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ABSTRACT

In the last years the increasing number of sequencing projec-
ts and the availability of completely sequenced genomes pose
the problem of searching for gene sequences in a rapid and re-
liable way. Bioinformatics is playing a fundamental role in this
research field. In fact, many bioinformatic tools and software
that consider multiple and heterogeneous evidence sources have
been developed in order to improve the genome annotation.
Genome annotation can be divided in two distinct phases: gene
prediction and functional annotation. The prediction phase is
the process to identify the exact gene structure, delimiting the
exon-intron boundaries and the localization of genes on the ge-
nome. Otherwise, the functional annotation is the action of cha-
racterizing predicted genes, assigning them a biological function,
a metabolic role or describing structural features.

This PhD project focuses on the development of computational
methods for the management of data coming from a genome
sequencing project. The work consists on the implementation
of a bioinformatic platform for gene prediction and functional
annotation of the Vitis vinifera genome. This work has been car-
ried out in collaboration with CRIBI bioinformatic group, that is
member of the Grape sequencing project.

The annotation platform consists of two distinct modules. The
first module regards gene prediction. Different computational
methods showed a great reliability to discover molecular signals
and to reconstruct gene boundaries, becoming fundamental in
the annotation at genome-level. These methods are represented
by ab-initio predictors, genome alignments of ESTs or proteins
or comparative genomics.

Otherwise, in the second module of annotation platform, the
predicted genes are functionally characterized, adopting mainly
a similarity approach. This approach bases on the assumption
that regions highly conserved maintain the original functions or
roles also in different species.

This project includes also the development of databases and
tools to store and retrieve genome data. In particular, the PhD
work focused on the implementation of a XML-based query sy-
stem that permits the information retrieval through web page
access and, in the next future, also through web-services work-
flows.






SOMMARIO

Negli ultimi anni il crescente numero di progetti di sequenzia-
mento e la disponibilita di genomi completamente sequenziati
hanno posto il problema della ricerca di sequenze geniche in mo-
do rapido e affidabile. La Bioinformatica sta giocando un ruolo
fondamentale in questo campo di ricerca. Infatti, sono stati svi-
luppati molti strumenti informatici che utilizzano dati molteplici
ed eterogenei al fine di migliorare 1’annotazione genomica.
L’annotazione genomica puo essere suddivisa in due fasi distin-
te: la predizione genica e I’annotazione funzionale. La predizio-
ne genica consiste nell'individuazione dell’esatta struttura del
gene, determinando il confine esone-introne e la localizzazione
dei geni sul genoma. Invece, I'annotazione funzionale ¢ il proces-
so di caratterizzazione dei geni, che assegna loro una funzione
biologica, un ruolo metabolico o che descrive le loro caratteristi-
che strutturali.

Questo progetto di dottorato prevede lo sviluppo di metodi com-
putazionali per la gestione dei dati provenienti da progetti di se-
quenziamento genomico. Il lavoro consiste nella realizzazione di
una piattaforma bioinformatica per la predizione genica e ’anno-
tazione funzionale del genoma di Vitis vinifera. Questo lavoro e
stato svolto in collaborazione con il gruppo di bioinformatica del
CRIBI, membro del progetto internazionale di sequenziamento
del genoma di vite.

La piattaforma di annotazione e suddivisa in due moduli. II pri-
mo modulo riguarda la predizione genica. Diverse metodiche
computazionali hanno mostrato una grande affidabilita nella ri-
cerca di segnali molecolari e nella ricostruzione della struttura
genica, diventando strumenti fondamentali per I’annotazione ge-
nomica. Questi metodi sono rappresentati da predittori ab-initio,
da allineamenti di EST o proteine sul genoma o dalla genomica
comparata.

Invece, nel secondo modulo della piattaforma di annotazione, i
geni predetti sono caratterizzati funzionalmente attraverso 1'uti-
lizzo di un approccio di similarita. Questo approccio si basa sul
presupposto che le regioni altamente conservate mantengono le
funzioni e i ruoli originali anche in specie diverse.

Questo progetto prevede anche lo sviluppo di banche dati e stru-
menti per immagazzinare e recuperare i dati di annotazione. In
particolare, il lavoro di dottorato si € concentrato sulla realiz-
zazione di un sistema di query basato su XML che permette il
recupero delle informazioni attraverso pagine web e, nel prossi-
mo futuro, anche attraverso 1'utilizzo di workflow basati sui web
services.
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CONTENTS
1.1 Vitis vinifera genome 3
1.2 PhD project 4
1.2.1  Genome data management 6

1.1  vitis vinifera GENOME

The sequencing of Vitis vinifera genome is a fundamental step
in crop science because it allows to exploit information derived
from DNA decoding to elucidate aspects of grapevine physiol-
ogy, biochemistry, genetics and breeding. Moreover the genome
sequencing allows to develop new theoretical concepts and molec-
ular tools, to assess in detail the grape wide genetic variability
and to preserve and exploit genetic natural resources for a mod-
ern viticulture.

In 2007 the French-Italian public consortium published the first

draft of the sequence, correspondent to the 8.4x assembly [52].

The genetic source was the highly homozygous (~ 93%) Pinot

Noir inbred line PN40024, produced by INRA-France. The grape-

vine genome, estimated of 485Mb, is three times higher than

the Arabidopsis thaliana one (125Mb), the first plant genome se-

quenced, and more than six times smaller than human genome

(3Gb). The Vitis vinifera genome is the fourth one produced for Grapevine is the first
flowering plants, the second for woody species and the first for ~ sequenced genome
a fruit crop [1; 2; 104]. for fruit crop
Grapevine was selected because of the reduced size of the genome,

the many biological properties and the important place in the

cultural heritage of humanity. In particular, grapevine offers the

possibility to study different pathways and biological aspects of

particular interest, such as synthesis of anthocyanins, flavonoids,

polyphenols and other secondary metabolites, berry quality, ex-

treme susceptibility to pathogens, disease resistance and adapta-

tion to different growing environments, biology of reproduction,

etc. Moreover, the gene catalog determination allows to set up
species-specific microarrays for gene expression studies and the

availability of genome sequence makes possible the characteri-

zation of germoplasms present in various worldwide collections.

Finally, a decisive aspect for the genome characterization is its



economic impact that fully justifies the financial effort being the
grapevine an important crop.
The 485Mb genome is organized in 19 chromosomes and, ac-
cording to the 8.4x prediction, they contain about 30,000 pro-
485Mb organized in tein-coding genes. This value is noticeably lower than that for
19 chromosomes, — Populus trichocarpa (45,555 in a 485Mb genome) and for Oryza
th;z:;z;?;‘gnig sativa (37,544 in a 389Mb genome). In grapevine, the gene den-
sity is not homogeneous, with large regions that alternate low
and high gene densities. The density pattern is shared by poplar
but not by Arabidopsis and rice.
About 40% of the genome is made up of repetitive/transposable
elements (TEs). A significative part of TEs and retrotransposons
localize within introns.
Focusing on the proteomic aspects, grapevine shows an expan-
sion of gene families with aromatic features. In particular, stil-
bene synthase and terpene synthase (more specifically monoterpene
syntase) families show an higher gene copy number than in other
species. Stilbene synthase drives the synthesis of resveratrol,
known for the beneficial effects on human health. Terpenes
are components of resins and aromas and are essential for plant
growth and development and for the interaction with the envi-
ronment.
Furthermore, a high number of disease-resistance genes have
been identified. The resulting proteins contain a nucleotide bind-
ing site (NBS) and a leucine-rich repeat (LRR) responsible for
recognition specificity. They are organized in clusters and their
heterogeneity seems to function in genome evolution as the basic
material for the generation of new resistance specificities [107].
From a phylogenetic point of view, the grapevine haploid genome
seems to derive from three ancestral genomes. This palaeo-hexa-
ploidation (true hexaploidation event or subsequent genome du-
plications) is shared with poplar and Arabidopsis (dicotyledons)
but is absent in rice (monocotyledon). However, these species
have recently experienced whole genome duplication events (WGD),
not present in grape. In particular, poplar underwent one recent
WGD event and Arabidopsis two.
An alternative scenario assumes three genome duplications for
dicotyledons, one shared by all dicots, one by Arabidopsis and
poplar, but not Vitis, and one specific for Arabidopsis and poplar
[107]. Finally, Vitis underwent two genome duplications through
an hybridization event subsequent to the separation from the
Arabidopsis and poplar lineage.

1.2 PHD PROJECT

My PhD project has been focused on the implementation of a
bioinformatic platform for gene prediction and functional anno-
tation, applied to the Vitis vinifera genome.

During my PhD activity, I have been working in collaboration
with CRIBI bioinformatic group that is an active member of



the VIGNA consortium. Together with the french counterpart
Genoscope, VIGNA constitutes the international Grape genome
project for the sequencing and annotation of Vitis vinifera genome.
The 8x genome release was sequenced, annotated and published
in 2007. Sequence assembly and annotation of the 12x release is
in progress and will be published in the next months. The offi-
cial 12x gene prediction, that in the following chapters is named

vo, was accomplished by Genoscope and consists of 26, 347 protein-

coding genes. The CRIBI group was in charge of the functional
annotation of the vo predicted genes.

