
Università degli Studi di Padova
Dipartimento di Biologia, CRIBI

SCUOLA DI DOTTORATO DI RICERCA IN BIOSCIENZE E
BIOTECNOLOGIE

INDIRIZZO BIOTECNOLOGIE, CICLO XXIV

Identification of Structural Variations
in Resequenced Genomes using

Paired-End or Mate-Pair Sequences

Direttore della Scuola: Ch.mo Prof Giuseppe Zanotti
Coordinatore d’Indirizzo: Ch.mo Prof Giorgio Valle
Supervisore: Ch.mo Prof Giorgio Valle

Dottorando: Gianpiero Zamperin

A. A. 2011-2012

2

ABSTRACT

Next Generation Sequencing (NGS) allows the production of a lot of data
in cheaper ways than the traditional Sanger technology. The huge amount
of data that recently has been obtained with NGS resulted in a fast pro-
duction of the draft sequence of many genomes, both from eukaryotic and
prokaryotic organisms. The Human Genome Project was completed in 2003
([1]), less than 10 years ago: it cost billions of dollars and involved dozens
of laboratories from all around the world. Currently, NGS allows to get the
equivalent of a human genome in few weeks, at a price of 10,000 dollars.
This amazing increase of performance has opened new possibilities in the
biological field: for example now it is possible to genetically compare entire
organisms, analyse ancient DNA, study genetic diseases at a level that was
unbelievable until few years ago. Some of the main fields that can be im-
proved with this technology are: genomics (for example, genome assembly
and structural variations detection), transcriptomics (for example, analysis
of gene expression, gene prediction and alternative splicing) and epigenetics.

The huge amount of data that has been produced needs to be analysed;
it is very unlikely that such analysis could be done manually, so new bioin-
formatic methods are needed to speed up the process. There is a need for
optimizing computational resources to efficiently store NGS data, but also
the need for new algorithms, specifically designed for NGS data, for instance
to overcome one of the major limitations of new sequencing technologies: the
short length of the individual sequences (generally called ‘reads’) that can be
delivered by NGS machines. From one side, NGS can produce several hun-
dred times more reads than traditional sequencing, but on the other hand
these reads are much shorter: about 50-100 bases instead than 500-1000 bases
of Sanger sequencing. This makes the analysis of the data more difficult , in
particular for genomic repeats that can be resolved only with longer reads.

Currently the NGS machines that are mostly used are Solexa (Illumina),

3

4

454 (Roche) and SOLiD (Applied BioSystems). The first one uses a method
similar to Sanger sequencing, while the other two use different technologies,
respectively pyrosequencing and sequencing-by-ligation. The length of the
reads is variable: 454 produces reads of about 400 bases, while the other two
produce reads of length between 35 and 100 bases. The three platforms differ
also in their throughput that continuously improves over time; currently the
454 produces about one million reads per run, while Solexa and SOLiD can
produce several hundred millions reads per run.

These platforms can be used to sequence different types of libraries, in-
cluding paired-end and mate-pair libraries. They are libraries that allow the
sequencing of the ends of DNA fragments; as a result, pairs of sequences are
produced, that must map at a distance compatible with the length of the
library fragments. When used for re-sequencing individual genomes, these
libraries generate a lot of links (‘arcs’), one for each pair of mapped reads,
that must be compatible with the length of the library fragments. The main
objective of my PhD thesis is to prove that it should be possible to identify
with high accuracy any structural variation occurring in individual genomes,
using the data from paired-end and mate-pair libraries. The accuracy of
this analysis should improve with the density of arcs that are covering the
genome; therefore, the large number of arcs that can be generated by NGS
platforms offers a great opportunity for structural variation studies.

Structural variations are an aspect of the genome whose importance has
become evident only in the past few years: before, even their existence was
doubtful. It has been recently observed that in adult genomes hundreds of
structural variations are present, which may be associated with cancer of
other diseases (for example Parkinson’s disease). Several tools have been
developed to detect structural variations, based on comparative genome hy-
bridization and, more recently, on NGS. In the latter case, the tools available
are still far from being able to exploit the full potential of the NGS data, both
in terms of sensitivity and specificity. The aim of my PhD was to investi-
gate this problem and to create a bioinformatic tool able to detect structural
variations with high accuracy. At the beginning I focused only on SOLiD
data, then I extended my analysis also to Solexa data (and, virtually, 454).
As a final result I created SV finder, a program able to work both in base
and color space. As an input it requires the list of paired-end or mate-pair
reads mapped on a known reference genome; the output is a list of structural
variations found on the basis of data and parameters used.

SOMMARIO

Le nuove tecnologie di sequenziamento (NGS) consentono di ottenere mol-
tissimi dati a costi contenuti rispetto al tradizionale sequenziamento Sanger.
L’enorme mole di dati che recentamente è stata prodotta con le NGS ha
portato ad una veloce produzione di bozze di sequenza di molti genomi, sia
eucariotici sia procariotici. Il Progetto Genoma Umano fu completato nel
2003 ([1]), meno di 10 anni fa: costò miliardi di dollari e interessò decine di
laboratori in tutto il mondo. Attualmente le NGS consentono di produrre
l’equivalente di un genoma umano in poche settimane, al costo di 10000
dollari. L’incredibile aumento di prestazione ha aperto nuove possibilità in
campo biologico: ad esempio ora è possibile comparare geneticamente interi
organismi, analizzare DNA antico, studiare malattie genetiche ad un livello
ritenuto incredibile fino a pochi anni fa. Alcuni dei principali campi che
possono essere migliorati con questa tecnologia sono: genomico (ad esempio
assemblaggio di genomi e identificazione di variazioni strutturali), trascrit-
tomico (ad esempio predizione genica e splicing alternativi) ed epigenetico.

L’enorme mole di data che è stata prodotta deve essere analizzata; è molto
improbabile che tale analisi sia fatta manualmente, quindi nuovi metodi
bioinformatici sono richiesti per velocizzare il processo. C’è il bisogno di
ottimizzare le risorse computazionali per memorizzare efficaciemente i dati
NGS, ma anche il bisogno per nuovi algoritmi, concepiti specificatamente
per i dati NGS, ad esempio per superare una delle maggiori limitazioni delle
nuove tecnologie di sequenziamento: la corta lunghezza delle singole sequenze
(in generale chiamate ‘reads’) che può essere prodotta dalle macchine NGS.
Da una parte, le NGS possono produrre centinaia di volte più reads del se-
quenziamento tradizionale, ma dall’altra parte queste reads sono molto più
corte: circa 50-100 basi invece che 500-1000 basi del sequenziamento Sanger.
Ciò rende più difficoltosa l’analisi dei dati, particolarmente per le repeat
genomiche che possono essere risolte solo con read più lunghe.

5

6

Attualmente le macchine NGS più utilizzate sono il Solexa (Illumina), il
454 (Roche) e il SOLiD (Applied BioSystems). Il primo usa un metodo simile
al sequenziamento Sanger, mentre gli altri due usano tecnologie differenti,
rispettivamente pyrosequencing e sequencing-by-ligation. La lunghezza delle
read è variabile: il 454 produce read di circa 400 basi, mentre gli altri due
producono read di lunghezza compresa tra 35 e 100 base. Le tre piattaforme
differiscono anche nel rendimento che continuamente migliora nel tempo:
attualmente il 454 produce circa un milione di read per corsa, mentre Solexa
e SOLiD possono produrre molte centinaia di milioni di read per corsa.

Queste piattaforme possono essere usate per sequenziare differenti tipi
di librerie, incluse le librerie paired-end e mate-pair. Esse sono librerie che
permettono di sequenziare le estremità di una frammento di DNA; come
risultato vengono prodotte paia di sequence che devono mappare ad un dis-
tanza compatibile con la lunghezza dei frammenti della libreria. Quando
usate per ri-sequenziare genomi singoli, queste librerie generano molti link
(‘archi’), uno per ogni coppia di read mappate, che devono essere compatibili
con la lunghezza dei frammenti della libreria. L’obiettivo principale della
mia tesi di dottorato è dimostrare che dovrebbe essere possibile identificare
con elevata accuratezza qualsiasi variazione strutturale che si presenti nei
genomi di singole persone usando i dati di librerie paired-end e mate-pair.
L’accuratezza di questa analisi dovrebbe migliorare con la densità di archi
che coprono il genoma; quindi, il grande numero di archi che può essere gen-
erato dalle piattaforme NGS offre una grande opportunità per gli studi su
variazioni strutturali.

Le variazioni strutturali sono un aspetto del genoma la cui importanza è
diventata evidente solo negli ultimi anni; prima, perfino la loro esistenza era
messa in dubbio. Recentemente si è osservato che in genomi adulti sono pre-
senti centinaia di variazioni strutturali che possono essere associate a cancro
o altre malattie (per esempio il morbo di Parkinson). Molti strumenti sono
stati sviluppato per identificare le variazioni strutturali, basati sulla compar-
ative genome hybridization e, più di recente, sulle NGS. Nell’ultimo caso,
gli strumenti disponibili sono molto lontani dall’essere capaci di sfruttare
il pieno potenziale dei dati NGS, sia in termini di sensibilità che specificità.
Scopo del mio dottorato è esaminare questo problema e creare uno strumento
bioinformatico capace di identificare le variazioni strutturali con elevata ac-
curatezza. Inizialmente mi sono concentrato solo sui dati SOLiD, in seguito
ho esteso la mia analisi anche ai dati Solexa (e, potenzialmente, 454). Come
risultato finale ho ideato SV finder, un programma capace di funzionare sia

7

in base che color space. Come input richiede una lista delle read paired-end
o mate-pair mappate su un genome conosciuto di riferimento; l’output è una
lista di variazioni strutturali trovate in base ai dati e parametri usati.

Contents

1 Introduction 16
1.1 Aim . 16
1.2 Structural Variations: General Overview 17

1.2.1 Definition . 17
1.2.2 Brief Story . 20
1.2.3 Importance . 21
1.2.4 How to Find Them . 22
1.2.5 Old vs New Methods 23

1.3 Sequencing . 24
1.3.1 Sanger Sequencing . 24
1.3.2 Next Generation Sequencing 25
1.3.3 Sanger’s vs NGS . 28

1.4 Libraries . 29
1.4.1 Fragment . 30
1.4.2 Paired-End and Mate-Pair 31

1.5 Distance Distribution . 31
1.5.1 Problems . 32

1.6 State of the Art . 33
1.6.1 VariationHunter . 35
1.6.2 HYDRA . 37
1.6.3 MoDIL . 38
1.6.4 PEMer . 39
1.6.5 SVDetect . 41

2 Materials and Methods 44
2.1 Overview of SV finder . 44
2.2 Input Data . 45

2.2.1 Formats . 46

8

CONTENTS 9

2.2.2 Alignments Organization 46
2.2.3 Color Space . 48
2.2.4 Reads not Aligned . 48
2.2.5 Read Tags . 48
2.2.6 Alignment Word . 48

2.3 Two Steps . 49
2.4 First Steps . 51

2.4.1 Observed Distribution vs Expected One 52
2.4.2 Long Arcs . 57
2.4.3 Wrong Strand Arcs . 58
2.4.4 Reads without Aligned Sibling 59
2.4.5 Potential Structural Variations 63

2.5 Second Steps . 69
2.5.1 Easy Breakpoints . 72
2.5.2 Parameters . 77
2.5.3 Spliced Alignment . 78
2.5.4 Color Space . 82
2.5.5 Breakpoint Detection 85
2.5.6 Color Space Makes Things Difficult 96

2.6 Zygosity . 99
2.6.1 Parameters . 99
2.6.2 Deletion . 100
2.6.3 Insertion . 102
2.6.4 Inversion . 104

2.7 Output Data . 106
2.8 Useful Tools . 108

3 Results and Discussion 111
3.1 Simulations . 111

3.1.1 Why? . 111
3.1.2 How Simulations Were Made 114
3.1.3 Graphics . 117
3.1.4 Comments . 118

3.2 Comparison with VariationHunter 123
3.2.1 Problems with VariationHunter 125
3.2.2 VariationHunter vs SV finder 126

3.3 Results of Real Data . 127
3.3.1 Structural Variations Found 128

CONTENTS 10

3.3.2 Errors on Breakpoints 130

4 Conclusion 132
4.1 General Performance . 132
4.2 Final Results: What to Do with Them 134
4.3 Problems . 136
4.4 Possible Improvements . 141

A Acronyms 142

B Definition 143

C Simulation Tables 145

D Real Data Tables 151

List of Figures

1.1 In a Gaussian distribution, 68.2% of values lies within one
standard deviation (σ) from the average length (µ), 95.4%
within two standard deviations and 99.6% within three stan-
dard deviations. 33

1.2 The strategy of PEMer: basically, all wrong paired-ends are
considered and then they are clustered together. In case of
more libraries used, in a second stage all clusters from dif-
ferent libraries are clustered together. Finally, all structural
variations found are saved in database for further analysis. . . 40

2.1 The computation of arrays 1a and 1b; in 1 all the arcs are
taken to compute the expected distribution (red line); in 2 a
position i is considered, all arcs covering i form the observed
distribution (blue line); in 3, 4 and 5, expected and observed
distributions are compared each others to compute array values. 54

11

LIST OF FIGURES 12

2.2 The effect of using AvgLen instead of ale. In the exam-
ple there are 3 arcs (red lines) aligned against the reference
genome (black line marked with ‘Ref’); no structural varia-
tions is present and AvgLen is given by all 3 arcs present.
Based on how arcs align, 4 different regions appear: zon1,
zon2, zon3 and zon4: 1) zon1 has all 3 arcs, so their average
value is equal to AvgLen and the difference between the two
is zero (no indel predicted); 2) zon2 has the two longest arcs,
so their average value is a bit greater than AvgLen and the
difference between the two is a positive value (a deletion pre-
dicted with low signal); 3) zon3 has only the longest arc, so its
average value is far greater than AvgLen and the difference
between the two is a positive value (a deletion predicted with
great signal); 4) in zon4 no arcs are present, so saved value
is zero (no indel predicted). Although the complete lacking
of structural variations, a deletion is found in zon2 and zon3
using AvgLen as average value. 56

2.3 Red areas are the computed value saved in array 1 for each po-
sitions. No structural variation is present in the region showed.
Saved values are the difference between average values of ob-
served and expected distributions: 1) AvgLen is used as aver-
age value for expected distribution and, as result, nearly each
position has a positive value, which suggests a deletion; 2) ale
is used and now positions have a very small value, positive or
negative, as expected when no structural variation is present. . 57

2.4 Arcs with a read outside and its sibling inside an inversion
change their length: arc1 becomes longer and arc2 becomes
shorter than their original length. 60

2.5 In case of insertion in the query genome (‘Q’), blue reads are
outside the insertion and green reads are inside; only blue
reads align against the reference genome (‘R’), thus forming a
scattered region of reads around the insertion point i. 61

2.6 All single reads within window w are counted and their number
is the value assigned to i in array 4. 62

LIST OF FIGURES 13

2.7 An insertion of 3513 bp produce a scattered region of about
4000 bp! Between these 4000 nucleotides there is the right
breakpoint. The library used has an average length of 1600bp
and a standard deviation of 300 bp: with longer libraries, the
scattered region becomes larger. 63

2.8 Two examples on the position of sibling read: 1) the only
possible arc is made up of the forward read on the left and the
reverse on the right, both on ‘+’ strand, so when the single
read aligned is the forward on ‘+’ strand (F+), its sibling is on
its right; for the R+ the idea is the same 2)the only possible
arc is made up of the reverse read on the left and on ‘-’ strand,
while the forward is on the right and on ‘+’ strand, so when
the single read aligned is the reverse on ‘-’ strand (R-), its
sibling is on its right; for the F+ the idea is the same. 64

2.9 Blue area is made up of values for each positions in an array;
using a threshold value (red line), all contiguous positions with
a value equal or higher that threshold are translated into po-
tential structural variations. 65

2.10 Schematic description of spliced-alignments identifying struc-
tural variations; on the left side it is showed how covering-
breakpoint reads behave in case of deletion, inversion and
insertion, with ‘R’ as the reference genome and ‘S’ as the
query genome; on the right side it is showed how the spliced-
alignment of those reads appears and point to the structural
variation breakpoints. 70

2.11 In case of deletions or inversions longer than 6 ∗ StdDev (so
E − S > 6 ∗ StdDev), reads are splice-aligned only on red
positions; if E − S ≤ 6 ∗ StdDev, reads are splice-aligned in
all positions between S and E. 71

2.12 An aligned read can be in 3 different positions: on the left
of region start within 3 standard deviation (blue read), inside
region (red read) or on the right of region end within 3 stan-
dard deviation (green read). If no direction is specified, its
not-aligned sibling is splice-aligned regardless the position; if
direction is specified, blue read must have the sibling on the
right and green read on the left. 72

LIST OF FIGURES 14

2.13 In blue, the breakpoints are marked: for deletions, one break-
point on query genome and two on reference genome; for inser-
tions, two breakpoints on query genome and one on reference
genome; for inversions, two breakpoints both on query and
reference genomes but, due to the reversion, each breakpoint
point to the other. 75

2.14 In an insertion, read1 and read2 cover the two breakpoints
on the query genome; when the reads are aligned against the
reference, only the blue pieces of each read (the ones that are
outside the insertion) align and they are placed so each one
is where the green piece of the other read should be: the two
pieces ‘see each other’. 79

2.15 An inversion and a read covering a breakpoint are showed;
read is divided into two pieces: blue one is the piece outside
the inversion, red one is inside. Blue piece aligns always in the
same breakpoint and strand against the reference, while red
piece aligns on the other breakpoint and strand: 1) read covers
the first breakpoint on ‘+’ strand; 2) read covers the first
breakpoint on ‘-’ strand; 3) read covers the second breakpoint
on ‘+’ strand; 4) read covers the second breakpoint on ‘-’ strand. 83

2.16 SOLiD encoding: 4 colors encode for 16 different di-base. . . . 84
2.17 Blue line is the breakpoint: red nucleotides are the outer and

inner ones. 85
2.18 The read showed (in blue e green color) covers the breakpoint

for the deletion; one aligned against the reference, blue piece
marks the deletion start and green piece marks the deletion
end: only one read is needed to find the deletion. 86

2.19 The wild chromosome produces arcs that cover only on break-
point, while the affected chromosome produces arcs that cover
the entire deletion: counting and comparing the amount of
these two type of arc is the way to compute zygosity. 102

2.20 The wild chromosome produces arcs that cover the insertion
point on the reference, while the affected chromosome cannot:
if this amount is greater than a given parameter, ArcMin,
insertion is hetetozygous, otherwise it is homozygous. 104

LIST OF FIGURES 15

2.21 The wild chromosome (on the right) produces arcs with right
strand, while the chromosome affected by the inversion (on
the left, inversion is marked with red lines) produces arcs with
wrong strand: counting and comparing the amount of these
two type of arc is the way to compute zygosity. 106

3.1 Real libraries used simulations; crosses show average length
(vertical lines) and standard deviation (horizontal lines); these
real distributions were chosen in order to evaluate SV finder
with short, medium and long distributions. 116

3.2 Simulation results in case of ‘pesco’ distribution, so with a
short library . 119

3.3 Simulation results in case of ‘casonato’ distribution, so with a
medium library . 120

3.4 Simulation results in case of ‘pomodoro’ distribution, so with
a long library . 121

3.5 Structural variations found by SV finder: on x axis there are
the chromosomes, on the y axis the number of different vari-
ants (deletion, insertion and inversion) found in each chromo-
some; blue columns show number of deletions found, orange
columns show number of inseretions found and yellow columns
show number of inversions found. 129

4.1 An example of how visualize structural variations for refine-
ment using GBrowser (http://gmod.org/wiki/GBrowse), a very
powerful tool in bioinformatic. 135

4.2 Lowering the threshold value leds to more and larger potential
structural variation in the first step. 139

Chapter 1

Introduction

1.1 Aim

The aim of my PhD research was the development and application of bioinfor-
matic tools for the identification of differences between an individual human
genome and the reference human genome. More specifically, the individual
human genome belonged to a patient affected by a blood coagulation dis-
ease. It was known that the blood coagulation disease had a genetic nature,
but the affected gene was unknown and standard techniques such as linkage
analysis had not been successful. The general strategy that we wanted to
apply was:

• to sequence the genome using mate pair libraries

• to find the differences with the reference human genome, mainly SNPs
and structural variations

• to order the differences from the most to the less likely to cause the
disease

Immediately, at the beginning of the project, it was clear that the work to do
was massive, but also very innovative. The technology to produce the reads
was still uncertain, especially for mate pair libraries. Although the mate pair
technology had been described as a potential sequencing strategy, the bioin-
formatic tools available for studying structural variations using mate pairs
were not available. Therefore I decided to focus only on structural variations
and on the possibility to develop a suitable bioinformatic tool to perform

16

CHAPTER 1. INTRODUCTION 17

mate pair analysis. In conclusion, the aim of my PhD was the creation of a
bioinformatic tool able to detect structural variations in a complex genome
such as the human genome, using paired-end or mate-pair libraries.

1.2 Structural Variations: General Overview

Structural variations typically affect genomic sequences from 1Kb to 3Mb:
they are much larger than SNP, but smaller than chromosome abnormalities
visible at a macroscopic level. Structural variations can be of many types:

deletion : a region of DNA is missing

insertion : in a certain point of the DNA, a sequence of DNA is inserted

inversion : a region of DNA is present at the same point but with opposite
orientation

translocation : a region of DNA is missing from its normal position and
re-inserted at another point of the genome

duplication : a region of DNA is duplicated

Structural variations are often associated with genetic diseases, although
most of them are not. Recently, evidence showed that individual genomes
contain hundreds of structural variations, and so they probably are an im-
portant contribution to diversity. Also it is likely that they have been an
important force in shaping the genome during evolution. Other structural
variations may arise in somatic cells and may be the cause of cancer.

1.2.1 Definition

Structural variation can be divided into two main categories: copy-number
variants (CNV) and copy-count invariant[12]. The terminology refers to a
change or not in the total content of DNA: for example, an inversion changes
the order of nucleotides in the DNA sequence, but not the total number
of nucleotides, so it is a copy-count invariant; on the other hand, a deletion
erases a certain number of nucleotides from the DNA sequence, so it is a copy-
number variant. In general, a structural variation involves sequences larger
than 1Kb, but this is not an absolute limit, because often under the definition

CHAPTER 1. INTRODUCTION 18

of ‘structural variation’ sometimes are included changes of sequences shorter
than that 1Kb1.

Deletion

A deletion is a CNV. Probably it is the most common among the structural
variations, due to the easiness of its creation: when DNA breaks in two
near2 points and the repair happens without the central region, resulting in
a deletion :

AAACGACTTGTTGT | tagcga | CACACGTCTACGCT

1|2 3|4

if the repair mechanism fails and joins 1 with 4, the sequence tagcga between
1 and 4 will become a deletion. A deletion can also be caused by errors in
chromosomal crossover during meiosis. When a deletion occurs, some genetic
material is lost: if the deletion interests a coding region, the protein coded can
lack one or more domains, resulting in a partial or complete loss of function,
or there could be an alteration of the coding frame, resulting in a frameshift
mutation. If the deletion occurs in a regulatory region, the consequences are
obvious: a regulatory control is lost, so this could have very severe effects,
depending on what that regulatory region controls.

Insertion

An insertion is a CNV. It can happen due to unequal crossover during meiosis,
but also from from a break of the DNA in a certain point and joining of the
break ends with a foreign DNA sequence:

AAACGACTTGTTGT | CACACGTCTACGCT

1|2
1in this PhD thesis, for ’structural variation’ is taken as something that involves changes

from dozen of bases to many thousands
2‘near’ means ‘at a reasonable distance’: two breaks ten bases apart are likely to be

repaired, whereas two breaks separated by one million bases are very unlikely to be repaired

CHAPTER 1. INTRODUCTION 19

DNA breaks in the pipe (|) point; now 1 2 are rejoined with a foreign sequence
(tagcga) inside

AAACGACTTGTTGT |tagcga| CACACGTCTACGCT

1| 2

The foreign sequence can be a sequence not present in the genome or a
sequence that is present elsewhere in the genome. An insertion cause a
frameshift mutation if it happens in a coding region and the number of nu-
cleotides inserted is not a multiple of three; in the latter case, with inserted
sequences multiples of three, the resulting protein will have more amino acids,
and this may or may not have severe consequences on its function. An inser-
tion in a regulatory region could modify or completely cut away the coded
regulation.

Inversion

An inversion is a copy-count invariant. It happens when DNA breaks in two
near points (the same situation as deletion) and the ends are rejoined as
follows:

AAACGACTTGTTGT | tagcga | CACACGTCTACGCT

1|2 3|4
1 with 3 and 2 with 4. An inversion does not involve a loss of genetic
information, but simply rearranges the linear gene sequence, so it can have
severe consequences or nothing at all. If an entire coding region is affected
by an inversion, probably nothing would happen: the coding sequence would
remain the same, and so would the amino acids of the encoded protein.
Maybe the regulation could be affected, depending on the position of the
inversion. If an inversion interests the central portion of the coding region,
the coded protein can have a change of frame and the amino acid sequence
could completely change, resulting in a very severe modification.

Translocation

A translocation is a copy-count invariant: chromosomal segment that changes
position within a genome without change in the total DNA content[13]. Basi-
cally a translocation is a deletion and a paired insertion, because the starting

CHAPTER 1. INTRODUCTION 20

position of the translocated segment is a deletion and the end position is an
insertion.

Duplication

A duplication is a CNV; it is the opposite of a deletion: an unequal crossing-
over that occurs during meiosis between misaligned homologous chromosomes
that can produce a duplication. It depends on the number of repetitive
elements between the two chromosomes: the more repetitive elements are
present, the easier it is to misalign the chromosomes.

If a duplication occurs in a coding region, a second copy of that gene
is created. This copy is often not under selective pressure, so it accumu-
lates mutations faster than the original copy of the gene without negative
consequences.

When a duplication is located in a repetitive region due to the nature
of paired-end and mate-pair library (section 1.4.2), reads that cover a du-
plicated region align with good match in many places, so it is impossible
to recognize the ‘right’ mapping position. When reads are paired3, a lot of
combinations are found, some with right distances and some not: how can
one know if the combinations with wrong distances are sequencing errors or
true duplications? It is very difficult to answer. Some suggestions involving
the analysis of mate pairs have been proposed [2], but bioinformatic tools
have yet to be developed; as a result, duplications are never found.

