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Centro di Ateneo di Studi ed Attività Spaziali “Giuseppe Colombo” (CISAS)
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Abstract

Satellite Formation Flying (SFF) is a key technology for several future missions, since, with respect

to a single spacecraft, it allows better performances, new capabilities, more flexibility and robustness

to failure and cost reduction. Despite these benefits, however, this new concept poses several

significant design challenges and requires new technologies. The Guidance, Navigation and Control

(GNC) system is a key element in the SFF concept since it must be reliable in coordinating all

the satellites flying in formation during each mission phase, guaranteeing formation integrity and

preventing from formation evaporation, and, at the same time, efficient in using the limited on

board resources. Model Predictive Control (MPC), also referred to as Receding Horizon Control, is

a modern optimal control technique that seems to be suitable for these purposes because of its three

main features: model-based control scheme, constraints handling ability and replanning nature.

The final aim of my Ph.D. activities was to develop and test MPC strategies for SFF applica-

tions. This task was accomplished by means of both computer simulations and experimental tests

conducted on both the MIT Synchronized Position Hold Engage & Reorient Experimental Satellites

(SPHERES) testbed and the SFF Hardware Simulator under development at the Center of Studies

and Activities for Space “Giuseppe Colombo” (CISAS), University of Padova.

MPC capabilities were first tested in computer simulations in carrying out a formation acqui-

sition maneuver for two space vehicles, taking into account two scenarios: a Leader-Follower (LF)

formation and Projected Circular Orbit (PCO) formation. The performances of the MPC-based

controller were compared with those of a Linear Quadratic Regulator (LQR) based controller in the

presence of active constraints on the maximum control acceleration, evaluating also the effects of

the gravitational harmonics J2 and J3 and atmospheric drag perturbations on the proposed maneu-

vers. Simulation results of both scenarios showed that, with similar performances in tracking the

same reference state trajectory in terms of settling time, the MPC controller is more efficient (less

∆v requirement) than the LQR controller also in the perturbed cases, allowing a ∆v requirement

reduction by 40 % in the LF formation scenario and by 30 % in the PCO formation scenario.

The next activity concerned the development of some guidance and control strategies for a

Collision-Avoidance scenario in which a free-flying chief spacecraft follows temporary off-nominal
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conditions and a controlled deputy spacecraft performs a collision avoidance maneuver. The pro-

posed strategy consists on a first Separation Guidance that, using a computationally simple, de-

terministic and closed-form algorithm, takes charge of avoiding a predicted collision. When some

safe conditions on the relative state vector (position and velocity) are met, a subsequent Nominal

Guidance takes over. Genetic Algorithms are used to compute a pair of reference state trajectories

in order to place the deputy spacecraft in a bounded safe or “parking” trajectory, while minimizing

the propellant consumption and avoiding the formation evaporation. The performances of a LQR

and a MPC in tracking these reference trajectories were compared, showing how a MPC controller

can reduces the total ∆v requirement by 5− 10 % with respect to a LQR controller.

MPC capabilities were then evaluated on the MIT SPHERES testbed in simulating the close-

proximity phase of the rendez-vous and capture maneuver for the Mars Orbital Sample Return

(MOSR) scenario. Better performances of MPC with respect to PD in executing this maneuver

were confirmed both in a Matlab simulator and in the MIT SPHERES software simulator, with a

total ∆v requirement reduction by 10− 15 %. The proposed MPC control strategy was then tested

using the SPHERES Flat Floor facility at the MIT Space System Laboratory.

The last part of my research activities was devoted to the SFF Hardware Simulator of the

University of Padova. My contributions to this project dealt with: (a) conclusion of the designing,

building and testing of the five main subsystems of the hardware simulator; (b) software develop-

ment for the hardware simulator and its Matlab software simulator; (c) preparatory experimental

activities aimed at characterizing the thrust force performed by the on board thrusters and esti-

mating the hardware simulator inertia properties; and (d) test of attitude control maneuvers with

the use of predictive controllers.

In particular, three main tests were carried out with the hardware simulator moving at one

degree of freedom about the yaw axis. The first one aimed at tuning a Kalman Filter to properly

estimate the yaw axis angular velocity using a double-integrator as dynamic model and angular

position measurements provided by the yaw quadrature encoder. With the use of a simple Kalman

Filter, the yaw angular position and velocity could be estimated with an error less than 0.1 °

and 0.1°/s, respectively. In the second test, an explicit MPC was used to perform a 170° slew

maneuver of the hardware simulator attitude module about the yaw axis. The final target angular

position was reached with an error less than 0.5° in 20 s. In the third test, a 3 degrees of freedom

attitude reference trajectory was first computed using pseudospectral optimization methods for a

repointing maneuver with active constraints on the attitude trajectory. The state trajectory was

then projected along the satellite z-Body axis and tracked in the hardware simulator using an

explicit MPC. Experimental results showed that with an explicit MPC the reference trajectories

can be tracked with an error less that 1.5° for the angular position and less than 1°/s for the angular
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velocity, both in dynamic conditions. The final target state was reached with an error less than the

estimation accuracy.

The SFF Hardware Simulator is a ground-based testbed for the development and verification of

GNC algorithms that in the present configuration allows the development and testing of advanced

controls for attitude motion and in its final form will enable the derivation of control strategies for

Formation Flight and Automated Rendezvous and Docking.
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Sommario

Il volo in formazione tra satelliti è una tecnologia fondamentale per molte missioni future, poiché,

rispetto ad un satellite singolo, permette migliori prestazioni, nuove capacità, maggiore flessibilità

e robustezza alle avarie e riduzione dei costi. Nonostante questi benefici, tuttavia, questo nuovo

concetto pone svariate sfide progettuali e richiede nuove tecnologie. Il sistema di Guida, Navigazione

e Controllo (GNC) è un elemento chiave per il volo in formazione, poiché deve essere affidabile nel

coordinare tutti i satelliti che volano in formazione durante ciascuna fase della missione, garantendo

l’integrità della formazione e prevenendo l’evaporazione della stessa, e, allo stesso tempo, efficiente

nell’utilizzo delle limitate risorse di bordo. Il Model Predictive Control (MPC), chiamato anche

Receding Horizon Control, è una moderna tecnica di controllo ottimo che sembra essere adeguata

a queste finalità per le sue tre principali caratteristiche: schema di controllo basato su modello,

abilità nel gestire i vincoli e ripianificazione.

L’obbiettivo finale delle mie attività di dottorato è stato quello di sviluppare e testare strategie

di controllo MPC per applicazioni di volo in formazione. Questo obiettivo è stato raggiunto sia me-

diante simulazioni al computer sia attraverso test sperimentali condotti e sul sistema Synchronized

Position Hold Engage & Reorient Experimental Satellites (SPHERES) del MIT e sul simulatore

hardware per volo in formazione che è in fase di sviluppo al Centro di Ateneo di Studi ed Attività

Spaziali “Giuseppe Colombo” (CISAS) dell’Università di Padova.

Le capacità del controllo MPC sono state dapprima testate mediante simulazioni al computer

nell’eseguire una manovra di acquisizione di formazione per due veicoli spaziali, prendendo in con-

siderazione due scenari: una formazione Leader-Follower (LF) e una formazione Projected Circular

Orbit (PCO). Le prestazioni del controllore MPC sono state confrontate con quelle di un controllo-

re LQR in presenza di vincoli attivi sulla massima accelerazione di controllo, valutando inoltre gli

effetti perturbativi delle armoniche gravitazionali J2 e J3 e dell’attrito atmosferico sulle manovre

proposte. I risultati delle simulazioni per entrambi gli scenari hanno mostrato che, per simili pre-

stazioni nel seguire la stessa traiettoria di stato di riferimento in termini di tempo di assestamento,

il controllore MPC è più efficiente (minor requisito di ∆v) rispetto al controllore LQR anche nei

casi con perturbazioni, permettendo una riduzione del requisito di ∆v totale del 40 % nello scenario
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LF e del 30 % in quello PCO.

L’attività successiva ha riguardato lo sviluppo di alcune strategie di guida e controllo per uno

scenario di Collision-Avoidance in cui un satellite chief non controllato segue temporaneamente

condizioni non nominali e un satellite controllato deputy esegue una manovra di anti-collisione.

La strategia proposta consiste in una prima Separation Guidance che, utilizzando un algoritmo

semplice, deterministico e in forma chiusa, ha lo scopo di evitare una collisione prevista. Quando

vengono soddisfatte alcune condizioni di sicurezza sullo stato relativo (posizione e velocità), suben-

tra una successiva Nominal Guidance. Gli Algoritmi Genetici sono usati per calcolare una coppia di

traiettorie di stato di riferimento al fine di collocare il satellite deputy in una traiettoria chiusa “di

parcheggio”, minimizzando il consumo di carburante ed evitando l’evaporazione della formazione.

Le prestazioni di un controllo LQR e di uno MPC nel seguire queste traiettorie di riferimento sono

state messe a confronto, dimostrando come un controllo MPC può ridurre il requisito totale di ∆v

del 5− 10 % rispetto ad un controllo LQR.

Le capacità del controllo MPC sono state valutate anche nel sistema SPHERES del MIT nel

simulare la fase di prossimità della manovra di rendez-vous and capture per lo scenario Mars Orbital

Sample Return (MOSR). Migliori prestazioni del controllo MPC rispetto al controllo PD nell’ese-

guire questa manovra sono state confermate sia in un simulatore Matlab che nel simulatore software

di SPHERES del MIT, con una riduzione del requisito totale di ∆v del 10 − 15%. La strategia

di controllo MPC proposta è stata poi testata nella SPHERES Flat Floor facility presso lo Space

System Laboratory del MIT.

L’ultima parte dell’attività di ricerca si è concentrata sul simulatore hardware per il volo in

formazione dell’Università di Padova. Il mio contributo a questo progetto ha riguardato: (a) la

conclusione delle fasi di progettazione, costruzione e test dei cinque principali sottosistemi del

simulatore hardware; (b) lo sviluppo di software per il simulatore hardware e del suo simulatore

software in Matlab; (c) alcune attività sperimentali preparatorie finalizzate a caratterizzare la spinta

prodotta dai razzetti di bordo e stimare le proprietà d’inerzia del simulatore hardware; e (d) il test

di manovre di controllo d’assetto con l’utilizzo del controllo predittivo.

In particolare, sono stati eseguiti tre principali test con il simulatore hardware in moto ad un

grado di libertà attorno all’asse di yaw. Il primo test è stato finalizzato al tuning di un Filtro di

Kalman per stimare in modo opportuno la velocità angolare di yaw usando un doppio integratore

come modello dinamico e misure della posizione angolare fornite dall’encoder di yaw. Utilizzando un

semplice Filtro di Kalman, è stato possibile stimare la posizione e la velocità angolare con un errore

inferiore a 0.1° e 0.1°/s, rispettivamente. Nel secondo test, è stato utilizzato un controllo MPC

esplicito per eseguire una manovra di ri-orientazione di 170° del modulo d’assetto del simulatore

hardware attorno all’asse di yaw. La posizione angolare obiettivo è stata raggiunta con un errore
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inferiore a 0.5° in 20 s. Nel terzo test, una traiettoria d’asseto di riferimento è state dapprima

calcolata utilizzando metodi di ottimizzazione pseudospectral per una manovra di ripuntamento

con vincoli attivi sulla traiettoria di stato. La traiettoria di stato è stata poi proiettata lungo l’asse

z-Body del satellite ed inseguita nel simulatore hardware utilizzando un controllo MPC esplicito.

I risultati sperimentali hanno dimostrato che con un controllo predittivo esplicito le traiettorie

di riferimento possono essere inseguite con un errore inferiore a 1.5° per la posizione angolare e

inferiore a 1°/s per la velocità angolare, entrambi in condizioni dinamiche. Lo stato finale obiettivo

è stato raggiunto con un errore inferiore all’accuratezza di stima.

Il Simulatore Meccanico per il volo in formazione costituisce un banco di prova per lo sviluppo

e la verifica in laboratorio di algoritmi di GNC; nella configurazione attuale il simulatore permette

lo sviluppo ed il test di controlli avanzati per il moto d’assetto, mentre nella sua configurazione

finale consentirà di sviluppare strategie di controllo per Formation Flight e Automated Rendezvous

and Docking.
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Chapter 1

INTRODUCTION

The foundations of satellite formation flying can be traced to George William Hill, who published

in 1878 a set of equations which characterized the motion of the Moon with respect to the Earth [1].

In the 1960s, W. Clohessy and R. Wiltshire applied Hill’s equations to the case of the rendezvous

and docking of two orbital vehicles [2], leading to the development of the Hill-Clohessy-Wiltshire

(HCW) equations of relative orbital motion. The HCW dynamics played a critical role in the Apollo

missions where, in Low Earth Orbit (LEO), the main Command and Service Module (CSM) would

disengage from the final stage of the Saturn V launch vehicle, turn around and dock with the Lunar

Excursion Module (LEM). For the first time, two space vehicles were maneuvered to adjust their

relative orbit rather than their absolute motion with respect to the Earth. The same technique is

expected to be employed with the Orion spacecraft in the Constellation program by NASA.

Research into satellite formation flying has gained in popularity during the 1990’s with the

idea that missions based on formations of multiple cooperative small satellites offer a more robust,

flexible, performing and cost-effective alternative to expensive and risky single satellite missions.

From the first artificial satellite Sputnik 1 to the International Space Station (ISS), the largest

man-made satellite in Earth orbit, requirements for spacecrafts have increased extensively and

dramatically. In order to satisfy multi-task requirements, complex large spacecrafts are designed

and manufactured with various kinds of payloads and instruments on board. Consequently, single

large satellite is common in missions such as scientific observation, weather monitoring, global

navigation and civil relay communication. At the same time, the cost of design and developing single

large satellites has become a critical problem facing space organizers and engineers, as few nations

in the words could afford to build rockets and launch satellites. Moreover, with the increasing

complexity, reliability of large spacecraft decreases and it is possible that minor mistakes lead to

the failure of the whole mission and causes a catastrophe, which was the case with space shuttle

Challenger (1986). On one hand, risk rises with increasing of the size of the spacecraft and with

1
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the overlap of orbits1; on the other hand, in mission operation large spacecraft could generate more

space debris.

To be precise, formation flying means two or more satellites whose positions and attitudes are

mutually controlled and permanently assessed, so that the distributed payload over these satellites

is equivalent to a very large dimension, single instrument in space. Formation flying relies on

sensors and actuators able to continually assess and maintain relative distances and attitudes with

very high accuracy, and a system architecture ensuring that instrument performance is achieved by

each individual satellite in the loop. Some main advantages of a satellite formation with respect to

a single spacecraft are listed below.

� Better performances. A single satellite is indeed limited by both the launchers capacity

to deliver the whole satellite mass into a proper orbit, and the launcher fairing’s available

volume. European launchers are limited to payloads of 2 - 7 tons, depending on the final

orbit, and the available volume inside their fairing are around 4 meter in diameter and 5 - 7.5

meter in height. This constrain the capabilities of telescopes, interferometers, coronographs,

etc., since they are strongly related to focal length, mirror surfaces, aperture sizes and mass.

Overcoming these mass and volume constraints, a satellite formation can has significant better

performances through proper instrument and task distribution.

� New capabilities. Several cooperating space vehicles can solve assignments which are more

difficult and expensive, or even impossible to do with a single spacecraft; e.g. the capability

of obtaining multiple simultaneous measurements along a large baseline.

� Flexibility. Reconfiguring the relative positions of the constituent satellites in situ would

permit a satellite formation to engage in multiple mission objectives.

� Robustness to failures. Using multiple cooperating satellites flying in formation, redundancy

is added to the system and the risk of total mission failure is minimized. The system would ex-

hibit gradual performance degradation as individual satellites fail and tasks are redistributed,

rather than the total mission termination due to failures on a single spacecraft. By adding

replacement satellites, the formation could be returned to full mission specifications.

� Cost reduction. Simpler and smaller satellites are cheaper to produce (series production);

furthermore, launch costs may be reduced since the spacecraft of the formation may be

distributed on more inexpensive launch vehicles.

1e.g. the collision between the Iridium Satellite LLC-operated satellite of the USA and Russian Cosmos-2251
military satellite on 11th of February 2009, at about 17:00 GMT.
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Despite the benefits, however, the formation flying concept poses several significant design chal-

lenges and requires new technologies. Some of these challenges are listed below.

� Guidance Navigation and Control system complexity. A high level of formation autonomy

results in stringent requirements on the Guidance Navigation and Control (GNC) system: it

has indeed to menage and coordinate all the satellites flying in formation during each mission

phase.

� New Sensors and Actuators. Mastering formation flying missions requires the development

of specific technologies beyond the present state-of-the-art in fields of relative sensors and

actuators. Direct sensing of relative range and bearing is essential to enable position and

attitude control of each spacecraft in formation, especially in deep-space scenarios, where the

benefit of the GPS is not available. Such relative sensors need to have an operating range

from few meters to at least few kilometers. Furthermore, precision spacecraft positioning and

formation maneuvers require the development of very precisely controllable microthrusters.

� Propellant consumption. Uncontrolled formations quickly evaporate or lose their performances

because of a number of secular differential orbital perturbations, including gravitational forces

produced by the non-spherical shape of the Earth, differential atmospheric drag, solar radi-

ation pressure, etc. To compensate for these effects, the satellites must thrust at regular

intervals, thus leading to need a more complex GNC system. The GNC system has also to

be more efficient as possible because the life of the mission is strongly dependent on the fuel

availability.

� Inter-satellite communication. Formation of spacecraft need an higher level of inter-satellite

communication, especially for a decentralized control architecture, in which the formation

control actions computation is performed jointly between all the satellites in formation.

1.1 Formation Flight Overview

Formation (i.e. spacecraft flying in formation) is a subset of a more general category of Distributed

Space System (DSS). Figure 1.1 shows a relationship among a number of common terms used rel-

ative to distributed spacecraft and formation flying, including the concept for sensor webs, which

may involve many non-space elements [3]. A Distributed Space System (DSS) consists of multiple

satellites dispersed in space forming a cooperative infrastructure for measurement, data acquisition,

processing, analysis and distribution. Each member of a DSS can make independent observations

without linking directly to companion satellites. A sensor web can be defined as a system of
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Figure 1.1: Relationship of common terms associated with formation flying [3].

intra-communicating sensor vehicles distributed spatially that may be used for environmental ob-

servations. Since sensor webs may include several non-space elements, they are not entirely covered

by a DSS. A satellite constellation is, on the other hand, a group of spacecraft operating under

shared control and reinforcing each other’s coverage by mutual coordination. They are usually sep-

arated by large distances and dispersed across various orbital planes. A cluster is an assemblage of

satellites, formations or virtual satellites sharing the same functionality; the inter-vehicle distance

in a cluster is usually smaller than that of a constellation. According to [3] formations are a special

case of constellation that involves the use of an active control scheme to maintain specified relative

position and/or attitude.

In [4] and [5], Scharf and Hadaegh define Spacecraft Formation Flying as a set of more than one

spacecraft in which any of the spacecraft dynamic states are coupled through a common control law.

This coupling can be in translational and/or rotational degrees of freedom and in position and/or

velocity. In particular:

� at least one member of the set must track a desired state relative to another member;

� the tracking control law must at the minimum depend upon the state of this other member.

The second point is critical. For example, even though specific relative positions are actively

maintained, the GPS satellites constitute a constellation since their orbit corrections only require

an individual satellite’s position and velocity (state). A constellation is actually a set of spacecraft

whose states are not dynamically coupled in any way (i.e., the change of state of one spacecraft

does not impact the state of another).
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Figure 1.2: Science vs. Engineering definition for Formation Flying [3].

Across the Formation Flying community there exists however a wide range of definitions for

formation flying and related terms, each set generally geared towards its own purpose. As suggested

in [3], the most distinct differences in definition occur between the science or instrument/sensor

community and the engineering or technology community, where for science the interest is in the

collection of data, and for engineering the concern is how to collect the data that meet specifications

for quality. Figure 1.2 portrays the relationship between the science and engineering definitions,

including where they overlap and how “precision” formation flying (PFF) and Rendezvous and

Docking fit into the picture. The engineering definition is convenient to employ for the purposes of

developing technology plans because missions in that class can have related bins of technologies (at

various performance levels), while missions that meet the science definition may have no related

technologies at all.

From and engineering perspective, formation flying satellites consists of the fuel-constrained

design of satellite formation geometry to meet science requirements, and the measurement and

control of relative vehicle states (position, velocity, attitude, etc.) implemented through inter-

spacecraft communication links to maintain that geometry.

The following four elements may be considered specific of a formation flying mission.

� Formation design: it means design the desired relative motion of the vehicles, the formation

geometry, the satellite orbit and collective guidance problem to best meet mission require-

ments without prohibitive fuel consumption.
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� Relative navigation: it is the estimation of relative position based on measurements between

spacecraft. It includes the sensors, metrology systems and algorithms needed to determine

relative position and attitude, either for science use or for feedback control. The requirements

for the relative navigation can be driven directly by science requirements (e.g. based on a

dynamic range limitation for post-processing) or indirectly by other engineering requirements,

such as formation control. For what concern sensor system, two levels of metrology are

generally needed to measure relative positions and attitude for control: a RF sensor that is

used for coarse formation deployment after launcher exit or after failure recovery, and that

allows relative position determination in a range up to 30 km, with an accuracy of a few

centimeters in distance and one degree in azimuth and elevation; lateral and longitudinal

optical sensors, based on laser and interferometry techniques, that are used to perform a fine

position determination with sub-millimeter accuracy.

� Inter-satellite communication: it is the data bus of the formation, than robustness and con-

tinuity are essential. Since formation control laws are implemented through inter-satellite

communication, critical parameters are related to communication bandwidth (data rate) and

time synchronization.

� Formation control : generally, it is in charge of the formation geometry acquisition, the for-

mation keeping and maneuvers such as collision-avoidance or formation reconfiguration. It

requires the control for relative position and attitude, guarantying formation stability and in-

tegrity. The formation control problem includes formation control architecture (coordination

scheme) selection and formation and satellite modes definition starting from mission phases,

actuators selection, sensors selection, relative navigation requirement definition, control algo-

rithm design, together with autonomy and high-level command and control.

1.2 Formation Flight Applications

The satellite formation flying concept enables several applications that would not have been possible

or that are enhanced when compared to using a single large spacecraft. Some possible applications

are listed below.

� Synthetic Aperture Radar (SAR) missions for Earth imaging and remote sensing. SAR is an

implementation of radar technology that uses many small antennas distributed among two

or several spacecrafts instead of using a single rotating antenna to sense the reflection of

electromagnetic wavefronts off the Earth. An improvement of the overall performance can be

achieved by implementing large and variable baselines between antennas.
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� Space and Earth Science missions. Formation flight enables the acquisition of simultaneous

measurements of the same scientific target using instruments located on multiple vehicles

separated by a few kilometers. Possible applications in Earth science field include gravitational

field mapping, magnetic field measurements and sampling of atmospheric data. Formation

flight can also be used in missions of fundamental physics, e.g. the gravitational waves

detection through the space-time stretch measures.

� Interferometric missions. The advantages that formation flying of spacecraft offers to this

type of missions is not so much in cost and assembly line production, but rather in increased

accuracy. In these missions interferometry will be applied in the search of extra-solar planets

and signs of life, such as ozone, in Earth-like planets. Referring to Young’s two-slit experi-

ment, the two light splitters are replaced by two or more space-based telescopes or collector

spacecrafts. The observed waves are then transferred to the combiner spacecraft, where the

waves interfere to make fringes. The accuracy is determined by the baseline, i.e. the distance

or separation between the spacecrafts. Logically with satellite formation flying it is possible

to increase the separation far more than with a structurally connected craft. The drawback

is of course the difficulty of keeping inter-spacecraft position and orientation.

� Multi-aperture telescopes. In this approach, a set of vehicles achieve improved optical perfor-

mance and better coverage of multiple targets by providing a flexible reconfigurable system.

Additionally, enhanced upgradeability is considered as a projected advantage as modules

could be changed or added and an assembly mission could be performed in space achieving

total apertures otherwise impossible to launch as a monolithic unit.

� Electromagnetic Formation Flight (EMFF) technology. EMFF is a concept developed by

the Space Systems Laboratory at MIT, also independently envisioned by Boeing (Formerly

Hughes Aerospace) and a Japanese research group at the university of Tokyo. Its principle

of operation is the force created by the interaction of magnetic fields generated by current

running through High Temperature Superconducting (HTS) coils. These electromagnetic coils

generate fields equivalent at long distance to magnetic dipoles, which can be steered in any

three dimensional direction by the combination of currents running through three orthogonal

coils.

There are several current projects which are dealing with the formation flying and coordinated

control of satellites.

� TanDEM-X [6]. TanDEM-X is a project realized by DLR, EADS Astrium GmbH and GSOC,

consisting of two satellites equipped with synthetic aperture radar (SAR). By flying in close
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Figure 1.3: LISA (left) and DARWIN (right).

and accurate formation the two spacecraft form a radar interferometer with a baseline of 1

km. This allows for much higher resolution than any earlier SAR mission, and can deliver

digital elevation models with unrivaled accuracy.

� PRISMA. The PRISMA program is a cooperative effort between Swedish National Space

Board (SNSB), Centre National d’Etudes Spatiales (CNES), German aerospace research cen-

ter (DLR) and the Danish Technical University (DTU). The project constitutes an in-orbit

test bed for Guidance, Navigation and Control (GNC) algorithms and sensors for advanced

closed-loop formation flying and rendezvous. The two PRISMA satellites were launched on

June 15, 2010 into a 600 kilometers altitude, sun-synchronous, dawn/dusk orbit, with the aim

of carrying out a series of maneuvering experiments and sensor experiments during a mission

time of 8-10 months.

� GRACE. The Gravity Recovery and Climate Experiment (GRACE) is a joint partnership

between NASA and DLR. This mission has two twin spacecraft launched in March of 2002,

flying in a leader-follower configuration in a polar orbit at 500 km above the Earth, with an

intersatellite distance that changes over time from 40 kilometers to 200 kilometers. The main

goal is to map the Earth’s gravity field by making accurate measurements of the distance

between the two satellites (10 micrometers) using GPS and a laser ranging system.

� DARWIN. DARWIN was a project proposed by ESA in 1993 as part of Cosmic Vision 2015-

2025 call for proposals, with the goal of launching a space-based telescope aiding in the search

for possible life-supporting planets (Figure 1.3). The telescope would consist of 4 spacecraft

flying in autonomous formation: one of them is placed on the center of the symmetric for-

http://www.prismasatellites.se/?id=9036
http://www.csr.utexas.edu/grace/
http://www.esa.int/science/darwin
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mation and using the nulling interferometry technique combines the light coming from the

other satellites to detect the presence of exoplanets around studied stars and their chemical

composition.

� TPF. Terrestrial Planet Finder (TPF) is a mission concept under study by NASA that would

study all aspects of planets outside our solar system. It will be composed of two observatories:

a visible-light coronograph and an formation-flying infrared interferometer. Like its European

counterpart DARWIN, the mission was postponed indefinitely in 2007.

� PROBA 3 [7]. Project for On-Board Autonomy (PROBA) 3 is the third satellite mission in

the ESA’s series of PROBA low-cost satellites that are being used to validate new spacecraft

technologies while also carrying scientific instruments. Currently, PROBA-3 is scheduled to be

launched in 2015-2016 and it is planned to have a lifetime of around two years. PROBA 3 will

verify the metrology, the actuation techniques and the GNC strategies for future formation

flying missions. The two satellites that compose the formation will fly in very eccentric

orbits and will be controlled only far from the perigee, where the fuel consumption is smaller.

Utilizing either cold-gas or electrical thrusters for agile maneuvering, and both radio-frequency

and optical (laser-based) metrology techniques for accurate position measurement and control,

the combined system is expected to achieve sub-millimeter relative positioning accuracy over

a separation range of 25 to 250 meters. An instrument to observe the solar corona will be

used for the ongoing design phase to complete the demonstration.

� XEUS. X-ray Evolving Universe Spectroscopy (XEUS) is an ESA proposed two-satellite X-

Ray observatory, with a detector and a mirror satellite. The mirror satellite is the leader

of the formation pointing at the area of interest, the detector tracks the focal point of the

mirror satellite. However, in 2008 the XEUS mission was merged with Constellation-X mission

(NASA) to form the International X-Ray Observatory (IXO), and the formation flying part

was canceled in favor of a large single spacecraft bus.

� LISA. Laser Interferometer Space Antenna (LISA) is a future mission issued from a collabora-

tion between NASA and ESA composed of a three satellites interferometer. The orbits of the

satellites will be similar to the Earth’s one around the Sun, but will trail behind our planet at

distances of around 50 million kilometers, equivalent to 20 degrees. Launching date is about

2018 with a mission lifetime of 5 years. The three satellites form an equilateral triangle (5

million kilometers between satellites) facing the Sun, slanting at 60 degrees to the plane of

the Earth’s orbit and revolving with the Earth around the Sun (Figure 1.3). The main goal

of the mission is the detection of gravitational waves. They are predicted by Einstein theory

http://planetquest.jpl.nasa.gov/TPF/tpf_index.cfm
http://www.esa.int/SPECIALS/Proba/SEMXZ5ZVNUF_0.html
http://www.esa.int/science/xeus
http://lisa.esa.int/science-e/www/area/index.cfm?fareaid=27
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but they have never been directly detected in spite of very performing experiments. The tiny

size of the waves and the number of perturbations on Earth are the two factors that have

prevented their detection. Their detection would certainly open another door for the explo-

ration of the Universe. Nowadays, natural relative motion of the formation is not adapted for

the goal of the mission. For interferometer purposes, satellites should keep constant interdis-

tance and angle, but natural motion of the satellites introduces a kind of “breathing” of the

configuration all along the orbit.

� NGGM. Next-Generation Gravimetric Mission (NGGM) [8] is a formation flying mission un-

der study by Thales Alenia Space Italia (TAS-I) whose aim is monitoring of the temporal

variations of the Earth’s gravity field at high spatial resolution, up to harmonic degree 180-

240, as for GOCE but extended also to longer wavelengths, over a long period of time, greater

than 6 years, as for GRACE, and with high time resolution, weekly or better, to reduce the

level of aliasing of the high frequency phenomena found in the time series of the Earth’s

gravity field variation provided by GRACE. A resolution equal to 0.1 mm/year of the geoid

height variation rate at 200 spherical harmonic degree (corresponding to a 100 km spatial

resolution) was preliminarily identified as the mission performance needed for detecting the

finest geophysical phenomena of interest. The reference mission scenario consists on two

co-orbiting satellites flying for 6 years at a 10 km relative distance on a 325 km altitude

sun-synchronous orbit. The distance between the two satellites center of masses is subject to

a time variation due both to differential gravitational accelerations, since the spacecraft fly

over different zones of the Earth at the same time, and to other non-gravitational accelera-

tion, mainly differential aerodynamic drag (Figure 1.4). The inter-satellite distance variation

induced by the non-gravitational component is first measured by a set of accelerometers in-

stalled on each spacecraft. A satellite-to-satellite tracking technique is used to measure, with

a laser interferometry system, the total (gravitational plus non-gravitational) inter-satellite

distance variation. The two measurements are then properly subtracted to obtain the gravi-

tational component of the inter-satellite distance variation and to estimate the shape of the

geopotential that has caused it. The formation control for this mission is designed to work in

synergy with the drag-free control, necessary for providing quiet operational environment to

the accelerometers, to not interfere with the scientific measurement and to minimize the use

of the thrusters. Another control system is in charge of maintaining the fine pointing of the

interferometer laser beam from one satellite to the other one.

http://www.rheagroup.com/Next%20Generation%20Gtavity%20Mission%20Paper.pdf
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Figure 1.4: Next Generation Gravimetric Mission [8].