Although the CRIBI contribution to the Grape project is officially
limited to functional annotation, a more comprehensive project
was developed, which comprises gene prediction step and tools
for querying databases. Indeed, the increasing sequencing of
new genomes requires appropiate computational methods in or-
der to extract information from the raw nucleotide sequence.
Thus, the main goal has been to develop a bioinformatic plat-
form that greatly automates all the procedures required for a
complete genome annotation, in a species-unspecific manner, to
make the platform re-usable in other sequencing projects.
However, the genome research field is continously in progress,
and newer, more efficient and reliable computational techniques
are daily developed and released. The modularity embedded in
the platform allows to easily extend and improve the annotation
procedures, integrating any updated software.

The resulting platform is developed in Java and Perl program-
ming language and is composed of several phases, summarized
in the figure 1.1:

1. gene prediction: the starting point is the raw nucleotide se-
quence. The genome is evaluated for the presence of gene
evidence through different approaches: ab-initio gene find-
ers, comparative genomics and EST or protein alignments.
Each method produces its own results, describing chro-
mosome positions and putative intron-exon structures of
genes. Sometimes these results do not agree and can high-
light conflicting situations, hard to solve. At this point, the
platform makes use of an integrative software, called JIG-
SAW, that combines all the evidence sources to produce
the final consensus predictions. In the analysis of con-
flicting regions or prediction quality, the Gbrowse genome
browser represents a good utility, allowing to visually in-
spect any genome regions. Gene prediction ends with the
production of the gene catalog.

2. functional annotation: this stage assigns biological functions,
metabolic roles or structural features to the predicted gene
set. The functional annotation is mainly based on a similar-
ity approach: information is collected from inter-species se-
quence similarity, assuming that regions highly conserved
maintain the same functions or roles also in different species.
In the world wide web a great amount of databases and re-

Gene prediction
regarding the 12x
assembly consists of
26,347 genes

Modularity was a
key-word in the
CRIBI annotation
platform
development

The output of gene
prediction stage is
the gene catalog for
the genome under
analysis

Functional
annotation is based
on a similarity
approach



High-quality
predictions are
decisive for
achieving solid
functional
annotations

Genome projects
represent great
computational
challenges
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sources are available to infer gene product properties in-
cluding database of protein sequences (UniProt) or pro-
tein domains (PFAM, SMART, Prosite), metabolic maps
(KEGG), software for predicting cellular localizations or
structural features. Moreover, these associations between
genes and proteins or domains are fundamental to classify
genes with Gene Ontology terms.

3. database storage: a relational MySQL database is created to
consistently store all the annotation data. This database
has a gene-centered star topology.

4. database interface: in the final step, a query system, based
on XML, facilitates access to the stored data in a rapid and
interactive manner.

The more important step is the gene prediction, because it de-
termines the gene structures and consequently, the coding se-
quences. The following phases are strictly correlated to the qual-
ity of the gene catalog. For this reason, a strategy based on
deep-sequencing of transcriptome data was studied to check the
prediction quality. In the following chapters, an application of
this quality check in a comparison between the official vo pre-
diction release and v1 (a testing prediction produced by CRIBI
platform) will be shown.

In this PhD thesis, the main computational methods integrated
in the first version of the annotation platform will be presented.
The platform allows to fully annotate a genome starting from
the raw nucleotide sequence.

However there are some aspects that need to be improved. In the
next future, comparative genomics approaches will be enriched
and enforced, the database structure will be re-modeled and the
database interface will be strengthened and optimized for web
service implementation.

1.21  Genome data management

An underestimated problem in genome annotation projects is
the huge amount of data to analyze. These data are represented
by the millions of nucleotides of the genome, the thousands of
ESTs to align or the thousands of genes to functionally charac-
terize. Any computational routine that has to process such data
sets is extremely time and memory consuming, arising significa-
tive computational issues. Moreover, alignment or prediction
algorithms not optimized to deal with large data set worsen the
situation. Even the adoption of powerful servers is not sufficient
to solve the problem, without a clever strategy to optimize the
processor usage.

A possible solution is represented by the parallelization, that is
the distribution of computational processes in different servers
or processors. This strategy allows the subdivision of the process
in several routines and their contemporary execution, decreasing
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Figure 1.1: The platform is mainly divided in gene prediction and functional
annotation step. All the predicted genes and related functional
properties are stored in a MySQL database and can be collected
and analyzed through a web-based interface.
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the execution time for the entire process.

The annotation In the developed platform, a parallel approach based on a client-

platform adopts server architecture was adopted (Fig. 1.2). The client-side is

distributed an user-interface to the services or resources provided by the
computations c . :

server application. The latter collects the client requests, pro-
cesses them and returns the results to the client. In our case, the
client transfers the input data to the server for the subsequent
input elaborations. The server-side is represented by a manager
daemon that gathers the input data, subdivides them and dis-
tributes the smaller data sets to different servers. The manager
daemon makes a continuous check of the process status and op-
timizes the processor occupation, maximizing the work mass at
each moment and minimizing the entire execution time. Once
all the processors have completed their tasks, the manager dae-
mon collects and assembles the results and send them back to
the client.
In particular, the platform uses this strategy in the prediction
and functional annotation stages. In the former, the distribution
regards the scaffolds making up the Grape genome; in the latter,
the distribution of protein-coding genes.
From the hardware point of view, the computing distribution is
realized thanks to 15 servers with a total of 30 processors present
at the CRIBI bioinformatic laboratory, and to the usage of LICC*
cluster system formed by 20 nodes corresponding to 80 proces-
Sors.

CLIENT—SIDE SERVER—SIDE
in

‘ inpuf data

— Noutput data

-;_//m%

Figure 1.2: The client-server architecture needed to process the large amount
of genome data. The server-side is characterized by a daemon that
manages the process parallelization.

1 Laboratorio Interdipartimentale di Chimica Computazionale.
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The gene prediction is finalized to identify the gene catalog
in a genome sequence. It includes several phases as identifica-
tion of gene positions and localizations on the genome, deter-
mination of exon-intron boundaries and discover of molecular
signals (e.g. start/stop codons, splicing sites, etc.). In genome
projects, these tasks are accomplished through several computa-
tional methods that showed great reliability in discovering struc-
ture signals and reconstructing gene boundaries. The three ma-
jor computational approaches are ab-initio gene finders, ESTs or
protein alignments and comparative genomics.

In this chapter, methods used in the prediction phase and present
in the developed platform will be described.

21 GENE MODEL

Given a new genome, the most important task is to determine
the structure of protein-coding genes, representing the majority
of the transcribed and the translated genes. They show incredi-
ble diversity in size and organization but have some conserved
features. Thus, before detailing the gene finding techniques, it
could be useful to define the concept of gene structure.

The core of the gene is the coding sequence (CDS), that con-
tains the nucleotides translated in the protein amino acids. The
coding region begins with the initiation codon, which is usually
ATG and ends with one of three termination codons: TAA, TAG
or TGA. On either side of the coding region are DNA sequences
that are transcribed but are not translated. These untranslated
regions (UTR) often contain regulatory elements that control pro-
tein synthesis. UTRs and CDS are called exons that represent the

11
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GFF is the standard
file format used for
annotation data
exchange
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transcribed portion of the gene. Exons may be interrupted by in-
trons, DNA sequences that are cut in the mature transcripts by a
splicing process to form the messanger RNA (mRNA). The splic-
ing machinery is able to recognize the intron boundaries thanks
to consenus sequences present in the exon-intron junctions: the
donor site, represented by GT or GC bases at the beginning of
the intron, and the acceptor site, represented by the AG bases at
the end of the intron [22].

These features are shared by all protein-coding genes and are
used by in silico methods to build hypothetical gene models
based on the raw nucleotide sequence.

complete mRNA
| coding sequence (CDS) |

intron

start codon donor acceptor stop codon
site site

Figure 2.1: The typical gene structure detected by gene-finding pro-
grams, formed by CDS exons and introns. UTRs are usu-
ally not predicted.

2.1.1  Annotation file format

The large increase of genome projects and gene-finding meth-
ods arise the need to develop a standard format for the compu-
tational description of the gene features. This would favor data
exchange and development of modular gene-finding programs
that could be extended with the integration of external infor-
mation. A format called GFF ("General Feature Format") was
proposed as a protocol for the transfer of feature information®.
It is a tab-delimited file with a record-based structure, where
each feature is described on a single line, and line order is not
relevant. Each line is formed by ¢ fields that describe:

1. seqid: the ID of the landmark used to establish the coordi-
nate system for the current feature.

2. source: algorithm or software used to determine this fea-
ture.

3. type: the type of the feature, e.g. CDS, exon, gene, mRNA,
etc.

4. start: the start 1-based coordinate of the feature. Start is
always less than or equal to end.

1 http://gmod.org/wiki/GFF3
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5. end: the end of the feature.

6. score: the score of the feature, represented by similarity
values for alignment methods or p-value scores for ab-initio

nn

gene finders. This field can be set to "." in absence of score.

non

7. strand: the strand of the feature, "+" for plus strand and
for minus strand.

8. phase: for CDS features, it indicates how to read the codon
series. The allowed values are 0, 1 or 2 and, together with
strand, it determines the reading frame.

9. attributes: a list of feature attributes in the format tag=value,
separated by semicolons. Possible attributes are "ID", an
unique identifier, or "Name" and "Parent”, necessary to
groups exons into transcripts and transcripts into genes.