1.2.2 Brief Story

About 20 years ago, in 1991, the Charcot-Marie Tooth (CMT) disease was the
first discovered autosomal dominant disease due to a structural variation, a
tandem duplication that leads to a gene overdosage effect (three copies of the
normal gene). Currently it is widely accepted that a lot of genetic disorders
are caused by (or have a relation with) structural variations, for example
Williams-Beuren and Prader-Willi syndromes, autism[14] and Parkinson’s
disease.

Structural variations are not only linked to disease phenotypes. Some-
times they interest genes involved in environmental response, immunity and
olfactory receptors, or are responsible for a disease susceptibility. Initially

3i.e. for every read its sibling is found

CHAPTER 1. INTRODUCTION 21

SNPs were thought to be the major contributor to genomic variation, but
it is more and more evident (thanks to the development of new technologies
such as high-throughput sequencing) that structural variations give a sig-
nificant contribution to genome variation, evolutionary shaping and genetic
disease. However it is still a poorly understood aspect of the genome, so
further studies are needed for more robust conclusions.

1.2.3 Importance

The interest in structural variations arose when it became clear that they are
related to genetic disease. Previously the same thing happened to SNPS. It
was thought that SNPs were the main form of genetic variations, therefore
a person would have a certain phenotype due to the SNPs that she/he has.
It was reasonable to think that knowing the SNPs meant potentially know-
ing how to ‘shape’ a human being. This was a very simple assumption, but
the main idea still holds: differences between people are due to differences
between their genomes, but structural variations also contribute to the di-
versity. Finding SNPs is relatively easy: from the alignment of a sequence
against the reference, all mismatches could be SNPs. However with struc-
tural variations things are more difficult and until the availability of NGS
(section 1.3.2) the evidence was very limited.

Currently we have machines and methods to find structural variations,
and a lot of data indicate that they are often related to genetic diseases and
play a large role in genomic variations. Now the possibility of linking phe-
notypes to differences between genomes is closer: with NGS data both SNPs
and structural variations can be found and differences between genomes can
be identified. The main problem is to link those differences with phenotypes,
but this was also the main problem that arose when the sequencing era be-
gan in 1977. In those years, scientists thought that after knowing the DNA
sequence of an organism everything could be understood. Maybe it is true,
but now we realize that having the DNA sequence is like having the pieces
of an immense puzzle and that most of the work is not the DNA sequencing
but putting together all the pieces.

Currently, it has become evident that structural variations are related
to diseases, resulting in a lot of interest in them. The first thing to do in
order to cure a genetic disease is to know the involved gene and the defect it
carries; if this defect is due to a structural variation or a SNP is very relevant
both in terms of diagnosis and possible cures.

CHAPTER 1. INTRODUCTION 22

1.2.4 How to Find Them

Before NGS, Hybridization-based microarray approaches were the common
way to find structural variations. These approaches are mainly based on array
comparative genomic hybridization (array CGH) and SNP microarrays. Both
technologies find copy number gains or losses compared to a reference, with
some important differences.

A CGH array is a platform with a set of hybridization targets; two labelled
samples, test and reference, are hydridized and the signal ratio is used to
proxy copy number. A problem is that, with only one reference sample, it is
impossible to distinguish between a loss in the reference and a gain in the test,
so the reference is very important in the test. In the beginning, with the CGH
array it was possible to discover only structural variation longer than 10Kb,
anyway this highlighted a great amount of CNVs4 in healthy individuals;
more recently, technology was improved and, for research purposes, now the
resolution allows the discovery of CNVs down to 500bp, using approximately
42 million probes spread across twenty 2.1 million probe arrays. CGH arrays
are used in clinical diagnostics.

SNP arrays are platforms where only one samples per microarray is hy-
bridized, and so the ratio is computed using intensities measured at each
probe across many samples. Probes are allele specific, so the CNV sensitiv-
ity is increased, but the signal-to-noise ratio offered per probe is often lower
than the best CGH array could offer. For these reasons, SNP arrays were
most used as complements to array CGH for fine-mapping regions.

With the advent of NGS technologies, studies of structural variations
were vastly improved, but they proved to be a new challenge, because NGS
data needed new algorithms to exploit all available data. The general strat-
egy focuses on mapping the reads to a reference and then identifying those
signatures different from the expected ones in order to detect structural vari-
ations. Four main methods were developed.

Read-pair methods use mate reads that must align with a certain distance
and orientation; in principle, a structural variation changes one or both of
those feature of a mate pair (distance and/or orientation), so it is possible to
detect all classes of variation. The idea is simple: mate reads with something
‘wrong’ are clustered together; a cluster identifies a structural variation; with
some sort of refinement, breakpoints are found.

4only structural variation with a gain or loss of genetic material can be found with
Hybridization-based microarray approaches

CHAPTER 1. INTRODUCTION 23

Read-depth methods assume that sequences align on the reference geno-
me with a certain distribution (typically a Poisson); when the distribution
shows a divergence, it is investigated to discover duplications and deletions:
a duplication should show a higher coverage, while a deletion should show a
reduced read depth. Breakpoint detection is a problem of this approach.

Split-read methods use a splice-alignment to detect both structural vari-
ations and breakpoints at the same time. The idea is to align sequences
allowing the split of the sequence itself and detect the split read signature.
Breakpoints are found with a base precision, but currently this approach is
very limited by the short sequence of NGS reads.

Sequence assembly methods is the approach among the four possible that
is still in its infancy. The idea is simple: sample genome is de novo assembled
and it is compared to the reference genome to find all the possible structural
variations, without limitations in type, length, or number of copies. In prac-
tice, this idea is not feasible, because the assembly requires long sequences,
and NGS produces short sequences. Some approaches are still in develop-
ment, for example a combination of de novo and local-assembly algorithms
to create a raw assembly (only contigs) that are compared to the reference,
but we are still very far from genome assembly using NGS sequences.

1.2.5 Old vs New Methods

Microarrays has some severe limitations:

• can only discover CNV

• provide no information on the location of duplicated copies

• in general cannot resolve breakpoints with a base precision

• have a reduced sensitivity in the detection of single copy gains

• assume that each location is diploid is the reference genome, but this
is not always true, especially in the duplicated and repeat-rich regions

The main advantage they have is the low cost compared to NGS: whenever
a screening of a large set is needed5, NGS costs too much because, despite

5for example when a screening of hundreds of individual is done in order to detect a
rare disease related to a structural variation

CHAPTER 1. INTRODUCTION 24

the decreasing cost, sequencing hundreds of different genomes requires a lot
of money, while microarrays are a lot cheaper.

Methods using NGS data have the main advantage of being able to detect
most types of structural variations in a single experiment, although each one
of the four approaches has limitations: for example, read-depth methods
are the only ones able to predict absolutely copy number, but they poorly
detect breakpoints. With the decreasing cost of sequencing and improving
of algorithms, NGS methods will probably become the most used approach.

1.3 Sequencing

Sequencing is the way to know the types and order of bases that form a piece
of DNA (and, in general, of an acid nucleic). First sequencing technique was
developed by Frederick Sanger and Alan R. Coulson in the 1977[11]; in the
following years it was improved to reduce sequencing costs and required time.
Knowing the DNA sequence is the most important and basic information in
many biology fields: DNA sequence codes for protein sequence and location,
from which the protein structure (or lack of) depends6, from which protein
function depends. Life is based on protein functions, so knowing DNA se-
quence is a way to know life. As everyone knows, in practice it is not so
simple and linear: apart from proteins, also RNA plays an important role in
life; moreover, DNA carries information in different ways than sequence, for
example methylation level. Still DNA sequencing play a fundamental role in
most of current biology fields.

1.3.1 Sanger Sequencing

Sanger Sequencing is based on the fact that a nucleotide lacking hydrophilic
groups on 2i and 3i carbons (ddNTP) cannot bind to another nucleotide.
The idea of sequencing is simple as well as brilliant:

• a single-strand DNA is used as template to generate the complementary
strand

• in the mixture used for the reaction are present one type of ddNTP;
four mixtures are used, each one with a different ddNTP

6protein structure depends on the interaction between amino acids and environment,
but the latter depends on where the protein is located, its location precisely

CHAPTER 1. INTRODUCTION 25

• four reactions take place: in each reaction, whenever a ddNTP is in-
corporated into the reaction, elongation is stopped

• after the four reactions, a collection of fragments truncated at a certain
position is obtained; these fragments differ in length

• with a gel electrophoresis, fragments are separated from the shortest
to the longest

• if the ddNTP are marked7, the sequence of the template can be deter-
mined by evaluating the position of fragments in the gel

Sanger Sequencing was used in the Human Genome Project, a sequencing
milestone showing how massive could be a sequencing project and the im-
portance of developing new and better sequencing technologies.

1.3.2 Next Generation Sequencing

At the end of 1990s, there was a common idea of needing an improvement
in sequencing technologies. NGS were developed as an answer to this sense.
One major drawback about Sanger Sequencing was the time and effort needed
to sequence DNA: long DNA sequences were fragmented, then each fragment
was cloned into a vector and amplified with E. coli ; finally DNA was purified,
sequenced with Sanger’s and assembled into the original long sequence. It
was a lot of work to do. NGS was developed to avoid all this work (or, at
least, dramatically decrease costs, time and people required) and maintain
other features such as quality and sequence length. Unfortunately, only the
reduction of time and cost was successful, because NGS reads are shorter that
Sanger’s reads and less accurate, but they come in much greater numbers,
so low quality and short length could be partially solved with mere high
coverage. Many NGS machines were developed, but currently the most used
are Illumina, 454 and SOLiD.

Roche (454) sequencer

The 454 was the first NGS to make its appearance; it is based on pyrose-
quencing:

7in the beginning they were marked with radioactivity, then fluorescent labels were
used

CHAPTER 1. INTRODUCTION 26

• luciferase reactions are used to produce light

• when a nucleotide is added to the new nucleotide chain in the elongation
process, a pyrophosphate (PPi) is released

• PPi is converted to ATP by the ATP sulfurylase

• luciferase uses the ATP to produce light

• so, when the nucleotide chain is elongated, light is produced

• because the nucleotide added is known, the sequence can be deter-
mined:

– ‘A’ nucleotide added −→ no light

– ‘C’ nucleotide added −→ no light

– ‘G’ nucleotide added −→ no light

– ‘T’ nucleotide added −→ light, which means that the sequence
has a ‘T’ in that position

– repeat previous step for next positions

Sequences produced with 454 have great length (400 bp) and quality, not
at the levels of Sanger’s ones but greater than Illumina and SOLiD. The
major drawback is homopolymers: the light signal is directly proportional
to the number of base in the homopolymer for sequences of maximum 8
base length; for longer homopolymers, saturation occurs, so the signal is not
reliable. Another drawback is the relative short length of sequences (although
it is a common drawback in NGS), caused by the fact that in some cycles a
small fraction of templates lose the right timing, leading to an emission of
light in the wrong moment: this causes a background noise that increases
with time, so sequences have a maximum length, after which the background
noise is so high that the sequence is not at all reliable.

Illumina Genome Analyzer

Illumina uses the same chemistry of Sanger Sequencing, but the amplification
is made in vitro:

• DNA fragment ends are repaired and two adaptors are linked

CHAPTER 1. INTRODUCTION 27

• denatured DNA are linked to a flow cell, in which primers complemen-
tary to the adaptors are present

• a PCR in solid phase is done (bridge PCR) in repeated cycle to amplify
all DNA fragments

• thanks to the bridge PCR, the flow cell has different clusters each one
formed with the same DNA molecule

• Sanger sequencing is made:

– a mixture with all four nucleotides labelled with a fluorescent dye
is added; these nucleotides cannot further elongate the chain, un-
less the fluorescent dye is cut away

– elongation takes place

– nucleotides not linked are washed away

– a laser reads the fluorescence in each cluster (fluorescence emitted
depends on the last nucleotides labelled!)

– fluorescent dyes are cut away and the entire process repeated

In this way, in each step a new nucleotide is read to sequence the entire
DNA fragment in each cluster. Illumina reads are shorter (100 bp) than
454’s reads, but the output is greater. The major drawback is substitutions,
due to the simultaneous addition of all four nucleotides: Illumina reads often
show errors on nucleotide type, rather that deletions or insertions of one or
more bases.

Applied Biosystem SOLIDTM sequencer

SOLiD uses a peculiar chemistry: it is based on a ligation to sequence a DNA
fragment:

• oligonucleotides of 8 bases are used

• an oligonucletide has the first 3 bases degenerated (all the possible com-
binations of 3 nuleotides are present without distinction), the last 3 are
universal nucleotides (they link with every nucleotide indiscriminately),
and the two central bases are the ones used to determine the sequence
(the 16 possible combinations are labelled with 4 different fluorescent
dyes)

CHAPTER 1. INTRODUCTION 28

• there is a total of 1024 different nucleotides

• a mixture of all oligonucleotides is added

• oligonucleotides not linked are washed away

• fluorescence is read: di-base present in that location gives the color

• the previous steps are repeated for every position in the array to form
a sequence of colors

If the first base (or a base in any position) is known, the sequence of colors has
a unique meaning. On a theoretical level, an oligonucleotide of 8 bases link to
the template, so the pairing is more specific than having a single nucleotide
(as happens for 454, Illumina and even Sanger’s), but despite that SOLiD
has the highest rate of errors among NGS. Also the read length is short:
from 25 to 50 bp. Moreover, sequences are in color space, which need specific
bioinformatic tools to be analysed. These are several drawbacks, but they
are outweighed by the high amount of data produced (the highest among
NGS) and the use of color space to recognise errors and SNP. To sum up: a
lot of more data with less quality and more problems.

1.3.3 Sanger’s vs NGS

Next Generation Sequencing has opened a lot of new fields in biology, be-
cause it has made available more data than could be expected with Sanger
sequencing. However, this does not mean that the same data is available:
NGS is different from Sanger. There are some advantages, but also some
drawbacks:

• Sanger sequencing needs a step of clone amplification in E. coli that is
the major reason for the time and money required

• NGS does this step in vitro, with a great saving in both money and
time

• Sanger sequencing can not be efficiently parallelized therefore only one
sequence at a time can be produced.

• NGS efficiently parallelizes sequencing with no human effort

CHAPTER 1. INTRODUCTION 29

• Sanger sequencing reactions need great8

• NGS uses very small quantities of reagent volume, thus reducing the
costs

• Sanger sequencing produces reads of thousands of bases

• NGS produces reads of dozens to hundreds of bases (different NGS
technologies produces sequences of different length within that range)

• Sanger reads have high quality

• NGS reads have poorer quality that Sanger’s

To sum up: Sanger sequencing produces less, longer and more correct reads
at an increased cost and in more time, while NGS produces more, shorter
and less correct reads at much less cost and less time. NGS has some dis-
advantages that could be solved with more coverage and new bioinformatic
tools (for example, short reads cannot be used to create a new genome by
overlapping them with tools that use Sanger reads, because in this task read
length is critical).

In addition to Sanger sequencing, NGS machines differ each others. Each
of them has certain features that make it more or less suitable for a research
project, so it is important to choose the right sequencing method for the task
undertaken. For example, for small-scale projects, Sanger sequencing is still
the better technology to choose, while for large-scale projects, NGS is a must
for its low cost and high amount of produced data; the question is: which
NGS machine should one use? SOLiD seems very good in SNP detection,
while 454’s long reads (400 bp) are very suitable for genome assembly. NGS
chosen depends on the projects, so currently no NHS machine is better than
the others. Sometimes, the best approach is a mixed one, using data from
more that one sequencing methods. It really depends from the project.

1.4 Libraries

When the DNA must be sequenced, it is not enough to simply extract the
DNA from the wanted organism, put it into the sequencing machine and

8‘great’ for molecular biology standard...in reality, microliter to milliliters of volume

CHAPTER 1. INTRODUCTION 30

await the results. DNA must be prepared and adapted to the use one wants.
This means library preparation, in very simple steps:

1. wanted genetic material are extracted for the organism to be sequenced;
it could be DNA, but also RNA (in the latter, RNA are retrotranscribed
into cDNA)

2. DNA is fragmented into pieces with a certain process (it could be chem-
ical or physical)

3. library is prepared from DNA pieces after fragmentation and is finally
ready for the sequencing process

The experimental details about those 3 three steps are not important for the
purpose of the present PhD thesis. The only important thing is the third
step, i.e. the types of library that could be produced.

1.4.1 Fragment

Basically when DNA is fragmented and the entire fragment is sequenced,
a fragment library is build. A sequenced fragment library gives a lot of
sequences of good length that can be used to create a genome: whenever
two sequences overlap, they are ‘linked’ to form a unique sequence. By the
overlapping of many sequences, theoretically the entire sequenced genome can
be build. Two main techniques uses fragment libraries: chromosome walking
and whole genome shotgun sequencing. In chromosome walking three basic
step are followed:

• a primer that matches the beginning of the DNA to be sequenced is used
to synthesize a short DNA strand adjacent to the unknown sequence,
starting with the primer

• the new short DNA strand is sequenced using the chain termination
method

• the end of the sequenced strand is used as a primer for the next part
of the long DNA sequence

So the sequencing of a long DNA region proceeds with small steps over the
region itself.

CHAPTER 1. INTRODUCTION 31

In whole genome shotgun sequencing, DNA is fragmented into small
pieces, which are sequenced to obtain reads. Multiple overlapping reads
for the fragment DNA are needed. Using the overlapping ends of different
reads, they are assembled into a continuous sequence.

1.4.2 Paired-End and Mate-Pair

When the DNA is fragmented, only fragments of certain length are selected
and only their ends are sequenced, a paired-end or mate-pair library is build.
Such library is made up of short sequences that are mated, so every sequence
has a sibling (a ‘mate’). Moreover, due to fragment selection based on length,
two sibling sequences must have a certain distance, that depends on the
fragment length. The experimental techniques used to obtain these libraries
are different, but basically:

• only ends of the fragment are sequenced

• only one strand of the fragment is sequenced

• in general, in case of paired-end library, ends are sequenced in different
directions, so if a read aligns against the reference, its sibling aligns
with is reverse-complement

• in general, in case of a mate-pair library ends are sequenced in the same
direction, so two sibling reads align against the reference on the same
strand

Paired-end and mate-pair libraries are very suitable for structural variation
detection, because, whenever the structure in DNA changes, also the way two
sibling reads align changes: by analysing the wrong alignment, it is possible
to detect structural variations. Also the sequenced tags are short, so the
NGS machines, that produce shorter and more sequences than Sanger, are
good candidates for paired-end and mate-pair library sequencing.

1.5 Distance Distribution

In a paired-end or mate-pair library, all reads have a sibling (also called
‘mate’) read and the two must be within a certain distance, as a result of the
way the library is created: two sibling reads are the ends of the same DNA

CHAPTER 1. INTRODUCTION 32

fragment and their distance reflects the length of this fragment. During the
library preparation, the size of the fragments is known and theoretically well
defined, but:

• rather than a unique value, a range of values for distances between all
pairs of reads is obtained and they should form a Gaussian distribution

• a lot of experimental variables can influence the fragment size, so in
practice the distance distribution is computed after the sequencing and
alignment of reads, using only reads well aligned9

The Gaussian distribution of distances between all sibling reads is called ‘dis-
tance distribution’ or simply ‘distribution’. A Gaussian distribution has two
very important values that define it: a mean value and a standard deviation;
it has a central region, where most of the data falls, and two symmetrical
tails where few data fall:

mean value : the mean value is the average value of all values forming
the distribution; it is computed as the arithmetic mean A, with A =
1
n

∑n
i=1 ai. Sometimes other means are used, such as the weighted mean

W , with W =
∑n

i=1
wixi∑n

i=1
wi

. I always used A (AvgLen) and W (ale)

standard deviation : the standard deviation is a measure of how much the
values are scattered; the higher the standard deviation, the great the
range size of values. A good Gaussian distribution has a low standard
deviation. Moreover, it is known that a fixed percentage of values falls
within a fixed number of standard deviations (figure 1.1).whatever the
shape of distribution.

1.5.1 Problems

Sibling read distance should form a Gaussian distribution, but often, due
to problems occurring in the library preparation, the distribution shape is
different. For example, when the gel is cut to select fragments of only a cer-
tain size, some fragments of different lengths remain in the gel, producing an

9it is a recursive process: from library preparation, a certain value of fragment size
is known; using that value, a first raw distance distribution is computed; with a second
analysis of paired-end, the first distribution is refined

CHAPTER 1. INTRODUCTION 33

Figure 1.1: In a Gaussian distribution, 68.2% of values lies within one stan-
dard deviation (σ) from the average length (µ), 95.4% within two standard
deviations and 99.6% within three standard deviations.

asymmetrical distribution, unbalanced to the left or to the right, depending
from the length of fragments remaining, shorter or longer respectively. In the
worst case, the ‘foreign’ fragments have a length so different from the wanted
one that they form another peak: on the Gaussian distribution, two peaks
appear, corresponding to the wanted fragments and those that contaminated
the library.

1.6 State of the Art

With the appearance of structural variations as an important aspect of the
genome, a lot of tools for their detection were developed. The idea is simple:
whenever a structural variation affects a certain region of the genome, all
the arcs from that region are changed, in length and/or orientation; so from
the arcs that show something strange it is possible to detect the structural
variations responsible for the strangeness.

This is only partially true: in practice, there are many reasons behind
the strangeness of an arc:

1. preferential point of fragmentation in the DNA

2. preferential point of sequencing

CHAPTER 1. INTRODUCTION 34

3. sequencing bias

4. alignment

5. pairing10 of sibling reads

The first three point are not well know, so it is assumed that all is random; the
last two points depend on the programs used for alignment and subsequent
pairing11. This usually leads to many false positives: the problem is that
they are not shown, because:

• tools for structural variation detection are tested on real data, for which
the structural variations are unknown; the only touchstone is the pre-
diction of another tool, but all tools use the same idea, so both find
more or less the same false positives but do not recognize them as false
positives.

• sometimes simulations are run to test the tool, but

– simulations are not very close to real life, for example because only
deletions of a certain length are added or

– simulations are run a lot of times with different parameters and
only the best result is shown

so no false positives appear.

It seems that currently used tools have no false positives, however the tests
done are not suitable to allow this conclusion.

Another problem is the zygosity: this aspect of structural variation is
nearly always forgotten. The problem is that for zygosity computation the
exact position of breakpoints must be known and this happens only with
incredible short libraries, a very rare case. So the common solution is to
simply forget about zygosity.

At the moment of writing, there are five frequently used tools:

10in a paired-end and mate-pair library, every read is paired with another (they are
‘sibling reads’); usually each read is aligned alone, then all the alignment of both sibling
reads are considered and paired to form all the possible combinations

11sometimes a read is aligned and immediately after paired; other times, all reads are
aligned, then all are paired: in both cases, pairing of a certain read happens after alignment
of that read

CHAPTER 1. INTRODUCTION 35

• VariationHunter

• HYDRA

• MoDIL

• PEMer

• SVDetect

1.6.1 VariationHunter

VariationHunter[5] uses two different algorithms for predicting all the struc-
tural variations between a paired-end library and a reference genome:

• the first algorithm aims to obtain the most parsimonious mapping of
paired-end reads in regions potentially having a structural variation; it
is called ‘VariationHunter-SC’

• the second algorithm aims to compute the probability of each structural
variation; it is called ‘VariationHunter-Pr’

The idea used is the same: a wrong paired-end means a structural variation,
so the first thing to do is to recognize wrong paired-ends. In order to do this:

1. paired-ends are aligned against the reference

2. at the core there is the computation of the distance between sibling
reads in the query genome; this distance is within a certain range and
the two reads must have certain orientation

3. all alignments of a paired-end are analysed; if both reads are within
the right range and orientation, they are considered correct and the
alignment is called concordant

4. a paired-end that has no concordant alignment is called discordant : it
can indicate a structural variation

5. a discordant paired-end can have multiple alignments, so Variation-
Hunter chooses among these alignments the correct12 one:

12where ‘correct’ does not mean that it is at the expected length and orientation

CHAPTER 1. INTRODUCTION 36

• according to VariationHunter-SC, the correct alignment is chosen
in such a way that the minimum number of structural variation is
implied

• using VariationHunter-Pr, the probability of each structural vari-
ation is computed and, according to this probability, the correct
alignment is chosen

6. after correct alignments are chosen and the structural variations that
they imply are found, breakpoints are considered, but only an estima-
tion of their position is given

To test VariationHunter-SC and VariationHunter-Pr a paired-end (whole
genome shotgun) library sequenced with Illumina was used. It is important
to mention some features of this library:

• read length was form 36 to 41 bp

• insert size was 200 bp, so the distance between two sibling reads ranges
from 164 and 159 bp

• standard deviation is about 13 bp

• sequence coverage is about 42x

• physical coveraga is about 120

So, the library is very short and the coverage is very high: it is high costing. A
lot of structural variations in this individual genome sequence were already
found and validated using 40 Kbp fosmids; also with the method used by
Bentley et al[6] a list of structural variations for comparison was created.

VariationHunter predicts thousands of structural variations; of all these,
only some dozens overlap with structural variations found using fosminds or
Bentley et al. In the discussion, only the sensibility of the tool is discussed
and, although having a library with higher coverage that fosmids, Variation-
Hunter still misses some structural variations. All the structural variations
found only by VariationHunter are due to Alu elements and other trasposon,
according to who creates and tested VariationHunter. Also, according to
them VariationHunter is shown ‘to be efficient and reliable.’

CHAPTER 1. INTRODUCTION 37

1.6.2 HYDRA

HYDRA[7] is, as always, based on the idea that a wrong arc is caused by a
structural variation, so its main point is to find out all the wrong arcs. To
do this:

1. low quality sequences are cut away

2. remaining sequences are aligned with BWA: it provides a good sensi-
bility with little computational efforts

3. sequences not or wrongly aligned are realigned with NOVOALIGN,
that is more sensible than BWA

4. from discording matepairs (i.e. sibling sequences with wrong distance
or strand), structural variations are computed

5. matepairs forming structural variations are aligned with MEGABLAST
to eliminate all false positives

When all wrong arcs are found, they are clustered together to find struc-
tural variations; it is important to mention the fact that HYDRA uses a
similar clustering strategy to VariationHunter-SC. Finally, if the number of
of matepairs in a cluster is enough, breakpoints are computed. The com-
putation uses sequences from a fragment library: among the tool discussed
here, HYDRA is the only one to a hybrid approach to detect strucutural
variation. Using paired-end or mate-pair libraries, structural variations are
found then, using fragment libraries of long reads, breakpoints of previously
detected structural variation are computed. It is a good strategy, because
each data type has drawbacks that are softened by the other data type, but
it is a very expensive approach, because two libraries are needed, so a double
amount of money to spend.