1.3 Thesis Outline

In the last five years, a team of Ph.D. students, Master Degree students and some CISAS researchers

leaded by prof. Enrico Lorenzini of the Department of Industrial Engineering (DII) at the University

of Padova has been and some of them are currently involved in the following research activities

concerning SFF:

1. designing, building and testing of a SFF hardware simulator that allows to conduce on ground

experimental research on both formation flight and rendez-vous and docking;

2. software development for the SFF hardware simulator, including both the on board software

and the control station software and a Matlab software simulator;

3. planning of collision-avoidance and modern optimal control strategies for SFF;

4. test of formation control strategies with the SFF hardware simulator;

5. development of highly accurate and fast propagators for predicting spacecraft relative motion.

With my Ph.D. research activities I gave a contribution mainly to the first four points as described

in the following.

As clearly stated in the previous sections, SFF is a key technology for several future missions.

It is strongly based on a GNC system that must be: (a) reliable in coordinating all the s/c flying

in formation during each mission phase, guaranteeing formation integrity and preventing from

formation evaporation; and at the same time (b) efficient in using the on board resources. Model

Predictive Control (MPC) is a modern optimal control technique that appears suitable to face these

challenges thank to its three main features.

1. Model-based. An explicit model of the system to be controlled is used to predict the system

future behavior over a finite prediction horizon as a function of a control sequence.
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2. Constraints handling. Constraints on both the dynamic system output variables and the

control variables are inherently taken into account within the optimal control problem.

3. Re-planning nature. An optimal control sequence that minimizes a certain cost function

for the system over the prediction horizon is computed on-line for the current state of the

system and at each control step.

Chapter 2 begins with a description of the most commonly used mathematical models that

describe the SFF relative dynamics. It is indeed essential to understand the dynamics of s/c flying

in formation in order to properly design formation flight Guidance, Navigation and Control (GNC)

systems. After an analysis of some formation configurations used in many proposed missions,

Chapter 1 concludes with a description of GNC systems for SFF.

In Chapter 3 we present three types of control strategies that can be used in SFF: Proportional-

Integral-Derivative (PID), Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC).

For each control type, the basic algorithms and the tuning of those parameters that determine the

control performances in tracking a reference trajectory and the fuel consumption are analyzed and

discussed. A great emphasis has been dedicated to MPC describing in detail the problem formula-

tion and the control action computing algorithm both for an on-line and an explicit solution.

In order to simulate the SFF dynamics and test control strategies, a Matlab SFF software

simulator has been developed and in Chapter 4 we describe its main features. The Matlab SFF

simulator was used in Chapter 5 to study the MPC application to a formation acquisition maneu-

ver for two space vehicles, taking into account two scenarios: a Leader-Follower (LF) formation

and Projected Circular Orbit (PCO) formation. The performances of a MPC-based controller are

compared with those of a LQR-based controller in carrying out the same maneuver in the pres-

ence of active constraints on the maximum control acceleration, evaluating also the effects of the

gravitational harmonics J2 and J3 and atmospheric drag perturbations on the proposed maneuvers.

In Chapter 6 we propose some guidance and control strategies for a Collision-Avoidance scenario

with a pair of s/c flying in formation. In this scenario, a free-flying chief spacecraft follows temporary

off-nominal conditions and a controlled deputy spacecraft performs collision avoidance maneuvers.

In particular, the Collision-Avoidance strategy consists in a Separation Guidance and a Nominal

Guidance. The Separation Guidance is in charge of the avoidance of a predicted collision soon

to occur, and it is based on a computationally simple, deterministic and closed-form algorithm,

so that a valid solution is always available without delay. The Nominal Guidance uses Genetic

Algorithms and it takes charge of placing the deputy spacecraft in a bounded safe or “parking”

trajectory, while minimizing the propellant consumption and avoiding the formation evaporation.

The output of the Nominal Guidance is a pair of reference position and velocity trajectories. In
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the second part of the chapter, the performances of a LQR and a MPC are compared in tracking

these reference trajectories.

Chapter 7 deals with testing the MPC capabilities on the MIT SPHERES testbed in simulating

the close-proximity phase of the rendez-vous and capture maneuver for the Mars Orbital Sample

Return (MOSR) scenario. In this scenario, a small Orbiting Sample (OS) satellite with some

geological samples on board rendezvous with an Earth Return Vehicle (ERV) in Martian orbit. Since

the OS will most likely be passive during this maneuver, the ERV must determine the OS location

in Martian orbit using a single visual-band camera, and maneuver itself to capture the OS keeping

it within the camera field of view. After a description of the MPC formulation for this scenario,

we provide a comparison between a predictive controller and a PD controller in performing this

maneuver in two simulation environments: a Matlab simulator with non representative SPHERES

properties and no sensors/actuators noises, and the MIT SPHERES simulator, which is a more

representative environment than the previous one. This chapter ends with the evaluation of MPC

performances in the SPHERES Flat Floor facility at the MIT Space System Laboratory.

Chapter 8 is devoted to the SFF hardware simulator that we are developing at the University

of Padova. The first part of the chapter illustrates the hardware simulator main features providing

a synthetic description of its 5 main subsystems. After that, we describe some preparatory experi-

mental activities aimed at: (a) determining the hardware simulator on board thrusters force; and

(b) estimating the hardware simulator moment of inertia about its z-Body axis. The characteriza-

tion of the torsional system used for both experimental activities is also provided. The final part

of this chapter shows some experimental results on 1 DOF attitude maneuvers performed with the

use of MPC. The chapter concludes with some ideas concerning future activities and perspectives

on the SFF hardware simulator.
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Chapter 2

SPACECRAFT FORMATION

FLYING

2.1 Relative Motion Models

The analysis of spacecraft relative motion and the development of models that accurately describe

it constitute an issue of increasing interest due to existing and planned spacecraft formation flying

and orbital rendezvous missions. Relative motion models are very useful in the following areas:

� comprehension of the relative motion between satellites flying in formation;

� design of several formation geometries and analysis of their performances in relation to a

specific application, e.g. SAR, interferometry, etc. (see Chapter 1);

� analysis of the perturbative effects such as J2, atmospheric drag or third-body;

� selection of initial conditions that reduce undesired effects, e.g. secular drift that cause

formation evaporation or formation geometry alteration;

� design of the GNC system: reference trajectories generation or mode transition (Guidance);

optimal relative position and/or attitude estimation (Navigation); and optimal control law

synthesis such as Linear Quadratic Control or Model Predictive Control (see Chapter 3).

Satellite relative motion models can be classified according to the following two criteria:

1. linearity – non linearity, time invariance – time variance;

2. coordinate type used, such as Cartesian coordinate or orbital element difference.

A classification based on the former criteria is more useful in GNC system design, since this criteria

is based on a control system perspective; the last criteria is mainly used in astrodynamical field to

15
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analyze the effects of perturbations on the relative motion and to find proper initial conditions to

reduce their effects.

From a linearity – non linearity, time invariance – time variance point of view, relative motion

models can be divided in:

1. Linear Time-Invariant (LTI) models;

2. Linear Time-Varying (LTV) models;

3. Non-Linear (NL) models.

In the following subsections, each relative motion model type is briefly introduced, followed by a

short description of those models that are used to obtain numerical results presented in the next

chapters.

2.1.1 Linear Time-Invariant models

Linear Time-Invariant models are the most simple satellite relative motion models. In the early

60’s Clohessy and Wiltshire first published their celebrated work that utilized a Hill-like rotating

Cartesian coordinate system to derive expressions for the relative motion between satellites in the

context of a rendezvous problem [2]. The Hill-Clohessy-Wiltshire (HCW) model is based on the

assumptions that the orbit of the target spacecraft is circular (eccentricity e ≈ 0), that the distance

between the target and the chaser is small compared with the radius of the target’s orbit and with

no perturbations. HCW model can also be expressed in cylindrical coordinate, providing better

accuracy for larger in-track separations, or in terms of differential orbital elements1 [9]. HCW model

has been modified to take into account the averaged effects of perturbations such as J2 (Earth’s

oblateness) [10] and/or differential atmospheric drag [11].

The HCW model describe the relative motion of a deputy satellite with respect to a chief

satellite in the Hill’s Local-Vertical Local-Horizontal (LVLH) rotating Cartesian coordinate system

O with origin at at the osculating Chief satellite position and orientation given by the vector triad

{ôr, ôθ, ôh}, as shown in Figure 2.1: ôr is in the orbit radius direction, ôh is parallel to the orbit

momentum vector in the orbit normal direction and ôθ completes the right-handed coordinate

system. In this reference frame, the Deputy has a relative position ρ = [x, y, z ]T and a relative

velocity ρ̇ = [ ẋ, ẏ, ż ]T = [u, v, w ]T .

1The equinoctial orbit elements may be used instead of the classical set of elements to avoid singularities in the
equations of motion at zero inclination and eccentricity.
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Figure 2.1: Hill’s LVLH reference frame [12].

The Hill’s differential equations in Cartesian coordinates and in the non homogeneous form can

be written as follow [13] [12]:





ẍ− 3n2 x− 2n ẏ = fx

ÿ + 2n ẋ = fy

z̈ + n2z = fz

(2.1)

Hill’s equations are a set of coupled second order differential equations with constant coefficient.

Note also the types of acceleration in these equations: in the x equation, from left to right, they

are total, centripetal and Coriolis acceleration. fx, fy and fz denote the components of other

accelerations, i.e. accelerations due to the propulsion system or accelerations due to perturbations,

expressed in the Hill’s frame. One interesting property is that, although the equations describing

the in-plane motion are coupled, the out-of-plane motion is uncoupled. The velocity dependent

terms 2n ẋ and 2n ẏ represent a damping term in the system that is non-dissipative: it is present

only because the motion is described in a rotating coordinate frame.

The HCW equations can be obtained solving the Hill’s differential unforced equations through

a standard Laplace transformation, form example:
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x(t) =
(

4x0 + 2
v0

n

)
+
u0

n
sin nt−

(
3x0 + 2

v0

n

)
cos nt (2.2)

y(t) =
(
y0 − 2

u0

n

)
+
(

6x0 + 4
v0

n

)
sin nt+ 2

u0

n
cos nt− (6n t+ 3 v0) t (2.3)

z(t) = z0 cos nt+
w0

n
sin nt (2.4)

u(t) =u0 cos nt+ (3nx0 + 2 v0) sin nt (2.5)

v(t) = (6nx0 + 4 v0) cos nt− 2u0 sin nt− (6n t+ 3 v0) (2.6)

w(t) =− z0 n sin nt+ w0 cos nt (2.7)

Although the deputy doesn’t actually “orbit” the chief satellite, the instantaneous motion is some-

what elliptical [14]. The term multiplied by time in the y equation, i.e. (6n t + v0) t, represents

the drift of the deputy with respect to the chief and it is the reason the deputy’s path is not truly

elliptical, due mainly to small differences in the semi-major axis of the two spacecrafts. The first

terms in the x and y equations, i.e. 4x0 + 2 v0
n and y0 − 2 u0

n respectively, represent the initial

displacement of the deputy average position from the chief.

In state space form, the Hill’s differential equations assume the form:

ẋ(t) = A x(t) (2.8)

where x = [x, y, z, ẋ, ẏ, ż ]T is the state vector and A is the state matrix given by:

A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0




(2.9)

The HCW model in state space form can be written as:

x(t) = Φ(t− t0) x(t0) (2.10)

where Φ is the State Transition Matrix (STM):
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Φ(∆t) = eA∆t =




4− 3c 0 0
s

n
2

1− c
n

0

6 (s− n∆t) 1 0 2
c− 1

n
4
s

n
− 3∆t 0

0 0 c 0 0
s

n

3n s 0 0 c 2 s 0

6n (c− 1) 0 0 −2 s 4 c− 3 0

0 0 −n s 0 0 c




=




Φrr Φrv

Φvr Φvv


 (2.11)

with ∆t = t− t0, c = cos(n∆t) and s = sin(n∆t).

If the relative orbit initial conditions satisfy the constraint:

ẏ0 + 2nx0 = 0 (2.12)

then a bounded relative motion to first order, i.e. only for the HCW model, will occur. Assuming

this constraint is satisfied, then the HCW equations can be rewritten as follow:

x(t) =ρx sin (nt+ ϕxy) (2.13)

y(t) =ρy cos (nt+ ϕxy) + ∆y (2.14)

z(t) =ρz sin (nt+ ϕz) (2.15)

with ρx = ρy/2. Parameters ρy, ∆y, ρz, ϕxy and ϕz are determined through the relative orbit

initial conditions:

ρx =

√
x2

0 +
ẋ2

0

n2
(2.16)

∆y =y0 − 2
ẋ0

n
(2.17)

ρz =

√
z2

0 +
ż2

0

n2
(2.18)

ϕxy = arctan

(
nx0

ẋ0

)
(2.19)

ϕz = arctan

(
n z0

ż0

)
(2.20)

An example of a first order bounded relative motion is shown in Figure 2.2.
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Figure 2.2: First order bounded relative motion obtained with ρx = 100m, ρy = 200m, ∆y = 0m,
ϕxy = π/2, ρz = 80m and ϕz = π/4. The Hill’s reference frame is shown in black with xH radial,
yH along-track and zH cross-track.
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The HCW model can be written in terms of differential orbital elements as follow [9]:

x(f) =δa− a δe cos f (2.21)

y(f) =a (δω + δM + δΩ cos i) + 2 a δe sin f (2.22)

z(f) =a
√
δi2 + δΩ2 sin2i cos (θ − θz) (2.23)

where a is the semi-major axis, f is the true anomaly, ω is the argument of perigee, θ = ω + f is

the true latitude angle, e is the eccentricity, i is the orbit inclination angle, Ω is the argument of

the ascending node and θz is a phase angle which is function of the relative initial conditions.

2.1.2 Linear Time-Varying models

For non-circular orbits, several LTV models are available and differ according to linearization

assumptions, how J2 is considered, and the coordinate frame used. The most used ones are listed

in the follow.

Lawden or Tschauner-Hempel model

Lawden [15] and Tschauner and Hempel [16] independently developed a set of linearized equations

describing spacecraft relative dynamics in elliptical orbits. These equations are similar to the

HCW equations, in that the linearization assumes that the distance between the target and the

chaser is small compared with the radius of the target’s orbit, but the solution is a function of the

true anomaly, which itself is a function of time (Euler’s equation), given an eccentric chief orbit.

Lawden’s equations has been adjusted to prevent singularities at e = 0 in [17]. This model can be

expressed in Cartesian or curvilinear coordinates and can be modified to include J2 effects [18].

Yamanaka-Ankersen State Transition Matrix

State Transition Matrices provide a very useful tool for mission planning purposes, since they allow

for the determination of the state at a time t1 given the state at time t0. The work by Yamanaka

and Ankersen [19] provided a simple State Transition Matrix (STM) that functions well in arbitrary

elliptical orbits 0 ≤ e < 1. The relative motion is expressed in a Cartesian frame, and because the

STM is derived from the solution of the unforced linearized relative dynamics, the inclusion of J2

is not permitted.
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Melton State Transition Matrix

Melton [20] developed a time-dependent solution for an elliptical reference orbit by generating a

STM which is expanded in powers of eccentricity. The solution includes separate matrix elements

for first- and second-order terms in eccentricity and for both Cartesian and cylindrical coordinates.

Melton also shows that the solution is accurate for practical purposes with eccentricity in the range

0 – 0.3.

Gim-Alfriend State Transition Matrix

Gim and Alfriend [21] obtained a complex STM for the linearized equations of motion of the

deputy in an elliptical orbit that included the first-order absolute and differential J2 effects. In

particular, this STM was obtained using a linearized geometric mapping between relative curvilinear

coordinates and differences in a non singular set of orbital elements (geometric method). A less

complex version for low eccentricity is discussed in [22].

Gauss’s Variational Equations

Models based on Gauss’s Variational Equations [23] (GVEs) use Gauss’s expressions to relate an

acceleration vector expressed in a local frame (radial, along-track and cross-track directions) to

changes in classical orbital elements. Linear models can be obtained by linearizing differences in

these elements between a deputy and a reference satellite. GVEs are convenient for specifying and

controlling widely separated formations because they are linearized about orbital elements, which

are expressed in a curvilinear frame in which large rectilinear distances can be captured by small

element perturbations. In addition, the GVEs provide a computationally simple way (no frame

rotations are required) to obtain linearized dynamics about the orbits of each spacecraft in the

formation. This bypasses the linearization error created by representing the entire formation in a

single rectilinear frame. Breger and How [24] showed how the Gim-Alfriend approach can be used

with GVEs to include the effects of J2.

2.1.3 Non-Linear models

Vaddi, Vadali and Alfriend [25] have extended the HCW equations to include nonlinear terms and

eccentricity. Richardson and Mitchell [26] follow a Lagrangian approach to develop the nonlinear

Hill’s equations and show that the effect of a spherical primary mass (Earth) can be interpreted

as a third body perturbation in the relative motion frame. They expanded the relative motion

equations through third-order in the local Hill’s coordinates and they also developed an accurate

successive approximations solution to describe nonlinear periodic motions.
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2.2 Formation Geometries and Configurations

This section describes the geometry of a bounded relative motion obtained if the 1st order condition

expressed in Equation 2.12 is satisfied. Equations 2.13 - 2.15 constitute a parametric representation

of an elliptic cylinder. The in-plane motion is a 1:2 ellipse with semi-minor axis ρx in the radial

direction, semi-major axis ρy = 2 ρx in the along-track direction and constant eccentricity of
√

3/2.

The center of motion is located in the along-track direction with an offset of ∆y from the origin.

The out-of-plane motion is an oscillation with semiamplitude ρz. ϕxy and ϕz are the initial phase

angles for the in-plane and out-of-plane motions, respectively.

Different formation geometries can be obtained through a proper selection of parameters ρx,

∆y, ρz, ϕxy and ϕz, as summarized in Table 2.1. In particular, in PCO formations (see Figure

2.3), the projection of the relative motion on the along-track / cross-track plane is a circle; in

other words, the deputy satellite appears to be orbiting the chief satellite describing a circle as

viewed from the Earth. Also, a PCO formation lies on one of the two possible planes inclined by

±63.4° = ±atan(2) with respect to the radial / along-track plane. In GCO formations (see Figure

2.3), the relative motion is a 3D circle, i.e. the distance between the deputy and the chief satellites

is constant. GCO formations lie on two possible planes forming an angle of ±60° = ±atan(3) with

the radial / along-track plane.

The projection of the relative motion in the x-z plane is, in general, a rotated ellipse whose

semi-major axis a and semi-minor axis b are:

a =

√
ρ2
x + ρ2

z +
√
ρ4
x + ρ4

z + 2 ρ2
x ρ

2
z cos 2α

2
(2.24)

b =

√
ρ2
x + ρ2

z −
√
ρ4
x + ρ4

z + 2 ρ2
x ρ

2
z cos 2α

2
(2.25)

where α = ϕxy − ϕz.

The study of satellite formation configurations is another important research area in satellite

formation flying with several interesting results and applications. Using the HCW model, both

in cartesian coordinate and in orbital elements difference formulation, the following five formation

configurations can be obtained: In-line, Pendulum, Cartwheel, Car-Pe and LISA-like.
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Table 2.1: Formation geometries as a function of parameters ρx, ∆y, ρz, ϕxy and ϕz.

projection plane parameters selection formation geometry

x - z

/ rotated ellipse

ϕz = ϕxy + (π2 + k π) ellipse

ϕz = ϕxy + (π2 + k π); ρz = ρx circle

ϕz = ϕxy line

y - z

/ rotated ellipse

ϕz = ϕxy ellipse

ϕz = ϕxy; ρz = 2 ρx circle (PCO)

ϕz = ϕxy + (π2 + k π) line

/ ϕz = ϕxy; ρz =
√

3 ρx 3D circle with radius 2 ρx (GCO)
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Figure 2.3: PCO formation (left) with ρx = 50m, ρy = 100m, ∆y = 0m, ρz = 100m and
ϕxy = ϕz = 0; GCO formation (right) with ρx = 50m, ρy = 100m, ∆y = 0m, ρz = 50 ·

√
3m and

ϕxy = ϕz = 0.

In-line

In the In-line formation, also referred to as Leader-Follower formation, two or more spacecraft

follow the same orbit and are separated in the along-track direction. All the satellites have the

same orbital elements except for the true anomaly, whose difference determines the along-track

separation between them.
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Pendulum

The cross-track Pendulum configuration consists of two or more spacecraft in circular orbits with dif-

ferent RAAN and optionally2 inclination to produce a stable cross-track “swinging” motion between

the satellites, resulting in a cross-track baseline3 that varies between near-zero and a maximum (de-

sired) value. The along-track baseline remains nearly constant at a predetermined distance, and

the vertical baseline is near-zero. Also, the along-track position of each satellite relative to the

others can be adjusted independently of the cross-track motion.

Cartwheel

In the radial–along-track Cartwheel formation, all satellites follow the same relative orbit, which

ideally is a 2 : 1 ellipse in the radial–along-track plane with semi-major axis 2 a e and semi-minor

axis a e. Like the wheel of a cart, the satellites move around a reference point that follows a

circular orbit with radius a and coplanar with the formation. To obtain a Cartwheel formation, all

the satellites must have the same inclination i and RAAN Ω, which means coplanar orbital planes,

and the same semi-major axis a and eccentricity e, which means same mean motion and relative

ellipse dimensions. Design parameters are therefore the orbital radius a, which also defines the

formation altitude, the eccentricity e, which defines the relative ellipse dimensions, and the number

of satellites N flying in formation.

A more general type of Cartwheel formation presents all the satellites following the same relative

orbit that lays on a general-orientated plane. In this kind of Cartwheel, the baselines in the radial,

along-track and cross-track directions are coupled and, unlike in the Pendulum configuration, they

can not be independently adjusted.

Car-Pe

The Car-Pe configuration consists of two or more satellites in a Pendulum configuration, combined

with one or more satellites in a Cartwheel formation. The Car-Pe configuration combines the ad-

vantages of both the Pendulum and Cartwheel configurations, including the decoupled baselines of

the Pendulum configuration and the baseline envelopes of the Cartwheel. The along-track baseline

of the Pendulum satellites can be adjusted for a minimum along-track baseline, and the larger

along-track baseline of the Cartwheel satellite(s) can be used if a longer along-track baseline is

desired.

2Differential inclinations used to contribute to the cross-track motion cause secular drifts of the ascending nodes
of the orbits.

3The baseline is the distance between each pair of satellites flying in formation. This is an important parameter
for applications such as SAR.
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LISA-like

This kind of formation geometry takes its name from the Laser Interferometer Space Antenna

(LISA) mission. Three satellites are placed at the vertices of an equilateral triangle and, in the

absence of perturbations, the separation between them remains constant. Also, the relative orbit

plane forms an angle of 60° with respect to the absolute orbital plane of the formation center of

mass.

The previous formation configurations were selected for several space applications, such as

interferometric Synthetic Aperture Radar (SAR) or Earth gravity field recovery.

In [27, 28], Massonnet proposed a Cartwheel formation for SAR applications. In the proposed

scenario, a conventional radar s/c transmits radar pulses toward the Earth surface. Radar signals,

after reflection off the ground, are acquired quasi-simultaneously by a set of several (typically three)

receive-only s/c flying in a Cartwheel configuration. The Cartwheel formation flies at a distance

(typically several kilometers) from the radar s/c in an In-line configuration. Advantages that this

kind of formation geometry offers include vertical and horizontal baseline geometric stability (less

of 8% variation during the orbit) and the possibility to systematically produce both cross-track and

along-track interferometric data.

In [29], Krieger et al. analyzed the interferometric performances of Cartwheel, cross-track Pen-

dulum and Car-Pe configurations in realizing a low-cost system for high-quality along-track and

cross-track SAR interferometry. Moccia and Fasano [30] investigated potential formation config-

urations for the Italian COSMO-BISSAT formation, describing achievable baseline components,

percentage of the orbit adequate for interferometry, and covered latitude intervals.

In gradiometry from satellite formations [31], the gravity field recovery is based on the ob-

servation of ranges ρ and range rates ρ̇ between couples of satellites obtained by means of laser

interferometry based technology. From ρ and ρ̇, it is possible first to calculate both the scalar range

acceleration ρ̈ by numerical differentiation and the vectorial acceleration difference ρ̈ by Newton’s

equations, and then to obtain the gravity gradient in the base-line direction. With sufficiently

many satellites linked together in a strategic way, one can even achieve full-tensor gravity gradiom-

etry. For example, it is possible to determine the three instantaneous in-plane components of the

gravity gradient tensor with two possible coplanar satellite configurations: a Cartwheel of three

satellites measuring in a triangle, or a Cartwheel of six satellites measuring along the spokes of

the wheel. Gradiometry of out-of-plane components can only be achieved through non-coplanar

satellite configurations in which six instantaneous intersatellite distances have to be measured.

In [32], Wiese et al. compare the performances of four candidate mission architectures in

recovering the gravity field: a traditional two-satellite In-line formation, a four-satellite In-line con-
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figuration using two collinear satellite pairs, a two-satellite Cartwheel formation and a four-satellite

Cartwheel formation. The authors showed that, with respect to an In-line formation, a Cartwheel

formation adds radial information to the observable in addition to the along-track information,

resulting in lower uncertainties in the estimation of the geopotential coefficients, with a reduced

longitudinal striping which is seen in the GRACE In-line mission, and a more isotropic error spec-

trum. The Cartwheel architecture is however more demanding in terms of mission implementation,

since station-keeping maneuvers are needed to avoid the formation evaporation mainly caused by

constantly changing drag coefficients between the satellites.

The gravity recovery capability of four formation flying configurations was also studied by Sharifi

et al. in [33].

2.3 Guidance Navigation and Control

Guidance, Navigation and Control (GNC) represent the three different logical steps, good for

every aerospace mission concepts, both for single vehicle or multiple agent systems. Navigation

refers to the determination, at a given time and in an ad-hoc reference system, of the kinematic

state of the vehicle(s), given by position and velocity, and often including attitude information.

Guidance refers to the determination of the desired trajectory from the vehicle’s current location

to a designated target, as well as desired changes in velocity, rotation and acceleration for following

that path. Trajectory selection is performed before the mission begins or during the flight (real

time), acknowledging and handling different environmental conditions, system status and mission

scenarios. Control refers to exploit forces and/or torques to track guidance commands, aiming

to have the current state, given by navigation function, (almost) equal to the desired one, while

maintaining vehicle stability.

Guidance is the brain of the loop and it should be performed taking into account the limits

of the system, but (ideally) following a receipt which could not vary depending on the state, but

just timely re-evaluated with state information. Hardware constraints for Guidance are related to

the computing capability of the on board computer. Navigation and Control interact with the real

world, and therefore need some agents to exploit such an interaction, i.e. sensors for navigation

and actuators for control. Constraints due to the hardware limitations clearly appear.

The GNC Loop is presented in Figure 2.4. It is possible to identify two types of GNC systems:

Open Loop and Close Loop systems. In Open Loop systems, Guidance is a priori defined and

does not change, Control follows a time schedule and exploit previously computed maneuvers,

and Navigation is intended only to make aware of the system status. It has been used even for

sophisticated aerospace system, but it is constrained by our poor knowledge of the environment
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Figure 2.4: Guidance Navigation and Control Loop.

and by our limitation in manufacturing and operating the system. For these reason, an Open Loop

system has poor performances. On the other hand, in Closed Loop systems the system behavior

is taken into account, and differences from nominal, designed evolution are considered, resulting

thus in better performances. It is quite obvious that satellite formation flying require Close Loop

systems.

2.3.1 Guidance

In [34], Scharf et al. present a comprehensive survey of the guidance aspects of spacecraft formation

flying. Formation Flying Guidance (FFG) aims at generating any reference trajectories, e.g. those

for the translational and the attitude motion, used as an input for the relative state tracking control

law of each member of the formation. Tacking into account the ambient dynamic environment in

which a satellite formation operates, the FFG literature can be divided into two main categories.

The first main category is Deep Space (DS), where relative spacecraft dynamics reduce to double

integrator form. As a consequence, any arbitrary rigid formations, e.g. those with a constant inter-

spacecraft distances, can be maintained with no or poor fuel consumption. Optimization methods,

aiming at both reducing the fuel consumption and, at the same time, guaranteeing the formation

safety, are generally used for formation reconfiguration, rotating a rigid formation and planning

u,v-coverages for Multiple Spacecraft Interferometers (MSIs).

The second main category is Planetary Orbital Environments (POE), where spacecraft are sub-

jected to significant orbital dynamics and environmental disturbances. Since tracking arbitrary

trajectories requires a continuous usage of the on board propulsion subsystem resulting in a pro-

hibitive fuel consumption, the POE literature focuses on developing periodic, thrust-free relative
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trajectories called Passive Relative Orbits (PROs). The effectiveness of a PRO, however, is depen-

dent on the fidelity of the model used for its design. For example, if the main perturbative effects

are not taken into account when designing PROs that the satellites must track for a long time

period, extra fuel is consumed to correct the model errors.

For circular orbits, the most common linear PROs are obtained from the HCW equations, as

described in Section 2.2. For non linear models, there are some similar initial condition constraints

that allow to obtain a PRO about an eccentric reference orbit. Some approaches used in nonlinear

PRO design are: numerically search of PROs either imposing an energy-matching condition, or

introducing a formation performance metric, or using purely geometrical considerations for some

SFF types. Another approach consists on first take the expansion of the formation geometry

parameters in a series of eccentricity and then select relative orbital elements to eliminate those

terms that cause the formation evaporation, i.e. first order terms.

Given a PRO, the next step is to study its robustness in the presence of disturbances, such as

electric forces due to spacecraft charges, luni-solar gravitational perturbations or atmospheric drag

for low formations. Two strategies that do yield a PRO when J2 effects are included are: (i) to

set the J2-induced secular drifts of two orbits equal and derive constraints on the orbital elements,

and (ii) to use dynamical system theory to select appropriate initial conditions. To improve the

robustness of PROs designed using linear models, the HCW equations have been modified to

include the effect of drag and J2. However, for an eccentricity of 0.005, the error induced in the

HCW equations due to ignoring eccentricity dominates the error due to ignoring J2. The primary

approach for incorporating both J2 and reference orbit eccentricity is to express the relative motion

in the local-vertical, local-horizontal frame as a function of the known solutions to the differential

mean orbital elements. Osculating solutions require an eccentricity series-based approximation.

2.3.2 Navigation

In [35], Ferguson and How analyze and compare three basic estimation architectures for large

satellite formation flying missions: Centralized, Decentralized and Hierarchic.

In the Centralized Architecture, one satellite is the master while the other satellites are slaves.

Each slave vehicle sends its local measurements to the master satellite who process them in a cen-

tralized filter (Kalman or Information filters). Depending on the fleet mission requirements, the

master may need to broadcast the estimation solutions to the slave vehicles for control and/or

science use. Communication, computational and synchronization requirements of this type of ar-

chitecture become prohibitive for large satellite fleets.