An example of GFF file is following:

chrl JIGSAWGAZE gene 14402501 14405865 .
chrl JIGSAWGAZE mRNA 14402501 14405865 .
chrl JIGSAWGAZE UTR 14402501 14402707 .
chrl JIGSAWGAZE CDS 14402708 14403942 .
chrl JIGSAWGAZE CDS 14405003 14405348 .

. ID=JGVv10.3

. Parent=JGVv10.3.t01
. Parent=JGVv10.3.t01
. Parent=JGVv10.3.t01

+ + + + +

2.2 ab-initio PREDICTIONS

The ab-initio software is the first gene-finding method to be
described [20; 4; 71; 28]. These systems are a great resource in
gene prediction because they produce gene structures quickly
and inexpensively. Otherwise, these positive traits are counter-
balanced by the not very high levels of accuracy and reliability.
However, a great advantage of ab-initio gene finders is the detec-
tion of gene evidences that can not be discovered through other
means, as expression data.

Ab-initio gene finders try to identify the gene structure starting
from the raw nucleotide sequence. They are usually based on
Generalized Hidden Markov Models, a technique that uses ma-
trices of stochastic parameters obtained from a previous training
phase. This training phase is performed on a set of curated genes,
with a known exon-intron structure, called training data set. In
this way, the gene finder gains the ability of generalization, the
capacity of inferring the general properties from a limited set of
"example" genes. After the training step, the gene finder should
be able to predict the gene structure in novel unseen sequences,
based on the intrinsic sequence-based characteristics of the train-
ing data set.

An important aspect to be considered is that the training should
be specific for the genome under analysis. In fact, sequence fea-
tures as codon bias and splicing signals vary from organism to
organism and the nearest phylogenetic neighbor does not nec-
essarily possess compatible parameters. The risk to use a gene
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finder trained with no species-specific genes is to obtain inaccu-
rate predictions [62].

Moreover, big concerns regard the quality of the training set.
The set of training genes has to be sufficiently representative of
the full complement of genes in the genome, so that the gene
finder is able to generalize traits of model genes and recognize
novel genes in the DNA sequence. The problem that can arise is
the overtraining, the opposite of generalization, that is the gene
finder ability to detect only the model genes. Thus, the large
quantity and the variety of the training genes are fundamental
to obtain accurate predictions [73].

2.21 SNAP and GenelD

The ab-initio gene finders that have been integrated in the plat-
form are SNAP [62] and GenelD [83; 16]. SNAP is a typical
GHMM finder but, compared to others, it is provided with a
training module that makes it easily adaptable to different organ-
isms. Thus, the GHMM parameters can be adjusted in a species-
specific manner. Otherwise, GenelD is developed with a hier-
archical structure, different from other common GHMM find-
ers. At first, fixed-length signals (e.g. splicing sites, start/stop
codons, etc.) are predicted and scored along the sequence using
PWMs. Then, potential exons are constructed from these sites
and scored as the sum of the defining sites plus the score of
a Markov model for coding DNA. Finally, a dynamic program-
ming algorithm defines the gene structure that maximizes the
sum of the score of the assembled exons. Moreover, it is already
supplied with grape parameters and it is not necessary to train
the model.

2.3 EST ALIGNMENTS

After the transcription of protein-coding genes, the primary
transcript is processed by the splicing machinery to remove in-
trons and a 5" cap and a 3’ poly-A tail are added forming the ma-
ture mRNA. Therefore, the mature mRNA embodies all the exon
knowledge of the gene. Expressed Sequence Tags are short sub-
sequences of mRNA (400-800 bases), obtained from the sequenc-
ing of ends of cDNA clones (DNA complementary to mRNA)
coming from a cDNA library. Thus, ESTs represent portions of
expressed genes.

The mapping and alignment of ESTs onto the genome represent
a fundamental resource to genome research for localizing the
genes and for reconstructing the intron-exon boundaries [44; 99;
109]. Moreover, these alignments could be useful to investigate
the splicing mechanisms and alternative transcripts formation.

Two important issues arise in the alignment procedure: a) high
sequencing error rate, resulting in low quality EST sequences
and b) low availability of ESTs for the genome under analysis.
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Both problems heavily affect the alignment procedures, because
sequencing errors and the use of EST coming from closely re-
lated organisms produce unperfect matches and uncorrect splic-
ing site detection, complicating the exact identification of real
exon-intron structure. To address these needs, several alignment
algorithms have been developed to map ESTs on the genome:
BLAT [61], Sim4 [42], EST_GENOME [78], Spidey [110], GMAP
[113], etc. They envisage the EST opening, spreading adjacent
EST portions in distant genome regions. They allow to finely
model the alignments, offering the possibility to set different op-
tions as maximal intron length, minimal similarity or identity
percentage, gap opening and extension penalties, etc.

In EST alignments, three different public EST libraries were used:

¢ a set of dicotyledons EST, formed by about 1 million of
sequences

e a set of Vitis ESTs, excluding the sequences of vinifera vari-
ety

e a set of Vitis vinifera ESTs

In addition, the Vitis vinifera public ESTs were integrated with a
private set coming from the sequencing of berry and leaf tran-
scriptome of Vitis vinifera with 454 technology.

The three libraries were separated to model the different speci-
ficity level, with the intention to differently weight the EST align-
ments in the prediction stage.

To align both Vitis libraries, GMAP software was employed be-
cause it showed a great ability and precision with EST coming
from the same or very close organisms. In particular, EST align-
ments were filtered according with identity (85%) and coverage
(70%) criteria.

Otherwise, a different approach was adopted dealing with di-
cotyledon ESTs. In fact, some problems were encountered in
finding a good alignment software for this kind of sequences.
This library is different from the others because it consists of EST
coming from organisms at different phylogenetic levels. In this
case, a greater sensitivity was required by alignment algorithms.
Another limiting problem was represented by the huge amount
of dicotyledon sequences compared with Vitis ones. This large
quantity becomes particularly problematic, since alignment sen-
sitivity is directly proportional to execution time. To align di-
cotyledon ESTs decreasing the execution time, the solution was
the partitioning of EST database. The dicotyledon sequences
were aligned on the genome using a sensitive, fast but inaccu-
rate algorithm, Spidey. In this way, there was the identifica-
tion of matching-islands, that are chromosome regions with at
least one EST match. Also in this case, the alignments were fil-
tered with 60% identity and 60% coverage. A matching-island
is composed by a set of matching ESTs, that represent a subset
of the EST database. For each island, a more rigorous alignment
was executed in parallel between subsets of EST database and
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genome subregions using EST_GENOME algorithm with a iden-
tity threshold of 70%. The parallel execution of dicotyledon EST
alignments was possible thanks to the usage of the LICC cluster
system. By this way, a sensitive, accurate and fast (few days)
alignment for an enormous EST library was obtained.

2.3.1  UTRs prediction

The computational methods for gene prediction usually focus
on the modeling of coding sequence structure, neglecting the
untranslated regions. This is because of the variable length and
composition of UTRs and the lack of some shared features that
could help in their identification. Moreover, not making part of
the translated sequence, the holy grail of gene prediction, they
are not a priority and their identification is postponed in subse-
quent phases.

However, the UTR annotation represents a valuable resource for
studying promoters and regulative patterns.

Although, the standard procedure in the developed platform
does not include the discovery of UTRs, a module that allows
to annotate untranslated regions based on EST evidences was
implemented. Since ESTs derive from mRNA, there should be
EST sequences that correspond to UTR transcript portions.

The module develops in several steps:

o selection of EST alignments. A filter is applied such that EST
alignments with introns longer than 15,000 nucleotides are
rejected, representing probably false alignments.

e validation of the initial or final exon. Only the exons with at
least 50 (or less if the exon is smaller) bases covered by
more than one EST are considered for the UTR extension.
By this way, poorly-confirmed exons are blocked, avoiding
unreliable UTR elongation.

o determination of the elongation region. A region can be elon-
gated until the number of EST evidences are greater than a
predefined threshold, avoiding extensions due to isolated
mis-aligned ESTs. The percentage threshold is computed
referring to the ESTs that overlap the first positions of the
initial or terminal exon.

e structure definition. For each elongation region, the mod-
ule tries to define a tentative structure consensus, based
on quality values: in an elongation region E[i,j], each nu-
cleotide is scored for the dominant structure feature (ex-
on/intron), given the EST evidences. The nucleotide i is
considered of high quality if the percentage of exonic (or in-
tronic) EST tracks for the i position is greater than a prede-
fined q value. The total number of high quality nucleotides
in the E[i,j] determines if the elongation region is a valid
UTR.
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An example of an UTR extension is illustrated in the figure 2.2.
In this case, there are 5 ESTs (red boxes) covering the first po-
sitions of an exon (blue box). Given an elongation threshold
of 40%, the software tries to extend UTR until 3 EST evidences
are present. In the figure the elongation region is highlighted
with a gray color. After the elongation region identification, the
UTR structure is defined according to the dominant exon/intron
evidence in each interval. The quality for each interval is com-
puted as the number of the exon (or intron) evidences over the
EST coverage. The definition of a quality threshold q determines
the number of high-quality nucleotides contained in the elonga-
tion region, and so, the acceptance of UTR consensus structure.
In the figure, this is represented by yellow boxes.