HYDRA was tested on two inbred mouse strains to see what it computed;
one the results was that assemly errors are a major source of false positives
in structural variation detection. Then VariationHunter was run on the same
mouse data and results from the two tools are compared:

• HYDRA found 6331 structural variations

• VariationHunter found 6366 structural variations

CHAPTER 1. INTRODUCTION 38

• 6070 structural variations were in common

HYDRA and VariationHunter found roughly the same structural variations
on the same data, so HYDRA works well. However, these two tools share
the same clustering strategy, that is the core in their structural variation
detection: using the same strategy, it’s obvious that one must obtain same
results.

To sum up, HYDRA uses a interesting strategy to find structural varia-
tions, but several drawbacks ruin it.

1.6.3 MoDIL

MoDIL[8] (Mixture of Distributions Indel Locator) was a tool born to detect
structural variation between 10− 50 bp, so it focuses on the range length of
structural variations that all tools (partilly also SV finder) forget. In general,
it is assumed that a small deviation of a mate-pair length is due to variance
in DNA fragment size; in MoDIL the idea is that a small variance of many
mate-pairs is indicative of an indel.

MoDIL uses the comparison between observed and expected distribution
to detect deletions and insertions:

• expected distribution is the distribution of the library

• observed distribution is made by all the mate-pair overlapping a par-
ticular genomic location i

• the comparison between distribution is done using the kolmogorov-
Smirnov test13

• if in i there is an homozygous indel, observed distribution shifts

• if in i there is an hetorozygous indel, about half mate-pairs shift while
the other form a distribution overlapping the expected one

MoDIL was tested with simulations and real data: in simulations MoDIL
was the only tool able to detect indels of range 15 − 40 bp; real data used
is very similar to that used for VariationHunter (section 1.6.1), so very high

13it quantifies a distance between the empirical distribution functions of two samples,
in this case expected and observed distribution of mate-pair length

CHAPTER 1. INTRODUCTION 39

sequence coverage and very small standard deviation, and again very small
indel was detected.

Although the conclusion of such tests is that ‘MoDIL accurately recovered
smaller variants than was previously possible using high clone coverage of
short-read sequencing technologies’, there are severe limitations:

1. only deletions and insertions can be detected; inversions are not con-
sidered

2. only insertions shorter than the library average length can be found,
because longer insertions cannot produce any observed distribution

3. very small libraries are needed to find very small indels, because stan-
dard deviation must be the lowest possible, so the library must be
short14

4. in order to have a meaningful kolmogorov-Smirnov test, a lot of mate-
pairs are needed

5. consideratios 2 and 3 mean that only very small insertions could be
detected

6. consideration 3 and 4 mean that only short highly sequenced libraries
can be used and they cost much money

So, MoDIL is a great tool to detect indels in that length range forbidden to
most tools, but is has a lot of drawbacks that heavily limit its usage.

1.6.4 PEMer

PEMer[9] (Paired-End Mapper) is a tool for the mapping of structural vari-
ation at high resolutions; it uses paired-end sequences as primary source in
structural variation detection. The strategy used by PEMer is showed in
figure 1.2.

To properly parameterize PEMer, simulations were used. Real chromo-
somes (human chromosome 2), realistic paired-end fragment size distribu-
tions, different types and length of structural variations were used to simulate
data for PEMer, but:

14in general, the longer the library the bigger the standard deviation, and viceversa

CHAPTER 1. INTRODUCTION 40

Figure 1.2: The strategy of PEMer: basically, all wrong paired-ends are con-
sidered and then they are clustered together. In case of more libraries used,
in a second stage all clusters from different libraries are clustered together.
Finally, all structural variations found are saved in database for further anal-
ysis.

• structural variation length was fixed, for example deletions were long

CHAPTER 1. INTRODUCTION 41

only 1, 2, 3, 4 up to 10 Kbp in the same simulation

• always a fixed zygosity

• the same type of structural variation in the same simulation

All simulations cover a lot of different situations, so it seems that results
from simulation are very good, but in practice there is a problem, because
the single simulation is a very specific situation: how many times a genome
is affected only by hetorozygous deletion of 2kbp length (for example)? For
SV finder, a single simulation has all types of structural variations, with a
great range of length and random zygosity. PEMer was also benchmarked
against a real data alrady published; it was parameterized so new structural
variations would be found, and so it was happen: a dozens of new events
were found, but always these events were indel thousands of bases. Moreover
only results for deletion are showed: there are no results for insertions and
inversions.

A very important parameter is the span coverage, that was set to 5: it
means that a 5x physical coverage is enough for PEMer to detect structural
variations. Again, it seeme a very good results, but the problem is that
only long (greater that 3 kbp) deletions are detected with such low physical
coverage.

PEMer has a feature that would make it very useful: it can use data from
different libraries, so in theory it is possible to have results from different li-
braries supporting each other. Unfortunately, this useful feature is shadowed
by a nasty requirement, i.e. a high computational time: on a super computer
with approximately 400 CPUs, two days of computation are required to map
structural variation in a single individual. Such powerful computer is not
available to all.

PEMer seems a good tool for structural variations, with interesting fea-
ture, but it requires an impossible computation power, so its use is greatly
reduced.

1.6.5 SVDetect

SVDtect[10] (Structural Variation Detect) uses a sliding-window and a clus-
tering strategy to predict structural variations (large deletions, large in-
sertions, inversions, duplications and interchromosomal traslocations) from
anomalously mapped sibling reads; SVDetect works as follow:

CHAPTER 1. INTRODUCTION 42

1. genome is partitioned into small overlapped windows of fixed size

2. anomalously mapped pairs are re-mapped to all possible window pairs,
thus forming links

3. duplicated links are filtered out; coordinates, paired-end read order and
orientation are defined

4. links are filtered and clusters are called based on number of pairs, ori-
entation and order of reads, insert size threshold

5. structural variations are detected

6. a list of significant structural variations is created in proper format

7. in case of multiple data, steps from one to five are repeated for ev-
ery data and results are compared to find data specific and common
structural variations

As stated in its article[10], SVDetect has some ‘unique’ features:

• both paired-end and mate-pair library can be used

• sibling reads with a unique alignment are used to improve structural
variation detection

• tandem duplication are predicted and it can distinguish between bal-
anced and unbalanced rearrangements

• it can compare structural variations between multiple samples

• it creates copy number profiles

• it can give in output different formats to visualize structural variations
found.

Only the third feature is really interesting: not many tools detect duplica-
tions, for example; the other features are used by many other tools.

SVDetect was tested with Illumina and SOLiD mate-pairs: in case of
illumina, a sample of neuroblastoma cell lines was used and some cluster
specific of neuroblastoma was found to show how well SVDetect works; in
case of SOLiD, a wild-type and mutant strain of yeast was used and the

CHAPTER 1. INTRODUCTION 43

results were compared with another variation detection tool, GASV (no ref-
erences). Other details on these comparison are not shown, so it is unclear
how SVDetect really works or not. SVDetect seems a structural variation
detection tool that do not shine compared to other tools.

Chapter 2

Materials and Methods

2.1 Overview of SV finder

SV finder is the C++ script that I develop during my PhD in order to find out
structural variations affecting a sequenced genome. C++ was the language
used because the first problem to solve was the development of a fast program
able to handle a lot of data in reasonable time. NGS output consist of millions
and millions of sequences, and each of them needs to be aligned against a
reference genome and classified by its length, orientation and number of
hits. After these two steps, SV finder takes certain classes of reads and
‘translate’ them into a list of structural variations. Moreover, a library can
be sequenced more than one time, so its possible to have more than one run
as input; SV finder can handle input from more sequenced libraries, even
from different libraries if their average length and standard deviation are not
too much different, i.e. their peaks are almost overlapped. Relative fastness
and much highly memory required was the main reasons to make me chose
C++ language.

SV finder can work with base space and color space, i.e. it can use data
from SOLiD and from Solexa; obviously, also 454 output is a possible input
data, but its low output with paired-end and mate-pair library is not suitable
in order to find efficiently structural variations. SV finder can use more than
one run; actually, it is not designed to handle runs of very different libraries
in order to improve results by analyzing arcs of very different length, but this
limitation is overcome by some improvements so it can achieve good results
even with one single library. SV finder can use every known genome in its

44

CHAPTER 2. MATERIALS AND METHODS 45

algorithm: all the required files and variables are parametric.
The output consist of three files, each for every type of structural vari-

ations; these files consist of a list of the corresponding structural variations
found, mainly defined by a position on the reference genome. According to
some results of real data (see section 3.3) a human genome suffers from thou-
sands of structural variations; these can be seen as too much data and as too
little data. A list of thousands of entries has a lot of ‘background noise’ if one
is interested only to a particular gene, region or position into the genome, so
for him the output is too much and he needs something to help him focusing
on right target. On the opposite case, one can be interested into finding all
structural variations affecting a genome, but so far it is unknown how many
of them are present in a genome, so a thousand of structural variations ca be
a poor number. It is clear that the final list of structural variations is not
the final step in serious analysis, but it’s the first step: after the prediction
of structural variations, one have to study in details each on them. It’s the
same concept for a sequence genome: it’s very important to sequence an un-
known genome (as human genome before 2003) in order to get better insight
of it and solve problems and diseases affecting it; but it’s not enough to have
the raw sequence, it’s necessary to use the raw sequence as base for further
studies.

2.2 Input Data

SV finder requires some files and parameters to work. Required files include
reference in fasta format, aligned and classified arcs in gff or sam format, se-
quenced reads in fastq or csfasta format and sequenced reads that not align in
fastq format. Required parameters include tags for identifying forward and
reverse read in a pair, space of sequence (base or color), output directory,
consent to store all information in RAM memory instead of analysing chro-
mosomes one by one and consent to store as files all the spliced alignments
done by SV finder. All of these are the parameters required at least to make
the program work; after them, the program may need other parameter in
order to adjust results or speed of the structural variation prediction. These
parameters are mainly numbers defining how to create structural variations
in the first step, numbers defining how to make spliced-alignment and num-
bers defining how to estimate zygosity of structural variations in the second
step. The user may define all these numbers, otherwise there are default

CHAPTER 2. MATERIALS AND METHODS 46

values that can be used; default values are optimized parameters for the
majority of cases.

2.2.1 Formats

SV finder can work with different formats. Fasta format are always required
for the reference, and it is very simple: first line has name of the reference
preceded by the ‘>’ symbol, while other lines has the reference sequence, in
general with 60 characters per line. In case of more chromosomes present,
each chromosome reference is described as above and they are simply queued.

Alignments are in sam or gff format; both are tabular file composed of a
certain number of fields. Meaning of fields includes name of aligned sequence,
chromosome where the sequence align, alignment position (start and end),
alignment strand, potential mismatches or gaps, plus other miscellaneous
informations.

Sequenced reads are in fastq or csfasta format. A fastq file uses 4 lines
for every read, each one containing respectively: name of the sequence pre-
ceded by the ‘>’ symbol, sequence itself, separator character, quality of the
sequence. A csfasta file is used for sequence in color space and uses 2 lines
for every read, containing respectively name of the sequence (preceded by
the ‘>’ symbol) and sequence itself.

2.2.2 Alignments Organization

The most important information needed is obviously the alignments of the
sequenced library. They have to be organized in a certain way to make SV -
finder work. All the alignments have to be classified according to distance,
orientation and hit number of every couple of reads. SV finder focuses only
to read uniquely aligned; only for them one can be sure about their position
on the reference, and position is the most important source of evidence for
structural variation, so if a read is aligned many times (i.e. in many different
positions), one cannot know for sure which position is the right one, so it’s
impossible to detect which alignment is ‘right’ (i.e. not interesting to detect
structural variations) and which is ‘wrong’ (i.e. very interesting to detect
structural variations).

SV finder uses four different files as source of alignments to use; these
files must be named and contain certain reads as follow:

CHAPTER 2. MATERIALS AND METHODS 47

UNIQUE PAIR : reads forming an arc that has right length (Lr) and
orientation; ‘right length’ is defined as:

AvgLen− 3 ∗ StdDev ≤ Lr ≤ AvgLen+ 3 ∗ StdDev

AvgLen e StdDev are respectively average length and standard devia-
tion of distance distribution (see section 1.5).

Right orientation depends from the library, but in general paired-end li-
brary has sibling reads that must align with different orientation, while
mate-pair library has sibling read that must align with the same ori-
entation; other combination of orientation are wrong; orientation is
usually pictured with a ‘+’ or ‘-’ symbol so, for example for paired-end
library, the two reads that form an arcs must align one on ‘+’ strand
and one on ‘-’ strand.

UNIQUE WRONG D : reads forming an arc that has wrong length (Lw)
but right orientation; ‘wrong length’ is defined as:

Lw ≤ AvgLen− 3 ∗ StdDev ∨ AvgLen+ 3 ∗ StdDev ≤ Lw

AvgLen, StdDev and right orientation are the same as above.

UNIQUE WRONG S : reads forming an arc that has wrong orientation;
length doesn’t matter (see section 2.4.3).

UNIQUE SINGLE : reads which sibling is sequenced but is not aligned;
because in the pair only one read is aligned, arc doesn’t exist, so length
and orientation don’t have any meaning.

An arc is defined by two reads, the siblings of a pair; so, for all files
except UNIQUE SINGLE, odd lines the read that define the first part of
an arc, and the following line has the sibling read that define the second
part of the arc. For this reason, UNIQUE PAIR, UNIQUE WRONG D and
UNIQUE WRONG S files are read two lines at once.

UNIQUE SINGLE file has no arc, so every line has simply one read
aligned.

CHAPTER 2. MATERIALS AND METHODS 48

2.2.3 Color Space

SOLiD NGS introduced the special feature of color space: instead of produc-
ing sequences in base space, i.e. made up of A, C, G and T nucleotides, it
produces sequences in color space, i.e. made up of 0, 1, 2 and 3 numbers.
These numbers arise from two consecutive nucleotides; in order to translate
a color space sequence into a base space one, the first nucleotide must be
known so, according to it, the remaining colors has a unique meaning (see
section 2.5.4 for a better explanation).

2.2.4 Reads not Aligned

Insertions are a bit different from deletions and inversions, mainly because
there is a novel sequence not present in the reference; arcs that have at least
one read inside the insertion behave in a strange way:

• arcs with one read inside the insertion and its sibling outside drive to
signal for long insertion (see section 2.4.4)

• arcs with both reads inside the insertion don’t align at all

There is another reason to make two sibling reads not align: one read is
inside the insertion, its sibling cover one of the two breakpoint of insertion
itself. In this case, the read covering the breakpoint can be splice-aligned
onto the reference, thus identifying the breakpoint (see section 2.5.3 for a
better explanation).

2.2.5 Read Tags

In a paired-end or mate-pair library, every read has a sibling and the two are
matched; they arise from the same DNA fragment and are its sequence ends.
But it’s important to distinguish between the two ends, two matched reads
share the same name but a different tag. These ‘tags’ often are ‘1’ and ‘2’,
or ‘forward’ and ‘reverse’. SV finder needs the tag to know which reads can
be splice-aligned in order to find the breakpoints (see section 2.5).

2.2.6 Alignment Word

These is a very special parameter needed for the splicing alignment that is
not estimated by default. Basically, when a spliced alignment is computed,

CHAPTER 2. MATERIALS AND METHODS 49

the program decides to keep or throw away it by some parameters, as number
of allowed mismatches at end of a read, minimum percentage identity and
minimum number of matches. These parameters are a double edged sword: if
they are too relaxed, a lot of spliced-alignments are found, so the number of
false positives dramatically increases and the the breakpoint are recognized
with a high error; if they are too strictly, a lot of spliced-alignment are missed,
so sensibility suffers a lot. In order to avoid these two situations, the three
previous parameters are kept relaxed and an alignment word is introduced
to avoid non-sense spliced-alignments. This word tells the program how many
mismatches are allowed for alignments of a certain length.

2.3 Two Steps

SV finder is divided into two main steps. The first one takes all the ‘wrong’
arcs in order to detect the regions in the reference genome that can be affected
by a structural variation, while the second one takes such regions and try to
spliced-align in them certain reads in order to both back up the region and
find the breakpoints. Finally, the zygosity of all structural variations found
are estimated.

The reasons for such a division arise from how first and second step work
in order to improve performances of the program. Basically, first step is
similar to what other tool do (see section 1.6), so ‘wrong’ arcs are taken
and are clustered together to identify a structural variation. The differences
between other method and SV finder mainly concern three thing:

1. how do I consider an arc as ‘wrong’?

2. how do I cluster together ‘wrong’ arcs?

3. how do I translate clusters of ‘wrong’ arcs into structural variations?

Other methods choose different ways to answer to the above questions, some-
times in a very advanced way, while SV finder uses a very simple way to de-
tect structural variations in the first step. The main problem of this approach
(i.e., taking all the ‘wrong’ arcs in order to detect structural variations) is
that a structural variation gives birth to ‘wrong’ arcs, but a ‘wrong’ arc
doesn’t always arise from a structural variation: in some cases, ‘wrong’ arcs
are caused from sequencing errors, assembly errors of reference, errors or bias
in library preparations, alignment tool used, parameters used. This leads to

CHAPTER 2. MATERIALS AND METHODS 50

a very high number of false positives. Unfortunately, all the aspects are still
almost unknown, so it is not known how they contributed to ‘wrong’ arc.
Moreover, if the distance distribution of sequenced library has a great stan-
dard deviation, also the ‘error’ of each arc is great, so the breakpoints are not
well detected. The consequences are serious: in order to detect breakpoints
with a good precision, the sequence library must have low standard devia-
tion; because standard deviations is linked1 to average length, the library
must be very short in order to keep error on arcs low. But a short library
has short arcs, so their number must be high in order to have a reasonable
number of arcs covering each positions, and this means a lot of money to
spend in order to sequence a lot: a short library translate into more money
needed. Furthermore, the number of false positives remains high: no matter
how a program works, how well the library is made, how short the library
is, there will always be wrong arcs not dependent form structural variations,
and these arcs will lead to false positives.

SV finder introduces a second step in order to solve the two main prob-
lems: false positives and poor breakpoints resolution. In the second step,
certain reads are considered and splice-aligned on the structural variations
found in the first step. This allow to confirm the structural variation it-
self by providing a second evidence beyond the wrong arcs present; more-
over, splice-alignments happen at base-level, so they detect breakpoint with
a base-precision, regardless of library standard deviation.

Finally, the availability of precise breakpoints allows an estimation of zy-
gosity of each structural variations found, something that most of the already
existing methods seem to forget. To estimate zygosity, arcs covering only one
breakpoint and arcs covering the entire structural variation are counted; zy-
gosity depends from which type is the most numerous. This estimation is
very good in case of structural variations longer than the library2; when the
structural variation is roughly equal or shorter than the library, the different
types of requested arcs are not so different, so their counting can be dubious,
leading to errors in the final estimation.

1standard deviation in linked to average length mainly for library preparation: when
the DNA is fragmented, the fragments are separated by a electrophoresis gel and the
fragments of wanted length are selected; however, the separation is not very perfect, so it
is possible to obtain only fragments of a certain range of length rather of precise length;
for this reason, in general standard deviation is about one tenth of average length, so the
bigger the library, the greater the standard deviation

2the size of a library is its average length

CHAPTER 2. MATERIALS AND METHODS 51

2.4 First Steps

As stated in previous section, first step takes all wrong arcs and, based on
them, detect the structural variations. Different types of arcs are connected
to different types of structural variations:

deletions : a deletion gave birth to arcs that align at longer distance than
library average length; basically, all arcs that cover the deletion point
in the query genome align onto reference with right orientation and
great distance

insertion : an insertion can gave birth to arcs that align at short distance
than library average length; if the insertion has a length that allow
arcs to cover the entire insertion in the query genome, these arcs will
align onto reference with right orientation and small distance. If the
insertion is to long, such arcs don’t exist. Also, some arcs has a read
outside the insertion and a read inside: the longer the insertion, the
bigger is this number of arcs. For these arcs, only the read outside the
insertion align onto the reference.

inversion : an inversion give birth to arcs that align with wrong orienta-
tion3; all arcs that have a read inside the inversion and a read outside,
align with wrong orientation

In section 2.2.2 the files with the source of alignments are explained; those
4 files contain the arcs cited above, in particular:

UNIQUE PAIR : has arcs useful to detect short deletions and short in-
sertions

UNIQUE WRONG D : has arcs useful to detect long deletions

UNIQUE WRONG S : has arcs useful to detect inversions

UNIQUE SINGLE : has arcs useful to detect long insertions

‘Short’ and ‘long’ refer to the library average value: short indels have a length
smaller (or comparable) than the library average value, while long indels have
a length greater than library average value.

3wrongness and rightness for orientation depend from how the library was made

CHAPTER 2. MATERIALS AND METHODS 52

Structural variations are divided into 5 classes: short deletion, long dele-
tion, short insertion, long insertion, inversion. Each class are found by the
analysis of one of the previous 4 files. Such analysis give birth to 5 array of
values, with a value for every position, so the length of each array is equal
to the length of reference genome. Using a threshold value (specific for each
array), these arrays are translated into structural variations by using con-
tiguous values equal or above threshold value. Structural variation found
depends from type of array.

2.4.1 Observed Distribution vs Expected One

Short indels can be found by the analysis of those arcs that seem to have
wrong length. A wrong length occurs when the observed length is different
from the expected one. Expected length ale is the average length of all the
arcs: it is computed at the beginning, once for every position, by taking
all the arcs from the UNIQUE PAIR file, making them form the expected
distance distribution and calculating its average value. Observed length is
more tricky: for every position, all the arcs covering it form an observed
distance distribution; its average length is the observed one. For a position
i, an arc A connecting position j to position k covers i if:

j ≤ i ≤ k

All arcs A form the observed distribution for position i. The average
length alo of observed distribution is:

alo =

∑N
k=1Ak
N

where:

Ak is the length of k-th arc

N is the number of arcs

The value given to position i is saved in position i− 1 on the right array
and is:

alo − ale
This value (figure 2.1) can be positive, negative or zero:

CHAPTER 2. MATERIALS AND METHODS 53

positive : in case of deletion, all positions covered by one or more wrong
arcs have a positive value because their observed distribution are shifted
to the right compared to expected distribution; so, positions flanking
and inside the deletion region share positive values; positive values are
saved in array 1a, while array 1b takes a zero value in the same indexed
position

negative : for an insertion, all positions covered by one or more wrong arcs
have a negative value because their observed distribution are shifted to
the left compared to expected distribution; so, positions flanking point
of insertion share negative values; negative values are saved in array
1b, while array 1a takes a zero value in the same indexed position

zero : if there is no indel, observed distribution and expected one are equal,
so there is no shifting and their average values have no difference, in
theory; in practice, arcs share a certain degree of randomness, so almost
never the value is exactly zero, but often very close to zero; a zero value
is saved in both arrays 1a e 1b

The computation is done for every position of the reference genome by
taking all the arcs from file UNIQUE PAIR and UNIQUE WRONG D of
length L as

0 ≤ L ≤ 2 ∗ AvgLen4

After this analysis, array 1a and 1b are filled.

Weight Average Length

The average length of expected distance distribution is computed in two dif-
ferent ways: as an average value of a distribution (like alo) and as a weighted
average value of a distribution. The first way lead to computing what I called
AvgLen, and this value is the value always used except for calculating values
in arrays 1a and 1b. The second way leads to computing the ale used in
2.4.1:

ale =

∑N
k=1 L

2
k∑N

k=1 Lk

4AvgLen is the average length of the expected distance distribution and is a bit different
from ale (see section 2.4.1)

CHAPTER 2. MATERIALS AND METHODS 54

Figure 2.1: The computation of arrays 1a and 1b; in 1 all the arcs are taken to
compute the expected distribution (red line); in 2 a position i is considered,
all arcs covering i form the observed distribution (blue line); in 3, 4 and 5,
expected and observed distributions are compared each others to compute
array values.

where:

CHAPTER 2. MATERIALS AND METHODS 55

Lk is the length of k-th arc

N is the total number of arcs

Basically, the weighted average value of the length of arcs is computed using
the length itself as weight; the difference between ale e AvgLen is very small,
about 5% in favor of ale. When observed distribution are considered position
for position, it happens that an arc appear in as many positions as its length:
the longer the arc is, the more times it is used in computing a alo. This
lead to having long arcs considered more than short arcs. When AvgLen is
computed, every arc is taken only one times, regardless of its length, so this
effect of overweighting long arcs do not appear: using AvgLen to compute
the difference between observed and expected distance distribution lead to
overestimating the shifting (see figure 2.2), thus predicting deletions where
nothing are present and skipping insertions with a small shifting.

Using ale, all the arcs are weighted by their length, so long arcs count
more than short arcs: the computing of observed and expected average length
has no difference in concept. In this way, the shifting is not overestimated
and deletions ad insertions are rightly predicted (see figure 2.3).

Limitations

The comparison between observed distribution and expected one has a major
limitation: only short indels can be found, i.e. indels long as or shorter than
library average value. For insertions, the explanation is simple: an insertion
longer than the longest arc cannot have arcs entirely covering it. If it is too
much long, during the library preparation it is impossible to obtain a frag-
ment longer than the inserted DNA, so it is impossible to have an arc with
a read flanking the insertion on the left and its sibling flanking the insertion
on the right. From a mathematical point of view, in case of insertion the
observed distribution shifts on the left respect to the expected distribution;
this shifting has an end, represented by the 0: the observed distribution can
shift until it reaches the 0 point, which means that it is made up of arcs
with no length5. This situation corresponds to insertions long as the possi-
ble longest arc. Having arcs even longer means having observed distribution
with negative values, but this is impossible, because a DNA fragment cannot
have a negative length. For deletions there is no such constraint: a deletion

5an arc with no length happens when its two reads align adjacent

CHAPTER 2. MATERIALS AND METHODS 56

Figure 2.2: The effect of using AvgLen instead of ale. In the example there
are 3 arcs (red lines) aligned against the reference genome (black line marked
with ‘Ref’); no structural variations is present and AvgLen is given by all
3 arcs present. Based on how arcs align, 4 different regions appear: zon1,
zon2, zon3 and zon4: 1) zon1 has all 3 arcs, so their average value is equal
to AvgLen and the difference between the two is zero (no indel predicted);
2) zon2 has the two longest arcs, so their average value is a bit greater than
AvgLen and the difference between the two is a positive value (a deletion
predicted with low signal); 3) zon3 has only the longest arc, so its average
value is far greater than AvgLen and the difference between the two is a
positive value (a deletion predicted with great signal); 4) in zon4 no arcs are
present, so saved value is zero (no indel predicted). Although the complete
lacking of structural variations, a deletion is found in zon2 and zon3 using
AvgLen as average value.

make the observed distribution shifts to the right of the expected distribu-
tion, and there is no limit here. Ideally, a deletion of length L, has a shifting
of L between its distribution (observed and expected). However, I choose to
set a limit, and this 2 ∗ AvgLen. The reason is that, because the analysis
is made position for position, including very long arcs means that they af-
fect a lot of position; long arcs come from deletions but also can be simply
errors, so including very long arcs can mean including error in analysis for
a lot of positions. Also, I want to balance someway between insertions and
deletions so, because insertions could have an observed distribution between
0 and AvgLen, i choose to limit the comparison of observed and expected
distributions between AvgLen and 2 ∗ AvgLen.