In a Decentralized Architecture the computational effort of the estimation is distributed more

uniformly across the fleet thus reducing the communication requirements. Decentralized estimation
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architectures can be divided into two classes: Full-Order and Reduced-Order filters. In a Full-Order

Decentralized Architecture, each vehicle estimates the entire fleet state, either using measurements

from every other vehicle in the fleet (Decentralized Information Filter), or using the locally available

measurements (Iterative Cascade Filter based on a standard Kalman Filter). The former solution

require high communication and computational efforts, while the last one is sub-optimal and don’t

provide a good balance between estimation accuracy and computational effort. In a Reduced-Order

Decentralized Architecture (Cascade Filter or Schmidt-Kalman Filter), each vehicle estimates only

its local state thereby substantially reducing the computational demands on each vehicle at the

cost of sub-optimality and increased synchronization requirements.

The Hierarchic Architecture performs the detailed estimation for smaller groups of vehicles

inside the same formation and then assimilates partial results at a higher level. In a two layers

architecture, for instance, the fleet is divided into smaller clusters that perform their ranging and

navigation independently with the exception of one master vehicle in each cluster. To link the

estimates of each cluster to one another, each cluster master joins together to form a “super-

cluster”. Such a type of architecture does not need to have a high degree of synchronization between

clusters and super-clusters. Cluster sizing and selection could be done based on several different

criteria, including geographic separation, common GPS visibility or even existing communication

connectivity from science experiments. The type of filter for the cluster estimators is chosen based

on the cluster sizes, available communication bandwidth, CPU loading and required accuracy.

A viable relative estimation approach for large fleet future missions using augmented measure-

ments would be comprised of reduced-order estimators implemented within a hierarchic architec-

ture.

A commonly-used, highly accurate sensor for formation relative state estimation in LEO is

the Global Positioning System (GPS). Recent works on Carrier-Phase Differential GPS for these

applications [36] demonstrated 2 cm accuracy in relative position and better than 0.5 mm/s in

relative velocity.

2.3.3 Control

Many different control strategies, schemes and applications of multiple vehicle control can be found

in literature. While the applications are different, e.g. multiple robots, unmanned air vehicles,

unmanned underwater vehicles and spacecrafts, the fundamental approaches for formation control

are similar being the objective the coordination of multiple vehicles. As mentioned in Section 1.1, at

least one spacecraft of the formation must track a desired state profile relative to another spacecraft

and the associated tracking control law must at the minimum depend upon the state of this other

spacecraft. A control law satisfying the last condition is called a formation tracking control law.
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Based on the above definition of FF, Scharf et al. [37] present a comprehensive survey of the

spacecraft Formation Flying Control (FFC) literature. Specifically, FFC refers to design techniques

and associated stability results for formation tracking control laws. In [38], Lawton et al. overview

the FFC literature up to 2000 and define three main FFC architectures. In [37], Scharf et al.

examine these architectures in more detail and added two new architectures, including the prolific

research of the last few years and emphasize theoretical developments.

2.3.3.1 Control Architectures for Satellite Formation Flying

The primary distinction in the FFC literature is the type of FFC architecture used. A formation

control architecture can be in general defined as a coordination scheme. In [4], Scharf et al. describe

five basic formation architectures, briefly described in the following.

Leader/Follower Architecture. In the Leader/Follower (L/F) architectureone satellite is de-

signed as leader tracking a predefined trajectory while the other satellites are designated as followers

following transformed versions of the states of their nearest neighbors according to formation ge-

ometry. This kind of architecture has also been referred to as Chief/Deputy, Master/Slave and

Target/Chase4. The L/F has therefore a hierarchical organization in which only the leader vehicle

knows the formation shape and goal.

The implementation of the L/F architecture is very simple, since individual spacecraft con-

trollers reduces to tracking problems. However, there is no explicit feedback from the followers to

the leader and the leader is a single point failure.

Multiple-Input, Multiple-Output Architecture. The formation is treated as a single multiple-

input, multiple-output plant and all the methods of modem control may be applied to formation

control; e.g. LQR controller, Directed Graphs and, more recently, nonlinear and constrained Model

Predictive Control (MPC) strategies.

The primary advantages of the MIMO architecture are optimality and stability. However, the

main disadvantages of this type of architecture are due to its high information requirement, since

the entire state is used, and its poor robustness to local failure, since a local failure can have a

global effect.

Cyclic. A formation controller in the Cyclic architecture is formed by connecting individual

spacecraft controllers in a non-hierarchical architecture resulting in a cyclic control dependency

directed graph.

4From the traditional terminology from two-spacecraft rendezvous.
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The cyclic architecture basically lays between the L/F and the MIMO architectures and can

perform better that L/F algorithms and distribute control effort more equally, since individual

controllers are not hierarchically connected.

Virtual Structure Architecture. In Virtual Structure Architecture, the entire formation is

treated as a single structure. For example, in an interferometry mission it may be desirable to

have a constellation of spacecraft act as a single rigid body. In the virtual structure approach,

the control is derived in three steps: first, the reference state trajectory of the structure is defined

according to mission objectives; second, the motion of the virtual structure is translated into the

reference motion for each satellite of the formation; and third, tracking control for each spacecraft

is actuated.

Advantages of this formation control approach are that it is easy to prescribe the coordinated

behavior for the group, and that the virtual structure can maintain the formation very well during

the maneuvers in the sense that the virtual structure can evolve as a whole in a given direction

with some orientation and maintain a rigid geometric relationship among multiple spacecrafts.

Disadvantage is essentially related to the cases where formation shape is time-varying or it needs

to be reconfigured frequently.

Behavioral Architecture. In the Behavioral Architecture all units work together to reach for-

mation shape and goal on the basis of a given set of behavioral schemes. Possible behaviors include

collision avoidance, obstacle avoidance, goal seeking and formation keeping.

Advantages of this formation control approach are that it is natural to derive control strategy

when spacecraft have multiple competing objectives, explicit feedback is included through com-

munication between neighbors. Disadvantages are that the group behavior cannot be explicitly

defined, and it is hard to analyze the behavioral approach mathematically and guarantee its group

stability.

As clearly stated in [38], these five control architectures may be viewed as special cases of a

more general control architecture (block diagram is given in Figure 2.5), motivated by the existence

of several levels of control in formation flying.

� Spacecraft local control (Ki, i index of spacecraft). The system Si represents the ith space-

craft, with control input vector ui representing control forces and torques, and output vector

yi representing the measurable output of the spacecraft, most likely position and attitude vec-

tors. The inputs to Ki are the output of the ith spacecraft yi and the coordination variable ξ.

The outputs of Ki are the control vector ui, and the performance variable zi. Starting from

coordinate variables ξ (i.e. reference state trajectory, commands) and measured spacecraft
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output y (i.e. absolute and/or relative position and attitude) , it computes the command for

its actuators u.

� Formation control (F ): it represents the primary coordination mechanism in the system.

The formation control block outputs the coordination variable ξ which is broadcast to all

spacecraft. In addition, the formation control block outputs zF , which encapsulates the per-

formance of the formation, to the supervisor. The inputs to F are the performance variables

from each spacecraft zi, and the output of the supervisor uG. Starting from supervisor out-

puts uG and measured i spacecraft local control output zi (performance variable, operating

states), it computes the coordinate variables ξ.

� Supervisor (G): it is discrete-event control that uses the measured formation control output

zF to determine the input to the formation control uG.
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Figure 2.5: General Architecture for Spacecraft Formation Flying [38].

The formation control F is in charge of the coordination of each spacecraft present inside

the formation. In general, it is in charge of the control of the absolute position control, the

spacecraft relative control, the absolute attitude control and the relative attitude control in order

to permits formation acquisition, formation keeping, formation maneuvers (nominal observation and

contingency). The local control Ki is a slave of the formation control. It takes charge the spacecraft

attitude and position control according to the outputs given by the formation control. The local

control may be also a simple feed-through toward the actuators of the formation control outputs.

The supervisor G is in charge of the mode transition according to the received tele-commands
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coming from ground-segment, and events generated by formation control (failure detection events,

convergence achieved, etc.).

2.3.3.2 Approaches for Formation Flying Control

There are basically three different ways or approaches5 to control formations in space [39]:

� ground-based control;

� ground-in-the-loop control;

� fully space-borne autonomous control.

A ground-based control is primarily restricted to formations with a large separation and control

windows. GRACE may be a good example of this way (nominal separation 200 km, control win-

dow about 50 km), where the required formation keeping maneuvers take place every few weeks.

Avoiding the complexity of on-board autonomous systems, such maneuvers are efficiently executed

by the satellite operations center.

Ground-in-the-loop control of formation might be necessary when high safety requirements have

to be met, such as when a docking takes place involving manned missions, as for example the STS

docking to the ISS.

A fully autonomous space-borne control of formation is a must when close formations (separation

distance < 1km) with tight control windows, related to formation reconfiguration and/or collision

avoidance. Fully autonomous control is required also when the required relative position control

accuracy requires real-time.

5Levels of control autonomy.



Chapter 3

CONTROL STRATEGIES

3.1 Introduction

Many approaches for controlling satellites flying in formation exist in the formation flying literature.

In this chapter we present the main features of three types of controllers: Proportional-Integral-

Derivative (PID), Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC). For

each control type, the basic algorithms and the tuning of those parameters that determine the

reference trajectory tracking performances and the fuel consumption are analyzed.

The following relative dynamics model is used in both LQR and MPC synthesis1. The system

dynamics, which are described by the Hill’s equations, can be written in state-space form as follows:





ẋ(t) = A x(t) + B u(t)

y(t) = C x(t)

(3.1)

where ẋ = [x, y, z, ẋ, ẏ, ż ]T ∈ R6 is the state vector, composed by the three components of

the relative position vector and the three components of the relative velocity vector, u(t) ∈ R3

is the control input vector, y(t) ∈ R6 is the output or controlled vector, A ∈ R6x6 is the state

matrix (Equation 2.9), and B ∈ R6x3 and C ∈ R6x6 are the control matrix and the output matrix,

respectively:

B =




03x3

I3x3


 (3.2)

C = I6x6 (3.3)

1A PID controller does not use a model of the plant to be controlled.

35
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The previous model is a Continuous-time Linear Time Invariant model (CLTI). It is supposed

that the complete state vector is available for feedback purposes, although in real applications this

is generally not true and a state observer, based on Kalman filtering techniques for instance, has

to be used.

In real applications, a discrete-time version of the above model has to be used. If Ts is the

sampling time of the control, the Discrete-time Linear Time Invariant system (DLTI) is therefore:





xk+1 = Ad xk + Bd uk

yk = Cd xk

(3.4)

where Ad, Bd and Cd are the discrete-time matrices of the system obtained from the continuous

ones as follows2:

Ad = Φ(t)|t=Ts (3.5)

Bd =

ˆ Ts

0
Φ(t) B(t) dt (3.6)

where Φ is the HCW continuous-time state transition matrix (Equation 2.11).

In general, optimal control schemes can be used to deal with either tracking problems or regu-

lation problems. A tracking problem consists of designing a set of plant inputs u(t) that will force

the system state, i.e. both position and velocity, to track a prescribed reference trajectory, which

is often an unforced (or natural) motion to reduce the fuel consumption. On the other hand, a

regulator problem is one that computes an input vector u(t) to transfer the system from a nonzero

state to the zero state. Although the problem at hand is one of trajectory tracking, it can be cast

as a regulator problem which is easier to deal with. The trajectory tracking problem can be seen

in the light of a regulation problem for the instantaneous deviation between the actual and the

desired trajectories. In other words, the objective is to drive the error between the desired and

actual states to zero in an optimal fashion. The state dynamics of desired or reference trajectory

xr(t) can be expressed as follows:

ẋr(t) = A xr(t) (3.7)

The state error, which is the difference between the actual state and the desired one, is defined as:

2A zero-order hold approach is adopted.



3.2. PID CONTROL 37

e(t) = x(t)− xr(t) (3.8)

and the instantaneous error dynamics is then obtained:

ė(t) = A e(t)−B u(t) (3.9)

The trajectory tracking problem is therefore reduced to a regulation problem for the error

dynamics. The aim is to reduce the state error to zero over an infinite horizon in an optimal

manner. It is to note that the control is setup to tracking both position and velocity reference

trajectory.

The conceptual structure of both LQR-based and MPC-based controllers is depicted in Figure

3.1. Both controllers use a state feedback in the optimal control low computation (optimizer in

figure), but, for the problem on hand, while the LQR control law is computed off-line, the MPC

control law is obtained, on the other hand, by solving on-line, at each sampling instant, a finite

horizon open-loop optimal control problem with control, state and terminal constraints, in its

general formulation.

OPTIMIZER PLANT

Measures

z(t)

Reference State Trajectory

xr(t)

Control Action

u(t)

Plant Output

y(t)

Figure 3.1: Basic structure of LQR and MPC controllers.

3.2 PID Control

For a sake of simplicity, the PID formulation presented in this section refers to a 1 degree of freedom

(DOF) system. A more general multi degrees of freedom PID formulation can be obtained in a

matrix form with the same basic structure.

A basic PID control law consists of the sum of three types of control actions: an action up(t)

proportional to the current control tracking error e(t), an action ui(t) proportional to the integral

of e(t) and an action ud(t) proportional to the time derivative of e(t):

uPID(t) = up(t) + ui(t) + ud(t) = Kp e(t) +Ki

ˆ t

0
e(τ)dτ +Kd

d e(t)

dt
(3.10)

where e(t) = r(t) − y(t) is the control tracking error, y(t) is the process (or controlled) variable

and r(t) is the reference or set-point signal to track. Kp, Ki and Kd are the proportional, integral
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and derivative gains, respectively. Thank to the proportional term, the control variable is increased

when the control error is large. The integral or automatic reset term introduces a pole at the origin

of the complex plane, allowing the reduction to zero of the steady-state error when a step reference

signal is applied to the system or a step disturbance occurs. The derivative or anticipatory action

is based on the predicted future values of the control error and can therefore anticipate an incorrect

trend and counteract for it.

In practical cases, however, the previous basic PID formulation has some critical issues con-

cerning proportional and derivative kick and wind up phenomena. An improved and more robust

version of the PID control law in continuous-time form is (see Figure 3.2):

u(t) = Kp

{
β r(t)− y(t) +

1

Ti

ˆ t

0

[
e(τ) +

Ti
KpTt

(
u′(t)− u(t)

)]
dτ + Td

[
d (γ r(t)− yf (t))

dt

]}

(3.11)

Td
N

dyf (t)

t
= y(t)− yf (t) (3.12)

where in this case u(t) is the computed control variable and u′(t) is the process control input.

Also, Ti = Kp/Ki, Td = Kd/Kp. In this PID formulation, a proportional set-point weight β and a

derivative set-point weight γ are used to reduce the proportional and the derivative kick phenomena,

respectively. In general 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1, even if γ is usually either 0 or 1 and β = 0 to

avoid the proportional kick. A first-order low pass filer is used in order to reduce the influence of

the measurement noise in the control variable.

A saturation model of the actuators is also used in an anti-reset windup feedback scheme to

properly manage the actuators nonlinear behaviors introduces by saturation [40]. When the control

variable attains the actuator limit during the transient response, the system operates in open-loop,

since the actuator performs its maximum action independently of the process output value y. As

a consequence, the control error decreases more slowly as in the ideal case and the integral term

becomes large (it winds up). For this reason, the controller still saturates even when the process

output matches the reference signal r, leading to large overshoots and settling times. Windup

phenomenon can be avoided feeding back the difference of saturated and unsaturated control signal,

so that the correct state of the controller u is estimated when it does not match the process input

u′.
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Figure 3.2: Block diagram of a 1 DOF PID control with proportional and derivative kick avoidance
and anti-reset wind up.

3.3 Linear Quadratic Control

The purpose of LQR synthesis is to find a state feedback control law in the form u(t) = −K e(t),

where K is the gain matrix, in order to minimize the following quadratic performance index:

J =

ˆ ∞
0

[
eT (τ) Q(τ) e(τ) + uT (τ) R(τ) u(τ)

]
dτ, (3.13)

where Q is a positive-definite matrix that represents the state error weighting matrix, and R is a

positive-definite matrix representing the control weighting matrix. In our problem, Q ∈ R6x6 and

R ∈ R3x3. The performance index J represents the global energy of the system and is the sum of

two terms representing the error system energy and the control energy, respectively. Since (A,B)

is controllable and (A,C) is observable, there is one and only one optimal controller, whose gain

matrix is:

K(t) = R−1(t) BT P(t), (3.14)

where the matrix P(t) is the solution of the continuous time Algebraic Riccati3 Equation (ARE):

P(t) A + ATP(t)−P(t) B R−1(t) BTP(t) + Q(t) = 0. (3.15)

The discrete-time version of the previous equations that describe a LQR controller are as follow:

3Venice born Italian mathematician Jacopo Francesco Riccati (1676 - 1754)
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Jd =

∞∑

k=0

[
eTk Qk ek + uk Rk uk

]
(3.16)

uk = −Kd,k ek (3.17)

Kd,k =
(
Rk + BT Pk B

)−1
BT Pk A (3.18)

where Pk is the unique positive definite solution to the Discrete time Algebraic Riccati Equation

(DARE):

ATPkA−Pk −
(
ATPkB

) (
Rk + BTPkB

)−1 (
BTPkA

)
+ Qk = 0 (3.19)

Both Q matrix and R matrix are arbitrary parameters that have to be adjusted related to the

system on hand and to the performances one would like to obtain in tracking the desired trajectory,

also taking into account the scenario one is studying and the among of control action used to obtain

the desired result, that means fuel consumption in our case. In particular, the values of Q elements

in relation to those of R is important: higher values of Q elements with respect to R elements means

an higher weight on state error with respect to weight on control action, and this lead to a more

aggressive control, a better performance in tracking the desired trajectory but a more consumption

of fuel. Furthermore, a LQR controller would be expected to give a continuous control action in

response to system uncertainty, incurring in fuel penalty over maneuver-planning controllers. To

prevent continuous firing, an LQR controller would likely be combined with a dead band. For

example, in collision-avoidance applications, such as those presented in Chapter 6, the reference

trajectories have not to be always tracked with high accuracy. An higher tracking accuracy may

be imposed near delta-v applications: if relative position and velocity are close to the desired ones,

then the deputy spacecraft tends to naturally follow the reference trajectory.

3.4 Model Predictive Control

3.4.1 Introduction

Model Predictive Control (MPC) [41, 42, 43], often referred to as Receding Horizon Control (RHC),

is a modern optimal control technique that has been widely adopted in industry as an effective means

to deal with multivariable constrained control problems [44, 45, 46].

MPC is based on the idea, illustrated in Figure 3.3, of employing an explicit model of the

plant to be controlled and a sample of the current state x̂tk as the initial state to predict the
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Figure 3.3: Basic idea behind Model Predictive Control.

future output behavior y(t) over a finite horizon p as a function of a control sequence. The control

signal u(t) is assumed to change only within the interval [tk, tk+m], remaining constant for the

next p − m control steps, with m ≤ p. p and m are referred to as the prediction horizon and

the control horizon, respectively. Using this prediction capability, the current control action to

be applied to a dynamic system is obtained by solving on-line, at each sampling instant, a finite

horizon open-loop optimal control problem. The optimization process yields an optimal control

sequence U?k (x̂tk)
.
= {u?tk , u?tk+1

, ...,u?tk+m
} that minimizes a certain cost measure for the system

over the prediction horizon. According to a receding horizon philosophy, only the first of those

control actions u?tk is applied to the plant while the remaining optimal inputs are discarded. In

order to compensate for possible modeling errors or disturbances acting on the system, a new state

estimate x̂tk+1
is taken at the next sampling instant and a new optimal control problem is solved

at the next sampling instant, thereby introducing feedback into the system.

From the above explanations, it is clear that a fixed prediction horizon is shifted or receded

over time, hence the name Receding Horizon Control. The procedure of this on-line optimal control

technique is summarized in the Algorithm 3.1.

The key difference between MPC and classical control techniques is its ability to handle con-

straints, which are inherent in nearly every real application. For example, actuators are naturally

limited in the force (or equivalent slew rates) they can apply. Alternatively, operating limits may

be imposed for safety or efficiency reasons. The presence of such constraints can render the off-line

determination of a control law very difficult, whereas the MPC on-line nature is more adept at

handling such problems, as constraints are handled naturally within the optimization framework.
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Algorithm 3.1 On-line Receding Horizon Control Algorithm.

1. Estimate the state vector x̂tk at time instant tk;

2. Obtain U?k (x̂tk) by solving an optimization problem over the horizon p;

IF U?k (x̂tk) = Ø, THEN problem infeasible and STOP.

3. Apply the first element u?(tk) of U?p (x̂tk) to the system;

4. Wait for the new sampling time tk+1, goto (1.).

It is this re-planning nature, i.e. the explicit consideration of the system dynamics, and

constraint-handling ability that makes MPC well-suited also to aerospace problems, allowing fuel-

efficient, feasible plans to be determined autonomously and on-line.

In the following, after a brief review of MPC applications to SFF for both translational and

attitude motions (Section 3.4.2), the basic formulation of a MPC problem is presented (Section

3.4.3). The next Sections 3.4.4 and 3.4.5 describe how a MPC problem can be solved on-line in

terms of a Quadratic Programming (QP) problem. The last Section 3.4.6 deals with an explicit

solution to an MPC problem. The difference between an on-line MPC solution and an explicit

MPC solution is as follows. An on-line MPC solution involves the use of an iterative algorithm at

each control step to compute the MPC control action. On the other hand, an explicit MPC solution

means that the MPC problem is first solved off-line and the MPC control action is computed in

real time at each control step by means of a simple table-lookup whose data are stored in the on

board computer.

3.4.2 Review of MPC applications for formation flight

Many papers on MPC applications for SFF consider formations flying in a circular reference orbit

(e = 0) and the Hill-Clohessy-Wiltshire equations, i.e a LTI dynamic model, are used to model the

formation relative dynamics. Several contributions in the field of formation control come from the

Aerospace Control Laboratory at MIT. Papers such as Inalhan et al. [17], Tillerson et al. [47],

Richards et al. [48], Tillerson [49], Richards and How [50, 51, 52] and Breger et al. [53, 54] deals

with optimization-based trajectory planning for formation flight and autonomous rendez-vous and

constitute relevant examples of how to formulate objectives, models and constraints for MPC in

these research fields. Other contributions come from Rossi and Lovera [55] and Prieto and Ahmed

[56].

For what concern general eccentric orbits (0 ≤ e ≤ 1), Tillerson et al. [47] used the Lawden

equations to compute at each sampling time instant the dynamics model as function of the true

anomaly ϑ. The resulting dynamics is then discretized assuming ϑ as constant over a certain period
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an performing on-line the conversion between the true anomaly domain and the time domain. To

reduce the computational effort of this approach, Larsson et al. [57] proposed an approach based

on the Yamanaka-Ankersen STM [19]. Also, in [58], the relative dynamics is written with explicit

time-dependence by using the Kepler’s equation to create a true anomaly – time map.

Breger and How proposed in [24] a MPC formulation for formation control with a system

model based on LTV Gauss Variational Equations (GVE’s) extended to include the effects of J2,

showing that the resulting control is more fuel-efficient than the Lawden equation-based control

scheme in highly eccentric orbits with large rectilinear separations. In fact, in GVE’s the motion

is linearized about orbital elements, which are expressed in a curvilinear frame. As a consequence,

large rectilinear distances are expressed as small perturbations to orbital elements, avoiding the

linearization errors introduced in the Hill and Lawden approaches at large separations.

In Saponara et al. [59] and Hartley et al. [60], the authors described the design and implemen-

tation of a MPC system for the rendez-vous and capture associated with the Mars Sample Return

(MSR) mission, including the implementation of the developed solution in the space representa-

tive avionic architecture system ORCSAT (On-line Reconfiguration Control System and Avionics

Technologies). The MPC control system is designed to be used from the point of target detection

to the point of target capture and to function in both circular and elliptical orbits. To achieve

an efficient system design, the rendez-vous maneuver has been partitioned into three main phases

based on the range of operation. For the MPC design, the following relative dynamics prediction

models were used: J2 modified GVE’s for long range dynamics and the Yamanaka-Ankersen STM

for short range dynamics. The authors showed how MPC significantly improves the performances

both in trajectory generation and in propellant save.

MPC was also used for attitude control of spacecraft. Some authors, such as Manikonda et

al. [61], Soest et al. [62], Oort et al. [63] and Shi and Kelkar [64], combined a linear MPC and a

local feedback linearization that is used to provide a linear model around a reference state. Also,

Crassidis et al. [65] apply a form of non-linear MPC to three-axis attitude control for large-angle

maneuvers of a rigid-body spacecraft. Hegrenaes et al. [66] used an explicit solution to constrained

MPC to control the attitude of the SSETI/ESEO4 micro-satellite. The nonlinear attitude dynamics

were linearized about an equilibrium point to obtain a linear model for MPC and a cold thruster

system plus reaction wheels were used to control the satellite attitude.

MPC was also proposed as a technique for attitude control by magnetic-torque actuators in

Silani and Lovera [67] and Wood and Chen [68, 69]. In such applications, we have time-varying

actuation limits coming from the time variation of the Earth magnetic field over the satellite orbit.

4Student Space Exploration and Technology Initiative (SSET), European Student Earth Orbiter (ESEO).
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3.4.3 Basic MPC problem formulation

To make predictions as part of the control decision-making process, the basic MPC formulation

shall use the following linear time-invariant model of the system:

xk+1|k = Axk|k +B uk (3.20)

yk|k = C xk|k (3.21)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny . ak+j|k denotes the value of a predicted for time tk+j based

on the information available at time tk. We define ∆uk+j|k = uk+j|k − uk+j−1|k as the difference

between two consecutive control vectors, that is the control variable increment between the previous

step and the next one, ey,k+j|k = yk+j|k−yr,k+j|k as the output variable tracking error with respect

to a reference output yr, if any, and eu,k+j|k = uk+j|k − ur,k+j|k as the difference between the input

and the reference control, if any.

MPC solves on-line the following optimization problem for a given sample of the state x̂k at

time tk:

V ?(xk|k) = min
∆Uk

M(ey,k+p|k) +

p−1∑

j=0

Lj(ey,k+j|k, eu,k+j|k,∆uk+j|k) (3.22)

subject to, ∀j = 0, 1, ..., p− 1:

xk+j+1|k = Axk+j|k +B∆uk+j|k (3.23)

yk+j|k = C xk+j|k (3.24)

xk|k = x̂k (3.25)

[
E G

]


yk+j|k

uk+j|k


 ≤ L (3.26)

H ∆uk+j|k ≤M (3.27)

∆uk+h = 0 , ∀h = m, ..., p− 1 (3.28)

with an optional terminal constraint:

Ef yk+p|k ≤ Lf (3.29)
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The objective function is quadratic with:

M(ey) = eTy P ey (3.30)

Lj(ey, eu,∆u) = eTy Qj ey + eTu Ru,j eu + ∆uT R∆u,j ∆u (3.31)

The solution is the optimal control sequence:

∆U?k
.
= {∆u?k|k,∆u?k+1|k, ...,∆u

?
k+m−1|k} (3.32)

and the MPC control law can thus be written as:

MPCuk = ûk−1 + ∆u?k|k (3.33)

Equation 3.26 is a general linear inequality (polyhedral) constraint that can be used to represent

many different types of constraints on y and u, including upper/lower bounds and box constraints.

Constraints on ∆u (Equation 3.27) are used to avoid excessive variations on u, i.e. to smooth the

control action profile, reducing for example the process noise due to control.

When designing a MPC controller one should take into account the following: a more aggressive

controller with higher fuel consumption and better tracking performances is obtained with smaller

prediction horizon p, tighter constraints on control variables and higher ratio between state error

weight and control action weight; a larger control horizon m leads to an optimization problem

with more degrees of freedom, thus a “more” optimal (better performance) but more complex

(computationally demanding) control.

The values of m and p are therefore a trade-off solution between: (a) optimality of the MPC

solution and performances of the controller, e.g. reference trajectory tracking accuracy or fuel

consumption; and (b) on board resources consumption in terms of computing power / time require-

ments (related also to electric power consumption) and memory requirements for data storage. In

the scenarios presented in the next chapters, the length of the control horizon and the prediction

horizon are the results of such a trade-off solution. For experimental tests, a preliminary tuning

of the MPC parameters was conduced using a software simulator. The resulting MPC control law

was then tested in the real hardware to validate the proposed solution and understand the effects

of the non-modeled disturbances.



46 CHAPTER 3. CONTROL STRATEGIES

3.4.4 From a MPC problem to a Quadratic Programming problem

As you can see from the previous subsection, a MPC optimization problem is a Quadratic Pro-

gramming (QP) problem with linear inequality constraints. To be solved, it must be re-written

into the following standard QP problem form, for which many solvers are available:

min
X

1
2 X

T HX + GXT

s.t. ΩX ≤ ω
(3.34)

The following definition are given:

� Zk = [ yTk|k , ... , y
T
k+p|k ]T is the sequence of the controlled variables within the prediction

horizon;

� Tk = [ yTr,k|k , ... , y
T
r,k+p|k ]T is the sequence of the reference (or target) for the controlled

variables within the prediction horizon;

� Uk = [uTk|k , ... , u
T
k+p−1|k ]T is the sequence of the control variables within the prediction

horizon;

� ∆Uk = [ ∆uTk|k , ... , ∆uTk+m−1 ]T is the sequence of the control variables increments within the

control horizon;

� Ur,k = [uTr,k|k , ... , u
T
r,k+p−1 ]T is the sequence of the target control variables within the pre-

diction horizon.

Using Equations 3.20 and 3.21, Zk can be written as:

Zk = Ψxk|k + Υuk−1 + Θ∆Uk (3.35)

where:
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Ψ =




CA

...

CAm−1

CAm

...

CAp




; Υ =




CB

...

∑m−1
i=0 CAiB

∑m
i=0CA

iB

...

∑p−1
i=0 CA

iB




; Θ =




CB · · · 0

CAB + CB · · · 0

...
. . .

...

∑m−1
i=0 CAiB · · · CB

∑m
i=0CA

iB · · · CAB + CB

...
...

...

∑p−1
i=0 CA

iB · · · ∑p−m
i=0 CAiB




.

Given an estimation of the current state and the control variable at the previous control step,

using the previous equation it is possible to compute the sequence of the controlled variable within

the prediction horizon for any given sequence of the control variable. We introduce also the following

“free tracking error” vector:

εk = Tk −Ψxk|k −Υuk−1 (3.36)

which is the difference between the future target trajectory and the free response of the system,

namely the response that would occur over the prediction horizon if no input changes were made,

that is if ∆Uk = 0.

Cost function in standard form

The cost function given in Equation 3.22 can be written in matrix form as:

Vk = ‖Zk − Tk ‖2Wy
+ ‖∆Uk ‖2W∆u

+ ‖Uk − Ur,k ‖2Wu
+ ρε ε

2
k (3.37)

where Wy, W∆u and Wu are the output variable sequence, the controlled variable increment se-

quence and the control variable sequence weighting matrices computed from matrices Qj , Ru,j and

R∆u,j respectively. ε ≥ 0 is a slack variable used to relax the constraints on u, ∆u and y.

This cost function can to be rewritten as a quadratic fiction of ∆Uk and ε. First, we can write

Uk as a function of ∆Uk as:

Uk = Λ ∆Uk + 1uk−1 (3.38)

where:
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Λ =




Inu xnu 0nu xnu · · · · · · 0nu xnu

Inu xnu Inu xnu
. . . . . . 0nu xnu

...
...

. . .
. . .

...

Inu xnu Inu xnu · · · Inu xnu 0nu xnu

Inu xnu Inu xnu · · · Inu xnu Inu xnu




∈ Rnum xnum (3.39)

is the map from Uk to ∆Uk, and:

1 =




Inu xnu

...