This module represents the first attempt for UTR annotation and
there is space for improvements. Future efforts should be di-
rected to give a strong statistical support to the definition of
consensus structures.

EE label

80 1100 0 aquality
5 é 5 coverage

Figure 2.2: The red boxes represent EST alignments and the dotted
lines the interposed introns. Blue box is the first exon
of a predicted gene. The elongation region is colored in
gray and it is subdivided in intervals determined by align-
ment boundaries (vertical dotted lines). The UTR consen-
sus structure is described by yellow boxes. The E or I la-
bels stand for exon or intron dominant evidence for each
interval; coverage is the number of EST evidence for each
interval; quality is the number of exon (or intron) ESTs
over the total number of EST evidences.

2.4 PROTEIN ALIGNMENTS

The mapping of proteins to a genome sequence is very sim-
ilar to mapping of ESTs. The main differences are that the se-
quence is composed of amino acids and that the protein does
not contain UTRs. In fact, the mature protein-coding transcript
is transformed in a protein through the translation process. The
portion of the transcript that correspond to a protein is the cod-
ing sequence (or CDS), that is defined by a start codon and a
stop codon.
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In the alignment phase, the UniProt database was used as ref-
erence, representing an universal protein resource. However,
the great amount of proteins provided by UniProt (= 6 mil-
lions) requires the adoption of the same matching-island ap-
proach used for dicotyledon EST alignment. At first, a filter
was applied to the database, keeping all the proteins belonging
to plant species. Then, the protein set was roughly aligned onto
the genome using BLAT, a fast but inaccurate algorithm, to iso-
late the genome regions that present protein matches. Only the
alignments with 85% of protein coverage were selected. For each
matching-island, the protein alignments were improved using
a sophisticated aligner, GeneWise [15], that considers splicing
sites and start/stop codons for alignment refinement. However,
the GeneWise sensitivity and precision are balanced by tremen-
dous execution time. Thus, a further filtering procedure was
performed for each matching-island. The filter consisted to se-
lect the first 10 hits (if present) in a Blast [7] alignment. Therefore,
for each region at most 10 proteins were aligned using GeneWise,
greatly reducing the execution time. Thanks to the parallel align-
ment processes, results for the entire genome were obtained in
few days.

2.5 COMPARATIVE GENOMICS

The rational behind the usage of comparative genomics for
gene prediction is that coding regions are greatly conserved in
phylogenetically related genomes. Indeed, accumulation of mu-
tations in the coding regions brings to the loss of biological func-
tion of genes. Thus, patterns of conservation between DNA se-
quences of closely related organisms probably highlight syntenic
portions, and more specifically, coding regions.

The increasing availability of genomes offers the possibility to
analyze the conservation patterns and sintenies of entire chro-
mosomes. In the same time, it needs appropriate alignment al-
gorithms able to deal with large genomic sequences. In fact, the
usual alignment programs, like BLAST, FASTA, etc., becomes
enormously inefficient and time-consuming for genome-level com-
parisons. To address these needs, programs such as Blastz [91],
Lagan [18], WABA [11], MUMmer [35; 36] have been devel-
oped for whole genome alignments. All such algorithms es-
sentially share the same anchor-based approach. This procedure
implies a) a fast sorting of exact or lightly degenerate matches,
named seeds, b) a clustering procedure to group together neigh-
boring seeds, named anchors, c) the determination of the longest
collinear subset of not-overlapping anchors, that constitutes the
alignment base-chain, and d) a final accurate alignment (e.g.
Smith-Waterman) to refine the regions of anchors and between
the anchors.

In the developed platform, a comparative module was inserted
realizing the pairwise comparison of Vitis vinifera with the three
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available plant genomes: Arabidopsis thaliana, Populus trichocarpa
and Oryza sativa. The comparative module was realized with
MUMmer software. It is a program that searches for Maximal
Unique exact Matches between genomes in a very fast way, using
a suffix-tree method. In particular, the PROmer [65] aligner was
used, which performs all the matching and alignment routines
on the six amino acid translation of the DNA input sequences.
The reason is to increase the sensitivity because DNA sequence
is not highly conserved as the amino acid translation.

The results of PROmer execution are set of matches for each
pairwise comparison, done chromosome by chromosome. These
matches can highlight some levels of conservation, maybe sig-
naling hypothetical coding portions. However, they can also cor-
respond to pseudogenes, to regulative patterns, to conserved no-
coding regions, or, at worse, to false positives. Coding regions
are more conserved than non-coding ones, although sequence
conservation may also occur in regions other than the protein
coding ones, particularly in closely related species. Thus, the
PROmer matches have to be filtered in some ways. Some Perl
scripts were developed in order to clean the match set from spu-
rious alignments and to build a tentative gene structure. The
pipeline consists of several steps:

o filtering: selection of matches with 50% identity, a length
greater than 45 nucleotides and a small quantity of in-
frame stop codons.

e correction: the coordinates of matches with stop codons are
adjusted such as to outline the largest portion of the match
without stop codons.

e clustering: matches at a distance less than 6, 000 nucleotides
are grouped together.

e merging: in case of overlapping matches (putative exons),
the longest ORF is selected.

e construction: a gene model is built for each cluster of matches.

The resulting gene structures do not claim to be real, but only to
give a putative coding evidence. In the next future, the compara-
tive module will be improved, at first allowing a multi-alignment
between genomes rather than a pairwise one. This should in-
crease the matching reliability. Secondly, the gene model recon-
struction has to be enriched with further sequence-based con-
straints, as evaluations on possible ORFs, etc.

26  GENOME BROWSER

Genome browsers are useful web-based applications for dis-
playing genomic annotation and other features. These tools of-
fers the possibility to the end-user to "surf" the genome, scrolling
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and zooming through arbitrary regions of a genome.

At CRIBI laboratory, there is a Gbrowse server [100] that is linked
with Grape database. All evidence lines coming from the above
described prediction methods are loaded on the Gbrowse, allow-
ing a better visualization of evidence tracks and helping in the
analysis of gene models.

The figure 2.3 shows a genome region in a Gbrowse view.
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Figure 2.3: In a Gbrowse view, the gene evidence tracks are divided in sec-
tions of different styles and colors. The colored blocks denote
putative exons, the block-linking lines describe introns. Green and
red spikes show SOLID signal in different organs.
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In the chapter 2, the ab-initio and comparative methods for
gene prediction adopted in the platform have been described.
Each track produces a single line of evidences of the coding
or transcribed portion of the genome. In this chapter, a soft-
ware system combining evidence sources and producing the fi-
nal consensus prediction is presented. This tool is suitable to re-
solve ambiguous gene structures and genome information-poor
regions.

31 RESOLVING THE CONFLICTS

The methods for gene finding implemented in the platform
represent a small part of available gene prediction techniques.
Gene finding is still a subject of active research and new, effi-
ciently performing software are almost daily released. For ex-
ample, there are several tools that incorporate expression data
such as ESTs or proteins directly in the ab-initio programs to
improve prediction quality, or that based on phylogenomic ap-
proach coupled to GHMM to build significant gene structures
[97; 72; 109]. All the research efforts are directed to produce
a single, unique, high-quality prediction based on the greatest
number of available evidences. In the CRIBI platform, this goal
is reached by a successful integrative gene finder, called JIGSAW
[6; 5], that seeks to integrate and combine multiple evidences
from different sources, to produce the final consensus predic-
tion. The great modularity of this software was decisive for the
purposes. In fact, it is able to deal with disparate and hetero-
geneous data, as protein or EST matches, gene predictions from
one or more programs, splicing sites predictions, etc. and, from
a theoretical point of view, it has no limitation in using informa-
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tion coming from different sources. This flexibility is an impor-
tant trait in case of availability of any novel data type, e.g. data
coming from new sequencing technology as SOLiD and Solexa.
Moreover, JIGSAW allows to independently define the ability of
each evidence track to predict gene features, e.g. EST alignment
tracks can be configured for predicting exons or introns rather
than start and stop codons. The integrative flexibility and the
ability to model each evidence contribution were decisive in the
choice of using JIGSAW as the final combiner in the platform.
In the gene prediction procedures there are two main problems
to be faced for good achievement:

the lack of expression data: the mapping of EST to the
genome sequence is considered the "gold standard" and
the more important step for defining the true exon-intron
structure. However, there are genome regions that are
made up of rarely expressed genes, have only a limited
number of expressed sequence tags, and are supported by
conflicting gene finder predictions. In most cases, these
genes are not discovered in the prediction step.

the gene structure definition: predictions from several gene
finding programs or expression data alignments are able to

define gene regions, but fail to infer precise gene structures.
Indeed, the evidence tracks can give diverse gene mod-
els, creating conflicting situations that must be correctly

resolved.

An example of conflicting predictions is shown in Fig. 3.1. Each
evidence line is described by means of blocks and block-linking
lines that outline the predictions. The first line, denoted as v+
NR criBl, is the JIGSAW final prediction that results from the
combination of the tracks below. The red circles highlight the
ambiguous regions, where the different evidence lines disagree
on gene structure. In particular, we can see the lack of an intron
predicted by SNAP, an alternative EST splicing of dicotyledon
EST alignments, an exon break in the whole genome alignment
of Arabidopsis thaliana, but mainly the exon-island showed by
Vitis vinifera EST alignments. These situations make hard the
detection of a precise gene structure, allowing for one, two or
more gene models. The decision about the correct or alternative
gene structures is usually left to time-consuming manual cura-
tion procedures.