CHAPTER 2. MATERIALS AND METHODS 57

Figure 2.3: Red areas are the computed value saved in array 1 for each
positions. No structural variation is present in the region showed. Saved
values are the difference between average values of observed and expected
distributions: 1) AvgLen is used as average value for expected distribution
and, as result, nearly each position has a positive value, which suggests a
deletion; 2) ale is used and now positions have a very small value, positive
or negative, as expected when no structural variation is present.

2.4.2 Long Arcs

Arcs longer are analysed to find out long deletion, but no comparison of
distributions is made. Instead, SV finder takes all long arcs and compute
their arc coverage. An arc A is considered ‘long’ when:

A > 2 ∗ AvgLen

Arc A has a read aligning at positions i and j and its sibling at positions
k and y; obviously, i and j are, respectively, start and end of the first read,
while k and y are start and end of the second read. Also, it’s true

i < j < k < y

In such a situation, the coverage computed using positions i and y as start
and end is a physical coverage; the coverage computed using positions j and
k is the arc coverage. Because I am interested about arc coverage, arc A
cover a position p if

CHAPTER 2. MATERIALS AND METHODS 58

j + 1 ≤ p ≤ k − 1

Arc coverage is computed by taking into consideration all long arcs; for
position p, its arc coverage AC is

AC = N

where N is the number of long arcs covering position p. Arc coverage for
every position is saved in array 2. As stated in section 2.4.1, long arc can
arise from errors rather from long deletions; by using arc coverage, a long
arc influence a lot of position, as stated. But the influence is not as big as
comparison between distributions: a long arc can make the average length
of observed distribution become great, even if there are 1 long arc and 50
right arcs; in arc coverage, long arcs coming from errors are spread among
the entire genome and it is very unlikely that they are clustered in the same
regions. They form a background noise and, if threshold values are correctly
set and library is enough sequenced, it’s not a problem. Source of long arcs
is represented by the file UNIQUE WRONG D.

2.4.3 Wrong Strand Arcs

When an inversion occur, arcs with a read outside the inversion and a read
inside align with a wrong strand. They are saved in file UNIQUE WRONG -
S, which is used as source in detecting inversions. The method used is,
basically, the same for long deletion (section 2.4.2), so SV finder takes all the
arcs present in file UNIQUE WRONG S and compute their arc coverage.
Values are saved in array 3. In this case, there is no limitation on length of
inversions: any inversion makes arcs align with wrong strand, so any inversion
can be detected in this way. A problem can occur when there is a very short
inversion; in fact, given

• a sequenced library that, after alignments, cover the reference genome
with a sequence coverage of C

• a sequenced library of reads that are R bp long on average

• an inversion I of length L on the query genome

CHAPTER 2. MATERIALS AND METHODS 59

the average number N of arcs that we can count for every position affected
or near the inversion I is

N =
C ∗ L
R

The consequence is clear: the signal that can be get by an inversion is directly
proportional to its length; long inversions give a great signal, while short
inversions give low signal. If the inversion is too short, it can happen that
its signal is lower than background noise. But it can also happen that the
signal is lower that the threshold value used. Lowering this value could
be the solution to the problem, but lowering threshold values can lead to
much more false positives. So, in case of long libraries, it can happen that
inversions shorter that library average value are miss, due to the threshold
value used (see section 3.1.4). For arcs with wrong strand, the length is
not important: in fact, when an inversion occurs, the read inside it changes
completely its position, thus totally changing arc length (figure 2.4). It’s
possible to compute the new length NL. If:

• there is an inversion I of length L

• there is an arc A, with a read Ro outside the inversion and its sibling
Ri inside; Ro and Ri are on left side of inversion in the query genome

• Ri is at di bp from the left breakpoint in the query genome

• Ro is at do bp from the left breakpoint in the query genome

the original6 length of arc A is do + di. In the reference genome, all that is
inside the inversion is, obviously, inverted, so the new length of A will be
do + L − di. One needs to know L, do and di, which means knowing length
of inversion and its breakpoints. But these two informations are unknown
before the analysis takes place; when computing values for array 3, I don’t
have any informations to know the real length of the arc, so I just forget
about it.

2.4.4 Reads without Aligned Sibling

SV finder makes goods use of a very special type of reads; an arc is made
up of two sibling reads aligned that, thank to the alignment itself, connect

6‘original’ means ‘in the query genome’

CHAPTER 2. MATERIALS AND METHODS 60

Figure 2.4: Arcs with a read outside and its sibling inside an inversion change
their length: arc1 becomes longer and arc2 becomes shorter than their orig-
inal length.

two distant point int the genome, creating, precisely, an arc. But what does
it happen when one of the two sibling read doesn’t align? No arc is created.
Most of other tools for structural variation detection simply skip this; they
claim that, if an insertion is too long, there is no arc that can jump over it, so
the insertion cannot be detected. SV finder uses aligned reads which sibling
is sequenced but not aligned in order to detect such too long insertion. When
an insertion happens, certain arcs has one read outside the insertion and its
sibling inside. Inside reads cannot align into reference genome, but outside
reads align and form a scattered region of reads around the insertion point
(figure 2.5). The length of this region is directly proportional to average value
and standard deviation of distance distribution. Single reads are contained
in UNIQUE SINGLE file.

The scattered region can be detected by running a window over the ref-
erence genome and counting the number of single reads aligned inside the
window. The length Lw of this window depends from the distance distribu-
tion and is

w = AvgLen+ 3 ∗ StdDev7

where

7I used 3 ∗ StdDev because at 3 standard deviation from the average value fall 99.6%
of all values in a gaussia distribution; see section 1.5

CHAPTER 2. MATERIALS AND METHODS 61

Figure 2.5: In case of insertion in the query genome (‘Q’), blue reads are
outside the insertion and green reads are inside; only blue reads align against
the reference genome (‘R’), thus forming a scattered region of reads around
the insertion point i.

• AvgLen is the average length of distance distribution

• StdDev is the standard deviation of distance distribution

For a position i, the window w cover a position p if

i− w ≤ p ≤ i+ w

Every single read with right direction that align within w is counted. Total
number of single reads Ni in w is given as value to position i (figure 2.6).
Values for every position of the reference genome are stored in array 4.

The problem with this signal is that scattered region is very large: in
total, it is 2 ∗ (AvgLen + 3 ∗ StdDev) bp long, because it is possible for a
read to be at AvgLen+ 3 ∗StdDev bp from the insertion point, both on the
right and on the left. Some examples better explain the problem:

• library with 500 bp of average length and 50 bp of standard deviation:
scattered region is 2 ∗ (500 + 3 ∗ 50) = 1300 bp

• library with 1600 bp of average length and 300 bp of standard deviation:
scattered region is 2 ∗ (1600 + 3 ∗ 300) = 5000 bp

CHAPTER 2. MATERIALS AND METHODS 62

Figure 2.6: All single reads within window w are counted and their number
is the value assigned to i in array 4.

• library with 8000 bp of average length and 1000 bp of standard devia-
tion: scattered region is 2 ∗ (8000 + 3 ∗ 1000) = 22000 bp

Even with a small library (AvgLen = 500 bp and StdDev = 50 bp) the
scattered region is large: identifying an insertion with a thousand base of
error is very bad (figure 2.7).

All insertions can be found by counting single reads, even short inser-
tions found by comparison between observed and expected distributions; the
problem for short insertions is similar to that for short inversions: the shorter
the insertion is, the lower the number of single reads is, so it is possible to
skip the insertion just because a too great threshold value. Unlike for inver-
sions, this doesn’t lead to severe consequences: there is a way to detect short
insertions (see section 2.4.1), so SV finder doesn’t risk to skip them.

Parameters

Unlike the previous signals, this analysis can be affected by two parameters,
‘-alone’ and ‘-direction’. A certain number of reads doesn’t have a sibling
sequenced; these reads do not suggest insertion; they have the same prop-
erty of a fragment libraries, so are not very useful in detecting structural
variations. Because of this, single read without a sibling sequenced form an
annoying background noise and thus it is better to skip them. Parameter
‘-alone’ take all reads in UNIQUE SINGLE file and compare theme to all
sequenced reads; a read without its sibling aligned is skipped.

A single read can have its sibling on the left or on the right of its position.
This depends from the library type. As default, SV finder doesn’t know

CHAPTER 2. MATERIALS AND METHODS 63

Figure 2.7: An insertion of 3513 bp produce a scattered region of about 4000
bp! Between these 4000 nucleotides there is the right breakpoint. The library
used has an average length of 1600bp and a standard deviation of 300 bp:
with longer libraries, the scattered region becomes larger.

any position for the sibling reads, so it does the analysis assuming that the
sibling reads can potentially lies both on the left and on the right of single
reads. This makes the scattered region around an insertion point be larger
than expected, thus worsening the detection of insertions. With parameter
‘-direction’ it is possible to tell SV finder where to expect position for sibling
reads (figure 2.8).

2.4.5 Potential Structural Variations

After the previous calculations, SV finder has stored in memory 5 arrays
containing values for each position of the reference genome. Each array is
linked to a certain type of structural variation, as follow:

• array 1a has values useful to detect short deletions

• array 1b has values useful to detect short insertions

CHAPTER 2. MATERIALS AND METHODS 64

Figure 2.8: Two examples on the position of sibling read: 1) the only possible
arc is made up of the forward read on the left and the reverse on the right,
both on ‘+’ strand, so when the single read aligned is the forward on ‘+’
strand (F+), its sibling is on its right; for the R+ the idea is the same 2)the
only possible arc is made up of the reverse read on the left and on ‘-’ strand,
while the forward is on the right and on ‘+’ strand, so when the single read
aligned is the reverse on ‘-’ strand (R-), its sibling is on its right; for the F+
the idea is the same.

• array 2 has values useful to detect long deletions

• array 3 has values useful to detect inversions

• array 4 has values useful to detect long insertions

Each array is translated into a list of potential structural variations by using
a specific threshold value: contiguous positions with a value equal or higher
than given threshold are saved as a structural variation, according to the
array used (see figure 2.9). Only for potential structural variations of array
4, the middle point m is computed and the potential structural variation is

CHAPTER 2. MATERIALS AND METHODS 65

re-calculated as between positions m− AvgLen
2

and m+ AvgLen
2

. This is based
upon the fact that the insertion point must be in the middle on the scattered
region, so the middle point is taken as insertion point and a error equal to
the average length of an arc is added.

Figure 2.9: Blue area is made up of values for each positions in an array;
using a threshold value (red line), all contiguous positions with a value equal
or higher that threshold are translated into potential structural variations.

Threshold values are specific for each array and depend from how array
values are computed.

It can happen that some potential structural variations overlap, mostly
for deletions and insertions of length around 2 ∗ AvgLen. For these lengths,
deletions give signal both for arrays 1a and 2 and insertions for array 1b
and 4. In the second step, SV finder assumes that every potential structural
variation has at least one confirmed structural variation of certain type, so
overlapping structural variations of the same type must be solved:

deletion : potential structural variations coming from array 1a and 2 are
joined together

insertions : potential structural variations coming from array 1b and 4 are
joined together

The join happens only for potential structural variations overlapping or ad-
jacent; if potential SV pSV 1 between positions i and j, and potential SV
pSV 2 between positions k and y overlap or are adjacent, a new potential SV
replace pSV 1 and pSV 2 and is between positions i and y.

CHAPTER 2. MATERIALS AND METHODS 66

Why ‘Potential’?

After the first step, SV finder generates a list of what I called potential
structural variations. These list could be similar to the output of other tools
that detect structural variations, maybe it is worse due to the more simple
method that SV finder use, but this list from to major problem, as discussed
previously:

• a high number of false positives

• poor breakpoint resolution

A structural variation found soon after the first step is often larger that the
real SV, and sometimes doesn’t exist at all; for these reasons, SV finder calls
all the SV found in the first step as ‘potential structural variations’.

Threshold Values

The 5 arrays containing values for each position are translated into potential
structural variations by using a threshold value specific for each array; be-
cause arrays 1a and 1b share the same value, only 4 threshold are needed. Ar-
rays 1a and 1b has difference between average value of observed and expected
distributions; the standard deviations of expected distribution is linked to
the shifting that an observed distribution can show without an indel: about
99.6% of rigth arcs fall within 3 standard deviation from average value so,
in first versions of SV finder, the program used one standard deviation as
threshold value8. However, it is known that standard deviation depends
from the numerosity of sample taking into consideration:

• in a population of P samples, by taking one sample one by one, a
certain standard deviation sd is computed

• in the same population as above, if N samples are taken, their average
values is computed and then used as sample for a new population, the
standard deviation of the new population will be sd

2√
N

When the difference between distributions is computed, SV finder takes all
arcs covering a certain position to form the observed distribution; this is the

8one StdDev was used in replacement of 3 StdDev in order to do not miss too short
indels

CHAPTER 2. MATERIALS AND METHODS 67

same as taking N sample at once: the standard deviation that they refer is
StdDev

2√
N

. So, for array 1a and 1b, the threshold value depends from the arc

coverage. When there are few arcs (which means N is small), the threshold
is a value close to StdDev, because there is a great uncertainty about those
arcs; on the contrary, when there are a lot of arcs (which means N is big),
the threshold is a value very small respect to StdDev, because there is more
certainty about those arcs. By default, StdDev

2√
N

is taken as threshold values.

Arrays 2 and 3 have values based on arc coverage; if the average arc
coverage is C, one can expect to have around C arcs covering an inversion or
a long deletion; in case of heterozygosity, around half arcs will come from right
chromosome and the other half from chromosome affected by the structural
variation, so about C

2
arcs will be present. By default, SV finder takes C

4
as

threshold value for arrays 2 and 3: by doing this, inversions or long deletions
in heterozygosity are not missed and very few false positive are introduced.

Array 4 has values coming from the counting of single reads within a
certain window: count a single read is the same as count an arc, so threshold
value depends from average arc coverage C, as for arrays 2 and 3. But
in case of an arc, one can be sure about the positions of its sibling reads;
on the contrary, in case of a single read, if not specified, one cannot know
where its sibling could lie. SV finder knowns where the sibling lie only when
‘-direction’ parameter is set, so:

• if ‘-direction’ parameter is set, threshold value is C
4

• if ‘-direction’ parameter is unset, threshold value is C
2

When ‘-direction’ parameter is set, having a single read is the same as having
an arc, so for the same reasons of arrays 2 and 3 one can use C

4
as threshold

value; but when SV finder doesn’t know where to place the sibling reads,
each single read give a double signal, so values for insertions, errors and
background noise are as well as doubled, so the threshold value too must be
doubled: C

2 . Also, potential structural variation indicating a long insertion
will be larger with ‘-direction’ parameter unset (see section 2.4.5).

Parameters

Computing potential structural variations can be influenced by the user in
many ways, mostly by using threshold values different from default ones;

CHAPTER 2. MATERIALS AND METHODS 68

also there are two more parameters to help avoid false positives, ‘-min’ and
‘-range’.

The first parameter is applied to potential structural variations coming
out from arrays 1a and 1b: basically, when ‘-min’ is used, all potential struc-
tural variations shorter than one standard deviation are skipped. As pre-
viously stated, standard deviation is a way to mean the error that an arc
can have; in general, the values in arrays 1a and 1b are linked to the length
of indels causing them: the longer the indel, the higher the shifting of ob-
served distribution, the bigger the values saved. Also the opposite is true:
the shorter the indel, the smaller the shifting of observed distribution, the
smaller the values saved. But values too small can come from a small indel
as well as errors, randomness, etc, so sometimes it is very useful to skip over
potential structural variations indicating too small indels, because it is more
probable that they are false positive. By default, ‘-min’ parameter is not
used.

The second parameter is applied to potential structural variations coming
out from array 4: basically, when ‘-range’ is used, all potential structural
variations longer than a certain value are skipped. This value depend from
library average length, library standard deviation and ‘-direction’ parameter:

• if ‘-direction’ parameter is set, maximum length is 2 ∗ (AvgLen + 4 ∗
StdDev)

• if ‘-direction’ parameter is unset, maximum length is 2 ∗ (2 ∗AvgLen+
7 ∗ StdDev)

Potential structural variations coming out from array 4 are regions with
scattered single reads. In case of enough isolate insertions, the scattered
region must stay within a certain range, i.e. the maximum length that an
arc can have according to the library distribution, both on the left and on the
right of the insertion point. If SV finder can treat single reads as arcs (which
means ‘-direction’ parameter is set), the putative arcs can be at AvgLen +
3 ∗ StdDev bp of distance on both sides: one standard deviation as error
is added, so the maximum length of 2 ∗ (AvgLen + 4 ∗ StdDev) is gotten.
Otherwise, with ‘-direction’ parameter unset, one single read give birth to one
arc for each side, so maximum length is doubled: 2∗(2∗AvgLen+7∗StdDev)
(one standard deviation as error is added before the doubling for one side).
By default, ‘-range’ parameter is not used.

CHAPTER 2. MATERIALS AND METHODS 69

2.5 Second Steps

The second step is the feature that make SV finder different from other tool
for the prediction of structural variations. Basically, in the second step cer-
tain reads are considered and aligned onto the potential structural variations
found during the first step (figure 2.10). This approach has several advan-
tages:

• a predicted structural variation is backed up by two independent proofs

• potential structural variations from the first step are filtered during the
second step by the spliced-alignment, cutting down the number of false
positive

• structural variation breakpoints are computed with a base precision,
no matter how great is the standard deviation of sequenced library

• by using only certain reads, the risk of obtaining non-sense splice-
alignments is avoided

• as stated by other researcher[2], splice-alignments are a possible sig-
nature for structural variations; splice-aligning only on certain regions
(the potential structural variations from the first step) makes it possi-
ble to use short reads, otherwise trying to splice-align sequence of 50
bp on the entire genome would result in a high number of false positive

A read that already align onto the reference genome without the need to
splice is not considered; in order to consider a read for the splice-alignment,
it has to not be aligned because between the reasons of the alignment failure
can be present the fact that the read covers a breakpoint. This is only the
first constraint: using only no-alignment as way to decide if a read can or
cannot be splice-aligned, millions of reads are selected, and they are too much
to assure as few as possible false positive. The second constraint comes from
the sibling of a not-aligned read; there are two cases:

• sibling read is aligned; in this case, it decides the potential structural
variations in which the not-aligned read can be splice-aligned (figure
2.12)

• sibling read is not aligned; in this case both reads are not aligned; there
are many reasons for such behavior and, among them, there is the fact

CHAPTER 2. MATERIALS AND METHODS 70

Figure 2.10: Schematic description of spliced-alignments identifying struc-
tural variations; on the left side it is showed how covering-breakpoint reads
behave in case of deletion, inversion and insertion, with ‘R’ as the reference
genome and ‘S’ as the query genome; on the right side it is showed how the
spliced-alignment of those reads appears and point to the structural variation
breakpoints.

that one read doesn’t align because it covers a breakpoint, while its
sibling doesn’t align because it comes from an inserted sequence; so
sibling not-aligned reads are splice-aligned only for insertions of the
first step

Reads selected as above are spliced-align onto the potential structural varia-
tions from the first step. Because deletions and inversions interest an entire
region (while insertions interest only a single point) of the reference genome,
they are constrained; only the end regions of potential deletions and potential

CHAPTER 2. MATERIALS AND METHODS 71

inversions are used as reference to splice-align selected reads: assuming that
each potential structural variations has at least one structural variation and
knowing that within 3 standard deviations (from the average length) falls
99.6% of right arcs, the two breakpoints must are at 3 standard deviations
from the end regions. To sum up (see figure 2.11):

• if a deletion or an inversion found after the first step is equal or shorter
than 6∗StdDev, reads are splice-aligned over all the potential structural
variation

• if a deletion or an inversion found after the first step is longer that
6 ∗ StdDev, reads are splice-aligned only on position p if s ≤ p ≤
s+3∗StdDev or e−3∗StdDev ≤ p ≤ e, where s and e are respectively
start position and end position of the potential structural variation

Figure 2.11: In case of deletions or inversions longer than 6 ∗ StdDev (so
E − S > 6 ∗ StdDev), reads are splice-aligned only on red positions; if
E − S ≤ 6 ∗ StdDev, reads are splice-aligned in all positions between S and
E.

As previously stated, the decision to where splice-align a not-aligned read
R depends from its aligned sibling S; if S align at position fS (where fS =
sS+eS

2
, with sS as the start position and eS as the end position where S

aligns) and a potential structural variation PSV that interests position from
the sPSV -th to the ePSV -th base is considered, R is splice-aligned onto PSV
if:

• sPSV − 3 ∗ StdDev ≤ fS ≤ ePSV + 3 ∗ StdDev, in case ‘-direction’
parameter is unset

• in case ‘-direction’ parameter is set, one the following conditions is true:

– sPSV − 3 ∗ StdDev ≤ fS < sPSV and R lies on the right to S
according to ‘-direction’ parameter

CHAPTER 2. MATERIALS AND METHODS 72

– sPSV ≤ fS ≤ ePSV

– ePSV < fS ≤ ePSV + 3 ∗ StdDev and R lies on the left to S
according to ‘-direction’ parameter

All the not-aligned reads that fulfill these conditions are splice-aligned onto
PSV .

Figure 2.12: An aligned read can be in 3 different positions: on the left of
region start within 3 standard deviation (blue read), inside region (red read)
or on the right of region end within 3 standard deviation (green read). If no
direction is specified, its not-aligned sibling is splice-aligned regardless the
position; if direction is specified, blue read must have the sibling on the right
and green read on the left.

2.5.1 Easy Breakpoints

The main point of the second step is the splice-alignment of those reads
that could cover a breakpoint in order to detect with a base-precision the
breakpoint itself. But how much is it easy to have such a read? A breakpoint
is a point on a genome, so the question is: given a position i, what is the
probability that a read R cover i? First of all, a read R cover i if, named sR
the start position and eR the end position of an alignment of R, is true

sR ≤ i ≤ eR

Position i ideally cuts R into two pieces; for the purpose of splice-alignments,
it is necessary that each piece is long enough to align with a good sensibility:
if a piece is too short, it aligns everywhere, so it is useless. From a statistical
point of view, a sequence of N nucleotides on average can be aligned one
time every 4N nucleotides so, for example, a piece of 4 nucleotides aligns one
time every 256 nucleotides: a piece of such length obtains too many matches,

CHAPTER 2. MATERIALS AND METHODS 73

i.e. a lot of false positives. In order to avoid this, there must be a limit on
the shortest length sl that a piece can have to consider it as aligned:

• for deletions and inversions, by default sl is set to 6 (one alignment
every 46 = 4096 nucleotides)

• for insertions, alignments of not-aligned reads anchored by their sib-
lings, by default sl is set to 8 (one alignment every 48 = 65536 nu-
cleotides)

• for insertions, alignments of both not aligned sibling reads, by default
sl is set to 10 (one alignment every 48 = 1048576 nucleotides)

Minimum length sl is linked to the length of the reference against whom reads
are splice-aligned and the number of reads itself. For deletions and inversions,
the highest length of a reference is 6∗StdDev; assuming a standard deviation
of 200 bp, a maximum length of one thousand of nucleotides is gotten. Also
reads for the splice-alignment are selected with a high sensibility, so a value of
6 for sl is a very good one. Insertions has a shorter reference compared to that
for deletions and inversions, however one can assume a length of thousands
nucleotides. The problem arises for reads to splice-align: a not-aligned reads
anchored by its sibling can come out from two situations:

• the not-aligned read belongs to the inserted sequenced

• the not-aligned read covers one of the two breakpoints

When not-aligned reads are selected, both the above types of reads are taken:
the first type contributes a lot to the number of reads to be splice-aligned,
but they give at least false positive. Instead of having n reads to align (as
happens for deletions and inversion), SV finder has something like 100 ∗ n
reads. In order to avoid a lot of false positives, a higher sl is needed, so it is set
about one order of magnitude higher than that for deletions and inversions.
Last situation is the alignment of both not aligned sibling reads for insertions:
in this case, there is no clue about the positions where reads can be splice-
aligned, so they aligned over all the references for potential insertions. This
means that the entire reference is one to two orders of magnitude higher than
the normal situation for insertions, so the sl is much more higher.

It is easy to understand that the probability of a read covering a break-
point is linked to the sequence coverage: a bigger sequence coverage means a

CHAPTER 2. MATERIALS AND METHODS 74

greater probability to have such reads, and viceversa. The sequence coverage
follows a Poisson distribution, expressed by the following form:

fk;λ =
λke−k

k!

where

• fk;λ is the probability of an event occurring k times; in this case, it is
the probability of having k reads covering a breakpoint

• k is the number of occurrences of an event; in this case, k is how many
reads cover a breakpoint

• λ is the expected number of occurrences of the same event in the given
interval; in this case, λ is the average sequence coverage

With a 1x sequence coverage, the probability p to have exactly one read that
cover a breakpoint is:

p =
11e−1

1!
≈ 0.37

In order to get probability to have al least one read covering a breakpoint
witn 1x sequence coverage, one must add the probabilities to have n reads
covering the breakpoint, so the overall probability p is:

p =
∞∑
k=1

1ke−k

k!
≈ 0.44

A probability of 0.44 at 1x sequence coverage is very good: in about half of
the structural variations, there is at least a read that cover the breakpoint,
allowing SV finder to efficiently use the second step.

However, it is important to consider sl: we are not interested to reads
covering a breakpoint with their ends; in order to be useful, a read must
cover a breakpoint with its middle positions. As result, the effective sequence
coverage is lower that the real sequence coverage: int the previous example,
the sequence coverage to use in the Possion expression is lower than 1x.
Under the hypothesis that a read is 50 bp long and sl = 6, the effective
sequence coverage is 1 ∗ (50 − 2 ∗ 6)/50 = 0.76x so the real probability to
have at least one read covering a breakpoint is:

CHAPTER 2. MATERIALS AND METHODS 75

p =
∞∑
k=1

0.76ke−k

k!
≈ 0.33

In about one third of all structural variations, there is at least one read
covering a breakpoint. Simulations (see section 3.1) show a sensibility at
each sequence coverage that well agrees to Poisson expression.

