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Riassunto 

 

Negli ultimi dieci anni si è assistito, a livello nazionale ed internazionale, ad una crisi 

nel settore dell‟apicoltura dovuto a morie di api che portano spesso ad un completo 

spopolamento degli alveari. Questo fenomeno ha assunto intensità particolarmente gravi 

nel triennio 2005-2008, con perdite fino al 40% del totale degli alveari produttivi in 

alcuni stati europei, tra cui l‟Italia e sino al 40-60% negli Stati Uniti. Questa generalizzata 

moria delle api, denominata “Colony Collapse Disorder” (CCD) ha comportato una serie 

di interrogativi sulle cause, tra le quali la  diffusione di parassiti  come la Varroa 

destructor oppure il Nosema spp., le tecniche apistiche sempre più spinte e il diffuso 

inquinamento ambientale dovuto in gran parte all‟uso di prodotti fitosanitari. In 

particolare, la perdita di colonie che si osserva in autunno è dovuta nella generalità dei 

casi alla varroa, mentre le perdite primaverili, osservate prima del bando dei 

neonicotinoidi nel 2008, avvengono in corrispondenza delle semine primaverili del mais, 

dove si impiegano sementi conciate con insetticidi appartenenti alla famiglia dei 

neonicotinoidi e seminatrici pneumatiche. 

In questa tesi si sono approfonditi gli aspetti che riguardano la moria delle api, soprattutto 

in riferimento al periodo primaverile. Si possono infatti distinguere le cause che 

differenziano le perdite delle colonie nel periodo autunnale provocate essenzialmente 

dall‟acaro Varroa destructor, dalle perdite primaverili, le cui cause, pur essendo associate 

alle semine del mais con neonicotinoidi, erano praticamente sconosciute nel modalità di 

intossicazione sino all‟inizio della presente tesi; si attribuiva infatti la morte delle api a 

dosi sub letali acquisite dalla vegetazione spontanea circostante i seminativi. Si è 

considerata invece l‟ipotesi che esistessero fonti di intossicazione acuta legate alla semina 

del mais. Si sono ipotizzati due diversi meccanismi d‟azione nell‟avvelenamento delle 

api. Il primo consiste nel rilascio, sottoforma di gocce, attraverso un fenomeno fisiologico 

chiamato guttazione, di ingenti quantità di principio attivo con le quali le api potrebbero 

venire a contatto; l‟altro meccanismo considera l‟intossicazione da insetticidi attraverso la 

semina di mais conciato con la liberazione nell‟aria di particolato contenente 

concentrazioni altissime di insetticida con il quale le api si intossicano in volo. 

Le giovani piante che sviluppano una pressione radicale elevata, mostrano 

frequentemente la fuoriuscita di liquido dai margini delle foglie, un fenomeno detto 

guttazione. Le “gocce di rugiada” osservate sulle foglie delle graminacee al mattino sono 
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per lo più gocce di guttazione, in particolare se presenti sulla punta delle foglie. Le gocce 

sono prodotte e permangono sulla lamina delle foglie delle piantine di mais anche per 

parecchie ore, ma possono cadere o asciugarsi rapidamente in presenza di vento. Nel 

calice, la guttazione permane anche per tutto il giorno. Tali gocce durante il periodo 

primaverile possono venir utilizzate dalle api come fonte idrica anche per umettare 

l‟alveare.  

Nei primi due lavori presenti in questa tesi sono illustrati i risultati del primo anno 

dell‟attività di dottorato, cioè la scoperta che le gocce di guttazione contengono 

concentrazioni elevate, anche centinaia di ppm, di insetticidi (neonicotinoidi) impiegati 

nella concia dei semi: queste molecole essendo idrosolubili entrano in circolo nella pianta 

e sono quindi parzialmente rilasciati attraverso le guttazioni. Tali concentrazioni, se si 

considera la capacità di ingestione di un‟ape ( stimata attorno a 20-30 µl), risultano ben al 

di sopra della dose letale sia per ingestione ed anche per contatto (circa 20-40 ng di 

p.a./ape). Si è tuttavia esclusa l‟implicazione delle guttazioni nelle catastrofiche morie 

primaverili attraverso osservazioni di campo che hanno messo in luce come tali gocce 

non costituiscano di norma una fonte idrica per le api a meno che, si suppone, non perduri 

un lungo periodo di siccità.  

Nei lavori successivi si è quindi considerata l‟ipotesi che l‟effetto tossico dei 

neonicotinoidi usati per la concia del seme di mais, fosse direttamente connesso 

all‟esposizione delle api alle polveri emesse durante la semina. Si sono svolte prove in 

campo, sia per quanto riguarda l‟emissione del particolato, sia sul meccanismo e i fattori 

che provocavano un intossicazione letale alle api.  

Dalle analisi chimiche (eseguite dal Dipartimento di Scienze Chimiche dell‟Università di 

Padova), le quantità di insetticidi rinvenuti su api morte, anche dopo un solo volo vicino 

alla seminatrice, sono comprese tra circa 50 e 1000 ng per ape, con una punta massima 

riscontrata pari a 11 µg/ape. 

Parallelamente alle prove in campo, si è provveduto a quantificare con maggior 

precisione la quantità di polvere che viene emessa dalla seminatrice (sesto lavoro) e 

contemporaneamente a determinare la dimensione della “nube tossica” formata dal 

particolato proiettato in aria durante la semina. Nel quinto lavoro presente nella tesi, è 

stata dimostrata così la presenza di una nube tossica attorno alla macchina, che in assenza 

di vento sostenuto, ha la forma di un elissoide di circa 20 metri di diametro e di almeno 3 

metri d‟altezza. Tra i vari risultati ottenuti è rilevante sottolineare anche la messa a punto 

un semplice test biologico per saggiare l‟effettiva intossicazione delle api in vicinanza 
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delle seminatrici i cui risultati sono in ottimo accordo con i dati analitici di emissione e/o 

di ricaduta delle particelle originate con la semina. 

Le analisi chimiche, in particolare, hanno consentito di mettere a punto un protocollo 

innovativo per la determinazione di insetticidi neonicotinoidi in singole api (settimo 

lavoro); sino ad ora tutte le analisi riportate in letteratura riguardano l‟esame di campioni 

di almeno alcune decine di api (es. kg di insetti morti). Ne consegue che l‟analisi chimica 

più raffinata permette di quantificare la contaminazione del singolo insetto con un 

evidente vantaggio per la comprensione e valutazione delle cause di intossicazione. 
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Summary 

 

The last ten years have witnessed, both at a national and an international level, a crisis in 

the beekeeping sector due to the death of bees often causing a complete depopulation of 

hives. This phenomenon has assumed a particularly serious intensity in the three years 

2005-2008 with a loss of up to 40% of hives in some states in Europe, amongst these 

Italy, and losses up to 40-60% in the United States. The name “Colony Collapse Disorder 

has been coined to describe these generalised bee deaths and a number of questions have 

been raised as to the causes, amongst these are the spread of parasites such as Varroa 

destructor or Nosema spp., ever more extreme beekeeping techniques and the widespread 

environmental pollution due in great measure the use of phyto-sanitary products. The 

colony losses that have been observed in the Autumn in particular, are generally due to 

the instance of varroa, while the Spring losses, before the banning of neonicotinoids in 

2008, appeared at the same time as the Spring sowing of maize seed where seed coated 

with insecticide of the neonicotinoid family were sown using pneumatic seed drills.  

This text studies in depth aspects which are concerned with the death of bees, particularly 

in the Spring period. It is possible, in fact, to distinguish the causes which differentiate 

the losses in the Autumn, caused essentially by the bee mite Varroa destructor from the 

Spring losses the cause of which is associated with the sowing of maize with 

neonicotinoids. The means by which poisoning occurred were virtually unknown until the 

start of the present thesis. Up to this point the deaths had in fact been attributed to 

poisoning by sub-lethal doses which bees had picked up from the self-sown vegetation 

surrounding the sowing areas. Instead, the hypothesis has been considered that    there 

exist sources of acute poisoning connected to the sowing of maize. Two different 

poisoning mechanisms were hypothesised. The first consisted of the release of droplets 

containing substantial quantities of active ingredient with which the bees could come into 

contact through a physiological phenomenon called guttation; the second mechanism 

considered was poisoning with insecticide through the sowing of coated maize seed, 

whereby large quantities of dust, containing high concentrations of insecticide, poisoned 

the bees in flight. 

Young plants which develop raised root pressure frequently show an emission of liquid 

around the edge of the leaves, a phenomenon called guttation. The “drops of dew” seen 

on the leaves of graminaceous  plants in the morning are, for most part, guttation drops, in 
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particular on the points of the leaves. The drops are produced and remain on the lamina of 

the leaves of maize seedlings, often for some hours, but they can drop off or dry out 

rapidly if wind is present. Guttation can even remain in the calyx of the plant for the 

whole day. During the Spring period such drops can be used by bees as a water source 

with which to moisten the hive 

The first two studies in this thesis illustrate and show the results of the first year of 

doctoral activity, that is the discovery that the droplets of guttation contain elevated 

concentrations, some hundreds of ppm, of inscticides (neonicotinoids) employed in the 

seed coating. This insecticide, being systemic (water soluble), enters into the circulation 

of the plant, and is thus released through guttation. Such concentrations, if we consider a 

bees capacity to ingest (estimated around 20-30µl), proves to be well above the lethal 

dose for ingestion or, even for contact (ca. 20-40µl of a.i. per bee). However, the 

implication of guttation in the catastrophic Spring deaths has been excluded through the 

observations in the field, in which it came to light that such droplets do not constitute a 

normal water source for bees, unless we assume a long period of drought. 

Therefore, in subsequent studies the hypothesis was considered that the toxic effects of 

neonicotinoids used for the coating of maize seed could be directly related the exposure 

of bees to the dust emitted during the maize sowing. Field trials were undertaken, both 

with regard to the emission of particulates, and to determine the mechanisms and the 

factors that caused the lethal poisoning of bees. 

From chemical analysis (conducted by the Department of Chemistry of the University of 

Padua) it was shown that, even after a single flight in the vicinity of the seed drill, that 

quantities from between about 50 and 1000 ng per bee were present with a maximum 

encountered equal to 11µg/bee.  In parallel with the field trials steps were taken to 

quantify the amount of dust emitted by the seed drill with great precision (six trials), and 

at the same time to determine the dimensions of the “toxic cloud” made up of particulates 

projected into the air during the sowing. In the fifth study in this thesis, the presence of a 

toxic cloud around the machine was demonstrated which, in the absence of a sustained 

wind, had an ellipsoidal form of approximately 20 metres in diameter and at least 3 

metres in height. Among the various results obtained, it is also important to underline the 

setting up of a simple biological test to establish the toxic effect to bees flying near the 

seed drill. These results are in precise agreement with the analytical data of emissions 

and/or the fall of particulates emanating from the seed drill. 
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The chemical analysis, in particular, allowed the putting on place of an innovative 

protocol to determine the amount of neonicotinoid insecticide in a single bee (seventh 

study); up to that point all the analysis reported in the literature concerned the 

examination of at least several hundreds of bees (for example kg of dead insects).  It 

follows that the more refined chemical analysis allows the quantification of 

contamination in a single insect with an evident advantage in the understanding and 

evaluation of the cause of poisoning. 

   



18 



19 

Introduction. 

 

Beekeeping in Europe is an ancient tradition, as it is throughout the world and bees have 

been reared through the millennia (Moritz et al., 2010; Ransome, 1937). Bees are a 

fundamental necessity for the environment in that they favour biodiversity and have an 

essential role in pollination (Steffan-Deweter et al., 2005; Steffan-Deweter et al., 2006; 

Klein et al., 2007) of many plants, both cultivated and wild (Costanza et al., 1997).  They 

contribute directly to the wealth and the well-being of man in the production of honey and 

other products, for example pollen, beeswax in the manufacture of foodstuffs, propolis for 

food technology and royal jelly as food ingredient and diet adjunct.  The greater part of 

agriculture in the European Union depends upon pollination by insects (Gallai et al., 

2009). In fact, according to estimates from the United Nations Food and Agriculture 

Organisation (FAO), of the 100 types of food culture that furnish 90% of the world‟s 

food, 71 are pollinated by bees (Delaplane and Mayer, 2000; Cane and Schiffhauer, 2003; 

Aizen et al., 2008; Aizen et al., 2009; Winfree et al., 2011; Calderone, 2012). Moreover, 

beyond bees‟ fundamental value in pollination and maintenance of biodiversity (Butchart 

et al., 2010), they contribute an estimated global monetary value of hundreds of millions 

of euro (€14.4 billion) (Gallai et al., 2009). Therefore, in the light of the scale of the 

ecological and economic value of bees, it is essential to monitor and maintain reserves of 

healthy bees, not only on a local or national level, but on a global level (Huang, 2012). 

In the last few years, pollinators, but in particular honeybee (colonies), throughout the 

world have been subject to rapid losses (Stokstad, 2007; Biesmeijer et al., 2006; Ellis et 

al., 2010; Potts et al. 2010). The beehive heritage in Europe decreased from over 22.5 

million in 1990 to about 15.5 million in 2009 (FAO 2011). From a European perspective, 

the countries particularly concerned over the losses of bees, are France (Chauzat et al., 

2010), Belgium and Switzerland (Charrière and Neumann, 2010), Germany (Genersch, 

2010/a), the United Kingdom (Gray et al., 2010), the Netherlands (van der Zee, 2012), 

Italy (Mutinelli et al., 2010) and Spain (Bernal et al., 2010). In North America, the 

observed loss of colonies since 2005 has left some states, struck by the unusual death rate, 

with the lowest number of bee colonies ever registered in the last 50 years 

(vanEngelsdorp et al. 2007;vanEngelsdorp et al., 2010). American studies have coined 

the expression Colony Collapse Disorder or CCD to describe this phenomenon of apiary 

depopulation. CCD is characterized by 1) the sudden reduction of adult bees in the colony 

with only a few remaining; 2) the presence of many unaltered opercula brood cells and a 
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low level of varroa infestation, which indicates that the colony had been relatively strong 

before the loss of adult bees, and that the collapse of the colony cannot be attributed to 

infestation of varroa mite; 3) the reserves of food indicate that no raiding has taken place 

even though there are active neighboring colonies; 4) the minimal presence of the small 

hive beetle Aethina tumida furthermore, the frequent presence of an egg laying queen bee 

surrounded by small groups of feeding young (vanEngelsdorp, 2009). 

No single cause of the loss of numbers has been pinpointed (Genersch, 2010b; Le Conte 

et al., 2010; vanEngelsdorp and Meixner, 2010; Neumann and Carreck, 2010). The 

different phenomena of death and depopulation simple show some common elements 

ascribable to CCD but do not permit the hypothesizing of an unequivocal explanation, be 

it concerning the problems of survival and development of the bees, be it with reference 

to the various causes of stress or mortality. The limited and fragmentary nature of our 

knowledge of the differing phenomena of bee mortality notwithstanding, it is possible to 

ascertain that in various geographical areas where deaths occurred, the phenomena 

showed specific characteristics; it is sufficient to note, for example, that the abandoned 

brood of the bee colonies attracted no predators (or pillaging activity in food stocks 

abandoned).  The same codification CCD, as defined in American research (Underwood 

and vanEngelsdorp, 2007) to analyze the phenomenon of deaths in the U.S.A., while it is 

persuasive and plausible, cannot explain all the deaths and difficulties encountered in 

apiaries throughout the world. The superficiality and the tendency to arrive at easy and 

unjustifiable generalizations that are encountered in the substantial literature that has 

developed around the phenomenon of bee deaths, raises doubts that the inferences as to 

cause and explanation are properly identifiable. When we find ourselves confronted with 

signs of manifest environmental imbalance resulting from intense production or economic 

activity, the analyses that are often conducted, particularly those of a scientific nature, are 

not entirely neutral. Powerful smokescreens are established to obscure the real cause of 

these phenomena, and sometimes, what is worse, hypotheses are suggested, the sole 

character of which, is to mystify and mislead. Diverse concomitant factors are suggested, 

which could cause possible stress or have an immune-depressive effect on bees, which 

are arrived at through one, of a combination of these factors. At first, whether at a 

national (in Spain - Higes et al., 2006; Higes et al., 2009) or international level, it seemed 

the depopulation could be caused by fungi, for example the new Asiatic species of 

Nosema, the Nosema ceranae (Fries et al., 1996; Paxton et al., 2007; Chen et al., 2008). 

This new specie, along with already existing Nosema apis (Zander, 1909) was believed to 
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be the most important factor in bee deaths in all other areas with CCD symptoms. On that 

point, Genersch (2010), cited that attacks of Nosema spp. ...killing of honey bee colonies 

might be a regional problem rather than a global phenomenon”. Other stress factors 

taken into consideration were food of poor nutritional quality due to foraging among 

crops with low nutritional value or, again a lack of pollen and nectar due to the increasing 

reduction in biodiversity of cultivated areas (Naug, 2009). Drought is also taken into 

consideration and the unscrupulousness of beekeeping practices, in particular 

“nomadism” (Genersch, 2010/b), caused by the necessity to continuously relocate in 

search of flowers. 

Numerous evaluations have also looked at viruses as a pathogenic agent capable of 

causing substantial damage to the bee heritage of the states concerned. Research in the 

United States, in particular is directed at identifying the cause of CCD by means of a 

genetic approach. The metagenomics allows the simultaneous study of the genomes of all 

the micro-organisms present in a particular environment, and enables the identification of 

new species present. This approach has allowed American researchers to quickly 

establish a census of the micro flora of colonies, both affected and unaffected by the 

syndrome, furnishing a basis for a valuation of the significance and the provenance of 

possible pathogenic agents (Cox-Foster et al., 2007). The prevalence in the sequences of 

samples taken from affected colonies of the Israel Acute Paralysis Virus (IAPV) has been 

observed (Chen and Evans, 2007), as has a correlation between the presence of the virus 

and bee deaths. Similar considerations concerned, according to Highfield et al. (2009) the 

Deformed Wing Virus (DWV). 

The same authors (Cox-Foster e vanEngelsdorp, 2009), have successively demonstrated 

the marginal effect of the presence of the virus alone in determining such depopulation, as 

that cited above.  

This consideration was reinforces in a study conducted in the North of Italy by ISPRA 

(Istituto Superiore per la Protezione e la Ricerca Ambientale) (2010) which confirmed 

that “the pathology, when considered alone (Nosema spp. and virus), although present, 

determined neither the phenomenon of acute bee death nor the depopulation and loss of 

apiaries”. 

The bee parasite most recognised by everyone throughout the world as the cause of 

substantial colony losses is (Thompson et al. 2002; Rosenkranz et al., 2010) the 

hematophagous mite Varroa destructor A&T (Anderson and Trueman, 2000). During the 

first half of the last century, in particular from the 1970s to the 1990s, V. destructor 
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appeared in Europe and United States (Anderson, 2000), passing from the East Asiatic 

Apis cerana Fabricious to the African and European Apis mellifera L (Anderson and 

Trueman, 2000), causing a dramatic decrease in the number of apiaries and beekeepers 

(Neumann et al. 2010; Ratnieks et al. 2010). The individual honey bee is damaged in 

many ways, for example the hatching bee has an average loss of body weight, decreased 

flight performance in drones, transmission of viruses, moreover, worker bees parasitized 

(during their development) start earlier with foraging with consequent reduced life span 

and decreased capability of non-associated learning. At colony level, the damages, are 

less numbers of swarms (Fries et al., 2003; Villa et al., 2008), a lower chance to mate for 

drones and in general, the reduction of bee population (Shimanuki et al., 1994). 

Moreover, the untreated colonies which exceed an infestation rate of about 30% in the 

adult bees during the summer do not have a chance to survive the following winter (Fries 

et al., 2003; Rosenkranz et al. 2006). For these reasons, colonies infected by varroa die 

within the space of 1-3 years without chemical interventions (vanEngelsdorp et al. 2008; 

Rosenkranz et al. 2010; vanEngelsorp and Meixner, 2010), which are effective in 

reducing the losses that are observed in Autumn and the end of Winter (Kraus and Page 

1995; Fries and Perez-Escala, 2001). In addition, the correlation between virus-detection, 

varroa infestation level and colony mortality is not as clear as expected and demonstrates 

the need of a standardized quantitative virus analysis under field conditions (Rosenkranz 

et al. 2010). 

Analyzing the evolution of thought relative to the literature available, it is possible to see 

that varroa, which in the early studies on CCD, appeared to be a concomitant cause 

(amongst other things it was reported that the depopulated broods did not often present 

with infestation consistent with varroa), subsequently became the principal cause and 

Nosema spp. and environmental and feeding factors assumed a secondary importance.  

Pesticides used in agriculture for insect and mite control are often involved in cases of 

bee mortalities, it is recognized that they can kill many beneficial insects and the residues 

of such active ingredients can be found both in the bodies of dead adult honey bees, and 

in hive products (Porrini et al., 2003; Frazier et al., 2008; Johnson et al., 2010). In agro-

ecosystems pesticides are applied in different environmental conditions, with different 

application technologies and concentrations. Soil insecticides were applied (during 

sowing) for the control of common soil insects like wireworm beetles (Agriotes spp.) and 

cutworms (Agrotis spp.) but also against rootworm, Diabrotica virgifera LeConte 

(Stamm et al., 1985; Altmann, 2003; van Rozen and Ester, 2010).At the end of the 1990s, 
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soil insecticides were replaced by the coating of (maize) seeds (Taylor and Harman, 

1990), of the modern active ingredients employed, the first was fipronil (Colliot et al., 

1992; Turnblad 1998) and more recently, neonicotinoids (Elbert et al., 2008), in 

particular imidacloprid (Elbert et al, 1990), thiamethoxam (Maienfisch et al., 2001; 

Robinson 2001) and clothianidin (Altmann, 2003; Andersch and Schwarz, 2003). Upon 

application of neonicotinoid to the seed surface, the insecticides (by virtue of the high 

systemic properties of their molecules) are transferred and distributed throughout the 

whole plant, conferring a substantial and long-lasting control of insects. The high 

systemic activity, as conferred to the seedling, is a protection against sucking leafhoppers 

and aphids (Magalhaes et al., 2009). A new revolutionary application was the effective 

limitation of virus transmission (Elbert et al., 2008;Jeschke et al., 2010). In this way the 

sensitiveness to the virus of possible new hybrids (or varieties) has benefitted both 

producers and farmers. 

Recently, the insecticides employed in coating seed have become the primary suspects in 

the lethal Spring poisoning that has caused the losses of apiaries seen to occur at the same 

time as the sowing of the maize (Zea maisL), from mid-March to May, in the corn 

growing regions or northern Italy and Europe, and is distinguishable from the Winter 

losses caused by varroa (Girolami et al., 2012). On a global level the association of the 

death of bees with seeds coated with neonicotinoids could be considered to have been 

born in France with the hypothesis that the flowers of the sunflowers were thought to 

have remained poisoned with the insecticide rising from the seeds sown months earlier. 

The amount of neonicotinoid insecticides in nectar and pollen has been reported in the 

order of parts per billion (ppb) (Schmuck, 1999; Schmuck et al., 2001;  Laurent and 

Rathahao, 2003; Bonmatin et al., 2005). The connection between the neonicotinoid shell 

of seed, the death of bees, the implication that abraded particles of the insecticide shell 

expelled from the pneumatic sowing machines consequently fell on, poisoning the 

surrounding vegetation causing the catastrophic death of bees (at the same time as the 

sowing of maize), had originated in Italy at the end of the 90s‟ (Greatti et al. 2003). In the 

case of maize, as in the earlier case of sunflowers in France, the implication of 

neonicotinoids in the poisoning of bees was immediately negated (Schnier et al., 2003; 

Chauzat et al., 2006). 

The hypothesis took account of the sub-lethal effects caused by the insecticide dust 

emitted by the sowing drill because of the systemic properties of neonicotinoids (Greatti 
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et al., 2003; Greatti et al., 2006, Maini et al., 2010). Nevertheless, the amount of 

insecticides found in vegetation did not seem to justify such rapid losses during, or 

immediately after sowing, since the insecticide content is about 50 ppb (Greatti et al., 

2006). That seemed too low a dose to cause poisoning by ingestion according to Yang et 

al. (2008), even if sub-lethal effects over the long period were considered (Colin et al., 

2001; Suchail et al., 2001; Bortolotti et al., 2003; Colin et al., 2004; Decourtye et al., 

2004; Medrzycki et al., 2003; Maini et al., 2010; Laurino et al., 2011). Another element 

whereby these sub-lethal doses did not seem to justify the deaths is illustrated by the 

description of symptoms in the literature on the subject. Such symptoms of such doses, 

loss of memory and the capacity to orientate, supported the theory of the disorientation of 

foragers (Sgolastra et al., 2012; Teeters et al., 2012) which could not succeed in regaining 

the hive, thus depopulating the apiaries. The implications of sub-lethal doses in the 

sudden deaths of bees in front of the hives (during the maize sowing season) is called into 

question also by the chemical analyses, given that half of the samplings showed negative 

(below the detectable level) and others showed only traces. Few of the samples tested 

positive, with doses that would allow for an acute poisoning (Bortolotti et al., 2008).  

This contrasts with the accumulations of dead bees frequently found in the case of the 

springtime deaths caused by neonicotinoids, for these reasons other lethal sources in the 

fields were sought to justify such rapid mortality during the spring maize sowing. 
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Objectives and content of the thesis 

The objectives of the thesis were an in-depth analysis of the knowledge of some aspects 

concerning the death of bees, particularly with reference to the Spring period. One can in 

fact identify the causes that differentiate the colony losses in the Autumn period, 

occasioned essentially by the bee mite Varroa destructor A&T, from the Spring losses 

whose cause is associated simply with the Spring sowing of maize seed coated with 

neonicotinoids (Greatti et al., 2003; Greatti et al., 2006). The causes, and the means by 

which bees were poisoned, were virtually unknown up to the commencement of this 

current thesis, and were in fact, attributed to bees dying from sub-lethal doses acquired 

from the self-sown vegetation surrounding the sown fields. The hypothesis was 

considered that sources of acute poisoning existed, linked to the maize sowing.  Two 

different means of the poisoning were identified which in turn, identified the two lines of 

research found in this thesis. 

The first consists of the release by young maize plants of tiny droplets, through a 

physiological phenomenon called guttation (Goatley and Lewis, 1966; Hughes and 

Brimblecombe, 1994), containing considerable quantities of the active ingredient with 

which bees could come into contact. The concentrations of neonicotinoids in the droplets 

were studied by chemical analysis and agronomic and environmental factors which could 

influence the insecticide content were taken into account.  Then the toxicity of these 

droplets was assessed to demonstrate that the presence of such droplets on the vegetation 

(maize seedlings) could present a potentially lethal risk for the bees. In collaboration with 

a working group of Professor Tapparo of the Department of Chemistry at the University 

of Padua, a pre-existing method of analysis (UHPLC-DAD) (Guzsvany et al., 2006; Zhou 

et al., 2006) was optimized and perfected to enable the analysis  of the insecticide in 

guttation rapidly, and with greater precision than methodologies previously used. 

The second mechanism considered, envisaged the poisoning of bees in flight by direct 

contact with particles emitted by pneumatic seed drills during the sowing of maize. From 

the outset it was desirable to verify that the hypothesis could be applied to the realities of 

the field, correlating also the environmental facts during the period under examination, 

such as, for example, the relative humidity of the air. Next, together with Professor 

Tapparo‟s team, the particles of seed shell emitted into the atmosphere by the seed drill 

were analyzed using PM and PM10 detectors. Specifically studied, were the quantity, as 

well as the dimension of the cloud of powder which was produced. These parameters 
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proved to be fundamental in determining the size of the “toxic cloud” which formed 

around the operating seed drill, with the consequent probability that bees were lethally 

poisoned. To assess the toxic cloud a method of exposing bees to it was developed. These 

were called “mobile cages” and allowed the simulation of a single flight of a foraging bee 

over a plot during sowing, controlling the height and time of exposure of the bee to the 

particles.  Still in collaboration with the Department of Chemistry of the University of 

Padua, a new method of analysis was put in place to calculate the content of insecticide, 

in particular neonicotinoids, of samples consisting of single bees.  This method is 

innovative since it allows a precise and rapid description of the phenomena which, up to 

then had required samples of some thousands of bees, which could produce false results. 

Furthermore, the method permits, the quantification of insecticide in a single insect, 

addressing the cause of contamination and exposing the polluters without recourse to 

large scale trials, and to precisely pinpoint the problem. This study was developed and 

financed in part under the auspices of the ministerial project Apenet 

(http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/4094). 
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ABSTRACT   The death of honey bees, Apis mellifera L., and the consequent colony 

collapse disorder causes major losses in agriculture and plant pollination worldwide. 

The phenomenon showed in- creasing rates in the past years, although its causes are 

still awaiting a clear answer. Although neonicotinoid systemic insecticides used for 

seed coating of agricultural crops were suspected as possible reason, studies so far have 

not shown the existence of unquestionable sources capable of delivering directly 

intoxicating doses in the fields. Guttation is a natural plant phenomenon causing the  

excretion of xylem fluid at leaf margins. Here, we show that leaf guttation drops  of all 

the  corn plants germinated from neonicotinoid-coated seeds contained amounts of 

insecticide constantly higher than 10 mg/l, with maxima up to 100 mg/l for 

thiamethoxam and clothianidin, and up to 200 mg/l for imidacloprid. The 

concentration of neonicotinoids in guttation drops  can be near those of active 

ingredients commonly applied in field sprays for pest control, or even higher. When 

bees consume guttation drops, collected from plant grow from neonicotinoid coated 

seeds, they encounter death within few minutes. 