JIGSAW is an automated, statistically principled method that
tries to solve these issues by a different evaluation of evidence
sources.

32 JIGSAW COMBINER

JIGSAW is a gene finding system that automates the process
of predicting gene structure from multiple sources of evidence.
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Figure 3.1: Evidence lines are described trough boxes, representing putative
EXONS, and box-connecting lines, representing putative INTRONS.
The red circles highlight the conflicts.
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It assigns to each evidence line a weight computed by statisti-
cal evaluations on a training set. This value estimates the pre-
diction accuracy of different tracks and favors the most reliable
evidence lines in the solution of overlapping, disagreeing predic-
tions. From algorithmic point of view, JIGSAW adopts a mixed
strategy, combining GHMM based algorithm and a statistical ap-
proach for the evaluation of evidence lines. A brief description
of the main features of JIGSAW program is given below [6; 4].

321 Gene structure model

Gene structures are modeled with ten states 1 that stand for
exon, intron and intergenic regions. In particular, exons are
described by single, initial, internal1, internalz, internal3 and ter-
minal states. Intron has introni, intronz, intron3 labels. Finally,
intergenic regions are represented by intergenic state. The three
different labels for intron and internal exons are necessary to
model the phase of codon break due to introns. In this way, a
gene model is formed by a series of sequence labels 11,15, ..., 1,.
At first, JIGSAW partitions the input sequence in subsequences
Sx..y, where x and y can be a) location of signals or b) bound-
aries of evidence alignments. In the first case, partial gene mod-
els are computed linking together signals as start codons, stop
codons, donor and acceptor sites. The linkage between signals
has to be biologically meaningful, e.g. a stop codon can be
linked back to a previous acceptor in terminal exons, or start
codon in single exons, but not to a donor site. In the second case,
intervals are determined by boundaries of an evidence that does
not necessarily span a complete exon. For example, in Fig. 3.2
three evidence tracks are shown. The boundaries of alignments
determine the intervals K;, Ki;1. In any interval, the evidences
have the same behavior and scoring pattern.

At this point, a dynamic programming algorithm computes scores
for each interval, using GHMM features, as transition probabili-
ties between states, and vectors decoding evidence information,

to define the most probable state 1; of a specific interval I;. The

final gene model results from the products of probabilities for

each interval.

3.2.2 Evidence representation

An example of JIGSAW flexibility is that it allows each evi-
dence source to model independently six gene features: start
codon (sta), stop codon (stp), intron (inr), coding (cod), donor
(don), acceptor (acc). The information coming from the lines of
evidence is represented by a six feature vector viype, one for
each feature type: (type]L, ... typet), where type is one of the
above mentioned six gene features, k is the position in a S se-
quence and m represents the evidence source. In other words,
accy is the predicting confidence of the program x on nucleotide
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Figure 3.2: The intervals K;, Ki 1 are determined by alignment boundaries and se-
quence signals. The three evidences are EST alignments with 90% iden-
tity, protein alignments with 85% identity and a gene finder with 0.65
accuracy value. Examples of evidence vectors are shown for interval
k1 +1,k2 — 1 and for k3 position.

k for an acceptor site. The score represents the confidence in the
program accuracy, and it can be 1 or 0, to indicate respectively
the presence or absence of a prediction, or a similarity value,
in case of transcript or protein alignments. Figure 3.2 shows
an example of vectors for three evidence tracks (EST, Protein,
GenePredictor). The vector set for positions from Kj + 1 and
K 2 — 1is

Bk1+l,k2—l = {Vsta/VstprVinT/VcodrVaCCrVdon}
— {(O/ 0/ O)/ (O/ OI 0)’ (0/ 0/ O)/ (0'91 0‘85/ 0'56)/ (OI O/ 0)/ (0/ OI O)}

The JIGSAW gene prediction problem is to find the most proba-
ble parse’ t given a S sequence and a set of E input evidences.
The contribution of evidence sources is encoded by an indepen-
dent conditional probability to obtain a parse t given a set of
feature vectors By and a sequence S. This is evaluated as the
product of six independent probability values, each conditioned
on one of the gene feature vectors, P(typei|[viype), determined
in a training procedure. For instance, given an Initial q state
and a S[i,j] interval, the first nucleotide i should correspond to
the beginning of a start codon and to the first coding base of a
protein. The nucleotide at j + 1 position should be the first base
of a donor site. In this case, given the evidence, the probabil-
ity is determined by the product of P(stai|vsta), P(codijlveoa),
P(donjt1vaon) and 1 —P(typeijlviype) for the three remaining

1 series of states spanning the entire sequence.
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feature type, that do not align with Initial state. In this way, JIG-
SAW realizes a probabilistic model to compute the probability
of a parse conditioned on the input evidence.

3.2.3 Training procedure

JIGSAW needs a training process to estimate both parameters
for GHMM transition probabilities and evidence vectors. Above
all, the encoding of evidence vectors represents the core of JIG-
SAW statistical approach and it presents a valuable procedure
to determine the evidence vector probabilities. This process con-
templates an accuracy classification of the entire set of possible
vectors, using a decision tree and basing on the labeled sequences
of the training set.

The parameter estimation is independently computed for all six
gene features and depicts the probability to obtain a gene fea-
ture given the evidence vector: P(typelviype).

At first, the observed feature vectors are divided into two, ac-
curate and inaccurate groups, on the basis of a c(viype) value.
This is the percentage of cases in which viype is observed to cor-
rectly predict type. If c(viype) > 0.5, the viype is assigned as
accurate. At this point, the decision tree tries to maximize the
separation between accurate and inaccurate vectors, calculating
cut-off values that define subregions in the feature vector space.
In general, a decision tree is recursively constructed from the
root down to the leaves, where at each recursive step it selects
the rule that maximally reduces the entropy of the distribution
of categories among the training set [73]. In this case, the de-
cision tree divides the vector space in V;, subregions of similar
accuracy and determines the rules that allow a test vector to be
assigned to each subregion. By this way, the probability of a
test vector P(typelviype), assigned to the V, subregion by deci-

sion tree rules, is the average accuracy of the individual training

: v (v)
vectors that constitute V5: Ze“\’/%
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In the section 1.2, the existence of an official prediction re-
lease of Vitis vinifera genome, called vo, have been mentioned.
This prediction has been released by Genoscope, using a new
method that considers the WTS? data coming from Solexa se-
quencing method [37]. The vo prediction release is composed of
26,347 genes.

However, experimental and computational analysis have high-
lighted some genome regions that show strong transcription evi-
dences but are uncovered by predicted genes. This observations
convinced the italian members of Grape consortium of the need
of a new reliable prediction release. Therefore, CRIBI group

2 Whole Transcriptome Shotgun.
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was charged to produce a new prediction release plugging much
gaps as possible.

It has been decided to hold the vo prediction, in spite of its prob-
lems, as the starting point for the new release, denoted as v1.
The unofficial v1 release is the result of the integration between
vo and the CRIBI prediction, that is based on JIGSAW.

The CRIBI prediction was obtained using the platform described
in the previous chapters, that consists of:

e ab-initio predictors: it was used two gene finders, SNAP and
GenelD, with Arabidopsis parameters. A well-curated set
of 600 full-length genes of Vitis vinifera was available for
training procedures. However, due to the small number of
genes, the annotated gene set was used for JIGSAW train-
ing. Thus, the Arabidopsis parameters were chosen because
they are the sole parameters for plant species supplied by
gene finders.

o EST alignments: the platform used three EST evidence tracks.

Each one represents a different library: dicotyledons, Vitis
vinifera, Vitis (vinifera excluded). In addition to Vitis vinifera
library, some ESTs coming from berry and leaf sequenced
with Roche/454 were integrated.

e protein alignments: the protein matches were obtained by a
fine-grain alignment of a filtered UniProt database.

o comparative genomics: three plant genomes were aligned
chromosome by chromosome against grape genome. Pu-
tative gene structures are derived from the union of near
matches, filtered by similarity and length criteria.

e integration step: the final prediction is obtained using JIG-
SAW, trained with 600 known full-length genes. All ev-
idences were configured to predict all six gene features,
with the exception of comparative tracks, allowed to pre-
dict only coding and intron features.

The integration between vo and v1 was done by treating the vo
prediction as a novel line of evidence, like an EST track. By this
way, much trust was put in the ability of JIGSAW to appropri-
ately weight the vo line. The whole procedure can be divided as
follow:

e training step: a training procedure in the 600 full-length
genes was necessary to calibrate the JIGSAW parameters
for the added vo line.

o integration step: vo and CRIBI predictions were merged us-
ing JIGSAW, resolving the possible conflicts and producing
the MERGED-J1GSAW-GAZE version.

e enrichment step: MERGED-]1GSAW-GAZE was further enriched
with genes predicted exclusively in vo or CRIBI, but not
included in the MERGED-J1GSAW-GAZE version by JIGSAW.