Figure 2.13: In blue, the breakpoints are marked: for deletions, one break-
point on query genome and two on reference genome; for insertions, two
breakpoints on query genome and one on reference genome; for inversions,
two breakpoints both on query and reference genomes but, due to the rever-
sion, each breakpoint point to the other.

CHAPTER 2. MATERIALS AND METHODS 76

It is also important to know how many breakpoints are needed to find a
certain type of structural variation (see figure 2.13). A deletion is a region of
DNA lacking on the query genome but present on the reference genome, so
in the query genome we have only one breakpoint (that is the deletion point)
and on the reference genome we have two breakpoints, the start position and
the end position of the deletion. A read that covers the only breakpoint on
the query genome splits into two pieces when aligned against the reference,
each piece marking one of the two breakpoints, so for deletions it is needed
at least one read covering the only one breakpoint in order to detect the
deletion itself.

An inversion is a region of DNA present both on the query and reference
genomes, so there are two breakpoints in both genomes. In order to detect an
inversion, it is enough that only one of the two breakpoints is covered on the
query genome, because its splice-alignment always detect both breakpoints
on the reference genome, independently from which breakpoint on the query
genome is covered: this only changes how the splice-alignment must be trans-
lated into an inversion. So inversions are found with the same probability of
deletions, in regard of having reads covering breakpoints.

An insertion is a region of DNA present on the query genome but lacking
on the reference genome, so it has two breakpoints on the query genome
and only one on the reference genome. A read covering the breakpoint is
aligned on the reference only for the piece outside the insertion, not the
inside one; as result, a read covering the one of the two breakpoints marks
the insertion only breakpoint on the reference but cannot detect it with a
base precision. Moreover, the splice-alignment is only for pieces shorter than
the read itself, so the number of matches between nucleotides are fewer, so
the overall strength of alignment is weaker than those alignments that detect
deletions and inversions (for which the entire read must be splice-aligned,
not only a piece of it). This could be result in too much false positives. In
order to avoid them, to detect insertions with base precision and the same
strength for alignments, it is needed that both the breakpoints on the query
genome are covered by at least one read each, so it’s more difficult to detect
insertions. In the previous example, at 1x sequence coverage deletions and
inversions can be found with a sensibility9 of 0.33 because only one breakpoint
must be covered; because two breakpoints must be covered, insertions can

9the probability to have a read covering a breakpoint is very close to the sensibility in
detecting structural variations

CHAPTER 2. MATERIALS AND METHODS 77

be found with a sensibility of 0.332 ≈ 0.11.

2.5.2 Parameters

The second step is all about an alignment, so there are a lot of parameters to
define how the alignments must be done by SV finder. With the exception of
one, all these parameters are computed by default and are designed to obtain
the best possible result with alignments of sequences 50 bp length. Roughly,
parameters can divided into three classes:

• parameters for the basic alignment

• parameters for the anchoring of reads

• parameters for insertions

Parameters for the basic alignment basically tells the program how many
mismatches can be allowed to any alignment; mismatches are divided into
two types: general mismatches within the sequence and mismatches at the
sequence ends (of pieces aligned). This distinction is important because
the sequence ends are involved into detection of breakpoints and speed of
alignment; a read that split into two pieces has 4 sequence ends:

• the outer ends are linked to the speed of program in doing the align-
ments; SV finder takes the reference and slides over it all the reads
selected for that reference so, whereas already the firsts nucleotides are
different, SV finder knows that an alignment cannot be done and skip
to the next position on the reference. Allowing too much mismatches
at the sequence ends means slowing down too much the program

• the inner ends detect the breakpoints; sometimes there can be an error
(or other problems, such as SNP) on the nucleotides that detect break-
points, so mismatches must be allowed; in case of color space, regularly
there are some sort of shifting between alignment and breakpoint, so
one or more mismatches are a must

General mismatches within the sequence are needed mostly to take into ac-
count the presence of sequencing errors and SNP, in order to allow the align-
ment of a read that does not perfectly match with the reference due to them.
There is also another parameter for mismatches within the sequence that is

CHAPTER 2. MATERIALS AND METHODS 78

needed to control alignment of pieces very short regard the read itself: it was
discussed in section 2.2.6.

As stated in section 2.5.1, a read must anchor with a minimum number
of nucleotides to be considered as aligned; this anchoring is basically the sl
explained there. As stated, three different values of sl are needed, one for
deletions and inversions and two for the two different types of reads used for
insertions.

Insertions are very different from deletions and inversions, because the
read splice-alignment doesn’t immediately give the breakpoint of the inser-
tion. Also only a piece of a read is aligned, not the entire read, so false
positive are common. In order to avoid them, only the longest alignment
are kept, so a parameter is needed to tell SV finder how long an alignment
must be to keep it. When there are two alignments from two different reads10

that point the same position with different side of the reads (figure2.14), the
insertion can be claimed, but:

• the two alignments can overlap, so the program must know the maxi-
mum allowed overlapped

• because probability that an alignment is found by change depends from
number of matches, to equal probabilities between insertions, deletions
and inversions, a minimum number of matches for the two reads de-
tecting the insertion is needed; so SV finder wants a minimum number
for the sum of the lengths of the two reads that see each other

2.5.3 Spliced Alignment

For every structural variation, the first step is selecting the read to splice-
align and getting the reference against which align them; both these process is
described in section 2.5. Then the main point is the splice-alignment, that is
done with a simple sliding of each read over the reference using the parameters
described in section 2.5.2. But also the management of the alignments plays
a central role: it is necessary to translate splice-alignments into structural
variations, and this is not as simple as it sounds.

10such two reads are ‘seeing each other’

CHAPTER 2. MATERIALS AND METHODS 79

Figure 2.14: In an insertion, read1 and read2 cover the two breakpoints on
the query genome; when the reads are aligned against the reference, only the
blue pieces of each read (the ones that are outside the insertion) align and
they are placed so each one is where the green piece of the other read should
be: the two pieces ‘see each other’.

Deletion Spliced Alignment

Deletions have the most basic work-flow, mainly because the idea of the
splice-alignment is drawn from the transcriptome analysis for splicing site:
introns cut away from the immature RNA to form the mature RNA is a
situation very close to deletions. The steps to translate splice-alignments
into deletions are the following:

1. a read R is aligned against the reference in 4 ways to obtain its pieces
aligned:

• from the start point (piece S of length lS)

• from the end point (piece E of length lE)

• from the start of reverse complement (piece S−1 of length lS−1)

• from the end of reverse complement (piece E−1 of length lE−1)

2. all the pieces are combined against each other; if lR is the length of R,
a combination is found when one of the following conditions is met:

• lS + lE > lR

• lS + lE = lR

• lR − 2 ∗MIntMis ≤ lS + lE < lR with MIntMis is the maximum
number of allowed end mismatches

CHAPTER 2. MATERIALS AND METHODS 80

• lS−1 + lE−1 > lR

• lS−1 + lE−1 = lR

• lR − 2 ∗MIntMis ≤ lS−1 + lE−1 < lR with MIntMis is the maximum
number of allowed end mismatches

3. all the above combinations form deletions; start and end of the deletion
is computed, according to the combination itself

4. if a read has no combinations, its longest piece alignments are saved

5. after each read is searched for combinations, longest piece alignments
of reads without combinations are clustered with combinations of other
reads

6. combinations supported by the highest number of reads are clustered
together and saved as deletion for the reference analyzed

Insertion Spliced Alignment

Insertions have a particular work-flow, mainly due to the fact that the splice-
alignments need to be refined in order to get the insertions. Also two types of
reads are splice-aligned: not aligned reads with siblings aligned and both not-
aligned sibling reads. The steps to translate splice-alignments into insertions
are the following:

1. a read R is aligned against the reference in 4 ways to obtain its pieces
aligned:

• from the start point (piece S of length lS)

• from the end point (piece E of length lE)

• from the start of reverse complement (piece S−1 of length lS−1)

• from the end of reverse complement (piece E−1 of length lE−1)

2. longest alignments are saved

• not-aligned reads with siblings aligned are aligned against one
insertion reference, so longest pieces against that reference are
saved

CHAPTER 2. MATERIALS AND METHODS 81

• both not-aligned sibling reads are aligned against all insertion ref-
erences and the longest pieces among all are saved

3. longest alignments for all involved reads are collected

4. alignments of start pieces (S and S−1) are put against alignment of end
pieces (E and E−1)

5. an insertion is found when:

• at least a start piece and an end piece see each other

• the sum of the two pieces are longer that the average length of a
read

6. breakpoint of the insertion is found according to aligned pieces

Inversion Spliced Alignment

Inversions has a work-flow similar to that for deletions, but with one big
difference: the splice-alignment interests opposite strands; also there are four
different ways for a read to cover the breakpoints and the way chosen must
be recognized (see figure 2.15). The steps to translate splice-alignments into
inversions are the following:

1. a read R is aligned against the reference in 4 ways to obtain its pieces
aligned:

• from the start point (piece S of length lS)

• from the end point (piece E of length lE)

• from the start of reverse complement (piece S−1 of length lS−1)

• from the end of reverse complement (piece E−1 of length lE−1)

2. all the pieces are combined against each other; if lR is the length of R,
a combination is found when one of the following conditions is met:

• lS + lS−1 > lR

• lS + lS−1 = lR

• lR − 2 ∗MIntMis ≤ lS + lS−1 < lR with MIntMis is the maximum
number of allowed end mismatches

CHAPTER 2. MATERIALS AND METHODS 82

• lS + lE−1 > lR

• lS + lE−1 = lR

• lR − 2 ∗MIntMis ≤ lS + lE−1 < lR with MIntMis is the maximum
number of allowed end mismatches

3. all the above combinations form inversions; start and end of the inver-
sion is computed, according to the combination itself and based on how
a read cover the breakpoint

4. if a read has no combinations, its longest piece alignments are saved

5. after each read is searched for combinations, longest piece alignments
of reads without combinations are clustered with combinations of other
reads

6. combinations supported by the highest number of reads are clustered
together and saved as inversion for the reference analyzed

2.5.4 Color Space

SOLiD sequencing introduced a new method for obtaining nucleotide se-
quences: instead of giving a sequence of A, C, G and T, commonly referred
as ‘base space’, its output is made up of sequences of 0, 1, 2 and 3, named
‘color space’11. A color represents two adjacent nucleotides:

• DNA is made of 4 nucleotides

• taking 2 nucleotides as once gives birth to 16 different combinations
(42 = 16)

• SOLiD use only 4 colors for all combinations

The above considerations mean that a color could translate in 4 different
couples of bases as in picture 2.16:

In order to have a unique translation of colors into bases, for each color at
least one base must be know. A sequence of colors can be translated into 4
different base sequences, so if one nucleotide is known a unique translation is

11on SOLiD manual, the output is showed with 4 different colors, but in real life it is
showed with numbers

CHAPTER 2. MATERIALS AND METHODS 83

Figure 2.15: An inversion and a read covering a breakpoint are showed; read
is divided into two pieces: blue one is the piece outside the inversion, red
one is inside. Blue piece aligns always in the same breakpoint and strand
against the reference, while red piece aligns on the other breakpoint and
strand: 1) read covers the first breakpoint on ‘+’ strand; 2) read covers the
first breakpoint on ‘-’ strand; 3) read covers the second breakpoint on ‘+’
strand; 4) read covers the second breakpoint on ‘-’ strand.

made. In general, the first nucleotide is always a ‘T’, so the following colors
can have a unique translation:

• the first color depends from the first and second nucleotide

• the first nucleotide is the ‘T’ base

• knowing the first nucleotide makes the second nucleotide known as well

• the second color depends from the second and third nucleotide

• the second nucleotide is now known

• so the third nucleotide is now determined

• and so on, until the last color

In order to determine the i-th base, the i− 1-th color and the i− 1-th base
must be known.

CHAPTER 2. MATERIALS AND METHODS 84

Figure 2.16: SOLiD encoding: 4 colors encode for 16 different di-base.

A color space sequence can be translated into a base space sequence by
knowing only one nucleotide over the sequence (in general, it is the first one,
the ‘T’ nucleotide, as previously stated), but in practice the color sequence
in first aligned against a reference and then translated. The reason is very
simple: all the nucleotide following the i-th position depend from the i− 1-
th color; if this color is wrong, all those nucleotides are wrong. In case
of sequencing error, translating the sequence before aligning it against a
reference could lead to completely wrong sequences. If the sequence is aligned
and then is translated, errors can be detected, as well as SNPs: in case of a
SNP, one base changes, so two colors change in a color sequence and one sees
two mismatches in the sequence alignment; if only one color changes, only
one mismatch is seen, so it is a sequencing error.

The SOLiD color space schema is specifically designed to have some spe-
cial properties:

• for each couple of bases, the reverse is always the same color

• for each couple of bases, the complement is always the same color

• for each couple of bases, the reverse complement is always the same

CHAPTER 2. MATERIALS AND METHODS 85

color

As stated by Applied BioSystem, this schema enables the unique error check-
ing capability of the SOLiD System.

2.5.5 Breakpoint Detection

A major point of SV finder is the breakpoint detection with a base preci-
sion, allowed by using spliced-alignments. For alignments in base space, it
is quite simple to translate spliced-alignment into precise breakpoints. For
color space, the things change badly: the color that depends from the outer
and inner nucleotides (figure 2.17) respect to the structural variation is dif-
ferent from the color one expect, and the difference is semi-random, so color
space adds a greater error on breakpoint detection. SV finder makes into
accounts all the potential situations in order to have the minimum possible
error and not mistake the right breakpoint.

Figure 2.17: Blue line is the breakpoint: red nucleotides are the outer and
inner ones.

Deletion

When a deletion is present, there are one breakpoint on the query genome
and two breakpoints on the reference genomes, because the start and end
of the deletion are adjacent on the query. Only one sequence that covers
the breakpoint is needed to locate deletion start and end (figure 2.18): this
sequence splice-aligns on the reference genome into two different pieces that
identify 4 positions; the most inner positions are the start and the end that
SV finder is looking for.

CHAPTER 2. MATERIALS AND METHODS 86

Figure 2.18: The read showed (in blue e green color) covers the breakpoint for
the deletion; one aligned against the reference, blue piece marks the deletion
start and green piece marks the deletion end: only one read is needed to find
the deletion.

The previous situation is an ideal one: it’s unlikely that a sequence cover-
ing the breakpoint splits perfectly to locate with absolute precision start and
end. Often, due to errors, SNPs or simply randomness, start and end have
some degree of uncertainty. For deletion, a sequence covering the breakpoint
splits into two pieces that align in positions i, j, k and l respectively, with i
and j start and end of the first piece, k and l start and end of the second piece
and i < j < k < l. Deletion start and end depend from j and k respectively.

The following examples explain the problem of computing deletion start
and end from j and k.

Rgen : AAACGACTTGTTGT |tagcga|CACACGTCTACGCT

Rread : TTGT | |CACA

Qgen : AAACGACTTGTTGT |CACACGTCTACGCT

Qread : TTGT |CACA

in the above schema:

• lines with a ‘R’ in the beginning refers to the reference genome

CHAPTER 2. MATERIALS AND METHODS 87

• lines with a ‘Q’ in the beginning refers to the query genome

• first and third lines are the genomes

• second and forth lines are a read covering the breakpoint how as it
appears aligned against its genome (the query one) and the reference

• the | symbol marks a breakpoint

• the sequence tagcga in lower-case is the deletion and, obviously, is not
present on the query

The situation described above is an ideal one: the sequence splits perfectly
into 2 pieced of 4 bp, and the alignment coordinates of forth (j) and fifth
(k) bases locate deletion start SD and end ED, respectively: SD = j + 1 and
ED = k − 1, both with an error of 0.

Let’s change only one nucleotide and analyse the new situation:

Rgen : AAACGACTTGTTGT |tagcgt|CACACGTCTACGCT

Rread1 : TTGT | |CACA

Rread2 : TTG | t|CACA

Qgen : AAACGACTTGTTGT |CACACGTCTACGCT

Qread : TTGT |CACA

Only the last base of deletion is changed (it is underlined), so its new sequence
is tagcgt. Lines beginning with Rread1 and Rread2 show the two possible
alignments for the read covering the breakpoint: first alignment is the same in
the first situation and correctly identify start and end; but second alignment
is a bit different and identify two shifted coordinates for the deletion. This
happens by chance: there is a 0.25 probability that nucleotides outer the
breakpoint match with nucleotide inner the breakpoint, so start and end
shift of one position. More than one nucleotide can match: in case of two,
the probability of such an event is 0.0625 and the corresponding shifting is
of two positions, and son on.

It is important to note that the strength of an alignment is directly pro-
portional to the number of matches: more equal nucleotides between query

CHAPTER 2. MATERIALS AND METHODS 88

and sequence means a stronger alignment. Based on this idea, SV finder
splice-aligns the reads that could cover a breakpoint and search for the longest
piece alignment available. For this reason, in the above example the two
pieces found are the first one from Rread1, so piece TTGT , and second one
from Rread2, so tCACA. The t is in a ambiguous position: does it belong to
the second piece? Or to the first one? SV finder cannot know, so if

• the first piece has a length lp1

• the second piece has a length lp2

• the read has a length of lR

• the overlap ol between the two pieces is ol = lp1 + lp2 − lR

the position of that t in both pieces is the j and k coordinates needed, and
deletion start SD and end ED are SD = j + 1− ol/2 and ED = k− 1 + ol/2,
both with an error of ol/2.

A third situation is possible:

Rgen : AAACGACTTGTTGT |tagcga|CACACGTCTACGCT

Rread : TTGT | |gACA

Qgen : AAACGACTTGTTGT |GACACGTCTACGCT

Qread : TTGT |GACA
In the query genome, the first base after the breakpoint is changed, due to
sequencing error or a SNP (it doesn’t matter). Now the alignment of the
second piece is different: the first base, a G, doesn’t match anymore with the
C present in the reference, so now the deletion end that SV finder computes
is shifted one position on the right of the real deletion end. Where do I
put that g? On the first piece? On the second one? Maybe must it be not
considered? Again, SV finder cannot know the answers so, if we are in the
same condition as above, with the only exception that there is no overlap but
a certain number numM on mismatches of numM = lR− lp1− lp2, it happens
that SD and ED are SD = j + 1 + numM/2 and ED = k − 1 − numM/2,
both with an error of numM/2. More than one nucleotide can mismatch, for
a greater error.

CHAPTER 2. MATERIALS AND METHODS 89

Insertion

When an insertion is present, there is the opposite situation of a deletion:
two breakpoints are on the query genome, and only one breakpoint on the
reference; start and end of an insertion are adjacent in the query, while
in the reference from a unique point (for this reason, insertion has a start
but not an end, see section 2.7). Unfortunately, both the breakpoints in
the query must be covered by two different reads in order to detect the
insertion, so finding insertions is more difficult compared to finding deletions
and inversions. A read that cover one of the two query breakpoint has a
piece inside the insertion and a piece outside; only the latter align against
the reference: the piece inside an insertion is not present on the reference
genome12. This means that two reads covering the two breakpoints align on
the reference as follow:

Rgen : CGACTTGTTGT |CACACGTCTAC

RreadA : TTGT |

RreadB : |CACA

Qgen : CGACTTGTTGT |tagcgatgctg|CACACGTCTAC

QreadA : TTGT |tagc |

QreadB : | gctg|CACA

with:

• tagcga is the inserted sequence and is present only in the query genome

• QreadA is the read covering the first breakpoint

• QreadB is the read covering the second breakpoint

• RreadA is the alignment of the read covering the first breakpoint

12in case of insertion of novel sequence; if a sequence present elsewhere is inserted,
then is very unlikely that it is within the region where the splice-alignment is done, so in
both case the piece inside the insertion cannot align in the region found to be potential
interested by an insertion during the first step

CHAPTER 2. MATERIALS AND METHODS 90

• RreadB is the alignment of the read covering the second breakpoint

Only the underlined pieces of both reads align against the reference: the
piece aligned ‘see each other’:

TTGT |CACA

in this way they detect the insertion breakpoint, because the last nucleotide
of the first piece identifies the nucleotide before the breakpoint, while the first
nucleotide of the second piece identifies the nucleotide after the breakpoint.
There are two pieces aligned in positions i, j, k and l respectively, with i and
j start and end of the first piece, k and l start and end of the second piece,
as happens for deletions: the only difference is that the pieces come from
different reads, not the same one. In such a situation, the insertion start SI
is SI = j = k − 113 with no error; there are no end.

The previous situation is an ideal one: it’s unlikely that two pieces see
each other so perfectly. Very often, due to errors, SNPS ann randomness, the
two pieces overlap, even for a considerable number of positions, or are not
adjacent. Let’s change only two nucleotides and analyse the new situation:

Rgen : CGACTTGTTGT |CACACGTCTAC

RreadA : TTGT |

RreadB1 : |CACA

RreadB2 : T|CACA

RreadB3 : GT|CACA

Qgen : CGACTTGTTGT |tagcgatgcgt|CACACGTCTAC

QreadA : TTGT |tagc |

QreadB : | gcgt|CACA

The last two nucleotides of the inserted sequence (in bold) are changed in
a way that they match with the first two nucleotides before the insertion
breakpoint on the reference. Now readB has 3 way to align: RreadB1 that

13if the insertion point is p, it means that the inserted sequence starts from position
p + 1

CHAPTER 2. MATERIALS AND METHODS 91

detects the correct breakpoint, RreadB2 that is shifted one base to the left and
RreadB3 that is shifted two bases to the left. As for deletions, SV finder splice-
aligns the reads that could cover a breakpoint and search for the longest piece
alignment available: only RreadB3 is used to find the insertion. It overlaps
with the alignment of the first read:

RreadA : TTGT |

RreadB3 : GT|CACA

Now let’s change only one nucleotide and analyse the new situation again:

Rgen : CGACTTGTTGT |CACACGTCTAC

RreadA : TTGT |

RreadB : | ACA

Qgen : CGACTTGTTGT |tagcgatgctg|GACACGTCTAC

QreadA : TTGT |tagc |

QreadB : | gctg|GACA

In this case, the first nucleotide after the second breakpoint (in bold) is
changed from a C to a G. The alignment of the second piece is shorter, only
3 matches, against the 4 that would be if no difference took place.

In the last two examples, overlap and pieces not adjacent, the solution is
the same: start is SI = k−1+i

2
and its error is ES = |k−1−1|

2
.

Inversion

When an inversion is present, there are two breakpoints in both query and
reference genome, because no DNA piece is lacking or added but a certain
region in reversed. If a sequence covers one of the two breakpoints on the
query, its spliced-alignments on the reference locate both inversion start and
end: the difference between having a read covering the first breakpoint or
having a read covering the second one lies only on how spliced-alignments
coordinates are translated into inversion start and end (see figure 2.15 on
section 2.5.3).

CHAPTER 2. MATERIALS AND METHODS 92

As for deletions, the situation described in figure 2.15 is an ideal one for
the same reasons. A sequence covering one of the two breakpoints splits into
two pieces that align in positions i, j, k and l respectively, with i and j
start and end of the first piece, k and l start and end of the second piece
and i < j < k < l. Inversion start depends from i or j, while inversion end
depends from and k or l.

The following examples explain the problem of computing inversion start
and end. For easiness, I consider read covering a breakpoint only from the
same strand of the reference, but in case of reads from the opposite strand
it’s enough to compute reverse complement of the read to recreate the same
situation.

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : TTGT | cgat|

Qgen : AAACGACTTGTTGT |atcggatcgcta|CACACGTCTACGCT

Qread : TTGT |atcg |

in the above schema:

• lines with a ‘R’ in the beginning refers to the reference genome

• lines with a ‘Q’ in the beginning refers to the query genome

• first and third lines are the genomes

• second and forth lines are a read covering the first breakpoint how as
it appears aligned against its genome (the query one) and the reference

• the | symbol marks a breakpoint

• the sequence tagcgatccgat in lower-case is the inversion and, obviously,
is present on the query as a reverse complement, so atcggatcgcta

CHAPTER 2. MATERIALS AND METHODS 93

The situation described above is an ideal one: the sequence splits perfectly
into 2 pieces of 4 bp, and the alignment coordinates of forth (j) and fifth14

(l) bases locate inversion start SV and end EV , respectively: SV = j + 1 and
EV = l, both with an error of 0.

If the read cover the second breakpoint, the situation is the following:

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : |tagc |CACA

Qgen : AAACGACTTGTTGT |atcggatcgcta|CACACGTCTACGCT

Qread : | gcta|CACA

As usual, we are interested to forth and fifth bases, but now they have align-
ment coordinates of i and k respectively, and so insertion start and end are
SV = i and EV = k − 1, both with an error of 0.

As for deletions, the previous are ideal situations; let’s change only one
nucleotide and see what happens:

Rgen : AAACGACTTGTTGG|tagcgatccgat|CACACGTCTACGCT

Rread1 : TTGG| cgat|

Rread2 : TTG | cgat|C

Qgen : AAACGACTTGTTGG|atcggatcgcta|CACACGTCTACGCT

Qread : TTGG|atcg |

Only the last base before the first breakpoint is changed (it is underlined),
from a T to a G. Lines beginning with Rread1 and Rread2 show the two
possible alignments for the read covering the first breakpoint: first alignment
is the same in the previous situation and correctly identify start and end; but

14the second piece is atcg; when I want to align it I must compute its reverse complement,
cgat; in the reverse complement, the last nucleotide is the first of the original piece so, in
the example, the fifth nucleotide in the original read is the last nucleotide that one see in
the alignment of the second piece

CHAPTER 2. MATERIALS AND METHODS 94

second alignment is a bit different and identify shifted coordinates for the
inversion. As for deletions, this happens by chance and more nucleotides can
match for greater than one shifts.

As for deletions, SV finder splice-aligns the reads that could cover a break-
point and search for the longest piece alignment available. For this reason, in
the above example the two pieces found are the first one from Rread1, so piece
TTGT , and second one from Rread2, so cgatC. The G (in the first piece; the
second is a reverse complement, so the G becomes a C) is in a ambiguous
position that SV finder cannot know, so if

• the first piece has a length lp1

• the second piece has a length lp2

• the read has a length of lR

• the overlap ol between the two pieces is ol = lp1 + lp2 − lR

the position of that G in both pieces is the j and l coordinates needed, and
inversion start SV and end EV are SV = j+1−ol/2 and EV = l−ol/2, both
with an error of ol/2.