KEY WORDS: guttation, neonicotinoid, honeybee, seed coating 

Introduction 

Phytophagous insects occurring in soil at sowing time tend to concentrate around 

on corn, Zea mays L., seedlings causing extensive damage. Granular insecticides 

applied to the soil have been the method of choice for their control for a long 

time. More recently, the strategy has been surpassed by the seed coating 

technique using neonicotinoids, which are active against a broad range of pest 
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species, 

including wireworms (Agriotes spp.) and the rootworm Diabrotica virgifera 

virgifera LeConte (Altmann 2003). 

Among the main reasons of success of eonicotinoids is their systemic action. 

Upon application on the seed surface, the active compound is translocated and 

distributed throughout the whole plant, conferring a substantial and long-lasting 

control of insects and protecting young plants also from sucking leafhoppers and 

aphids (Magalhaes et al. 2009), which are potential vectors of plant virus 

(Maienfisch et al. 2001). Nowadays, neonicotinoids are widely used for seed 

treatment in cotton (Gossypium spp.), sugarbeet (Beta vulgaris L.), oilseed rape 

(Brassica napus L.) corn (Zea mays L.), and other cereals and crops (Elbert et 

al.2008). The reduced load of insecticide per field unit, allowed by confining it 

on the seed, represents main advantages in environmental terms compared with 

former  products requiring whole-soil or furrow applications. Elbert et al. (2008) 

pointed out impressive figures revealing the turnover toward insecticidal seed 

treatment. Starting from: a niche level market of €155 million in 1990, mostly 

represented by carbamates, by 2005 seed coating developed into a €535 million 

market, with a 77% share for neonicotinoid insecticides. The loss of pollinating 

bees is a worldwide crisis. In particular it became manifest as colony collapse 

disorder (CCD), characterized by a sudden disappearance of worker bees that do 

not return to the hive. Parasitic mites and viruses have come under suspicion, 

although no clear conclusions could be drawn as concerns these biotic causes. 

Pesticides have been shown to be more directly involved and in recent years the 

attention has been focused on neonicotinoids (imidacloprid, clothianidin and 

thiamethoxam), a class of insecticides among the most widely used worldwide. 

The effects of neonicotinoids, such as imidacloprid on honey bees (Suchail et al. 

2000, Maus et al. 2003) could be consistent with the symptoms of CCD. 

However, the blame on neonicotinoids has not yet been conclusive as the 

amounts detected in nectar and pollen of plants grown from treated seeds were 

lower than 10 ng/g (10 ppb), whereas higher doses, as 40 g/l (40 ppb) are 

necessary for abnormal honey bee foraging behavior, 0.5 mg/l (0.5 ppm) for the 

first missing bees, and 3 mg/l (3 ppm) for 100% of the bees failing to return to a 

source of sugar offered to them (Yang et al. 2008). In Italy, a highly recurring 

coincidence between corn sowing time and bee death has been noticed 
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previously (Greatti et al. 2003, Greatti et al. 2006), leading to the hypothesis that 

solid coating debris and dust uplifted from sowing machines could fall over 

nearby vegetation and contaminate wildflowers. Within the same frame of 

thought, we postulated that a different and  hitherto  overlooked source of 

directly lethal doses could be present in the fields, and we took into 

consideration the hypothesis that intoxicating concentrations could accumulate 

in guttation drops of young corn plants. Guttation (from the Latin “gutta” drop) 

is the formation of drops of xylem sap on the tips or along the edges of leaves. It 

is a physiological phenomenon occurring in many vascular plants, in particular 

grasses, water entering roots creates a slight pressure that forces it to rise and be 

exuded through the hydatodes at leaf margins. This is a regular occurrence in 

many plants and is not restricted to nighttime, although in the dark stomatal 

closure can lead to higher internal pressure that increases guttation drop 

volumes, thereby enhancing the visibility of the phenomenon (Goatley and 

Lewis 1966, Koulman  et al. 2007). Guttation is common but often unnoticed as 

easily confused with dew characterized by small condensation drops from 

atmospheric humidity. Guttation drop can roll off, evaporate or may be sucked 

back into the leaf (Chen and Chen 2007). 

Bees require intense drinking activity (Visscher et al. 1996, Kuhnholz and 

Seeley 1997) and have been reported to collect guttation water (Shawki et al. 

2005). 

In the current study, we wanted to verify whether neonicotinoids used for seed 

coating could be translocated in guttation drops and reach concentrations toxic to 

bees. In parallel, we tested the toxicity of serial concentrations of these 

insecticides by setting up a test apt to evaluate, in reasonably short time, the 

appearance of intoxication symptoms in bees upon consumption of neonicotinoid 

aqueous solutions. 

Materials and Methods 

Insect Origin.  

Trials were carried out in the exper- imental farm of the faculty of Agriculture 

(University of Padova) located in Legnaro, Italy. Bees (Apis mellifera L.) used for the 

tests were collected from different colonies residing within the farmers field facilities. 
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When season allowed the bees to fly, they were collected with a net in front of the hive; 

otherwise (in winter), bees were collected from within the hive. 

Insecticides Tested.  

Trials started in spring 2008. Guttation drops were collected from corn seedlings 

germinated from commercial seeds coated with the neonicotinoids imidacloprid 

(Gaucho 350 FS, Bayer Cropscience; 0.5 mg/seed), clothianidin (Poncho, Bayer 

Cropscience AG, Leverkusen, Germany; 1.25 mg/seed), thiamethoxam (Cruiser 350 

FS, Syngenta International AG, Basel, Switzerland; 1 mg/seed), and fipronil (Regent 

500 FS, BASF SE, Ludwigshafen, Germany; 1 mg/seed). The last nonsystemic 

compound is a member of the phenyl pyrazole class of pesticides. Each of the four 

insecticides mentioned was a regularly registered product for corn seed coating in Italy 

in 2008. Seeds used (hybrid PR34N84) were from Pioneer Hi-Bred Italy (Johnston, 

IA), and all also were coated with the fungicide Celest XL (Syngenta), based on 

Fludioxonil (2.4%) and Metalaxyl-M (0.93%). The untreated control was also from 

Pioneer Hi-Bred  (for  biological agriculture) and belonged to the hybrid PR33A46. In 

field crops, we had cases treated with each of the above-mentioned compounds. For 

potted plants, we focused essentially on imidacloprid. 

Collection of Guttation Drops.  

During spring (April) corn seedlings were grown in open field, spaced 20 cm within 

the row and 75 cm between rows. In subsequent periods (May), tests were replicated 

by sowing coated seeds in pots with a diameter of 15 cm and growing two to five 

plants per pot in the laboratory. In total, six to eight pots for each compound were 

used and equal numbers were sown with uncoated seeds as control, or with seeds 

coated with fungicides. For each seedling, we gathered all guttation drops at all plant 

levels, by using Pasteur micropipettes. Collection in the field was carried out from 

8:00 to 9:00 a.m. from all plants within a row, until a volume of 5 ml was available. 

In the laboratory, because guttation occurs throughout the days and night, it was 

possible to collect them three times a day, yielding a volume of 1-2 ml/d. Samples 

were stored at 2 C. Half of the volume was sent for chemical analyses and half for 

toxicity bioassays, which were normally performed within 2-3 d. Collection of 

guttation drops was carried out from corn emergence up to the first 3 wk for each of 

the treatments as subsequently the phenomenon ceased in its intensity both in the field 
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and in the laboratory.  

Insecticide Content in Guttation Drops.  

Pure chemicals for the preparation of solutions of thiamethoxam, clothianidin, 

imidacloprid, and fipronil, to be used for reference toxicity curves and as analytical 

determination standards, were from Fluka (Sigma- Aldrich  Group, Milan, Italy; 

Pestanal, purity 99,7% for thiamethoxam, clothianidin, imidacloprid, 97.6% for 

fipronil). Methanol (VWR, International, Milan, Italy), and acetonitrile (Riedel de  

Hae¨ n, Sigma-Al- drich  Group) were of high-performance liquid chromatography 

(HPLC) grade. Pure water was produced by Milli-Q equipment (Millipore, Billerica, 

MA). HPLC analytical determinations were performed on a 680 chromatography 

system (Dionex Corporation, Sunnyvale, CA) equipped with UV-Vis diode array 

detector, a 20- l sampling loop of the injector valve and an Alltech Alltima C18 

analytical column (5 m, 4.6 250 mm; Altech Associates,  DeerÞeld, IL),  

Fig. 1. Guttation drops on corn leaves in the field. (Online figure in color.) 
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according to published methods (Ying and Kookana 2004, Singh et al. 2004, Rancan et 

al. 2006, Zhou et al. 2006) optimized for different matrices. The following instrumental 

procedure was optimized: eluent flow rate of 1.2 ml/min, gradient elution (0 - 4 min, 

70:30% water/acetonitrile; 4-9 min, linear gradient to 100% acetonitrile; 9-13 min, 

100% acetonitrile), 20 C of column temperature, multiwavelength acquisition of de- 

tector signal and analytes quantification at 252 nm for thiamethoxam, 269 nm for 

clothianidin and imidacloprid, and 215 nm for fipronil. Instrumental calibration 

(external) was performed by analysis of standard solutions in the 0.1-100 mg/liter 

concentration range of analytes in methanol. The analysis of guttation solutions was 

performed by direct injection, after filtration on a Millex HV 0.45-m syringe filter 

(diam. 4 mm; Millipore) of 100 -300 l of the sample.  

Toxicity of Guttation Drops to Honey Bees. 

The test was carried out at 20 -22 C in a temperature controlled room. Before the tests 

bees were kept in cages (20 by 20 cm) for at most 2 h without water and food. Single 

bees were sampled from the cage with test tubes and introduced into 5-cm-sided cubic 

net (tulle) cages. After 15 min of adaptation, the guttation water was offered. We tested 

either plain guttation drops or guttation drops with the addition of 15% honey (vol: vol) 

(21%, vol:wt, according to specific weight of honey of 1.4). For bees to be attracted to 

drink, 30 µl was placed on the top of the net cage inside a capillary glass tube (100 mm 

in length with a diameter of 1 mm).Actual liquid consumption was ascertained by 

variation of the level in the capillary, and a drinking event was defined by the 

consumption of a minimum of 5 µl of liquid (bees that did not accept to drink within 5 

min were discarded). After 20 min from solution consumption, a drop of honey was 

offered on the top of the cage to feed bees. The bee was constantly observed and from 

the first event of drinking, that normally occurred shortly after offering the capillary 

with solution, we recorded the time required for the appearance of two intoxication 

symptoms that always occurred before death. The first was a jerky inward arching of the 

abdomen, and the second was a definitive block of the flight capability caused by a 

paralysis of the thorax muscle and therefore of the wings. 



 

45 

Evaluation of Dose–Response Effect.  

To observe the relationship between concentration and response of the above mentioned 

two intoxication symptoms, we offered bees with solutions of pure insecticides in water 

with 15% honey, at increasing insecticide concentrations using the same method 

described above for guttation drops. We started with concentrations of 100 mg/liter with 

progressive halving, up to dilutions no longer  

Fig. 2. Time between appearance irreversible wing-block and drinking of guttation drops collected 

on leaves of field corn crops, from three marketed neonicotinoid-coated. Guttation sampled on 

plants germinated from untreated seeds did not show any toxicity.  The  whisker  represents the  

maximum  and the  minimum of the  recorded time;  the  dotted line  indicates the average; the 

upper, middle, and lower lines of the box indicate the 75, 50, and 25% of the time, respectively. 

Bars marked with different letters indicate significant differences (P < 0.05; Tukey-Kramer  test). 

 

causing, within 1 h, the two intoxication symptoms in all bees which had drink at least 

5µl. We tested each dosage, for each of the three neonicotinoids (imidacloprid, 

clothianidin and thiamethoxam). We also assayed a saturating dose (3.8 mg/l) of the 

non-neonicotinoid fipronil. Each treatment was repeated on a minimum of 12 bees, 

separately tested, for each concentration. The actual concentration of insecticide in the 

solutions, obtained by theoretical dilution, was confirmed by chemical analysis. 

Statistical Analysis.  

The time between drinking from guttation drops (from three marketed neonicotinoid-

coated seeds) and the appearance of intoxication symptom, as well as different 

concentrations of chemicals in  guttation samples were compared by one-way variance 

analysis (ANOVA). Subsequently, a significance difference test (Tukey-Kramer) was 

applied. 
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Results and Discussion 

Collection of Guttation Drops. 

First, we observed that the totality of corn plants in the field feature abundant and 

continuous guttation drops during their first 3 week of growth (Fig. 1). Although the 

guttation water tends to evaporate during  the warmer hours of the day, in corn  

seedlings, guttation drops can flow down into the crown cup and persist drinkable for 

most of the day. Although textbook definitions tend to relate guttation to conditions of 

moist soil and humid air, the phenomenon is not restricted by these parameters  that only 

enhance the size of the drops facilitating their observation. Moreover, guttation drops 

formed under conditions of lower soil moisture and dryer air can contain even more 

concentrated solutes as a consequence of the progressive water evaporation. During 

April-May, guttation drops were regularly found on vegetation until 9 -10 a.m. Only on 

particularly windy days drops were not found. From potted plants in the lab the 

collected amount was 30-150 l/die per plant, whereas in the field a single collection in 

the morning easily allowed to gather 1-3 ml from 100 plants. 

Insecticide Content in Guttation. 

Chemical analyses of the guttation water from laboratory grown corn plants during 3 

week of growth showed the presence of the corresponding seed coating  neonicotinoids 

in all samples. Guttation drops collected on plants from neonicotinoid coated seeds 

contained concentrations of each respective active ingredient of (mean ± SE) 47 ± 9.96 

mg/liter for imidacloprid, 23.3 ± 4.2 mg/liter for clothianidin, and 11.9 ± 3.32 mg/liter 

for thiamethoxam with statistically significant differences (ANOVA: F = 7.51; df = 2, 

15; P = 0.005). The amount of imidacloprid found in drops of plants 

grown from seeds treated with 0.5 mg per seed was significantly more concentrated 

than that of thiamethoxam in guttation drops of plants treated with 1 mg of active 

ingredient per seed (P <0.01; Tukey-Kramer test). The nonsystemic fipronil was never 

found above its detection limit in guttation water. 

The higher translocation from seed to guttation observed for imidacloprid is surprising 

in light of its lower amount in the coating compared with thiamethoxam and 

clothianidin. In another experimental analysis carried out on drops produced from 

individually potted plants obtained from seeds coated with imidacloprid average  

concentrations resulted of 82.8 ± 14.07 mg/liter, with maxima reaching over 110 
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mg/liter. Therefore, as first approach neonicotinoids concentration on guttation does 

not seem strictly dependent on density of plants per pot. 

 

 
Fig. 3. Toxicity of neonicotinoid imidacloprid (A), clothianidin (B), and thiamethoxam (C) on  

honeybees. Neonicotinoid toxicity was calibrated as time of appearance after drinking of two 

poisoning symptoms (squares, irreversible wing-block; diamonds, abdomen bending) upon offering  

bees drops of water  with 15% honey containing insecticides (pure chemical). Each symbol 

represents the mean of 12 replicates, and the vertical bars indicate the standard error of the means. 

Concentration data (milligrams per liter) are transformed in log10. 

Neonicotinoid concentration in guttation drops resulted in general rather variable 

presumably due to environmental factors as concentration via water evaporation, 

collection  time of  the day, and time elapsed since seedling emergence. In more recent 

experimentation for all three neonicotinoids peak concentrations above 100 mg/liter 

were observed and also 200 mg/liter for imidacloprid. These values are near or even 

higher than those of insecticides commonly applied in field sprays  for pest  control. 

Regardless, insecticide translocation from seed and accumulation in guttation seems 

rather clear and efficient. 
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Toxicity of Guttation Drops to Honey Bees 

After consumption of the toxic drops, the first noticeable effect was a generic agitation 

similar to that occurring upon starvation. The first objective intoxication symptom was 

an arching of the abdomen (probably a stinging reflex). At this stage, the insect still 

retains its flying capability and profuse regurgitation events can often be seen. 

Subsequently, the bee undergoes wing paralysis and uncoordinated movements. The 

latter event constantly resulted an irreversible stage for all the  tested guttation, thus 

constituting an objectively recordable cue of the subsequent lethality. Death, as defined 

by complete stillness, was not plotted because the time between wing block and 

possible residual capability to move a leg resulted extremely variable, as reported by 

Suchail et al. (2000). The test also enabled us to ascertain whether single bees does 

actually take up the solution offered and at which volume with good approximation. 

 

Fig. 4. Time interval between appearance irreversible wing-block of single caged bees and 

ingestion of guttation drops collected from leaf of potted (10-d-old) corn seedlings from 

imidacloprid-coated seeds. Concentration was determined by HPLC analysis. The curve 

corresponds to that shown in Fig. 3A for pure imidacloprid at the higher doses. Black symbols, pure 

guttation; white symbols, guttation with 15% honey. Concentration data (milligrams per liter) are 

transformed in log10. 

Guttation drops collected in the field on plants grown from commercial seeds coated 

with the three neonicotinoids considered, offered to bees without honey, caused wing 

block in a time ranging between 2 and 9 min from consumption (Fig.  2). Those from 

plants whose seeds were coated with thiamethoxam resulted significantly more toxic in 

comparison with the imidacloprid coated seeds (ANOVA:  F = 3.71; df = 2, 33; P = 

0.035). Control guttation drops  from noncoated seeds or coated with fungicides did not 

display toxicity. Guttation drops from plants whose seeds were coated with the 

nonsystemic insecticide fipronil resulted less toxic or not consistently lethal (data not 

shown). Thirsty bees consumed immediately the field-collected drops offered in the 
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cage top but often bees need long periods before drinking causing delays in the test. For 

such reason, for guttation drops collected from potted plants we added 15% honey to 

the drops to promptly attract bees to drink. This honey concentration was the minimum 

ensuring solution uptake within 5 min, a time compatible with the efficiency of the test. 

In agreement with data from field collected guttation drops, toxicity of guttation from 

potted plants germinated in the laboratory from neonicotinoid coated seeds, irrespective 

to 15% honey addition, showed a strict correlation between active compound 

concentration and toxicity. In particular for imidacloprid the totality of bees (n 63) that 

ingested guttation fluid underwent irreversible wing paralysis within a few minutes. 

Both with pure guttation drops and with those with 15% honey, the wing block symp- 

tom was in a range of 2- 4 min for concentrations above 100 mg/liters and of 6 -15 min 

for those around 50 mg/liters. Guttation toxicity seems clearly related to the 

neonicotinoid content. 

Preliminary tests carried out by offering bees guttation drops of plants from 

clothianidin or thiamethoxam-coated seeds showed that wing block occurs within 

shorter times compared with imidacloprid at corresponding concentrations (data not 

shown). This would con firm that clothianidin and thiamethoxam are more toxic than 

imidacloprid, although less concentrated in guttation drops, as indicated above. Also, in 

potted plants, guttation drops from control, untreated seeds plants were harmless to 

bees. 

Evaluation of Dose–Response Effect.  

The test devised to verify whether insecticides in water solution with 15% honey could 

kill drinking bees in short time lapses was satisfactory and of simple setup. Few 

minutes after drinking from neonicotinoid solutions in lethal concentrations, an excited 

behavior was observed followed by abdomen bending and wing paralysis as observed 

for guttation. The two symptoms resulted irreversible for all the neonicotinoid under 

study at all dosages reported (Fig. 3). 

Bees showed a different response to the three neonicotinoids. For clothianidin and 

thiamethoxam, at the lowest concentrations of 1.5 mg/liter (log10 = 0.18), the chosen 

symptoms (abdomen bending and wing paralysis) manifested before 1 h. For 

imidacloprid, the same could be observed at concentrations 6.25 mg/ liter (log10 = 0.8), 

indicating a lower toxicity toward bees (Fig. 3). Increasing the dosage, the interval 

between abdomen bending and wing block decreased progressively, becoming nearly 
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null at 100 mg/liter (log10 = 2) for all neonicotinoids tested (Fig. 3). When using doses 

lower than the doses reported (Fig.3), either the symptoms did not occur or they did 

sometimes in reversible manner and in a time exceeding 1 h. Those bees, when fed, 

would normally survive for at least 24 h. It must be noticed that, as it makes use of a 

single event of uptake, the test is less severe than those in use to evaluate the median 

lethal concentration (LC50), for which poisoning solutions are kept available for longer 

time. Results are in agreement with Yang et al. (2008) who reported that the 

imidacloprid concentration 3 mg/liter in a sugar solution is the threshold preventing 

bees to return to foraging. This value is close to the one (6 mg/liter) at which we 

observe a wing paralysis on all insects tested in 1 h. Within each given neonicotinoid 

concentration, no clear relationship between the actual intake volume and time of 

appearance of the symptoms was noticed, presumably due to individual response 

variability and to the frequent regurgitation events that can bias the dose response 

dependency. 

No evident neonicotinoid repellency could be noticed as their concentration neither 

clearly deter bees from drinking, nor directly affected the volume ingested. These 

aspects would be the object of future studies. 

The effects of pure insecticide solutions (Fig. 3) and those of guttation drops in which a 

corresponding concentrations was ascertained by chemical analyses, resulted in good 

agreement. In particular, for imidacloprid the time of appearance of the flight stop dis- 

tributes with good correspondence along the curve independently obtained by tests in 

which pure imidacloprid serial dilutions at known concentrations were offered to bees 

(Fig. 4). 

Therefore, the neonicotinoid content in guttation drops seems to satisfactorily explain 

their toxicity. No additional synergic effect of other compounds present in guttation 

drops seems  to apply in the observed phenomena. 

The presence of guttation drops on corn leaves in agricultural crops is easily observable 

from emergence until up to 3 wk. In northern Italy, this is normally coincident with 

times from the second week of April to mid-May. Water fetching activity can be rather 

intensive also in spring, bees are often seen accessing water from different sources and 

when ground puddles are not available, plant guttation drops represent an exploited 

alternative. Although, as the season un-folds, blossoming flowers can provide water 

containing nectar fluids, in early periods bees cannot yet rely on these. It is to be 

remarked in this respect that in the past 10 yr (in which an outbreak of bee mortality has 
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been recorded) new cold-resistant corn hybrids have been massively introduced in 

agriculture that allow an anticipated mid-March sowing in a time that precedes the 

opening of the majority of wildflowers. 

Being the likelihood that bees could drink from corn field or other crops guttation drops 

not yet quantified, it is still not possible to draw a judgment on a possible correlation 

between neonicotinoid translocation into guttation drops and CCD. Regardless, the 

presence of a source of water carrying in solution neonicotinoid concentrations up to the 

levels shown in the current study, and persisting for weeks on more than a million 

hectares in the sole northern Italy, is a threatening scenario that does not comply with an 

ecologically acceptable situation. 
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Abstract  

Regarding the hypothesis that neonicotinoid insecticides used for seed coating of agricultural 

crops – mainly corn, sunflower and seed rape - are related to the extensive death of honey 

bees, the phenomenon of corn seedling guttation has been recently considered as a possible 

route of exposure of bees to these systemic insecticides. In the present study, guttation drops 

of corn plants obtained from commercial seeds coated with thiamethoxam, clothianidin, 

imidacloprid and fipronil have been analyzed by an optimized fast UHPLC-DAD procedure 

showing excellent detection limits and accuracy, both adequate for the purpose. The young 

plants grown both in pots – in greenhouse – and in open field from coated seeds, produced 

guttation solutions containing high levels of the neonicotinoid insecticides (up to 346 mg L-l 

for imidacloprid, l02 mg L-l for clothianidin and l46 mg L-l for thiamethoxam). These 

concentration levels may represent lethal doses for bees that use guttation drops as a source 

of water. The neonicotinoid concentrations in guttation drops progressively decrease during 

the first l0–l5 days after the emergence of the plant from the soil. Otherwise fipronil, which 

is a non- systemic phenylpyrazole insecticide, was never detected into guttation drops. 

Current results confirm that the physiological fluids of the corn plant can effectively transfer 

neonicotinoid insecticides from the seed onto the surface of the leaves, where guttation 

Environmental impact 

The significant contamination of the guttation drops produced by young corn plants grown from seeds coated with neonicotinoid 

insecticides may represent a risk for honey bees and other insects. With the aim to assess this possible exposure route for bees, starting 

from quantitative data, a simple and rapid analytical method for the accurate determination of neonicotinoid insecticides in guttation 

solutions has been optimized and then applied to different series of real samples collected both in the laboratory and in the field. The 

optimized procedure could be a very useful tool for the future exposure studies and the consequent risk assessment for honey bees. 
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drops may expose bees and other insects to elevated doses of neurotoxic insecticides.  

Introduction 

Honey bee colony losses are a complex phenomenon often characterized by a rapid 

disappearance of honey bee colonies failing to return to their hive, and the presence of 

capped brood with a live queen bee and of food stores in the hive, called Colony Collapse 

Disorder (CCD) syndrome.
1,2

 This phenomenon has been observed worldwide in the last 

few years,
3–5

 with a rapidly increasing number of cases in Europe,
6 

USA7 and Japan.
3
 For 

instance, over winter 2007–2008, 36% (2.4 million) of America‟s bee hives were lost.
8
 

European figures follow the same trend,
6
 with peaks of up to 60% of the hives. This honey 

bee crisis and the consequent reduction in the pollination of flowering plants, induces 

adverse effects on beekeeping, agriculture and natural ecosystems, and it actually constitutes 

a worldwide emergency both from an economic and an ecological standpoint. 

Many  hypotheses,  such as infections  of parasitic  mites,
9
 viruses,

10
 chronic exposure to 

sub-lethal doses of insecticides
11–14 

or acute effects of neonicotinoid insecticides
15

 were 

formulated to account for bee decline. Up to the present none of them have been confirmed 

or refuted and their impact has never been clearly quantified, so that a multifactorial origin 

of colony losses is often suggested in the qualified literature.
3
 Moreover, first reports of the 

surveillance networks  on bee decline
6–8

 seem to indicate a high temporal and geographical 

variability in colony losses. In southern  Europe significant peak events – different from the 

winter colony losses – were detected at the beginning of spring.
16,17,6

 This supports the 

hypothesis that they were related to the acute toxic effects of neonicotinoid insecticides 

released in the environment by agricultural practices, in particular during corn sowing.
16,18

 It 

is worthwhile to notice that in Italy the use of corn seed coated with neonicotinoids was 

banned in September 2008 and no cases of colony collapse were recorded in the springs of 

2009 and 2010.
19,20

 

Actually, neonicotinoid insecticides are widely used in agri- culture and the seed coating is 

used all over the world to ensure a broad range pest control in several crops, including corn 

(Zea mays L.).
18

  Neonicotinoids are water soluble compounds and systemically translocate 

to plant tissues protecting young plants from root-eating insects and, after emergence, also 

from sucking insects – such as leafhoppers and aphids – responsible for the transmission of 

plant viruses.
18

 Nevertheless, the neonicotinoids hypothesis of bee decline runs counter to 

the experimental observation that  the amounts  of neonicotinoids detected in nectar or 
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pollen (or dew) of the plants were always lower than 10 ppb,
21

 while higher concentrations 

(>40 ppb) are necessary for abnormal honeybee foraging behaviour or bee loss (>0.5 ppm).
12

 

Although this prompted investigations into other mechanisms of toxicity for bees, such as 

the possible effects of sub-lethal doses of insecticides on the course of common bee 

pathologies, studies on the real ways in which bees are exposed to neonicotinoid insecticides 

seem to have lacked in quantitative data, so far. 

Recently, a novel way of possible exposure (and intoxication) of honey bees to 

neonicotinoid insecticides was proposed by Girolami and co-workers,
22

 who postulated and 

evidenced the translocation of a significant amount  of toxic neonicotinoid insecticide from 

the coated seed to the guttation drops of young corn plants. Guttation is a physiological 

phenomenon (often confused with dew) characterized by the exudation of drops of xylem 

sap through the hydathodes, the porous tissues present at the leaf tops and margins, as an 

effect of roots pressure.
23–25 

 

In corn crops, drinkable guttation solutions can persist into the crown cup of the young 

plants for the whole day.In this work, the effective contamination of the guttation drops 

obtained from young corn plants grown from seeds coated with neonicotinoids has been 

studied. With the aim to assess this possible exposure route  for bees, starting  from 

quantitative data,
26

 a fast liquid chromatographic procedure for the rapid, sensitive and 

accurate analysis of neonicotinoids in guttation drops has been optimized and then applied to 

different series of guttation solutions collected both in the laboratory and in the field. 

Experimental section 

Corn seedlings were obtained from seeds (hybrid PR34N84, Pioneer Hi-Bred Italy) 

commercially available in 2008, 2009 and 2010 and coated with neonicotinoid insecticides: 

imidacloprid (N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl] nitramide; 

Gaucho , Bayer Cropscience, 0.5, 1 or 1.25 mg/seed); clothianidin ((E)-1-(2-chloro-1,3-

thiazol-5-ylmethyl)-3-methyl- 2-nitroguanidine; Poncho , Bayer Cropscience, 1.25 

mg/seed); thiamethoxam (3-[(2-chloro-1,3-thiazol-5-yl)methyl]-5-methyl- N-nitro-1,3,5-

oxadiazinan-4-imine; Cruiser , Syngenta Interna- tional, 0.6 or 1 mg/seed). Seeds coated 

with fipronil (5-amino-1- [2,6-dichloro-4-(trifluoromethyl) phenyl]-4-(trifluoromethylsulfi- 

nyl)-1H-pyrazole-3-carbonitrile; Regent , BASF SE, 0.5, 0.75 or 1 mg/seed), a non-systemic 

N-phenylpyrazole insecticide, were also utilized. Untreated seeds (hybrid PR33A46, Pioneer 

Hi-Bred Italy) or seeds coated with fludioxonil and metalxyl-M (Celest , Syngenta 
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International, 2.4% and 0.93%, respectively) fungicides were used as controls. Corn 

seedlings were grown both in open field (April 2009 and 2010, seeds spaced 20 cm within 

the row and 75 cm between rows by using a Monosem NG Plus pneumatic drilling machine) 

and in the laboratory (greenhouse, November 2008–October 2010) with seeds sown in pots 

(15 cm in diameter) and growing 2–5 plants per pot. A total of 6–8 pots for each insecticide 

were used and  equal  numbers of pots were sown with control seeds (uncoated or coated 

with fungicides). 