27
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In case of conflicts caused by overlapping genes, they were
left out from the new prediction, considering the related
region not resolved. The enriched version is referred to as
ENRICHED-MERGED-JIGSAW-GAZE.

e cleaning step: ENRICHED-MERGED-]IGSAW-GAZE was cleaned
by filtering genes with > 30% of their length similar to
transposons, mobile elements, repeats or low-complexity
regions, that were searched by RepeatMasker (unpublished
Smit et al. http://repeatmasker.org). This cleaning proce-
dure cut 3, 885 genes from the final prediction, v1, consist-
ing of 29,971 genes.

vo and v1 releases are very similar, showing a great percentage
of overlap as showed in figure 3.3. However, there are some
important differences that outline two different predictive pro-
files. In the table 3.1 are reported some statistics about vo and
v1 prediction releases.

Table 3.1: Genome prediction statistics.

Genome feature Vo VA1 % Vo % VA1
genome length 486,265,422 486,265,422 100

CDS exon bp 29,958,906 32,839,888 6.16

INTRON bp 131,067,231 113,990,537 26.95

Genome feature Vo V1
29,971

n.genes 26,347

n.utr 35,815 42,400

CDS exons/gene 5.95 4.75

Genome feature mean Vo mean VA median vo median v1
GENE length 6,456.99 5,134.82 3,574.00 2,741.00

UTR length 253.98 166.64 185.00 127.00

entire CDS length 1,137.09 1,095.72

3.3-1  Prediction models

The data showed in the table 3.1 outline some important dif-
ferences between the two predictions, that allow to characterize
and describe the prediction behavior. Two main phenomenons
can be observed:

1. Gene fragmentation in v1: in vi1 there are more genes,
29,971, compared with 26,347 of vo, and the mean gene
length is greatly smaller. Moreover, vo predicts a greater
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vl
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B Oother
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Figure 3.3: The three pies represent the nucleotides commonly predicted (overlap) by both
vo and v1 for CDS, UTR and INTRON -categories, respectively. vo and vz
sections refer to the nucleotides exclusively predicted by each single release;
other section refer to unclassified nucleotides, e.g. nucleotides predicted by
both releases as belonging to the same category but in opposite directions.
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amount of intron bases than v1 equal to about 3% of the
entire genome. At same time, there is a little increase
of coding portion in v1. This aspect could mean that vo
joins genes that in v1 are considered independent, by form-
ing intronic bridges. According to this hypothesis, there
should be less and longer vo genes, with an increase of in-
tron nucleotides, which was exactly the observed situation.
A noticeable statistic supporting this hypothesis concerns
the small number of single-exon genes that are present in
vo. Moreover, it seems that vo has a general tendency to
predict genes with more exons (Fig. 3.4). This is particu-
larly evident in genes with low number of exons.

2. Exon crumbling in vo: this terms stands for the subdivi-
sion of a single exon in two or more smaller ones, sep-
arated by small introns. This phenomenon is confirmed
when observing the number of CDS exons per gene and
the average of CDS exon length. vo predicts one exon
more than v1 on average in a gene, but these exons are
shorter. This observation is confirmed by the greater ab-
solute number of CDS exons in vo despite the decrease of
coding nucleotides compared with v1.

7000
6000

5000 \
4000 )(

3000

V1 —

n.genes

2000

1000

n.exons

Figure 3.4: The graph outlines the distribution of genes as a function of the number
of exons. The two lines describe the two prediction profiles, vo (blue)
and v1 (red).

To better explain the behavior of the prediction releases, a

The predictive model model outlined in Fig. 3.5 was developed. The graph represents

shows two an hypothetical genome region with some gene evidences, de-

phenomenons: gene fined by the genes A and B in vo and by genes C, D and E in v1.
fragmentation in v1 . . .

and exon crumbling The model describes the exact situations represented by table 3.1:

in vo vo has more CDS exons (5 versus 4), more introns (3 versus 1),

a greater amount of intron nucleotides (2 +8 + 6 = 16 versus 8).

v1 has more genes (3 versus 2), a smaller number of CDS exons

per gene (4/3 = 1.33 versus 5/2 = 2.5) and a greatest number of
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shorter utrs (6 utrs covering 4 +1+1+1+1+1 =9 bases in v4
versus 3 utrs covering 12 +2 +5 = 19 bases in vo). The v1 gene
fragmentation phenomenon is clearly visible between the genes
D and E. In vo the related region outlines an unique gene, B,
formed by two CDS exons linked by a 6 base-long intron. This
behavior explains also the increase of single-exon genes and the
smallest mean size of genes in v1. In the meantime, the vo exon
crumbling phenomenon can be observed in the gene A and C
between CDS exon 1, 2 and 6. In this case, in v1 the exon 1
and 2 are merged in a longer exon 6 with the disappearance
of the interposed intron, partially explaining the smaller num-
ber of exons per gene and the decrease of intron number and
nucleotides. The presence of these short introns within an exon
affects the mean intron length. In the table 3.1, this value is lower
in vo. This event is not expected in a model with distant exons
connected by long introns (gene fragmentation). This fact is due
to the small size of the exon-breaking introns (exon crumbling),
that enormously increase the number of introns with low effect
on the intron nucleotide numbers, thus, decreasing the mean
intron length in vo.

A B
vO —— 1 |2 e [3 = [ |— [(5 |
12 5 2 5 8 5 2 3 6 5 5
o] D E
vl 6 9 P
4 12 8 5 1 1 31 1 6 1
genome

Figure 3.5: The prediction behavior of vo and v1 in an hypothetical genome region.
UTRs are in red, CDS exons in yellow (vo) and blue (v1) and introns
are represented by dotted lines.
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In the previous chapter, a model that describes the different
predictive behaviors of vo and v1 have been presented. At this
point, the task was to set up a method for validating and evalu-
ating the prediction releases in absence of a positive control. A
valuable solution could be represented by the comparison of the
prediction with gene structures identified by several comprehen-
sive EST libraries. However, the low availability of biological ev-
idences and the partial and incomplete nature of these libraries
bring to an unreliable quality estimate. This fact is particularly
evident in low-transcribed genome regions, where lack of infor-
mation can bias a prediction evaluation.

The next-generation sequencing technologies (NGS) offer an in-
novative resource for gene prediction refinement and evaluation,
thanks to their depth of sequencing and sensitivity in de novo
transcript discovery. These methods open new possibilities in
genomic and transcriptomic research, but also arise new bioin-
formatic problems due to new data types that have to be man-
aged and elaborated.

In this chapter, the main NGS methods, a software tool manag-
ing NGS data developed at CRIBI and its use in the validation
of vo and v1 predictions are described.

4.1 NGS METHODS

The Sanger method has been the standard approach for DNA
sequencing for more than 30 years. Only in the last 4-5 years a
new generation of sequencing techniques have started to become
commercially available, and thanks to their innovative character-
istics have opened new opportunities and potentialities in life
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sciences [8; 108; 77]. Moreover, additional platforms will be avail-
able in the near future. To date, three NGS methods (Roche /454,
[llumina/Solexa and AB/SOLiD) are available. They differ in
their engineering configurations and sequencing chemistries, but
share the principle of massively parallel sequencing of amplified
DNA templates that are spatially separated in a flow cell. This
parallel method is the true difference with Sanger technique that
is based on the electrophoretic separation of chain-termination
products produced in individual sequencing reactions. The NGS
methods envisage a polymerase-based sequencing-by-synthesis
(454 and Solexa) and ligase-based sequencing-by-ligation (SOLiD)
chemistries.

The main NGS advantages are the very high-throughput sequence
generation and the single DNA molecule amplification. In fact,
the massively parallel process allows the NGS methods to pro-
duce up to gigabases of nucleotide-sequence ouputs in a single
run. The NGS sensitivity due to this deep-sequencing is deci-
sive in applications like de novo transcript discovery or mRNA
expression profiling. Secondly, the amplification of DNA tem-
plates is made by emulsion PCR or bridge PCR techniques by
which a single DNA molecule is immobilized onto specifically
designed DNA capture beads or surfaces and is amplified in-
dependently, excluding competing or contaminating sequences
and avoiding the need for cloning of DNA fragments.

The main limitation of NGS technologies is the short length of
sequence outputs and the huge amount of generated data. These
aspects represent a great challenge to the developers of analysis
software [86].

Possible applications of NGS technologies cover a wide range of
fields and analyses as: the characterization and profiling of mR-
NAs, small RNAs, regulatory regions, structure of chromatin
and DNA methylation patterns (ChIP-seq), microbiology and
metagenomics [74; 93]. In particular, RNA-seq is a new power-
ful approach to map and quantify transcripts in biological sam-
ples, and it has shown some advantages over gene expression
arrays. Indeed, after sequencing, reads are aligned to a refer-
ence genome, avoiding the hybridization problems affecting the
microarray technology. In addition, RNA-seq [80; 112] shows
a greater ability to determine RNA isoforms or sequence vari-
ants and to code the expression level. Moreover, it demonstrates
an outperforming ability to detect low-level transcripts. Finally,
RNA-seq is a fundamental resource to revise gene annotation,
due to its ability to define the 5/, 3" and exon-intron boundaries.