What happens if the read covers the second breakpoint? Basically, the
same thing:

Rgen : AAACGACTTGTTGG|tagcgatccgat|CACACGTCTACGCT

Rread1 : |tagc |CACA

Rread2 : G|tagc | ACA

Qgen : AAACGACTTGTTGG|atcggatcgcta|CACACGTCTACGCT

Qread : | gcta|CACA

As usual, SV finder takes the longest alignment for each piece and combine
them; as in the previous example, the position of G15 in both pieces is the
i and k coordinates needed, and inversion start SV and end EV are SV =
i+ ol/2 and EV = k − 1 + ol/2, both with an error of ol/2.

15i.e. the fifth nucleotide on the original read who remains a C in the second piece of
Rread1 and becomes a G in the first piece of Rread2

CHAPTER 2. MATERIALS AND METHODS 95

A third situation is possible:

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : TTG | cgat|

Qgen : AAACGACTTGTTGC|atcggatcgcta|CACACGTCTACGCT

Qread : TTGC|atcg |

In the query genome, the last base before the first breakpoint is changed,
due to sequencing error or a SNP (it doesn’t matter), from a T to a C. Now
the alignment of the first piece is different: the last base, a C, doesn’t match
anymore with the T present in the reference, so now the inversion start that
SV finder computes is shifted one position on the left of the real inversion
start error. The situation si very close to what happens for deletions: SV -
finder cannot know where the mismatching nucleotide must be put so, if we
are in the same condition as above, with the only exception that there is no
overlap but a certain number numM on mismatches of numM = lR− lp1− lp2,
it happens that SV and EV are SV = j+1+numM/2 and EV = l+numM/2,
both with an error of numM/2. More than one nucleotide can mismatch, for
a greater error.

If the read covers the second breakpoint, the error on the first doesn’t
matter; but an error on the second changes things:

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : |tagc | ACA

Qgen : AAACGACTTGTTGT |atcggatcgcta|TACACGTCTACGCT

Qread : | gcta|TACA

Now the first base after the second nucleotide is changed, from a C to a
T . As in the previous situation, the mismatching nucleotide (the T , fifth
nucleotide of the original read) hasn’t a defined position, so SV and EV are
SV = i−numM/2 and EV = k−1−numM/2, both with an error of numM/2

CHAPTER 2. MATERIALS AND METHODS 96

A final observation: it is possible that a sequencing error or a SNP change
the things in way that a shifted perfect spliced-alignments is found, thus
detecting the inversion one or more more positions shifted from the real
ones. The following exmpla show this:

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : TTG | cgat|C

Qgen : AAACGACTTGTTGG|atcggatcgcta|CACACGTCTACGCT

Qread : TTGG|atcg |

The splicing is perfect: no overlap, no mismatch; but the inversion start and
end found are wrong! They are shifted one base on the left and on the right,
respectively, so the inversion is 2 bases larger and error on positions is 0.
This situation happens by changes, and SV finder cannot solve it. The only
solution is using more relaxed parameters: inversions will be found with a
greater error (only of few bases in any case), but noone will be missed.

2.5.6 Color Space Makes Things Difficult

The color space makes the breakpoint detection more difficult. The problem
lies on the double-encoding: a color depends from two adjacent bases. But
what happens in these bases are the ones before and after a breakpoint?

C|A

1

In the example above, the pipe locate a breakpoint with a C on the left
and an A on the right; in color space, the di-base CA is translated into a
116. If this breakpoint is the first one, nucleotide C is outside the structural
variations and A is inside, so A will be replaced by another nucleotide, de-
pending on the type on structural variation. The consequence is clear: if A
changes, di-base CA changes and color 1 changes. Then there is a read cov-
ering this breakpoint: how does this read behave? The change of the color is

16as its reverse, AC, and their complement, GT and TG

CHAPTER 2. MATERIALS AND METHODS 97

semi-random: basically, it depends from the type of structural variation and
from the nucleotide that occupy a certain position. Some examples help to
explain this idea.

Rgen : AAACGACTTGTTGT |tagcga|CACACGTCTACGCT

Qgen : AAACGACTTGTTGT|CACACGTCTACGCT

Here there are a deletion (sequence tagcga in lower case); the two underlined
nucleotides must be the same in order to have the same color in the sequence
or, at least, a sequencing error or a SNP must change the bold nucleotide
to recreate a di-base translated into the same color, for example a C17. In
the last (less probable) case, the 0 from the query comes from a CC di-base,
while the 0 in the reference comes from a TT di-base: it is impossible to
recognize the difference.

In case of an inversion:

Rgen : AAACGACTTGTTGT |aactcgtg|CACACGTCTACGCT

Qgen : AAACGACTTGTTGT|cacgagtt|CACACGTCTACGCT

In this situation the two underlined nucleotides must be complementary in
order to have the same color in the sequence or, as in the previous case, some
error or SNP must change in a right way the bold nucleotide: in this case, a
G must substitute the bold T 18.

On principle, it is possible to know how the nucleotides change, so what
color to expect and where the right breakpoint is but one must know the
exactly length of structural variation involved, its type and breakpoints. Un-
fortunately, it is impossible to use the data one is trying to predict: as
result, color on breakpoints change semi-randomly. This adds some degree
of uncertainty in the breakpoint detection when sequences in color space are
used. Also the same problems that affect spliced-alignments in base space
are present, so overlap, mismatches, random matches and so must taken into
consideration with the color space. As a result, in breakpoint detection for
color space, the error could be raised of one unit and start and end positions
could be shifted of half unit:

17AA, CC, GG and TT are all translated into color 0
18di-base GC is translated into color 3, as di-bases CG, AT and TA

CHAPTER 2. MATERIALS AND METHODS 98

• in case of perfect split (no overlap between the two pieces, all nu-
cleotides matches)

– deletions have start and end shifted of half unit to the left, both
errors raised of one unit

– no change for insertions; color space makes more probable to have
some nucleotides overlapping, so there is no difference with base
space

– inversions behave as deletion if the breakpoint covered is the sec-
ond one; otherwise, start error is raised of two units, end is shifted
on the left of half unit and end error is raised of one units; start
doesn’t change

• in case of split with overlap between the two pieces

– deletions have start and end shifted of half unit to the left, both
errors raised of one unit

– no change for insertions; there is a small probability that color
space combines with sequencing errors, SNP and/or randomness
to have two pieces seeing each perfectly that detect the breakpoint
with one or more base of shifting; however, this is a very rare case

– inversions behave as deletion if the breakpoint covered is the first
one; otherwise, both errors are raised by two units and start and
end don’t change

• in case of split with one or more nucleotide mismatching

– no change for deletions; color space makes more probable to have
some nucleotides mismatching, so there is no difference with base
space

– no change for insertions; color space makes more probable to have
some nucleotides mismatching, so there is no difference with base
space

– inversions behave as deletion if the breakpoint covered is the first
one; otherwise, both errors are raised by one unis and both start
and end are shifted of half unit to the left

CHAPTER 2. MATERIALS AND METHODS 99

2.6 Zygosity

After the prediction of all structural variations, SV finder estimates their
zygosity. The estimation consists of counting and comparing certain type of
arcs, mainly arcs that cover only a breakpoint and arcs that cover the entire
structural variation. This is possible because breakpoints are detected with
a base-precision, so both types of arcs are well known; otherwise it would be
nearly impossible to determine without errors if an arc covers a breakpoint
without covering the entire structural variation, so the estimation of how
many arcs for each type are present would be wrong.

Other tools for the detection of structural variations completely forget
about zygosity: they only predict start, end and type of structural variation
without saying anything about the potential homozygosity of heterozygosity
of it. This happens because breakpoints have a great error or because there
are too few arcs:

• in order to have a good precision in breakpoint detection, the standard
deviation of the library must be small, so the library itself must be
short (and well made, obviously)

• estimation of zygosity is based on comparing certain type of arcs; a lot
of arcs means randomness has a smaller impact on the result of the
comparison

• unfortunately, short library has few arcs (low physical coverage)

• other tools need short library sequenced a lot in order to estimate
zygosity with the method used by SV finder, but this is not very cheap

SV finder makes good use of the second step: a ‘long’ library19 allows the
breakpoint detection with a base precision and also give a lot of arcs to
estimate zygosity. Obviously, in case of very short libraries there are few
arcs and so SV finder estimation can be full of errors.

2.6.1 Parameters

SV finder compares certain types of arcs and so it needs to know how the
comparison must be done. Two parameters is needed:

19a long library is a library that has at least about 50x arc coverage

CHAPTER 2. MATERIALS AND METHODS 100

• a number ArcTol to set tolerance in comparing arcs

• a number ArcMin to set minimum number of arcs to consider a position
i as covered

The first number is used for deletions and inversions; the estimation hap-
pens with a comparison of two number of arcs and a tolerance is needed in
order to avoid problems with randomness. For example, when a deletion is
in heterozygosis the two type of arcs are ideally in equal numbers, but in
practice there is always a certain degree of randomness that make the type
different numerous.

The second number is used for insertions; the estimation happens by
verifying if an insertion breakpoint is covered, thus proving that there are
at least one chromosome without insertion. SV finder must know how many
arcs are needed to consider a positions as covered in order to do this.

2.6.2 Deletion

A deletion is a piece of DNA that lacks from the query genome but is present
on the reference genome; for this reason, an arc that cover the only breakpoint
on the query genome aligns at great distance on the reference genome. On
the contrary, if no deletion is present all arcs behave normally, so they align
with a distance around the average length of the library. Based on this
observations, from the chromosome affected by the deletion come out arcs
with a great distance, while from the wild chromosome come out right arcs
(figure 2.19). SV finder must recognize if an arc A is a great arc arcD or a
right arcs arcB in order to assign zygosity to a deletion del:

• del has start Sdel and end Edel with errors of ErS e ErE respectively

• A cover positions from i to j, so its distance d is d = j − i+ 1

• A is uniquely aligned with right orientation

Under the above conditions

• if

– d > AvgLen+ 3 ∗ StdDev
– i ≤ Sdel − ErS

CHAPTER 2. MATERIALS AND METHODS 101

– Edel + ErE ≤ j

A is count as an arcD

• if

– AvgLen− 3 ∗ StdDev ≤ d ≤ AvgLen+ 3 ∗ StdDev
– i ≤ Sdel − ErS
– Sdel + ErS ≤ j ≤ Edel − ErE

or

– AvgLen− 3 ∗ StdDev ≤ d ≤ AvgLen+ 3 ∗ StdDev
– Sdel + ErS ≤ i ≤ Edel − ErE
– Edel + ErE ≤ j

A is count as an arcB

• because arcB comes from two point of the genome (the two breakpoints
of the deletion on the reference genome) and arcD comes from only one
point (the only breakpoint of the deletion on the query genome), arcB
is finally divided by 2 to normalization reasons.

If all is correctly done, arcD is the number of arcs coming from the affected
chromosome and arcB is the number of arcs coming from the wild chro-
mosome. Comparing the two numbers decides zygosity of del: in case of
deletion in homozygosity, both the chromosomes are affected by the dele-
tion, so ideally there aren’t arcs arcB and all arcs are arcD; in the opposite
case, one chromosome is affected so it ‘produces’ arc arcD and one is wild so
it ‘produces’ arc arcB:

• if arcB − ArcTol ≤ arcD ≤ arcB + ArcTol, deletion is predicted as
heterozygosis

• if arcB + ArcTol < arcD, deletion is predicted as homozygosis

• if arcD < arcB − ArcTol, deletion zygosis is unknown

CHAPTER 2. MATERIALS AND METHODS 102

The third case can seem very strange: mainly arcs from wild chromosome
are found and this suggests that only wild chromosomes are present; but,
if no affected chromosome is present, the predicted deletion is a false posi-
tive. This is a possible explanation, but there are other reasons: randomness,
problems during alignments, low arc coverage, small deletion are all possi-
ble explanations. Moreover, in the simulations run there was absolute no
connection between unknown zygosity and false positives, so the output of
SV finder is simply an unknown zygosity without further modifications.

Figure 2.19: The wild chromosome produces arcs that cover only on break-
point, while the affected chromosome produces arcs that cover the entire
deletion: counting and comparing the amount of these two type of arc is the
way to compute zygosity.

2.6.3 Insertion

An insertion is a piece of DNA present present only in the query genome:
it could a novel sequence of DNA or a sequence present in a total different
position on the reference genome. When an insertion occurs, there is only
a breakpoint on the query genome and this point can or cannot be covered
by arcs, depending on library length and insertion length: if the library is

CHAPTER 2. MATERIALS AND METHODS 103

too short of the insertion, there aren’t arcs long enough to entirely cover the
insertion. Based on this observation, from the chromosome affected by the
insertion no (or very close) arcs come out, while from the wild chromosome
come out right arcs (figure 2.20). SV finder simply takes all arcs A that come
from the wild chromosome and decide if their number arcI is big enough to
assume that a wild chromosome is present in order to assign zygosity to an
insertion ins:

• ins has start Sins with error of ErS

• A cover positions from i to j, so its distance d is d = j − i+ 1

• A is uniquely aligned with right orientation

Under the above conditions

• if

– AvgLen− StdDev ≤ d ≤ AvgLen+ StdDev

– i ≤ Sins − ErS
– Sins + ErS ≤ j

A is count as an arcI

If all is correctly done, arcI is the number of arcs coming from the wild
chromosome. If arcI is big enough SV finder assumes that a wild chromosome
is present:

• if ArcMin < arcI , insertion is predicted as heterozygosis

• if ArcMin ≤ arcI , insertion is predicted as homozygosis

For insertions the considered arcs are those only one standard deviation
within the library average length, not 3 standard deviation. This is be-
cause if the insertion is so short (respect the library) that some arcs cover
its breakpoint on the query genome even on the affected chromosome, there
is an overestimation of arcI that make the program predict too much het-
erozygosis insertions. To avoid this problem, the requirements for right arcs
are made stricter.

CHAPTER 2. MATERIALS AND METHODS 104

Figure 2.20: The wild chromosome produces arcs that cover the insertion
point on the reference, while the affected chromosome cannot: if this amount
is greater than a given parameter, ArcMin, insertion is hetetozygous, other-
wise it is homozygous.

2.6.4 Inversion

An inversion is a piece of DNA that is reversed in the query genome: on the
reference genome there are strand + and strand −; on the query genome,
on strand + we found strand − of reversed DNA piece, and viceversa. If
an inversion is present, an arc that cover only one of its breakpoints20 align
with wrong strand at whatever distance; if no inversion is present, only right
arc are present. Based on this observations, from the chromosome affected
by the inversion come out arcs with a wrong orientation, while from the wild
chromosome come out right arcs (figure 2.21). SV finder must recognize if
an arc A is a wrong orientation arc arcW or a right arcs arcR in order to
assign zygosity to an inversion inv:

• inv has start Sinv and end Einv with errors of ErS e ErE respectively

• A cover positions from i to j, so its distance d is d = j − i+ 1

20reads that anchor the arc align one inside the inversion and one outside

CHAPTER 2. MATERIALS AND METHODS 105

• A is uniquely aligned

• i and j must be

– i ≤ Sdel − ErS
– Sdel + ErS ≤ j ≤ Edel − ErE

or

– Sdel + ErS ≤ i ≤ Edel − ErE
– Edel + ErE ≤ j

Under the above conditions

• if strand of A is wrong21, A is count as an arcW

• if

– strand of A is right

– AvgLen− 3 ∗ StdDev ≤ d ≤ AvgLen+ 3 ∗ StdDev

A is count as an arcR

• because ArcTol is used and, for deletions, the number of arcB was
normalized for one breakpoint, arcW and arcR are both divided by 2
and thus normalized as arcB

If all is correctly done, arcW is the number of arcs coming from the affected
chromosome and arcR is the number of arcs coming from the wild chro-
mosome. Comparing the two numbers decides zygosity of inv: in case of
inversion in homozygosity, both the chromosomes are affected by the inver-
sion, so ideally there aren’t arcs arcR and all arcs are arcW ; in the opposite
case, one chromosome is affected so it ‘produces’ arc arcW and one is wild
so it ‘produces’ arc arcR:

• if arcR − ArcTol ≤ arcW ≤ arcR + ArcTol, inversion is predicted as
heterozygosis

• if arcR + ArcTol < arcW , inversion is predicted as homozygosis

21it is important to remember that strand is wrong or right depending from the library

CHAPTER 2. MATERIALS AND METHODS 106

• if arcW < arcR − ArcTol, inversion zygosis is unknown

For the third case, the same considerations for deletions (last lines of section
2.6.2) are true.

Figure 2.21: The wild chromosome (on the right) produces arcs with right
strand, while the chromosome affected by the inversion (on the left, inversion
is marked with red lines) produces arcs with wrong strand: counting and
comparing the amount of these two type of arc is the way to compute zygosity.

2.7 Output Data

During the running, SV finder creates many files containing values for every
position of the reference genome, potential structural variations found during
the first step, distribution of the values (useful to repeat the analysis with
threshold values manually computed), a lot of parameters about the library
and its alignments and, obviously, a file that has all the structural variations
found. This file is what really interests the user, but it has so many data in-
side that it can be disorientating: in human genome, thousands of structural
variations are found, and the only information about them is where they lo-
cate, what type of rearrangements they are, what reads identify them. But,
what are the most probably structural variations, the ones to focus in the
beginning? Which genes do they interest? Where should I start from? These

CHAPTER 2. MATERIALS AND METHODS 107

are the first questions that rise up. As previously stated, the file with the
list of all structural variations found is only the first step of a subsequent
analysis; preparing the library, sequencing it and finding all the structural
variations is a long process that is only needed to create the input data for a
certain project. In section 4.2 I suggest some ideas to help studying all the
data produced.

The file with the structural variations is a simple tab format, with 7 to
10 fields; each line is a structural variation:

<type> <chromo> <start position> <start error> <start -
reads> <end position22> <end error23> <end reads24> <zygosity>
<spliced-alignments positions>

The meaning of all field:

type : type of the structural variations; it could be ‘deletion’, ‘insertion’ or
‘inversion’

chromo : chromosome on which structural si found

start position : position from which the structural variation starts

start error : error of start position

start reads : number of reads that confirm the start found

end position : position to which the structural variation arrives; insertions
do not have a second breakpoint, so no end position

end error : error of end position; insertions do not have a second break-
point, so no end error

end reads : number of reads that confirm the end found; insertions do not
have a second breakpoint, so no end reads

zygosity : zygosity of the structural variations found; it could be ‘homozy-
gosis’, ‘heterozygosis’ or ‘unknow’

22only for deletions and inversions
23only for deletions and inversions
24only for deletions and inversions

CHAPTER 2. MATERIALS AND METHODS 108

spliced-alignments positions : sometimes, due to repeats, spliced-align-
ments detect more positions for the breakpoints, and SV finder merges
all the positions and give them a big error; in order to have a base
precision, every potential position and the read detecting it are saved,
so later it is possible to find the right breakpoint with a base precision

2.8 Useful Tools

During the development of SV finder I needed some kind of data in order to
correct errors, test ideas, write C++ code, so I developed some programs.
These programs work together to create an input data for SV finder with
some known structural variations inside, and to verify how well the program
detects them. The entire work-flow is a simulation, with certain features and
parameters, and I also used a lot of simulations (see section 3.1) for the final
testing of SV finder.

simula reads.cpp

The most important program I developed to help me is simula reads.cpp25;
it takes a genome, introduces in it some structural variations and finally
simulates a sequenced mate-pair library26. It can be enhanced in a lot of
ways:

• used genome can be of any length, with any number of chromosome in
fasta or multifasta format

• used genome can be a real genome or a simulated one

• it is possible to introduce SNPs into the genome in order to make the
simulation truer

• structural variations introduced can be of certain length, zygosity and
type, all defined by the user

25the executable file is simula reads.exe
26it’s a mate-pair only because two sibling reads are ‘sequenced’ in the same direction;

however, because there are simulated data, it has no sense to speak about paired-end or
mate-pair libraries

CHAPTER 2. MATERIALS AND METHODS 109

• it is possible to introduce structural variation in a random way, or give
in input a file with a list of precise rearrangements to introduce (can
be useful to simulate real structural variations affecting human race)

• output reads has a fixed length, decided by the user

• for reads of 50bp, sequencing error are simulated, according to the space
of reads: for base space, Illumina error rate is used, while SOLiD error
rate is used in case of reads in color space

• it is possible to simulate data in base or color space

• sequence coverage is chosen by user

• distance distribution of the mate-pair library is chosen by the user

All the above features are decided by the user in order to make a simulation
that fits to his purpose. It is important to note that, whatever not specified,
all is random: so, for example, positions of structural variations are randomly
chosen, their length and zygosity are random, positions of SNPs are random.
The program prints its output on some files: beyond the files containing
forward and reverse reads, there are other files with:

• a list of all structural variations introduced, their position, their se-
quence, their zygosity

• where and what SNPs are introduced

• where every read comes from (start and end position in the unmodified
genome)

• a simple description of how must align all reads that cover a break-
points; this is very useful when the user want to verify they ability
of SV finder to correctly spliced-align the reads and translate splice-
alignments into breakpoint detected

SV count.cpp

In order to verify how SV finder detects structural variations, I need to com-
pare the list of rearrangements introduced with the list of what is found.
Both lists could be very long and it is very inefficient to do the comparison

CHAPTER 2. MATERIALS AND METHODS 110

manually, so I create a program, SV count.cpp27, to do the comparison au-
tomatically. This program takes in input file with the list of all structural
variation introduced, file with the potential structural variations found after
the first step and file with the final structural variations found after the sec-
ond step of SV finder and count true positive, false positive, false negative
and how many times the zygosity was correctly predicted for every type of
structural variation. Results of the comparison are stored in different files:
again, one file contains a summary of all result and is the file most wanted
by a user, while the other files have more specific information and could be
ignored.

sim.pl

Many programs are needed to run a simulation and they have many param-
eters. To make my life easier, I wrote a simple perl program that takes some
parameters, computes obvious ones and runs all the necessary programs. By
launching sim.pl with the right parameters, a simulation takes place with
the wanted features.

Other Tools

I also used some programs already existing to run simulations: SV finder
needs reads aligned and classified to work so, during a simulation, after read
creation two other programs do that: pass aligns the reads and pass pair
takes the output alignments and classified the sibling reads using the distance,
the strand over which a read aligns and the number of hits. Those two
programs were developed in the lab where I did my PhD[4].

27the executable file is SV count.exe

Chapter 3

Results and Discussion

3.1 Simulations

The first results I obtained during the PhD come from a set of simulations
run in order to have a general assessment about the performances of SV -
finder. Simulations were made using programs written in C++ and Perl
Code, under a Linux environment; they required a simple personal computer
of average level.

3.1.1 Why?

In order to develop SV finder I had made a lot of simulations, with tools
both already existing and developed for that specific purpose. Simulations
have several advantages:

replace real data : finding a structural variation with physical techniques
like a PCR or a western blot is very difficult. In the past, some were
used (section 1.6) but all of them had problems, the most important
were the inability to detect short structural variations, certain types of
them, or in numbers high enough to use some statistical approaches;
this limits very strongly the real data available to test a tool like SV -
finder, because basically there isn’t yet a genome with all structural
variations affecting it well detected. Two solutions are made to solve
the lacking of real data: one is running simulations, the other is to take
a sequenced genome, predict structural variations with the tool tested
and finally compare results with predictions of another tool, possibly

111

CHAPTER 3. RESULTS AND DISCUSSION 112

a well known tool which works well. But in the latter solution, one
compares two predictions, so if the tools interested use very different
algorithms, then the comparison could be good, but if they use the
same idea, the fact that they predict the same things does not mean
that they both work well: they can predict the same things and make
the same mistakes.

simulate real world : a simulation is, as the name suggests, a way to make
the outside world run into a virtual environment. It is well known that
there are limits on the way we can simulate the world, both phys-
ical (Heisenberg uncertainty principle) and practical (a lot of more
powerful computers are needed, as well as mathematical ways to solve
Schrodinger equation when it is more complex than the case of a hy-
drogen atom), but in case of structural variations a simulation works
well. In a simulations there are some constraints, for example on the
length and zygosity of structural variations introduced, but the rest is
randomly chosen: where and how change the genome and, most impor-
tant, where to put the sequenced reads. It is assumed that sequences
cover a genome using a Poisson distribution, but in a genome there are
regions impossible to sequence, repeats, regions where is very difficult
to align something or, on the contrary, a lot of sequences align due to
the low complexity of the region itself. All this aspects of a genome
cannot be well reproduced in a simulations: using a real genome helps,
but it is unknown that the sequencing machines could have some sort of
bias that make them sequence only certain region, or sequence different
regions in different ways, or else. Everyone assumes that a sequencing
machine chooses randomly the region to sequence, so if one sequence
many regions many times1, then he obtain a uniform coverage over the
entire genome used.

known structural variations : maybe this is the most important advan-
tage; when a simulation is done, the user decides how to modify the
genome that will be virtually ‘sequenced’ and it is known where a modi-
fication takes place. Also it is possible to create a lot of situations: how
does a tool behave with only deletions? How does it behave with only
structural variations of 100bp? What are the best parameters to ob-
tain certain structural variations? Because the place and type of all

1as happens with the NGS machine: billions of sequence are made!

CHAPTER 3. RESULTS AND DISCUSSION 113

structural variations is known, it is possible to compare the results
with what was introduced to see what is wrong, see where the tool can
be improved, try new ideas and, finally, test the performances of the
developed tool.