For the first 20 days after the emergence of the seedlings, guttation drops were collected 

every morning by a pipette from the leaves of corn plants (from single plants or 

homogeneous groups of plants). Samples were stored at 4 °C until the instrumental analysis. 

For analytical determinations, a new, fast liquid chromatographic (ultra high performance 

liquid chromatography, UHPLC) procedure was optimized on a Shimadzu Prominence 

UFLC-XR chromatograph equipped with a Shimadzu  SIL 20AC-XR auto sampler, 

Shimadzu SPD-M20A UV-Vis diode array detector and a Shimadzu XR-ODS II (2.2 mm, 2 

x 100 mm) analytical column with a Phenomenex security guard –Phenom- enex ODS (4 x 

2.0 mm) precolumn. The following instrumental parameters were adopted: eluent flow rate 

of 0.4 mL min-1, gradient elution (0–1 min: 77/23% water–acetonitrile; 1–2.2 min, linear 

gradient to 100% acetonitrile; 2.2–3.5 min, 100% acetoni- trile), 5 mL of injector volume, 45 

° C of column temperature. Detector signal at l ¼ 215 nm for fipronil, l ¼ 252 nm for thia- 

methoxam and l ¼ 269 nm for clothianidin and imidacloprid were adopted for analyte 

quantification. Although thiacloprid and acetamiprid are not used for corn seed coating, they 

can also be separated and quantified (l ¼ 244 nm) by the optimized analytical method. 

Instrumental calibration (external) was performed by analysis of standard solutions in the 

0.05–10 mg l
-1

 concentration range of analytes in 50% water–methanol. Sample analyses 

were performed by direct injection of the guttation solutions, after filtration on a Millex HV 

0.45 mm (Millipore) syringe filter. Concentrated samples were diluted by addition of a 50% 

water– methanol solution in the injection vials. 

Fipronil, thiamethoxam, clothianidin, imidacloprid, acet- amiprid and thiacloprid were 

purchased from Fluka (Pestanal, purity >99.7% for the five neonicotinoids and >97.5% for 

fipronil). Methanol (VWR) and acetonitrile (Riedel de Haen) were of HPLC grade and water 

was purified by a Millipore MilliQ equipment.
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Results and discussion 

UHPLC analytical procedure 

Trace analysis of neonicotinoid insecticides in environmental matrices is currently 

performed by conventional reverse phase liquid chromatographic procedures using different 

detection strategies.
27–32

 Even though HPLC-DAD methods are less sensitive and selective 

with respect to procedures using mass- spectrometric or electro-chemical detectors, our 

preliminary analysis of guttation drops
22

 showed that very high concentration levels of 

insecticide could be effectively present in these samples. Therefore, the analytical drawbacks 

typical of ultra- traces environmental analysis (i.e. lack of sensitivity or selectivity in the real 

samples) could be a minor problem in this case. In other words, the use of a dedicated 

instrumentation (UHPLC with high efficiency C18 column, 2.2 mm particles) can reduce the 

analysis time while maintaining high analytical performances, both in terms of sensitivity 

and selectivity. Actually, the optimized fast procedure reduces analysis time to 5 min (Fig. 

1) and no chromatographic interferences have been observed in the detection of the six 

insecticides in real samples. Precision levels of 0.2% for thiamethoxam, 0.3% for 

clothianidin and imidacloprid have been computed from replicate analysis of real samples 

(conc > 2 mg l
-1

) and 0.8% for fipronil from replicate analyses of standard solutions. The 

developed method reaches instrumental detection limits of 4.5 mg l
-1

 for thiamethoxam and 

thiacloprid, 5.1 mg l
-1

 for clothianidin and fipronil, 4.8 mg l
-1 

for imidacloprid, and 5.4 mg l
-

1
for acetamiprid, all evaluated using the procedure suggested by IUPAC.

33,34
This means that 

quantification limits for the analysis of real samples, evaluated as LOQ ¼ 10 x LOD/3,34 

are 15 mg l
-1 

for thiamethoxam and thiacloprid, 17 mg l
-1 

for clothianidin and fipronil, 16 mg 

l
-1

 for imidacloprid and 18 mg l
-1

for acetamiprid. 

The linearity range of instrumental responses was tested with up to 100 mg l
-1 

concentrations 

of standard solutions, obtaining a linear calibration  function (r2  > 0.999, p < 10-8) for each 

analyte. 

Spiked samples (guttation solutions from seeds coated with fungicides and added with 0.1–1 

mg l
-1 

of thiamethoxam, clothianidin and imidacloprid) showed recovery factors in the range 

91–108%. 

Moreover, the absence of chromatographic interferences for the UHPLC-DAD method was 

verified by LC- ESI/MS analysis of both spiked and real samples, using identical 

chromatographic conditions, and obtaining MS signals attributable to the single analyte for 

each insecticide. 
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 Fig. 1  Chromatograms of (a) 10 mg l
-1

  standard solution of the six insecticides, (b) guttation sample collected 

from corn plants treated with Poncho®  (clothianidin, 42 mg l
-1

) and (c) guttation sample collected from corn 

plants treated with Cruiser® (thiamethoxam, 43 mg l
-1

). 

Corn plant guttations 

The guttation phenomenon is affected by a number of factors such as humidity, temperature, 

growth stage, water stress, root depth and soil water potential. Moreover the insecticide 

residues in guttation fluid exhibit wide variability due both to factors affecting guttation as a 

phenomenon and to formulation, metabolism within the plant, application methods, 

adjuvant, solubility of the active ingredient and plant species.
26 

Thus, detailed studies need to 

be conducted  to better understand guttation as a possible exposure route to neonicotinoids 

for honey bees. In this respect, the fast analytical methods described in this paper could turn 

out to be very useful. Some applications of the proposed procedure are here presented and 

discussed. 

In a first campaign (November 2008) corn plants were grown in pots in greenhouse. The 

guttation drops collected were divided into six periods in order to obtain enough sample to 

perform both an UHPLC analysis and toxicological tests.
22

 The results of instrumental 

analysis revealed the effective translocation of the insecticides from the seeds to the leaves 

of the plants in the whole period when guttation occurs, i.e. 15–20 days after the seedling 

emergence and with a production of about 30–150 ml/day/plant of water. The concentrations 

of the insecticides in the guttation drops were surprisingly high for all the three 
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neonicotinoids while for fipronil, a non-systemic phenylpyrazole insecticide, they were 

always below the detection limit (LOD ¼ 5.1 mg l
-1 

). Guttation solutions from control 

seedlings (obtained both in laboratory and in the field from non-coated seeds or from seeds 

coated with fungicides) contained no detectable concentration of insecticides (e.g., below the 

instrumental detection limits: 4.5 mg l
-1 

for thiamethoxam, 5.1 mg l
-1 

for clothianidin and 4.8 

mg l
-1 

for imidacloprid). 

Insecticide concentrations showed a characteristic temporal variation:  concentration rapidly 

decreased during the first 10 days after the seedling emergence (Fig. 2) while it increased 

again, in the reported experimentation, during the last 10 days of the guttation phenomenon, 

when it is considerably reduced and water evaporation may significantly concentrate the 

solute. Thiamethoxam (Cruiser® 1 mg/seed) observed concentration decreased from 24.29 

mg l
-1  

during the 1st day after the seedling emergence to 3.55 mg l
-1 

for the 8th–10th days 

and it increased again to 8.32 mg l
-1  

during the subsequent 10 days. Clothianidin (Poncho® 

1.25 mg/seed) concentration ranged from 35.99 mg l
-1 

during the 1st day after the seedling 

emergence to 8.82 mg l
-1 

for 

 

Fig. 2  Concentration of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated 

seeds (greenhouse). 

the 8th–10th days and it increased again to 31.64 mg l
-1 

during the last 10 days. Imidacloprid 

(Gaucho® 0.5 mg/seed) concen- tration ranged from 80.87 mg l
-1 

during the 1st day after the 

seedling emergence to 17.30 mg 
l-1 

for the 8th–10th days and it increased again to 60.13 mg 

l
-1 

during the last 10 days. 

Although successive sowing experiments (greenhouse, spring– summer 2009) have always 

confirmed this temporal trend, a high variability in the translocation efficiency of each 
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insecticide has been observed (concentrations range up to 346 mg l
-1 

for imidacloprid, 102 

mg l
-1 

for clothianidin and 146 mg l
-1  

for thiamethoxam). 

Table 1  Concentration ranges of neonicotinoid insecticides in guttation drops collected at the top and at the 

crown cup of the corn leaves during the first six days after the emergence of the corn seedlings 

 

It is worthwhile to note that, from our results, the insecticide concentrations in guttation 

drops seem to be only partially related to the original amount in the seed: for instance, the 

growing of single seedlings per pot produced guttation drops, in the first six days from the 

emergence, containing decreasing concentrations of imidacloprid, in the range 115–25 mg l
-1 

from seed treated with 1.25 mg/seed and 110–64 mg l
-1  

from seed treated with 0.5 mg/seed. 

This seems to support the hypothesis that both environmental and physiological conditions 

(i.e. soil temperature and moisture, air humidity) mainly affect the translocation efficiency 

and the actual concentration of the insecticides in guttation drops.
26

 

In this connection we observed that for seedlings grown under dry conditions (both soil and 

air), guttations appeared later and a lower volume of water was produced.  

On the other hand, under wet conditions the washing-out of the insecticides from the soil is 

particularly effective for thiamethoxam which is the most water- soluble neonicotinoid. In a 

trial conducted in experimental parcels (greenhouse, November 2009) using usual soil with 

three different levels of moisture (obtained  by different water supplies), we observed 

concentrations of thiamethoxam in guttation drops in the range 14–155 mg l-1 in plants 

grown under wet conditions (the water content in the soil was near saturation), † 27–253 mg 

l-1 with moderate soil humidity (the parcel had a water content approximately close to the 

field capacity (FC)) and 34–1154 mg l-1 under dry conditions (the parcel had a water 

content slightly above the wilting point (PWP). 

The comparison between guttation drops collected from the top and from the crown cup of 

the leaves evidenced that significantly lower concentrations of the insecticides are present in 

† It is possible to define as saturated a soil with all pores filled with water. After 24–48 h, when free drainage 

occurs, the soil reaches the field capacity (FC). When the plants have extracted all water present in the soil they 

can, the permanent wilting point (PWP) condition is obtained.
35
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the latter (Table 1). This is probably due to the dilution of guttations by dew or to 

degradation processes of the insecticides, for example photodegradation. 

In open field cultivation,  both the high contents of neonicotinoids in guttation drops and the 

characteristic exponential decay of the concentration during the first 10 days after the 

emergence were confirmed,
26,36

 but with higher concentration variability than that observed 

in greenhouse. For instance, the parallel field cultivation (April 2010) of different coated 

seeds produced guttation drops with concentration peaks (1st day after the seedling 

emergence) in the range 77–222 mg l
-1 

for imidacloprid, 19–46 mg l
-1 

for clothianidin and 

79–227 mg l
-1 

for thiamethoxam. 

We also observed that guttation samples often contain traces of other neonicotinoids than the 

seed coating insecticide. This is possibly attributable to a contamination effect during the 

coating procedure, as confirmed by an analysis of the original seeds, during which we found 

30 mg/seed of thiamethoxam in 2008 Gaucho® seeds (1.25 mg/seed of imidacloprid). 

Nevertheless, all guttations from plants grown from Cruiser coated seeds (thiamethoxam) 

contain correlated  concentrations of clothianidin (ca. 10% with respect to the coating 

insecticide, Fig. 1c) which is a well-known degradation product of thiamethoxam.
37

 

As for the toxic effects of these guttation solutions if orally administered to honeybees they 

induce two characteristics neurotoxic symptoms, i.e. abdomen contraction and irreversible 

wing block. The  time scale is of a few minutes  and  the concentration of the neonicotinoid 

insecticides was so high that all the honeybees tested died in up to fifteen minutes.
22

 As the 

time scale is so short, guttation drops could explain the sudden disappearance of worker bees 

during the early spring if they use corn guttations for their foraging. Literature
23

 and direct 

beekeepers‟ observations report  that  guttation drops can be used by honeybees for their 

foraging especially in the early spring when they require intensive drinking activity and 

water- fetching for the hive.
24

  

However, honeybees are likely to use guttation for their foraging in particular conditions of 

drought when no other major visible sources of water are present thereabout.  

Conclusions 

A fast UHPLC-DAD analytical procedure has been optimized for the rapid determination of 

neonicotinoid insecticides in guttation drops. The method reduces the analysis time to 5 min 

and shows adequate sensitivity, selectivity and excellent repeat- ability and detection limits 

for the intended purpose. The method has been successfully applied to the analysis of real 
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samples obtained from corn seedlings grown both in greenhouse and in open field, 

confirming the effective translocation of neon- icotinoids from coated seeds to seedling 

guttations. These solutions may represent a possible route of exposure to lethal doses of the 

insecticides for bees and other insects. 

Because guttation is affected by several factors that cause a high variability both in its 

intensity and in the insecticide content, further experiments are needed to better understand 

the phenomenon and the consequent risk assessment for honey bees. The fast analytical 

procedure described could be a very useful tool for more accurate exposure studies. In any 

case, the presence of a source of water carrying neonicotinoid concentrations in solution up 

to the levels shown in the current study, and persisting for weeks on more than a million 

hectares in northern Italy alone, is a threatening scenario that seems to be incompatible with 

ecologically acceptable conditions. 
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Abstract 

Losses of bees have been reported in Italy concurrent with the sowing of maize coated 

with neonicotinoids where pneumatic drilling machine were used. Solid particles with 

systemic insecticide, falling on the vegetation surrounding the sown area, were thought to 

poison bees foraging on contaminated nectar and pollen. However, bees fed with 

guttation drops and dew collected from the surrounding vegetation of sown fields showed 

no acute toxicity. Chemical analysis showed a relatively low content of neonicotinoid in 

dew and guttation. Thus, the acute poisoning of bees linked to the vegetation 

contaminated by seed coated fragments containing neonicotinoids was again unproven. 

For this reason the direct aerial powdering of bees was investigated exposing caged bees 

around the sown area, not in contact with vegetation. High or low toxicity emerged in 

different trials. The synergistic effect on bees of high humidity on toxicity of powder 

containing neonicotinoid was hypothesized. A clear indication that bees were killed by 

powdering, only if held in high humidity, emerged. Chemical analysis showed high 

quantities of neonicotinoid insecticide in dead bees earlier exposed to dust in the field. 

Key words: Apis mellifera, neonicotinoids, seed coating, toxic powder, humidity 

influence. 

Introduction 

In the last decades the European and American honey bee heritage has been subjected to 

heavy and sudden losses (Potts et al., 2010). In Europe colonies decreased from over 22.5 

million in 1990 to about 15.5 million in 2008 (FAO, 2009). The main causes of those 

deaths are attributable to viruses, fungi (Nosema spp.) and to the parasitic bee mite 

Varroa destructor Anderson et Trueman (Thompson et al., 2002; Ribiere et al., 2008; 
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vanEngelsdorp and Meixner, 2010). Pesticides were also blamed for colony losses 

(Barnett et al., 2007; Karise, 2007), in particular neonicotinoid insecticides that are 

widely used for seed coating in crops such as maize (Zea mays L.), sunflower (Helianthus 

annuus L.) and winter rape (Brassica napus L.). Neonicotinoids are used in the coat to 

protect the seeds and young plants from wireworms (Agriotes spp.), cutworms (Agrotis 

spp.), western corn rootworm Diabrotica virgifera (Le Conte) and from numerous species 

of aphids and leafhoppers (Altmann, 2003). In the last few years sudden losses of 

foraging bees, with accumulations of dead insects in front of the hives, have been 

observed during maize sowing period, from mid March to May, in the maize growing 

regions of Italy and Europe (Bortolotti et al., 2009; Pistorius et al., 2009). The death of 

bees seems to be correlated with the use of seeds coated with neonicotinoids sown using 

pneumatic drilling machines (Greatti et al., 2003), but the correlation is not always clear 

so further studies are required (Giffard and Dupont, 2009). The finding that the pneumatic 

drilling machine, during the sowing, emits into the atmosphere fragments of seed coat 

(Greatti et al., 2003), has suggested the hypothesis that dressing fragments containing 

insecticides falling on the herbaceous vegetation on the margin of the fields, by virtue of 

the systemic properties of neonicotinoids, penetrate into plants, contaminating nectar and 

pollen (Greatti et al., 2006). Nevertheless, the amount of insecticides found in vegetation 

did not seem to justify such rapid losses during, or immediately after the sowing, since 

the insecticide content is about 50 ppb (Greatti et al., 2006) that is too low a dose to cause 

poisoning by ingestion according to Yang et al. (2008), even if sub-lethal effects over the 

long period can be considered (Colin et al., 2001; Suchail et al., 2001;Colin et al., 2004; 

Decourtye et al., 2004; Medrzycki et al., 2003; Maini et al., 2010; Laurino et al., 2011). 

Chemical analyses of dead bees have also confirmed the presence of neonicotinoids 

Sabatini et al., 2008) even if the amount of the insecticide did not, as a rule, seem 

sufficient to induce acute mortality, considering the oral intake LD50 of 40-80 ng/bee (for 

imidacloprid) reported by Maus et al. (2003). Lethal sources of neonicotinoids in the field 

during maize sowing have been identified but obviously the mechanism by which bee 

come into contact with them have not yet been. Lethal concentrations of neonicotinoids in 

the field were found in guttation drops of Z. mays (Girolami et al., 2009) but the sudden 

death phenomena that occurred during the sowing cannot be explained since the guttation 

appears after plant emergence, at least a week after sowing. This study investigates two 

hypothetical mechanisms through which honey bee can come into lethal contact with the 

insecticide used to coat maize seed during the sowing. The first hypothesis is the direct 
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contamination during sowing, of dews and guttation drops, on the marginal vegetation, by 

coating fragments containing water-soluble insecticides (before absorption into the plant 

as previously reported). This was considered as a possible source of poisoning for bees 

when they collect water for the intensive spring foraging on flowers. The second 

hypothesis was the possibility that bees could be directly poisoned with the fragments 

emitted by the drilling machine, that is a possible direct aerial contact of foragers with the 

dust where there is no contact with the contaminated vegetation. Bee deaths, however, are 

not regularly observed during maize sowing, so the possibility was considered, that the 

toxicity of bee dusting could be influenced by particular environmental conditions. 

Materials and methods 

Experimental sites and insect origin 

Field trials took place at the experimental farm of the Agricultural Faculty (University of 

Padova) located in Legnaro (Veneto Region - 45°20'29.07"N 11°57'30.03"E). The 

Padova Beekeeping Association (A.P.A. Pad) supplied 7 hives. For the trials, the insects 

were caught with a net in front of the hives. The bees were kept in tulle mesh cages 20 cm 

x 20 cm x 20 cm and repeatedly fed with honey drops on the top of cages. Bees inside the 

larger cage, in sunny days (but not in rainy days), were freed in the evening and renewed 

daily. At the time of the tests, caged bees were collected (from the 20 cm cage) in a test 

tube and transferred each one in smaller cubic cages of 5 cm in tulle and again fed with 

drops of honey placed on the top. 

Seed employed 

For the trials three batches of seed were used: one of 2008, a second of 2009 and another 

of 2010 hereafter called “2008/2009/2010 coating” respectively. The 2008 seeds, hybrid 

PR34N84 from Pioneer Hi-bred Italy (Johnston, IA), were coated with the fungicide 

Celest® XL (Syngenta; Fludioxonil 2.4% and Metalaxyl-M 0.93%) and insecticide 

Poncho® (Bayer Cropscience AG., Leverkusen, Germany; Clothianidin 1.25 mg/seed) 

(Andersch and Schwarz, 2003; Altmann, 2003). For the 2009 and 2010 coating the hybrid 

employed was X1180D 964890 from Pioneer Hi-bred Italy, coated with Celest® XL, 

Celest® XL + Poncho® and only for 2009 Celest® XL + Cruiser® 350FS (Syngenta 

International AG, Basel, Switzerland; Thiamethoxam 1 mg/seed) (Robinson, 2001; 

Maienfisch et al., 2001). The seeds were supplied in 2009 and 2010 by A.I.S. (Italian 

seed association) courtesy of MiPAAF (Ministry of Agriculture, Food and Forestry) for 
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the research project Apenet. The 2009 and 2010 seed batches have a quantity of dust 

abrasion under the limit of 3 g/q. The quantity was tested with the Heubach test, 

considered the method which best allows standardization of dust abrasion measurements 

within the seed industry (Apenet, 2009; Nikolakis et al., 2009). The 2008 batch was a 

common commercial seed. Drilling machines and sowing A Monosem NG Plus 

(Monosem, Largeasse-France) pneumatic drilling machine was used for all the sowing 

operations. Normally 73,000 to 74,000 seeds per hectare were sown (75 cm between 

rows, 18 cm between seeds in the row). The drill moves at 6-7 km/h with a seeding width 

of 3 m and, theoretically requires 30 min to sow 1ha. The air waste pipe is situated on the 

right hand side of the machine and expels air (and dust) at ≈ 150 l/min, at a height of 1.8 

m and an angle of 45° to the horizontal. After the experimental employment the machine 

and the seeding equipment was cleaned with a current of compressed air and, where 

possible, with water spray. Toxicity of dew and guttation on marginal vegetation In trials 

1a, 1b, 2a and 2b (table 1), an area of 3,500 m
2
 (70 x 50 m North-South oriented) was 

sown with seeds treated with both the 2008 and 2009 coating of Clothianidin. In the first 

instance (trials 1a and 2a) seeds with the 2008 coating were sown and 30 minutes later, 

seeds with the 2009 coating (trials 1b and 2b) were sown. After the sowing, samples of 

dew and guttation drops of 5 ml were separately collected from the vegetation on the 

margins of the sown area, on the East and West side. The first samples were collected 

before the starting up of the drilling machine as a control, a second at the end of the first 

sowing (after 30 min) and the third after the second sowing (after 60 min) (for a total of 6 

samples, 3 East and 3 West). The day after the trial, repeat samples were collected in the 

same way (table 1, trial 2a and 2b). In all the trials the drops were collected using a glass 

Pasteur pipette, put in sealed glass vials and stored in a refrigerator (at 2-4°C).  
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Table 1. Details of field trials carried out to evaluate the toxicity of dew and guttation. 

For toxicity test, 15% honey was added to a part of the samples and fed to the bees on the 

day of collection. Drops of the mixture of 30 μl were placed on the top of the net cage 

inside a capillary glass tube (Girolami et al., 2009). For each sample at least 6 bees were 

tested. Samples of dew and guttation on the vegetation of the margin were collected 

during the trial n. 5b (table 2) of 21/X/2010 (1 h and 24 h after the sowing) for chemical 

analysis.  

Direct field dusting inside cages 

The bees were exposed to the dust emitted by the drilling machines for 30 min, inside the 

small cages (5 × 5 × 5 cm) on the margins of the sowing area and avoiding contact with 

the vegetation.  

Conditions after exposure and influence of relative Humidity 

After the exposure to the insecticide dust in the field, honey bees were transferred to a 

room held at a controlled temperature (22 ± 1.5 °C). For trials where influence of 

humidity was considered (table 2), half of the cages were kept at the relative humidity of 

the laboratory lower than 70%, with the use of de-humidifier if needed, hereafter called 

lab humidity. The other half of the cages were kept at a relative humidity close to 

saturation (> 95%), hereafter designated as high humidity. To obtain conditions of high 

humidity, caged bees were held in plastic boxes with Plexiglas sprayed with water on the 

top and a moistened paper on the bottom. The cages were raised above the paper to 

prevent the bees getting wet. The humidity was repeatedly checked with an electronic 

hygrometer and also with a traditional hygrometer (with dry and wet bulb). All the bees 

were fed with drops of honey on the top of the cages. In trial 2c (table 2), the cages were 

placed in field on poles at a height of 1.80 m, 20 cages with one bee to a cage were used, 

10 were placed on the West side and 10 on the East side of the field. The first was upwind 

and the second downwind according to the direction of the wind was blowing across N-S 

orientated plot (table 2). After exposure the cages were taken to the laboratory and held at 

22 ± 1.5 °C. Field exposed honey was taken from the top of cages (in which the bees had 
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died) and was fed to 10 other single caged bees. In trial 3 (table 2), poles were connected 

by cords and cages were placed around the plot at differing heights (1.5-2-2.5 m). The 

cages with a single bee inside, were attached to the cord, at intervals of ≈ 2 m; 72 cages 

were used, 36 on the West side (upwind) and 36 on the East side of the field (downwind). 

After exposure the cages were taken to the laboratory and held at 22 ± 1.5 °C. Trial 4 

(table 2) was similar to the experiment no. 2c. 60 bees were exposed on poles at a height 

of 1.8 m; 30 cages East side and 30 cages West side of the field. At the end of the sowing 

(after 30 min) 15 cages of each group were put in laboratory humidity and 15 cages in 

high humidity. In trial 5a seeds coated with Celest® XL (2010 batch) were sown, for 30 

minutes; 60 single caged bees were placed on poles at a height of 1.8 m along both longer 

sides of the plot. In trial 5b seed treated with Clothianidin (Poncho® -2010 batch) was 

sown for further 30 minutes and other 60 caged bees were exposed at the same height as 

trial 4. In trial 5c, during trial 5 b, 60 caged bees were exposed (on poles) not less than 40 

meters from the sown area (trial n. 5c). This trial was considered an untreated control. 

Chemical analysis 

Neonicotinoid content in dew and guttations 

Analytical determination standards and analytical methods are reported in Girolami et al. 

2009) and more specifically in Tapparo et al. (2011).  

Neonicotinoid content of the maize seed coat 

Large fragments taken from the new seed shell coating with Clothianidin (Poncho® 

Bayer Cropscience AG.- Dormagen – Germany) were collected manually at the air outlet 

of the drilling machine after sowing experiment. This powder was weighed using an 

Ohaus AP250D balance (0.01 mg) and dissolved in a known amount of water-methanol 

(50% v:v) and placed in an ultrasound bath for 20 min. The solution thus obtained, was 

diluted and filtered using Millex HV 0.45 μm (Millipore) syringe filter and was then 

analysed by UFLC - DAD procedure, using the method reported below. 
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Table 2. Details of field trials carried out to evaluate the toxicity on caged bees. 

 

* Samples of dew and guttation were collected for chemical analysis 
1 
Control 

2 
Untreated (bees exposed 40 m distance) 

3
 L = lab humidity; H = high humidity; N.C. = not specifically controlled 

Table 3. Number of dead bees (groups of 6) within 24 h of being fed with water drops collected from the  

argins of the sowing area, upwind (East) and downwind (West), at different times from the beginning of 

sowing on 2 consecutive days. Seeds were coated with Clothianidin. 

 

Neonicotinoid content in bee 

Samples of honey bees that died after the sowing of maize coated with neonicotinoid 

insecticides (Poncho® 1.25 mg/seed, 2010), were taken for analysis of the insecticide 

content to the Department of Chemical Sciences of the University of Padova. Samples 

were stored at +2°C for few days before the analysis. The treatment of the samples started 

with a drying process. The bees were put in a thermostatic oven, at 100 °C for about 2 h. 

The samples were then ground with a metallic pestle, then put into a solution of 

methanol- water (50% v:v) and placed in an ultrasonic bath for 20 min. Samples were 

finally centrifuged, the floatage was separated and filtered with Millex HV 0.45 μm 

syringe filter (Millipore). The analyses were performed in a UFLC instrument (Ultra Fast 

Liquid Cromatography, Shimadzu XR -Prominence) equipped with an UV-Vis diode 

array detectorand a Shimadzu XR - ODS II (2.2 μm, 2 × 100mm) analytical column and a 

Phenomenex Security Guard pre-column. The following instrumental procedure was 

optimized:eluent flow rate of 0.4 ml/min, gradient elution (0-0.5min 70:30% 

water/acetonitrile; 0.5-1.5 min linear gradient to 100% acetonitrile; 1.5-3 min 100% 

acetonitrile), 45 °C column temperature, multiwavelength acquisition of detector signal 

and analytes quantification at 269 nm for Clothianidin. Instrumental calibration (external) 

was performed by the analysis of standard solutions in the 0.1-100 mg/liter concentration 
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range of analytes, prepared in methanol-water solutions (50% v:v) from pure analytical 

standards (Sigma-Aldrich Group, Milan, Italy; Pestanal, purity > 99.7%).Methanol 

(VWR, International, Milan, Italy) and acetonitrile (Riedel de Haen, Sigma-Aldrich 

Group) were of HPLC grade. Pure water was produced by Milli-Q equipment (Millipore, 

Billerica, MA).  

Statistical analysis 

For comparing different mortalities of bees χ2 test was used. 