4.1.1  Roche/454

The 454 technology [75] is the combination of single-molecule
emulsion PCR amplification procedure and pyrosequencing, a
polymerase-based SBS' strategy. The DNA template fragments

1 Sequencing-By-Synthesis.



are obtained through nebulization or sonication, and are ligated
to adapter oligonucleotides. Subsequently, the library is diluted
to single-molecule concentration, denatured and attached to in-
dividual beads carrying sequences complementary to adaptors.
At this point, the beads are compartimentalized into water-in-
oil microvesicles where the emulsion PCR amplification step is
carried out. For each fragment, this results in a copy number
of several million per bead. Then, the beads containing DNA
templates are loaded into individual picoliter-plate wells, allow-
ing one bead per well. Each well is enriched with sequencing
enzymes. The pyrosequencing strategy is based on chemilumi-
nescent detection of pyrophosphate released during polymerase
DNA extension. Successive flow addition of the 4 ANTP and
the incorporation of nucleotides complementary to the template
strand result in a reaction that produce a light signal that is
recorded by a CCD camera. The well images are decoded, fil-
tered and translated into a sequence output by GS FLX Titanium
instrument. A single run of GS FLX generates 400-600 million of
high-quality bases (>1 million reads) with read length of >400
bases in 10 hours. The longer read length is the strength of 454
technology compared with Solexa and SOLiD, allowing an eas-
ier de novo assembly.

412 Illumina

The Solexa Genome Analyzer has been the first example of
short read sequencer [13]. It uses a bridge PCR to amplify the
DNA fragments and an elongation process mediated by reversible
dye terminators. At first, the template DNA is fragmented and
the fragment ends are modified for attachment of oligonucleotide
adapters. The DNA templates are denatured and deposited into
a transparent slide on the surface of which are bound oligonu-
cleotide anchors, complementary to DNA template adaptors. The
bridge PCR amplification consists in the bending of anchor-cou-
pled fragment that attaches the free end to an adjacent anchor
olignucleotide, forming an arch. The adapters on the surface
act as primers for PCR amplification. Multiple amplification cy-
cles convert the single-molecule DNA template to an amplified
cluster, each one containing about 1,000 clonal molecules. The
reaction mixture for DNA synthesis and sequencing contains
primers, the DNA polymerase and four reversible terminator
nucleotides each labeled with a different fluorescent dye. After
incorporation into the DNA strand, the nucleotide fluorescence
is detected by a CCD camera. Therefore, the terminator group
at the 3’ end is removed from the base and the synthesis cycle is
repeated. A single run of Solexa produces >25 million 36 base-
long reads (>1 billion bases) in 2.5 days. This technology can be
provided with a paired-end module (50 bases-long reads) that is
useful in assembly protocols.
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4.1.3 AB SOLiD

The SOLiD (Supported Oligonucleotide Ligation and Detec-

tion) system is a short read sequencing technology based upon
ligation [92]. The amplification procedure is carried out by emul-
sion PCR and is very similar to Roche/454 method. DNA frag-
ments are ligated to adapters, bound to beads and clonally am-
plified with emPCR. At this point, DNA is denatured and the
beads are deposited onto a glass support surface. The first step
in the sequencing process is the hybridization of a primer com-
plementary to the adapter at the adapter-template junctions. The
primer is oriented to provide a 5" phosphate group. This is nec-
essary for ligation to oligonucleotides octamers, that consist of 2
probe-specific bases and 6 degenerate bases with one of 4 fluo-
rescent labels. The 2 probe-specific bases is one of the 16 possible
2-bases combinations. In the first ligation step, octamer probes
compete for the annealing to the template sequences immedi-
ately adjacent to the primer. After annealing, the octamer is lig-
ated, the fluorescence signal is detected and a cleavage process
is performed involving the last three octamer bases. These cleav-
age step removes the fluor and rigenerates the 5 phosphate for
a subsequent cycle. Seven cycles are accomplished for the first
primer. Therefore, the synthetized strand is denatured and a
new primer is annealed one position before the previous primer
in the adapter. This procedure is repeated five times in order
that each nucleotide is sequenced twice. However, the sequence
output is not a nucleotide series, but is decoded in color-space by
which one color (one fluorescent signal) corresponds to a couple
of bases. Thus, there is the need to interpret the output, translat-
ing it into base-space sequences.
The SOLID 3 system generates 30-60 gigabases and up to 1 bil-
lion reads per run in 10 days. The reads have length of 50 bases.
As the Solexa system, there is the possibility to sequence paired-
end libraries. Beyond the very high-throughput, SOLiD guaran-
tees an high accuracy in read quality due to the double check of
each nucleotide in the ligation step.

Table 4.1: NGS comparison.  SBS: sequencing-by-synthesis, SBL:
sequencing-by-ligation, py: pyrosequencing, dt: dye termi-
nators, rev-dt: reversible dye terminators.

Roche/454 Illumina GA AB SOLiD Sanger

sequencing SBS SBS SBL SBS
chemistry Py rev-dt ligase dt
amplification emPCR bridge PCR emPCR cloning
read length (bp) up to 500 up to 50 up to 50 800
run time 10h 2.5 days 10 days 3h

bases per run 500 Mb 1.5 Gb up to 60 Gb 96 Kb




4.2 SHORT-READS ALIGNMENT

The large volume of data produced by NGS technologies pres-

ent fascinating challenges for data management, storage and
analysis. Therefore, new bioinformatic approaches and tools
have to be developed for maximizing the advantages coming
from these new technologies. The developing effort must be
mainly directed to algorithms for the alignment of short reads
to reference genomes, that is a key-step in the NGS analysis. In
effect, the standard DNA alignment programs, such as BLAST
or FASTA, are inadequate to align millions of short reads against
a genome, while SOAP [67], ELAND, SHRiMP [88], ZOOM [69]
are examples of software specifically developed and optimized
for this goal. According to this tendency, an extremely sensitive,
efficient and fast algorithm for aligning millions of NGS reads
allowing gaps and mismatches has been developed at the CRIBI
laboratory and named PASS? [23].
PASS is based on the creation of a genome index, that is a gene
structure containing the genome positions of all seed words (12
bases as default). After the genome index production, PASS tries
to align each input read in three steps:

1. identification of the query seed words in the genome in-
dex.

2. check for possibility to extend the alignment in the seed
flanking regions.

3. refinement of the alignment with a modified Smith-Water-
man algorithm.

In particular, the alignment extension uses a simple but effec-
tive approach that allows an immediate analysis of the flanking
regions adjacent to seed words (Fig. 4.1). It makes use of Precom-
puted Score Tables (PST) of all the possible short words aligned
against each other. The length of these short words can vary be-
tween 6, 7, 8 bases, forming several PSTs. The score of each align-
ment is computed using Needleman and Wunsch algorithm, us-
ing different values for matches, mismatches and gaps. These
PSTs are already created and are supplied together with PASS.
They are loaded in RAM allowing fast execution time. Thus,
when an input read finds a seed word in a genome region, PASS
verifies the possibility to extend the seed analyzing the flanking
regions with PST. If these scores are higher than a pre-defined
threshold, the input read passes to the last step by which PASS
performs an exact dynamic alignment of a narrow region around
the match. In addition to PST, PASS applies low-complexity and
AT rich regions filters.

PASS is able to align all NGS sequences in base-space and color-
space and supplies modules for paired-end alignments, SNP and
IN/DEL detection and spliced alignments.

2 http:/ /pass.cribi.unipd.it/cgi-bin/pass.pl

37

PASS: a program to
align short
sequences

Pre-computation of
all possible n-mers
aligned against each
other allows a rapid
evaluation for
alignment extension



Leaf and root
transcriptome
libraries sequenced
with SOLiD were
used to evaluate
prediction releases

38

PST

NW Score

Flanking region

o | o |
Resd  mm— T —

Long word anchor } == - i
Reference

o — e — -
1 j -

Figure 4.1: PASS alignment extension. The flanking regions adjacent
to seed word are rapidly scored using a PST matrix.

4.3 RNA-SEQ ANALYSIS

The sequencing of whole transcriptome libraries with NGS

methods offers a great opportunity to validate genome annota-
tion, thanks to NGS ability to detect low-level transcripts and
sensitivity to define the boundaries of exons, utrs and genes.
The CRIBI laboratory has a strong knowledge in genome re-
search and long experience in genome sequencing projects. Their
resources consist of several Sanger sequencers, a Roche/454 sys-
tem and, more recently, a SOLiD System Analyzer v3. One of
the first utilization of SOLiD technology was the sequencing of
two transcriptome libraries coming from root and leaf organs of
Vitis vinifera. This run produced about 150 millions of 35 base-
long reads coded in color-space.
Taking advantage of the large amount of transcriptome short
reads and the availability of an efficient software for their align-
ment, the reads alignments were used to evaluate the two predic-
tion releases, vo and v1, and to establish what prediction model
is more close to reality. To do that, the read distribution along
the genome was analyzed together with the percentage of pre-
dicted splicing sites confirmed at least by one read in each pre-
diction version.

4.3.1  Coverage distribution

To analyze the read distribution, 150 millions of 35 base-long
reads were mapped on the genome using PASS, allowing 2 mis-
matches, 0 gaps and using the best-hit alignment option. Then,
the genome was divided in four categories utr, cds, intron and
extragene according to the vo or v1 coordinates and the number
of bases covered by short reads was counted for each category.
Theoretically, due to the transcriptomic nature of reads, the map-



ping data should show a great coverage of cds or utr regions, and
a low coverage of intron, probably due to unspliced mRNA, and
extragene, probably unannotated genes.