A simulation gives an controlled environment to work and, as all virtual
environments, sometimes is not very similar to the real world, so there are
also some drawbacks:

randomness : something that is simulated as random is not random.
Genome sequence should be random, but we all know that there some
big unbalance, for example, the fact that the GC content is meaningful,
but also the nucleotide order in the sequence has a very depth mean-
ing, not yet full understood. Sequences are thought to randomly cover
the genome and being produced by the sequencing machine, but it is
know that it is not completely true. The problem is that it is unknown
the ‘randomness level’: are only very few sequences not random? Are
almost all sequence not random? Or half of them? Without knowing
the answer, we can only assume that all sequences are random (as they
appear random) and work under this assumption.

structural variations introduced : it’s very hard to simulate a real sit-
uations, because it is still unknown how a real situation is. Again,
one can assume that a genome is interested by all structural variation
types, roughly in the same quantity and with a great range of length.
Maybe deletions are more frequent than inversions, due the the higher
probability that a piece of DNA is cut away and that’s all, while an
inversion required the same cutting and then a rejoin of the piece in a
reversed way. Maybe length of insertion is not random: Alu and other
trasposons contribute a lot to create insertions of a certain length. One
thing is sure: there are structural variations of any type and length, so
for example a genome cannot be affected only by deletions of 100bp.
It can be useful to run simulations with very specific characteristics,
but these simulations don’t reflect the real situation. In my simula-
tions I always introduced all the structural variation types used with a
great range of length in order to recreate a situation the most possible
suitable to mime the real world.

after all, it’s always a simulation : no matter how you simulate the real
situation, no matter how good are the algorithms used, no matter how

CHAPTER 3. RESULTS AND DISCUSSION 114

you do things, your simulation is only a simulation, ever. It can give
a great view on how the program works in general, it can show you
how a program could work on real data and it can even show you how
to improve results on that real data, but a simulation cannot be the
final proof. The program must be prove on a real data, to see what
it’s the output, if it makes senses, if it is what to expect. Also it is a
good idea to compare your tool with others of the same type, maybe on
the simulations: in real data, you cannot say if a common prediction is
right or rather a common error, but in a simulation this is possible.

Due to the above advantages and drawback, I used a certain strategies to
show that SV finder works very well:

1. first I used simulations to see how SV finder works

2. then, on the same simulations, I compare it with another tool for struc-
tural variation detection (see sections 3.2 and 1.6)

3. lastly I run SV finder on a real sequenced genome to see what was
detected and if that makes sense

3.1.2 How Simulations Were Made

A simulation is a workflow made up of different programs that work together,
each one using the output of the previous as input. The script perl sim.pl
executes the workflow: it takes the input parameters, gives them to the
different programs and takes their output. The work-flow is the following
steps:

1. simula reads.exe creates the simulated mate-pair library

2. pass aligns forward e reverse reads

3. pass pair classifies the sibling reads

4. SV finder.exe detects deletions, insertions and inversions

5. SV count.exe compares structural variations introduced with what is
found

CHAPTER 3. RESULTS AND DISCUSSION 115

Parameters of SV finder are default ones; pass pair used general parame-
ters that depends from the library (which is always known) and pass did
alignments not specific. The most important parameters are the ones for
simula reads: they decide how much the simulation is like what happens in
real situations:

• the reference genome used is the human chromosome 2 of UCSC hg19
assembly; all the lines containing at least one ‘N ’2 are cut out to avoid
underestimation of sensibility; chromosome 2 was used because, among
all the human chromosomes, is the one with the highest number of
detected bases

• in every simulation 500 deletions, 500 insertions and 500 inversion were
introduced with the following features:

– random position with no overlapping structural variation

– random length between 1 and 10000bp

– random zygosity (half rearrangements were homozygosis, half were
heterozygosis)

• about 238000 SNPs, roughly one every 1000bp, in random positions, to
simulate differences between reads and reference not due to sequencing
errors

• error sequencing, using SOLiD rate for simulation in color space and
Illumima rate for simulation in base space

• simulated reads of 50bp: at the moment, this length is the shorter
possible with NGS machines

• mate-pair libraries follow a real library (figure 3.1)

– ‘pesco’ library in green line, with an average length of 593 and a
standard deviation of 63

– ‘casonato’ library in red line, with an average length of 1612 and
a standard deviation of 375

– ‘pomodoro’ library in blue line, with an average length of 8184
and a standard deviation of 1094

CHAPTER 3. RESULTS AND DISCUSSION 116

Figure 3.1: Real libraries used simulations; crosses show average length (ver-
tical lines) and standard deviation (horizontal lines); these real distributions
were chosen in order to evaluate SV finder with short, medium and long
distributions.

Every simulation uses the same previous parameters, but different library,
sequence coverage and sequence space3:

different library : the libraries showed in figure 3.1 are examples of short,
medium and long distribution; other tools want low standard deviation
to well locate breakpoints, so they need short libraries; with long and
even medium libraries, they cannot works well. However, SV finder re-
lies of the spliced-alignments to find breakpoints with a base precision,
so it can be used even with those libraries.

different coverage : coverage is very important; in general, having more
sequences means improving results. For SV finder, a higher sequence
coverage is a bigger number of arcs4, so better results in the first
step. But more arcs means better results also for other tool. How-
ever, higher sequence coverage improves dramatically the second step,

2a nucleotide not determined
3base or color space
4which is related also from the physical coverage: more reads and/or longer libraries

mean both a higher physical and arc coverage

CHAPTER 3. RESULTS AND DISCUSSION 117

with its spliced-alignment, so SV finder gains more benefits than other
tools as the sequence coverage increases.

different sequence space : SV finder detects structural variations from
sequences both in base space and color space; this means that it can
works with SOLiD, Illumina and 454 data, although the latter is not
very suitable for structural variations discovery due to the lower output.

In total simulations try 3 libraries, 6 sequence coverage (1x, 2x, 4x, 8x, 16x,
32x) and 2 sequence space, for a total of 36 simulations (3∗6∗2 = 36). When
a simulation was finished, SV count computed

• sensibility after the first step

• percentage of false positive after the first step

• sensibility after the second step

• percentage of false positive after the second step

• fraction of SV with right predicted zygosity after the second step5

A structural variation is considered as correctly found only when its real
breakpoints are within the prediction positions and errors; otherwise, the
structural variations is considered as not found.

3.1.3 Graphics

Simulations with same distribution and sequence space but different coverage
are grouped together; results are then showed for each type of structural
variation, for a total of 18 graphics. Title graphic has 3 words:

• first word indicates the distribution used in simulation and could be
‘pesco’, ‘casonato’ or ‘pomodoro’

• second word refers to the type of structural variation considered and
could be deletion, insertion or inversion

• third word refers to the sequence space and could be base or color space

5during the first step non zygosity estimation takes place

CHAPTER 3. RESULTS AND DISCUSSION 118

On the x axis the sequence coverage is showed; these coverages start at 1x
up to 32x, doubling the value each time. On the y axis the percentage of
each result is showed:

• sensibility is scaled from 0-1 to 0-100

• percentage of false positives is not scaled

• percentage of right zygosity is not scaled

Every graphic has 5 lines:

green : sensibility after the first step; it shows how well SV finder detects
regions affected by a certain type of structural variation

purple : percentage of false positive after the first step; it shows the fraction
of predictions made after the first step that are false positive; a high
value can be a lot of false positives but also a small number of overall
predictions

blue : sensibility after the second step; same as green line, but only predic-
tions after the second step are considered

orange : percentage of false positive after the second step; same as purple
line, but only predictions after the second step are considered

yellow : percentage of structural variations which zygosity is correctly pre-
dicted (after the second step); it shows the fraction of structural varia-
tions with right predicted zygosity among all the structural variations
that are true positives (false positives are not considered)

All the 18 graphics are shower in pictures 3.2, 3.3 and 3.4; in section C,
results are showed as tables.

3.1.4 Comments

In general, simulations show that SV finder works very well; at 16x sequence
coverage, all structural variation types are correctly predicted with a sen-
sibility greater than 90% and a very low number of false positives. With
greater sequence coverages, sensibility increases of few points. At very low

CHAPTER 3. RESULTS AND DISCUSSION 119

Figure 3.2: Simulation results in case of ‘pesco’ distribution, so with a short
library

levels of sequence coverage, even 1x, the program works and achieves 5% to
40% of sensibility, depending from the type of structural variation.

As previously stated, SV finder uses two steps to detect structural vari-
ations. The first one is based on physical coverage and is quite similar to
methods of the state of the art. Physical coverage is usually high (> 100x),
because libraries used are long and/or a lot of reads are produced, but in
both cases there are some problems. In the first one, a long library has also
a great standard deviation for its distribution, thus resulting in a poor lo-
calization of breakpoints and in difficulties in detecting too short structural
variations. In case of a lot of reads produced with a short library (which
means low standard deviation), the costs of sequencing increases. Existing
methods requires highly sequenced libraries with low standard deviations, so
they could perform well in highly-costing data and could not work in low-
coverage data. Moreover, methods of the state of the art suffers from false
positive, because they are all base upon the fact that an arc is wrong6 only
in the presence of a structural variation. This is not completely true: there

6with ‘wrong’ meaning that its length and/or strand are not what is expected

CHAPTER 3. RESULTS AND DISCUSSION 120

Figure 3.3: Simulation results in case of ‘casonato’ distribution, so with a
medium library

are other reasons for the arc wrongness, for example biases in the process of
creating the library, sequencing errors, problems during alignment process.
All of these reasons are still not very known and scientists detect structural
variations under some assumptions, for example fragmentation of DNA dur-
ing creation of the library is completely random and there aren’t preferential
points of breaking in the DNA. Also there are a lot of alignment tools and
they differ for sensibility, sensitivity, speed, behavior on repeats. Most tools
for detecting structural variations don’t consider all these aspects so, where
they found a minimum number of arcs differing from expected ones, they
claim the structural variation; these methods differ in the meaning they give
to the word ’differing’.

The second step of SV finder was developed in order to solve the problem
of false positive and, meantime, find out the correct breakpoints with base-
precision: a spliced-alignment of certain reads is done in order to detect
breakpoints even with great standard deviation and back up the structural
variation itself with two independent evidences, one from ‘wrong’ arcs and
one from the splice-alignment. By doing this, almost all false positives found

CHAPTER 3. RESULTS AND DISCUSSION 121

Figure 3.4: Simulation results in case of ‘pomodoro’ distribution, so with a
long library

in the first step are cut down, as shown by the orange line in graphics 3.2,
3.3 and 3.4. It is important to note that the percentage of false positive is
computed as number of wrong structural variations divided by number of
all predicted structural variations so, if few of theme are finally predicted, it
is possibile that the percentage of false positives is high. This happens for
insertions: in the simulations with a 1x sequence coverage, very few insertions
are predicted, about 50; if 15 of them are false positives, then a percentage
of 30% for false positives results. But if the number of predicted insertions
is higher, for example 300, then the percentage of false is 5%, that is more
reasonable. In results for insertion at 1x sequence coverage of ‘pesco’ library
(figure 3.2) and ‘casonato’ library (figure 3.3), the percentage of false positive
is about 70−100% and 30−40% respectively, but the final sensibility is very
low, around 10%: this means that the real number of false positive is low,
around 30, among 500 real insertions simulated.

The second step also allows to lower the requirements for the first step;
this great helps the detection of structural variations too short or supported
by too few data; Many other tools use strict parameters in order to avoid

CHAPTER 3. RESULTS AND DISCUSSION 122

too many false positives: they only consider arcs that seem truly different
from what to expect and skip over dubious arcs. This avoid false positives,
but also avoid those structural variations that, due to a short length or
randomness, produce only arcs not entirely wrong, so on most cases other
tools cannot detect all structural variations affecting the sequenced genome.
The second step of SV finder is designed cut down a false positive, so in the
first step it can consider also the situation in which only dubious arcs are
present: if dubious arcs arise from a false positive, the second step will find
out, otherwise the structural variation that produce those arcs will be found.

The second step is based on sequence coverage, on the probability that a
read covers breakpoints (see section 2.5.1). At 1x sequence coverage, if there
is a read R of length L, and if a splice-alignment with a minimum anchor
of A7 is done, in order to have R covering a breakpoint, the breakpoint
must lies between positions A and LA of R. In simulations, L = 50, A =
6, so a read must cover a breakpoint between positions 6 and 44. Even
at 1x sequence coverage, Poisson distribution and simulations show that
this happens in a good percentage of cases, about one times every three;
moreover the probability of such an event increases as sequence coverage
increases, and our simulations show that at 3x sequence coverage a lot of
reads cover breakpoints and correctly detect structural variations, achieving
50% of sensibility. It is a very good level of sensibility for a mere 3x sequence
coverage, if one thinks about that other tools require much more higher
coverages, up to 40x (for example VariationHunter, section 1.6), to work.

In simulations ‘pomodoro’ library (simulations in figure 3.4) the final sen-
sibility for inversions (blue line of both graphics in the last column) never
goes over a 65%: even with a very high sequence coverage, 32x, about one
third of the inversions are not found. The problem lies on the length of ‘po-
modoro’ library: as discussed in section 2.4.3, an inversion signal is directly
proportional to its length; long inversions give a great signal8, while short in-
versions give low signal9. Because of length of ‘pomodoro’ library, the default
threshold value for inversions is very high (see section 2.4.5), so the combi-
nation of low signal and high threshold value is a lowering of final sensibility.
The same happens, at a minor rate, for simulations using ‘casonato’ library
(figure 3.3), where the final sensibility cannot go over 80%: in this case, due

7where ‘minimum anchor’ is the minimum length of a read to be considered as aligned
8a ‘great signal’ means that there are a lot of arcs that align with wrong strand
9a ‘low signal’ means that there are few arcs that align with wrong strand

CHAPTER 3. RESULTS AND DISCUSSION 123

to ‘casonato’ library being shorter than ‘pomodoro’ one, the threshold value
is smaller, so lower signal can be detected. For simulations using ‘pesco’
library (figure 3.2), this problem seems almost disappeared: the sensibility
reached for inversions is about 85%, a value very close to the sensibility of
90% achieved for deletions and insertions. It is important to note that the
problem arises only when the default value for inversions is used, so a used
who wants better sensibility can lower the threshold value and achieve high
sensibility for inversions.

The detection with base-precision of breakpoints makes SV finder capable
to compute zygosity of each structural variation. Calculation of zygosity
is based upon counting certain type of arcs and comparing their numbers.
These types of arcs are basically arcs that cover only one breakpoint and arcs
that cover the entire structural variation but, if its breakpoints are not well
defined, the count of these arcs is not enough accurate, so the results are not
well accurate. This is the main reason for which other tools don’t predict
zygosity. Thanks to the second step, breakpointa are accurately detected and
it is possible to well count the different type of arcs: simulations show that,
in about 80% of right structural variations, zygosity is correctly predicted.

Finally, simulation results show no difference between base and color
space: results are basically the same in sensibility. In general, these is a
slightly higher number of false positive in color space, but this can be due to
the fact that simulation of errors in color space is based upon SOLiD data,
while simulation of errors in base space is based upon Illumina data, and
SOLiD has a higher error rate than Illumina. Another difference is the pre-
cision of breakpoint detection: as discussed in section 2.5.6, the color space
adds a certain degree of uncertainty in where a true breakpoint lies, so the
error given to starts and ends of all types of structural variation are bigger
in case of color space.

3.2 Comparison with VariationHunter

In the same simulations used to show how SV finder works, another tool for
structural variation detection was run: VariationHunter (section 1.6.1). In
tables 3.2 and 3.2 comparison results are shown.

CHAPTER 3. RESULTS AND DISCUSSION 124

Deletions
Conditions TP VH FP VH TP SV FP SV
I pesco 1 6 351460 158 1
I pesco 2 11 445269 277 1
I casonato 2 40 209193 234 1
I casonato 4 56 245649 342 1
I pomodoro 1 130 42614 141 1
I pomodoro 2 153 45731 242 1
I pomodoro 32 135 42456 482 28
S pesco 4 19 541908 333 8
S pesco 16 6 388534 452 7
S casonato 1 25 175754 153 6
S casonato 16 33 177694 454 9
S casonato 32 0 232 466 9
S pomodoro 1 157 42790 134 16
S pomodoro 2 153 44039 239 12
S pomodoro 32 60 30222 469 43

Insertions
Conditions TP VH FP VH TP SV FP SV
I pesco 1 0 0 17 32
I pesco 2 0 0 48 101
I casonato 2 0 7 59 5
I casonato 4 0 18 164 6
I pomodoro 1 0 0 42 4
I pomodoro 2 0 0 114 20
I pomodoro 32 0 1 468 16
S pesco 4 0 0 145 129
S pesco 16 0 0 407 74
S casonato 1 0 1 25 19
S casonato 16 0 0 423 4
S casonato 32 0 0 463 9
S pomodoro 1 0 0 44 6
S pomodoro 2 0 1 100 17
S pomodoro 32 0 0 469 32

Each table show number of true positives (TP VH) and number of false

CHAPTER 3. RESULTS AND DISCUSSION 125

positives (FP VH) found by VariationHunter and number of true positives
(TP SV) and number of false positives (FP SV) found by SV finder. The
column ‘Conditions’ shows the simulation type: for example, a ‘I pesco 1’
means than simulation was in base space, with ‘pesco’ library used and a
1x sequence coverage. By looking at the comparison, three things are very
clear:

• some simulations are lacking: for evaluation of SV finder, a total of 36
simulations was made, but here only 14 are present

• most of the simulations show a 0 for insertion results of VariationHunter

• no results is shown for inversions

A lot of simulations lack because it was not possible to make VariationHunter
do a prediction for them. On the run, it gave errors or it froze somewhere
during the execution of its algorithm: in both cases, the prediction was not
obtainable. Honestly, I don’t know the reason why VariationHunter did not
work in all simulations: data was always the same10 and hardware had not
problems; also, many tries was made, so it is very unlikely that every time
there was a hardware problem. The only possible explanation is a problem
with the software: maybe VariationHunter is not well designed or is unable
to work with different data.

No inversion was predicted by VariationHunter: in its manual it is stated
that VariationHunter only works when sibling reads with wrong strand are
on the same strand11; simulations were made with sibling reads that had
wrong strand when both reads were on different strand, so this could be
the reason. The only problem is that in the input file for VariationHunter no
strand is present: a list of mate-pairs is given as input, and it is declared only
if strand is right or wrong, so VariationHunter don’t know anything about
real strand. Again, it could be an error of mine in using VariationHunter
or (more probably) VariationHunter is not able to detect inversions with the
used library.

3.2.1 Problems with VariationHunter

VariationHunter is not a user-friendly tool for some reasons:

10same format, I mean
11they are ‘++’ or ‘- -’

CHAPTER 3. RESULTS AND DISCUSSION 126

it is not parametric : its last version was made to work only on a (un-
known) version of human genome, so a modification on the program
was needed to make work it on the human chromosome 2.

it does not use complete path for files : VariationHunter assumes that
some needed files stay in the same directory of the main script; more-
over, all files that it creates are in the directory from which the program
is used, so 2 different process with VariationHunter must be launched
from different directory in order to avoid conflict between created files.

it has a lot of steps to compute the files for the analysis : 9 differ-
ent scripts constitute VariationHunter, most of which simply take a
file, read it, and re-print its content on a different file with something
changed or added; instead of reading input file only one time and mod-
ify its content in one run, modifications are made in multiple steps, thus
spending a lot of time and increasing the risk of an error. In fact, in
many simulations VariationHunter blocked in one of these steps: after
dozens of hours it even hadn’t read a small file with some thousands of
lines.

3.2.2 VariationHunter vs SV finder

Beside the lacking of a lot of simulations, the present ones give a good view
of how another tool works in comparison to SV finder, because the simula-
tions shown cover all the situations: base and color space, short, average and
long libraries and different sequence coverages (only the 8x lacks). The com-
parison gives reasonable answers, only all possible combinations lack. Two
things are very clear:

high number of false positives : VariationHunter predicts in each simu-
lation a very high number of false positives, thousand and thousand of
deletions found that do not exist; it find them because there is one or
more arcs with a wrong distance, but they do not arise from a struc-
tural variations. They arise from something else: a sequencing bias,
a not random DNA fragmentation, alignment reasons. This suggests
that tool for the structural variation detection find too many false pos-
itives, because every tool is based on the same idea of VariationHunter:
a wrong arcs mean a structural variation.

CHAPTER 3. RESULTS AND DISCUSSION 127

low number of true positives : VariationHunter finds a fraction of all
the structural variation present; in case of deletions, 500 of them were
introduced in the query genome. In the best case, about one third
of the deletions were correctly found, but with over forty thousand of
false positives: it is easy to guess something if one does many and
many tries. VariationHunter was used with non strict parameters, so
one could expect a lot of false positives (but not so many); however,
one must expect a loto of true positives, but this did not happen.

Another things (not shown) is the breakpoint resolution: whereas SV finder
found breakpoint with a base precision, VariationHunter had error of order
of magnitude of a thousand bases. It’s a very big error: the reason why is
that VariationHunter, as all tools unlike SV finder, needs library with a low
standard deviation to find breakpoint with a great resolution, otherwise they
are poorly found.

Comparison show that SV finder works very in data that are very chal-
lenging for other tools. Moreover, with low sequence coverage12, SV finder
obtains good results, while other tools had awful predictions.

3.3 Results of Real Data

SV finder was used on real data: the genome of an individual affected by a
blood coagulation disease was sequenced with SOLiD and SV finder was used
on the output. This disease was not lethal, nor it has severe consequences
on the general health of the carrier; also it was known to be due to a genetic
variation. The problem was that the affected gene was impossible to find, so a
bioinformatic approach was tried. The main idea was to sequence the genome
and find all the differences with the reference human genome, considering
that the affected gene should be found among these differences.

From the genome of this individual 2 different libraries was done, but
they had a so similar average length and standard deviation that they were
used as if they were a single library. SV finder tolerates small differences
within the library because the approach used is based on splice-alignment,
whereas other programs need a perfect and very narrow insert-size distribu-
tion. However, the libraries were made with different version of SOLiD: first

12SV finder can work well with a 10x sequence coverage, while VariationHunter was
testes on a 42x sequence coverage

CHAPTER 3. RESULTS AND DISCUSSION 128

one consisted of reads 25bp length, while the second consisted of reads 50bp
length. First library was sequenced 3 times, second 2 times, for a total of
11x sequence coverage: the minimum required coverage to obtain good sen-
sibility, according to simulations (section 3.1). However, sequences of 25bp
do not perform very well in splice-alignments and they constitute about a 3x
sequence coverage: more or less, the effective sequence was 8x.

3.3.1 Structural Variations Found

SV finder was used on sequenced genome of individual affected by a blood
coagulation disease and it found a certain amount of structural variations
showed in figure 3.5 (in section D tables with numbers are present).

In total 3366 deletions, 14574 insertions and 214 inversions were found.
These seem a lot of structural variation but, as demonstrated[15][16][17] in
previous studies, an adult genome is affected by thousands of structural varia-
tions, some of them even connected to mortal diseases. The exact estimation
of total number is still unknown, due to the fact that structural variations
experimentally characterized are very few and, instead, they are detected
with in silico techniques, but:

• a lot of types of structural variation to be detected

• a lot of different tools for structural variation detection

• tool cannot be tested on real data, because a sequence genome with all
structural variations experimentally characterized doesn’t exist yet, so
the performances of every tool are not totally assured

Different studies report different amount of structural variation in a human
genome, from a thousand to dozens of thousands. The number found by SV -
finder fits well with was it is expected; currently, this is the only information
about the good quality of the prediction. In section 4.2 a suggestion is made
to use and prove all the data.

It is interesting to notice that the number of insertions found is very high,
while inversions found is a very small fraction of all structural variations
found. The low amount of inversions found is expected: inversion is an event
less probable and more difficult to find than a deletion, so finding much less

CHAPTER 3. RESULTS AND DISCUSSION 129

Figure 3.5: Structural variations found by SV finder: on x axis there are the
chromosomes, on the y axis the number of different variants (deletion, inser-
tion and inversion) found in each chromosome; blue columns show number
of deletions found, orange columns show number of inseretions found and
yellow columns show number of inversions found.

CHAPTER 3. RESULTS AND DISCUSSION 130

inversions than deletions fits well. Insertions are as common as deletion13, so
the higher number of them in comparison to deletions is unexpected. As far
as I know, there could be two possible explanations:

insertions are more common that deletions : beside SV finder, no to-
ol is able to detect insertions too long; to find an insertion they need an
arc that covers it, but an arc can cover an insertion only if it is longer
than the insertion itself, otherwise no arc is present for the analysis.
Other tool needs very short library (in this way, standard deviation
is very small and breakpoint detection is good) to work well, so they
find only very short insertions. SV finder can detect insertions of any
length, regardless of library average length, because it exploit a signa-
ture peculiar to long insertions.

many insertions found are false positives : for the detection of struc-
tural variations very short reads were used; about 25% of total reads
had a length of 25bp. Moreover, some reads were trimmed, so the bases
in the ends with very low quality was cut away in order to improve
the alignment. The trimming process make very short reads compare:
the statistic reported a read minimum length of 19bp. For the splice-
alignment, the read length is a critical factor; simulations show that
a read length of 50bp is enough to obtain good results, but probably
with shorter sequences results become worse and worse. A lot of false
insertions can be due to splice-alignments of such short reads: prob-
ably, if the detection is repeated without considering too short reads,
results could be improved.

3.3.2 Errors on Breakpoints

The splice-alignment approach allows to cut down the number of false posi-
tives and to detect breakpoint with a base-precision. In the simulation run,
the error of breakpoints was always very small, it never became greater than
a dozens of bases, but in this results some structural variations have an error
of hundreds of bases (see section 4.3). How this could be possible? Many
factor could be responsible for this problem, but there two main reasons:

13maybe they are a bit less common, but magnitude order is more or less the same: if
1000 deletions are found, one must expect to find a thousand of insertions, not only 10 or
100

CHAPTER 3. RESULTS AND DISCUSSION 131

genome is repeated : if a breakpoint is on a sequence repeated in a near
spot and the two location fall into the same potential structural vari-
ations (found in the first step), then during the splice-alignment both
location are considered as breakpoint. SV finder computes a unique lo-
cation for this breakpoint usign as value the average of the location and
as error an half of the distance between them. So, if two locations are
at 1000bp of distance, then the breakpoint will have an error of 500bp.
However, SV finder reports the locations from which the final position
for a breakpoint is computed, so in the refinement step of result (sec-
tion 4.2) it is possible to evaluate the best location, thus lowering a lot
the error.

reads are short : a long read splice-aligns more difficult than a short one,
so in case of short reads they splice-align easily, thus giving birth to
wrong alignment, so a breakpoint can have multiple locations due to
splice-alignments of short reads; multiple locations means great error
on breakpoint detection. As reported in previous section 3.3.1, a lot of
short reads are present, so probably repeating the prediction without
them will dramatically reduce breakpoint errors in most cases.

Chapter 4

Conclusion

4.1 General Performance

The aim of my PhD research was to investigate the possibility to develop
a bioinformatic tool for the detection of structural variations, using paired-
ends and mate-pairs sequencing data. As a result I created SV finder and I
tested it under different conditions. My conclusion is that SV finder seems
to works very well:

• simulations show that sensibility is high with very few false positives

• comparison with VariationHunter shows that at very low sequence cov-
erages SV finder performs better than any other state of the art tools

• results of real data show that SV finder can be efficiently used in real
projects to detect structural variations affecting the sequenced genome

SV finder is not limited by platform technology nor by the library used: it
works in base and color space, with short, medium and long libraries, with
paired-ends and mate-pairs. Breakpoints are always found with base preci-
sion and their identification does not depend by the standard deviation of
the library sequenced. At 16x sequence coverage, the program achieves high
sensibility, with very few false positives. As now, a 16x sequence coverage is
easily achieved by almost all NGS machines available, so SV finder can work
at its best.