Inu xnu








m times (3.40)

Then, we can write:

U(k)− Ut(k) = Λ∆U(k) + 1u(k − 1)− Ut(k) = Λ ∆U + µ(k) (3.41)

where we have defined:

µk = 1uk−1 − Ur,k (3.42)

Taking into account Equation 3.36 and after some cumbersome calculation it is possible to write

Vk as:

Vk = ∆UTk H̃∆Uk + ∆UTk G̃k + ρε ε
2
k + ck (3.43)

where we have defined:

H̃ = ΘTWyΘ +W∆u + ΛTWuΛ (3.44)

G̃k = −2ΘTWyεk + 2ΛTWuµk (3.45)

ck = εk
TWyεk + µk

TWuµk (3.46)
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At this point we introduce the independent variable of the optimization problem:

Xk = [ ∆UTk , εk ]T (3.47)

The cost function in a standard form for the QP solver results:

Vk = XT
k HXk +XT

k Gk (3.48)

where:

H =



H̃ 0

0 ρε


 (3.49)

Gk =



G̃k

0


 (3.50)

Note that ck has been dropped off since constant5 and it is not necessary to calculate its value.

Constraints in standard form

Let us assume a constant polyhedral constraint set, i.e. representable as a time-invariant linear

inequality system6. At each time step k + j, the constraint set can therefore be written as:

Γ




yk+j|k

uk+j|k

∆uk+j|k



≤ γ + εV (3.51)

where V is the vector of the Equal Concern for the Relaxation (ECR) parameters that allow to soft

the corresponding constraint: the larger Vi, the softer the corresponding constraint.

Using Equations 3.35 and 3.38, the inequality constraints for all time steps within the prediction

horizon can be written as:

ΩX ≤ ωk (3.52)

where ωk = ωx xk|k + ωuk−1
uk−1 + ωcnst.

5The value of ck is different for each time step.
6This assumption is quite general and allows to represent a wide variety of constraint sets.
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3.4.5 On-line MPC Engine

This subsection describes the MPC engine that was used to execute the rendez vous and capture

maneuver for the SPHERES MOSR scenario (see Chapter 7).

In order to efficiently implement the MPC algorithm and consequently reduce the cumput-

ing time, which is very important for real-time applications, we need to understand which QP

solver input elements must be updated at each control step and which ones are constant, since not

dependent from the current dynamic state of the system.

The QP problem in standard form is solved using the Dantzig-Wolfe’s active set method [70].

Dantzig-Wolfe’s inputs and outputs are listed in Table 3.1.

Table 3.1: Dantzig-Wolfe’s active set method inputs and outputs.

Inputs

tabi initial tableau

basi initial basis

ibi initial setting of the variables index vector

ili initial setting of the Lagrange multipliers index vector

maxiter maximum number of iterations

Outputs

tab final tableau

bas final basis vector

ib index vector for the variables

il index vector for the Lagrange multipliers

iter iteration counter

We need first to rewrite both the cost function and the linear inequality constraint as explicit

functions of the time-dependent parameters of the MPC problem, i.e. reference trajectories and

dynamic state of the system. The only time-dependent term of the cost function is G̃k (Equation

3.45), which can be rewritten as:

G̃k = G̃T Tk + G̃x xk|k + G̃uk−1
uk−1 + G̃ur Ur,k (3.53)

For what concern the constraints system, let v be a variable on which a constraint is imposed,

i.e. either y or ∆u or u. If we assume that a polyhedral constraint is imposed on each of these
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variables individually, then each constraint can be written as:

Γv vk+j|k ≤ γv + εVv (3.54)

After some cumbersome calculations, it is possible to write this constraint as a linear inequality

system in the optimization variable X for all time steps of the prediction horizon as:

[
Fv | fv,ε

]
X ≤ Fv,xk xk + Fu,uk−1

uk−1 + fv (3.55)

Ω and ωk matrices in Equation 3.52 result:

Ω =




Fy fy,ε

Fu fu,ε

F∆u f∆u,ε

0 −1




(3.56)

ωk =




Fy,xk xk + Fy,uk−1
uk−1 + fy

Fu,uk−1
uk−1 + fu

f∆u

0




=




ωy,k

ωu,k

ω∆u

0




(3.57)

The following parameters are defined:

mnu = num+ 1 (3.58)

nc = 4num+ ncyp+ 1 (3.59)

where mnu is the dimension of the optimization vector, ncy is the total number of constraints on

y and nc is the total number of constraints of the QP problem.

The QP solver input matrices tabi and basi are computed from xk|k ,uk−1 , T and the MPC

problem parameters as follows:
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tabi =



−H−1 H−1 ΩT

ΩH−1 −ΩH−1 ΩT


 = const ∈ R(mnu+nc) x (mnu+nc) (3.60)

basik = basT T + basx xk|k + basuk−1
uk−1 + bascnst ∈ R(mnu+nc) x 1 (3.61)

where bas terms are matrices that can be computed using F ’s and f ’s matrices of Equation 3.52

and G̃’s matrices of Equation 3.45. A more detailed description of these mathematical passages is

provided in [71].

The data flow of the MPC engine is presented in Figure 3.4. As you can see, only the basik

matrix has to be updated at each control step before calling the QP solver, while tabi and bas’s

matrices remain constant and can be computed off-line as functions of the MPC parameters and

the dynamic system.

Once the QP solver has provided the solution matrices bas and il, the sequence of the optimal

control variable increments ∆U?k can be computed as:

∆U?k (j) = bas( il(j) ) + xmin(j) (3.62)

where (j) means the jth component of the corresponding vector. The current optimal control action

is then computed as:

MPCu?k = ûk−1 + ∆u?k|k (3.63)

x̂k
ûk−1
Tk

basik QP SOLVER
bask
ilk

∆U?
k

MPCuk

basT , basx, basuk−1
, bascnst

Dynamic System
MPC parameters

tabi

MPC ENGINE

Figure 3.4: Block diagram of the MPC engine data flow. Off-line computations in green, on-line
computations in cyan and red.
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3.4.6 Explicit Model Predictive Control

In [72] Bemporad et al. show that an explicit solution to constrained LTI MPC problems can be

computed off-line by solving a multi-parametric Quadratic Program (mpQP), thus allowing to run

predictive controllers in systems with limited power and CPU resources.

Let us consider the following MPC regulation problem:

min
Uk

J(Uk, xk) (3.64)

s.t. ymin ≤ yk+i|k ≤ ymax i = 1, ..., p (3.65)

umin ≤ uk+i ≤ umax i = 1, ...,m (3.66)

xk|k = xk
.
= x̂(tk) (3.67)

xk+i+1|k = Axk+i|k +B uk+i i ≥ 0 (3.68)

yk+i|k = C xk+i|k (3.69)

uk+i = K xk+i|k m ≤ i ≤ p− 1 (3.70)

where

J(Uk, xk) = xTk+p|k P xk+p|k +

p−1∑

i=0

{
xTk+i|kQxk+i|k + uTk+iRuk+i

}
(3.71)

Uk = [uTk , ..., u
T
k+m−1]T ∈ Rmnu and (A,B) is a stabilizable pair. When the final cost matrix P and

gain matrix K are computed from the algebraic Riccati equation, assuming that the constraints are

not active for i ≥ m and i ≥ p, the MPC problem exactly solves the constrained infinite horizon

LQR problem for the system on hand, with weigh matrices Q and R.

By treating xk as a vector of parameters ϑk, Bemporad et al. showed that the MPC problem

can be rewritten as the following mpQP7:

min
Uk

J(Uk, ϑk) = min
Uk

1

2
UTk H Uk + ϑTk F Uk (3.72)

s.t. GUk ≤W + S ϑk (3.73)

where matrices H, F , G, W and S are obtained from the MPC problem as described in Section

3.4.4. It is important to note that this mpQP problem is strictly convex and the Karush-Kuhn-

7Problems depending on a vector of parameters are called multi-parametric programs in the jargon of operations
research.
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Tucker (KKT) conditions are necessary and sufficient conditions for optimality, guaranteeing the

uniqueness of the solution.

Also, the resulting explicit MPC control law MPCu = f(ϑk) is continuous and Piece Wise Affine

(PWA):

f(ϑk) = F iϑk + gi, if H iϑk ≤ ki, i = 1, ..., Nmpc (3.74)

where Nmpc is the number of neighboring convex polytopes (or regions) into which the ϑ-space is

divided. The on-line MPC computation effort thus reduces to a table-lookup: for a given vector

of parameters ϑk, which is equals to the state of the system xk in this case, a first linear search

through the polyhedral regions H iϑ ≤ ki is performed to locate the one which contains ϑk, and

then the corresponding feedback gains F i and gi are lookup to compute the MPC control action

MPCu.

In [72] the authors propose some extensions to this basic formulation, including reference track-

ing, measured disturbances compensation, soft constraints and variable constraints. In real applica-

tions with constraints on the output variable, the introduction of slack variables to soft constraints

is a solution to avoid infeasibility. In fact, hard constraints on the output variable may cause in-

feasibility when, for instance, the initial conditions are infeasible, or noise causes the output to go

outside the feasible solution space in some future time steps or in the presence of serious model

uncertainties.

An explicit solution extends the applicability of MPC to situations in which anti-windup schemes

are inadequate or where on-line computing requirements are prohibitive for either technical or cost

reasons. The decision between an on-line MPC and an explicit MPC must be a trade-off solution

between CPU computing demanding to solve in real-time a QP problem and memory for storing

the explicit MPC solution.



Chapter 4

FORMATION FLIGHT SOFTWARE

SIMULATOR

4.1 Introduction

The potential for formation flying satellites to serve as a feasible alternative to single satellite

missions is strongly dependent on the development of suitable Guidance, Navigation and Control

(GNC) systems. These systems must deliver robust and reliable performance to accuracies and fuel

consumption levels defined by the mission objectives, while accommodating orbital perturbations,

sensor noises and actuation errors.

We developed a simulator suitable for formation flying application that enable the user to de-

sign and validate GNC strategies and actuator or sensor architectures. The simulator also allows to

analyze the performances achieved by adopting different approaches for the problem of propagating

the relative motion of a spacecraft formation. In order to test the robustness of a GNC system, as

well as to validate an on-board relative dynamics predictor, it is indeed important to have a reliable

and accurate dynamics propagator. Furthermore, the simulator present a modular structure that

enables the user first to design particular elements of the simulator, such as control or guidance

strategies, and then to evaluate its efficiency and robustness taking into account reliable represen-

tations both of the environment in which the satellite formation will operate and of the behavior

of the sensor and/or actuator systems.

This chapter describes the main general features of the Matlab Simulator, including architecture,

data flow and implementation notes. The Matlab simulator was used to simulate the formation

flying maneuvers described in the next chapters. Simulator modules and algorithms developed for

those particular scenarios will be described in detail from time to time in the respective sections.

55
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4.2 Simulator Architecture and Data flow

The Matlab Simulator is divided into eight modules or macro-functionalities:

1. a DYNAMIC PROPAGATOR module that performs the dynamic evolution of the system;

2. a SENSORS module that models the behavior of the sensor system while producing measures

from the dynamic state of the system;

3. a NAVIGATION module that performs an (optimal) estimation of the current state of the

system using models of its dynamic behavior and measures from the sensor module;

4. a GUIDANCE module that computes the desired trajectory that each satellite of the forma-

tion has to follow;

5. a CONTROL module that computes (optimal) control actions that should be performed by

the actuator system in order to track the desired trajectory;

6. an ACTUATORS module that models the behavior of the actuator system while performing

the control actions provided by the control module;

7. an ENVIRONMENT module that computes the perturbative effects (forces and torques) on

the system dynamics;

8. a MODE MANAGER module that menages the transition between different formation flying

modes.

Figure 4.1 shows the top level architecture and data flow of the simulator. The modules are grouped

in two main sections: the PLANT system, which represents the real world, and the GNC system,

which is the brain of the loop and that interacts with the real world through sensors and actuators.

A more detailed description of each module is presented below, following an input-output scheme.

DYNAMIC PROPAGATOR

This module performs the dynamic evolution of the whole physical system through the integration

of the differential equations system used to model the dynamic behavior of the whole PLANT:

Ẋ (t) = F ( X (t), t, Ucomm (t), Ud (t)) (4.1)

where X (t) is the dynamic state of the whole PLANT, which contains environment state and

sensors, actuators, attitude and orbital absolute and/or relative states for each satellite of the

formation; Ucomm (t) is the control vector that is formed by both linear and angular accelerations



4.2. SIMULATOR ARCHITECTURE AND DATA FLOW 57

GUIDANCE

CONTROL

NAVIGATION

ACTUATORS

SENSORS

DYNAMIC
PROPAGATOR

ENVIRONMENT

MODE MANAGER

GNC PLANT

X(t) Ucalc(t) Ucomm(t)

X(t)Z̃(t)X̂(t)

X̂(t)

Figure 4.1: Top level Architecture and Data flow.

and that is performed1 by the actuator system; Ud (t) is the perturbative action vector, which

contains both linear and angular perturbative actions.

INPUT: dynamic state of the whole PLANT at time tk, X (tk); control actions performed by

the actuators system Ucomm(t); forces and torques due to the interaction of the system with the

environment, Ud (t).

OUTPUT: dynamic state of the whole PLANT at time tk+1 = tk + ∆Tsim, X (tk+1),where

∆Tsim is the simulation step.

SENSORS

The aim of this module is to simulate the sensors system behavior while producing desired mea-

sures from the dynamic state of the system. The behavior of the sensors system is described by

models whose accuracy and consequent complexity depend on the final purposes of the simulation.

Measures Z̃(t) can be obtained adding a bias and a (white) noise to a component that is function

of the dynamic state of the PLANT:

Z̃(t) = f (X(t)) + bias + noise (4.2)

INPUT: dynamic state of the whole PLANT at time tk, X(tk).

OUTPUT: desired measures at time tk, Z̃(tk).

1comm stands for “ commanded”.
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NAVIGATION

This module performs an (optimal) estimation of the current state of the system X̂(t) using a set

of measures coming from the sensors module Z̃(t) and a set of models that describe the dynamics

of the system (state equations) and the sensor system behavior (measure equations). Different

estimation techniques can be used for this purposes, as for instance Kalman filtering or Bayessian

estimation, whose selection have to be evaluated accordingly to the sensor system type and the

scenario on hand.

INPUT: measures from the SENSORS module at time tk, Z̃(tk).

OUTPUT: best estimation of the current state of the system at time tk, X̂(tk).

Depending on the estimation algorithm used, this module may require additional information

as input, e.g. the control vector actuated at the previous time step when a Kalman Filter is used.

GUIDANCE

Taking into account the environmental conditions, the current estimated state of the system X̂(t),

the Actuator system characteristics, and the activated mission mode, this module performs the

calculation of the desired trajectory X(t) (translational and/or attitude absolute or relative motion)

that each satellite of the formation has to follow.

INPUT: Mode that is activated from the MODE SWITCHER; constraints related to actuator

and sensor systems; environmental conditions; Navigation data X̂(tk).

OUTPUT: Reference trajectory that each spacecraft of the formation has to track at time tk,

X(tk).

CONTROL

This module computes the control actions Ucalc (t) that the actuator system should perform to

make the current estimated state of the system X̂(t), from the NAVIGATION module, matching

the desired one X(t), from the GUIDANCE module. The tracking error depends not only on the

control type in use but also on the characteristics of SENSORS, NAVIGATION and ACTUATORS

modules.

INPUT: estimation of the system state at time tk, X̂(tk); reference trajectory to be tracked at

time tk, X(tk); environmental conditions; actuator system constraints.

OUTPUT: computed control actions Ucalc (t).
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ACTUATORS

This module simulates the actuator system behavior while performing the desired control actions.

The behavior of the actuators system is described by models whose accuracy and consequent com-

plexity depend on the final purposes of the simulation. The control actions that each element of the

actuators system has to perform, Ucomm, can be obtained first using a function of the calculated

control actions coming from the CONTROL module, Ucalc, and then adding to it a bias and a

(white) noise:

Ucomm(t) = f ( Ucalc, X(t), bias(t), noise(t)) (4.3)

INPUT: control actions computed in the CONTROL module at time tk, Ucalc(tk); dynamic

state of the whole PLANT at time tk, X(tk).

OUTPUT: control actions performed by the actuators system at time tk, Ucomm(tk).

ENVIRONMENT

The Environment module menages all computations needed to determine perturbative effects (forces

and torques) that come from the interaction of the spacecraft(s) with the environment, as for

example the central body current position and/or attitude with respect to the Earth Centered

Inertial (ECI) reference frame, which is needed to compute spacecraft acceleration due to higher

harmonics of the central body, solar radiation pressure, or physical properties of the central body

atmosphere for the drag force computation.

INPUT: current Julian Date.

OUTPUT: parameters needed to compute perturbative effects on the spacecraft(s).

In particular, the perturbative accelerations due to a non spherical shape of the Earth are

computed as the gradient of the gravity potential expanded in spherical harmonics (see for instance

[12]). Also, the perturbative acceleration due to atmospheric drag acting on a single spacecraft in

the ECI reference frame is modeled as:

fdrag = −1

2
ρ
CDS

M
V 2 V̂ (4.4)

where ρ is the air density, computed as function of the satellite altitude following a classical Jacchia’s

1977 model for average solar activity, M and S are the mass and the cross section, respectively, of

the spacecraft, CD is the drag coefficient (equal to 2.2), V is the satellite absolute velocity vector

in the ECI reference frame.
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MODE MANAGER

Taking into account the current estimated position of the spacecrafts in the formation and the

mission requirements, this module menages the transition between different formation flying modes.

The transition between one mode to another one occurs if some conditions, which depend on the

formation state, are verified, e.g. if the distance between the satellites is less then a reference value,

the collision-avoidance mode is activated.

INPUT: current position of the spacecraft of the formation at time tk, X(tk).

OUTPUT: the formation flying mode that is currently activated.

4.3 Dynamic Propagators

Two dynamic propagators are available in the formation flight simulator. The first one is based

on a classical Cowell’s method [12], which integrates a system of six differential equations in the

Cartesian Earth Centered Inertial (ECI) reference frame, with time as independent variable.

The second dynamic propagator is a fast and accurate nonlinear dynamics propagator for forma-

tion flying orbital motion, called DROMO-FF [73], based on a a very efficient regularized method

developed by Pelàez et al. in 2006 [74]. This new formulation for the two body-problem equations

of motion borrows elements of rigid-body dynamics. The basic idea of this method is to track

the evolution of an orbital frame moving with the point mass and link to it a new set of orbital

elements by applying the variation of parameter technique. The independent variable is changed

from time to a pseudo-anomaly, which coincides with the true anomaly in the pure Kepler motion.

The variation of parameters technique is applied to a particular set of 7 elements, which are chosen

as the integrals of the unperturbed motion. The first three elements define the shape of the orbit

and its orientation on the orbital plane, and the remaining four elements, which correspond to the

components of a unit quaternion, are devoted to fixing the attitude of the orbital plane with respect

to an inertial reference frame.

Pelàez’s method is capable of propagating the orbital dynamics of a single point mass with

better accuracy and faster computational run time, when compared to classical methods such

as Cowell’s or Encke’s methods, as well as newer methods like the Kustaanheimo–Stiefel or the

Sperling–Burdet methods. A fast dynamic propagator is obtained by using Pelàez’s method with

variable step numerical integration routines with effective step control, as Runge–Kutta–Fehlberg

or Dormand–Prince types. Routines with fixed step size can however be used without reduction in

performances and the new independent variable allows analytical step regulation even in this case.

The absolute dynamics of each space vehicle flying in formation is first obtained using the

dynamic propagator, while the the relative dynamics of each spacecraft with respect to a reference



4.4. SIMULATOR IMPLEMENTATION 61

satellite is then properly computed from the absolute dynamics [75].

4.4 Simulator implementation

The formation flight software simulator was developed in Matlab, which allows the user to per-

form numerical calculations and visualize the results without the need for complicated and time

consuming programming, and many specific toolboxes, such as the Control Toolbox or the MPC

toolbox, are available. On the other hand, Matlab is an interpreted language and poor program-

ming practices and very computationally burdensome problems can make it unacceptably slow. For

this reason, some functions, such as those for the Earth gravity model implementation with up to

360x360 harmonics, were implemented in C and mex-interfaced with Matlab. The use of Matlab

is however very useful for preliminary design and validation of GNC strategies, software simulator

architecture and modules structure.

The formation flight Matlab simulator was developed using the Object Oriented Programming

(OOP). One of the most important characteristics of OOP is the data encapsulation concept,

which means that there is a very close attachment between data items and procedures or methods.

Normally, objects of a given type are instances of a class, whose definition specifies the private

(internal) working of these objects as well as their public interface. The public interface functions

completely defines how to use this object, so that programs that want to manipulate an object do

not have to worry about how these tasks are achieved nor the internal structure of the object. If

compared to the procedural programming, the OOP presents the following advantages:

� simplicity: software objects model real world objects, so the complexity is reduced and the

program structure is very clear;

� modularity: each object forms a separate entity whose internal workings are decoupled from

other parts of the system;

� modifiability: it is easy to make minor changes in the data representation or the procedures

in an OO program. Changes inside a class do not affect any other part of a program, since

the only public interface that the external world has to a class is through the use of methods;

� extensibility: adding new features or responding to changing operating environments can be

solved by introducing a few new objects and modifying some existing ones;

� maintainability: objects can be maintained separately, making locating and fixing problems

easier;

� re-usability: objects can be reused in different programs.
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The Matlab program is organized into three main sections (see Figure 4.2):

1. pre-processing, in which the scenario is defined and all objects, structure and variables are

defined and initialized;

2. main loop with a main for loop with the updating sequence of all modules at each simulation

time step;

3. post-processing for final calculations, results saving and visualization.

The interfacing fuctions of each class can be divided into three main groups: (1) setup functions

used in the pre-processing to initialize the objects; (2) update and data printing functions used in

the main loop to update the object at the current simulation time step, to visualize data in the

Matlab command window and/or save it in the corresponding output files; and (3) post-processing

and plotting functions, used in post-processing to save simulation results and generate diagrams.

A Set-Up m-file allows the user to define all those parameters that characterize the scenario

under studying, such as: absolute and/or relative dynamic state of each space vehicle, type of

dynamic propagator, type of sensors/actuators, GNC strategies, etc. The user can also enable or

disable each single module through a corresponding enabling flag in the Set-Up m-file. This for

example allows the user to first design a particular control algorithm without sensors/actuators

noises or other perturbative effects, and then to evaluate the same control strategy in a more

representative environment.
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mathematical and physical constants definition

scenario uploading

objects, structures and variables definition

objects, structures and variables intialization

SENSORS module updating

NAVIGATION module updating

MODE SWITCHER module updating

GUIDANCE module updating

CONTROL module updating

ACTUATORS module updating

data saving

DYNAMIC PROPAGATOR updating

relative and/or absolute orbital state objects updating

post-processing calculations

simulation results visualization

PRE-PROCESSING

MAIN LOOP

POST-PROCESSING

Figure 4.2: Block diagram of the Formation Flight Matlab Simulator.
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Chapter 5

MPC APPLICATIONS TO

SPACECRAFT FORMATION

ACQUISITION

In this chapter we present a study on the MPC application to a formation acquisition maneuver for

two space vehicles, taking into account two scenarios: a Leader-Follower formation and a Projected

Circular Orbit formation. The performances of an MPC controller are compared with those of a

LQR controller in carrying out the same maneuver, evaluating also the effects of the gravitational

harmonics J2 , J3 and air drag perturbations on the proposed maneuvers.

5.1 Leader-Follower formation

Let us consider the acquisition maneuver of a Leader-Follower formation (see Figure 5.1a) with two

space vehicles 500m apart that have active constraints on the maximum control acceleration that

their propulsion subsystems can actuate.

The initial dynamic state of the Chief is given in Table 5.1 in terms of orbital elements of the os-

culating keplerian orbit, while the initial dynamic state of the Deputy is given in Table 5.2 as relative

position ri and velocity vi vectors with respect to the Hill’s frame attached to the chief spacecraft.

The previous relative conditions are computed using the Hill- Clohessy-Wiltshire (HCW) solution

with the 1st-order bounded relative motion condition (Equation 2.12) with amplitudes of the in-

plane and out-of-plane bounded motion ρx = 8m and ρz = 8m, respectively, along-track offset

∆y = 500m, and in-plane and out-of-plane phase angles ϕxy = 45 deg and ϕz = 90 deg, respec-

tively. Therefore, we assume that before the formation acquisition maneuver the Deputy follows a

1st-order bounded parking trajectory near the reference relative state x = [0, 500m, 0, 0, 0, 0]T .

65
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Deputy

b) Projected Circular Orbit formationa) Leader-Follower formation

600 m

Chief

Deputy

Chief
500 m

Figure 5.1: (a) Leader-Follower formation, and (b) Projected Circular Orbit Formation.

Table 5.1: Chief keplerian orbital elements – Leader-Follower formation.

semi-major axis eccentricity RAAN inclination argument of perigee true anomaly

a e Ω i ω ϑ

[ km ] [ ] [ deg ] [ deg ] [ deg ] [ deg ]

6700 0 0 97.87 0 0

Table 5.2: Deputy relative initial position and velocity vectors – Leader-Follower formation.

relative initial position relative initial velocity

ri vi

[ m ] [10−3 m/s ]

[ 5.657 , 51.314 , −8.000 ]T [−6.512 , −1.025 , 0.000 ]T

The following simulation results refer to a 10 minutes acquisition maneuver, with a control

interval Ts = 5 s and a maximum control acceleration umax = 5 · 10−3m/s2, so that:

|uj | ≤ umax , j = x, y, z (5.1)

The parameters of the LQR and MPC controllers are listed in Table 5.3, where n is the Chief

mean motion. The parameters of both controllers are tuned in order that the components of the

position error vector present the same settling time tset ≈ 2min, i.e. the two controllers presents

similar performances in reaching the same reference relative state.
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Table 5.3: LQR and MPC parameters – Leader-Follower formation.

LQRQ


 1.5 I3x3 03x3

03x3 0.1 I3x3


 MPCQ LQRQ

LQRR 1.1 · 1011 n2 I3x3
MPCR 1.25 · 109 n2 I3x3

control horizon m 4

prediction horizon p 20

The position error trajectory in Hill’s LVLH reference frame is shown in Figure 5.2, while the

position error components are plotted in Figure 5.3. In particular, for both controller types under

investigation, the magnitude of the position error vector is less that 0.382m after 2.00min from

the beginning of the maneuver.

Figure 5.5 shows the control acceleration components actually performed by the propulsion

system Ucomm(t) (see Figure 4.1), in blue for the LQR controller and in red for the MPC con-

troller. As can be seen from this figure, the control acceleration components of both controllers

sometimes reach the maximum values ±5 · 10−3m/s2. However, the MPC controller takes the

control acceleration constraints into account while performing the optimal control computation, so

that the output of the MPC CONTROL module Ucalc(t) always satisfies the saturation constraint

given by Equation 5.1. On the other hand, the LQR optimal control computation is performed

without taking into account the saturation constraint, and for this reason Ucalc(t) from the LQR

CONTROL module can be greater than the maximum control acceleration that can be carried out

by the propulsion system.

The required ∆v is taken as index of the control system performance, defined as:

∆v(t) =

ˆ t

0
‖u(τ)‖2 dτ (5.2)

This index is used to compare the performances of the two controllers LQR and MPC. The fol-

lowing LQR and MPC ∆v requirements over 10 minutes of simulation were obtained: ∆vLQR =

0.68187m/s and ∆vMPC = 0.39995m/s. The percentage difference of these ∆v requirements is:

δ∆v =
∆vMPC −∆vLQR

∆vLQR
100 = −41.34 % (5.3)

The profiles of the ∆v requirements and the correspondent percentage differences are depicted in

Figures 5.6 and 5.7, respectively.
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initial 

position error

Figure 5.2: 3D position error trajectory. Initial position error in magenta – Leader-Follower for-
mation.
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Figure 5.3: Position error components time profiles – Leader-Follower formation.
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Figure 5.4: Distance error time profile – Leader-Follower formation.
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Figure 5.5: Control acceleration components of LQR and MPC controllers – Leader-Follower for-
mation.
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Figure 5.6: ∆v requirements of LQR and MPC controllers – Leader-Follower formation.
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Figure 5.7: Percentage difference on ∆v requirement – Leader-Follower formation.

The previous results are obtained assuming a dynamic evolution of the formation with no

perturbations. In order to evaluate the effect of perturbations on the previous formation acquisition

maneuver, other two simulations were carried out taking into account J2 , J3 and atmospheric drag1

perturbations (see Chapter 4).

Table 5.4 lists the ∆v requirements of both LQR and MPC controllers for unperturbed and

perturbed cases. The position error components profile and the control acceleration components

1Air density ρ ≈ 1.9 · 10−11 kg/m3 at the initial formation altitude.
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profile are similar to those obtained in the unperturbed case. Also, in the perturbed scenarios the

use of an MPC controller can reduce significantly the total ∆v requirement with respect to an LQR

controller. However, the percentage difference δ∆v between LQR and MPC ∆v requirements for

the case with J2, J3 and drag perturbations is reduced by 0.49 % with respect to the unperturbed

case.

Table 5.4: ∆v requirements of LQR and MPC controllers for perturbed and unperturbed cases.

perturbations ∆vLQR [m/s] ∆vMPC [m/s] δ∆v [%]

none 0.68187 0.39995 −41.34

J2 + J3 0.68321 0.40118 −41.28

J2 + J3 + drag 0.69126 0.40886 −40.85

5.2 Projected Circular formation

In this section we compare and discuss the performances of a MPC controller and a LQR controller

in carrying out the same formation acquisition maneuver for a two spacecraft Projected Circular

Orbit (PCO) formation (see Figure 5.1b).

The initial dynamic state of the Chief is the same used for the Leader-Follower scenario and

reported in Table 5.1. The Deputy presents an initial relative dynamic state, listed in Table

5.5 and computed using Equations 2.13 - 2.15 with ρx = 295m, ρz = 590m, ∆y = 0m, and

ϕxy = ϕz = 45 deg, while the reference relative trajectory is given by the same equations with

ρx = 300m, ρz = 600m, ∆y = 0m, and ϕxy = ϕz = 45 deg, , i.e. a PCO with a radius of 600m in

the along-track – cross-track plane.

As in the Leader-Follower formation, we consider a 10 minutes maneuver, with a control interval

Ts = 5 s and a maximum control acceleration umax = 5·10−3m/s2. The parameters of the LQR and

the MPC controllers, listed in Table 5.6, are designed to obtain the same settling time tset ≈ 2min

for the components of the position error vector.

Table 5.5: Deputy relative initial position and velocity vectors – Projected Circular formation.

relative initial position relative initial velocity

ri vi

[ m ] [10−1 m/s ]

[ 208.597 , 417.193 , 417.193 ]T [ 2.401 , −4.803 , 4.802 ]T
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Table 5.6: LQR and MPC parameters – Projected Circular formation.

