of threshold SNRs, which are associated to

each constellation size M .

We express the software decision as

s̃(n) = c̃(0)a(n) + w̃(n), (5.3)

where c̃(0) is the residual channel coefficient after equalization and w̃ is the residual additive

noise, which includes noise and residual ISI. We assume that c̃(0) is constant over a packet

but varies slowly across different packets.

From Equation (5.3) we define the average output SNR as

γ =
|c̃(0)|2Es

σ2
, (5.4)

where Es is the energy of the modulation symbol and σ2 is the variance of the residual noise

w̃. Given that we consider constant modulus constellations, Es is one for every symbol.

We estimate the residual channel coefficient for each packet as the average of the software

decision divided by the corresponding transmitted signal, so that it does not depend on the

specific transmitted symbol. Then, we can write the residual coefficient as:

c̃(0) = E

[ s̃(n)

a(n)

]

. (5.5)
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Given that w is a zero-mean process, this estimator is unbiased. Finally, we estimate σ2 as:

σ2 = E[|s̃(n)− c̃(0)a(n)|2]. (5.6)

We can interpret c̃(0) as the average residual channel coefficient over a packet, and σ2 as the

corresponding mean square error.

In the adaptive modulation context, we are interested in evaluating the changes of chan-

nel conditions over consecutive packets, in order to assess whether or not the fed back infor-

mation is sufficient, if not outdated, to get the expected performance improvement. Specifi-

cally, we focus on the fluctuations of the output SNR in Equation (5.4), which is proportional

to the squared amplitude of the average residual channel coefficient and is a measure of the

received signal quality seen by the upper layers in the protocol stack. Given that we are ob-

serving an average output SNR, and given that the transmitter and receiver are stationary,

we do not expect rapid fluctuations, but given that both the feedback delay and the pro-

cessing time at the receiver are of the order of seconds, we do expect changes in the channel

state over this time scale.

We characterize the amplitude of the residual channel coefficient as a Nakagami random

variable fully described by its second order statistics. Therefore, the probability density

function for the output SNR,γ, is given by Eq. (4.22). We choose this model because, thanks

to the parameter m, it makes it possible to consider different fading shapes (from Rayleigh

to Rice), and given that the distribution is completely defined by its second order statis-

tics, it can be easily estimated from the time series. We then assume that two consecutive

SNR samples, separated by a time interval τ , γ and γτ , are Nakagami correlated random

variables, described by the following conditioned probability density function:

f (γτ |γ) =
m

(1− ρ (τ))γ

(

γτ
ρ (τ) γ

)(m−1)/2

× Im−1

(

2m
√

ρ (τ) γγτ
(1− ρ (τ))γ

)

exp

(

m(ρ (τ) γ + γτ )

(1− ρ (τ))γ

)

, (5.7)

where ρ (τ) is the correlation coefficient between γτ and γ, and Im−1 (·) is themodified Bessel

function of the first kind and of orderm− 1.
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5.4.2 Communications Performance: Outage Probability and Throughput

Here, we present a derivation of the communications performance for the AM system. In

particular, we focus on outage probability and average throughput as functions of feedback

delay. The outage probability is a measure of how likely the event of not satisfying the QoS

is, when using the constellation size associated to the fed back SNR value, γ. The average

throughput is the mean amount of information per unit of time that is correctly received,

and represents the tradeoff between high spectral efficiency and unreliable transmission.

We compute the outage probability, given a fed back γ, as the probability that γτ is less

than the SNR threshold T (γ), i.e., the inferior extreme of the SNR region associated to γ,

which in symbol is

P (γτ |γ) =
∫ T (γ)

0
f(γτ |γ)dγτ . (5.8)

This conditional probability can be averaged over all the possible values for γ, including the

case in which γ is less than the minimum average symbol SNR assuring the QoS, which will

be indicated as T1. This outage probability is

P (τ) =

∫ +∞

T1

f(γ)

∫ T (γ)

0
f(γτ |γ)dγτdγ +

∫ T (1)

0
f(γ)dγ . (5.9)

We compute the throughput as the average amount of information per second per Hertz,

that is transmitted based on the fed back SNR γ and is correctly received. Given γ, the

transmitter chooses the constellation size M(γ), for which the number of bits per symbol

is b(γ) = log2 (M(γ)). By assuming the usage of an interleaver over the bit stream, we can

compute the average throughput, given γ, as

Θ(τ |γ) =
∫ ∞

T (γ)
b(γ)(1−BER(γτ ))f(γτ |γ)dγτ , (5.10)

which, by considering all possible values for γ, becomes:

Θ(τ) =

∫ +∞

T1

f(γ)b(γ)

∫ ∞

T (γ)
(1−BER(γτ ))f(γτ |γ)dγτdγ . (5.11)

It is worth noticing that when γτ is less than the inferior extreme of the region associated

to γ, i.e., if γτ < T (γ), the throughput is zero, because the QoS is not met.