Results 

Toxicity of dew and guttation on the marginal vegetation 

In trials 1a, 1b, 2a and 2b (table 1) bees fed with drops collected from the vegetation on 

the margin of the sowing area did not demonstrate symptoms of poisoning; only 3 bees 

out of 72 died (table 3) without specific symptoms of neonicotinoid poisoning such as a 

jerky inward arching of the abdomen (Girolami et al., 2009). There were no subsequent 

mortalities detected either in the control (0 minutes) before the starting up of the drilling 

machine, or in other successive samples within 48 h. The bees were then freed, into the 

sunlight, and almost all were able to fly away. Even the samples collected after two 

consecutive days of sowing, despite probable higher quantities of fragments of coating on 

vegetation on the margins, did not demonstrate any acute toxicity to honey bees. 

Direct field dusting inside cages 

In trial 2c (table 2), bees contained in tulle cages, were exposed to the dust of the drilling 

machine at the margins of the sowing area for 30 min and then taken to the laboratory. 

The 10 bees that were exposed West-upwind were all still alive after 24 h, while bees 

exposed Eastdownwind all died (in the laboratory) (table 4) within 5 to 10 h. To eliminate 

the doubt that the death of bees could be due to feeding on drops of hypothetically 

contaminated honey on the top of cages exposed to dust in the field, honey was taken 

from cages were bees had died and fed to 10 other bees, of which, only one showed 

symptoms of neonicotinoid poisoning within 24 h. In trial 3 (table 2) bees inside cages 

were placed around the plot at differing heights (1.5-2-2.5 m). None of the 72 bees taken 

to the laboratory, after exposure, showed evident symptoms of poisoning within 24 h 

(table 4). The honey bees exposed in this trial did not die and the height of exposure 

seems not to be determinant in bee mortality. In trial 4 (table 2) the influence of relative 
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humidity was evaluated on 2 groups of bees exposed to dust in the field, (30 East side and 

30 West side), by holding them in laboratory humidity or in a semi-saturated condition. In 

high humidity 73% of bees died (22 out of 30). 

Table 4. Number of dead bees (2 groups of 10 or 36) exposed on the margins of the sown area to the dust 

of the drilling machine for 30 min in two experiments. 

 

* χ
2
 was calculated in the same line 

Table 5. Number of dead bees (groups of 30) exposed in single cages, to the emissions of the drill, taken to 

the laboratory and kept in varying conditions of RH. 

 
* χ2 was calculated in the same column and between two humidity conditions 
1
 Control 

2
 Untreated (bees exposed 40 m distance) 

Of the corresponding bees held in lab humidity, respectively only 16% died (5 out of 30), 

showing highly significant differences in the χ2 test between the two humidity conditions 

(table 5). In trial 5a (table 2), only seed treated with fungicides (Celest® XL) was used. 

Of the 60 bees exposed in the field and then taken to the laboratory, 3 out of 30 died in 

lab-humidity and 4 out of 30 died in high humidity without significant differences 

between high and low relative humidity conditions. In trial 5b (table 2), seed treated with 

Poncho® was used immediately after the sowing with fungicides. High mortality was 

observed in bees with significant differences between high and low humidity after the 

exposure. In trial 5c (table 5), bees were exposed at not less than 40 meters from the 

drilling machine and almost all survived without significant differences between high and 

low humidity. Therefore, highly significant differences emerged between different 

humidity regimes when seeds treated with insecticides were used whilst, using seeds 

treated only with fungicides or holding the cages a distance from the drilling machine, no 

significant differences emerged. Comparing the mortality between fungicide and 

insecticide exposed bees (table 5, trials 5a and 5b), separately in high humidity or lab 
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humidity, highly significant differences emerged (figure 1). Therefore high humidity 

increases mortality only when insecticide is used and not with fungicide. 

 

 

 Figure 1. Percent mortality of A. mellifera exposed to the dust emissions of the drilling machine using 

maize treated with only fungicides or fungicides plus insecticide (table 5, trial 5a and 5b). p-values refer to 

mortalities in the same humidity conditions. 

Chemical analysis 

Dew and guttation analisis 

The chemical analysis of the fragments of seed coating showed approximately, or more 

than, 20% (wt:wt) of Clothianidin a.i. content. In both samples of dew and guttation drops 

collected one hour and 24 h after the sowing the insecticide used for seed dressing was 

found in concentrations lower than 30 ppb, with an overall average of 15.87 ppb (table 6). 

Neonicotinoid content in bees 

Chemical analysis of dead bees found an average of 279 ± 142 ng/bee of Clothianidin in 

high humidity while in low humidity the average was 514 ± 174 ng/bee, with an overall 

mean of 396 ng/bee.  
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Table 6. Content of Clothianidin in samples of dew and guttation drops collected from vegetation on the 

field margins after the sowing. 

 

Discussion 

Toxicity of drops of dew and guttation 

No acute toxicity was found in bees fed with dew and guttation drops collected on the 

margins of the seeded area even after two consecutive days of sowing in the same plot. 

Thus the hypothesis that the bees were acutely poisoned by solid fragments falling on the 

vegetation was again unproven. In particular, it seems that honey bees cannot be lethally 

poisoned by drinking dew and guttation on vegetation during, or after sowing of maize 

coated with neonicotinoids. These observations agree with semi-field trials based on the 

contamination of flowers sprayed with doses of neonicotinoids (imidacloprid) relatively 

higher than the quantity that would fall during the sowing (Schnier et al., 2003). The 

absence of mortality is congruent to the neonicotinoid content of dew and guttation drops: 

chemical analysis showed an average content of Clothianidin of 15.87 ppb. Considering 

that a bee can drink 30 μl of solution in a single session (Beekman et al., 2004), the intake 

of active ingredient would be 0.5 ng of  Clothianidin. That is a dose more than fifty times 

lower than that required to cause an acute poisoning with a single ingestion (Girolami et 

al., 2009). Obviously the absence of acute toxicity of vegetation containing low doses of 

neonicotinoids cannot exclude other poisoning sources for honey bees that may be 

present during the sowing with dressed maize. Similarly, the effects of chronic toxicity 

over a long period, due to sub-lethal doses of neonicotinoids, cannot be excluded 

(Medrzycki et al., 2003; Aliouane et al., 2009).  

Direct field dusting inside cages 

The data from the first experiment with caged bees (table 4, trial 2c) implied, as a 

probable contamination, the direct powdering of bees exposed in small cages, for half an 

hour to the dust of the drill and unable to fly freely. The hypothesis of direct dusting 

appeared to be contradicted in trial 3 where no mortality was observed (table 4). The 

weather conditions between the two trials (table 2) corresponded, the first to spring 

conditions with a low temperature (21 °C) and high humidity (79%), the second to 
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summer conditions with a high temperature (33 °C) and low humidity (34%). It was 

thought that weather variables could influence mortality, in particular it was suggested 

that given the water solubility of the neonicotinoids, humidity could play a role in the 

deaths of bees. This hypothesis was tested in a subsequent trial (table 5, trial 4) where 

exposed bees were kept in the laboratory at different humidity. The mortality of bees kept 

in high (semi-saturated) humidity was very high, whereas, in lab humidity (≤ 70%), 

almost all survived (table 5). The influence of high humidity corresponding to weather 

conditions that frequently are present in spring, in the first few hours of morning sun, was 

verified in a further trial (table 5, trial 5b). In trial no. 5a, where seeds treated only with 

fungicides were sown, or bees were kept in cages far from the sown area (trial 5c), a low 

mortality was recorded in bees held in both humidity conditions. For this reason, it is 

possible to consider these fungicides coating as not toxic to honey bees, and as an 

acceptable untreated control. Moreover, in these trials (5a and 5c), no significant 

differences were found between mortalities in the two humidity conditions, this suggest 

that high humidity, in itself, could not cause mortality. High humidity, on the other hand, 

seems to have a synergistic influence on the toxicity of insecticides that come into contact 

with honey bees. The amount of insecticide found in samples of dead bees (analyzed 24 h 

after the end of the trial), is sufficient to explain the mortality, because the quantity found 

are more than 10 times higher (table 7) than the contact LD50 for Clothianidin of 21.8 

ng/bee (Iwasa et al., 2004). There are no doubts that the bees tested died because of the 

high amounts of insecticides that reached them, but the mechanism through which they 

get contaminated, in particular if the wind has a role, as suggested by the first trial where 

mortality was observed only downwind, remains to be investigated. From the data 

reported it is possible to suppose that honey bees die in spring, throughout the maize 

sowing period, because they are contaminated by insecticide dust emissions during 

foraging activity when they fly near a working drilling machine. As reported, bees were 

exposed to the dust emitted by the drilling machine for half an hour without the 

possibility of flying away, therefore other experimentation to demonstrate that the bees 

can be dusted in flight, are necessary. The reason why the powder emitted by the drilling 

machine, independently of the synergistic effects of humidity, had such a dramatic effect 

on bees may have a rather simple explanation. The fragments expelled during the sowing, 

contain more than of 20% of neonicotinoid, that is a concentration of insecticide at least 

2,600 times greater than that diluted in water for agricultural sprays (for example 

Dantop®, Clothianidin 50%, is used at 15 g/hl, that is 75 ppm). The presence in the field 
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of sources of highly concentrated insecticide, sufficient to kill bees, was previously not 

considered, probably because the lethal effects are contingent upon the differing humidity 

in the field. 

Table 7. Quantity of insecticide (Clothianidin) found in dead bees after 30 minutes exposure to the dust 

emissions of the drilling machine. 

 

In any case it seems that acute poisoning of bees can more probably be linked to an aerial 

contamination rather than to a contact with marginal vegetation. It is important to 

investigate the possible mechanism through which honey bees come into contact with the 

dust emitted by the drilling machines. Once this mechanism is clarified, it will be possible 

to improve drilling machines and to take measures to mitigate risk.  
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Abstract 

Losses of honeybees have been reported in Italy concurrent with the sowing of corn 

coated with neonicotinoids using a pneumatic drilling machine. Being unconvinced that 

solid particles containing systemic insecticide, falling on the vegetation surrounding the 

sown area, could poison bees foraging on contaminated nectar and pollen, the effect of 

direct aerial powdering was tested on foragers in free flight near the drilling machine. 

Bees were conditioned to visit a dispenser of sugar solution while a drilling machine was 

sowing corn along the flight path. Samples of bees were captured on the dispenser, caged 

and held in the laboratory. Chemical analysis showed some hundred nanograms of 

insecticide per bee. Nevertheless caged bees, previously contaminated in flight, died only 

if kept in conditions of high humidity. After the sowing an increase of bee mortality in 

front of the hives was also observed. Spring bee losses, which corresponded with the 

sowing of corn coated seed, seemed to be related to the casual encountering of drilling 

machine during foraging flight across the ploughed fields.  

Keywords 

Apis mellifera, corn dressing, colony losses, clothianidin, imidacloprid 

Introduction  

In the last few years, honeybee colonies throughout the world have been subject to rapid 

losses (Underwood et al. 2007, vanEngelsdorp et al. 2009), in particular in South Europe 

in the order of 40% (Neumann and Carreck 2010; Mutinelli et al. 2010). The beehive 

heritage in Europe decreased from over 22.5 million in 1990 to about 15.8 million in 

2009 (FAO 2011). From the 1970s to the 1980s the parasitic bee mite, Varroa destructor 
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appeared in Europe and United States, (Thompson et al. 2002), passed from the East 

Asiatic Apis cerana Fabricious to the African and European Apis mellifera L (Anderson 

and Truman 2000), causing losses to apiaries (Neumann et al. 2010; Ratnieks et al. 

2010). Colonies infected by varroa die within 1-3 years without chemical interventions 

(vanEngelsdorp et al. 2008; Rosenkranz et al. 2010), which are effective in reducing the 

losses that are observed in autumn and the end of winter (Kraus and Page 1995; Fries and 

Perez-Escala 2001). 

The sowing of maize (Zea mais L) from mid march to may, in the corn growing regions 

of Italy and Europe, was often accompanied by a rapid disappearance of foraging bees, 

sometimes with accumulations of dead bees in front of the hives. These spring time 

deaths of colonies are chronologically distinguishable from those caused by varroa; the 

latter is efficiently controlled by professional beekeepers, who on the other hand, do not 

know how to avoid the deaths that occur at the time of the maize sowing. During the last 

decade a close relationship was observed between the deaths of bees and the use of 

pneumatic drilling machines for the sowing of maize seeds coated with neonicotinoid 

insecticides (Greatti et al. 2003). At the end of the 1990s, soil insecticides were replaced 

with the coating of maize seeds (Taylor and Harman, 1990) with fipronil (Colliot et al. 

1992; Turnblad et al. 1998) and the widespread neonicotinoids (Elbert et al. 2008) which, 

being systemic, penetrate the seedlings protecting them from wireworms beetles (Agriotes 

spp.), cutworms (Agrotis spp.) and the rootworm, Diabrotica virgifera LeConte (Stamm 

et al. 1985; Altmann 2003; van Rozen and Ester 2010), that are the most dangerous insect 

pests of maize seedlings in spring. Furthermore these insecticides also control aphids 

(Rhopalosiphum spp., Sitobion spp. and Metopolophium spp.) and leafhoppers 

(Laodelphax striatellus Fallen) that are virus vectors. In pneumatic sowing machines the 

seed is sucked in, causing the erosion of fragments of the insecticide shell that are 

forcefully expelled with a current of air. How the insecticide comes into contact with the 

bees is the subject of this paper. The premiss (Greatti et al. 2003) was that the bees die by 

collecting contaminated pollen and nectar, because solid fragments of the neonicotinoid 

seed coating fall on the vegetation surrounding the seeded areas. This hypothesis is up to 

now widely accepted (Pistorius et al. 2009). Neonicotinoid concentrations in the 

vegetation at the margins of the seeded areas were shown to be about 50 ppb (Greatti et 

al. 2006; Maini et al. 2010), not sufficient to cause acute toxicity in foraging honeybees 

(Yang et al. 2008). Being unconvinced that bees were poisoned by the contact with the 

surrounding vegetation, other lethal sources in the fields were sought to justify such rapid 
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mortality during the spring maize sowing.  A cause of acute contamination was attributed 

to the high concentration of neonicotinoids in the guttation drops of coated maize 

seedlings; these contain lethal doses of insecticide (Tapparo et al. 2011), sufficient to kill 

a bee within minutes of contact (Girolami et al. 2009; Riebe 2009). However, these bee 

deaths may not occur at the time of sowing, but after the emergence of plants when 

guttation drops are produced, therefore further sources of poisoning were hypothesized. 

In the first instance the possibility that bees could be poisoned by drinking dew and 

guttation drops on nearby vegetation directly contaminated by particulates during the 

sowing was considered but without finding acute toxicity. On the other hand, an aerial 

contamination of caged bees near the sowing machine in action was observed, with lethal 

effect if the relative humidity is high (Marzaro et al. 2011). In the present work attention 

is focused on the possibility that bees can be directly dusted in flight with fragments of 

shell coating emitted by a drilling machine in action, whilst flying on the usual route 

between the hive and food sources. High humidity was further studied as a possible key 

factor, increasing the lethal effects of powdering. 

Material and methods 

Experimental site and insect origin  

Field trials took place at the experimental farm of the Agricultural Faculty (University of 

Padova) located in Legnaro (Padova). The plot was 50 m wide by 70 m long (coordinates: 

45
o
20‟41. 19”N-11

o
57‟16.22”E). The Padova Beekeeping Association (A.P.A. Pad) 

supplied 4 hives.  

Seed employed and sowing   

Two batches of seed were used for the trials: one produced in 2009 and the second in 

2010 hereafter called “2009 or 2010 coating” respectively. The coatings (hybrid 

employed X1180D 964890; Pioneer Hi-bred Italy) were: Celest XL®, containing only 

fungicides, (Syngenta, Basel, Switzerland; Fludioxonil 2.4% and Metalaxyl-M 0.93%),  
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Table 1 Free flight field trials.
  

a 
Bees collected in the front of the hive. 

Poncho® (Bayer Cropscience AG., Leverkusen, Germany; clothianidin 1.25 mg/seed) 

(Andersch and Schwarz, 2003; Altmann, 2003) and Gaucho 350FS® (Bayer Cropscience 

AG., Leverkusen, Germany; imidacloprid, 0.5 mg/seed) (Elbert et al. 1990) (table 1). The 

seeds were supplied by A.I.S. (Italian seed association) courtesy of MiPAAF (Ministry of 

Agriculture, Food and Forestry) for the research project Apenet. The 2009 and 2010 seed 

batches have a quantity of dust abrasion under the limit of 3 g/ 100kg seeds. The quantity 

was tested with the Heubach test, considered the method which best allows stand 

standardization of dust abrasion measurements within the seed industry (Apenet, 2009; 

Nikolakis et al. 2009; Apenet, 2010). A Monosem NG Plus (Monosem, Largeasse-

France) drilling machine was used for all the sowing operations. Normally 73,000 to 

74,000 seeds per hectare were sown (75 cm between rows, 18 cm between seeds in the 

row). The drill moves at 6-7 km/h with a seeding width of 3 m and requires a minimum of 

30 min to sow 1 ha. The air waste pipe is situated on the right hand side of the machine 

and expels air (and dust) at about150 l/s, at a height of 1.8 m and an angle of 45° to the 

horizontal. A deflector for direct air stream directed to the soil are not reported in this 

paper. 

Conditions after exposure and influence of relative humidity  

Once the bees were exposed to the insecticide powder in the field and captured (as 

reported in the following paragraph), they were singly transferred in small cubic (5 × 5 × 

5 cm) tulle cages, in a room at a controlled temperature (22±1.5°C). Half of the cages 

were kept at a relative humidity lower than 70%, with the use of de-humidifier if needed, 

hereafter designated as lab humidity; the other half of the cages were kept at a relative 

humidity close to saturation (>95%), hereafter designated as high humidity. To obtain 

conditions of high humidity, singly caged bees were held in plastic boxes with plexiglass 

No 

 

 

 

Date 

 

Starting 

time, 

length 

(min) 

Active ingredient 
 and coating year 

               Meteorological      conditions No. bees tested 

t (°C) RH          

  (%) 

            Wind Relative humidity 

 direction Speed 

(m/s) 

High Laboratory 

1 14/7/09 9.30-60 Clothianidin - 2009 28 65 ENE 2.5 60 60 

2 23/7/09 9.00-60 Imidacloprid - 2009 28 69 E    2.4 60 60 

3 15/10/09 11.00-60 Imidacloprid - 2009 13 29 ENE 3.9 60+60
a 

60  

4a 02/09/10 10.30-60 Fludioxonil+Metalaxi

l-M-2010 

21 50 NNE 2.8 60 60 

4

b 

02/09/10 12.00-60 Clothianidin - 2010 24 46 ENE 2.7 60 60 
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on top that was sprayed with water. Moistened absorbent paper was placed under the 

cages which were raised above the paper to prevent the bees getting wet. The humidity 

was repeatedly checked with an electronic hygrometer and also with a traditional 

hygrometer (with dry and wet bulb). All the bees were fed with drops of honey on the top 

of the cage which was replaced when necessary. 

Dusting trials 

The progressive number, the date, the duration and the insecticides or fungicides used in 

the different trials are reported in table 1 along with the meteorological conditions and the 

number of bees tested. For the trials bees were conditioned to visit a dispenser containing 

a 50% (wt : vol) water solution of sucrose, placed to the north of the hives. Initially the 

dispenser was put close to the landing board and then moved progressively further from 

the apiary. The dispenser was an earth colored plate ø 0.25 m, to avoid the possible 

attraction of bees from other apiaries. The bees leaving from the hives, in order to reach 

the dispenser, had to fly over a screen house, a small vineyard for 25 m, and over a 70 m 

ploughed area of the plot for a total of 100 m. The sowing was carried out on the plot 

keeping a minimum distance of 35 m from the hives and from the dispenser. In all the 

trials (table 1) samples of 24 bees were collected; the first before the beginning of the 

sowing and 4 others at intervals of 15 min. The bees were captured at the dispenser with 

vials and placed singly in tulle cages, then kept, half in high humidity and half in lab 

humidity, for a total of 120 bees per trial. In all the trials (table 1), dead bees were 

counted in front of the hives 2 hours after the end of the sowing and in the evening of the 

same day, as well as the morning and the evening of the following days. In trial 3 (table 

1), in addition to the 5 samples taken from the sugar dispenser, 5 other  samples of 12 

bees, employing the same timetable, were captured in front of the hives using an 

entomological net, successively caged and all held in high humidity (table 1).  

Samples of dead bees  

In trial 1, after 3 hours from the end of the sowing and the day after, 2 samples of 7 dead 

bees were collected from the ground in front of the apiary. Also in trial 3, samples of 8 



 

 

96 

Table 2 Number of dead bees (in groups of 12), exposed in free flight to the emissions of the drilling 

machine, captured at intervals of 15 min from the beginning of the sowing, caged and placed in varying RH 

conditions.  

a 
Bees collected in the front of the hive. 

The asterisks  indicate significant differences in the same trial, in respect to the successive number within 

the same column (***:p<0.001; ** :p<0.01; * :p<0.05). 

Table 3 Content of neonicotinoids in honeybee samples collected at different times from the starting of 

sowing, after their flight near the drilling machine. 

a
 Time from start of sowing. 

b 
Bees captured at the dispenser and dead in laboratory in high humidity. 

c 
Bees found dead on the ground in front of the apiary. 

d
 Bees found dead on the ground near the dispenser. 

 

dead bees were taken from the front of the hives at 3 and 4 hours from the end of the 

experiment (table 3). Furthermore samples of 4 bees found dead on the ground near the 

dispenser were collected at 30 min from the starting of the sowing in trial 3 and on the 

non woven net the day after (table 3). Two other samples of apparently healthy bees that 

were collected at the dispenser and subsequently died inside the cage in the laboratory, 

No - date 

of trial 

Insecticide Collecting 

site 

Sampling 

time
a
 

No. of 

bees 

analysed 

Quantity of insecticide in 

bees 

ng/bee 

1-  

14/07/09 

Clothianidin -

2009 

Dispenser 30 min
b
 7 674 ng/bee 

Hive 3 h
c
 7 161 ng/bee 

Hive day after
c
 7 118 ng/bee 

3-  

15/10/09 

Imidacloprid -

2009 

Dispenser 30 min
d
 4 3,661 ng/bee 

Dispenser 45 min
b
 8 442 ng/bee 

Hive 3 h
c
 8 500 ng/bee 

Hive 4 h
c
 8 53 ng/bee 

Non woven 

net 

day after 4 29 ng/bee 
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were taken for analysis (7 bees collected after 30 min in trial 1 and 8 bees after 45 min in 

trial 3). 

Neonicotinoid content in bee samples 

Samples of honeybees that died during the trials were taken for analysis of the insecticide 

content to the Department of Chemical Sciences of the University of Padova. The 

samples of bees, pooled for analysis, were stored at +2°C for few days. The treatment of 

the samples started with a drying process; the bees were put in a thermostatic oven, at 

100°C for about 2 h. The samples were then ground with a metallic pestle, methanol was 

added and the samples were placed in an ultrasonic bath for 25 min. Samples were finally 

centrifuged, the floatage was separated and filtered with Millex HV 0.45 µm syringe filter 

(Millipore). The analyses were performed in a UFLC instrument (Ultra Fast Liquid 

Cromatography, Shimadzu XR – Prominence) equipped with an UV-Vis diode array 

detector and a Shimadzu XR - ODS II (2.2 µm, 2 x 100 mm) analytical column and a 

Phenomenex Security Guard pre-column. The following instrumental procedure was 

optimized: eluent flow rate of 0.4 ml/min, gradient elution (0-0.5 min 70:30% 

water/acetonitrile; 0.5-1.5 min linear gradient to 100% acetonitrile; 1.5-3 min 100% 

acetonitrile), 45°C column temperature, multiwavelength acquisition of detector signal 

and analytes quantification at 269 nm for Clothianidin and Imidacloprid. Instrumental 

calibration (external) was performed by the analysis of standard solutions in the 0.1-100 

mg/liter concentration range of analytes, prepared in methanol-water solutions (50% vol : 

vol) from pure analytical standards (Sigma-Aldrich Group, Milan, Italy; Pestanal, purity 

>99.7%). Analysis of spiked samples (blank bees added with 0.5–1 µg/bee of clothianidin 

and imidacloprid) showed recovery factors in the range 75–105%. Methanol (VWR, 

International, Milan, Italy) and acetonitrile (Riedel de Haen, Sigma-Aldrich Group) were 

of HPLC grade. Pure water was produced by Milli-Q equipment (Millipore, Billerica, 

MA).  

Statistical analysis 

For each sample of 24 bees collected at a particular time interval, we tested the null 

hypothesis that the frequency of mortality occurred independently of humidity using a 

chi-squared goodness-of-fit test. 
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Results  

Behavioural aspects 

When the sucrose solution was poured into the dispenser it was possible, after few 

minutes, to see the arrival of some hundreds of experienced foragers. It was easy to 

observe that bees usually flew at a height of about 2 m and, normally they do not change 

their direction in proximity of machine only if they encountered the outline of the drilling 

machine they passed at a distance of few meters to the sides. Observing the bees in flight 

in sunny conditions a minimum of 15-20 foragers per minute over the ploughed area was 

calculated approximately. 

Free flight dusting and humidity 

To assess the influence of toxic powder from the drilling machine on honeybees in free 

flight, the machine was placed on the flight path between the hive and the dispenser with 

sugar solution. The bees captured, in the trial 1 at the sugar dispenser, at the beginning of 

the sowing, showed no symptoms of poisoning and none died when taken to the 

laboratory, either in conditions of lab or high humidity. In the subsequent 4 samples all 

the bees died in conditions of high humidity and none in lab humidity (table 2). After 3 h 

from the end of this test, an accumulation of about 400 dead bees was observed in front of 

the four hives which, by the end of the day after, had reached the number of 1490. On the 

previous days, the number of dead bees in front of the hives, were less than 50 in the 

apiary.  

In trial 2, similar results to the previous test were obtained. None of the bees collected at 

the beginning of the sowing died. In the succeeding samples, only in high humidity 

conditions did high mortality emerge, while only 6 died (out of a total of 60 bees) of 

those held in lab humidity. By the evening, and different from trial 1, the number of dead 

bees in front of the 4 hives did not significantly increase and was lower than 50 bees.  

In trial 3, no substantial differences emerged in respect of the previous trials 1 and 2 when 

referring to the mortality of bees collected at the dispenser (table 2). In this trial, samples 

of flying bees were also collected in front of the hives, then caged and all held in high 

humidity. No mortality was observed at time 0 and also in the sample collected after 15 

min; in the successive samples high or total mortality occurred. In the evening about 300 

dead bees were present in front of the hives, the day after there were about 500. None of 
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the 6 bees fed in laboratory with the sugar solution of the dispenser, collected at the end 

of the sowing, died.  

In trial 4a, seeds coated just with fungicides were used and only 3 bees out of 120 tested 

died; no indicative difference emerged among the samples collected at the beginning and 

during the sowing nor between the two humidity conditions (table 2).  

In trial 4b seeds treated with insecticide were sown immediately after the trial 4a. In the 

sample collected at 15 min  the mortality was relatively high in high humidity and in the 

successive samples almost all died (table 2). A discrete mortality was also observed in 

samples held in lab humidity, collected after 45 and 60 min from the beginning of the 

sowing. 

In front of the hives less than a hundred dead bees were found on the succeeding day. A 

highlight of the four free flight trials, when seed treated with insecticides was employed, 

is shown in fig.1.  

Chemical analysis.  

The sample of bees captured in trial 1 at the dispenser, apparently in good health, caged, 

transported to the laboratory and subsequently dead after some hours, showed average 

concentrations of clothianidin of 674 ng per bee (table 3). The sample of bees found dead 

3 hours after the end of the sowing in front of the hives revealed an average of 161 ng/bee 

of active ingredient. In the sample of 7 dead bees collected the day after, in front of the 

hives, concentrations of more than 100 ng/bee (table 3) were found. In trial 3, with seed 

coated with a.i. imidacloprid, a sample of 4 bees found expired on the ground near the 

dispenser, during the sowing, contained an average of 3,661 ng/bee of imidacloprid. The 

sample of bees collected healthy at the dispenser during the sowing which died 

subsequently in laboratory showed a concentration of 442 ng/bee of a.i. The samples 

collected in front of the hives, in succeeding hours after the sowing, showed contents of 

insecticide of 500 and 53 ng/bee (table 3). The day after the sowing the dead bees 

collected from the non woven sheet revealed a content of about 30 ng/bee.  
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Fig.1 The mortality of groups of 24 bees that flew in the free flight trials near the drilling machine placed 

between the hives and the sucrose dispenser in four different trials with two insecticide coatings. The bees 

where captured, on the dispenser, every 15 min, from the starting up of the drilling machine, subsequently 

caged and placed in high or laboratory humidity. Each column shows the sum of bee deaths in two different 

experiments. 
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Discussion  

Direct dusting in flight 

The experimental results showed that the bees can be powdered with fragments of seed 

coat during their foraging activity when they are flying freely near the drilling machine in 

action. The trials reproduced the natural behavior of bees that repeatedly visit a food 

source, flying along the same route. Chemical analysis of the bees captured alive during 

the sowing at the dispenser (which died subsequently in laboratory), showed a high 

content of the neonicotinoid insecticide employed in the trial, with values in the order of 

500 ng/bee of active ingredient. This amount is potentially lethal since the topic LD50 for 

clothianidin is 21.8 ng/bee and for imidacloprid 17.9 ng/bee (Iwasa et al. 2004). These 

amounts make sense of the almost total mortality observed in bee samples, collected at 

the dispenser after their flight during the sowing and held in high humidity conditions. 