LQRQ


 1.5 I3x3 03x3

03x3 0.1 I3x3


 MPCQ LQRQ

LQRR 1.1 · 1011 n2 I3x3
MPCR 6.50 · 108 n2 I3x3

control horizon m 4

prediction horizon p 30

Table 5.7: ∆v requirements of LQR and MPC controllers for perturbed and unperturbed cases –
Projected Circular formation.

perturbations ∆vLQR [m/s] ∆vMPC [m/s] δ∆v [%]

none 0.52151 0.36522 −29.97

J2 + J3 0.52239 0.36607 −29.92

J2 + J3 + drag 0.52906 0.37130 −29.81

The position error trajectory in the Hill’s LVLH reference frame is shown in Figure 5.8, while

the position error components are depicted in Figure 5.9. LQR and MPC ∆v requirements over 10

minutes of simulation and their percentage differences are: ∆vLQR = 0.52151m/s and ∆vMPC =

0.36522m/s and δ∆v = −29.97 %. Figure 5.11 shows the control acceleration components produced

by the propulsion system, while the profiles of the ∆v requirement and the corresponding percentage

differences are depicted in Figures 5.12 and 5.13, respectively. Also in this scenario, the use of a

MPC controller can reduce significantly the total ∆v requirement with respect to an LQR controller.

The effect of J2 , J3 and drag perturbations on the PCO formation acquisition maneuver for both

controllers are reported in Table 5.7. Simulation results confirm that also in the perturbed scenarios

the MPC controller is more efficient (requires less ∆v) than the LQR controller, with a small

reduction of δ∆v (by 0.16%) between the unperturbed case and the one affected by J2 + J3 + drag

perturbations.
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Figure 5.8: 3D position error trajectory – Projected Circular formation.
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Figure 5.9: Position error components time profiles – Projected Circular formation.
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Figure 5.10: Distance error time profile – Projected Circular formation.
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Figure 5.11: Control acceleration components of LQR and MPC controllers – Projected Circular
formation.
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Figure 5.12: ∆v requirements of LQR and MPC controllers – Projected Circular formation.
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Figure 5.13: Percentage difference on ∆v requirement – Projected Circular formation.
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Chapter 6

COLLISION AVOIDANCE

GUIDANCE AND CONTROL

STRATEGIES

6.1 Introduction

The aim of this chapter is to study guidance and control strategies for collision-avoidance formation

flying maneuvers. As mentioned in Section 2.3, Guidance has in charge the determination of

reference trajectories that the satellites of a formation have to follow in order to accomplish a

desired task, as for instance collision-avoidance, formation-reconfiguration or station-keeping. On

the other hand, Control is responsible for forces and/or torques exploitation to track guidance

commands, aiming to have the current state “equal” to the desired one.

The collision-avoidance strategy described in this chapter is based on the use of Genetic Algo-

rithms (GAs), a global optimization method based on the genetic evolution process of biological

organisms: an initial population evolve over many generation according to the principles of natural

selection. Genetic algorithms are especially powerful techniques for the research of global solutions

in highly non-linear and multi-task optimization problems.

Genetic Algorithms has been already used in the spacecraft formation flying field. Kim et

al. in [76] and by Tian and al. in [77] have studied the use of Genetic Algorithms for optimal

reconfiguration of satellites flying in formation. Kim et al. developed a hybrid optimization method

based first on a Genetic Algorithm to perform a global search and find two-impulse trajectories, and

then on a primer vector analysis to find multiple-impulsive local optimal trajectories with the two-

impulse trajectories as initial guesses. As pointed out by the authors, the necessity of use a Genetic

Algorithm to perform a global search is due to the sensitivity of calculus of variations methods to

77
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the choice of the initial guess. In fact, if the initial guess is arbitrarily chosen, the global optimality

of the solution is not guaranteed, especially with highly non-convex objective functions. Tian et al.

developed optimal controllers based on Genetic Algorithms for spacecraft formation reconfiguration

including the constraints of minimum fuel, avoiding collision and final configuration. The authors

emphasize that both the problem formulation and the genetic parameter selection have a big effect

on the solution obtained with these methods.

6.2 The Collision-Avoidance mode

The prime objective of the Collision-Avoidance mode (one of the GNC modes) is to ensure the

immediate and long-term safety of the formation, in terms of avoiding collision and preventing

formation evaporation. Fuel conservation is a secondary objective.

We define as Chief the free-flying spacecraft following temporary off-nominal conditions and

as Deputy the spacecraft performing collision avoidance maneuvers. We also define two ellipsoidal

regions centered at the Chief: the Avoidance Region (AR), with semi-axes aAR, bAR = 2 aAR and

cAR = aAR (a 1x2x1 ellipsoid) in x, y and z directions of the Hill’s reference frame, respectively,

and the Nominal Boundary (NB) with semi-axes aNB = k aAR , bNB = k bAR and cNB = k cAR ,

where k is a safety margin. A picture of the Avoidance Region and Nominal Boundary in Hill’s

frame is shown in Figure 6.1.

The Collision-Avoidance strategy is based on a Separation Guidance and on a Nominal Guidance

[78, 79], summarized in Figure 6.1. If a collision is predicted and the estimated relative position

between the Deputy and the Chief is within the Avoidance Region, then a separation maneuver

is performed (Separation Guidance): the distance between the two spacecrafts has to increase

monotonically and the Deputy has to exit the Nominal Boundary within a prescribed time. When

the Deputy reaches a relative position outside the Nominal Boundary, an evasive maneuver is

planned (Nominal Guidance), allowing the Deputy to reach a safe or “parking” trajectory: the

evasive trajectory, from the actual position to the safe trajectory, must not intersect the Nominal

Boundary, and the safe trajectory must remain inside a prescribed Safe Region that does not

intersect the Nominal Boundary and is far enough from the Chief. A Nominal Guidance maneuver

can also be planned for cases in which the sensed relative position is already outside the Nominal

Boundary while the Collision-Avoidance mode is activated only when a collision is predicted.

Two possible scenarios may occur:

1. in the first one, the Deputy is already outside the Nominal Boundary and the Collision-

Avoidance mode is switched on, e.g. a collision is predicted in a certain amount of time.

Nominal Guidance is performed and the Deputy achieves a Safe Trajectory.
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2. in the second one, the Deputy is inside the Avoidance Region and the Collision-Avoidance

mode is switched on. Separation Guidance is first performed, and the Deputy is placed

outside the Nominal Boundary within a prescribed time. Once Deputy is outside the Nom-

inal Boundary, the Nominal Guidance algorithm takes over and the Deputy achieves a Safe

Trajectory.

Separation Guidance Nominal Guidance

Figure 6.1: Collision Avoidance strategy and time sequence.

6.3 Separation Guidance

The Separation Guidance has to meet the following two main requirements: (1) the Deputy has to

exit the Nominal Boundary within a specified time period ∆texit,max; and (2) the distance between

the two space vehicles has to nominally increase while inside the region. The Separation Guidance

is more critical for the formation safety than the Nominal Guidance, and a reliable solution that

meets the SG requirements must be obtained with minimal computing time. For this reason,

the Separation Guidance algorithm is a computationally simple, deterministic and closed-form

algorithm, so that a valid solution is always available without delay. The algorithm must also be
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robust to practical levels of uncertainty in the initial estimated relative position and velocity used to

plan the maneuver. The actual control action computation is indeed performed taking into account

only the distance of the Deputy from the Nominal Boundary and the maximum time needed for the

Deputy to exit the Nominal Boundary, ∆texit,max. ∆texit,max is a tunable parameter: smaller exit

times lead to higher delta-v and therefore higher fuel consumption, but a safe condition is reached

in a shorter time. The algorithm presents some differences with respect to the one proposed by

Larsson et al. in [78].

Let rk = [xk, yk, zk ]T and vk be the relative position and velocity vectors at the current time

tk. Let t1 be the initial time, i.e. when the separation maneuver starts, tf = ti + ∆texit,max be

the final separation time, which is the time the Deputy has to be outside the Nominal Boundary,

and ∆tk = tf − tk be the current separation time. We define the Current Ellipsoid (CE) as a

1x2x1 ellipsoid centered at the Chief, with x semi-axis ak and passing through the current relative

position of the Deputy, rk (see Figure 6.2).

Figure 6.2: Separation Guidance strategy.

A desired current separation velocity v∗k is first computed based only on the current position

vector rk. v∗k is proportional to the difference between the semiaxes in y direction of the Nominal

Boundary, bNB, and the Current Ellipsoid, bk , and inversely proportional to the current separation

time ∆tk:

v∗k =
bNB − bk

∆tk
. (6.1)

v∗k is aligned with the external unit vector n̂k orthogonal to the plane that is tangent in rk to the

Current Ellipsoid:

n̂ =
1√

(4xk)
2 + (yk)

2 + (4zk)
2

[
4xk, yk, 4zk

]T
. (6.2)
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The current delta-v ∆vk is:

∆vk = v∗k − vk . (6.3)

The thruster system may not be able to perform the current delta-v vector, and the current

control acceleration is therefore computed as:

uk =
1

Ts
min ( umax Ts, ∆vk ) (6.4)

where Ts is the control interval of the separation control and umax is the maximum acceleration

that the thruster system can apply in the ∆vk direction. If the Deputy is already flying away from

the Chief, meeting the Separation Guidance requirements, the current control acceleration is not

applied.

6.4 Nominal Guidance

The Nominal Guidance starts if the sensed relative position between the Deputy and the Chief

is outside the Nominal Boundary and the Collision-Avoidance mode is activated. The Nominal

Guidance algorithm computes two basic relative trajectories (see Figure 6.1): an Evasive Relative

Trajectory (ERT) and a Safe Relative Trajectory (SRT). A first delta-v ∆v1 is planned at time t1

so that the Deputy follows the ERT outside the Nominal Boundary; then, a second delta-v ∆v2 is

planned at time t2 and the Deputy finally achieves the SRT.

The couple of trajectories SRT-ERT has to satisfy the following safe requirements: (a) the

SRT has to evolve within a Safe Region (Section 6.4.1); (b) the minimum distance of the SRT

projected in the cross-track plane has to be greater than a safe minimum distance (Section 6.4.2);

and (c) the ERT has to be outside the Nominal Boundary (Section 6.4.3). Furthermore, the whole

maneuver has to be performed within a maximum time interval ∆te,max, requirement (d), and the

total delta-v ∆vtot used to plan the Nominal Guidance maneuver has to be minimized.

As discussed in the following sections, each of the previous safe requirements is converted in

a correspondent constraint condition for those parameters that define the couple of trajectories

SRT-ERT.

6.4.1 Safe Relative Trajectory definition

The Safe Region is designed with the double intent to assure the formation safety, keeping the two

space vehicles sufficiently far apart, and to prevent formation evaporation, keeping the spacecraft

sufficiently close for the communication and relative navigation systems to operate.
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Two types of Safe Regions are designed taking into account both in-plane and out-of-plane safe

constraints: a Fly-Around type, which defines SRTs that evolve around the Chief, and a No-Fly-

Around type, that does not fly around the Chief and whose geometric center is properly placed along

track. In order to reduce both the computational complexity of the Nominal Guidance algorithm

and the propellant consumption, the previous two SRT types are designed using the Hill-Clohessy-

Wiltshire (HCW) solution with the 1st order bounded relative motion condition ẏ0 = −2nx0 (see

Section 2.1.1). A SRT is therefore defined by 5 parameters: ρy = 2 ρx and ρz, which are the

amplitudes of the in-plane and out-of-plane bounded motion, ∆y, which is the along-track offset,

and ϕxy and ϕz, which are the phase angles of the in-plane and out-of-plane motion (Equations

2.13 - 2.15). The value of these five independent parameters have to be properly selected in order

for each SRT to evolve inside the corresponding Safe Region.

6.4.1.1 Fly-Around Safe Relative Trajectories

The Fly-Around Safe Region is a 1x2x1 elliptical section cylinder with a central empty region

(Figure 6.3).

z
cross-track

x
radial

y
l t kalong-track

Figure 6.3: 3D visualization of the Safe Region for the Fly-Around Safe Relative Trajectory case.

The in-plane evolution of the SRT can be designed independently of the out-of-plane evolution,

since they are uncoupled in the HCW model. The in-plane projection of the Safe Region and the

constraint conditions (c/c) for Fly-Around SRTs are presented in Figure 6.4. A Fly-Around SRT

evolves within the Fly-Around Safe Region if the values of ρy and ∆y satisfy the following two

constraint conditions c/c 1 and c/c 2:



6.4. NOMINAL GUIDANCE 83

c/c 1:





ymin ≥ y∗min

ymin = ρy − |∆y|
⇒ ρy − |∆y| ≥ y∗min (6.5)

c/c 2:





ymax ≤ y∗max

ymax = |∆y|+ ρy

⇒ ρy + |∆y| ≤ y∗max (6.6)

Two limit cases can be considered:

� if ∆y = 0, then ρy ∈ [ y∗min, y
∗
max ];

� if y∗min + y∗max = 2 ρ∗y, i.e. ρ∗y
.
=

y∗min+y∗max
2 , then ∆y∗ .= ρ∗y − y∗min =

y∗max−y∗min
2 .

This means that if a value of ∆y is selected between 0 and ∆y∗, then the value of ρy has to be

properly chosen in order to satisfy constraint conditions c/c 1 and c/c 2 (Equations 6.5 and 6.6).

For what concerns the out-of-plane evolution of the SRT, a constraint on the maximum ampli-

tude in this direction is considered that translates into:

ρz ∈ [ 0, z∗max ] (6.7)

where z∗max is the maximum amplitude of the out-of-plane motion.

The in-plane and out-of-plane phase angles ϕxy and ϕz can assume a value between 0 and 2π.

Figure 6.4: Constraints for the In-plane motion of the Fly-Around Safe Relative Trajectory.
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6.4.1.2 Not-Fly-Around Safe Relative Trajectories

The Not-Fly-Around Safe Region consists of two parallelograms with zero offset in radial and

cross-track directions and with equal and opposite offset in the along-track direction (Figure 6.5).

z
x

radial

z
cross-track

yy
along-track

Figure 6.5: 3D visualization of the Safe Region for the Not-Fly-Around Safe Relative Trajectory
case.

Figure 6.6: Constraints for the In-plane motion of the Not-Fly-Around Safe Relative Trajectory
(positive y-direction case).

Figure 6.6 represents the in-plane projection of the Safe Region and the constraint conditions

for No-Fly-Around SRTs. A No-Fly-Around SRT evolves within the No-Fly-Around Safe Region if



6.4. NOMINAL GUIDANCE 85

the following two constraint conditions, c/c 3 and c/c 4, are satisfied by ρy and ∆y:

c/c 3:





ymin ≥ y∗min

ymin = |∆y| − ρy
⇒ |∆y| − ρy ≥ y∗min (6.8)

c/c 4:





ymax ≤ y∗max

ymax = |∆y|+ ρy

⇒ |∆y|+ ρy ≤ y∗max (6.9)

Two limit cases can be considered:

� if ∆y = y∗min or ∆y = y∗max, then ρy = 0;

� if ∆y∗ =
y∗min+y∗max

2 , then ρ∗y
.
=

y∗max−y∗min
2 , maximum value for ρy.

It a value of ∆y is therefore selected between y∗min and y∗max, then the value of ρy has to be chosen

in order to satisfy constraint conditions c/c 3 and c/c 4 (Equations 6.8 and 6.9).

The amplitude of the out-of-plane motion can get any value between 0 and the maximum value

z∗max. The in-plane and out-of-plane phase angles ϕxy and ϕz can assume a value between 0 and

2π.

6.4.2 Cross-track minimum distance

In some scenarios it is essential to ensure a minimum distance in the cross-track plane to guar-

antee the safety of the formation flying satellites, even in the presence of along-track drift. Some

small amount of along-track drift is always present after a maneuver due to unavoidable thruster

inaccuracies, navigation errors and perturbations. Therefore, it is important to find safe relative

trajectories that are independent of the along-track position.

We define cross-track avoidance region as a safe circle in the cross-track plane, centered at the

Chief and with radius rCT . The minimum distance of the SRT projected in the cross-track plane is

greater than the safe minimum distance rCT , requirement (b), if the semi-minor axis b of the ellipse

obtained by projecting the SRT in the cross-track plane is greater than rCT , that is (Figure 6.7):

c/c 5: b =

√
ρ2
x + ρ2

z −
√
ρ4
x + ρ4

z + 2 ρ2
x ρ

2
z cos 2α

2
≥ rCT (6.10)

where α = ϕxy − ϕz
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a
b

NBCT ar 

x

z

cross-track projection of
Safe Relative Trajectory

cross-track 
avoidance regionavoidance region

Figure 6.7: Constraint on SRT cross-track minimum distance.

6.4.3 Evasive trajectories constraints

To check if the ERT is outside the Nominal Boundary, the ERT is divided into m points PERT,j ,

with j = 1, ...,m. Let dERT,j be the distance of the point PERT,j from the origin of the Hill’s frame,

and let dNB,j be the distance from the frame origin of the point PNB,j obtained intersecting the

ray from the origin to PERT,j with the Nominal Boundary (see Figure 6.8).

The ERT evolve outside the Nominal Boundary if the following constraint condition c/c 6 is

satisfied:

c/c 6: min
j=1,...,m

(dERT,j − dNB,j) ≥ 0 (6.11)

Let rP =

[
xP , yP , zP

]T
be the position of a point P = PERT in the ERT. The equation

of the line connecting the frame origin O and P is:





x = xP
zP
z

y = yP
zP
z

. (6.12)

The z coordinates of the two points obtained by intersecting this line with the Nominal Boundary

ellipsoid are:

z =

√
z2
P

(xP /aNB)2 + (yP /bNB)2 + (zP /cNB)2 (6.13)

The coordinates rQ =

[
xQ, yQ, zQ

]T
of the intersection point Q = PNB between the ellipsoid

and the OP ray are as follow:
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zQ =




z if zP ≥ 0

−z otherwise

xQ = zQ
xP
zP

yQ = zQ
yP
zP

(6.14)

Constraint condition c/c 6 can be rewritten as:

c/c 6: min
j=1,...,m

(∥∥rPERT,j
∥∥

2
−
∥∥rPNB,j

∥∥
2

)
≥ 0 (6.15)

j
P

ERT

Chief

jNB,P

jERT ,P

jNB,d

jERT ,d

Nominal 

jNB,

SRTBoundary

Figure 6.8: Evasive Relative Trajectory constraints.

6.5 Nominal Guidance Algorithm

The Nominal Guidance algorithm uses Genetic Algorithms1 (GAs) to find a ERT-SRT couple that

satisfies (a) (b) (c) and (d) requirements for both Fly-Around and Not-Fly-Around SRTs and

minimizes the total delta-v consumption ∆vtot.

6.5.1 Genetic Algorithm setup

The optimization variables used in GAs are ρy, ρz, ∆y, ϕxy, ϕz and ∆te. We develop two objective

functions (one for the Fly-around case and the other for the Not-Fly-Around case) that receive

in input a vector of six elements (optimization variables) whose values are chosen by the Genetic

Algorithm tool in the following ranges:

1Genetic Algorithm and Direct Search Toolbox� 2. The MathWorks, Inc., 2009.
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� Fly-Around case

– ρy ∈ [ y∗min, y
∗
max ];

– ρz ∈ [ 0, z∗max ];

– ∆y ∈ [−∆y∗, ∆y∗ ];

– ϕxy ∈ [ 0, 2π ];

– ϕz ∈ [ 0, 2π ];

– ∆te ≤ ∆te,max.

� Not-Fly-Around case

– ρy ∈
[

0, ρ∗y
]
;

– ρz ∈ [ 0, z∗max ];

– ∆y ∈ [ y∗min, y
∗
max ] and ∆y ∈ [−y∗max, −y∗min ];

– ϕxy ∈ [ 0, 2π ];

– ϕz ∈ [ 0, 2π ];

– ∆te ≤ ∆te,max.

Parameters y∗min, y∗max, z∗max and ∆te,max, Fly-Around or Not-Fly-Around SRT type and the con-

straint on the minimum distance of the SRT in the cross-track plane are elements properly chosen

in accordance with the specific mission scenario.

Choosing appropriate parameters and methods in GA is very important, since a good configu-

ration might cause the algorithm to converge to best results in a short time while a worse setting

might cause the algorithm to run for a long time before finding a good solution or even it might

never be able to find a good solution.

Many simulations were conduced to find an acceptable configuration of GA parameters in order

to obtain a solution sufficiently near the best one in a reasonable time. Finding a solution that is

as near the best one as possible means less fuel consumption, but needs higher computational time

and CPU resources. Since in the Collision Avoidance mode formation safety is more important

than fuel consumption, the algorithm has to give an acceptable solution in a relatively short time.

Results show that smaller size of population looses the diversity very soon, before even finding a

good solution; higher population size provides a higher diversity and therefore contains more sample

solutions. As a result, converging to better solutions happens sooner than smaller population sizes.

Bigger populations needs however more time for the algorithm to run, specially the time taken for
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sorting and evaluate the fitness of individuals is very CPU intensive. Population size is therefore a

trade off solution.

Once a solution is obtained with GA , a Pattern Search (PS) algorithm is run for 10 s to refine

GA solution, giving about a 3% reduction of the cost function. PS algorithm use the same objective

functions of GA and use GA solution as starting point.

6.5.2 Total delta-v computation

The total delta-v computation ∆vtot is computed using the HCW model. Let v−1 and v+
1 be the

relative velocity vectors of Deputy before and after the application of ∆v1, respectively. Similarly

for v−2 , v+
2 and ∆v2. Let r2 and v+

2 , which define the SRT, be given position and velocity vectors

that the Deputy should has at time t2. r2 and v−2 can be written as function of r1, v−1 and ∆v1

using the HWC state transition matrix Φ as follow:




r2

v−2


 = Φ




r1

v+
1


 = Φ




r1

v−1 + ∆v1


 =




Φrr Φrv

Φvr Φvv










r1

v−1


+




0

∆v1





 . (6.16)

From the last equation, it is possible to compute ∆v1 so that the Deputy reaches position r2 at

time t2:

r2 = Φrrr1 + Φrvv
−
1 + Φrv∆v1; (6.17)

Φrv∆v1 = r2 −Φrrr1 +−Φrvv
−
1 . (6.18)

∆v1 is obtained solving the last linear system. ∆v2 is computed as follow:

v+
1 = v−1 + ∆v1; (6.19)

v−2 = Φvrr1 + Φvvv
+
1 ; (6.20)

∆v2 = v+
2 − v−2 . (6.21)

The total delta-v is then:
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∆vtot = ‖∆v1‖+ ‖∆v2‖ . (6.22)

6.5.3 Constraint conditions

For each given optimization vector, a ERT-SRT couple is defined. ( a )-( b )-( c ) requirements have

to be satisfied by this ERT-SRT couple. This is true if the corresponding constraint conditions are

verified, according to the following Table 6.1.

To ensure that the six conditions of Table 6.1 are met, six penalization terms are properly

added to ∆vtot. These six penalization terms are equal to zero only if the corresponding constraint

conditions are satisfied; on the other hand, they present an exponential rise as explained below.

A couple of checking parameters (µ , µ∗ ) is introduced for each constraint condition, which can

indeed be rewritten in the form µi ≥ µ∗i , with i = 1, 2, . . . , 6. The definition of µ and µ∗ for each

constraint condition is reported in Table 6.2. If the ith constraint condition is not verified, then

µi < µ∗i and the corresponding penalization term is:

pi = e
ki

(
1− µi

µ∗
i

)
− 1, (6.23)

where

ki =
ln (γi − 1)

1− αi
. (6.24)

This means that if µi = αi µ
∗
i , with α ∈ [ 0, 1 ), then pi = γi. ki is introduced to control the

rising rate of each penalization term in relation to the others and it can also be used to weight one

constraint violation more than the other ones.

Table 6.1: Requirements – Constraint conditions correspondence.

Requirements Constraint Conditions

( a )
( 1 )-( 2 ) for a Fly-Around SRT

( 3 )-( 4 ) for a Not-Fly-Around SRT

( b ) ( 5 )

( c ) ( 6 )
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Table 6.2: Definition of µi and µ∗i parameters for each constraint condition.

c/c c/c not satisfied µi µ∗i

( 1 ) ρy − |∆y| < y∗min ρy − |∆y| y∗min

( 2 ) ρy + |∆y| > y∗max −ρy − |∆y| −y∗max
( 3 ) |∆y| − ρy < y∗min |∆y| − ρy y∗min

( 4 ) |∆y|+ ρy > y∗max − |∆y| − ρy −y∗max
( 5 ) b < rCT b rCT

( 6 ) dERT,min < de dERT,min de

6.6 Control Strategies

The Collision-Avoidance algorithms have been implemented in Matlab to develop the following two

modules for the Formation Flight Matlab Simulator: the Collision Avoidance Separation Guidance

(CASG) module, the Collision Avoidance Nominal Guidance (CANG) module and the section of

the Mode Manager module that is in charge of the Collision-Avoidance. The Mode Manager has

to manage in general all collision scenarios that can occur in each formation flying phase of a

mission. It also uses a Collision Detector which, starting from the actual relative dynamic state of

the formation, foresees possible collisions within a given time window. The following elements of

the proposed Collision Avoidance strategy have to be appointed for each formation flying phase:

� parameters and conditions for the Collision Avoidance mode activation. e.g. relative position

and/or velocity and collision detection;

� values of those parameters used by separation and nominal guidance algorithms, e.g. aNB,

aAR, SRT type, ∆te,max.

Referring to Figure 6.9, if the Collision- Avoidance mode is activated, the Mode Manager handles

activation/deactivation of the CASG and CANG modules through SMM
CASG and SMM

CANG commands.

When the CASG module is activated, it computes the control actions that the thrusters system has

to execute, based on the estimation of the actual relative position x̂. When the CANG is activated,

it carries out the computation of the reference state trajectory (x,v) starting from the current

estimated relative dynamic state (x̂, v̂). The reference trajectory is utilized in the control module

to compute the control acceleration for trajectory tracking.

Two types of control strategies were used to perform the tracking of the reference trajectories:

the first one is based on Linear Quadratic Regulator (LQR), and the second one is based on Model

Predictive Control (MPC). Please see Chapter 3 for a detailed description of these two controllers.
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MODE
MANAGER

CASG

CANG CONTROL

bx,bv

ucalc

ucalcx,v

to Actuators

to Actuators

from Navigation

SMM
CASG

SMM
CANG

if Separation Guidance is activated

if Nominal Guidance is activated

Figure 6.9: Guidance and Control block diagram for the Collision-Avoidance mode.

6.7 Simulation Results

In this section we present results of a Collision-Avoidance maneuver in which the Deputy spacecraft

is inside the Avoidance Region at the initial time ti and the Collision-Avoidance mode is activated.

Therefore, Separation Guidance is performed at first with the aim of place the Deputy outside the

Nominal Boundary within a prescribed time; once the Deputy is outside the Nominal Boundary,

the Nominal Guidance takes over to park it in a safe trajectory inside a prescribed safe region.

The initial dynamic state of the Chief is given in Table 6.3 in terms of orbital elements of the

osculating keplerian orbit. The initial dynamic state of the Deputy is given in Table 6.4 as relative

position ri and velocity vi vectors with respect to the Hill’s frame. In order to simulate a collision,

the value of vi is obtained forcing the Deputy to reach the origin of the Hill’s frame in 5 minutes.

Separation Guidance parameters and Nominal Guidance parameters are listed in Table 6.5. A

∆te,max of 69.56 minutes is equal to 0.75 times the initial orbital period of the Chief.

Table 6.3: Chief keplerian orbital elements.

semi-major axis true anomaly eccentricity RAAN inclination argument of perigee

a ϑ e Ω i ω

[ km ] [ deg ] [ ] [ deg ] [ deg ] [ deg ]

6778 60 0 30 45 20
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Table 6.4: Deputy relative initial position and velocity vectors.

relative initial position relative initial velocity

r0 v0

[ m ] [10−3 m/s ]

[−120 , 50 , −60 ]T [−374.761 , −300.006 , 192.260 ]T

Table 6.5: Separation Guidance parameters (left) and Nominal Guidance parameters (right).

Separation Guidance parameters

aAR aNB ∆texit,max Ts umax

[ m ] [ m ] [ min ] [ s ] [ m/s2 ]

100 200 7 5 3 · 10−2

Nominal Guidance parameters

rCT ∆te,max y∗min y∗max z∗max

[ m ] [ min ] [ m ] [ m ] [ m ]

200 69.56 450 1000 700

Table 6.6: Genetic Algorithms and Pattern Search results – Nominal Guidance maneuver.

ρy ρz ∆y ϕxy ϕz ∆te ∆vtot

[ m ] [ m ] [ m ] [ rad ] [ rad ] [ s ] [ m/s ]

GA 711.300 201.946 −260.883 5.4253 3.7412 35.94.86 3.5593 · 10−1

PS 711.300 201.946 261.300 5.3896 3.7040 3620.87 3.5495 · 10−1

difference [%] 0.00 0.00 0.16 −0.66 −0.99 0.72 −0.27

Table 6.7: Position, velocity and delta-v vectors – Nominal Guidance maneuver.

t
r(t) v(t−) v(t+) ∆V(t) ‖∆V(t)‖
[ m ] ·10−3 [ m/s ] ·10−3 [ m/s ] ·10−3 [ m/s ] ·10−3 [ m/s ]

t1

183.553

−25.470

−78.728

−299.887

−255.258

−83.595

270.444

−434.602

−49.100

−29.443

−179.343

132.696

225.031

t2

−354.900

−215.125

10.052

44.747

783.773

−101.089

26.120

803.043

−228.191

−18.627

19.270

−127.122

129.917
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Figure 6.10 shows the time profile of the control acceleration components during the Separa-

tion Guidance maneuver. Thrusters are switched on for the first 24 seconds of the maneuver to

ensure that the Deputy is outside the Nominal Boundary within 7 minutes. Figure 6.11 shows

the Deputy/Chief distance profile: the Deputy is outside the Avoidance Region and the Nominal

Boundary after 34 seconds and 6.37 minutes, respectively.

Results of Genetic Algorithm and Pattern Search for the Nominal Guidance maneuver are

presented in Table 6.6. These results were obtained using Matlab Genetic Algorithm and Direct

Search Toolbox�, with a population size of 4000 individuals and with a maximum computational

time for GA and PS algorithms of 1.5 minutes. The corresponding position, velocity and delta-v

vectors are listed in Table 6.7. Figures 6.12 and 6.13 show in-plane and out-of-plane projection,

respectively, of the Fly- Around Safe Region and the resulting couple of trajectories SRT-ERT. As

can be noted from these figures, all constraint conditions are satisfied.

A comparison of LQR and MPC control acceleration components near times t1 and t2 is shown

in Figures 6.15 and 6.17, respectively. The corresponding tracking error time profiles are reported

in Figures 6.14 and 6.16. These results are obtained with a control horizon m = 5 , a prediction

horizon p = 25, a control interval Ts = 5 s for both controllers, while the state error and the control

weighting matrices of both controllers are set to obtain similar performances in tracking the same

reference trajectories. For the Nominal Guidance maneuver, the total delta-v obtained with LQR

and MPC are ∆vLQR = 1.4757m/s and ∆vMPC = 1.3914m/s, respectively. In this scenario, the

use of an MPC controller reduces the total delta-v of 5.71 % with respect to an LQR controller.

This is due also to the anticipative action of the MPC, as can be noted in Figure 6.17.

.

.

.

.

.

.
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Figure 6.10: Control acceleration components time profiles – Separation Guidance maneuver.
∆vtot,CASG = 1.80m/s.
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Figure 6.11: Distance profiles – Separation Guidance maneuver.
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Figure 6.12: Out-of-plane projection of the Nominal Guidance maneuver. ∆v1 application point
marked with an orange star, ∆v2 marked with a green cross.

Figure 6.13: Out-of-plane projection of the Nominal Guidance maneuver. ∆v1 application point
marked with an orange star, ∆v2 marked with a green cross.