5.4.3 Predictability of the communications performance

A process is said to be predictable in time, when it is possible to know its value some

time τ ahead. The process that we want to be able to predict is the average AM system
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performance in terms of throughput and outage probability. The analytical model, proposed

in Section 4.6.1, depends only on the second order statistics of two correlated Nakagami

variables, i.e., we only need to study the correlation coefficient between γ and γτ . Moreover,

linear predictors are based on the second order statistics of the process that they track, so

that from this study we can also conclude whether or not they can be a valuable class of

predictors, and if so over which time scales. In the following we assume that the output

SNR is a stationary random process, so that we can estimate the correlation coefficient. The

stationarity of the SNR process was verified in [16], for the non-coherent case.

We indicate the correlation coefficient between two consecutive SNRs, γ and γτ , sepa-

rated in time by τ , as ρ (τ) and compute it as:

ρ (τ) =
Cov(γ, γτ )

√

Cov(γ)C(γτ )
, (5.12)

where Cov(·) is the covariance function defined as Cov(x, y) = E[(x −mx)(y −my)] and, if

the function has only one variable, it is equivalent to computing the variance of the variable.

Figure 5.6 shows the correlation coefficient ρ (τ) as a function of time within the six minute

observation interval. Here we present ρ (τ) at three different hours: 2 am and 4 am on Julian

date 187 and 00 am on 188. Given that for each minute we have the data for 31 packets, and

given that each packet lasts 1 s, we interpolate the data in order to fill the gaps on the time

series. For this reasonwe can observe a step-like behavior in Figure 5.6 between eachminute

and the next one. It is worth noticing that the shapes of the correlation functions at hours

2 and 4 am are quite alike, i.e., there is a second local maximum on the correlation function

around the fourth minute, and then it decreases. This observation suggests that there are

slowly changing environmental conditions which determine the shape of such correlation

functions. The third curve, referring to date 188, is measured almost one day after the other

two curves, and we can see how the shape of the correlation function has changed. In fact

for this curve we note two other local maxima around the third minute and the fifth minute.

The cause of such behavior has not been studied yet, but as a next step we will analyze the

environmental data and propagation models, trying to explain these trends.

We now evaluate the average AM communications system performance, by applying

Equations (5.10) and (5.11) and using the correlation coefficients ρ (τ) evaluated from the

data. In particular, we estimate the parameter m for the Nakagami probability distribution,

as m = γ2

E[(γ−γ)2]
, whereas we do not compute the average SNR γ from the data, but we
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Figure 5.6. Correlation coefficient between two consecutive SNRs, τ minutes apart in time.

assume the same one (10 dB) for all the considered hours, in order to get comparable results,

and in order to highlight the effects on the performance of the time fluctuations.

Figures 5.7 and 5.8 show the system performance as functions of the feedback delay τ .

Doubtless, a feedback delay of the order of minutes is not of great practical interest, but

we aim at understanding over which time interval the process can be predictable, in order

to prove that the feedback rate can be decreased. As expected, corresponding to the local

maxima of the correlation function, we find local minima for the outage probability and lo-

cal maxima for the throughput. This means that if we knew the system performance at the

present time, we could expect similar performance in four minutes as shown by the curve

representing hour 2 am, and in three and five minutes as shown by the curve represent-

ing time 00 am. We prove here that the time behavior of an adaptive system performance

permits predictability, and we show how far ahead this holds.

These results give rise to several considerations on how to take advantage of such pre-

dictability when designing communications and networking algorithms. For what concerns
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Figure 5.7. Outage probability as a function of τ .

adaptive modulation schemes, we should be able to answer the following open questions:

which feedback information about the channel state is most effective in enhancing the per-

formance? Is the feedback rate adjustable without any performance loss? Which predictors

are more suitable to indicate the next transmission parameters? For example, so far we as-

sumed that the previous average output SNR γ provides sufficient information to choose

the best next transmission parameters, but if we want to decrease the feedback rate, this

may no longer be the case. Indeed, as shown in Figures 5.7 and 5.8, the information about

the next time when a local maximum occurs in the correlation coefficient can be more useful

to adjust accordingly the system parameters and it would not require the same amount of

feedback, thus saving energy and channel occupancy.

Moreover, we can also say that knowing the time between two highly correlated instants

can be very useful for networking protocols. For example, a routing protocol could take

advantage of such information by updating the routing tables accordingly or a medium

access control protocol could assign the best slot of time to different nodes according to



5.4. Predictability over Intervals a few Minutes Long 121

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

lag, τ [minutes]

T
h
ro

u
g
h
p
u
t,
 Θ

(τ
) 

[b
/s

/H
z
]

 

 

2 am

00 am

Figure 5.8. Throughput as a function of τ .

different local fluctuations that they observe.