Furthermore the use of single cages for holding bees minimizes the possibility of the 

contamination of bees after capture, as was observed when contaminated and 

uncontaminated bees are caged together (Greatti, unpublished data). The link between bee 

poisoning and the toxic emissions of the drilling machine is confirmed by the absence of 

mortality in foragers captured before the starting up of the machine (time 0; fig. 1)  

and also in all the samples when only fungicide coating was used (trial 4a; table 2). This 

allow us to disregard other hypothetical sources of acute toxicity, for example warm air 

and exhaust emissions from the tractor, air born particles of soil containing residues of 

pesticides that could also contaminate the sugar solution of the dispenser. In fact, when 

this solution was offered to bees, in trial 3, no acute toxicity was observed. Furthermore, 

the absence of toxicity at time 0, in all the trials reported, suggest that long distance wind 

borne powders seed abrasions particles emanating from seed bags need further 

experimental approach in order to confirm their implication lethal bee poisoning.  

Since bees are poisoned with neonicotinoid in flight it no longer seems important to 

consider, as cause of massive bees death, the moot point of contact with contaminated 

vegetation (contaminated pollen, dew or leaf surfaces) hypothesized in relation to the dust 

emitted by the drilling machine. Note that, on the basis of newly acquisitions, the 

presence of insecticides on pollen in the hive, is not necessarily a consequence of plant 

contamination before collection, but maybe due to the brushing of pollen from the bee 

body previously contaminated by insecticide during the flight.  
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The aerial powdering of bees with lethal consequences has been observed also where 

caged bees were forcibly exposed to the emission for half an hour (Marzaro et al. 2011). 

The research based on bees in free flight first adopted in this experimentation allows us to 

establish experimentally the correlation between emissions of particles from the drilling 

machines and bee poisoning during their foraging activity. Is noteworthy that bees 

collected during trial 3 in front of the hives, with an entomological net, presented a 

mortality similar to that of bees collected at the dispenser, this suggested that all the 

foragers in front of the hives had visited the dispenser; it is quite acceptable since, in 

October when the trial was carried out, flowers or sugar sources were not available, 

furthermore some contamination between bees cannot be excluded.  

Data reported on poisoning in flight were obtained with an old unmodified drilling 

machine, in order to understand the implications of neonicotinoids (before they were 

banned) in bee poisoning incidents during sowing of maize in Italy (Mutinelli et al. 

2010), the Upper Rhine Valley and in parts of South Bavaria (Pistorius et al. 2009). The 

consequences on bee survival of the attachment to sowing machines of low-drift sowing 

equipment (Alix et. al 2009) are not considered in this paper. Nevertheless is now 

possible to experimentally induce poisoning of bees in the fields and therefore consider 

the beneficial effects not only on drift reduction but also on bees survival. Preliminary 

results of the effects of the exhaust air directed onto the soil (Foster 2009), seem unclear 

even if improved coating (2010) is adopted (table 2).  

Influence of humidity 

In previous research, the influence of high relative humidity in bee deaths, after the 

dusting in the field with toxic emissions inside cages, was hypothesized (Marzaro et al. 

2011). In this work, the influence of different relative humidity was further tested on bees 

powdered in free flight and subsequently caged. The results (table 2), confirmed that a 

high humidity condition is a determinant in the lethal poisoning of bees in the laboratory. 

The results are clear (fig.1), both with bees previously powdered with clothianidin and 

imidacloprid. Furthermore, no differences in toxicity emerged between the two seed 

batches containing clothianidin (2009 and 2010). Research is in progress also for 

thiamethoxam and fipronil, the other corn coating insecticides that are banned in Italy 

(Mutinelli et al. 2009). The bee samples collected without insecticide contamination, 

before the starting up of the machine or when only fungicides were used, do not show 
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mortality differences when held in different humidity in the laboratory. Therefore the 

high humidity condition adopted cannot be considered per se the cause of bee death. 

Coated corn sowing has caused losses in front of the hives in the open field in trial 3 

while they were less remarkable in the others trials. The lethal influence of high humidity 

in laboratory is clear, while in the field, the relationship between high relative humidity 

and bee death in front of the hives is not always evident. For example, with similar values 

of temperature, relative humidity and wind (direction and speed) some thousands of dead 

bees were registered in front of the hive in trial 1 and no increase in bee death was 

observed in trial 2. Probably, in addition to the simple air humidity, other environmental 

parameters could be considered, for example cloud movements can induce a rapid 

decrease of solar radiation with sudden thermal shock that can modify relative humidity 

both in the fields and inside the hive. The bees collected at the dispenser in free flight 

(trial 1) and dead in high humidity conditions were shown to be contaminated with an 

average quantity of 674 ng/bee of clothianidin (table 3). Being randomly divided, after 

capture on the dispenser, the same quantity was obviously present in insects held in 

laboratory humidity that all survived. This suggests that in dry condition, bees can 

tolerate a very high quantity of insecticide powder and can survive. Irrespective of all the 

parameters that can condition the lethal consequences to bees powdered with 

neonicotinoids, the possibility of dusting in the field of bees flying in proximity of the 

drilling machines with potentially lethal doses is demonstrated as highly probable.  

Powdering and cleaning 

The intense dusting of foragers in flight in the field, confirmed by chemical analysis, may 

be related to the characteristics of the integument of bees, which is adapted to harvest and 

retain pollens. The bees in flight could be particularly efficient in intercepting 

particulates, but their legs are equipped with small brushes which can be used to clean 

themselves. Probably bees possess a hygienic instinct, also reported for varroa (Spivak 

and Reuter, 1998), to rid the integument of undesired powder or fragments, maybe in 

flight, thus preventing the rapid contact of water soluble insecticide with the body, which 

allows foragers to survive in dry conditions. The sudden death of bees in spring, during 

maize sowing, may be related to the possibility that, in particular weather conditions, bees 

may get damp before they were able to rid the integument of the fragments.  
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Poisoning scenario  

Corn is the most commonly grown crop in northern Italy. For example, in the province of 

Padova, out of a total of 114,000 ha of arable land, more than 50,000 ha are cultivated 

with maize (Regione Veneto 2008; Istat 2009). Corn fields in the North of Italy are 

interspersed with other herbaceous crops, orchards and gardens, as is easy to check using, 

for example, grid references (Google Earth®) reported for the experimental plot. 

The scenario of the deaths of bees at the time of the maize sowing could be linked to the 

normal repeated flights of foraging bees to meadow flowers such as dandelion 

(Taraxacum officinalis L.), herbaceous crops such as winter rape (Brassica napus L.), 

flowering trees in gardens, hedges and orchards (Prunus spp., Malus spp., Crataegus 

spp., etc.). In such flights there is a probability that they will cross plots assigned for 

maize sowing. Taking in account that a drilling machine requires 45 min for seeding one 

ha, the probability of encountering the toxic cloud surrounding the drilling machine is 

high and will be the topic of another work.  

When bees fly near the drilling machine at a height of about 2 m they get powdered with 

a high quantity of insecticide with lethal consequences when the humidity is high. In the 

North of Italy in spring these weather conditions are frequently present in the first few 

hours of morning sun. 

It should be noted that if extended mono-cultures of maize are present, with consequent 

lack of flowers in spring, bees would not normally cross these large areas and thus avoid 

contamination. This has probably happened in France where thiametoxam maize coating 

is not banned, and neonicotinoid insecticides are not considered a serious problem for 

bees (Affsa, 2009). In Germany mortality was observed where “many small sized corn 

fields are located in a diverse agricultural landscape with canola fields, orchards and other 

bee-attractive crops” (Nikolakis et al. 2009).  

The reason why the powder emitted by the drilling machine, independently of the 

synergistic effects of humidity, had such a dramatic effect on bees may have a rather 

simple explanation. The neonicotinoids used by farmers are diluted in water in the order 

of 100 ppm of active ingredients for example Dantop® (clothianidin 50%) is used to 

control sucking insects (Uneme, 2010), at 15 g/hl corresponding to 75 ppm. The 

fragments expelled during the sowing, contain more than 20% of active ingredient, that is 

a content of insecticide at least 2,600 times more concentrated than that diluted in water 

for agricultural sprays. 
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Finally, it is probable that in the immediate future the drilling machines will be improved 

in order to avoid, or drastically reduce, toxic emissions. Bees in the field seem to tolerate 

a relatively high powdering with neonicotinoids, this means that is not necessary to 

completely stop the powdering, instead it would be opportune to reduce the 

contamination below a probable level that incurs bee deaths. In any case, the trials 

reported on the bees powdered in the field with relation to the use of pneumatic drilling 

machines with corn seed treated with neonicotinoids, give comparable results if the bees 

are successively held in laboratory and this is the first clear demonstration of acute lethal 

poisoning, in free flight, in the field.  
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Abstract 

Sudden losses of bees have been observed in spring during maize sowing. The death of 

bees has been correlated with the use of neonicotinoid coated seed and the toxic 

particulates emitted by pneumatic drilling machines. The contamination of foragers in 

flight over the ploughed fields has been hypothesized. The airborne contamination has 

been proven, both with bees inside fixed cages around the field, and in free flight near the 

driller. A new trial involving mobile cages has been established and consists of making 

rapid passes with single bees inside cages fixed to an aluminum bar. The bar was moved 

by two operators at different distances from the working drilling machine. A single pass 

was shown as sufficient to kill all the bees exposed to exhaust air on the emission side of 

the drill, when bees were subsequently held in high relative humidity. The extent of toxic 

cloud around driller was evaluated at the height of 0.5, 1.8 and 3.5 m and proved to be 

about 20 m in diameter, with an ellipsoidal shape. The shape may be influenced by 

working speed of the drill and environmental parameters and is easily show by adding 

talc powder to the seed in the machine hopper.  

A new driller equipment was evaluated consisting of two tubes inclined towards the soil 

that direct the exhaust air towards the ground. The survival rate of the bees was not 

substantially increased using the modified drill and was lower than 50%. Chemical 

analyses show up to 4000 ng of insecticide in single bees with an average content around 

300 ng. Similar quantities were observed at increased distances from the modified or 

unmodified drillers. This new evaluation of bee mortality in the field is an innovative 

biological test to verify the hypothetical efficiency (or not) of driller modifications. 

http://www.wordreference.com/enit/hypothesize
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Introduction 

In recent decades, in Europe and North America, the colonies of honey bees (Apis 

mellifera L.) were subject to catastrophic losses (Le Conte et al. 2010; Neumann and 

Carreck 2010) characterized by a common set of specific symptoms such as the rapid loss 

of worker bees without a related quantity of dead worker bees being found, both within, 

and surrounding the hives, but with excess brood in relation to adult bee populations. This 

syndrome was called Colony Collapse Disorder, or CCD (vanEngelsdorp et al. 2009) and 

it is linked to interactions between different causes such as parasites, in particular Varroa 

destructor Anderson et Trueman (that also induce viral infections), and environmental 

factors including agricultural insecticides (Oldroyd, 2007). The death of bees in the maize 

growing area of northern Italy have been linked in the first place to attacks by Varroa 

destructor particularly where the autumn and winter deaths were concerned. However, 

serious losses have been observed at the same time as the spring sowing of maize seed in 

a distinctly different time frame to those caused by varroa; losses which are not strictly 

attributable to CCD in as much as large accumulations of dead bees were often found in 

front of the hives. The cause of the rapid death of thousands of bees during the sowing of 

the maize seed coated with neonictinoids has been associated with foragers coming into 

contact with particles emitted from pneumatic drilling machines.  The contamination was 

thought to have come from fragments falling on the vegetation at the edges of the fields 

(Greatti et al. 2003; Greatti et al. 2006) but chemical analysis showed the presence of 

rather low (p.p.b.) concentrations of insecticides (Greatti et al. 2003). This hypothesis 

was formulated following the heightened deaths which were observed in the spring of 

2000 in north east Italy and, though contested as a possible cause of the deaths (Schnier et 

al. 2003) has been widely accepted up to now (Pistorius et al. 2009). In the context of the 

general uncertainty of the effect of neonicotinoids on bees, even today (Cresswell, 2011), 

we were unconvinced of the contamination caused by falling fragment and a new 

hypothesis was formulated that unknown sources of lethal poisoning could be connected 

to the sowing of the maize. One of the first theories formulated was that toxic guttation 

drops produced by the seedlings of maize could be responsible (Girolami et al. 2009); 

however the infrequent visits of foragers to such exudations did not lead us to consider 

guttation as the cause of such frequent and extensive deaths.  It was thus thought that bees 

could come into contact with the particulates, not after they had fallen on the vegetation, 

but directly, in flight.  The experimental method by which this powdering came to light 
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was initially to expose bees contained in fixed, single and small cages connected to poles 

to the dust emitted by the maize seed drill (Marzaro et al. 2011). Subsequently, bees were 

conditioned to fly over fields destined for maize by using a dispenser of sugary solution 

to attract them (Girolami et al. 2011).  Both of these methods had their limitations, in as 

much as, the first obliged us to keep the bees exposed to the drill emissions for long 

periods. The second quite faithfully  reproduced field conditions in which foraging bees 

made repeated flights over fields, where maize was being sown to visit spring flowering 

(dandelion, rape and orchards); nevertheless it did not furnish answers to the questions as 

to distance from the drill that a bee has to pass sufficient for it receive a lethal dose of 

dust, or how many flights were necessary before death ensued. Thus, the theory that bees 

could come into contact with the powder emitted from the drill when contained in cages 

was tested by moving them at speed. Moreover, it was verified that the results obtained 

were in accordance with those in previous experiments, particularly where relative 

humidity in the poisoning of bees is concerned. Finally, a new method was applied to test 

the hypothetical usefulness of modifications to the drilling machine. Currently, the 

efficiency of the modifications to this machine, whereby the dust emitted is reduced and 

directed to the ground, have been evaluated (Nikolakis et al. 2009; Pistorius et al. 2009; 

Biocca et al. 2011; Donnarumma et al. 2011). What is missing , however, is experimental 

verification of bee mortality in relation to the modified emission of dust.  

Material and methods 

Experimental sites. 

Field trials took place at the experimental farm of the Agricultural Faculty (University of 

Padova) located in Legnaro. The plot was 50 m wide by 70 m long (coordinates: 

45
o
20‟41. 19”N-11

o
57‟16.22”E). The metereological data reported were collected and 

processed by ARPAV. The data come from the units located in Legnaro and placed at 

about 200 m from the plot. The wind speed measurement reported were recorded at a 

height of 10 m. 
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Table 2 - Details of field trials carried out to evaluate the toxicity on caged bees. 

1
: s= static mode; m= mobile mode 

2
: Un= unmodified drilling machine; M= modified drilling machine 

3
: C=clothianidin; I= imidacloprid; T= thiamethoxam; F+M= fludioxonil + metalaxyl-M 

4
: 09= 2009 seed batch; 10= 2010 seed batch 

5
: L= laboratory humidity condition; H= high humidity condition 

Insect origin and holding. The Padova Beekeeping Association (A.P.A. Pad) supplied 12 

hives. For the trials (with caged bees) the insects were caught with a net in front of a 

single colony. The bees were kept in tulle mesh cages 20 cm x 20 cm x 20 cm, fed at 

honey drops on the top of cage and, where possible, freed in the evening and replaced 

each day. Later, at the time of the tests, caged bees were captured (from the 20 cm cage) 

in a test tube and placed in smaller cubic cages of 5 cm in tulle and again fed with drops 

of honey placed on the top, as reported in Marzaro et. al. 2011.  

Seed employed.  

Two batches of seed were used for the trials: one produced in 2009 and the second in 

2010 called “2009 or 2010 coating” respectively. The coatings (hybrid employed in 2009 

was X1180D 964890 and PR32G44 in 2010 both from Pioneer Hi-bred Italy) were: 

Celest XL®, containing only fungicides, (Syngenta, Basel, Switzerland; Fludioxonil 

2.4% and Metalaxyl-M 0.93%), Poncho® (Bayer Cropscience AG., Leverkusen, 

Germany; clothianidin 1.25 mg/seed) (Andersch and Schwarz, 2003; Altmann, 2003), 

Gaucho 350FS® (Bayer Cropscience AG., Leverkusen, Germany; imidacloprid, 0.5 

mg/seed) (Elbert et al. 1990) and Cruiser® 350FS (Syngenta International AG, Basel, 

Switzerland; thiamethoxam 1 mg/seed) (Robinson, 2001; Maienfisch et al. 2001). The 

seed was supplied by A.I.S. (Italian Seed Association) courtesy of MiPAAF (Ministry of 

Agriculture, Food and Forestry) a departure from the suspension of the use of 

neonicotinoids for maize seed coating in Italy for the research project Apenet. The 2009 
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and 2010 seed batches have a quantity of dust abrasion under the limit of 3g per 100 kg 

seeds. The quantity was tested with the Heubach test, considered the method which best 

allows standardization of dust abrasion measurements within the seed industry (Apenet, 

2009; Nikolakis et al. 2009; Apenet, 2010; Apenet, 2011). 

Drilling machines and sowing.  

A Monosem NG Plus (Monosem, Largeasse-France) drilling machine was used for all the 

sowing operations. Normally 73,000 to 74,000 seeds per hectare were sown (75 cm 

between rows, 18 cm between seeds in the row). The drill moves at 4-6 km/h with a 

seeding width of 3 m and requires 30 min to sow 1 ha. The air exhaust pipe is situated on 

the right hand side of the machine and expels air (and dust) at ≈ 65 l/s (under real sowing 

conditions), at a height of 1.8 m and an angle of 45° to the horizontal. A modified 

vacuum pneumatic drilling machine was also used where the air-stream, generated by the 

fan (as above described) to maintain the suction pressure, which in the unmodified driller 

was ejected from one single outlet, was divided into two tubes (dual pipe) of 10 cm 

diameter and the air released close to the surface of the ground (about 20 cm). Sowing 

was carried out in two modes: mobile or static. The mobile mode is the standard field 

method while the static mode envisages the use of two tractors. The first is usually used 

for raise the drill above the ground and provides the power to move the air fan, the second 

tractor move the drilling machine at the required speed which in turn distributes the seed; 

in this mode the drilling machine, while still static, functions in a similar way to the usual 

methods, emerging seeds are collected in 4 bowls under the machine.  

Direct dusting in mobile cages and influence of relative humidity  

The influence of a brief dusting to simulate that of bees flying near a drilling machine in 

action was evaluated by means of an aluminum bar 4 m long, to which cages, each 

containing a single bee, were attached every 0.4 m (10 in total). The cages were 

numbered taking account of the progressive distances from the drill. The bar was 

supported at each end by a vertical pole of 2.5 m. The bar was passed by two people at a 

fast walking pace (6-8 km/h) by the side of the drilling machine. 

Once the bees had been exposed to the insecticide dust in the field, they were transferred 

(inside the same cage) to a room at a controlled temperature (22±1.5°C). In trial 1 (table 

1) with the drill in static mode, passes were made on the right side where the dust was 

expelled, with the proximal side of the bar at a minimum distance of 2 m, 4 m, 6 m, and 
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at a 1.8 m height from the ground. The bar was held perpendicular to the longitudinal axis 

of the tractor. Two passes were made with a total of 20 bees for each of the three 

distances. To evaluate the influence of relative humidity in this trial, half of the cages 

were kept at the relative humidity of the laboratory lower than 70% (with the use of de-

humidifier if needed). The other half of the cages were kept at a relative humidity close to 

saturation (>95%), hereafter designated as high humidity. To obtain conditions of high 

humidity, caged bees were held in plastic boxes with plexiglass on the top and a 

moistened paper on the bottom (according to Marzaro et al. 2011). All the bees were fed 

with drops of honey, periodically renewed, on the top of the cage. The even numbered 

cages were placed in conditions of high humidity and the odd numbers in laboratory 

humidity. The mortality was noted every 3 hours and the data reported refers to a 24 hour 

period. A bee was considered dead both the arching of the abdomen and wing block were 

present (Girolami et al. 2009). 

Extent of the toxic cloud 

In order to make the cloud emitted by the drilling machine visible, 200 g of talc powder 

were added to one of the seed containing hoppers during the sowing. The extent of toxic 

cloud, containing solid fragments of the seed shell surrounding the drilling machine, 

whilst in static mode and set in a south-north direction, was evaluated using the movable 

bar from  trials 2, 3 and 4 (table 1). The moveable bar was passed perpendicular to the 

longitudinal axis of the tractor, on the left and right side of the machine, and parallel to 

the same axis at the front and back of the machine (all four sides of the drill). These 

passes were made at 4 m intervals up to 16 m (4 passes each with 10 cages, each with a 

single bee) at three different heights: 1.8 m in trial no. 2, 0.5 m in trial 3 and 3.5 m in trial 

4. At each height 4 samples of 40 bees were tested, behind, in front of, and to both sides 

of the tractor, giving a total of 480 bees for all the three trials. A further 10 bees were 

exposed to the emissions over the tractor. After the trial, the caged bees were taken to the 

laboratory and all placed in high humidity. To evaluate the duration of the toxic cloud (in 

trial. 4), 4 and 8 min after the drill had been turned off,  the bar, with 10 cages attached, 

was moved at 1.8 m high, along the right hand side of the drill at a distance of between 2 

and 6 m.  
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Driller modifications and bee poisoning 

In trials 5, 6, 8, 9 and 10 with the drill in mobile mode, the bees were exposed (for about 

30 s) to the emission of the driller (unmodified, or modified with dual pipe deflector) with 

the aluminum bar perpendicular to the longitudinal axis of the tractor. The people with 

the bar followed and passed the tractor on the right hand side (in the first 30 m of the 

plot). The tractor then reduced speed and waited while the people with the bar made a U-

turn and again passed the machine, once more at working speed, on the left hand side. In 

this way the bees were twice exposed to the cloud in a similar way to foragers in free 

flight making a round trip over sowing area. A first pass was made between 1 m and 5m 

from the side of the tractor and a second pass, with another 10 bees, was made between 5 

and 9 m from the tractor. The cages were numbered taking account of the progressive 

distances from the drill. After exposure all the bees were fed with drops of honey on the 

tops of the cages, which was periodically renewed; and all were placed in conditions of 

high humidity in the laboratory. Three neonicotinoids and a single fungicide used to coat 

maize seed were tested. 

Content of insecticide in bees 

For chemical analysis (in trial 7), after exposure the caged bees were immediately placed 

in a refrigerator at 2-4 °C for 15 min until complete immobility ensued. Later they were 

placed in a vial in a freezer at -80°C. In order to evaluate separately the powder intake on 

the left and right hand side of the unmodified and modified drill, the bees were exposed in 

a similar way to the trials above described, but after the U-turn, passes were made either 

on the right hand side or on the left hand side. The bees collected in trial 7 (table 1), were 

individually analyzed to determine the content of neonicotinoids by the method described 

in Girolami et al. 2011 and Tapparo et al. 2011.  Of the 20 bees analyzed, the distances 

from the drilling machine and the side of the exposure have been taken into account. 

Statistical analysis  

To compare the mortality in different samples of bees, we tested the null hypothesis that 

the frequency of mortality occurred independently of considered parameters using a chi-

squared goodness-of-fit test. 

 

 



 

 

118 

Results 

Direct dusting in mobile cages and influence of high humidity  

The new mode of exposure in mobile cages gave interesting results. The bees exposed in 

single cages with rapid passes near the drilling machines were lethally poisoned (by 

clothianidin) if they were subsequently held in the laboratory in high humidity (table 2). 

Some mortality was also observed, in bees exposed to the most intense dusting at 2 m 

from the drilling machine, even though kept in lab humidity (table 2). Lethal effects were 

observed both in round trip test (with 2 passes) and in a single pass in the trial carried out 

to evaluate the extent of the toxic cloud (reported in fig. 1). 

Table 2. Numbers of dead and surviving bees (in groups of 10), exposed individually in mobile cages to the 

emissions of the drilling machine, moved with rapid passes at the right side of the drill, at progressive 

distances, taken to the laboratory and placed in varying conditions of RH.  

(*) The probability are referred to statistical differences at χ
2
 test within the same row (***p0.001). 

Extent of the toxic cloud 

The emissions of talc particles from the seed hoppers enabled us to have a rapid visual 

image of the cloud emitted by the drill. Trials 2, 3 and 4 attempted to quantify the extent 

of the dust cloud of particulates, emitted by the drilling machine (in static mode), with 

concentrations sufficient to kill bees in a single rapid pass in a mobile cage and 

afterwards held in high humidity conditions. Fig. 1 shows results that are obviously 

relative to the model of the drilling machine used, in which the air is expelled on the right 

side at a height of 1.8 m. The bees that passed on the right of the machine up to a distance 

of 6 m all died, and a very high mortality was reported up to 12 m, at all the heights 

tested. Mortality was encountered on the left hand side up to 8 m distance, and mostly up 

to a height of 2 m (fig. 1 top). Including the deaths of those bees flying above the 

machine, the toxic cloud extends up to 20 m, 10 m on either side of the drilling machine. 

In the direction of travel (fig. 1 below), at a height of 1.8 m, the (total) lethal zone 

extended beyond 12 m. The toxic cloud, surrounding the drilling machine showed a 

flattened, ellipsoidal body of some 2 to 3 m high and 20 m wide. The cloud is slightly 

 

No. – date 

of trial 

 

Insecticide 

Exposure 

distance 

from the 

drill 

Mortality at different distances from drilling machine 

Probability* 
                   Lab humidity                 High humidity 

dead survived dead survived 

1 – 

16/7/09 

Clothianidin 

2 m 3 7 10 0 0,001 

4 m 0 10 10 0 0,0001 

6 m 0 10 9 1 0,0003 
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shifted to the right side where the air is released and to the rear of the tractor where the 

drill is placed. The predominating wind was blowing in a SSE direction with a wind 

speed averaging less than l0 km/h  (table 1). 

At the end of trial 4, the dust cloud remained for almost 4 min after the machine was 

switched off since all 10 bees died. No further toxicity was reported after 8 min.  

 

Fig. 1. The black circles represent dead bees within 24 h after a single rapid pass in mobile cages, at 

varying heights and distances from the drilling machine. The sowing was carried out with clothianidin 

coated maize seed. The top diagram shows the dead bees at the side of the machine; that below shows those 

in the direction of travel. 

Fig. 2. Visual image, obtained by introducing talc into the hopper, of the cloud emitted by an unmodified 

drill (left) and a drill with dual pipe equipment (right). The modification pushes the cloud closer to the 

ground but is still consistent.  

Driller modifications and bee poisoning 

Using the mobile cage in trials no. 5-10, it was possible to evaluated the influence of the 

modifications made to the machine in the poisoning of bees. When seed coated solely 

with fungicide was employed no significant acute poisoning occurred when the bees were 

exposed to the emissions from the drills, for all distances and machines tested, even when 

they were subsequently held in high humidity conditions (trial 5, table 3).  In all the 

remaining experiments (trials 6, 8, 9 and 10 - table 3) a relatively elevated level of 
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mortality occurred, above 50%, in bees passing both modified and unmodified drills at 

various distances. No significant differences in mortality resulted whether or not the drills 

were modified with the exception of trial no. 10 where, at a distance of 5-9 m, employing 

a drill with a dual-pipe modification a higher survival rate was observed. Amongst the 

different neonicotinoids tested, clothianindin appeared to be the most toxic, inasmuch as 

it caused total mortality in the range of 1-5 m (trial 8) and at least 80% in the other trials 

employed. These trials were not done at the same time and this requires that further 

experiments are carried out under identical environmental conditions. Using the same 

method the extent of the toxic cloud was evaluated. 

Insecticide content in bees 
 

In the analyzed bees (trial 7 - table 1), where the distances from the drill were taken into 

account, very large quantities of insecticide were found. For instance considering the bees 

exposed to the emission of unmodified driller, the sample that was powdered on the left 

hand side at a distance of 1 m showed a content of 4786 ng of clothianidin (table 4). The 

quantity of insecticide generally diminished in relation to the distance of exposure from 

the drill; not, however, in a linear manner. The minimum for the right side was 142 

ng/bee at 4.5 m. As expected, the quantity of insecticide was less on the left hand side of 

the drill, but was still elevated and superior to the DL50 -18 ng of clothianidin (Iwasa et al. 

2004). The exception was the distance of 1 m, which showed no insecticide, probably 

because the flow of air was hampered by the cab of the tractor. 

Considering the bees exposed to the emission of modified machine on the right hand side, 

the quantities of active ingredient were still high, with values of half those of the 

unmodified drill at 1 m, similar values for samples at intermediate distances and 

decidedly higher approaching 9 m. On the left hand side of the drill, only those bees 

exposed at 6 m showed the presence of insecticide. During this trial a wind speed of 4 m/s 

(table 1) was blowing WSW carrying powder from the opposite side towards the tractor. 
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Table 3. Surviving and dead bees (groups of 20) exposed in single pass to the emission of unmodified or 

modified drilling machine with different insecticides at different distances.  

(*) The asterisks indicate statistical differences at χ
2
 test between modified and unmodified driller in the 

same row  (**p<0.01). 

Table 4. Insecticide content in bees (nanograms/bee) powdered employing unmodified and modified 

drilling machine. 