6.7. SIMULATION RESULTS 97

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

time [s]

ε x [m
]

CANG maneuver − position tracking error components − ∆ V
1

 

 
LQR
MPC

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

time [s]

ε y [m
]

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

time [s]

ε z [m
]

Figure 6.14: LQR and MPC tracking error comparison near time t1.
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Figure 6.15: LQR and MPC control acceleration components time profiles near time t1.
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Figure 6.16: LQR and MPC tracking error comparison near time t2.
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Figure 6.17: LQR and MPC control acceleration components time profiles near time t2.



Chapter 7

MPC FOR THE SPHERES MOSR

SCENARIO

7.1 MOSR Scenario Overview

The current mission scenario of the NASA’s Mars Sample Return (MSR) mission [80] utilizes a

small Orbiting Sample (OS) satellite, launched from the surface of Mars and with some geological

samples on board recovered by a catching rover, which will rendezvous with an Earth Return Vehicle

(ERV) in Martian orbit (Figure 7.1). The guidance of the OS into the capture mechanism on the

ERV is considered to be one of the highest-risk operations. Since the OS will most likely be passive

during this maneuver - possibly outfitted with a radio beacon for long-distance detection, but with

no means of active propulsion or attitude control - the ERV must determine the OS’ location in

Martian orbit using a single visual-band camera, and maneuver itself to capture it.

.

Figure 7.1: Artist’s rendition of Mars sample launching from MSR lander (left); MSR Orbiter
performing OS target search and acquisition in Mars orbit (right).

99
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.

The Massachusetts Institute of Technology (MIT), in a partnership with Aurora Flight Sciences,

developed the Mars Orbital Sample Return (MOSR) system with the final aim of testing the visual

tracking and relative motion control algorithms [81] (Figure 7.2). This system uses the Synchronized

Position Hold Engage & Reorient Experimental Satellite (SPHERES) test bed to emulate the

combined motion of the capture satellite and the OS. The key elements of the system are: (1) a

moving SPHERES satellite modified with a white and black shell to match the on orbit operative

lighting conditions (Figure 7.3); (2) a stationary capture mechanism; and (3) an optical tracking

system with cameras mounted on the capture mechanism. Software on the capture mechanism

implements a vision tracking algorithm (based on the Hough transform, astronomical photometry

and Kalman Filtering), computes the likely maneuver commands for a capture satellite, which are

then translated into relative motions to be performed by a SPHERES satellite, acting as the OS

(Figure 7.4).

Figure 7.2: SPHERES-MOSR test bed performing OS contact dynamics experiments on reduced
gravity flight (left); boresight view of SPHERES-MOSR testbed (right) (courtesy of [82]).

Figure 7.3: OS Shell with a SPHERE satellite for comparison (left); OS on an air bearing support
structure (right) (courtesy of [82]).
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Figure 7.4: Communications architecture for SPHERES MOSR system (courtesy of [82]).

7.2 Controller Requirements and Constraints

There are two possible experimental configurations that can be considered.

1. In the first configuration, a planning algorithm is used to generate a (safe) reference state

trajectory1, starting from an initial estimated state of the chaser s/c and ending to a target

state. A controller, such as a MPC-based one, could be used to track the reference trajectory.

2. In the second configuration, a MPC-based controller is used to both compute a reference

trajectory and track it at the same time.

We adopted the second control strategy with the aim of testing the MPC capability to compute and

track a reference trajectory for the close-proximity phase of the rendezvous and capture maneuver.

Some requirements and/or constraints have to be taken into account (see Figure 7.5) with the

aim of:

� guarantee the safety for both the chaser s/c and the target s/c;

� guarantee proper operational conditions for all the elements used to execute the rendezvous

and capture maneuver;

� improve the control system performance taking into account the actual system.

Requirements and constraints for the SPHERES MOSR scenario are described in the following.

7.2.1 Field of view constraint

It is required that the chaser remains within the FOV cone of the vision-based sensing system

during the rendezvous maneuver.

1All trajectories/states are considered as relative trajectories/states of the chaser s/c w.r.t. the target s/c.
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The MoSR scenario on SPHERES (2)

� Two main constraints on the MoSR scenario on SPHERES:

• Limited control authority: maximum control force that the Spheres propulsion system can

perform � control variable constraint

• FOV of the Vision-based relative Navigation System: the Spheres satellite must be kept

within the camera FOV during the Rendez-vous & Capture maneuver � relative position

constraint

Spheres at

Ph.D. School in SCIENCES TECHNOLOGIES AND MEASURES FOR SPACE – CISAS – University of Padova (Italy)

ANDREA VALMORBIDA March  2013Test of MPC strategies on SPHERES testbed for the MoSR scenario
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Target Position

Spheres at

Initial Position

Camera and

Capture mechanism Camera Field Of 

View (FOV)

Maximum

control force

Figure 7.5: Controller requirements and constraints.

This FOV requirement can be represented by the following linear inequality constraint on the

relative position vector p:

HFOV p(tk) ≤ kFOV (7.1)

for each time step tk of the rendezvous maneuver. HFOV and kFOV are a matrix and a vector,

respectively, that define the camera FOV as a 3D convex polytope (see Figures 7.5 and 7.6). The

camera FOV has an amplitude in the horizontal plane fovh = 60 deg, and in the vertical plane

fovv = 30 deg.

7.2.2 Limited control authority

This constraint is due to the maximum control force that can be actuated by the CO2 propulsion

system on board the chaser satellite.

Each thruster on board SPHERES can perform a force Fthr = 0.112N . Taking into account the

SPHERES thruster system configuration, the maximum force that can be applied in any direction

is Fmax = 2Fthr = 0.224N (worst case when the force direction is parallel to the thruster firing

direction). The mass of the SPHERES satellite is considered constant and equal to msph = 4.3 kg.

To conduct tests at the MIT SSL, each SPHERES satellite is placed on an air carriage with

a mass mair carriage = 6.7 kg that allows a low friction 2D translational motion. The resulting

maximum control acceleration that the thruster system can actuate at the MIT SSL is then umax =

Fmax/(msph +mair carriage) = 0.02m/s2.

The MPC algorithm assumes a Piece Wise Constant (PWC) control acceleration profile, with

a control period ∆tctrl = 1s. A control acceleration is applied using a Pulse Width Modulation

(PWM) strategy with a maximum pulse width pwmax = 0.2 s, i.e. the acceleration is equal to umax

and the width, or time duration, of each pulse is computed in order to preserve the impulse of the

acceleration. The maximum equivalent PWC acceleration, which is used in the MPC algorithm,
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can be computed as follows:

MPCumax =
pwmax
∆tctrl

umax = DCctrl umax (7.2)

which is MPCumax = 0.004m/s2 at the MIT SSL. DCctrl is the Duty Cycle of the PWM.

Tanking into account these constraints within the control algorithm, MPC is expected to have

better performance with respect to other classical control strategies.

7.2.3 Terminal constraints

Terminal constraints are applied to the relative dynamic state of the chaser satellite in proximity

of the target position both for safety purposes and to guarantee good conditions for the capture

mechanism to work.

We imposed the following constraints on the relative velocity when the SPHERES satellite is

close to the target position:

� the relative velocity has to be less than a safety value along the camera focal axis direction;

� the relative velocity has to be almost zero in the other two directions.

This means that the SPHERES satellite approaches the target position following a straight path

along the camera focal axis and with a reduced velocity. Constraints on the relative velocity are

met by properly tuning the MPC weights (PD gains).

7.2.4 Attitude control

The attitude of the chaser s/c is maintained equal to a target orientation during close-proximity

operations. A quaternion-based PD controller is used to regulate the attitude of the SPHERES

satellite during the whole maneuver.

7.2.5 Reference Frames definition

We define the following two Reference Frames (RFs) (see Figure 7.6).

� Camera RF (C). It has x and y axes in the camera focal plane and z axis along the camera focal

axis. The relative position estimate provided by the vision tracking algorithm is expressed in

the Camera RF at first.

� Flat Floor Global RF (G). It is the RF used by the SPHERES Ultra-Sound Global Metrology

System. All position and velocity vectors reported in the following are expressed in the Flat

Floor Global RF.
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Figure 7.6: Flat Floor Global Reference Frame (G) in red and Camera Reference Frame (C) in
blue. The camera FOV is represented by the cyan convex polyhedron.

7.3 MPC Engine for SPHERES

Due to its high computational time when run on board SPHERES, the MPC Engine (see Section

3.4.5) can not be used directly on board SPHERES when a control frequency fctrl < 0.1 Hz is

required. In these situations, the MPC problem is solved using the flight laptop and the computed

control forces are transmitted back to the SPHERES satellite for the actuation. To manage the

time delay due to MPC computation and MPC data exchange between SPHERES and the flight

laptop, given an estimation of the dynamic state xk of the plant at time tk, a model of the plant is

first used to estimate its dynamic state f control steps forward in time, xk+f . The new estimate

dynamic state at time tk+f is then used as initial condition for the MPC Engine in order to obtain

a sequence of f control accelerations that should be actuated starting at time tk+f , i.e. f control

steps forward in time with respect to the initial time tk.

Figure 7.7 shows the block diagram and the data flow when the position and velocity vectors

of the SPHERES satellite are provided by the Vision-Based Relative Navigation System on board

the Capture Mechanism. We obtain a similar configuration when the SPHERES satellite state is

given by the SPHERES satellite itself using the Ultra-Sound Global Metrology System.

The time schedule of the MPC operations are presented in Figure 7.8, where:

� ∆test is the time interval needed by the Vision-Based Relative Navigation System to estimate

position and velocity of the SPHERES satellite w.r.t. the Capture Mechanism;
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� ∆ttx,CPT−>MAT is the transmission delay from the Capture Mechanism to Matlab;

� ∆tMPC is the time interval needed to solve the MPC problem; it includes forward propagation,

QP data updating, QP solver and control sequence updating;

� ∆ttx,MAT−>SPH is the transmission delay from Matlab to the SPHERES satellite.

MPC data is exchanged between SPHERES and Matlab using two types of data packets:

� MPC computation data packet. This data packet is transmitted from SPHERES to Matlab

to execute the MPC computation using position and velocity vectors transmitted with this

packet as initial dynamic state.

� MPC control acceleration data packet. This data packet, transmitted from Matlab to SPHERES,

includes the control acceleration sequence that have to be actuated on SPHERES.MPC implementation on SPHERES

Block diagram and data flow
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Figure 7.7: Block diagram and data flow of the MPC on-line operations.

MPC implementation on SPHERES

Time schedule

� ∆test: time interval to estimate position and velocity of the SPHERE satellite w.r.t. the Capture Mechanism;

� ∆ttx CPT -> MAT: transmission delay from the Capture Mechanism to Matlab;

� ∆tMPC: time interval to solve the MPC problem: forward propagation, QP data updating, QP solver, control sequence

updating;

� ∆ttx MAT -> SPH : transmission delay from Matlab to the SHERES satellite.

tk+f
∆t ∆

∆tMPC delay

tk+2f

Ph.D. School in SCIENCES TECHNOLOGIES AND MEASURES FOR SPACE – CISAS – University of Padova (Italy)

ANDREA VALMORBIDA March  2013Test of MPC strategies on SPHERES testbed for the MoSR scenario

11

tk

tk+f
∆test

∆ttx CPT -> MAT

∆tMPC

∆ttx MAT -> SPH

must be > 0

time

time

time

Capture

Mechanism

Control

Station

SPHERES 

satellite

∆test

∆ttx CPT -> MAT

∆tMPC

actuation of uk+f, …, uk+2f-1computation of uk+f, …, uk+2f-1

tk+2f

...

Figure 7.8: Time schedule of the MPC on-line operations.
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7.4 Preliminary Simulation Results

In this section we evaluate the behavior of a MPC-based controller in executing the rendezvous

and capture maneuver, comparing its performance with a standard Proportional-Derivative (PD)

controller.

Two simulation environments were considered:

� the Matlab simulator, which is an ideal environment with no representative SPHERES prop-

erties, no sensor/actuator noises and without the attitude dynamics;

� the SPHERES simulator, which is a representative environment of the SPHERES test bed

with 6 degrees of freedom.

7.4.1 Matlab Simulator MPC vs Matlab Simulator PD

The initial dynamic state xi and the final or target dynamic state xf for this simulation are as

follows:

xi = [0.9m, 1m, 0.48m, 0m/s, 0m/s, 0m/s]T (7.3)

xf = [−0.75m, 0m, 0m, 0m/s, 0m/s, 0m/s]T m (7.4)

PD and MPC parameters are tuned in order to obtain comparable settling time for the position

error components profiles. Both MPC and PD parameters are listed in Table 7.1. Other parameters

used for this simulation are:

� control step ∆tctrl = 1 s;

� control acceleration constraints in all directions: umin = −10−2m/s2, umax = 10−2m/s2;

� no forward computation in MPC (see Subsection 7.3).

Simulation results for both MPC and PD controller are compared in the following figures:

� Figure 7.9: 3D position trajectory;

� Figure 7.10: 2D projection of the position trajectory on the yx and zx planes;

� Figure 7.11: position error components (current - reference) vs. time;

� Figure 7.12: velocity error components (current - reference) vs. time;

� Figure 7.13: control acceleration components vs. time;
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� Figure 7.14: cumulative ∆v requirement vs. time.

From these results you can see that the MPC total ∆v requirement is about 11% less than the PD

result, with similar settling times for all the position error components of both controllers. This is

due to MPC’s prediction capability and actuator saturation handling ability (see Figure 7.13).

.

.

.

Table 7.1: MPC and PD parameters - MPC vs PD in the Matlab simulator.

PD MPC

GkP 10−2[5, 8, 15] Gwy 10−5[1, 15, 15]T

GkD 10−1[5.00, 4.65, 6.40] Gwu 10−1[1, 1, 1]T

m 6

p 8m = 48

Figure 7.9: 3D Position Trajectory - Matlab Sim. MPC vs Matlab Sim. PD.
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endend

start

end

start

Figure 7.10: 3D Position Trajectory - Matlab Sim. MPC vs Matlab Sim. PD. Initial and final
positions are marked with a green circle and a magenta circle respectively.
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Figure 7.11: Position components error vs. time - Matlab Sim. MPC vs Matlab Sim. PD.
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Figure 7.12: Velocity components error vs. time - Matlab Sim. MPC vs Matlab Sim. PD.
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Figure 7.13: Control acceleration components vs. time - Matlab Sim. MPC vs Matlab Sim. PD.
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Figure 7.14: Cumulative ∆v requirement vs. time - Matlab Sim. MPC vs Matlab Sim. PD.

7.4.2 SPHERES Simulator MPC vs SPHERES Simulator PD

The initial dynamic state xi and the final or target dynamic state xf for this simulation are as

follows:

xi = [0.9m, 1m, 0.48m, 0m/s, 0m/s, 0m/s]T (7.5)

xf = [−0.75m, 0m, 0m, 0m/s, 0m/s, 0m/s]T m (7.6)

PD and MPC parameters are tuned in order to obtain comparable settling time for the position

error components profiles. Both MPC and PD parameters are listed in Table 7.2. Other parameters

used for this simulation are:

� Control step ∆tctrl = 1 s;

� Control acceleration constraints in all directions: umin = −10−2m/s2, umax = 10−2m/s2;

� No forward computation in MPC (see Subsection 7.3).

Results for this preliminary test are shown in Figures 7.15 - 7.17. As you can see from these results,

the MPC total ∆v requirement is about 13% less than the PD one, with similar settling times for

all the position error components of both controllers.
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Note also that SPHERES simulation results were obtained with same initial and final system

states and very similar PD gains and MPC weights as Matlab simulator results. A delayed behavior

both in position and velocity between Matlab and SPHERES simulators results for both PD and

MPC is observed (as expected).

We can conclude that also in a more representative simulation environment, i.e the SPHERES

simulator, a MPC-based controller has higher performances than a classical PD controller.

Table 7.2: MPC and PD parameters - MPC vs PD in the Matlab simulator.

PD MPC

GkP 10−2[5, 8.5, 19.1] Gwy 10−5[1, 15, 15]T

GkD 10−1[5.7, 4.65, 6.6] Gwu 10−1[1, 1, 1]T

m 6

p 8m = 48
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Figure 7.15: Position components error vs. time - SPHERES Sim. MPC vs SPHERES Sim. PD.
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Figure 7.16: Velocity components error vs. time - SPHERES Sim. MPC vs SPHERES Sim. PD.
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7.5. SPHERES TEST RESULTS 113

7.5 SPHERES Test Results

7.5.1 SPHERES Test Plan

The SPHERES test plan is presented in Table 7.3. As you can see, Test 1 is used for both

debugging C and Matlab codes and evaluating the MPC time delay, i.e. MPC computing time

and data transmission between SPHERES and Matlab (see Figure 7.8 also). The performance of

MPC and PD controllers in executing the MOSR rendezvous and capture maneuver are evaluated

running Test 2 and Test 3, respectively.

Initial position and velocity, final position and other parameters for Test 2 and Test 3 are listed

in Table 7.4.

.

.

.

Table 7.3: SPHERES Test Plan.
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DESCRIPTION 

1 1 70 
MPC time delay evaluation. 

Position and velocity vectors are taken from the global metrology system 

2 

 
 Rendez-vous and capture maneuver using an MPC controller.  

Position and velocity vectors are taken from the global metrology system.  

1 40 state estimator convergence 

2 80 initial position acquisition 

3 1 initial state acquisition 

4 100 rendez-vous and capture maneuver 

5 30 station keeping 

3 

 
 Rendez-vous and capture maneuver using an PD controller.  

Position and velocity vectors are taken from the global metrology system.  

1 40 state estimator convergence 

2 80 initial position acquisition 

3 1 initial state acquisition 

4 100 rendez-vous and capture maneuver 

5 30 station keeping 
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Table 7.4: Test 2 and Test 3 parameters.

Test 2 parameters

FF pi [−0.4737, −0.1611]T m

FF vi [−3.15, 0.13]T 10−3m/s

FF pf [0.7, 0.4]T m

∆tctrl 1 s

FFwy [ 3 · 10−5, 1.35 · 10−1]T

FFwu [0.1, 0.1]T

m 6

p 8Hu = 48

umax 4 · 10−3m/s2

umin −4 · 10−3m/s2

Test 3 parameters

FF pi [−0.5035, −0.1213]T m

FF vi [−0.0008, 0.0011]T 10−3m/s

FF pf [0.7, 0.4]T m

∆tctrl 1 s

FFkp [0.08, 0.22]T

FFkd [1, 1.674]T

7.5.2 Test 1 - MPC computing time evaluation

The MPC computing time is between 300 ms ad 600 ms with active constraints on both the output

variable and the control variable.

7.5.3 Test 2 - MPC rendezvous maneuver

Test results are shown in the following figures:

� Figure 7.18: computing time to solve the MPC problem in Matlab; notice that the MPC

problem for this test is solved in less than 60ms with less than 20 iterations;

� Figure 7.19: 2D position trajectory, with initial position in blue and final position in green;

� Figure 7.20: position profiles;

� Figure 7.21: velocity profiles;

� Figure 7.22: control acceleration profiles;

� Figure 7.23: cumulative ∆v requirement profile.
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Figure 7.18: MPC computing time in Matlab - Test 2.
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Figure 7.19: MPC 2D position trajectory - Test 2.



116 CHAPTER 7. MPC FOR THE SPHERES MOSR SCENARIO

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5
Position error components time profiles

p x (
t)

 [m
]

Time [s]

 

 
SPHERES Flat Floor test−bed
Matlab simulator

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

p y (
t)

 [m
]

Time [s]

 

 
SPHERES Flat Floor test−bed
Matlab simulator

Figure 7.20: MPC position components error vs. time - Test 2.
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Figure 7.21: MPC velocity components error vs. time - Test 2.
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Figure 7.22: MPC control acceleration components vs. time - Test 2.
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Figure 7.23: MPC Cumulative ∆v requirement vs. time - Test 2.
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7.5.4 Test 3 - PD rendezvous maneuver

Results for Test 3 are shown in Figures 7.24 - 7.28.
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Figure 7.24: PD position components error vs. time - Test 3.
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Figure 7.25: PD velocity components error vs. time - Test 3.
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Figure 7.26: PD 2D position trajectory vs. time - Test 3.
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Figure 7.27: PD control acceleration components vs. time - Test 3.
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Figure 7.28: PD cumulative ∆v requirement vs. time - Test 3.

7.5.5 Explanation of results

Both MPC and PD controllers are effective, since the final target position is reached with a small

final error. This steady-state error is mainly due to the friction between the air carriage and the flat

floor and the control force minimum pulse that the propulsion subsystem on board the SPHERES

satellite can actually apply. An Integral component in the control policy should fix that steady-state

error.

A noisy and delayed behavior between Matlab Simulator and SPHERES results for both PD

and MPC is observed. This may be due to the following causes:

� friction between the air carriage and the flat floor that impedes the SPHERES motion;

� noise of the SPHERES estimated state;

� because of a minimum pulse width, the control acceleration that is actually performed is

different from the computed one;

� two different control actuation schemes were used, PWC in Matlab and PWM in SPHERES;

� noise of the actuator system;

� time delay in actuating the control actions.



Chapter 8

FORMATION FLIGHT

HARDWARE SIMULATOR

8.1 Introduction

The final aim of this project is to design, realize and validate a representative facility, called SFF

Hardware Simulator, to carry out research activities in the fields of Satellite Formation Flying (SFF)

and Rendez-vous and Docking. This separated vehicles testbed will be a representative dynamic

environment on the ground for the development and verification of coupled position and attitude

relative Guidance Navigation and Control algorithms. The main requirements that led the facility

design are: fatefully representation of a satellite formation dynamics, easy configuration changes,

low cost, reliability and safety.

The SFF testbed is made up by two or more Spacecraft Simulators representing the units of a

satellite formation and a Control Station (laptop) (see Figure 8.1). Each Simulator has an Attitude

Module (AM) with three rotational degrees of freedom and a Translational Module (TM) with two

position degrees of freedom that translate on a glass plane using a low friction air cushion system.

A laptop is part of the facility too, and its functions are to boot-load the Simulators, to transmit

commands to the Simulators and to receive and store telemetry data.

At the moment of writing this thesis, only the AM is almost completed, while the TM is planned

to be developed in the future. The main features of the Attitude Module are described in Section

8.3 after a brief review of spacecraft simulators.

121
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SPACECRAFT SIMULATOR DEL CISAS-UNIPD 

Obiettivi

Spacecraft Sim #1

Spacecraft Sim #2

Esercitazioni per il corso di STRUMENTAZIONE AEROSPAZIALE – A.A. 2012-2013 27Andrea Valmorbida

Control 

Station

Figure 8.1: Formation Flight Hardware Simulator testbed overview.

Figure 8.2: The Attitude Module (AM) at the current sate of the system.
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8.2 Review of Spacecraft Simulators

Since the beginning of space exploration, ground-based testbeds have been used for both hardware

and software development and verification. There are many solutions to the problem of simulating

the space dynamics on the ground and some particular techniques are more applicable and repre-

sentative in one situation than another. A classification of spacecraft testbeds is shown in Table

8.1, and some advantages and disadvantages of the proposed solutions are listed in Table 8.2.

Table 8.1: Classification of spacecraft testbeds.

Air-bearing

Tabletop

Umbrella

Rotational
Systems

Air-bearing Umbrella

Dumbbell

Ball-and-socketd

Ground-based
Testbeds

Spacecraft
Simulators

joints

Multiple
gimbals

Testbeds
Planar
Systems

Combined
SystemsSystems

Water
Tanks 

DropDrop 
Towers

Parabolic
Flights

On-orbit
Testbeds

Table 8.2: Advantages and disadvantages of some proposed spacecraft testbeds.

TESTBEDS PROS CONS

On-orbit Testbeds fully representative of operative conditions very expensiveOn-orbit Testbeds fully representative of operative conditions very expensive

Parabolic Flights
excellent microgravity siulation

expensive

microgravity last about 20 sParabolic Flights
quite easy to interact with the payload not possible to test payload in vacuum

or to study thermal cycles effects

good microgravity simulation hight viscous forces / torques
Water Tanks

good microgravity simulation

long lasting microgravity conditions

hight viscous forces / torques

need for a water resistant payload

Spacecraft Simulators
good microgravity simulation disturb forces / torques need to be mitigated

Spacecraft Simulators
very easy to interact with the payload partial motion of freedom
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In [83] Schwartz et al. provide an historical review of air-bearing spacecraft simulators. In that

paper, spacecraft simulators are grouped into three main categories: planar systems, rotational

systems and combination systems. Both in planar and rotational air bearings, pressurized air

passes through small holes creating a thin film or cushion between coupled moving sections. That

air film supports the weight of moving sections and, acting as a lubricant, reduces the friction

between the two sections of the bearing, allowing to obtain virtually torque-free rotational and

force-free translational motions.

Planar systems have one rotational and two translational Degrees Of Freedom (DOF) and are

generally used for validating both formation flight and rendezvous and docking scenarios control

strategies. Examples of planar air bearing systems are listed in the following. The Stanford

University’s Aerospace Robotics Laboratory have several air-bearing test facilities used both to

study formation flying issues and for testing on-orbit construction, servicing, assembly and repair

maneuvers with the use of a robotic arm. Also the University of Victoria has a planar air bearing

system hosting a single robotic arm that is used to investigate how optimal joint trajectories can be

found with the aim of minimizing vibration excitation within the arm elements during a designated

maneuver.

The MIT Space Systems Laboratory (SSL) developed the SPHERES (Synchronized Position

Hold, Engage, and Reorient Experimental Satellites) project that can be used in two main testbed

configurations. The Flat Floor and the Glass Table test facilities at the SSL are planar systems with

three degrees of freedom, while the six degrees of freedom system flies on board the International

Space Station in a fully representative microgravity environment.

Rotational air bearing systems provide attitude freedom about three axes. A completely free

3 DOF attitude motion is difficult and expensive to achieve. Full freedom of spin in the yaw axis

can be obtained adopting a Tabletop- and Umbrella-style configuration (panels A and B in Figure

8.3), but pitch and roll motion are typically constrained to angles of less than 90 deg. Tabletop and

Umbrella systems have been developed by many agencies and research centers including the NASA

Goddard Space Flight Center, the NASA Jet Propulsion Laboratory, the Utah State University

and the School of Aerospace Engineering at the Georgia Tech.

Another possible configuration that greatly reduces structural interference to the rotational

motion is the Dumbbell configuration (panel C in Figure 8.3). Using two opposing arms, the

mounting area is placed away from the center of rotation, thereby achieving unconstrained motion

in both the roll and yaw axes. Examples of dumbbell configuration systems are the Virginia Tech’s

Whorl-II (panel A in Figure 8.4), the University of Michigan’s Triaxial Air Bearing Testbed (panel

B in Figure 8.4) and the Virginia Tech’s Distributed Spacecraft Attitude Control System Simulator.

In Combination systems both planar and rotational air bearings are used to obtain up to
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six completely unconstrained degrees of freedom simulators. Combination spacecraft simulators

have been developed by the NASA Marshall Space Flight Center’s Flight Robotics Laboratory

and the Lawrence Livermore National Laboratory with the ability to perform precision maneuvers

autonomously, including rendezvous, inspection, proximity operations, formation flying, docking,

and servicing. Figure 8.5 shows the Formation Control Testbed developed by JPL-CalTech.

Figure 8.3: Tabletop configuration (panel A), Umbrella configuration (panel B) and Dumbbell
configuration (panel C). Tabletop and Umbrella systems provide full freedom about the yaw axis,
while the Dumbbell systems provide full freedom about yaw and roll axes.

A) B)

Figure 8.4: Virginia Tech’s Whorl-II (panel A) and University of Michigan’s Triaxial Air Bearing
Testbed (panel B).
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Figure 8.5: JPL - CalTech Formation Control Testbed.

8.3 Attitude Module On Board Subsystems

The Attitude Module (AM) is equipped with 5 main subsystems that allow it to execute an au-

tonomous attitude maneuver:

1. the Structural Subsystem;

2. the Propulsion Subsystem;

3. the Attitude Determination and Control Subsystem (ADCS);

4. the Electric and Power Subsystem;

5. the Communication and Data Handling Subsystem.

These on board subsystems are briefly described in Subsections 8.3.1 - 8.3.4.

The brain of the AM is a micro-controller that manages information coming from sensors and

computes the control torque that the actuators (thrusters) have to perform in order to autonomously

execute a given attitude maneuver. Furthermore, the AM can interact with the Control Station

(laptop) that transmits commands and receives house keeping and telemetry data about the attitude

maneuver under execution. Both the on board and the control station software architecture are

presented in short in Subsection 8.3.6.
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8.3.1 Structural Subsystem

The AM’s structure is made up by the following main components (see Figure 8.6):

� a Three-Joints System on which the AM is mounted and that allows the AM to rotate around

any axis;

� an aluminium framework made of 22 Bosh Rexroth 20 mm x 20 mm aluminium profile beams

with 4 lateral T-grooves, joined together with stainless steel quick connectors;

� 4 upper and lower main rectangular plates to support the other components of the system;

� 16 reinforcing lateral corner plates;

� 4 reinforcing lateral rectangular plates;

� 12 right-angle brackets for the thrusters support.

All plates are connected to the frame with a fastener / T-nut system.

three-joints system

aluminium
frame main rectangular plates

reinforcing lateral
corner platesp

reinforcing lateral
rectangular plates

right angle
bracketsbrackets

Figure 8.6: Main components of the Attitude Module’s Structure.
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More precisely, the Three-Joints System (see Figure 8.7) is made of three consecutive rotational

cylindrical joints1 whose axes are orthogonal and meeting in a rotational center. This systems of

joints is designed so that the first joint allows a rotation about the yaw axis coinciding with the

vertical axis, the second one allows a rotation with respect to the pitch axis and the third one

allows a rotation about the roll axis. Thank to this joint system, the AM can freely rotate around

the yaw direction, while both roll and pitch angles are limited in the range [−40°, +40°].

In nominal conditions, i.e. with no friction and in a perfect balancing condition, the AM’s center

of mass coincides with the Three-Joints System rotational center allowing to have a platform whose

attitude dynamics does not depend on torques due to gravity but only on control torques.

integral with the 
AM’s framework Roll axis support

Pitch QE

YAW Roll QE

PITCH

ROLL

slip ring

Pitch axis support

Yaw axis support

Yaw QEintegral with the
External Reference Frame

Figure 8.7: The Three-Joints System with roll axis in blue, pitch axis in green and yaw axis in
violet.

8.3.2 Propulsion Subsystem

The architecture of the Propulsion Subsystem is shown in Figure 8.8. As you can see from this

figure, the on board Propulsion Subsystem consists on a high-pressure side at 200 bar maximum

and a low-pressure side at 10 bar. On the high-pressure side of the system, the main components

1Realized using Al7075 and Ti-8Mn components to achieve low mass and stiffness at the same time and preloaded,
low friction, spherical SKF bearings.
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include (see Figure 8.9 also):

� two Luxfer composite (aluminium, carbon fiber and glass fiber) tanks with a total capacity

of 2 Lit. for the air storage at 200 bar maximum;

� a fill & vent system for the pneumatic circuit loading, consisting of a single-end shutoff (SESO)

quick connector and a first ball valve plus a second ball valves for manual emptying;

� an Air Liquide pressure-reducing regulator that reduces the air pressure from the storage level,

i.e. high pressure at 200 bar maximum (red circuit in Figure 8.8) to the nozzle operative level,

i.e. low pressure at 10 bar (blue circuit in Figure 8.8);

� some Swagelok stainless steel pipe fittings to connect the high-pressure components.