Chapter6

Conclusions

In this thesis, we first presented an extensive analysis of channel properties in terms of

both time spread and time correlation coefficients, over three different data sets, collected in

shallow water scenarios during different times and at different locations. In this study, we

also qualitatively evaluated the effects of environmental conditions on the observed channel

properties.

Second, we studied the stationarity and evaluated the interval of stationarity of the en-

ergy of the underwater acoustic channel, for the SPACE08 data set. More specifically, we

observed that, on average, different links are characterized by intervals of stationarity of the

order of a few minutes. We provided a qualitative explanation of the results by considering

the relationship between the environmental fluctuations and the stationarity of the acoustic

channel.

Then, we evaluated the suitability of Markov models to represent the channel in a shal-

low water scenario. We considered Markov models with memory of both one and two past

events, as well as a HMM, and compared them to data traces and to a simpler IID error

model. Our comparison showed that the HMM is better at tracking long term channel beha-

vior, especially if substantial shifts between low quality and high quality channel states are

observed; in addition, an HMMyields amuch better representation of long-term error corre-

lation, while providing a very good approximation of the distribution of the length of error

bursts. For this study, we focused on the SubNet09 dataset, since it contained long experi-

mental runs, thus making it possible to assess the model accuracy in channels experiencing

limited non-stationarity due to changing environmental conditions.
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Moreover, we proposed and validated amodel for HARQperformance based onMarkov

chains. The study was based on the processing of SNR traces extracted from transmissions

performed during SubNet09. Starting from these traces, we extracted channel statistics and

used them to derive reliable SNR regions for good code ensembles. We then estimated a

Markov model that tracks the evolution of the channel state in time, and finally employed

the model to estimate the performance of incremental redundancy (Type II) HARQ, as com-

pared to Type I HARQ. The model was shown to significantly simplify channel represen-

tation, yet to satisfactorily adhere to the actual channel behavior, thereby allowing to char-

acterize the performance of HARQ policies with low complexity, even in the presence of

variations of moderate entity in the channel statistics with respect to those used to train the

model.

Furthermore, we evaluated the effectiveness of AM techniques. Specifically, we vali-

dated a correlated Nakagami-m fading model to track the evolution of SNR traces in under-

water acoustic channels. This model was found to correctly represent the channel behavior,

provided that periods of adequate length are chosen to train the model. We considered

adaptive variable-rate modulation schemes for underwater acoustic networks, and applied

the channel model to estimate the performance of such schemes in the presence of both in-

stantaneous and delayed information about the channel model. Results showed that when-

ever the parameter estimation is accurate enough (i.e., when performed over a time window

where the fading process is approximately stationary), the model could reproduce the per-

formance of the adaptive modulation scheme as simulated on the channel traces in terms

of average spectral efficiency, bit error outage probability and throughput. On the contrary,

when the channel experienced fast variations within a given time window, the estimation

of such metrics may be less accurate, yet the general behavior of the channel could still be

captured, as was the case for bit error outage, whose average value in the delayed chan-

nel knowledge case was correctly estimated, although the model may fail to capture minor

oscillations around this value.

Finally, we studied the predictability of the communications performance for an un-

derwater acoustic scenario, based on KAM11 and on SPACE08. Both data sets provided

evidence that under specific environmental conditions, the communications performance

could be predicted over different time intervals. These results paved the way to new stud-



6.1. Future Directions 125

ies and techniques that could further improve underwater acoustic communications and

networks.

6.1 Future Directions

Even though a lot of effort has been put on this research, there are still many problems

to be solved, in order to further develop effective underwater acoustic communications and

networks. Open problems, such as how this technology could robustly support mobility,

and how network protocols can take advantage or deal with the time and space varying

performance, need to be addressed. In our opinion, all these problems can be tackled from

different perspectives, e.g., simulation, measurements and analysis: all are equally impor-

tant to contribute to achieving the purpose.

The community should try hard to identify some basic shared assumptions that have to

be taken into account for each layer of the protocol stack in a communication system. In fact,

the development of underwater communications and networks could leverage more on the

expertise acquired in the terrestrial wireless counterpart, if the general assumptions made

for terrestrial wireless communications were validated, as we did in this thesis. On the other

hand, we need to investigate better which conditions are no longer verified and which new

problems should be addressed, such as for example the feedback problem that we pointed

out in Chapter 5.

In order to do so, data availability plays a key role in the development of this technology.

Even though many experimental campaigns have been carried out in the last decades, the

collected acoustic and environmental data are not always easy to access. Moreover the post-

processing needed to make these signals usable is sometimes time consuming. Therefore,

the community should aim at making the data available and usable.

Future experimental campaigns should also collect communication performance statis-

tics, besides acoustic signals, from as many transmitter-receiver links as possible, so as to

improve the awareness of the dynamics that network protocols have to deal with, both in

time and space.
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