*LOD: lower than the limit of detection 

Discussion 

Direct dusting in mobile cages and influence of high humidity 

The test in which fixed cages were exposed to the dusting on the margin of the sowing 

area (Marzaro et al. 2011) could have been influenced by the movement of air caused by 

the sowing machine, or by wind, more than and not by the flight of the bees. The adopted 

test method using mobile cages allowed an exposure to the dust emitted by the drill and 

 

No. - date 

of trial 

 

Insecticide 

Exposure 

distance from 

the drill 

drilling machine equipment  

 

probability 

 
unmodified 

(standard) 

modified 

 (dual pipe) 

   dead  survived dead survived 

5 – 3/5/11 Fludioxonil+Metalaxil-

M 

1-5 m 1 19 1 19  -- 

5-9 m 2 18 0 20  -- 

6 – 4/5/11 Imidacloprid  1-5 m 16 4 13 7 0,298 ns 

5-9 m 11 9 16 4 0,095 ns 

8 – 20/5/11 Clothianidin 1-5 m 20 0 17 3 0,052 ns 

5-9 m 17 3 16 4  0,688 ns 

9 – 19/6/11  Imidacloprid 1-5 m -- -- 14 6 -- 

5-9 m -- -- 8 12 -- 

10 –29/6/11 Thiamethoxam 1-5 m 13 7 8 12 0,118 ns 

5-9 m 13 7 4 16 0,004** 

 

Driller 

equipment 

Insecticide Sampling 

side 

Insecticide content (ng/bee) at different distances from 

drilling machine 
mean 

1 m 2.25 m 4.5 m 6.75 m 9 m  

unmodified 

 

modified 

(dual pipe 

deflectors) 

imidacloprid  

 

imidacloprid 

right side 

left side 

 

right side 

left side 

4786 

<LOD* 

 

2372 

<LOD* 

457 

410 

 

424 

<LOD* 

142 

110 

 

134 

<LOD* 

523 

98 

 

1778 

25 

199 

33 

 

500 

<LOD

* 

1221 

162 

 

     1042 

      25 
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simulated more realistically the conditions of a bee encountering a drill in flight. Another 

advantage is that the exposure of the bees can be evaluated with more precision in 

relation to free flight, given that both the flight path and length of exposure can be 

controlled. The mobile cage method also assists in the evaluation of successive influences 

of powdering in flight in the laboratory given that the bees are already contained in cages. 

The influence of high humidity in increased mortality of exposed bees has also been 

further confirmed with this new system of exposure, and showed no substantial 

differences when compared to the results obtained with the bees exposed in fixed cages 

(Marzaro et al. 2011), or in free flight (Girolami et al. 2011). 

Riley and Ousborne (2001) reported “…that in calm conditions, …bees typically flew 

with a ground speed of circa 7 m/s and we visually estimated their height of flight to be 

about 2 m”. Our findings agree with this reported data: the flight of bees over the 

ploughed area varied from 0.5 m to 4 m but was most regularly at around 2 m 

(unpublished data). Thus, during the sowing bees flew over the ploughed field at a height 

which corresponds to the toxic cloud which extends around the tractor. The exposure of 

the bees in mobile cage can, with reason, correspond to the exposure of a single forager in 

free flight when encountering a maize drill. 

The speed of a bee in free flight (approximately 7 m/s, equal to about 25 km/h), is about 

twice that of the operators who exposed the bees in mobile cages. However this longer 

exposure time seem not affect in significant manner, the extent of the powdering, given 

that bees in free flight died in similar numbers (Girolami et al. 2011). In brief, the new 

method adopted has allowed us to establish that a single return flight in the vicinity of a 

sowing machine is sufficient to kill a foraging bee and on the basis of the experimentation 

on the extent of the toxic cloud, even a single trip. 

Extent of the toxic cloud 

The cloud rendered visible by the emission of talc easily documented with a camera (fig 

2), may be considered a good indication of the cloud of air that contains, in suspension, 

the fragments of seed shell which caused the death of bees as reported in fig. 1. Take into 

account that talc, a silicate with a specific gravity of 2.7 is heavier than the organic 

material which constitutes the shell fragments (Tapparo et al. 2011), consequently the 

cloud containing the fragments of shell could be somewhat larger and last longer than that 

of talc. However, no substantial differences seem to exist in relation to the toxic cloud 

evaluated, with the mobile cage method, which clearly showed how a large lethal cloud in 
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the order of 20 m in diameter can form around a drill in action (fig 2), passing through 

which, a bee could be potentially poisoned with a fatal dose. The evaluation of the extent 

of the cloud was carried out with a static drill to establish the size of the cloud without the 

complication of the effect that forward movement would have on the emissions shape. 

The data obtained can form the experimental basis for further trials which take account of 

the speed of the drill as well as other variables such as wind speed and thermal inversion 

which in our observations seems to influence the thickening and the duration of the cloud 

at lower atmospheric levels.  

The ellipsoidal dimension and compactness of the cloud assessed with the drill stationary 

in calm wind conditions and a hot sunny day do not necessarily correspond to the shape  

the cloud would take during normal sowing. Nevertheless the 20 m diameter of the cloud 

may be considered a realistic approximation, in that, were the drill in motion the cloud 

would have a narrower and more elongated shape and given a wind would be further 

lengthened and irregular, not centered on the drill, but logically lengthened in one 

direction. As a consequence the probability of a bee encountering the cloud would 

increase in relation to the situation shown with a static drill. 

Driller modifications and content of insecticide in bees 

The evaluation of the extent of the toxic cloud reported in fig. 1 was obtained by exposing 

caged bees to the cloud at various distances and heights. To make the contact with 

particles more realistic the trials were planned simulating a return flight of foraging bees.  

The results obtained show that the method can also be employed to verify the 

effectiveness of various modifications made to drilling machines. It became evident that 

the advantages, by simply directing the ventilated air towards the ground, universally 

accepted as useful in the survival of bees (Pistorius et al. 2009) did not contribute in any 

meaningful manner to reducing deaths connected to the use of drilling machines 

employing coated seed. The hypothetical benefits brought about by the use of a deflector 

clearly contrast with the results of all the trials using a modified machine given the 

mortality rate still above 50% (table 3). The modifications seem, however, to bring about 

a small increase in survival when compared with the unmodified machine though of little 

relevance to the aim of defeating bee mortality. The validity of the test adopted to assess 

the influence of the modifications to the machine was confirmed in the chemical analysis 

of the caged bees passed at varying distances from the machine that were dusted with 

very high doses of insecticide (table 4). Clear differences of contamination with 
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neonicotinoids arose among the various distances and directions in relation to the drill. 

The chemical contamination is not conflicting with the survival results of the bees. For 

example, on the right hand side of the drill doses higher than 142 ng of imidacloprid 

could induce the death of all the bees in conditions of high humidity. This was seen in 

trial 1 (table 2) for bees exposed (on the right side) and then held in high humidity with 

total mortality. The passage of a single bee at a distance of 1 m accounted for a quantity 

of 4786 ng; sufficient to kill hundreds of bees, given that DL50 of contact with 

imidacloprid is 18 ng/bee (Isawa et al. 2004) that is 200 times less than the quantity 

encountered. 

The modified machine has not substantially changed the values of dusting in relation to 

the unmodified machine. Although the quantities recovered from a single sample at 1 m 

were halved, the values for other distances were generally higher for bees exposed to the 

modified machine. In drill equipped with a “dual pipe” (and also in the other models 

tested - unpublished data) the exhaust air, directed towards the ground, seems displace but 

not reduce the toxic cloud (fig 2). The mobile cage test adopted refers to a single return 

flight which simulates an actual foraging flight of a bee in the vicinity of a functioning 

drill. It allows greater possibilities for improvement, simply for example, exposing bees 

for longer and in down-wind conditions to drill emissions. Moreover, the mobile cage test 

is a simplification in relation to the free flight test (Girolami et al. 2011) while still 

maintaining all of its validity. 

At all events, the evaluation reported is a biological test based on the mortality of bees in 

the field and is therefore, an innovation in relation to the simple hypothetical expedient of 

off-crop ground deposition (Nikolakis et al. 2010) or of the powdering attributes of 

various batches of seeds using the Heubach test.  

Finally, all the work reported is a further proof to explain that bees become lethally 

contaminated in flight. It is not necessary to take under consideration particles falling on 

the soil with consequent contamination of vegetation.  

Acknowledgements 

We would like to thank the patient sowing machine driver Tarcisio Zanella. Simone 

Pastorello, Federico Filippi, Stefano Maistrello, Edoardo Petrucco Toffolo and Andrea 

Targa for their assistance. We also wish  to thank the ARPAV (Regional Agency for 

Environmental Prevention and Protection of Veneto - Meteorological Centre of Teolo, 



 

 

125 

Italy) for the meteorological data reported in this paper and the Beekeepers Association of 

Padova (A.P.A. Pad). The research was in part supported by the project APENET: 

Monitoraggio e ricerca in Apicoltura, Consiglio per la Ricerca e la Sperimentazione in 

Agricoltura from the Ministry of Agriculture and Forestry (MiPAAF). 

References 

Altmann R, 2003. Poncho: a new insecticidal seed treatment for the control of major 

maize pests in Europe. Pflanzenschutz Nachrichten Bayer (English edition) 56, 102-110. 

Andersch W, Schwarz M, 2003. Clothianidin seed treatment (Poncho Reg.): The new 

technology for control of corn rootworms and secondary pests in US-Corn production. 

Pflanzenschutz Nachrichten Bayer 56, 147-172.  

Apenet, 2009. 

http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/860 [accessed 

15 November 2011]. 

Apenet, 2010. 

http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3280 [accessed 

15 November 2011]. 

Apenet, 2011. 

http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6355 [accessed 

15 November 2011]. 

Biocca M, Conte E, Pulcini P, Marinelli E, Pochi D, 2011. Sowing simulation tests of a 

pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust 

from maize dressed seed. J. Environ. Sci. Heal. B. 46 (6), 438-448. 

Cresswell JE, 2011. A meta-analysis of experiments testing the effects of neonicotinoid 

insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149-157. 

Donnarumma L, Pulcini P, Pochi D, Rosati S, Lusco L, Conte E, 2011. Preliminary study 

on persistence in soil and residues in maize of imidacloprid. J. Environ. Sci. Heal. B. 46 

(6), 469-472.  

vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier 

M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS, 2009. Colony 

Collapse Disorder: A Descriptive Study. PLoS ONE 4, 64-81. 

Elbert A, Overbeck H, Iwaya K, Tsuboi S, 1990. Imidacloprid, a novel systemic 

nitromethylene analogue insecticide for crop protection. In Brighton Crop Protection 

Conference: Pests and Diseases 1, 21-28.  

http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/860
http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3280
http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6355
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Biocca%2C+Marcello)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Conte%2C+Elisa)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Pulcini%2C+Patrizio)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Marinelli%2C+Enzo)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Pochi%2C+Daniele)
http://www.tandfonline.com/loi/lesb20?open=46#vol_46
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Donnarumma%2C+Lucia)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Pulcini%2C+Patrizio)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Pochi%2C+Daniele)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Rosati%2C+Silvia)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Lusco%2C+Lorenzo)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Conte%2C+Elisa)
http://www.tandfonline.com/loi/lesb20?open=46#vol_46


 

 

126 

Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, Greatti M, 

Giorio C, Tapparo A, 2009. Translocation of Neonicotinoid Insecticides From Coated 

Seeds to Seedling Guttation Drops: A Novel Way of Intoxication for Bees. J. Econ. 

Entomol. 102(5), 1808-1815. 

Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D,  Tapparo 

A, 2011. Fatal powdering of bees in flight with particulates of neonicotinoids seed 

coating and humidity implication. J. Appl. Entomol. (in press) DOI:10.1111/j.1439-

0418.2011.01648.x 

Greatti M, Sabatini AG, Barbattini R, Rossi S, Stravisi A, 2003. Risk of environmental 

contamination by the active ingredient imidacloprid used for corn seed dressing. 

Preliminary results. Bull. Insectol. 56, 69-72.  

Greatti M, Barbattini R, Stravisi A, Sabatini AG, Rossi S, 2006. Presence of the a.i. 

imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds. Bull. 

Insectol. 59, 99-103. 

Iwasa T, Motoyama N, Ambrose JT, Roe RM, 2004. Mechanism for the differential 

toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection 

23, 371-378.  

Le Conte Y, Ellis M, Ritter W, 2010. Varroa mites and honey bee health: can Varroa 

explain part of the colony losses? Apidologie 41, 353–363. 

Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, 

Rindlisbacher A, Senn R, Steinemann A, Widmer H, 2001. Chemistry and biology of 

thiamethoxam: a second generation neonicotinoid, Pest Manage. Sci. 57, 906-913. 

Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Petrucco Toffolo E, Di 

Bernardo A, Giorio C, Marton D, Tapparo A, Girolami V, 2011. Lethal aerial 

powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. 

Insectol. 64(1), 118-125. 

Neumann P, Carreck NL, 2010. Honey bee colony losses. J. Apic. Res. 49, 1–6. 

Nikolakis A, Chapple A, Friessleben R, Neumann P, Schad T, Schmuck R, Schnier HF, 

Schnorbach H, Schöning R, Maus C, 2009. An effective risk management approach to 

prevent bee damage due to the emission of abraded seed treatment particles during 

sowing of seeds treated with bee toxic insecticides. Julius Kühn Archiv. 423, 132-148.  

Oldroyd BP, 2007. What‟s killing American honey bees? PLoS Biol. 5, e168. 



 

 

127 

Pistorius J, Bischoff G, Heimbach U, Stähler M, 2009. Bee poisoning incidents in 

Germany in spring 2008 caused by abrasion of active substance from treated seeds 

during sowing of maize. Julius Kühn Archiv. 423, 118-126.  

Riley JR, Osborne JL, 2001. Flight trajectories of foraging insects observations using 

harmonic radar. In: Woiwod IP, Reynolds DR, Thomas CD, Insect Movement: 

Mechanisms and Consequences. Ed. by CAB International, Wallingford, UK, 129–

157. 

Robinson P, 2001. Evaluation of the New Active Thiamethoxam in the Product Cruiser 

350 fs Insecticide Seed Treatment. National Registration Authority for Agricultural 

and Veterinary Chemicals: Australia. 

Schnier H, Wenig G, Laubert F, Simon V, Schmuck R, 2003. Honey bee safety of 

imidacloprid corn seed treatment. Bull. Insectol. 56, 73-75. 

Tapparo A, Girolami V, Marton D, Giorio C, Zanella A, Marzaro M, Vivan L, Solda L, 

2011. Intensive corn crops and honeybee colony losses: Assessment of the 

environmental exposure of honeybees to the particulate matter containing 

neonicotinoid insecticides coming from corn coated seeds. (submitted). 

http://pub.jki.bund.de/index.php/JKA/article/viewArticle/142
http://pub.jki.bund.de/index.php/JKA/article/viewArticle/142
http://pub.jki.bund.de/index.php/JKA/article/viewArticle/142
http://pub.jki.bund.de/index.php/JKA/article/viewArticle/142


 

 

128 

 

 



 

 

129 

 

 

 

CHAPTER VI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessment of the environmental exposure of honeybees to particulate 

matter containing neonicotinoid insecticides coming from corn coated 

seeds 

 

 

 

 

 

 

 

 

 

 

Published as: Tapparo A, Marton D, Giorio C, Zanella A, Soldà L, Marzaro M, Vivan L, 

Girolami V (2012) Assessment of the environmental exposure of honeybees to particulate 

matter containing neonicotinoid insecticides coming from corn coated seeds. Environ. 

Sci. Technol. 46:2592-2599. 

 

 

I collected and analyzed part of the data and partially drafted the manuscript. 

 



 

 

130 

 



 

 

131 

Environmental science and tecnology 

Assessment of the environmental exposure of honeybees to particulate 

matter containing neonicotinoid insecticides coming from corn coated 

seeds 

ANDREA TAPPARO
1*

, DANIELE MARTON
1
, CHIARA GIORIO

1
, ALESSANDRO ZANELLA

1
, LIDIA 

SOLDÀ
1
, MATTEO MARZARO

2
, LINDA VIVAN

2
, VINCENZO GIROLAMI

2
 

1
Università degli Studi di Padova, Dipartimento di Scienze Chimiche,  

via Marzolo 1, 35131, Padova, Italy. andrea.tapparo@unipd.it 
2
 Università degli Studi di Padova, Dipartimento di Agronomia Animali Alimenti Risorse Naturali e 

Ambiente, Agripolis – viale dell‟Università 16, 35020 Legnaro (Padova), Italy. 

vincenzo.girolami@unipd.it 

dx.doi.org/10.1021/es2035152 

Received: October 4, 2011 

Revised: January 23, 2012 

Accepted: January 31, 2012 

ABSTRACT  

Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, 

European beekeepers have 

reported severe colony losses 

in the period of corn sowing 

(spring). As a consequence, 

seed-coating neonicotinoid 

insecticides that are used 

worldwide on corn crops have 

been blamed for honey bee 

decline. In view of the 

currently increasing crop 

production, and also of corn as a renewable energy source, the correct use of these 

insecticides within sustainable agriculture is a cause of concern. In this paper, a probable 

- but so far underestimated - route of environmental exposure of honey bees to and 

intoxication with neonicotinoid insecticides, namely the atmospheric emission of 

particulate matter containing the insecticide by drilling machines, has been quantitatively 

studied. Using optimized analytical procedures, quantitative measurements of both the 

emitted particulate and the consequent direct contamination of single bees approaching 
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the drilling machine during the foraging activity have been determined. Experimental 

results show that the environmental release of particles containing neonicotinoids can 

produce high exposure levels for bees, with lethal effects compatible with colony losses 

phenomena observed by beekeepers.  

INTRODUCTION 

In view of the evolution of farming systems associated with the increasing global food 

production expected to feed a growing global population, together with the greater and 

greater use of agricultural products as renewable energy sources,
1-5

 particular attention 

should be given to effective strategies for the control of environmental pollutants released 

by crop activities. Several adverse effects have currently been associated with these 

emissions, such as the loss of biodiversity and ecosystem services due to an increasing 

use of agrochemical compounds, their effects on human health, or the contribution of 

greenhouse-gas emissions in agriculture to global warming (about 30%).
6 

In Europe, corn 

crops may represent an interesting case-study for the assessment of the sustainability of 

future farming strategies. Corn is largely cultivated in Europe, especially in northern 

Italy, France, Germany and the Balkan countries, and is largely used for both human 

consumption and livestock feeding. Moreover, the recent government subsidies to the 

“green energies” are transforming corn crops into profitable energy sources. Thus, severe 

drawbacks could be related to the consequent increase both in atmospheric emissions 

from biomass transformation processes, for instance the particulate matter emissions in 

highly critical areas such as the Po Valley in northern Italy, and the environmental 

releases of substances with recognized toxic and ecotoxic effects, such as neonicotinoid 

insecticides that have been associated with the worldwide crisis of honeybee colonies.
7-8 

In the last decade honeybee colonies throughout the world have been subject to rapid 

losses
7,9

 in the order of 40%,
10,11

 in particular in southern Europe. This phenomenon, also 

named Colony Collapse Disorder, represents a worldwide crisis with adverse effects both 

on crop production and on ecosystems. In Italy and Europe, corn sowing - from mid-

March to May - was often accompanied by a rapid disappearance of foraging bees.
12,13

 

These spring time deaths are chronologically distinguishable from those caused by 

Varroa destructor and a close relationship was observed between the deaths of bees and 

the use of pneumatic drilling machines
14-17

 for the sowing of corn seeds coated with 

neonicotinoid insecticides.
18,19

 In pneumatic drilling machines, seeds are sucked in, 
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causing the erosion of fragments of the insecticide shell that are forcefully expelled with a 

current of air. The widely accepted hypothesis is that bees die by collecting contaminated 

pollen and nectar, because solid fragments of the neonicotinoid seed coating fall on the 

vegetation surrounding the seeded areas.
13,14

 But neonicotinoid concentrations in the 

vegetation at the margins of the seeded areas were shown to be about 50 ppb or 

lower,
15,20,21

 which are not high enough to cause acute toxicity in foraging honeybees.
22-24 

More recently we have investigated other sources of contamination for bees present in the 

fields, which could justify such spring mortality
25-27

 and very recent results seem to 

confirm our hypothesis that the solid particles emitted by drilling machines, and 

containing a high insecticide concentration, can produce a direct powdering of foraging 

bees in free flight accidentally crossing the sowing fields.
15-17

 This acute exposure may 

represent lethal doses for flying bees, coherent with the colony loss phenomena observed 

in spring when and where corn is sown. The present paper reports on the accurate 

characterization of the particulate matter emitted by a drilling machine during corn 

sowing. A dimensional analysis of the coating particles emitted by seeds treated with 

different insecticides and a quantitative determination of the total concentration of 

insecticide present in the air at different distances from the drilling machine were carried 

out to assess both factor emissions during corn sowing activities and possible exposure to 

neonicotinoids for flying bees approaching the drilling machine. An analytical procedure 

was also optimized to quantify the effective contamination of single exposed bees in the 

field. Different geometries of the waste pipe of the drilling machine, proposed for the 

modification of relevant commercial models, have been tested and compared. 

EXPERIMENTAL SECTION 

Seeds, insecticides and bees 

Seeds produced and marketed in 2008-2010 (hybrid employed X1180D 964890 and 

PR44G; Pioneer Hi-bred, Italy) were used for the emission tests. The seed coatings were: 

Poncho
®

 (clothianidin 1.25 mg/seed, Bayer Cropscience AG., Leverkusen, Germany), 

Gaucho
®
 (imidacloprid, 0.5 mg/seed; Bayer Cropscience AG.), Cruiser

®
 (Thiamethoxam 

0.6 mg/seed, Syngenta, Basel, Switzerland) and Regent
®
 (Fipronil 0.5 mg/seed, BASF 

SE). All seed batches exhibited dust abrasion levels under the limit of 3 g per 100 kg 

seeds (tested by Heubach test
28-30

). 

Four hives were supplied by the Padova Beekeeping Association (A.P.A. Pad) for the 

exposure tests of flying bees (Apis mellifera, L).
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Drilling machines and the sowing area 

All tests were carried out at the experimental farm of the University of Padova, located in 

Legnaro (Padova - Italy), in a 50 m wide by 70 m long sowing field (coordinates: 45°20‟41.19”N 

– 11°57‟16.22”E).  

A Ribouleau Monosem NG Plus (4 sowing rows, Largeasse-France) drilling machine was 

used, as a rule, in the emission tests. The air waste pipe of the fan, which drives the 

pneumatic system of seed distribution, is located on the right hand side of the machine. 

During sowing it expels air (and dust) at ca. 230 m
3
/h, at a height of 1.8 m and an angle of 

45 degrees to the horizontal. In a second series of experiments, a double pipe (i.d. 12 cm., 

length ca. 2 m) was fitted to the original outlet to funnel the air stream to the soil. All 

experiments reproduced standard sowing conditions: speed 6 km/h (66660 seeds per 

hectare), seed distance 75 cm between rows, 20 cm between seeds in the row); 

considering a seeding width of 3 m, the uninterrupted sowing time was about 33 min per 

1 ha. 

A Gaspardo mod. Monica drilling machine (6 sowing rows, Gaspardo Seminatrici SPA - 

Italy), mounting a deflector at the outlet of the fan that should release the air stream 

directly toward the soil (without pipes), was also employed for comparison. This machine 

worked at 6 km/h (66660 seeds per hectare too with a distance of 75 cm between rows, 

and 20 cm between seeds in the row). Considering a seeding width of 4.5 m, the sowing 

time was about 22 min per 1 ha. 

Particulate matter emission tests 

Sowing tests were carried out in two ways. In standard sowing conditions, the drilling 

machine worked all along the field and the following samples were collected:  

a) the particulate matter that falls down to the ground (dry deposition) was sampled on 

a series of cellulose esters filters (diameter of 185 mm, Carl Schleicher et Schull - mod. 

Selecta) located at the field margin, along the wind direction. The filters, contained in a 

plastic vessel, were humidified by water to avoid the release of sampled particles by the 

wind;  

b) the total suspended particulate (TSP) present in the atmosphere at the field margin 

was sampled by US-EPA standardized procedure using Zambelli pumps (mod. ZB1 

timer, Milan – Italy) operating at 20 L/min and equipped with standard 47 mm PTS filter 

holder and glass fiber filters (Whatmann, 47 mm); 
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c) PM10 was sampled at the field margin by a Zambelli mod. Explorer plus apparatus, 

operating under standardized conditions (EN 12341:1999 PM10 selector, flow rate 38.3 

L/min, and 47 mm glass fiber filters). 

Typical sampling times were 30 min for PTS and 1h for PM10 samples. All filters were 

stored at -18 °C until the laboratory instrumental analysis.  

A second experimental set was realized in order to perform more accurate analytical 

measurements and exposure tests: in this case the drilling machine worked in a static 

mode (motionless in the field) but with the same sowing parameters previously detailed, 

using the cardan joint of a second tractor to drive the seed distribution mechanism. 

Emission factors were computed by measuring the concentration of the total suspended 

particulate matter (TSP, sampling time 5 min) emitted by the drilling machine and 

collected under isokinetic condition at the end of waste pipe of the fan. A standardized 

stainless steel isokinetic sampling line was used (EN 13284-1:2001), equipped with a 

Zambelli (mod. ZB1 timer) pump, 6 mm sampling inlet, 47 mm filter holder and glass 

fiber filters (Whatmann, 47 mm). 

During the “static” sowing samples of TSP (at 5 and 10 m from the drilling machine, 

sampling time 30 min) and PM10 (at 10 m, sampling time 30 min) were collected using 

the same experimental condition as in standard sowing. Moreover, the size distribution of 

aerosol particulate matter released during the “static sowing” was measured by an optical 

particle counter (OPC, Grimm mod. 1.108) in the 0.23-32 µm diameter range. The 

instrument was placed 5 meters from the pneumatic drilling machine in order to minimize 

the resuspension of dust from the soil. Both the rural background and the blank values 

(with the drilling machine operating without seeds) were registered and then subtracted 

from the experimental values measured during the emission tests. 

Analysis of single bees exposed to neonicotinoids 

For each bee the entire analytical procedure was carried out in separate containers. Single 

bees found dead in the field or close to the beehive during the sowing tests were collected 

in a 4 mL glass vial and stored at -80 °C. Before chemical analysis the samples were 

maintained some hours at - 20 °C and lyophilized for 16 h in a vacuum box equipped 

with a high vacuum pump (Speedvac Edwards mod. ED200A). Every bee was then 

ground up with a metal pestle, subsequently added with 500 µL of methanol and treated 

in ultrasonic bath for 30 min at room temperature. The ultrasonic treatment was repeated 

after addition of 500 µL of water. The resulting extracts were transferred into 1.5 mL 
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micro-centrifuge tubes (VWR) and centrifuged for 60 min at 10000 rpm (Hettich MIKRO 

120). The upper clear solutions were collected by a syringe and transferred into 1.5 mL 

analytical vials after filtration on 0.2 µm syringe filters (Phenomenex, RC).  

An UHPLC (ultra high performance liquid chromatography) analytical method was 

optimized for the determination of each seed coating neonicotinoid insecticide. The 

method used a Shimadzu Prominence UFLC-XR chromatograph equipped with a 

Shimadzu SIL 20AC-XR auto sampler, Shimadzu SPD-M20A UV-Vis diode array 

detector and a Shimadzu XR-ODS II (2.2 mm, 2×100 mm) analytical column with a 

Phenomenex (ODS 4×2.0 mm) guard column. The following instrumental parameters 

were adopted: eluent flow rate of 0.4 mL min
-1

, water-acetonitrile gradient elution (0-2.65 

min: linear gradient from 16 to 41% of acetonitrile; 2.65-4.60 min: linear gradient to 

100% of acetonitrile; 4.60-5.25 min: 100% acetonitrile), 5 µL of injector volume, 45 °C 

of column temperature. Detector signal at λ=215 nm for fipronil, λ=252 nm for 

thiamethoxam and λ=269 nm for clothianidin and imidacloprid were adopted for analytes 

quantification. Although in Europe thiacloprid and acetamiprid are not used for corn seed 

coating, they can also be separated and quantified (λ=244 nm) by the present procedure. 

Instrumental calibration (external) was performed by analysis of 0.05–10 mg L
-1

 standard 

solutions of each analyte in 50% water–methanol.  

Chemicals for the preparation of the standard solutions of fipronil, thiamethoxam, 

clothianidin, imidacloprid, acetamiprid and thiacloprid were purchased from Fluka 

(Pestanal, purity >99.7% for the five neonicotinoids and >97.5% for fipronil). Methanol 

(VWR) and acetonitrile (Riedel de Haen) were of HPLC grade. Water was purified by a 

Millipore MilliQ equipment. 

Analysis of the sampled particulate matter 

For the determination of neonicotinoid insecticides in the particulate samples, the filters 

(or fraction of filter) were introduced in 10 mL test tubes, added with 2.5 mL of methanol 

and treated in ultrasonic bath for 30 min at room temperature. This treatment was 

repeated after addition of 2.5 mL of water. These solutions were directly analyzed by 

UHPLC, after filtration on 0.2 µm syringe filters (Phenomenex, RC), adopting the 

previously optimized rapid analytical procedure.
26 
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RESULTS AND DISCUSSIONS 

Particulates emitted by the drilling machine 

Since our first experiments, conducted in 2009 with corn seeds coated with clothianidin, 

the fundamental observations of Greatti
14,20

 have been fully confirmed: significant 

amounts of coating particles are effectively emitted by the drilling machine during corn 

sowing. Large fragments of the seed surface (ca. 1 mm, well visible around the fan outlet) 

were released in atmosphere through the outlet of the air flow generated in the pneumatic 

device of seeds distribution. Moreover, quantitative measurements carried out at the 

margin of the sowing field demonstrated that 1 hour of normal activity of the drilling 

machine can generate the dry deposition of about 280 µg/m
2
 of the insecticide (with 

clothianidin 2008 seed coating, about half when the 2009 seeds were used) and 

concentrations of clothianidin in the total suspended particulate (TSP at the field margin) 

of 0.24 and 0.10 µg/m
3
 for the two different seed coatings (2008 and 2009, respectively). 

In addition, analysis of PM10 samples collected 10 m from the field margin (ca. 60 ng/m
3
 

and 10 ng/m
3
 of clothianidin for the 2008 and 2009 seed coatings, respectively) clearly 

indicated the presence of not negligible levels of micrometric particles containing the 

insecticide, which were emitted by the drilling machine together with the larger ones.  