The low-pressure side of the subsystem includes:

� two 6-ways manifolds that divide the air flow coming from the pressure regulator outlet

supplying the 12 thrusters;

� 12 thrusters to actuate the control torques;

� some variable size plastic pipes to connect the elements of the low-pressure pneumatic circuit.

ON BOARD PROPULSION SUBSYSTEM External Refueling System

tank 1 tank 2

b
max p2max p2

p1

max 200 bar

1 pressure

p2

pressure
regulator

fill & vent 
system

p2

pressure 
gaugequick

connector

y

pressure
regulator

p2

ball
valve

p

p3

pressure 
transducer 2

max 200 bar  10 bar

ext x int [mm]

6 t tp3 1 3.2 x 1.7 steel pipe

2 6 x 4  plastic pipe 

3 4 2 7 plastic pipe

6 outputs
manifold

thrusters 3

3 4 x 2.7 plastic pipe

Figure 8.8: Architecture of the on board Propulsion Subsystem and the External Refueling System.
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In more detail, each thruster is composed of an UNIVER U1 electro-valve and a converging

nozzle. The electro-valve is a solenoid valve that opens when powered at 12-24 VDC, letting the air

flow pass through the nozzle. The nozzle is made of a M5 screw with a central 0.75mm diameter

hole.

The 12 thrusters firing axes are placed in order that using four thrusters it is possible to actuate

a positive or negative torque only around each of the xB, yB or zB AM’s Body axes (nominally).

Combining the actuation of the 6 thruster couples is then possible to actuate a control torque

around any axis in the AM’s Body Reference Frame.

A PPE-P10A pressure transducer is used for monitoring the pressure level at the low pressure

side of the pneumatic system.

fill & vent

first composite tank

hi hfill & vent 
system

high pressure 
manometer

to pressure -
reducing regulator

from second
composite tank

Figure 8.9: Part of the High Pressure Pneumatic Circuit.

8.3.3 ADCS

The ADCS consists on attitude sensors that provide an estimation of the AM’s orientation with re-

spect to a Local Vertical - Local Horizontal (LVLH) External Reference Frame and electronic boards

that perform the control action computation and properly command the Propulsion Subsystem for

their actuation.

Each simulator is equipped with two kind of attitude sensors:

� 3 Avago Technologies HEDM 5500- B13 rotational optical incremental Quadrature Encoders

(QE), that are used to measure the rotation of the joints with a resolution of 0.09°, thus

directly providing Roll, Pitch and Yaw angles;
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� a Microstrain 3DM-GX1 Inertial Measurement Unit (IMU), that provides an estimation of

the AM attitude and attitude rate with respect to the External Reference Frame.

Since the attitude accuracy achievable with QE’s is by far better than the one achievable with the

IMU, the QE angular measurements are used as a reference to evaluate drift and bias on the IMU

measurements.

The Guidance, Navigation and Control (GNC) functions are performed by a Digi International

Rabbit micro-controller. At the moment the AM is equipped with a Rabbit RIO Prototyping Board

with a Rabbit RIO chip for the QE’s reading and a Rabbit Core Module 4510W with a Rabbit

4000 29.49 MHz micro-controller (see Figure 8.10).

Custom electronic was developed to interface the avionics with both the propulsion subsystem

(Thruster Command Board) and the laptop (RS-232 transceiver).

Rabbit Core Module 4300

Thrusters command board Rabbit RIO 

Prototyping Board
Rabbit Core Module 4510W

Figure 8.10: Electronic boards assembly.

8.3.4 Electric and Power Subsystem

The electrical power is provided by 2 rechargeable 12 VDC Ni-Cd battery connected in series. A

custom board with DC/DC converters (see Figure 8.11) allows to regulate the electrical power from

the battery voltage level to the operative voltage level required by the all on board subsystems,

including sensors, the Micro-Controller Board and the Thruster Command Board. The architecture

of the current on board Electric and Power Subsystem is showed in Figure 8.12.
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external power supply plug

DC/DC converters on/off and power 

source switchers

Figure 8.11: Custom Electric board assembly.
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Figure 8.12: Electric and Power Subsystem and on board avionic elements communication.

8.3.5 Communication & Data Handling Subsystem

In the final configuration of the test bed, both the Spacecraft Simulators and the laptop use a

Zeeg-Bee module to communicate each other in a peer-to-peer network. Two separate channel are

planned to be used: (1) a Simulator-to-Simulator channel will be used to exchange information

between the units flying in formation, allowing to simulate different formation flying architecture
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(see Chapter 2); (2) a Simulator-to-Laptop channel will be used for the transmission of commands

from and telemetry data to the laptop control station. In the current state of the project, the

wireless communication is not yet available, and only the Simulator-to-Laptop channel has been

realized with the AM’s micro-controller communicating by wire with the laptop using a RS-232

transceiver and the yaw slip ring. Figure 8.12 shows the communication links between the on

board avionic elements and the laptop

The communication protocol is based on variable size packets whose structure consists of a 5-

byte header, a n-byte data payload or message and a final 2-byte checksum (see Figure 8.13). The

header carries information about the transmitted data payload: (1) SOH is the Start Of Header

byte equal to 1; (2) FROM ID is the transmitting unit ID; (3) TO ID is the receiver unit ID; (4)

MSG ID is the data message ID; and (5) COMPL ID is the 255 complement of the 8-bit checksum

of FROM ID, TO ID and MSG ID2. Each unit exchanging data, i.e. each Simulator and the Laptop

control station, as long as each message, has a unique ID, and each message ID is associated to

a data payload with a pre-defined number of bytes and content. SOH and COMPL ID are used

by the decoding algorithm to identify a new incoming data packet. The final 2-byte checksum

is the 16-bit checksum of the n bytes message, with the Least Significant 8 Bits as first element

(CHK LSB). The final checksum is used for error detection in the transmitted data.

SOH FROM_ID TO_ID MSG_ID COMPL_ID CHK_LSB CHK_MSB…

5‐byte HEADER FINAL 16‐bit CHECKSUMn‐byte DATA PAYLOAD or 
MESSAGE

Figure 8.13: Data Packet Structure with an Header, a Data Payload or Message and a Final
Checksum.

Messages exchanged between units can be divided into 5 types: (1) an Initiate Link Message is

used to initialize the communication between units; (2) Acknowledge Messages are used to ensure

that commands from the laptop (or a chief Spacecraft) are received and executed synchronously

between multiple units3; (3) Data Request Messages are used to request the transmission, either

multiple or single, of some telemetry or housekeeping data; (4) Data Messages are used to transmit

telemetry, housekeeping and GNC data; (5) Command Messages are used to command the execution

of a specific operation (except for Data Messages transmission).

All data are transmitted as signed or unsigned 8-, 16- or 32- bit integers, depending on the

2A k-bit checksum is a simple unsigned sum of the unsigned bytes, truncated to k bits.
3Acknowledge messages are also very useful for debugging.
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variability range of each data. For example, the current on board time is transmitted as a unsigned

32-bit integer, while almost all float values are first rescaled and then transmitted as a truncated

signed 16-bit integer, with a truncation error that is less than the float value accuracy. This allow

to reduce data packets size without significantly degrade data accuracy.

8.3.6 On Board and Control Station Software

The on board software is written in Dynamic C, which is a C-based language developed by Digi

International that allows to easily and efficiently implement multitasking operations, i.e. a sequence

of operations that can appear to execute in parallel. Multiple tasks4 can therefore be executed

almost in parallel at a different frequency or priority. For example, GNC tasks, which have in

general the highest priority, are executed at an higher frequency that housekeeping tasks.

The on board Dynamic C code is organized into 6 main libraries, one for each main on board pro-

cess: (1) Sensors (SENS); (2) Position and Attitude Determination System (PADS); (3) Controller

(CTRL); (4) Propulsion (PROP); (5) Communication (COMM); and (6) Housekeeping (HKP). The

process Controller includes Guidance and Control. Also, each library includes two types of func-

tions: (1) Initialization Functions, for the library data structures and variables (re)initialization;

and (2) Update Functions, either periodic or event-driven executed, which are executed to update

the library variables, such as current dynamic state updating or control action computation.

Figure 8.14 shows the main processes managed by the on board micro-controller. Two types

of processes are used. Periodic Interrupt Processes perform repetitive, time dependent operations

such as GNC operations or thrusters firing times setting. Event-driven background and GNC tasks

are used to implement not-time-dependent operations such as software system initialization when

the micro-controller is powered on, or formation flying mode changing when a collision is detected.

Some features, as for example data transmission, are both periodic and event-driven, since telemetry

data are transmitted at a given frequency while warning messages are transmitted only when some

kinds of events occur. Periodic GNC operations are synchronized, since it is very important that

control actions are computed using updated data sensors, as depicted in Figure 8.15. Also, SENS

and PADS processes can be run at a frequency, 1/∆tSENS and 1/∆tPADS respectively, which is

(at least) equal or higher than the CTRL and Propulsion processes frequency 1/∆tctrl.

The on board operations are divided into three hierarchical levels: programs, tests, and ma-

neuvers [84]. Each program is associated with a particular executable file (with an assigned ID)

consisting of one or more stand alone experiments or tests. Each test may in turn consists of a linear

or non-linear sequence of maneuvers, which are convenient tools to separate a complex motion in

a sequence of simpler movements.

4A task is defined as a pre-defined sequence of operations.
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In order to simplify the implementation of the algorithms being tested, a set of primary interface

functions to the existing on board software were developed. These functions are associated both to

periodic and to event-driven processes defined by the guest scientist, and have pre-defined inputs

and outputs that the scientist can use to implement his own experiment.

.
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system

Propulsion InterruptsPropulsion InterruptsPropulsion Interrupt processes

Periodic GNC Interrupt processes

Metrology
system

SENS PADS CTRL

Communication processes
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Other 
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Figure 8.14: Micro-controller main processes and data flow.
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8.4 Matlab Software Simulator

We developed a Matlab Software Simulator with the aim of preliminarily simulate both translational

and attitude dynamics of the Spacecraft Hardware Simulators flying in formation and test some

formation control strategies. As done in the Formation Flight Matlab Simulator described in

Chapter 4, we adopted an Object Oriented Programming (OOP) mainly for its characteristics of

modularity, extensibility and re-usability. The same classes can indeed be used for each Hardware

Simulator flying in formation. The software architecture of each unit flying in formation is shown

in the block diagram of Figure 8.16, which refers only to the attitude dynamics. In this diagram,

q is the quaternion vector, ω is the angular velocity vector, τ represents a torque vector, φ, θ and

ψ are the roll, pitch and yaw angles, respectively, and t is the current time.

GUIDANCE

CONTROL

NAVIGATION

Thrusters

Quadrature Decoders

ATTITUDE
DYNAMICS

PROPAGATOR

q , ω τcalc τcmd

q , ωφ̃ , θ̃ , ψ̃

t

q̂ , ω̂

τdist

Figure 8.16: Software architecture of the attitude dynamics of the Matlab Software Simulator for
the SFF hardware simulator.

At the moment of writing this thesis, the Matlab Software Simulator allows to simulate the

AM’s attitude dynamics with 3 DOF and control its orientation using two types of controllers. The

first controller is a 1 DOF MPC both in its on-line and explicit formulations, as described in details

in Chapter 3. The second controller is a 1DOF PID controller modified with a proportional and

a derivative kick avoidance scheme and and anti-reset windup strategy, as mentioned in Chapter

3. In a discrete-time system, the control action is computed at time instants tk’s with a frequency

fctrl = 1/∆tctrl. We therefore implemented a discrete time version of the previous PID control

law using a forward finite differences method for the integral term discretization and a backward

differences method for the derivative term discretization. The discrete-time version of the PID

controller is then:
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u(tk) =

[
Kp β +

(
N Kp Td

N ∆tctrl + Td

)
γ

]
r(tk) +

[
−Kp −

(
N Kp Td

N ∆tctrl + Td

)]
y(tk)+

+

[
Kp ∆tctrl

Ti
−
(

N Kp Td
N ∆tctrl + Td

)
γ

]
r(tk−1) +

[
−Kp ∆tctrl

Ti
+

(
N Kp Td

N ∆tctrl + Td

)]
y(tk−1)+

+ I(tk−1) +
∆tctrl
Tt

[u′(tk−1)− u(tk−1)] +

[
Td

N ∆tctrl + Td

]
+D(tk−1)

(8.1)

The SFF team is moving toward quaternion-based PID and MPC control schemes to control

the AM in 3 DOF.

The Guidance module implements pseudospectral optimal control methods used to find attitude

reference trajectories. These methods can be used in general to solve optimal control problems by

approximating the time-dependent state and control variables as a weighted sum of Legendre or

Chebyshev polynomial basis. This allows to discretize the differential equations and continuous con-

straints of the optimal control problem over a grid of orthogonal collocation nodes, thus obtaining

a set of algebraic equations. The integration in the cost functional is approximated by well known

Gauss quadrature rules, consisting of a weighted sum of the function values at the discretization

nodes. The original optimal control problem is therefore directly discretized to formulate a nonlin-

ear programming problem, which is then solved numerically using a sparse nonlinear programming

solver.

Pseudospectral methods main features include their exponential (or spectral) rate of conver-

gence, which is faster than any polynomial rate, and a good accuracy achievable with relatively

coarse grids [85]. Pseudospectral techniques have emerged over the last 15 years as important com-

putational methods for solving optimal control problems in many fields, including space. NASA

used such methods for generating real time trajectories for a spacecraft maneuver [86].

8.5 Experimental Activities

In order to test some attitude control strategies, we needed to carry out the following preparatory

experimental activities using a torque system with a steel wire as sensitive element (see Table 8.3).

TEST 1 Estimation of the rotational elastic stiffness k of the wire; using a Torque Pendulum

system, the wire rotational stiffness k is estimated from measurements of the pendulum

free oscillation period T .

TEST 2 Estimation of the force that an AM’s thruster can perform; using a Torque Balance

system, the thrust force S is estimated from the equilibrium angle θeq at which the



138 CHAPTER 8. FORMATION FLIGHT HARDWARE SIMULATOR

torque due to a couple of thrusters is balanced by the elastic torque due to the wire.

TEST 3 Characterization of the AM’s inertia properties; using a Torque Pendulum system, the

AM’s moment of inertia around the wire axis is estimated from measurements of the

pendulum free oscillation period T . Repeating this test for at least 6 independent AM’s

axes, it is possible to obtain an estimation of the AM’s inertia matrix.

Each test with main experimental results will be briefly described in the following subsections. For

a more detailed description see [87].

Table 8.3: Experimental activities conducted.

Test Estimated quantity Used system Measured quantity

1 wire rotational stiffness, k Torque Pendulum free oscillation period, T

2 thrust force, S Torque Balance equilibrium angle, θeq

3 AM’s inertia properties Torque Pendulum free oscillation period, T

8.5.1 Torque Wire Characterization

The final aim of this test is to estimate the rotational stiffness of the wire that is the sensitive element

of the systems we used for the next two tests. For this purpose, we built a Torque Pendulum system

with well known moment of inertia about the wire axis, I, and with the center of mass along the

wire axis, as shown in Figure 8.17, using components with well known mass and geometry. Making

the Pendulum oscillate around the equilibrium position and taking several measurements of its

free oscillation period T , the wire rotational elastic stiffness k can be computed according to the

following formula:

k = 4π2 I

T 2
(8.2)

To measure the oscillation period of the pendulum, we used two kind of systems. In the first

one, called photo-resistance system, a laser is mounted on the Torque Pendulum and a photo-

resistance is placed along the trajectory that the laser follows during the pendulum oscillation.

The photo-resistance is connected in series with a 1 kΩ measure resistance Rm and integrated into

the electronic circuit shown in Figure 8.17. An Arduino UNO board connected to a laptop is used

to measure the voltage Vm between the measure resistance ends over time. When the laser ray

passes over the photo-resistance, the electric resistance of the last one decreases, resulting in a peak

on the measured voltage Vm (see Figure 8.18). A Matlab program was then used to evaluate the
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oscillation period T as the time period between two corresponding peaks in the acquired voltage

time profile.
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Figure 8.17: Torque wire characterization experimental setup with the photo-resistance based ac-
quisition system.

In order to validate the photo-resistance method, we used a second method, called the web

cam method. In this method, we used a web cam to record the laser ray passage over a reference

point Pr marked on a white screen. We then manually evaluated the time instants tk when the

laser passed over Pr on the screen, calculating the pendulum oscillation period T as difference of

corresponding couples of tk’s.

Several tests were conduced using both the photo-resistance and the web cam methods with a

maximum angular amplitude of oscillation between 30° and 140° and a wire length of lw,1 = 956mm.

Tests results are listed in Table 8.4 and summarized in Figure 8.19.

The expected value of k for a steel wire with radius r = 1mm ± 0.02mm (2%), length lw,1 =

956mm± 1mm (0.1%) and modulus of rigidity G = 75GPa± 6GPa (8%) can be computed as:

k =
π r4G

2 lw,1
= 0.123

N m

rad
± 0.014

N m

rad
(14%) (8.3)
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T T

T T

Figure 8.18: Typical Vm time profile.

Table 8.4: Test results of the photo-resistance method vs. the web cam method.

Test photo-resistance web cam

# θmax [°] T̄ [s] σT [s] T̄ [s] σT [s]

1 30 4.69 0.02 4.68 0.02

2 40 4.69 0.02 4.68 0.02

3 90 4.70 0.02 4.69 0.02

4 100 4.70 0.02 4.69 0.02

5 130 4.71 0.02 4.70 0.02

6 140 4.71 0.02 4.71 0.02
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Figure 8.19: Test results of photo-resistance vs. web cam methods.
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We estimated a Torque Pendulum moment of inertia about the wire axis of I = 6.07·10−2kgm2±
4 · 10−4 kgm2 and a free oscillation period T = 4.70 s± 0.02 s. Using Equation 8.2, the rotational

elastic stiffness of the wire k results:

k1 = 0.109
N m

rad
± 0.001

N m

rad
(1σ) (8.4)

where the uncertainty of k1 is computed with the following Kline-McClintock formula:

ik =
4π2 I

T 2

√(
iI
I

)2

+ 4

(
iT
T

)2

(8.5)

iIand iT are the uncertainties of I and T respectively. The relative uncertainty of k is ik,rel =

1 % (1σ).

Analyzing the experimental results we can state that measurements of T acquired with different

θmax and with the two different methods previously described are consistent, since there exist a band

between 4.69 s and 4.70 s which is common to all the measurements error bands. We can therefore

exclude systematic error intrinsic to both methods. The photo-resistant method has therefore been

tested and it was used in the next two tests since simpler and more automatable than the web cam

method. We can also conclude that the wire torque stiffness does not significantly depend on the

maximum angular amplitude of oscillation if θmax < 140°, since the mean value of T stays within

the root mean square of each measurement.

The experimental value of k1 is also consistent with the expected theoretical value computed

in Equation 8.3. We conduced further tests setting the length of the wire to lw,2 = 935mm

by changing the wire length tightened between the two clamps. Experimental results gave us

k2 = 0.111Nm/rad, which is consistent with the previous experimental result k1 since k1lw,1 =

k2lw,2 = π r4G/2 = const = 0.104Nm2/rad.

8.5.2 Thrust Force Estimation

The objective of this second test is to estimate the thrust force performed by the AM’s thrusters.

We therefore built a Torque Balance system (see Figure 8.20) with a vertical torque wire (the same

one we characterized in Test 1), a couple of AM’s thrusters placed on an horizontal profile beam

at a distance b/2 from the wire, two lasers at the ends of the profile beam, a pneumatic circuit

attached under the beam (similar to the one mounted on board the AM) to supply thrusters, a

balancing system to place the center of mass of the system along the wire axis, and a goniometer

with an angular resolution of 0.5° to detect the angular position θ of the Torque Balance.

When the couple of thrusters are powered on, the Torque Balance system is in an equilibrium

condition with θ = θeq when the torque generated by the couple of thrusters τthr is balanced by
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the elastic torque due to the wire τw:

τthr = S b = τw = k θeq (8.6)

Taking measurements of the equilibrium angle θeq with known k and b, it is possible to estimate

the thrust force as:

S =
k θeq
b

(8.7)
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Figure 8.20: Thrust force estimation experimental setup.

To characterize the AM’s thrusters in terms of thrust force as a function of the total pressure

incoming the nozzle, we conduced several tests measuring the Torque Balance equilibrium angle θeq

for given values of the total pressure in the range 1 bar - 10 bar. The total pressure incoming the

nozzle was set by adjusting the pressure-reducing regulator and measured using a Rabbit RCM4300

with an on board A/D converter. We also measured the overshoot angle θos of the Torque Balance

dynamic response to a step torque applied by the thrusters couple at the initial resting condition.

Indeed, for a very low damping system, θos is almost twice θeq.
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Table 8.5: Experimental results of the AM’s thrusters characterization.

Test # p0 [bar] θeq [°] θos [deg] S [N ] (1σ)

1 1.7± 0.1 6.0± 0.5 12± 1 0.028± 0.002

2 2.6± 0.1 15.0± 0.5 29± 1 0.070± 0.002

3 4.5± 0.1 32.5± 0.5 63± 1 0.151± 0.003

4 6.4± 0.1 49.5± 0.5 97± 1 0.230± 0.003

5 8.3± 0.1 67± 0.5 132± 1 0.311± 0.004

6 9.2± 0.1 76± 0.5 148± 1 0.353± 0.004

7 9.7± 0.1 82± 0.5 158.5± 1 0.380± 0.004

8 9.7± 0.1 81.5± 0.5 158± 1 0.378± 0.004

The expected S - p0 profile is linear, as stated by the following formula that is valid for an

isoentropic nozzle with sonic flow conditions at the exit area Ae:

S =

{[(
2

k + 1

) k
k−1

+ k

(
2

k + 1

) k+1
2(k−1)

]
p0 − pa

}
Ae (8.8)

where pa is the ambient pressure outside the nozzle and k = 1.4 is the air specific heat ratio.

Experimental results are listed in Table 8.5 and shown in Figures 8.21 and 8.22. The θos

uncertainty is greater than the θeq one since θos is measured in a dynamic condition and consequently

more sensitive to lateral oscillations that were easily reduced by hand in static conditions as for

the θeq acquisitions.

The experimental profile of S as a function of p0 is linear with good accuracy for 2 bar ≤ p0 ≤
10 bar, as confirmed by the following results of a least squares linear regression:

S(p0) = 0.0435
N

bar
p0 − 0.0457 (r > 99%) (8.9)

where r is the linear correlation coefficient of the two variables and p0 is in bar.

We can therefore conclude that, when supplied with air at the operative total pressure p0,thr =

10 bar, the AM’s thrusters can perform a thrust force of:

S = 0.389± 0.007N (2σ) (8.10)

The force performed by an AM’s thruster is estimated with a relative uncertainty iS,rel =

1.80 % (2σ).
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Figure 8.21: Experimental results of: (a) θeq vs. p0 in blue, and (b) θos vs. p0 in red.
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8.5.3 Inertia Properties Determination

The aim of this last experimental activity is to estimate the AM’s inertia tensor in the Body

Reference Frame. As described in [88], different methods for the inertia tensor identification are

available. Torsional or torque pendulum methods can be used to estimate the moment of inertia

about a specified rotation axis passing through the system center of mass. The system under

test oscillates about the rotation axis by means of a restoring torque generated by springs (or an

equivalent system). The moment of inertia with respect to the rotation axis can be calculated from

the measured oscillation period (or frequency) if the rotational spring stiffness is known. When

the last quantity is not known or is not easy to estimate, a relative method can be adopted. This

method consists on adding an additional known mass to the test system and the moment of inertia

of the last one, I1, is calculated using the measured oscillation frequencies of two tests performed

with the unmodified an modified test system, f1 and f2 respectively:

I1 =
I0 f

2
2

f2
1 − f2

2

(8.11)

where I0 is the moment of inertia of the additional mass about the given rotation axis.

At least six tests with different specified rotation axes are in general needed in order to identify

the complete inertia tensor, since in a non principal reference frame the inertia tensor is symmetric

with 6 independent components. The torsional pendulum method is safe, simple experimental setup

and software are needed and the procedure is well approved in industry. The skill requirements of

the testing personal is basic (once the procedures and/or software needed have been identified and

verified). However, time requirements are high, since no multiple moment of inertia identification

is possible simultaneously. As stated in [88] a high accuracy of ±(0.5− 1.5)% can be achieved.

Other methods that can be used to this purpose involve multi-filar pendulum systems, e.g.

bi-filar or tri-filar [89], where the test system is suspended by wires and the restoring torque is

generated by the gravity.

We therefore built a Torque Pendulum in order to measure the AM’s moment of inertia about

at least 6 independent directions. The Torque Pendulum used for this third test is similar to the

one we used for test 1. We have indeed the wire in vertical position, an horizontal profile beam,

two lasers at the ends of the profile beam and some lateral profile beams to support the AM with

the required orientation. The AM is supposed to be balanced and with its center of mass along

the wire axis. Figure 8.23 depicts the experimental setup used to estimate the the AM’s moment

of inertia about its zB axis.
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Figure 8.23: Experimental setup used to estimate the AM’s moment of inertia about its zB axis.
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Table 8.6: Experimental results of the Torque Pendulum free oscillation period T used to estimate
the AM’s moment of inertia about its zB axis.

Test Number # samples mean value [s] standard deviation [s]

Empty Tanks

1 16 23.40 0.09

2 14 23.38 0.10

3 24 23.38 0.08

Filled Tanks

4 22 23.42 0.07

5 20 23.42 0.10

6 18 23.42 0.07

In this last test the wire rotational stiffness k is known. Taking therefore measurements of the

Torque Pendulum free oscillation period T with the photo-resistance setup, we can estimate the

moment of inertia of the rotating system Itot, i.e. the AM’s moment of inertia about its zB axis

IAM,zz plus the moment of inertia of the support system moving part Isupp:

Itot = IAM,zz + Isupp =
k T 2

4π2
(8.12)

Isupp can be either computed, if the support system is simple with well known geometrical and

mass properties, or experimentally evaluated using the same setup (without the AM) otherwise.

To evaluate the contribution of the air stored in the tanks to the AM’s inertia, we conducted

some tests with empty tanks and some others with tanks filled at 40 bar5. Experimental results

are listed in Table 8.6. As it can be seen, the contribution of the air mass within tanks to the

oscillation period T is less than the estimation uncertainty, and therefore negligible. Combining

results of Table 8.6 we estimated an oscillation period T = 23.41 s± 0.09 s. With a wire length of

lw,2 and therefore a wire rotational stiffness k = 0.111N m/rad ± 0.001N m/rad, we obtained the

following result:

Itot = 1.54 kgm2 ± 0.03 kgm2 (2σ) (8.13)

Since the support system used to estimate IAM,zz was very simple, Isupp was computed, obtain-

ing the following estimation:

5The maximum allowable pressure at the moment of test execution.
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Isupp = 0.171 kgm2 ± 0.008 kgm2 (2σ) (8.14)

The the AM’s moment of inertia about its zB axis results:

IAM,zz = 1.37 kgm2 ± 0.03 kgm2 (2σ) (8.15)

with a relative uncertainty iIAM,zz ,rel = 2.19 % (2σ).
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8.6 Test of Attitude Control Maneuvers

At the moment of writing this thesis, the AM was not fully operative for 3 DOF attitude control

tests. Therefore, this section presents some significant test results obtained with the AM in the

1 DOF configuration. A simple and light mechanical system was used to block the roll and pitch

motions allowing rotations only about the yaw axis that coincides with the AM zB axis.

8.6.1 Preliminary Tests and Kalman Filter Tuning

The aims of these preliminary tests are:

� to design a linear Kalman Filter (KF) with the use of the Matlab Simulator in order to obtain

a better estimation of the AM angular velocity about its zB axis, ω, with respect to a simpler

Incremental Ratio (IR);

� to test the KF performances in estimating ω in the real system, i.e. the Attitude Module

testbed.

8.6.1.1 The Kalman Filter

In linear systems with Gaussian process and measurement noises, the Kalman Filter, which was

first introduced by Rudolph E. Kalman in his paper [90], is the optimal closed form solution to

the recursive Bayesian estimation6. The purpose of the discrete-time Kalman filter is to provide a

state optimal estimate of discrete-time linear systems, which can be represented by the following

equations:

xk = Ak−1 xk−1 + Bk−1 uk−1 + Wk−1 wk−1 (8.16)

zk = Hk xk + Vk vk (8.17)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement vector, u ∈ Rp is the input or

control vector, A ∈ Rnxn is the state transition matrix of the system, B ∈ Rnxp is the control

matrix, H ∈ Rnxm is the measurement or observation matrix and W ∈ Rnxn and V ∈ Rmxm are

the state and measurement noise matrices, respectively. The state noise vector w ∈ Rn and the

measurement noise vector v ∈ Rm are assumed uncorrelated, zero-mean Gaussian and white noise.

6The most general form of optimal nonlinear state estimation.
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In mathematical notation we have:

wk v N (µw = 0, Qk)

vk v N (µv = 0,Rk)

cov(wk,wl) = E
〈
wk wT

l

〉
= Qk δ(k − l)

cov(vk,vl) = E
〈
vk vTl

〉
= Rk δ(k − l)

cov(wk,vk) = E
〈
wk vTk

〉
= 0

(8.18)

where Q ∈ Rnxn and R ∈ Rmxm are the process noise covariance matrix and the measurement

noise covariance matrix, respectively, and δ(k − l) represents the Kronecker delta. In addition, for

all k ≥ 0, xk is uncorrelated with vl for all l and xk is uncorrelated with wl for all l ≥ k.

The discrete-time Kalman Filter algorithm is shown in Figure 8.24, where x̂−k is the a priori

state estimate at step k given knowledge of the process prior to step k, x̂+
k is the a posteriori state

estimate at step k given measurement zk, and P−k and P+
k are the corresponding error covariance

matrices. The KF equations fall into two groups (as for the Bayesian estimator) resulting in a

predictor-corrector algorithm. The time update equations are responsible for projecting forward

in time the current state and the error covariance estimates to obtain the a priori estimates for

the next time step. The measurement update equations are responsible for incorporating a new

measurement into the a priori estimate to obtain an improved a posteriori estimate.

.

.

MEASUREMENT UPDATE - CORRECTION

(1) Kalman gain matrix calculation

Kk = P−
k HT

k (Hk P
−
k HT

k +Vk Rk V
T
k )

−1

(2) state estimate update

x̂+
k = x̂−

k +Kk (zk −Hk x̂
−
k )

(3) state estimate error covariance matrix update

P+
k = (I−Kk Hk)P

−
k

TIME UPDATE - PREDICTION

(1) state estimate propagation

x̂−
k+1 = Ak x̂

+
k +Bk uk

(2) state estimate error covariance metrix propagation

P−
k+1 = Ak Pk A

T
k +Wk Qk Wk

INITIALIZATION

Initial estimates for x̂−
0 and P−

0

Figure 8.24: Discrete-time Kalman Filter algorithm.

.
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The matrix Kk is chosen to be the gain or blending factor that minimizes the a posteriori error

covariance matrix:

Kk = P−k HT
k (Hk P−k HT

k + Rk)
−1 =

P−k HT
k

(Hk P−k HT
k + Rk)

(8.19)

Looking at Equation (8.19) we see that as the measurement error covariance Rk approaches

zero, the gain Kk weights the residual (z−Hk x̂−k ) more heavily, that is:

lim
Rk→0

Kk = H−1
k =⇒ x̂+

k → H−1
k zk (8.20)

This means that the actual measurement zk is trusted more and more, while the predicted measure-

ment Hk x̂−k is trusted less and less. On the other hand, as the a priori estimate error covariance

P−k approaches zero, the gain Kk weights the residual less heavily, that is:

lim
P−
k→0

Kk = 0 =⇒ x̂+
k → x̂−k (8.21)

and the actual measurement zk is trusted less and less.