The sensibility does not reach 100% due to a main reason: the presence
of very short structural variations in simulations. As already stated (sec-
tion 3.1.2), in every simulation there are structural variations with a range

132

CHAPTER 4. CONCLUSION 133

of lengths from 1 to 10000bp, so a certain number of very short structural
variation is present. Short rearrangements are still a challenge, because they
produce few arcs that most of the times produce a signal lower than back-
ground noise. Moreover, it seems that there is a range of lengths, roughly
between 10 and 50bp, in which a structural variation cannot be detected: it
is too long to use alignments of a fragment library1, but it is too short to
change in a noticeable way the arc distribution. So, small structural varia-
tions remain unsolved for every available tool. It is important to note that
other methods have a minimum length for the detection higher than the
theoretical one for SV finder, and also they cannot detect insertions longer
than the longest available arc2 so, although SV finder has some limitations,
it performs better than other methods.

Read length is a critical factor: longer reads mean better results. In
simulations, a standard read length of 50bp was used, because at the moment
of writing this PhD thesis it is the minimum length for NGS machines3. If
read length is too short, for example as happened with the first versions
of SOLiD sequencer, which produced read of 25bp, the chance of a read
covering a breakpoint decreases, so more reads are needed; however, shorter
reads mean weaker alignments, so more false positives and greater errors on
breakpoint positions. All this means that the second step probably does not
work so well with very short reads, so SV finder has to rely of the first step
to detect structural variations. In this case it works as well as other tools of
the state of the art.

An important part is also played by the rightness of reads: errors in
reads covering breakpoints can lead to errors on the detection of breakpoint
itself, so in case of high sequencing error rate, breakpoints are detected with
bigger errors; however, errors increased of only few base, so there is still a
base-precision detection.

1if reads are very long, about hundreds of bases, it is possible to use the splice-alignment
against all the reference to detect structural variations

2which depends from average length and standard deviation of the sequence library
3well, in some cases a paired-end or mate-pair library is made of sibling reads of 75bp

and 35bp, but it is only slightly different to have equally long sibling reads of 50bp

CHAPTER 4. CONCLUSION 134

4.2 Final Results: What to Do with Them

In general, a tool for structural variation detection gives in output a list of
rearrangements. The first question that arises in user’s mind is: and now?
What can I do with this information? How can I use all the output data?
The problem is not trivial, because there are so much information to simply
lose own aim, own goal. The first thing that one can think is to manually
analyse all data, but there is too much data for a manual analysis, from
hundreds to thousands of regions. This is a great number: it is very unlikely
that one single person (or, even, a team of people) takes one region, studies
it and then improves its detection. It is too much work to be done. The
obvious solution is to automate the process of human refinement, but if it
can be automated, why don’t include it in the tool itself? The answer is that
the refinement process cannot be completely automated; it has to be made
by a human being, but some sort of automation is possible to speed up the
entire process.

First of all, one raw solution is to help the human user to see at once
all the informations about a certain region needed for the refinement; this
informations could be:

• start and end of structural variations: these are the most important
information to know for obvious reasons

• sequence and arc coverage: always aligned reads and arcs must agree
with the structural variation found; an homozygous deletion cannot
have too much reads aligned inside

• repeat index: a number that gives an idea on how much repeats there
are in studied region is always useful, because repeat regions can be
responsible for great errors in breakpoint, false positive and the lack of
expected reads and/or arcs

• structural variations known to affect the studied region: a deletion
found where there is an already known deletion is always welcome

The above are general informations useful in nearly all the situations; the idea
behind is simple: for example, I have a deletion; it can arise from a certain
reason, different from really having a structural variation, so I visualize all
what is known about that reason and, based on what I see, I decide if the
deletion is a false positive or not, if start and end are right, if the errors

CHAPTER 4. CONCLUSION 135

on breakpoints can be lowered. Obviously, the user must be skilled in order
to really improve the detection. In figure 4.1 is showed an example on how
visualize and refine structural variation first output.

Figure 4.1: An example of how visualize structural variations for refinement
using GBrowser (http://gmod.org/wiki/GBrowse), a very powerful tool in
bioinformatic.

This solution is very useful, but still time-consuming: although speed
refinement is greatly improved for each structural variations, there are thou-
sands of them, so the overall time is still high. What can be done now?
In the majority of cases, the user is interested in structural variations with
certain features, that can be:

• type of structural variation: for example, the user wants only inversions

• precise regions that can be affected by a rearrangement

• certain genes that can be affected by a rearrangement

CHAPTER 4. CONCLUSION 136

• certain portion of genes that can be affected by a rearrangement

• certain chromosomes

With the above cases, user focuses his attention only on few structural vari-
ations, those ones that affect the regions or genes4 interested, so the number
of rearrangements to study become manageable. This can happen mostly
because the user known something at priori about what he is interested. In
general the best solution is having a system that select only certain structural
variations and focusing attention on them, skipping all the rest.

4.3 Problems

Structural variation detection suffers from some problems that currently are
not yet solved. Repeat regions are the most difficult problem: since the
beginning of the sequencing era, repeats needed extra work to be solved
because reads covering a repeat cluster together; to solve them, a sequence
longer then the repeat region is needed, but this can be difficult in case of
long repeat regions.

In structural variation detection, repeats make some sibling reads align
in different positions in the reference, thus creating a lot of combinations
and arcs. These arcs differs each others in the distance: here lies the prob-
lem. Two sibling reads connect two positions and the length of the connec-
tion depends mainly from the presence of a structural variation; if one or
both sibling reads has more than one positions (which means more than one
alignment), there are more connections, more arcs; some on them can have a
right length, some cannot: how can one choose which is ‘right’ and which is
‘wrong’? A wrong arc can arise from the presence of a structural variation or
a repeat, but there is no way to know this, so repeat regions remains almost
an unexplored field in terms of structural variations.

The above is a common problem for all tools for structural variation
detection, SV finder suffers from repeat in another way. The second step
uses a spliced-alignments to detect breakpoints with a base precision; if small5

repeats are present, one or both of the read pieces align in more that one
position, so multiple positions are found for a single breakpoint (see section

4that can be a single gene or a certain gene region, such as UTR or coding region or
other

5repeat of dozens of base, so with a length of the same magnitude order of read length

CHAPTER 4. CONCLUSION 137

3.3). SV finder clusters all positions into a single one with a great error, and
this is the breakpoint: the problem is that its error has magnitude order of
hundreds of nucleotide, so the base precision promised is not reached. This
can be solved in refinement process (section 4.2): all the potential positions
is known so the real breakpoint is not spread across hundreds of places but
rather between few positions; with other informations, such as sequence and
arc coverages, it is possible to choose the right position with a great reliability.

Sometimes breakpoint are not well defined; for example, an inversion
happens when:

1. DNA breaks in two different positions that are approximately near (not
further that hundred thousands bases)

2. the segment between the breaks reverses

3. the segment is reinserted in the same place but in the reverse direction

During the second stage an partial degradation of DNA ends can happen, so
when the segment is reinserted, some nucleotides around the two breakpoints
are missed. A read covering one breakpoint align against the reference in a
wrong way:

reference genome

Rgen : AAACGACTTGTTGT |tagcgatccgat|CACACGTCTACGCT

Rread : TTGT | cgat|

Rdegread : TGTT | tccg |

query genome with partial degradation

Qgen : AAACGACTTGTTGT |atcggatcgcta|CACACGTCTACGCT

Qdegread : TGTT | cgga |

CHAPTER 4. CONCLUSION 138

query genome

Qgen : AAACGACTTGTTGT |atcggatcgcta|CACACGTCTACGCT

Qread : TTGT |atcg |

The underline nucleotides in the second schema are degrated so, instead
of getting a TTGTatcg as read covering the breakpoint, a TGTTcgga read
is gotten. The 4 lacking bases make inversion start and end not defined6.
Sometimes the degradation could be so severe that a splice-alignment is no
longer possible, so the structural variation could not be detected.

In the first step, SV finder creates 5 indexes and, using threshold values,
translate them into a list of potential structural variations. On concept, this
is similar to the tools of the state of the art, but is less complex, simpler.
The reason behind is the presence of the second step, so in the first one it is
only needed to detect the region affected by a structural variation. Anyway,
this can lead to some problems:

• unnecessary false positives: a false positive can arise because an arc
is wrong for other reasons and not for the presence of a structural
variation; but for randomness very small regions (‘small’ means ‘less
than 100bp length’) can show a lot of wrong arcs, so some regions can
be wrongly recognized as potential structural variations

• structural variations skipped: structural variations which signal is lower
than threshold value are missed (as described in sections 2.4.3 and
3.1.4)

• length of potential structural variations depends from the threshold
values: lowering a threshol value has two consequences:

– more potential structural variations are found

– already found potential structural variations are longer (see figure
4.2)

An improvement to the first step could lead to an overall improvement of
SV finder (section 4.4).

6it is important to note that this is a complex structural variation: inversion flanked
by two very small deletions, so it can be a difficult case to solve; most other tools cannot
solve it

CHAPTER 4. CONCLUSION 139

Figure 4.2: Lowering the threshold value leds to more and larger potential
structural variation in the first step.

SV finder estimates the zygosity of each structural variation found; it
is something that most other tools do not do, but it is not yet a perfect
computation: as showed by simulations (section 3.1), zygosity is correctly
predicted about four times out of five. Different structural variation types
behave different and also at different sequence coverage results are different:

deletions : according to simulations, percentage of right zygosity never
reaches 100%; for ‘pesco’ and ‘casonato’ libraries, it increases with the
increasing of sequence coverage, while for ‘pomodoro’ library it slowly
decreases! Also it seems that the longer the library the worse the re-
sult is, so for a good computation short libraries with a lot of arcs are
needed. As described in section 2.6.2, SV finder takes arcs covering
the entire deletion and arcs covering only one of the two breakpoints
in the reference genome, because the firsts mainly come from the af-
fected chromosome (i.e. the one with the deletion), while the seconds
mainly come from the wild chromosome (the one without the dele-
tion). The problem is that the dividing line between these two types
are less and less defined as the deletion length decreases: in case of

CHAPTER 4. CONCLUSION 140

short deletions(7), from the wild chromosome both arcs covering the
entire deletion and arcs covering only one breakpoint could come out,
so the arc count can be wrong. The reason why with ‘pomodoro’ library
percentage of right zygosity decreases with the increasing of sequence
coverage is unknown: maybe it is due to the high standard deviation of
the library, so the counting of arcs has always errors and some degree
of randomness; or it can be due to wrong standard parameters used for
such a long library.

insertions : as for deletions, percentage of right zygosity never reaches 100%
and for ‘pesco’ and ‘pomodoro’ libraries it decreases with the increas-
ing of sequence coverage, while for ‘casonato’ library it increases with
irregular progress. Insertion zygosity is the most difficult to compute:
as described in section 2.6.3, SV finder takes arcs covering the entire
insertion (i.e. the only breakpoint in the reference genome) and com-
pare them to a minimum number: if arcs are more than this number, it
means that a wild chromosome is present, so insertion is heterozygosis;
otherwise, both chromosome are affected by the insertion, so it is ho-
mozygosis. The problem arises with the minimum number and the arcs
to be considered: minimum number used in simulation was default one,
so it is possible that a better value could be used to improve zygosity
detection; and arcs covering insertion point are very difficult to take,
because a lot of background noise is present. Infact only arcs within
one standard deviation to the average length are considered, not within
three standard deviations, that is a more correct value (see section 1.5).

inversions : all inversions are found with correctly zygosity at 32x sequence
coverage, because there is no uncertainty about arcs; an arc has two
distinct possibility: it comes from the wild chromosome (i.e. chromo-
some without the inversion), so it aligns with right strand, or it comes
from the chromosome affected by the inversion, so it aligns with wrong
strand. Using the strand, an arc can be assigned to each type abso-
lutely without any doubt. For inversion zygosity, amount is important:
more arcs means more precision for zygosity prediction. This is the
reason for a 100% of correctly found zygosity is reached and why with

7it is important to remember that ‘short’ here means ‘short’ compared to library length:
the same deletion could be short for ‘pomodoro’ library, but long for ‘pesco’ library, for
example

CHAPTER 4. CONCLUSION 141

long library (‘pomodoro’ over ‘casonato’ over ‘pesco’ libraries) the zy-
gosity prediction is better: long library means more physical coverage,
so more arcs for the computation.

4.4 Possible Improvements

SV finder will benefit for longer reads and more arcs:

• longer reads leads to an improvement of the second step, because longer
reads means more nucleotides that match in the spliced-alignment, so
it is stronger

• more arcs leads to an improvement of the first step, because having
more arcs means less false positives and shorter structural variation
can be detected

In any case, more arcs is an improvement for all tool for structural variation
detection, while longer reads is beneficial only for SV detect.

A major improvement can be done on the the first step. As simulations
showed (section 3.1), the sensibility of the second step is a curve that try
to reach the sensibility of the first step. The reason why is obvious: in
the first step, regions affected that a structural variations are found; if that
region is really affected, splice-alignment shows that and also find the right
breakpoints. But if a structural variation is skipped in the first step, no
spliced-alignment is done. First step is a double-edge sword: it allows to do
splice-alignment in a very specific way, but on the other hand there is always
the risk to lose something.

Final sensibility cannot go above sensibility after the first step, so im-
proving the first step means improving the overall sensibility of SV finder
without adding too many false positives.

Appendix A

Acronyms

bp base pairs

DNA DeoxyNucleic Acid

GFF General Feature Format

NGS Next Generation Sequencing

RNA RiboNucleic Acid

SAM Sequence Alignment/Map

SNP Single Nucleotide Polymorphis

SV Structural Variations

142

Appendix B

Definition

arc : in a paired-end or mate-pair library, two sibling reads align at certain
places in the reference genome; if both reads have unique alignments,
there is only one arc, otherwise, in case of multiple alignment, all the
combinations must be considered and each one is an arc; an alignment
of a reads and an alignment of its sibling form an arc, ideally connecting
two far positions on the reference genome and imposing a constraint
over them, either of length or strand or both

distribution : here a frequency distribution of how many times a certain
distance is found for two sibling reads aligned; in this situation, ‘library’
and ‘distribution’ refer to the same thing and are used as synonyms

hit : an alignment of a read is a ‘hit’; thus, a read that align only one times
has one hit, while a read that align in many places has multiple hits

library : a pool of sequenced fragments produced with a certain technique
that make the name (mate-pair libraries, fragments libraries, etc.);
when the sequence fragments of a paired-end or mate-pair library are
aligned against a reference, they form a distribution of distance, where
the distance is the number of nucleotides between the alignments of
two sibling reads; in this situation, ‘library’ and ‘distribution’ refer to
the same thing and are used as synonyms

read : a single sequence produced by a NGS machine is commonly called
‘read’

143

APPENDIX B. DEFINITION 144

reference genome : the genome against which one or more sequences are
aligned

query genome : the genome from which come the sequences that, typically,
are aligned against a reference genome

run : the output of a NGS as SOLiD is commonly referred to as a ‘run’, so
a run is basically a pool di sequences

sibling reads : in a paired-end or mate-pair library, only the ends of each
DNA fragment are sequenced; these ends are two sibling reads that
must ‘place’ themselves at a certain distance, corresponding to the
length of the original fragment; often, one read is called ‘forward’ read,
and its sibling is called ‘reverse’ read

Appendix C

Simulation Tables

Field meaning:

seq cov : sequence coverage

sens s2 : sensibility after the second step

% f pos s2 : percentage of false positives after the second step

% right zyg : percentage of structural variations with right zygosity after
the second step

sens s1 : sensibility after the first step

% f pos s1 : percentage of false positives after the first step

Pesco, Deletions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 31 0 76 90 80
2x 55 0 79 91 79
4x 74 0 80 92 78
8x 85 0 82 92 79
16x 91 0 82 95 82
32x 90 1 90 94 83

145

APPENDIX C. SIMULATION TABLES 146

Pesco, Insertions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 3 65 88 91 56
2x 9 67 95 94 40
4x 33 49 84 93 28
8x 63 24 83 94 19
16x 76 11 81 94 12
32x 83 5 82 92 11

Pesco, Inversions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 50 1 73 82 72
2x 65 0 79 81 68
4x 81 2 83 85 65
8x 85 1 87 86 63
16x 84 0 92 85 63
32x 87 2 97 87 62

Pesco, Deletions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 26 0 72 86 75
2x 47 3 73 88 72
4x 66 2 76 92 70
8x 86 1 79 95 72
16x 90 1 85 93 74
32x 93 1 91 95 75

Pesco, Insertions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 5 93 88 94 84
2x 10 75 92 95 57
4x 29 47 89 95 38
8x 55 31 85 94 29
16x 81 15 84 94 18
32x 91 12 74 95 13

APPENDIX C. SIMULATION TABLES 147

Pesco, Inversions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 45 2 78 86 69
2x 68 1 81 86 62
4x 81 1 83 89 55
8x 89 1 86 91 53
16x 90 1 91 90 51
32x 88 2 97 89 51

Casonato, Deletions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 30 0 81 85 49
2x 46 0 84 83 48
4x 68 0 87 87 50
8x 83 1 87 89 48
16x 92 0 93 93 47
32x 93 1 91 94 52

Casonato, Insertions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 4 31 83 93 5
2x 11 7 76 95 1
4x 32 3 89 92 1
8x 55 4 92 95 5
16x 82 1 90 94 4
32x 91 0 90 95 11

Casonato, Inversions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 51 1 81 82 53
2x 68 1 80 82 49
4x 80 1 88 84 50
8x 81 3 95 82 47
16x 85 3 97 86 41
32x 83 3 99 83 40

APPENDIX C. SIMULATION TABLES 148

Casonato, Deletions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 30 3 75 83 40
2x 50 4 83 87 35
4x 69 3 83 87 34
8x 83 0 89 90 37
16x 90 1 90 92 41
32x 93 1 92 94 45

Casonato, Insertions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 5 43 76 94 9
2x 10 24 82 95 2
4x 34 4 83 95 0
8x 65 7 87 94 1
16x 84 0 91 95 4
32x 92 1 88 95 10

Casonato, Inversions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 48 5 81 84 44
2x 67 2 87 86 41
4x 81 3 89 86 39
8x 85 2 93 87 34
16x 88 3 98 88 33
32x 86 3 99 86 36

Pomodoro, Deletions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 28 0 75 76 34
2x 48 0 72 86 41
4x 73 0 68 89 37
8x 86 1 70 92 43
16x 92 1 65 95 44
32x 96 5 66 97 57

APPENDIX C. SIMULATION TABLES 149

Pomodoro, Insertions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 8 8 92 87 1
2x 22 14 94 85 4
4x 50 6 88 88 14
8x 71 10 83 90 22
16x 88 0 84 95 35
32x 93 2 71 95 52

Pomodoro, Inversions, Base Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 35 3 92 56 41
2x 51 4 97 61 38
4x 63 4 99 65 32
8x 60 8 100 61 42
16x 62 9 99 62 40
32x 64 6 100 64 23

Pomodoro, Deletions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 26 10 75 80 33
2x 47 4 73 87 33
4x 71 2 71 90 35
8x 84 3 70 93 38
16x 91 1 61 94 41
32x 93 8 66 96 57

Pomodoro, Insertions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 8 12 90 85 0
2x 20 14 90 86 2
4x 46 6 87 90 14
8x 75 2 89 92 15
16x 88 1 82 95 30
32x 93 6 61 96 48

APPENDIX C. SIMULATION TABLES 150

Pomodoro, Inversions, Color Space
seq cov sens s2 % f pos s2 % right zyg sens s1 % f pos s1
1x 34 8 91 59 44
2x 52 7 94 64 35
4x 54 10 98 58 36
8x 58 8 99 59 34
16x 63 6 99 63 31
32x 66 9 100 66 42

Appendix D

Real Data Tables

Number of Structural Variations Found
Chromosome N. Deletions N. Insertions N. Inversions
Chr1 240 1254 6
Chr2 270 1161 9
Chr3 169 673 2
Chr4 263 686 8
Chr5 173 645 4
Chr6 196 613 9
Chr7 198 966 10
Chr8 177 663 5
Chr9 157 989 12
Chr10 251 942 18
Chr11 147 657 20
Chr12 129 483 8
Chr13 106 356 3
Chr14 81 383 7
Chr15 77 583 3
Chr16 110 680 12
Chr17 113 478 4
Chr18 84 316 2
Chr19 98 304 9
Chr20 63 362 2

151

APPENDIX D. REAL DATA TABLES 152

Number of Structural Variations Found
Chromosome N. Deletions N. Insertions N. Inversions
Chr21 73 255 10
Chr22 71 346 2
ChrMT 0 1 0
ChrX 88 626 19
ChrY 32 152 30

Bibliography

[1] http://www.ornl.gov/sci/techresources/Human Genome/home.shtml

[2] C. Alkan, B, P. Coe, E. E. Eichler, Genome structural variation disco-
very and genotyping, Nature Review, 2011, Vol. 12

[3] Applied Biosystems, Principles of Di-Base Sequencing and the Ad-
vantages of Color Space Analysis in the SOLiDTM System from site
http://www.appliedbiosystems.com

[4] D. Campagna, A. Albiero, A. Bilardi, E. Caniato, C. Forcato, S. Man-
avski, N. Vitulo, G. Valle, PASS: a program to align short sequences,
Bioinformatics, 2009, Vol. 25

[5] F. Hormozdiari,C. Alkan, E. E. Eichler and S. C. Sahinalp, Combina-
torial algorithms for structural variation detection in high-throughput
sequenced genomes, Genome Research, 2009, Vol. 19

[6] D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J.
Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R.
Bignell, et al, Accurate whole human genome sequencing using reversible
terminator chemistry, Nature, 2008, Vol. 456

[7] A. R Quinlan, R. A. Clark, S. Sokolova, M. L. Leibowitz, Y. Zhang, M.
E. Hurles, J. C. Mell, I. M. Hall, Genome-wide mapping and assembly of
structural variant breakpoints in the mouse genome, Genome Research,
2010, Vol. 20

[8] S. Lee, F. Hormozdiari, C. Alkan, M. Brudno, MoDIL: detecting small
indels from clone-end sequencing with mixtures of distributions, Nature
Methods, 2009, Vol. 6

153

BIBLIOGRAPHY 154

[9] J. O. Korbel, A. Abyzov, X. J. Mu, N. Carriero, P. Cayting, Z. Zhang,
M. Snyder, M. B. Gerstein, PEMer: a computational framework with
simulation based error models for inferring genomic structural variants
from massive paired-end sequencing data, Genome Biology, 2009, Vol.
10

[10] B. Zeitouni, V. Boeva, I. Janoueix-Lerosey, S. Loeillet, P. Legoix-né,
A. Nicolas, O. Delattre, E. Barillot, SVDetect: a tool to identify ge-
nomic structural variations from paired-end and mate-pair sequencing
data, Bioinformatics, 2010, Vol. 26

[11] F. Sanger, S. Nicklen, A. R. Coulson, Dna sequencing with chain-
terminating inhibitors, Biotechnology, 1977, Vol 24

[12] P. Medvedev, M. Stanciu, M. Brudno, Computational methods for dis-
covering structural variation with next-generation sequencing, Nature
Methods Supplement, 2009, Vol. 6

[13] L. Feuk, A. R. Carson, S. W. Scherer, Structural variation in the human
genome, Nature Review, 2006, Vol. 7

[14] L. A Weiss, Y. Shen, J. M. Korn, D. E. Arking, D. T. Miller, R. Fossdal,
E. Saemundsen, H. Stefansson, M. A. Ferreira, T. Green, O. S. Platt, D.
M. Ruderfer, C. A. Walsh, D. Altshuler, A. Chakravarti, R. E. Tanzi,
K. Stefansson, S. L. Santangelo, J. F. Gusella, P. Sklar, B. L. Wu,
M. J. Daly, Association between Microdeletion and Microduplication at
16p11.2 and Autism, New England Journal of Medicine, 2008, Vol. 7

[15] F. Zhang, W. Gu, M. E. Hurles, J. R. Lupski1, Copy Number Variation
in Human Health, Disease and Evolution, Annual Review of Genomics
and Human Genetic, 2009, Vol. 10

[16] , J. Wang, W. Wang, R. Li, Y. Li, G. Tian, L. Goodman, W. Fan, J.
Zhang, J. Li, J. Zhang, Y. Guo, B. Feng, H. Li, Y. Lu, X. Fang, H.
Liang, Z. Du, D. Li, Y. Zhao, Y. Hu, Z. Yang, H. Zheng, I. Hellmann,
M. Inouye, J. Pool, X. Yi, J. Zhao, J. Duan, Y. Zhou, J. Qin, L. Ma, G.
Li, Z. Yang, G. Zhang, B. Yang, C. Yu, F. Liang, W. Li, S. Li, D. Li,
P. Ni, J. Ruan, Q. Li, H. Zhu, D. Liu, Z. Lu, N. Li, G. Guo, J. Zhang,
J. Ye, L. Fang, Q. Hao, Q. Chen, Y. Liang, Y. Su, A. San, C. Ping, S.
Yang, F. Chen, L. Li, K. Zhou, H. Zheng, Y. Ren, L. Yang, Y. Gao,

BIBLIOGRAPHY 155

G. Yang, Z. Li, X. Feng, K. Kristiansen, G. Ka-Shu Wong, R. Nielsen,
R. Durbin, L. Bolund, X. Zhang, S. Li, H. Yang, J. Wang, The diploid
genome sequence of an Asian individual, Nature, 2009, Vol. 6

[17] S. Levy, G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, B. P. Walenz,
N. Axelrod, J. Huang1, E. F. Kirkness, G. Denisov, Y. Lin, J. R. Mac-
Donald, A. Wing Chun Pang, M. Shago, T. B. Stockwell, A. Tsiamouri,
V. Bafna, V. Bansal, S. A. Kravitz, D. A. Busam, K. Y. Beeson, T. C.
McIntosh, K. A. Remington, J. F. Abril, J. Gill, J. Borman, Y. Rogers,
M. E. Frazier, S. W. Scherer, R. L. Strausberg, J. C. Venter, The Diploid
Genome Sequence of an Individual Human, PLOS Biology, 2007, Vol. 5