Although larger particles undergo rapid sedimentation (very close to the waste pipe) and 

in 2009-10 new types of seed-coatings (with thicker films) were introduced in Europe, as 

they are supposed to be more resistant to abrasion, German - before the ban on 

neonicotinoids - and Austrian and Slovenian beekeepers continued to report extended 

losses of bee colonies in spring in conjunction with corn sowing. On the contrary, no 

colony losses were observed in Italy, after the neonicotinoids ban. Thus, taking into 

account the hypothesis of a possible acute toxic effect of the emitted particles on 

honeybees, a series of experiments were carried out in order to better characterize these 

atmospheric emissions and to assess the possible exposure of honeybees to the 

insecticides contained in these particles in open fields. 

The size distribution analysis of the emitted particles, measured by an OPC instrument 

during “static sowing” of corn seeds coated with clothianidin (Poncho
®
 2009 and 2010), 

revealed a typical coarse distribution ascribable to the erosion processes occurring on the 

seed surface. At 5 m from the working drilling machine, a significant increase in the 

particles concentration was registered (with respect to the blank values, Figure 1) only for 

particles with a diameter larger than 2 µm.  
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Figure 1. Dimensional distribution of particles emitted by the drilling machine during the sowing of coated 

seeds, measured by OPC instrumentation 5 m from the outlet of the air fan. 

 

The mass concentration of the coating particles (estimated by the OPC at 5 m from the 

waste pipe, using the 2-32 µm diameter range) was 79.4 µg/m
3
 for the 2009 seed coating 

and 49.8 µg/m
3
 for the 2010 seed coating. However, in the latter case, sedimentation of 

very large particles (0.5-2 mm) was also observed close to the waste pipe. These results 

show that significant concentrations of the coating particles can surround the drilling 

machine during corn sowing. Moreover, they seem to indicate that the coating proposed 

in 2010 emits more particles, but with a larger diameter and a reduced capability to be 

carried by the wind (i.e. they fall to the ground near the drilling machine) compared to 

particles coming from the 2009 seed coating batches. 

In any event, besides the larger particles emitted by the drilling machine, the presence of 

a significant tail of the dimensional distribution of these erosion (coarse) particles 

approaching the range of fine particles (few micrometers) is well evidenced for both 

coatings. Low vacuum SEM-EDS analysis of the sampled TSP (collected on 

polycarbonate filters) confirmed the presence of fine particles containing the insecticides. 

Of course, the environmental spreading of these fine particles is expected to be higher 
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than that associated with the coarse ones and, as a consequence, increased toxic effects on 

bees could be expected. 

The effective total amount of insecticide emitted by the seed coating particles released by 

the drilling machine has been assessed by the analysis of TSP isokinetically sampled at 

the waste pipe of the fan. Our results are reported in Table 1 together with emission 

factors of the drilling machine estimated considering the usual sowing parameters (see 

Experimental). These data suggest that high quantities of insecticide are emitted during 

corn sowing. For instance, about 0.5 % of the clothianidin employed in Poncho 2008 and 

2009 seeds (that means more than 0.4 g per hectare) is effectively released in the 

atmosphere as coarse particles. More recent seed coatings (2010) show higher emission 

factors (1.53 and 0.74 g/ha for clothianidin and thiamethoxam respectively) but, as 

discussed above, they are probably determined by the larger emitted particles (0.5-2 mm) 

that deposit quickly (very close to the air outlet) and are not carried in the atmosphere by 

moderate wind. Nevertheless, both OPC observation and analytical measurements in the 

field (see below), reveal that all kinds of seed coating release significant amounts of 

particles approaching the range of the fine ones and with relevant atmospheric mobility. 

Analyses of the particulate matter (TSP and PM10) sampled 5 and 10 m from the drilling 

machine (operating in static mode with different seed coatings) have also shown elevated 

values of the insecticide concentration in the air surrounding the working machine (Table 

2). Of course, higher values are measured close to the emission source (5 m) but it is 

worth noticing that significant concentrations of insecticide can be observed also at a 

distance of 10 m from the drilling machine. Although strictly depending on wind 

direction and speed, these figures fully agree with the data drawn from OPC size 

distribution analysis: significant amounts of insecticide are emitted as few micron 

particles (sampled and better quantified in PM10), together with the coarse ones. These 

particles are characterized by high atmospheric mobility and can be efficiently intercepted 

by the flying bees.
15-17 
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Table 1. Concentration of insecticides measured at the waste pipe of the Monosem drilling machine during 

the sowing of corn coated seeds and relevant emission factors estimated using normal sowing parameters
a
. 

a
Data obtained from the analysis of three independent samples (isokinetic TSP) collected during “static 

sowing” experiments using the Monosem drilling machine. Sowing conditions: speed 6 km/h, 4 rows of 

seed distribution, distance between rows 75 cm, seeds distance 20 cm (66660 seeds/ha), air flow 230 m
3
/h.  

b
 Value obtained from a single sample collected during the preliminary tests. 

 

Table 2. Concentration of neonicotinoid insecticides in the particulate matter sampled near the drilling 

machine during the sowing of corn coated seeds
a 

a
Average values of three independent samples and determinations. Uncertainty (standard deviation) ca. 5%. 

nd: not determined. 
 

Data in Table 2 also show that, during sowing, the Poncho
®
 2009 corn seed coating seems 

to produce more particles than its 2010 version, although a higher factor emission was 

found for the latter. This discrepancy could be explained considering that a significant 

fraction of the 2010 coating is released as very large particles that cannot be easily 

transported to the sampling TSP apparatus (5 or 10 m). In conclusion, the two kinds of 

coating show a different behavior toward surface erosion and, during sowing, the 2009 

version produces a more concentrated cloud of fine-coarse particles surrounding the 

drilling machine. 

As for the modification of the air fan outlet in the attempt to reduce the environmental 

release of the particles containing the insecticide, we must underline that the strategies so 

far proposed often consist in the mere application of a pipe (or a deflector in the Gaspardo 
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model) that funnels the air flow toward the ground.
31

 Of course, taking into account the 

size and the aerodynamic properties of the particles described above, it is easy to foresee 

the limited efficiency of this apparatus. In any case, we modified the waste pipe of the 

Monosem drilling machine as proposed by AFSSA
32,28

 using a dual pipe that splits the air 

flow into two components, both downward directed and released at 20 cm from the soil. 

Experimental results (Table 2) confirm a reduction of the clothianidin concentration 

measured at the modified drilling machines (for both the modified Monosem and 

Gaspardo) compared to the unmodified Monosem. On the other hand, improvement has 

not been observed using the seeds coated with thiamethoxam. Anyway, it seems clear that 

the modified drilling machines also emit large amounts of micrometric particles of 

ecotoxicological relevance, whose acute effects on flying bees have been recently well 

illustrated.
15-17,33 

Regarding other relevant properties of these particle clouds (i.e. their 

spatial and temporal dimension), although preliminary information have been acquired by 

toxicity data (ca. 15 m around the drilling machine; few minutes after sowing was 

completed)
15,17

, we are aware that more detailed experiments are needed. 

Analytical method for single bee analyses after field exposure 

Since the first sowing tests with both static and normal operating drilling machine we 

observed the death of a significant number of bees whose beehives were ca. 100 m far 

from the sowing field. Short term mortality and the characteristic symptoms of 

neonicotinoid neurotoxicity
25,34,35

 gave rise to the hypothesis of a direct acute exposure of 

the flying bees to the emitted particles as they approached the drilling machine, rather 

than an indirect contamination via the vegetation (pollen, nectar, dew) surrounding the 

sown area. Therefore, a series of specific exposure experiments were carried out using 

both caged bees positioned at various distances from the air outlet
15,17

 and foraging bees 

conditioned to fly over the sowing field to visit a dispenser of sugar solution.
16

 

In this connection, an analytical method for the determination of the insecticide content in 

a single bee has been optimized and validated, taking into account the advantage of the 

rapid UHPLC procedure recently proposed for the analysis of corn guttation drops.
26

 In 

the present procedure, the lyophilized sample (a single bee) was grounded, extracted with 

methanol and analyzed by a UHPLC-DAD instrumental method that allows the complete 

elution of the neonicotinoid insecticides of interest, and of fipronil, in about 6 min. The 

method shows excellent precision: repeatability, from replicate analyses of real samples, 

was better than 4% for concentration levels higher than 200 ng/bee of each insecticide (4-
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8% at 50 ng/bee). Although an instrumental limit of detection (LOD) of ca. 2 µg/L has 

been computed for each neonicotinoid insecticide from the parameters of the analytical 

calibration function (by the procedure suggested by IUPAC
36

), experimental uncertainties 

measured in the analysis of real samples indicate a reasonable LOD of ca. 10 ng/bee for 

the complete analytical procedure. Very limited chromatographic interferences for the 

UHPLC-DAD method were observed in the analysis of spring-summer sampled bees and 

recovery tests, using spiked samples (blank bees added with 50-200 ng/bee of 

thiamethoxam, clothianidin and imidacloprid), showed satisfactory recovery factors in the 

range 78-104%. A slightly worse chromatographic resolution (that gave higher 

uncertainties and lower recovery factors) was observed in the analysis of winter samples 

and in the quantification of fipronil. 

Compared with the performance of HPLC-MS methodologies,
37,38

 the LOD of the 

UHPLC-DAD method appears to be quite elevated. Nevertheless, the optimized 

procedure is rapid enough, uses a simpler instrumentation and both accuracy and LOD 

are adequate for the purpose, i.e. the analysis of single bees after the acute exposure to 

particulates containing neonicotinoid insecticides. 

Insecticide content in exposed bees 

Application of the analytical method to the analyses of single bees directly exposed in the 

field to the emitted particles has always evidenced elevated levels of the insecticide 

content. Although the assessment of a reliable correlation between the insecticide 

amounts emitted by the drilling machine and the bee uptake requires a more rigorous 

experimental approach than that adoptable in the field (i.e. a dedicated exposure chamber, 

a wind tunnel or an isolated laboratory for emission tests as that set up by Pochi and 

coworker
31

), the analyses of single bees sampled during the field sowing experiments 

revealed important information on both the effective bee exposure and the insecticide 

uptake mechanism. 

For instance, foraging bees induced to fly over the sowing field to reach a sugar 

dispenser, here captured at the end of the sowing experiment (Poncho
®

 2010, sowing time 

1 h) and maintained in laboratory under high humidity condition until death,
16,17

 shown 

concentration of clothianidin in the range 78-1240 ng/bee (n=5, mean 570 ng/bee). A 

wide spread of values was also observed using Cruiser
®
 2010 seed coating: 128-302 

ng/bee of thiamethoxam (n=4, mean 189). Taking into account the satisfactory precision 

of the optimized analytical procedure, this high variability is probably due mainly both to 
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the different number of flights over the field (or different paths approaching drilling 

machine) that each bee has completed before being sampled and to the effect of probable 

cleaning processes (dust off) occurring in flight or inside the hive. For this reason, strong 

dependence of the insecticide concentration on the sampling time (during sowing) has 

never been observed. On the other hand, in partial confirmation of the cleaning processes, 

non negligible differences in insecticide concentration were observed in bees captured at 

the dispenser and maintained, until death, under different humidity conditions
16

. Thus, 

after 30 min from the start of the Cruiser
®
 2010 sowing, thiamethoxam concentration was 

267±59 ng/bee (n=5, humidity >95%) and 104±87 ng/bee (n=5, humidity <70%); using 

Regent
®
 2010 seeds, fipronil concentration was 850±330 ng/bee (n=4, humidity >95%) 

and 210±160 ng/bee (n=6, humidity <70%). Despite their high (but justified) variability, 

these concentrations well support both the bee mortality data obtained by Girolami, in 

which a strong dependence on the air humidity was reported,
15-17

 and the hypothesis of a 

contact uptake in flight of the insecticide through the bee tegument, facilitated by the 

humidity.  

The effective and lethal powdering of the flying bees has also been confirmed by 

quantitative measures of the insecticide “lying” on the bee surface. At the end of a sowing 

with Poncho
®
 2009 (1 h), several dead bees were found at the sugar dispenser and 

immediately frozen. Before the analysis, 7 bees were externally washed with methanol 

(15 min, in ultrasonic bath) and then analyzed by the optimized procedure. The results 

revealed an external concentration of clothianidin of 396 ng/bees and a total 

concentration of 674 ng/bee. Dead bees sampled at the hive subsequent to the end of 

sowing (3 h, n=7; 24 h, n=14) showed a significantly lower content of insecticide: the 

external concentration was always below the LOD while total levels of 155 and 119 

ng/bee were measured on the bees sampled after 3 and 24 h, respectively. A similar 

decreasing trend was also observed after exposure of the flying bees to other 

neonicotinoid particulates. For instance, using Gaucho
®
 2009, external concentrations of 

imidacloprid up to 3000 ng/bee have been detected in the bees collected at the end of the 

sowing (240 ng/bee after 2 h, <LOD after 24 h); the total concentrations were 3650 and 

325 ng/bee for bees sampled at the end of sowing and after 2 hours, respectively (<LOD 

after 24 h). These results appear to be very informative: they confirm (i) the elevated 

capability of the flying bees approaching the drilling machine to intercept the suspended 

coating particles, (ii) the effective lethal contamination of bees with the insecticide that 
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can be taken up by contact and (iii) the possible partial removal of the particles during the 

foraging activity or in the hive. 

 

Fig. 2. Low vacuum SEM image of a seed coating particle (Poncho
®
 2009) that, partially modified by the 

air humidity, adheres to the abdomen tegument of a bee exposed to the drilling machine emissions. 

 

The presence of coating particles on the abdomen of the flying bees, and the related 

uptake mechanism of the insecticide, has also been confirmed by electronic microscopy 

(low vacuum SEM analysis, Figure 2) observing modified coating particles that adhere to 

the bee tegument. This modification, that is reasonably influenced by air humidity, could 

explain the different toxic effect observed on powered bees maintained at different 

condition of humidity.
16

 Moreover, it supports the experimental data that indicate a major 

self capability of bees to remove coating particles (finding lower concentrations) when 

maintained, after exposure, under normal humidity condition. 

Short time exposure of single caged bees to the air flow emitted by the fan of the drilling 

machine (about 30 s, simulating 1-2 flight across the sowing field at different distance 

from the drilling machine) always induced acute lethal effects toward the bees, more 

evident if the exposed bees are maintained, until death, under high humidity conditions.
15-

17
 According to the observed toxic effects,

17
 elevated levels of insecticide were always 

measured. For instance, caged bees exposed at different distance from the air outlet of the 
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Monosem drilling machine (1-9 m, using Poncho
®
 2010, in absence of dominant wind) 

evidenced concentrations of clothianidin significantly higher for bees exposed on the 

right side (in front of the waste pipe) with respect those exposed on the left side of the 

machine (Table 3). As expected for the latter ones, the dependence of the concentration 

on the distance from the drilling machine is not clear, as an effect of the turbulence of the 

air surrounding the working drilling machine. At the same time, this turbulence can also 

explain the variable values measured by using the modified Monosem drilling machine 

(with a dual pipe outlet releasing particles, downward to the soil, from both sides): 

actually, only a concentration range of clothianidin (71-434 ng/bee, n=10, mean 197±129 

ng/bee, humidity <70%; 70-446 ng/bee, n=9, mean 216±141 ng/bee, humidity >95%) can 

be reasonably furnished as representative of the caged bees exposed in the 1-9 m range 

from the back of the machine (toward the wind direction, 1-2 m/s), without correlation 

with the distance. 

Table 3. Clothianidin concentration in caged bees exposed, for 30 s at different distance (both right and left 

hand side), to the air flow emitted by the Monosem drilling machine during the sowing of Poncho
®
 2010 

seeds. 

a
Average values and standard deviation of the instrumental measurements (n=3) on single bee samples 

According to the high insecticide levels measured in air around the drilling machine 

(Table 2), huge contents of insecticide have been measured in the dead bees collected at 

the beehive after the sowing experiment also using the modified drilling machine. For 

instance, the sowing (1.5 h) of Poncho
®
 2010 corn seeds by the Gaspardo drilling 

machine (with the outlet air flow directed downward by an external deflector) induced the 

rapid death of more than 200 foraging bees flying across the sowing area, revealing a 

clothianidin content in the range of 0.5-11 µg/bee. It is worth noticing that a significant 

decrease in the insecticide content seems to be evidenced when the sampling of the bees 

is delayed after death. In the hypothesis that the metabolic degradation of the insecticide 
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(probably effective also post mortem) may affect the concentration experimentally found 

in real samples, to such an extent that very low levels could be found also after significant 

exposure, specific research is in progress in our laboratory. 

In conclusion, particulate matter released by the drilling machine during the sowing of 

corn seeds coated with neonicotinoid insecticides, represent a significant mechanism of 

environmental diffusion of these insecticides. Bees flying over the sowing field and 

approaching the emission cloud of the drilling machine can efficiently intercept the 

suspended particles being directly contaminated with elevated dose of insecticide, 

significantly higher than the LD50 values estimated for contact, with the cuticle, 

administration (18, 22 and 30 ng/bee for imidacloprid, clothianidin and thiamethoxam, 

respectively
39

). The consequent acute lethal effect evidenced in all the field sowing 

experiment can be well compared with the colony loss phenomena widely reported by 

beekeepers in spring and often associated to corn sowing. Analytical results regarding 

factor emissions, air concentration of insecticide around the drilling machine and 

consequent bee contamination, reveal that all kinds of the tested seed coatings (also those 

more recently proposed) do not prevent the dispersion of large amounts of fine particles 

containing the insecticide, producing lethal exposure of flying bees. Moreover, the 

modifications of the air outlet of drilling machines so far adopted seem to have a limited 

effect on both the factor emission and the effective bee contamination. 

This emission source of particles with acute toxic effects on bees (and on other insects 

too) is of concern for both apiculture and crop productions based on bee pollination. But 

it is also a widespread ecological problem that, in view of the worldwide increase in corn 

production partly promoted by government subsidies to renewable energy sources, and 

the consequent predictable exacerbation of the problem, should require a deeper analysis 

of the related agricultural policies. In this connection, immediate contributions for the 

reduction of atmospheric factor emissions of neonicotinoid insecticides should come from 

studies oriented to the realization of suitable devices for an efficient reduction of toxic 

particles inside the seed distribution mechanism of drilling machines, and supported by 

quantitative data both on particulate emissions and biological effects on honeybees.  
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Abstract 

In the understanding of colony loss phenomena, a worldwide crisis of honeybee colonies 

which has serious consequences on both apiculture and bee pollination dependent farm 

productions, an important role can be played by analytical chemistry. For instance, rapid 

and accurate analytical procedures are currently required to better assess the effects of 

neonicotinoid insecticides on honeybee health. Since their introduction in agriculture, 

neonicotinoid insecticides have been blamed for being highly toxic to honeybees, 

possibly at ng/bee level or lower. As a consequence, most of the analytical methods 

recently optimized have focused on the analysis of ultra-traces of neonicotinoids using 

LC-MS techniques to study the effects of sub-lethal doses. However, recent evidences on 

two novel routes - seedling guttations and seed coating particulate, both associated with 

corn crops - that may expose honeybees to huge amounts of neonicotinoids in the field, 

with instantly lethal effects, suggests that selected procedures need optimizing. In the 

present work, a simplified UHPLC-DAD method for the determination of neonicotinoids 

in single bees has been optimized and validated. The method ensures good selectivity, 

accuracy and adequate detection limits which make it suitable for the purpose, while 

maintaining its ability to evaluate exposure variability of individual bees. It has been 

successfully applied to the analysis of bees in free flight over an experimental sowing 

field, therefore exposed to seed coating particulate released by the pneumatic drilling 

machine. 

mailto:vincenzo.girolami@unipd.it


 

 

154 

Keywords: Honeybees, neonicotinoid insecticides, liquid chromatography, QuEChERS 

extraction, mass spectrometry. 

Introduction 

A recent, invasive syndrome affecting honeybee (Apis mellifera, L.) colonies in the 

Northern hemisphere, named colony collapse disorder (CCD), is characterized by a 

sudden, massive disappearance of honey bees from the hive [1-5]. Although several 

causes have been hypothesized, pesticides have received more consideration by the 

scientific community. Nowadays, experimental evidences for an association between the 

colony loss phenomena, including those occurring in early spring, and the use of 

neonicotinoid insecticides, in particular as seed dressing in corn crops, an agricultural 

practice used worldwide, are extensive and there is sufficient mechanistic understanding 

to put the question of causality beyond reasonable doubt [6-13]. Although spring 

mortality is characterized by a rapid disappearance of bee colonies (a typical short term 

effect), scientific efforts were in most cases based upon exposure to sub-lethal doses of 

neonicotinoids, which may weaken the colonies and make them more susceptible to both 

common and new diseases [10, 14-19]. In fact, since Greatti et al. [20] demonstrated the 

possible release of seed coating insecticides through the fan drain of the pneumatic 

drilling machine during corn sowing operation and hypothesized bee exposure to the 

neonicotinoid containing particles falling off to the vegetation at the field margin, 

experimental results showed that neonicotinoid content in nectar and pollen collected 

from the surrounding vegetation were always around 50 ppb or lower [12, 21-23], while 

higher doses are necessary for an acute toxic effect [13, 16-18, 24]. In this connection, 

Girolami and co-workers have recently proposed two novel routes of exposure to and 

intoxication with neonicotinoids which may justify such a sudden spring mortality: the 

translocation of a significant amount of neonicotinoids from the coated seed to the 

guttation drops of young corn plants [6, 24] and the direct powdering with neonicotinoid 

containing particles of foraging bees in free flight accidentally crossing the sowing fields 

[11, 21, 25, 26]. Exposure and monitoring studies also promoted several analytical 

methods [27-31], mainly using liquid chromatography coupled with mass spectrometry 

(HPLC-MS) [32-35], for the determination of neonicotinoid insecticide content in 

exposed bees. In these methods, but also in methodologies for the analysis of simpler 

matrices of interest (i.e. honey [36, 37], fruits [38-42] or vegetables [41-47]), a great 

effort has been devoted to both extraction and clean-up procedures that precede 
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instrumental analysis [48]. In order to obtain satisfactory recovery factors for both 

neonicotinoids and their main metabolites, several versions of the QuEChERS (quick, 

easy, cheap, effective, rugged and safe) method originally proposed by Anastassiades et 

al. [49] were developed [33, 35, 37, 40, 46]. Although sample pretreatment, 

preconcentration and HPLC-MS analysis guarantee good analytical performances - in 

term of accuracy, selectivity and instrumental sensitivity - lower detection limits (below 1 

ng/g or 0.1 ng/bee) were always obtained applying the optimized analytical method to a 

large sample: typically 2-15 g, ca. 20-150 bees. In this way, information on single bee 

contamination was lost and only an average assessment of the low levels of insecticide 

uptake was made. On the other hand, as aforementioned, latest studies have demonstrated 

that foraging bees can be directly exposed to high (and lethal) concentrations of 

insecticides in the field. Corn sowing using pneumatic drilling machines and seeds coated 

with neonicotinoids (an agricultural practice used worldwide) release in the atmosphere 

large amounts of coating particles that are efficiently intercepted by foraging bees flying 

over the sowing fields [11, 12, 21, 25, 26]. Bees exposed to these toxic particles show 

characteristically acute effects, with a short term mortality which compares well with the 

colony loss phenomena observed by beekeepers in spring, and associated to corn sowing. 

Moreover, young corn plants obtained from coated seeds produce guttation drops 

containing high concentrations of the coating insecticide (up to 1150 mg L-1 for 

thiamethoxam [6, 24]), lethal for bees or other insects that may use guttations as source of 

water. It is worth noticing that these acute exposures to neonicotinoids, and their lethal 

effects on honeybees, can be easily studied and quantified by using dedicated analytical 

methods based on simpler instrumentation and more rapid procedures than those 

optimized for the studies of sub-lethal effects. For instance, neonicotinoids in guttation 

drops are directly analyzed by ultra-high performance liquid chromatography with diode 

array detection (UHPLC-DAD) [6, 24], using a rapid method which can also be easily 

applied (after adequate sampling procedure) to characterize particulate matters emitted by 

drilling machines during the sowing of corn coated seeds [11]. First attempts to use this 

approach in the analysis of single bees were successful, even if some chromatographic 

interferences emerged [11]. A UHPLC-DAD method was successfully used in the 

assessment of acute exposure to seed coating particulate, and consequent lethal 

contamination, of bees flying close to the drilling machine in the sowing field [21, 25, 

26]. 
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In the present paper, a simplified analytical method has been optimized based on 

QuEChERS extraction and clean-up and on UHPLC-DAD instrumental analysis for the 

accurate determination of neonicotinoid insecticides in single bees. Method validation 

was also carried out and analytical performances assessed by comparing results with 

those obtained by an independent UHPLC-Q-TOF-MS analytical procedure. 

Experimental  

Materials and instrumentation 

Analytical grade magnesium sulfate (anhydrous, 99%; VWR - AnalaR NORMAPUR, 

Milan, Italy), sodium acetate trihydrate (99.0%, Fluka, Milan, Italy), Amberlite XAD-2 

resin (Restek Ultraclean, Bellefonte, PA, USA) and primary-secondary amine sorbent 

(PSA, Supelco Supelclean, Milan, Italy) were used in the sample pre-treatment step. 

Methanol (VWR) and acetonitrile (Riedel de Haen, Seelze, Germany) were of HPLC 

grade and water was purified using Millipore MilliQ (Vimodrone, Milan, Italy) 

equipment. Pure chemicals for instrumental calibration (Pestanal, purity >99.7% for 

thiamethoxam, N-desmethyl thiamethoxam, clothianidin, imidacloprid, acetamiprid and 

thiacloprid and >97.5% for fipronil) were purchased from Fluka.  

UHPLC-DAD analysis was optimized on a Shimadzu (Milan, Italy) Prominence UFLC-

XR chromatograph (SIL 20AC-XR auto sampler, CTO-20A column oven, SPD-M20A 

UV-Vis diode array detector). LC-Q-TOF MS analysis were performed on a UHPLC 

system (Series 1200, Agilent Technologies, Palo Alto, CA, USA), consisting of vacuum 

degasser, autosampler and a binary pump coupled with both DAD and Q-TOF MS mass 

analyzer (Agilent Series 6520), equipped with an electrospray ionization interface (ESI), 

operating in dual ESI mode, with the following operation parameters: capillary voltage 

4000 V, nebulizer pressure 40 psi, drying gas 10 L/min, gas temperature 350 °C, 

fragmentor voltage 120 V (180 V in the negative ESI mode). On both chromatographic 

systems a Shimadzu XR-ODS II analytical column (2.2 µm, 2.0×100 mm) and a 

SecurityGuardTM ULTRA cartridge, UHPLC C18 2.1 mm (Phenomenex, Castel 

Maggiore, Bologna, Italy) guard column were utilized.
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Bees exposure tests 

Bees (Apis mellifera, L.) from four hives, supplied by the Padova Beekeeping 

Association (A.P.A. Pad), were used in field exposure tests with particulate matter 

emitted by a drilling machine during corn sowing. All tests were carried out in a sowing 

field of the experimental farm of the University of Padova (Legnaro, Padova – Italy; 

coordinates: 45°20‟41.19”N - 11°57‟16.22”E) using a Ribouleau Monosem NG Plus 

drilling machines under the experimental condition already described elsewhere 

[11,25,26]. Commercially available corn seeds (hybrid X1180D 964890 and PR44G; 

Pioneer Hi-bred, Italy) produced and marketed in 2010-2011 were used; the seed coatings 

were Cruiser® (Thiamethoxam 0.6 mg/seed, Syngenta, Basel, Switzerland), Poncho® 

(clothianidin 1.25 mg/seed, Bayer Cropscience AG., Leverkusen, Germany) and 

Gaucho® (imidacloprid, 0.5 mg/seed; Bayer Cropscience AG.). A neonicotinoid 

insecticide in granular form for soil treatments was also used (Santana, containing 

clothianidin 0.7 %, Sumitomo Chemical Agro Europe, Saint Didier au Mont d‟Or, 

France). 

Bees flying over the sowing field, or found dead in the field or close to beehives during 

the sowing tests, were collected in 1.5 ml test tubes and stored at -80 °C. 

Single bee extraction and clean-up 

Sample pre-treatment was carried out by a simplified QuEChERS procedure. In a 1.5 ml 

test tube each bee was treated with 100 µl of water, 500 µl of acetonitrile, roughly 

pounded with a metal pestle and then added with 30 mg of magnesium sulphate and 5 mg 

of sodium acetate. The sample was then placed in ultrasonic bath (ELMA® Transsonic 

Digitals) for 15 min at room temperature and then centrifuged for 15 min at 10 000 rpm 

(Hettich MIKRO 120). The supernatant was collected by a syringe, transferred into 

another test tube and added with 20 mg of PSA sorbent or Amberlite XAD-2 resin. In 

order to get a quantitative recovery of the analytes the extraction/clean-up process was 

repeated treating the bee residue with other 500 µl of acetonitrile; after centrifugation, 

extracts were unified, evaporated to dryness at 40 °C under a nitrogen flow and the 

residue was dissolved with 300 µl of a water/methanol solution (90:10). The final extract 

was then centrifuged for 15 min at 10000 rpm, filtered on 0.2 μm syringe filter 

(Phenomenex, RC) and transferred into a 1.1 ml analytical vial. 
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UHPLC-DAD analytical method 

Compared to the previously optimized procedures [11, 24] a more selective 

chromatographic method has been developed for the determination of seed coating 

insecticides in single bees. UHPLC-DAD instrumental conditions were: eluent flow rate 

of 0.4 mL min-1, binary water/acetonitrile gradient elution (eluent A: water/acetonitrile 

90:10; eluent B: acetonitrile; 0-3.5 min: 100% eluent A; 3.5-14 min: linear gradient from 

0 to 12.7% of eluent B; 14-14.5 min: linear gradient to 66.7% of eluent B; 14.5-17.5 min: 

66.7% of eluent B; 17.5-18 min: linear gradient to 100% of eluent B; 18-20 min: 100% 

eluent B), 5 µL of injector volume, 45 °C of column temperature. Detector signal at 

λ=278 nm for fipronil, λ=252 nm for thiamethoxam and λ=269 nm for clothianidin and 

imidacloprid were adopted for analytes quantification. Thiacloprid and acetamiprid, 

neonicotinoids that are not used for corn seed coating in Europe, can also be quantified 

(λ=244 nm) by the present procedure along with N-desmethyl thiamethoxam (λ=272 nm) 

a well known thiamethoxam degradation product [50]. The external instrumental 

calibration was performed by analysis of 50-1000 µg L-1 standard solutions of each 

insecticide in 50% water-methanol, on a daily basis.  