After each time and measurement update pair, the process is repeated with the previous a

posteriori estimates used to project or predict the new a priori estimates. This recursive nature is

one of the very appealing features of the Kalman Filter - it makes practical implementations much

more feasible than, for example, an implementation of a Wiener filter which is designed to operate

on all of the data directly for each estimate. The Kalman Filter instead recursively conditions the

current estimate on all of the past measurements.

8.6.1.2 Kalman Filter tuning

For the problem on hand, x̂ = [ θ̂ , ω̂ ]T ∈ R2 is the state vector estimate with angular position θ

in rad and velocity in rad/s, z = θ̃ ∈ R is the yaw angle measurement in rad provided by the yaw

Quadrature Decoder (QD), u = τ ∈ R is the control torque in N m, n = 2, m = 1 and p = 1.

Preliminary experimental tests revealed that the GNC loop can be run at a maximum frequency

of fGNC,max = 5Hz, i.e. a GNC minimum sampling time interval of ∆tGNC,min = 0.2 s. The

state matrix A , the control matrix B and the measurement matrix H for the discrete-time system

result:

A =




1 0.2

0 1


 (8.22)



152 CHAPTER 8. FORMATION FLIGHT HARDWARE SIMULATOR

B =




0.01429

0.1429


 (8.23)

H =

[
1 0

]
(8.24)

After the KF tuning we obtained the following process noise covariance matrix and measurement

noise covariance:

Q =




5 · 10−4 0

0 1.5 · 10−3


 (8.25)

R = 1.767145 · 10−4 (8.26)

with an initial estimate error covariance matrix of:

P0 =




3 · 10−3 0

0 3 · 10−2


 (8.27)

To test the KF performance also when a control torque is performed by the on board thruster

system, the control torque time profile shown in Figure 8.25 was applied to the system. Matlab

simulation results are represented in Figures 8.26 - 8.28. Estimation errors plotted in Figure 8.28

were computed as difference between the estimated value and the true value. As you can see, the

QD and the KF angular position estimate errors are almost the same, while the KF angular velocity

estimate error is at least one order of magnitude less than the IR one (Figure 8.28, panel B). From

Figure 8.27 we can also notice that:

� when a control torque is applied, the IR ω time profile has a delay w.r.t. the true value,

leading to a bias of about ±1 deg/s in ω;

� when any control torque is applied, the IR ω is more noisy than the KF one.

Using a simple linear KF it is possible both to cancel the IR ω time delay and to reduce its noise.

Further Matlab simulations showed that the IR ω bias can be reduced by decreasing the sampling

time interval ∆t, but this leads to a more noisy angular velocity estimate, since the IR ω error

component due to the QD angular resolution is εθ/∆t, where εθ = 0.09 deg is the QD angular

resolution.
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Figure 8.25: Control torque time profile – Test 1.
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Figure 8.26: Angular position (top) and velocity (bottom) time profiles – Test 1 Matlab simulation
results.
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Figure 8.27: Particulars of experimental angular velocity time profile – Test 1 Matlab simulation
results.
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Figure 8.28: Angular position (top) and velocity (bottom) error time profiles with 3σ error band
in dashed black lines – Test 1 Matlab simulation results.
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8.6.1.3 Experimental results

KF equations were first rewritten and simplified for the problem on hand, and then implemented

in the AM on board micro-controller as follows.

1 // Get the current angu lar p o s i t i o n measurement

2 yKF meas = MY DEG2RAD* sens qd data [YAW] . ang pos ;

3

4 // STATE ESTIMATE UPDATE

5 yKF aux 1 = ( yKF x min [ 0 ] − yKF meas ) / (yKF P min [ 0 ] [ 0 ] + yKF rm) ;

6 yKF x plus [ 0 ] = yKF x min [ 0 ] − yKF P min [ 0 ] [ 0 ] * yKF aux 1 ;

7 yKF x plus [ 1 ] = yKF x min [ 1 ] − yKF P min [ 1 ] [ 0 ] * yKF aux 1 ;

8

9 // STATE ESTIMATE ERROR COVARIANCE MATRIX UPDATE

10 yKF aux 1 = 1 . 0/ ( gsp yKF P min [ 0 ] [ 0 ] + gsp yKF rm ) ;

11 yKF P plus [ 0 ] [ 0 ] = − yKF P min [ 0 ] [ 0 ] * ( yKF P min [ 0 ] [ 0 ] * yKF aux 1 − 1 . 0 ) ;

12 yKF P plus [ 0 ] [ 1 ] = − yKF P min [ 0 ] [ 1 ] * ( yKF P min [ 0 ] [ 0 ] * yKF aux 1 − 1 . 0 ) ;

13 yKF P plus [ 1 ] [ 0 ] = yKF P min [ 1 ] [ 0 ] − yKF P min [ 0 ] [ 0 ] * yKF P min [ 1 ] [ 0 ] * yKF aux 1 ;

14 yKF P plus [ 1 ] [ 1 ] = yKF P min [ 1 ] [ 1 ] − yKF P min [ 0 ] [ 1 ] * yKF P min [ 1 ] [ 0 ] * yKF aux 1 ;

15

16 . . .

17

18 // STATE ESTIMATE PROPAGATION

19 yKF x min [ 0 ] = yKF u k 1 *1.428571428571429E−2 + yKF x plus [ 0 ] + yKF x plus [ 1 ] * 2 . 0 E

−1;

20 yKF x min [ 1 ] = yKF u k 1 *1.428571428571429E−1 + yKF x plus [ 1 ] ;

21

22 // STATE ESTIMATE ERROR COVARIANCE MATRIX PROPAGATION

23 yKF P min [ 0 ] [ 0 ] = yKF P plus [ 0 ] [ 0 ] + yKF P plus [ 0 ] [ 1 ] * 2 . 0 E−1 + yKF P plus [ 1 ] [ 0 ] * 2 . 0 E

−1 + yKF P plus [ 1 ] [ 1 ] * 4 . 0 E−2 + yKF qt ;

24 yKF P min [ 0 ] [ 1 ] = yKF P plus [ 0 ] [ 1 ] + yKF P plus [ 1 ] [ 1 ] * 2 . 0 E−1;

25 yKF P min [ 1 ] [ 0 ] = yKF P plus [ 1 ] [ 0 ] + yKF P plus [ 1 ] [ 1 ] * 2 . 0 E−1;

26 yKF P min [ 1 ] [ 1 ] = yKF P plus [ 1 ] [ 1 ] + yKF qw ;

Time profiles of experimental angular position and velocity are shown in Figures 8.29 - 8.31. Es-

timation errors depicted in Figure 8.31 were computed taking the KF estimated value as reference.

Comparing these figures with the Matlab simulation ones, it can be noticed a little difference be-

tween the simulated and the real angular position and velocity time profiles shape. This difference

is mainly due to a small friction torque at the yaw joint. However, KF experimental results are con-

sistent with the ones obtained using the Matlab simulator, confirming the KF better performances

also in the real system.

Taking into account the results of these preliminary tests we can conclude that:
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� the AM angular position is estimated with an error less than 0.1 deg using mainly Quadrature

Decoder measurements;

� the AM angular velocity is estimated with an error less than 0.1 deg/s using a linear Kalman

Filter.

The use of a simple linear Kalman Filter slightly increase the Navigation computing cost, but reduce

the angular velocity estimation error by one order of magnitude with respect to an Incremental

Ratio approach.
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Figure 8.29: Angular position (top) and velocity (bottom) time profiles – Test 1 experimental
results.
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Figure 8.30: Particulars of experimental angular velocity time profile – Test 1 experimental results.
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Figure 8.31: Angular position (top) and velocity (bottom) error time profiles – Test 1 experimental
results.



158 CHAPTER 8. FORMATION FLIGHT HARDWARE SIMULATOR

8.6.2 Fixed Set Point Reaching

The main purpose of this second test is to evaluate MPC capabilities in making the AM to execute

a slew maneuver about its zB axis. In particular, starting from an initial angle θi = 0°, the AM

has to reach a given final target angular position θf = −170°.

To overcome the main drawback of MPC, i.e. its on-line computation effort, and being able to

implement a MPC scheme in the micro-controller on board the AM, the computational cost was

moved off-line following the strategy proposed by Bemporad et al. in [72] and described in Section

3.4.6.

The attitude dynamics of the AM about its zB axis was modeled with the following discrete-time

LTI state space model:

xk+1 =




1 0.2

0 1


xk +




0.01429

0.1429


uk (8.28)

yk =

[
1 0

]
xk (8.29)

where x = [θ− θf , ω]T is the state vector, u = τ is the control torque and y = θ− θf is the system

output. The discrete-time model was obtained from a continuous-time double integrator model

using a zero-order hold approach7 with a control sampling time interval ∆tctrl = 0.2 s. In this

problem, the vector of parameters ϑ coincides with the state vector x, i.e. ϑ = x = [θ− θf , ω]T . As

described in Section 8.6.1, a linear Kalman Filter was used to estimate the current angular velocity

from yaw angle QD measurements.

An explicit MPC controller was obtained using the Hybrid Toolbox for Matlab by Bemporad

[91]8 by defining the problem as a constrained regulation problem to the origin with the following

parameters:

m = 3 (control horizon) (8.30)

p = 5 (prediction horizon) (8.31)

7Each control component is kept constant within each control time interval, resulting in Piece Wise Constant
(PWC) control profiles.

8The Multi-Parametric Toolbox [92] can be used for the same purpose.
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R = 1 (8.32)

Q =




0.2 0

0 0


 (8.33)

The weighting matrix P on the terminal state error was obtained as the solution of the associated

Riccati equation. The following constraint on the control action was imposed: −0.2161N m ≤
τ ≤ 0.2161N m. Also, the explicit control law was computed for θ ∈ [−π, π] rad and ω ∈
[−π/3, π/6] rad/s.

With the previous parameters, the state space is divided into 13 polyhedral regions as depicted

in Figure 8.32. Each state space region is represented by the matrix pair (H i, ki), with H i ∈ R36x2,

ki ∈ R36x1, i = 1, ..., 13, through the matrix inequality H i ϑ ≤ ki, and the corresponding control

sequence U = [uT (0), uT (1), uT (2)]T is computed as U(ϑ) = F iϑ + gi with F i ∈ R13x2 and gi ∈
R13x1. Figure 8.33 shows the control torque for each state space point in terms of both a surface

(panel on the left) and a contour plot (panel on the right). The on-line computation consists on a

simple table-lookup: for a given state of the system, the region to which that state belongs is first

determined, and the corresponding control sequence is then computed.

Matlab simulation and real system results are compared in Figures from 8.34 to 8.36. In

particular, Figure 8.34 shows angular position and velocity time profiles in dashed red line for the

Matlab simulation and in continuous blue line for the real system. The final target angular position

is reached with an error less than 0.5° in 20 s. Also, as can be seen from this figure, in Matlab

simulation we decided to set the MPC parameters to obtain an angular position time profile with a

little overshoot in order to compensate the friction effect of the real system. Figure 8.35 represents

the control torque time profile (top) and the corresponding MPC region number (bottom). The

Matlab simulation and the real system control torque time profiles have the same shape and the

real system results are more damped than the Matlab simulation results because of the friction

effects. To conclude, Figure 8.36 plots the state space polyhedral partition and the state space

trajectories in dashed red line for the Matlab simulation and in continuous blue line for the real

system.
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Figure 8.32: State space polyhedral partition into 13 regions with initial state in magenta circle
and final target state in green circle – Test 2.

Figure 8.33: Explicit control torque for each state space point in terms of both a surface (panel on
the left with τ = 0 plane) and a contour plot (panel on the right) – Test 2.
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Figure 8.34: Angular position (top) and velocity (bottom) time profiles – Matlab Simulator vs.
Real System comparison – Test 2.
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Figure 8.35: Control torque (top) and MPC region number (bottom) time profiles – Matlab Simu-
lator vs. Real System comparison – Test 2.
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Figure 8.36: State space trajectory with MPC polyhedral partition – Matlab Simulator vs. Real
System comparison – Test 2.
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8.6.3 Time-Varying Trajectory Tracking

The aim of this third test is to simulate the following coarse repointing maneuver: a spacecraft

with its xB axis pointing the initial direction ûi at time ti = 0 has to be maneuvered to get its xB

axis aligned along the final direction ûf at time tf = 30 s, minimizing the propellant consumption.

The xB axis could represent the optical axis of an on board instrument and during the attitude

maneuver it has to avoid a set of five pre-defined keep-out-cones, which are represented by an axial

direction cj and a vertex angle 2βj (see Figure 8.37 and Table 8.7).

Figure 8.37: 3D view of the coarse repointing maneuver with Inertial reference frame in black, Body
reference frame in red, keep-out-cones in blue, initial direction ui in magenta and final direction uf
in green – Test 3.

Table 8.7: Repointing maneuver parameters – Test 3.

φ [deg] λ [deg] β [deg]

ĉ1 180 90 50

ĉ2 180 −90 50

φ [deg] λ [deg] ĉ3 120 42 30

ûi 30 60 ĉ4 180 328 31

ûf 330 250 ĉ5 330 0 75

This attitude repointing maneuver can be formulated as the following optimal control problem.

Find the control trajectory u(t) = [τx, τy, τz]
T (t) and the state trajectory x(t) = [qT ,ωT ]T (t), with

t = [ti, tf ], to minimize the following cost function:



164 CHAPTER 8. FORMATION FLIGHT HARDWARE SIMULATOR

J =

ˆ tf

ti

‖u(τ)‖22 dτ (8.34)

subject to the differential constraints:

q̇(t) =
1

2
T(q(t)) q(t) (8.35)

ω̇(t) = J−1 [u(t)− ω × Jω] (8.36)

the path constraints:

− 1 ≤ xB · ĉj ≤ cos(βj), j = 1, ..., 5 (8.37)

and the boundary conditions:

q(ti) = qi (8.38)

ω(ti) = 0 (8.39)

xB(tf ) = xB,f (8.40)

ω(tf ) = 0 (8.41)

where q = [q1, q2, q3, q4]T (t) is the quaternion vector, ω = [ωx, ωy, ωz]
T (t) is the spacecraft angular

velocity relative to the inertial reference frame and expressed in the body frame, T(q(t)) is given

by:

T(q(t)) =




−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1




(t) (8.42)

and xB(q(t)) is the x Body axis of the spacecraft. We assumed J = 1.37 kgm2 I3x3 as the inertia

matrix of the spacecraft (see below). Repointing maneuver parameters are listed in Table 8.7. The

initial attitude is given by qi = [0.1477,−0.8335,−0.4877,−0.2135]T .

The optimal control problem associated to the attitude repointing maneuver was solved using
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the C++ software package PSOPT9 [93, 94] with a Legendre collocation method, a nonlinear

problem tolerance of 10−5 and an ordinary differential equations tolerance of 10−4. The optimal

control problem solution, with a 65 collocation points final mesh, is showed in Figures from 8.38 to

8.40 in terms of quaternion, angular velocity and control torque components time profiles. Figure

8.41 shows a polar diagram, in terms of azimuth and elevation angles with respect to the inertial

reference frame, with keep-out-cones in cyan areas and spacecraft xB, yB and zB axes trajectories

in continuous red, green and blue lines, respectively. A 3D visualization of the Body axes reference

trajectories is provided in Figure 8.42. As you can see from these figures, the xB trajectory (the

red line) keeps outside the keep-out zones reaching its final position in 30 s.

In order to simulate part of this coarse repointing maneuver using the 1 DOF hardware attitude

simulator, the reference attitude position, obtained from PSOPT in terms of quaternion components

time profiles, was converted into Euler angles time profiles with a roll-pitch-yaw sequence. The yaw

angle time profile and the z component of the angular velocity time profile were then used as

angular position and velocity reference trajectories, respectively, and uploaded into the on board

micro-controller. Figure 8.43 presents these reference trajectories with the z component of the

control torque in blue. This figure shows also in magenta the electro-valve firing time associated to

the reference control profile with the nominal minimum firing time in black (16ms). The duty-cycle

of the corresponding PWM action ranges from 0% to a maximum value of 35%.
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Figure 8.38: Quaternion components time profiles – Test 3.

9Available at: http://code.google.com/p/psopt/ downloads/list.

http://code.google.com/p/psopt/ downloads/list
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Figure 8.39: Angular velocity components time profile – Test 3.
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Figure 8.40: Control torque components time profiles. All control torque components are equal to
zero for t > 30 s – Test 3.
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Figure 8.41: Polar diagram showing keep-out-cones in cyan, xB trajectory in red line, yB trajectory
in green line and zB trajectory in blue line. Initial and final position is represented with black circles
and crosses, respectively. Keep-out-cones central axes, i.e. ĉj directions, are marked with magenta
circles – Test 3.

Figure 8.42: 3D reference trajectories for xB axis in red line, yB axis in green line and zB axis in
blue line. Keep-out-cones are plotted in cyan – Test 3.
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Figure 8.43: Reference trajectories time profiles for angular position θz, angular velocity ωz, control
torque τz and electro-valve firing time ∆tv,z. τz = 0 for t > 30 s – Test 3.

8.6.3.1 PID control

To track the reference trajectories computed with pseudospectral methods, we first used the

discrete-time PID control law described in Section 8.4 with the following parameters: ∆tctrl = 0.5 s,

Kp = 1.4, Ki = 0.45, Kd = 1.6, Kt = 0.11, N = 10 and β = γ = 1. The yaw angle was not esti-

mated with a Kalman Filter, but it was taken directly from the QD.

Test results are presented in Figures 8.44 and 8.45 in terms of yaw angular position and velocity

and trajectory tracking errors. In dynamic conditions, the reference angular position is tracked with

an error |θestim − θref | < 3°, while the reference angular velocity with an error |ωestim − ωref | <
1.5°/s. The final target angular position is reached with an error less than the QD resolution in

35 s. The trajectory tracking errors, both in position and velocity, have an higher oscillation in the

first part of the maneuver, while in the second part (t > 17 s) they converge faster to zero. These

initial oscillations are mainly due to the static friction at the yaw joint.

.

.

.

.
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Figure 8.44: Time profiles of: (top) estimated angular position (red) and reference angular position
(black); (bottom) angular position error (blue) – Test 3.
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Figure 8.45: Time profiles of: (top) estimated angular velocity (red) and reference angular velocity
(black); (bottom) angular velocity error (blue) – Test 3.

8.6.3.2 MPC control

An explicit MPC control law was obtained using the Hybrid Toolbox for Matlab by defining the

problem as a constrained state trajectory tracking problem. In this final test, we considered the

following discrete-time LTI state space model with a control sampling time interval ∆tctrl = 0.2 s:
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xk+1 =




1 0.2

0 1


xk +




0.01429

0.1429


uk (8.43)

yk =




1 0

0 1


xk (8.44)

where x = [θ, ω]T is the state vector, u = τ is the control torque and y = x is the output. In this

problem, the vector of MPC parameters ϑ at time tk is given by ϑk = [θk, ωk, τk−1, θref,k, ωref,k]
T

and the vector to be optimized is the sequence of control action increments within the control

period, i.e. [∆uT (0), ..., ∆uT (m− 1)]T . As described in Section 8.6.1, a linear Kalman Filter was

used to estimate the current angular velocity from yaw angle QD measurements. We imposed a

constraint on the maximum control torque −0.2161N m ≤ τ ≤ 0.2161N m and we adopted the

following MPC parameters:

m = 3 (control horizon) (8.45)

p = 5 (prediction horizon) (8.46)

R = 5 · 10−2 (8.47)

Q =




1.5 0

0 0.45


 (8.48)

With these parameters, the MPC parameters space Θ ⊆ R5 is divided into 15 polyhedral regions

as depicted in Figures 8.46 - 8.47. In particular, in Figure 8.46 the polyhedral partition is projected

on the 2D plane θ − ω assuming the other 3 components of the MPC parameters vector equal to

zero, i.e. uk−1 = θref = ωref = 0. Figure 8.47 represents a 3D section of the polyhedral partition

obtained imposing θref = ωref = 0.
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Figure 8.46: 2D MPC control law polyhedral partition with 15 regions projected on the state space
θ − ω with uk−1 = θref = ωref = 0 – Test 3.

Figure 8.47: 3D MPC control law polyhedral partition with 15 regions projected on the space
θ − ω − uk−1 with θref = ωref = 0 – Test 3.
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Matlab simulation and real system results are compared in Figures 8.48 - 8.52. Figure 8.48

shows the time profiles of the angular position (top) and velocity (bottom) in dashed red line

for the Matlab simulation and in continuous blue line for the real system, and the corresponding

reference time profile in continuous black line. Figure 8.49 plots the same results in terms of state

space trajectories. In Figures 8.50 and 8.51 it can be noted that:

� the reference angular position profile is tracked with an error |θestim − θref | that is less than

1.5° in dynamic conditions and less than 0.1° (estimation accuracy) at steady state;

� the angular velocity profile is tracked with an error |ωestim − ωref | that is less than 1°/s in

dynamic conditions and less than 0.1°/s (estimation accuracy) at steady state.

Figure 8.52 represents the control torque time profile in dashed red line for the Matlab simulation

and in dashed blue line for the real system, with the reference profile in continuous black line. The

deviation of both the Matlab simulation and the real system behaviors from the reference one can

be due to the following reasons:

� the control action computation is based on an estimation of the current attitude kinematic

state of the system and not on the true state;

� the control action is actuated according to a Pulse Width Modulation (PWM) logic with a

duty-cycle less than 35% and not as a Piece Wise Constant (PWC) profile;

� in the real system we have the contribution of the yaw joint friction that is not considered10

neither in the Matlab simulator nor in the model used to compute the optimal reference

trajectories.

These test results confirm that the MPC controller is able to overcome these kind of not-modeled

disturbances (robustness), allowing to track the reference trajectory with a more than acceptable

error for a coarse repointing maneuver.

After this first coarse phase, a fine attitude acquisition maneuver may start. This kind of

fine maneuver has to be performed using both an instrumental setup and a control system, i.e.

control law and actuator setup (e.g. a reaction wheel bench), that allow to estimate and control

the attitude, respectively, with an higher accuracy. These types of systems generally have tighter

operative ranges, e.g. limited control authority and thus slower maneuver time, and require higher

on board resources in terms of computing power and therefore electric power.

10The friction at joints is very difficult to estimate experimentally since it strongly depends on temperature and
humidity conditions, which are not kept within predefined intervals.
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Figure 8.48: Angular position (top) and velocity (bottom) time profiles – Reference, Matlab Sim-
ulator and Real System comparison – Test 3.
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Figure 8.49: State space trajectory in dashed red line for the Matlab simulation, in dashed blue
line for the real system and in continuous black line for the reference – Test 3.
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Figure 8.50: Angular position (top) and velocity (bottom) errors time profiles – Matlab Simulator
and Real System comparison – Test 3.
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Figure 8.51: State space error trajectory – Reference, Matlab Simulator and Real System – Test 3.
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Figure 8.52: Control torque time profiles – Reference, Matlab Simulator and Real System – Test 3.

8.7 Future Activities and Perspectives

In this period our team is working to complete the AM characterization an the on board software

development for a 3 DOF motion, in order to execute some tests on 3 DOF attitude estimation (a

quaternion-based Kalman Filter will probably be used) and 3 DOF attitude control strategies.

Two main milestones for the SFF test bed improvement have been identified. The first one

consists on designing, building and testing of the TM with definition of the interface requirements

between the AM and the TM. This milestone requires a preliminary experimental activity whose

main tasks are: (a) to design the skids that allow to create the air cushion between the TM and a

glass table; and (b) to determine the minimum pressure and the mass flow of the air at the skid

inlet that guarantee a good (low friction) movement of the Simulators on the glass table. The

last activity also provides useful data to design the on board pneumatic system that feeds the air

cushion skids.

The second milestone concerns the development and testing of a 2D positioning system that

allows to identify the Simulators position on the glass table. The following two possible systems

has been taken into account.

1. An ultra-sound (US) system with external US beacons and US receivers on board each Simu-

lator. Taking measurements of the US signal time of flight it is possible to estimate both the

absolute position and the attitude of each Simulator using a GPS-like algorithm. This kind
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of system is currently used for example in the MIT SPHERES testbed.

2. An optical mouse like system placed at the TM base [95]. Every optical mouse is indeed

equipped with a small size and low cost IC that directly provides information about the

mouse 2D displacement. Placing an array of these systems at the TM base edge and properly

combining their data it is possible to estimate both the TM motion on the glass table and its

rotation about an axis perpendicular to the table (vertical axis).

With respect to the first US system, the last setup is simpler, cheaper, the estimate performance

does not depends on temperature/humidity conditions but is dependent on lighting and focusing

conditions (the last condition is directly dependent on the air cushion thick stability), and only a

relative position is provided.

At the moment the team is oriented toward the second solution. In order to realize suck a system,

some preliminary design and experimental activities are required with the aim of identifying: (a)

the components of each mouse-like unit (a mouse IC, a lens and some proximity electronics); (b)

the estimation accuracy achievable with each single unit as a function of IC pixel number, lighting

and focusing conditions for a set of imaging surface type; (c) the number and the position of these

mouse-like units to improve the TM 2D positioning accuracy and also to provide its rotation about

the vertical axis. A final experimental activity will be then carried out to verify and eventually

to calibrate the whole system. This activity will consist on the comparison between the 3 DOF

estimation provided by the mouse-like system and the one provided by a more accurate system.

With a system of two or more Simulators each with 5 DOF, many formation flight and rendez-

vous and docking scenarios can be tested, both for research and didactic purposes. The SFF team

has identified the following first complete maneuver to be executed with the SFF testbed: rendez-

vous and docking maneuver with an external docking mechanism representing a reference target

and a controlled at least 3 DOF Simulator with an on board compatible docking mechanism and a

stereo camera system used to estimate the relative dynamic state with respect to the target.
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CONCLUSIONS

The final aim of my Ph.D. activities was to develop and test modern optimal control strategies for

Spacecraft Formation Flying applications. This task was accomplished by means of both computer

simulations and experimental tests conducted on both the MIT SPHERES testbed and the SFF

hardware simulator that we are developing at the University of Padova.

Satellite Formation Flying is a key technology for several future missions, since, with respect to

a single spacecraft, it allows better performances, new capabilities, more flexibility and robustness

to failure and cost reduction. Despite these benefits, however, the SFF concept poses several

significant design challenges and requires new technologies. The Guidance, Navigation and Control

system is a key element in the SFF concept and it must be reliable in coordinating all the satellites

flying in formation and at the same time efficient in using the limited on board resources. Model

Predictive Control (MPC), also referred to as Receding Horizon Control, is a modern optimal

control technique that seems to be suitable for these purposes because of its three main features:

model-based control scheme, constraints handling ability and replanning nature.

MPC capabilities were first tested in computer simulations in carrying out a formation acqui-

sition maneuver for two space vehicles, taking into account two scenarios: a Leader-Follower (LF)

formation and Projected Circular Orbit (PCO) formation. The performances of the MPC-based

controller were compared with those of a LQR-based controller in the presence of active constraints

on the maximum control acceleration, evaluating also the effects of the gravitational harmonics J2

and J3 and atmospheric drag perturbations on the proposed maneuvers. Simulation results showed

that, with similar performances in tracking the same reference state trajectory in terms of settling

time, the MPC controller can reduce the total ∆v requirement by 40 % in the LF formation scenario

and by 30 % in the PCO formation scenario. Simulation results also showed that in the perturbed

case the MPC controller is more efficient than the LQR controller with just a small reduction

(< 1 %) on the performances with respect to the unperturbed scenarios.

177
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The next activity concerned the development of some guidance and control strategies for a

Collision-Avoidance scenario in which a free-flying chief spacecraft follows temporary off-nominal

conditions and a controlled deputy spacecraft performs a collision avoidance maneuver. The pro-

posed strategy consists on a first Separation Guidance that, using a computationally simple, deter-

ministic and closed-form algorithm, takes charge of avoiding a predicted collision. When some safe

conditions on the relative state vector are met, a subsequent Nominal Guidance takes over. Genetic

Algorithms are used to compute a pair of reference state trajectories in order to place the deputy

spacecraft in a bounded safe or “parking” trajectory, while minimizing the propellant consumption

and avoiding the formation evaporation. The performances of a LQR and a MPC in tracking these

reference trajectories were compared, and simulation results showed that a MPC controller reduces

the total ∆v requirement by 5− 10 % with respect to a LQR.

MPC capabilities were also evaluated on the MIT SPHERES testbed in simulating the close-

proximity phase of the rendez-vous and capture maneuver for the Mars Orbital Sample Return

(MOSR) scenario. We first performed a comparison between a MPC and a PD controller in exe-

cuting this maneuver both in a Matlab simulator and in the MIT SPHERES software simulator,

which is a more representative environment in terms of SPHERES properties and sensors/actua-

tors noises. These preliminary simulation results confirmed the better performances of MPC with

respect to PD, with a reduction of the total ∆v requirement by 10 − 15 %. The proposed control

strategy was then tested in the SPHERES Flat Floor facility at the MIT Space System Laboratory.

The on-line MPC computation is performed by an external laptop and then transmitted to the

SPHERES satellite for the actuation.

The last part of my research activities was devoted to the SFF hardware simulator of the

University of Padova. This experimental testbed will allow to conduct on ground experimental

research on both formation flight and rendez-vous and docking. My contributions to this project

are summarized as follows:

� conclusion of the designing, building and testing of the five main subsystems of the hardware

simulator;

� software development for the hardware simulator, including the software for both the on board

micro-controller and the control station, and a Matlab software simulator;

� preparatory experimental activities aimed at determining the hardware simulator on board

thrusters force and estimating the hardware simulator moment of inertia about its z-Body

axis;

� test of some one degree of freedom attitude control maneuvers with the use of predictive

controllers.
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In particular, three main tests were carried out. The first one aimed at tuning a Kalman Filter

to properly estimate the yaw axis angular velocity using a double-integrator as dynamic model

and angular position measurements provided by the yaw quadrature encoder. With the use of

a simple Kalman Filter, the yaw angular position and velocity could be estimated with an error

less than 0.1 ° and 0.1°/s, respectively. In the second test, an explicit MPC was used to perform

a 170° slew maneuver of the hardware simulator attitude module about the yaw axis. The final

target angular position was reached with an error less than 0.5° in 20 s. In the third test, a 3 DOF

attitude reference trajectory was first computed using pseudospectral optimization methods for a

repointing maneuver with active constraints on the attitude trajectory. The state trajectory was

then projected along the z-Body axis and tracked in the hardware simulator using an explicit MPC.

In the last two tests, an explicit MPC was run at 5Hz on a micro-controller with a clock speed

of 29MHz. Experimental results of the last test showed that with an explicit MPC the reference

trajectories can be tracked with an error less that 1.5° for the angular position and less than 1°/s

for the angular velocity, both in dynamic conditions. The final target state was reached with an

error less than the estimation accuracy.

The SFF Hardware Simulator is a ground-based testbed for the development and verification of

GNC algorithms that in the present configuration allows the development and testing of advanced

controls for attitude motion and in its final form will enable the derivation of control strategies for

Formation Flight and Automated Rendezvous and Docking.
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