UHPLC/Q-TOF-MS analytical method 

UHPLC/Q-TOF-MS analysis used identical elution conditions previously optimized for 

the UHPLC-DAD method. The Q-TOF mass spectrometer operated in the positive ESI 

mode for the detection of thiamethoxam, clothianidin, imidacloprid, N-desmethyl 

thiamethoxam, acetamiprid and thiacloprid and in the negative ESI mode for fipronil 

(ionization mode switching at 17.5 min). Full scan mass spectra were recorded as centroid 

over the range 50–1000 m/z with a scan rate of 2 spectra/s. Q-TOF calibration was daily 

performed with the manufacturer‟s solution. For all chromatographic runs the m/z 

391.28429 relative to the diisooctyl phthalate molecular ion, always present as impurity 

residue, was set as lock mass for accurate mass analysis. The instrument provided a 

typical resolving power (FWHM) of 18000 (m/z 922.0098). Mass spectra acquisition and 

data analysis was processed with Masshunter B.04.00 software (Agilent). External 

instrumental calibration was performed by analysis of 2-500 ng/bee matrix-matched 

standard solutions of each insecticide (blank samples fortificated after the final filtration 

step of the optimized extraction procedure). Quantification was made on the basis of peak 

area from extracted ion current profiles of the respective [M+H]+ and [M-H]- (fipronil) 

ions with a mass window of 0.05 Da. 
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Results and discussion 

Although rapid methodologies for the analysis of neonicotinoid insecticides in 

environmental matrices of interest in the study of colony loss phenomena (i.e. guttation 

drops and particulate matter) have been recently optimized in our laboratory [11, 24], the 

direct UHPLC-DAD analysis of methanol or acetonitrile extracts obtained from exposed 

bees showed some drawbacks, mainly in terms of chromatographic interferences and 

residues precipitation (probably waxes) [11, 33, 34,]. On the other hand, specific 

procedures combining solvent extraction, clean-up and LC-MS analysis are quite 

elaborate and time consuming, but they undoubtedly guarantee high levels of accuracy 

and sensitivity that make the analysis of bees exposed at very low levels of insecticides 

possible. The analytical method proposed in the present work, coupling the advantages of 

a simplified sample preparation method (QuEChERS) with the possibility to use a 

simpler instrumentation (UHPLC-DAD), can be easily applied to the analysis of 

neonicotinoid insecticides in single bees after acute exposure, as is the case with the 

direct contamination of flying bees with corn seed coating particles. 

Optimization of extraction and clean-up procedure 

In order to obtain a satisfying chromatographic selectivity, even at low concentrations, 

different extraction solvents were tested, i.e. acetone, ethyl ether, dichloromethane, 

methanol, acetonitrile, and water - in acidic solution (pH=2, by phosphoric acid) too. First 

attempts confirmed that acetone and ethyl ether give unsatisfactory recovery factors for 

neonicotinoids (38-78% and 10-20% for acetone and ethyl ether respectively), while 

dichloromethane showed good recovery factors (74-99%) but severe matrix interferences 

mainly affecting clothianidin and imidacloprid determination in most samples. On the 

contrary, water and acidic solutions present matrix interferences affecting the 

determination of thiamethoxam (the most water-soluble of the neonicotinoids in 

question). Some of those interfering peaks could be partially removed by liquid-liquid 

partitioning with n-hexane or CH2Cl2 which in turn significantly lowers the recovery of 

the analytes (40-94% for n-hexane, 15-25% for CH2Cl2). The best essayed extraction 

solvents in terms of both recovery factors and cleanliness from chromatographic 

interferences were methanol (as previously used in our laboratory) and acetonitrile which 

has the advantage to be usable also in QuEChERS extraction technique. 
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Consequently, a different sample pre-treatment approach was studied, starting from well-

established QuEChERS methods [33, 35, 37, 40, 46, 49, 51] with some improvements 

and optimizations in order to apply it, for the first time, to the analysis of single insects. 

As for the extraction step of the procedure, different combinations of MgSO4/NaCl and 

MgSO4/NaOAc aqueous solutions were tested as proposed by Kamel [33]: in our case the 

results showed negligible differences in terms of recovery factors but an improvement in 

terms of interfering peaks using MgSO4/NaOAc solutions (see Experimental for details). 

In any event, the resulting acetonitrile extract could not be directly analyzed by UHPLC 

mainly for the presence of substances which are prone to precipitate in column or 

(clearly) just after dilution by water before instrumental injection. In this connection, 

dispersive SPE clean-up using sorbent like PSA or Amberlite XAD-2 provided an easily 

solution, which was quicker than conventional SPE, and ensured very good results: clear 

extracts, absence of precipitation and both highly reproducible and clean from 

interferences chromatograms were obtained using both tested solid phases. 

Finally, after the evaporation of the solvent, negligible differences were found using 

different solutions to dissolve analytes of interest (i.e. water, acidic water solutions, 

water/methanol or acetonitrile mixtures); thus a water/methanol solution (90:10) was 

chosen in order to avoid the unwelcomed peak broadening often observed in UHPLC 

when an acetonitrile excess is injected. 

Optimization of the chromatographic conditions 

Taking into account our previously developed procedures [11, 24], UHPLC-DAD 

instrumental conditions were optimized in order to improve the chromatographic 

separation of the selected insecticides from possible matrix interferences, simultaneously 

shortening time of analysis. Best results were obtained using a water/acetonitrile gradient 

elution program, while modifiers like formic acid (0.01-0.1%), ammonium acetate 

(0.05%) and ammonium formate (0.05%) added to eluents, produce a few interfering 

peaks in DAD detection partially overlapping thiamethoxam and clothianidin signals in 

some samples. 

With the optimized UHPLC-DAD method, the elution of five neonicotinoid insecticides, 

and of N-desmethyl thiamethoxam (a thiamethoxam metabolite) and fipronil (a 

phenylpyrazole insecticide also used in corn seed coating) takes about 20 min. Of course, 

if only seed coating neonicotinoids (thiamethoxam, clothianidin and imidacloprid) are of 
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interest, an anticipated column cleaning step (for instance, at 8.5 min: from 6% to 100% 

of eluent B in 0.5 min) reduces the time of analysis to 12 min. 

Method validation 

The performances of the UHPLC-

DAD method (summarized in 

Table 1) were assessed through 

estimation of accuracy (trueness 

and precision), sensitivity, 

selectivity, and linear response 

range. In view of the impossibility 

to select real samples (single bees) 

containing identical concentration 

of insecticides, both precision and 

recovery factors were estimated by 

analysis of a homogenized pool of non-exposed, lyophilized and gently powdered - bees 

spiked with known amounts of analytes: portions of 0.03 g of this homogenized bee 

sample (corresponding to the weight of a single lyophilized bee) were added with 50-200 

ng of all the analytes (at least 4 concentration levels, 2-5 samples for each level) and 

analyzed by the optimized method. The results (i.e. the slopes of the recovery functions, 

see Fig. S1) evidenced excellent recovery factors: 94±2 % for thiamethoxam, 97±2 % for 

clothianidin, 87±4 % for imidacloprid, 83±2 % for thiacloprid, 93±1 % for acetamiprid 

and 97±2 % for N-desmethyl thiamethoxam. Conversely, unsatisfactory recovery was 

obtained for fipronil (30±3 %), a phenylpyrazole insecticide also used in corn seed 

coating, which is a more lipophilic compound than the analyzed neonicotinoids. Precision 

levels (repeatability), associated to the aforementioned spiked samples, were of about 5% 

for thiamethoxam, N-desmethyl thiamethoxam and thiacloprid, 7% for clothianidin and 

imidacloprid and 10% for acetamiprid. As expected, the scarce recovery obtained for 

fipronil goes with a higher uncertainty (ca 50%). Therefore, the method guarantees both 

satisfactory recovery factors and good precision levels for each neonicotinoid insecticide, 

but it shows unsuitable performances for fipronil.  

Table 1 Limits of detection (LOD), repeatability (relative 

standard deviation), and recovery factors of the entire 

ultra-high-performance liquid chromatography–diode-

array detection analytical procedure for the analysis of 

neonicotinoid insecticides in single bees 

a From the analysis of bee samples (powdered) spiked 

with 50–200 ng of each insecticide per bee 
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The linear response range was experimentally tested for each analyte by instrumental 

calibration functions up to 100 mg L-1 (r2 > 0.999, p < 10-8). Method sensitivity (the 

slope of the calibration function) appears to be similar for each neonicotinoid insecticide, 

if it is related to mass concentration. Again, a lower sensitivity, that will contribute to a 

higher instrumental limit of detection (LOD), has been observed for fipronil. 

The UHPLC-DAD method is characterized by instrumental LOD of ca 8 µg L-1 for 

thiamethoxam, N-desmethyl thiamethoxam, clothianidin, imidacloprid and acetamiprid 

(13 µg L-1 for thiacloprid and fipronil), all computed from the parameters of calibration 

functions using the procedure suggested by IUPAC [52]. In the analysis of real samples 

by the complete procedure, experimental uncertainties account for actual LOD values of 5 

ng/bee for thiamethoxam, N-desmethyl thiamethoxam and thiacloprid, 7 ng/bee for 

clothianidin and imidacloprid and 11 ng/bee for acetamiprid. As expected, these LOD 

values are significantly higher than those reported for HPLC-MS methodologies [32-35]. 

Nevertheless, the UHPLC-DAD method requires a simpler instrumentation, easily fitting 

in common analytical laboratories, and its LODs are adequate for the analysis of single 

bees exposed to acute levels of neonicotinoid insecticides. 

Fig. 1. Ultra-high-performance liquid chromatography (UHPLC)–quadrupole–time of flight mass 

spectrometry (a) and UHPLC–diodearray detection (b) chromatograms of a real sample, a single bee 

(exposed in the field to seed coating particulate) containing 165 ng of clothianidin. Chromatogram of a 

standard solution (200 μgL−1) of each neonicotinoid insecticide (c). Thiam. thiamethoxam, Cloth. 

clothianidin, Imid. imidacloprid, N-desm. N-desmethyl thiamethoxam, Acet. acetamiprid, Thiac. 

thiacloprid 
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The combination of optimized QuEChERS, dispersive SPE and UHPLC elution steps 

efficiently reduces the presence of interfering peaks in the UHPLC-DAD chromatograms 

of real samples. The absence of chromatographic interferences in the UHPLC-DAD 

method has further been verified by UHPLC-Q-TOF-MS analysis of both spiked and real 

samples, using identical chromatographic conditions. Mono-protonated and deprotonated 

molecular ions, attributable to the single analytes, were always obtained as the main 

peaks for each insecticide in both standard solutions, spiked and real samples. Negligible 

amounts of sodiated molecular ions were evidenced in both spiked and real samples while 

there were no-traces of potassiated and ammoniated adduct ions. Analysis of the extracted 

ion profiles revealed the presence of a small shoulder at retention time higher than the 

main peak for each insecticide. More selective extracted ion performed even at 0.002 Da 

suggested that these shoulders could be attributable to isomeric forms of these analytes 

(except for acetamiprid, whose shoulder presents traces of some interfering species). 

Anyway, the effect of these isomers on the UHPLC-DAD peaks appear to be very limited 

(Figure 1). 

Table 2 Concentrations of neonicotinoid insecticides in bees (ng/bee) obtained by the optimized procedure 

using two independent detection systems: diode-array detection (DAD) and quadrupole–time-of flight mass 

spectrometry (Q-TOF-MS) 

aAverage value and standard deviation of two independent measurements 

b In the analysis of single bees, the estimated uncertainties are 5 % for thiamethoxam and 7 % for both 

clothanidin and imidacloprid (see the text) 

UHPLC-Q-TOF-MS analysis of real samples made a comparison of results between two 

independent instrumental procedures possible. Results from spiked samples (n=6, for 

each neonicotinoid quantified by both detection techniques) were compared by paired t-
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test, obtaining non significant differences between mean concentrations measured by the 

two procedures (α=0.05/2, p values of 0.66, 0.25, 0.98, 0.20, 0.053 and 0.09 for 

thiamethoxam, clothianidin, imidacloprid, N-desmethyl thiamethoxam, acetamiprid and 

thiacloprid, respectively). Also the analyses of single bees (from field exposure tests, 

n=10, results in Table 2) evidenced no significant difference in the experimentally 

measured concentrations (p values of the paired t-test were always higher than 0.25). Our 

results indicate the possible absence of interferences for the optimized UHPLC-DAD 

method with a satisfactory accuracy in the analysis of single bees exposed to 

neonicotinoid insecticides. 

Analysis of real samples 

The method is currently applied to the analysis of honeybees in both field and laboratory 

studies aimed to better clarify main exposure routes and real toxicity of these insecticides. 

Some preliminary results are here provided. First, bees collected in the field after direct 

exposure to seed coating particulate during the corn sowing always show high levels of 

insecticides that confirm both our previous observation [11, 25, 26] and the relevance of 

this exposure-uptake mechanism in the severe colony loss phenomena observed by 

beekeepers in spring. For instance, in recent sowing experiments using corn seeds coated 

with clothianidin (Poncho, 1.25 mg/seed, see ref. 26 for details), short time exposure of 

caged bees to particulate matter emitted by the drilling machine (ca 30 s, simulating 1-2 

flights across the sowing field) gave rise an effective contamination of 165-2250 ng/bee 

of insecticide; these lethal concentrations agree with the levels measured in foraging bees 

found dead at beehive immediately after the sowing [11, 21].  

Another current study in which our analytical method has been successfully applied deal 

with degradation mechanisms of neonicotinoids after bee uptake. In this respect, it is 

worth noticing that, in the past, spring mortality was often hard to associate with 

neonicotinoid contamination, mainly because analysis of bees found dead in the field or 

close the hive exhibited very low concentrations of these insecticides (see for instance the 

bee deaths occurred in Italy in Spring 2008 [53]). As is commonly the case, the sampling-

analysis procedure was carried out some days after the bees‟ death, our hypothesis was 

that a metabolic degradation of the insecticide could significantly affect its real 

concentration. First laboratory tests (bees were administered with 250-500 ng/bee of 

thiamethoxam, in alcoholic solutions or adsorbed in talc particles, deposed on the bee 

tegument) showed a real degradation, which was more rapid when the bees were alive but 
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to significant extent also post-mortem. Thanks to the present analytical method we were 

able to carry out experiments at lower doses (60-125 ng/bee of thiamethoxam, that 

approach LD50 by contact [9, 54]). We found that bees died within 24 h after 

administering 125 and 60 ng/bee of thiamethoxam, contain 22-67 and 29-38 ng/bee 

respectively (with lower concentrations if the analysis is delayed); but survived bees seem 

to contain a time depending decreasing concentration of thiamethoxam, which approach 

our detection limit (5 ng/bee) in ca 24 h. Therefore, the degradation of the insecticide well 

documented for sub-lethal doses in Suchail et al. [55] is present also in bees exposed to 

lethal doses. 

Currently corn seeds coated with neonicotinoid insecticides are banned in Italy, but these 

compounds are admitted in spray treatments and, precisely in 2012, also in granular form 

for soil treatments (i.e. Santana, containing clothianidin). A sowing experiment (spring 

2012) using non coated seeds and Santana under normal sowing conditions indicated that 

a neglecting amount of particles containing the insecticides are released in atmosphere. 

Indeed, during sowing, the concentration of clothianidin in PTS sampled at the field 

margin (and in bees collected in the field too) was always below the LOD of the UHPLC-

DAD method.  

Conclusions 

The analytical method optimized and validated in the present work, based on QuEChERS 

extraction and clean-up and on UHPLC-DAD instrumental analysis, made the accurate 

determination of neonicotinoid insecticides in single bees possible and can be easily 

applied in studies regarding the bee loss phenomena consequent to acute exposure of 

honeybees to these insecticides in open field. Its main advantage is represented by the 

capability to evaluate the uptake variability of individual exposed bees, an important 

parameter in the assessment of both real exposure and its consequent toxic effects [13]. 

As a matter of fact, the method is currently applied in the quantification of new exposure 

mechanisms of honeybees to neonicotinoid insecticides and in the study of their 

degradation processes, both in vivo and post mortem. In this connection, new evidences 

on the rapid metabolic pathway which takes places in bees after acute exposure to these 

insecticides, could explain the remarkable lack of insecticides often detected in bees 

collected in the field some days after their death. 
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of matrix solid phase dispersion to the determination of imidacloprid, carbaryl, 

aldicarb, and their main metabolites in honeybees by liquid chromatography-mass 

spectrometry detection. Talanta 69:724−729. 

33. Kamel A (2010) Refined methodology for the determination of neonicotinoid 

pesticides and their metabolites in honey bees and bee products by liquid 

chromatography−tandem mass spectrometry (LC-MS/MS). J. Agric. Food Chem. 

58:5926-5931. 

34. Martel AC, Lair C (2011) Validation of a highly sensitive method for the 

determination of neonicotinoid insecticides residues in honeybees by liquid 

chromatography with electrospray tandem mass spectrometry. Int. J. Environ. An. 

Ch. 91:978-988. 

35. Wiest L, Bulete A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, 

Arnaudguilhem C (2011) Multi-residue analysis of 80 environmental contaminants in 

honeys, honeybees and pollens by one extraction procedure followed by liquid and 

gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 

1218:5743-5756. 

36. Fidente P, Seccia S, Vanni F, Morrica P (2005) Analysis of nicotinoid insecticides 

residues in honey by solid matrix partition clean-up and liquid chromatography-

electrospray mass spectrometry. J. Chromatogr. A 1094:175-178. 

37. Tanner G, Czerwenka C (2011) LC-MS/MS analysis of neonicotinoid insecticides in 

honey: methodology and residue findings in Austrian honeys. J. Agr. Food Chem. 

59:12271-12277. 

38. Di Muccio A, Fidente P, Attard Barbini D, Dommarco R, Seccia S, Morrica P (2006) 

Application of solid-phase extraction and liquid chromatography–mass spectrometry 



 

 

170 

to the determination of neonicotinoid pesticide residues in fruit and vegetables. J. 

Chromatogr. A 1108:1-6. 

39. Watanabe E, Baba K, Eun H (2007) Simultaneous determination of neonicotinoid 

insecticides in agricultural samples by solid-phase extraction cleanup and liquid 

chromatography equipped with diode-array detection. J. Agric. Food Chem. 55:3798-

3804. 

40. Angioni A, Porcu L, Pirisi F (2011) LC/DAD/ESI/MS method for the determination 

of imidacloprid, thiacloprid, and spinosad in olives and olive oil after field treatment. 

J. Agric. Food Chem. 59:11359-11366. 

41. Zywitz D, Anastassiades M, Scherbaum E (2003) Simultaneous determination of 

neonicotinoid insecticides in fruits and vegetables by LC-MS and LC-MS-MS: 

Methodology and residue data. Deutsche Lebensmittel-Rundschau 99:188-196. 

42. Kamel A, Qian YR, Kolbe E, Stafford CJ (2010) Development and Validation of a 

Multiresidue Method for the Determination of Neonicotinoid and Macrocyclic 

Lactone Pesticide Residues in Milk, Fruits, and Vegetables by Ultra-Performance 

Liquid Chromatography/MS/MS. J. AOAC International. 93:389-399. 

43. Zhang FZ, Li YJ, Yu CS, Pan CP (2012) Determination of six neonicotinoid 

insecticides residues in spinach, cucumber, apple and pomelo by QuEChERS method 

and LC–MS/MS. Bull. Environ. Contam. Toxicol. 88:885–890 

44. Lee SJ, Park S, Choi JY, Shim JH, Shin EH, Choi JH, Kim ST, Abd El-Aty AM, Jin 

JS, Bae DW, Shin SC (2009) Multiresidue analysis of pesticides with hydrolyzable 

functionality in cooked vegetables by liquid chromatography tandem mass 

spectrometry. Biomed. Chromatogr. 23:719-731. 

45. Ferrer I, Thurmanb EM (2007) Multi-residue method for the analysis of 101 

pesticides and their degradates in food and water samples by liquid 

chromatography/time-of-flight mass spectrometry. J. Chromatogr. A 1175:24-37. 

46. Wu QH, Li Z, Wang C, Wu CX, Wang WN, Wang Z (2011) Dispersive solid-phase 

extraction clean-up combined with dispersive liquid-liquid microextraction for the 

determination of neonicotinoid insecticides in vegetable samples by high-

performance liquid chromatography. Food Anal. Meth. 4:559-566. 

47. Wang P, Yang X, Wang J, Cui J, Dong AJ, Zhao HT, Zhang LW, Wang ZY, Xu RB, 

Li WJ, Zhang YC, Zhang H, Jing J (2012) Multi-residue method for determination of 

seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and 



 

 

171 

dispersive liquid–liquid micro-extraction by high performance liquid 

chromatography. Food Chem. 134:1691–1698. 

48. Watanabe E (2011) Review on current analytical methods with chromatographic and 

nonchromatographic techniques for new generation insecticide neonicotinoids. In 

Insecticides – Advances in Integrated Pest Management. F. Perveen (Eds). InTech 

(2011), Rijeka, Croatia. 

49. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy 

multiresidue method employing acetonitrile extraction/partitioning and "dispersive 

solid-phase extraction" for the determination of pesticide residues in produce. J. 

AOAC Int. 86:412-431. 

50. Ford KA, Casida JE (2006) Unique and common metabolites of thiamethoxam, 

clothianidin, and dinotefuran in mice. Chem. Res. Toxicol. 19:1549-1556. 

51. Lehotay SJ (2007) Determination of pesticide residues in foods by acetonitrile 

extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC 

Int. 90:485-520. 

52. Currie LA (1999) Nomenclature in evaluation of analytical methods including 

detection and quantification capabilities (IUPAC Recommendations 1995). Anal. 

Chim. Acta 391:105-126. 

53. Bortolotti L, Sabatini AG, Multinelli F, Astuti M, Lavazza A, Piro R, Tesoriero D, 

Medrzycki P, Sgolastra F, Porrini C (2009) Spring honey bee losses in Italy. Julius 

Kühn Arch. 423:148-151. 

54. Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential 

toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 

23:371-378. 

55. Suchail S, Debrauwer L, Belzunces LP (2004) Metabolism of imidacloprid in Apis 

mellifera. Pest Manag. Sci. 60:291-296. 

 

 



 

 

172 

 

 



 

 

173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

 

 

 

 

 

 

 

 



 

 

174 



 

 

175 

Conclusions 

Guttation, neonicotinoids and the problems of eco-toxicity  

The presence of raised levels of insecticide in guttation droplets of maize seedlings, 

varying from 10 ppm up to 1000 ppm, with an average of  250 ppm, is the first 

demonstration of  the existence of potentially lethal sources for the acute poisoning of 

bees, tied to the sowing of coated maize seed; (the risk is, obviously, extended to other 

pollinators (Goulson et al., 2008; Brittain and Potts, 2011; Blacquière et al., 2012;  Gill et 

al., 2012), in particular hymenoptera of the genus Andrena spp., which nest and winter in 

the soil and re-commence activity in the Spring at the moment when guttation are 

produced (Hardstone and Scott, 2010; Tuell and Issacs, 2010). The phenomenon is not 

strictly tied to sowing of maize with pneumatic seed drills. The quantity of insecticide 

detected is comparable to that used in the common leaf treatments with identical active 

ingredients and certainly sufficient to kill bees which come into contact with them 

(Girolami et al., 2009; Tapparo et al., 2011), whether by ingestion or topically.  Large 

variations in the concentration of active ingredient in guttation were observed, and an 

identification of the cause was sought. The results, similar for the various 

neonicotinoidsunder consideration, (Apenet, 2010) suggested, in the context of a 

progressive reduction of concentrations over time, limiting the examination to the early 

weeks does not show conclusive results (in influencing the concentrations). Other factors 

were considered such as 1) the density of the sowing; 2) differing watering regimes; 3) 

the texture of the soil; 4) differences between individual plants; 5) the time of day. Of the 

variables under consideration, the time of day of the collection proved to be the factor 

which most determined the concentration, but not unequivocally so, with the rule that as 

the daylight proceeded so the concentration increased (although it sometimes showed a 

reversal of the result. Subsequently it could be shown that the time of the collection could 

be conditioned by the fall of the droplets themselves, whereby evaporation increased the 

concentration until the droplets fell. Consequently, droplets just formed showed very low 

concentrations for a brief period. Unpublished data, obtained during the mechanical 

shaking of the plants at 15 minute intervals (to simulate windy conditions) showed that, in 

conditions of high relative humidity, there were no differences between the shaken plants 

and those unshaken; whilst in plants which were kept in conditions of low humidity, the 

concentrations were markedly higher due to phenomena of evaporation (in unshaken 
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plants). In inducing a frequent fall of the droplets, the concentration (even in dry air 

conditions) showed results similar to those obtained in saturation humidity. As a 

synthesis, the raised levels of active ingredient in guttation drops are due, above all to the 

evaporation of the liquid and the consequent concentration. This phenomenon does not 

occur if continuous gusts of strong wind cause the forming drops to fall. Consequently it 

can be hypothesised that a light fresh wind increases the concentration whilst a sudden 

strong wind causes the concentration to decrease. The data, although clear, is not yet 

sufficient for publication, and requires further replication and verification (Apenet, 2010). 

Acute poisoning of bees by particles emitted by seed drills 

Chemico-physical aspects of the particulates  

The particles emitted into the air proved to be different as regards quantity and also, little 

by little,of different dimensions the further they got from the seed drill. Apart from the 

coarser particles produced (20-200µm), significant quantities of micro and sub-

microscopic particles (0.5-10 µm) showed greatly increased mobility in the atmosphere 

(Tapparo et al., 2012/a). The insecticide content of the particles was shown on chemical 

analysis to be above 20% (Girolami et al., 2011). The data confirmed the possibility that 

bees are subject to acute poisoning during flights if contaminated with particles of seed 

coating projected into the atmosphere. 

Particulates and the mode of acute poisoning of bees  

Though it is officially maintained that the path of the poisoning of bees is contact with 

insecticide powder falling on the land simply through the contamination of pollen and 

nectar (given the systemic nature of the molecules examined), the hypothesis proved not 

very credible. No acute poisoning of bees was observed in bees which came into contact 

with dew or guttation (of the spontaneous vegetation at the margins of the plots) 

contaminated by particles emitted from the drills (Marzaro et al., 2011). This was further 

confirmed by chemical analysis. The hypothesis that lethal poisoning occurred in flight 

by direct contact with the toxic cloud containing fragments of seed shell blown into the 

atmosphere by pneumatic seed drills was proven valid. It was also confirmed by 

appropriate biological tests and chemical analysis (Girolami et al, 2012; Tapparo et al., 

2012/a) opportunely put in place, and capable of efficiently analysing a single bee. 

(Tapparo et al., 2012/b).  In particular, it was demonstrated that bees flying free in the 

vicinity of a seed drill in action could take on doses of largely lethal insecticide (for 
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clothianidin doses greater than 600 ng/bee, whilst imidacloprid exceeded  4000 ng), an 

amount some hundreds of times greater than LD50. These quantities are probably due to 

the characteristics of the bees‟ furry tegument which is designed for the harvesting of 

pollen. Moreover, it was proved that high humidity after contamination increased the 

toxic effect of the particles presumably by increasing their adherence to the tegument. 

The poisoning of bees was demonstrated using a seed drill in the habitual foraging path of 

bees. 

Other tests envisaged the rapid passages of caged bees in the proximity of the seed drill at 

progressive distances from the drill and at differing heights. It was shown that a single 

pass (at a fast walking pace) within the first 10 metres of the drill, as a rule, caused lethal 

poisoning. Chemical analysis of individual bees showed enormous quantities of active 

ingredient, whether dead in the laboratory, or gathered from in front of the hives. It was 

demonstrated that, in the absence of a sustained wind, a toxic cloud formed, elliptical in 

shape, some 20 metres in diameter and at least 3 metres high. 

Another aspect of particular importance is the opportunity to explain how a bee, though 

killed by insecticide, can show a negative result (to the presence of active ingredient) in 

chemical analysis (Bortolotti et al., 2009). Taking account of the fact that the samples of 

dead bees collected from in front of the hives are taken, for analysis, to the veterinary 

services some 24-48 hours after the widespread deaths are observed by the beekeepers; 

the explanation may be relatively simple given the possible leaching of particulates of 

systemic insecticide from moribund bees due to the action of dew or rain. The earlier 

enquiries, contrary to the first hypotheses, tended to exclude enzyme degeneration. The 

attempt to prove that dead bees cannot possibly contain relevant levels of insecticide 

attributable to the use of coated seedwould constitute the last piece in the puzzle of the 

widespread Spring deaths of bees. 
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