The mapping results for vo and v1 are summarized in table 4.2.
The table shows in the first column prediction data, as percent-

Table 4.2: Coverage comparison.

Annotation Coverage

leaf root leaf+root
vo |
utr 1.87 | 48.40 42.46 57.78
cds 6.16 | 47.71 47.11 59.86
intron 26.95 | 9.69 1225 17.03
extragenic 65.01 | 3.85 5.11 7.18
V1
utr 1.45 | 52.77 4547 61.83
cds 6.75 | 49.95 49.15 62.44
intron 2344 | 8.68 11.36 16.04
extragenic 6835 | 4.07 538 7.53

age of whole genome bases classified as cds, utr, intron or extra-
gene. In the second column, there are the percentages of bases
covered by reads coming from leaf, root or both libraries. The
transcriptional landscape emerging from table data outlines a v1
clear increase of cds and utr coverage, a decrease in intron cover-
age and a small increase in coverage of extragene portions. This
tendency is confirmed for all library combinations. This results
in a higher specificity and sensitivity (2-3 percentage points) of v+
prediction3. The utr and cds coverage distance to 100% is due to
constitutive errors in predictions, but, above all, to library lim-
itations, since a transcriptome library coming from one single
organ can not cover the entire gene set.

The differences in transcriptional landscape are better observ-
able in the fig. 4.2 and 4.3. These saturation curves outline the cov-
ered nucleotide number for each genome category as a function
of the number of mapped reads. A screenshot of the genome
coverage at intervals of 10 millions read alignments was taken.
The last right-hand interval represents the mapping of the entire
read set. It need to consider that the discrepancies between the
number of input reads (=150 millions) and the number of final
alignments (=122 millions) are due to the quality filter applied
by PASS in the alignment step.

In the saturation curves, a further category called near, represent-
ing the 300 bases upstream and downstream of the genes, was

covered(CDS+UTR)
total(CDS+UTR)

covered(CDS+UTR)
total_covered

3 specificity: ; sensitivity:
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added. This class was introduced to capture the mis-annotated
extragene regions, that likely are utrs.
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Figure 4.2: Coverage saturation curves for vo prediction. CDS (red), UTR (green), INTRON (blue), EXTRAGENE (black),
NEAR (purple).
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Figure 4.3: Coverage saturation curves for v1 prediction.
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At first, it is worth to note that the number of covered bases
reached a plateau, indicating that a grater amount of mapped
reads would not much affect the coverage distribution and that
in the final step an equilibrium is achieved. According to this, a
single organ transcriptome would cover about half of the whole
gene set.

The most important observation regards the intron class: the vo
number of covered intron nucleotides dramatically decreased in
v1, being replaced by a correspondent parallel increase of extra-
gene and cds nucleotides. Otherwise, the decrease of absolute
number of utr bases in v1 is balanced by a correspondent in-
crease of the nucleotides classified as near, indicating that the v4
utr loss is caused by the prediction of shorter utrs.

All these observations show that v1 prediction release is more
close to reality, covering a greater percentage of cds and utr and
a lower percentage of intron. Moreover, the data support the
vo and v1 prediction models described in the section 3.3.1. In
particular, they offer a strong evidence for the gene fragmentation
in v1 and exon crumbling in vo (Fig. 4.4 A,B). Indeed, the first
phenomenon is explained by the decrease of intron and the in-
crease of extragene covered nucleotides; in the exon crumbling
phenomenon, the coverage of a region, that results from the
merging of two adjacent exons in a longer one with the paral-
lel bridge-intron disappearance, causes the growth of covered
cds nucleotides and the decrement of covered intron bases.
However, both prediction releases demonstrate some critical as-
pects. At first, the great amount of covered extragene nucleotides
need to be futher investigated: since, besides highlighting tran-
scribed regions not detected in the prediction stage (unanno-
tated genes), they could also be false positives due to random
alignments, repetitive elements, ncRNA or pseudogene regions.
A first attempt to analyze these extragene covered regions re-
vealed that most of the covered nucleotides are grouped in clus-
ters, excluding random alignments.

Secondly, a possible explanation for intron coverage is the pres-
ence of unspliced mRNA in the starting libraries or unpredicted
splicing variants. However, a great number of covered intron is-
lands were noticed: within a predicted intron it is quite possible
to find an extended SOLiD signal in both strands (Fig. 4.4 C). A
further analysis showed that a common feature of these regions
is the presence of integrase or retrotranscriptase domains, thus
indicating putative transposable element domains [52].

4.3.2 Splicing site evaluation

In the last paragraph, the grape genome was used as the refer-
ence database for mapping the transcriptome short reads. How-
ever, by this way it is not possible to map the reads straddling
the splicing sites, because adjacent exons that forms a transcript
are placed in distant regions at genome-level. The reads that
correspond to the exon boundaries can not be matched in the

The saturation
curves demonstrates
the v1 decrease of
intron and the
parallel increase of
CDS and extragene
covered nucleotides

Extragene covered
nucleotides could
represent
unannotated genes

Intron coverage
could stand for
unpredicted splicing
variants or
transposons

Transcriptome reads
corresponding to
exon junctions can
hardly be mapped on
the genome
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Figure 4.4: Genome region with v1 (black), vo (light blue) prediction and SOLiD transcriptome
evidences for leaf (green) and root (red). In the figures A and B, the SOLiD data
seems to agree with v1 model, highlighting the exon crumbling in vo and gene
fragmentation in v1 (dotted blue square). In the figure C, the red dotted square
shows a SOLiD signal evidence within a predicted intron.
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genome or they can be mis-placed in uncorrect genome regions.
To diminish the presence of false positives or false negatives, the
genome database was integrated with sequences of 60 bases that
recreate all the splicing sites at transcript-level. The 60 bases
are formed by 30 nucleotides upstream the donor site and 30
nucleotides downstream the acceptor site. By this way, using
best-hit alignments, uncorrect mapping data can be decreased
without loss of information.

Three types of splicing sites have been modeled, allowing possi-
ble alternative splicings (Fig. 4.5):

predicted —_— | — B
splicing T — _— =

exon
skipping T —_— —
splicing — e —

random

PR q\_‘_‘__- I | —

splicing —

Figure 4.5: The dark red block connected with a dotted line is an hypothetical gene model.
Below, there are the three types of splicing sites used for 60 base-long se-
quences construction: predicted splicing, exon skipping splicing, random splicing.

predicted splicing: the splicing sites are built based on the precise
order of predicted exons.

exon skipping splicing: the splicing sites are recreated through
all possible combinations of predicted exons, maintaining
the exon order and rejecting the predicted splicings.

random splicing: to model splicing sites that do not involve
donor /acceptor pairs already individuated in the prediction
(as inner splicing), it is necessary to search the genome for
de novo splicing sites. Genesplicer [85], a tool for splicing
site prediction, was used to build novel donor /acceptor pos-
sibilities, filtering for direction, order and distance criteria
(5 < (acceptor — donor) < 10,000).

By this way, about 30 millions of 60 base-long sequences rep-
resenting about all the splicing sites possibilities were obtained.
These sequences came from predicted splicings and exon skipping
splicings of vo and v1 prediction releases in addition to random
splicings found along the genome. The mapping of short reads
pointed out about 5 millions of alignments in these sequences.

These data offer a valid resource for the evaluation of vo and v1
prediction. Indeed, it is possible to count and compare the num-
ber of splicing sites confirmed by at least one read in the two
predictions. The results are summarized in the table 4.3. The
data show that v1 predicts a smaller number of splicing sites,
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v1 seems to have a as expected. Moreover, vo seems to have more splicing sites
greater specificity confirmed as absolute number. However, the situation changes
vale \when the percentage values are considered: v41 has a greater
specificity, demonstrating that a great number of predicted vo

splicing sites are likely wrong.

Table 4.3: Splicing site comparison. (*) only the covered genes are
considered for computing the total number of splicing sites.

‘ leaf root leaf+root
Vo |
total predicted (*) | 100,824 101,282 109,212
covered 54,551 51,969 67,945
covered (%) 54.11 51.31 62.21
Vi ‘
total predicted (*) | 90,262 90,881 97,362
covered 53,085 50,700 65,939
covered (%) 58.81 55.79 67.73

To better define the splicing site prediction quality, an analysis
based on a gene-level approach was performed. For each i gene,
the percentage of confirmed splicing sites over the total of pre-
dicted ones were computed: p; = confirmed_ss;/total_ss;i *
100. Then, the percentage values were divided in ten categories,
at intervals of 10 p.p., and the distribution of genes according to
their p; was computed. The results (Fig. 4.6) showed that 67% of
v1 genes have more than 60% of splicing sites covered at least by
one read, compared with 59% of vo. This analysis seems to fur-
ther support the v1 prediction model, although the differences
with vo are not dramatic.
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Figure 4.6: The histogram represents the number of genes with different percentage val-
ues of splicing site coverage. The colors refers to different predictions (vo:red,
vi:blue). The number at the top of bars represents the relative percentage
value.
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The functional annotation is the action of characterizing the
set of predicted genes, assigning them a biological function, a
metabolic role or structural features. In other word, the annota-
tion stage allows to compile a sort of "identity card" for each
gene product resulting from the translation of the coding se-
quence. This kind of information is extremely useful for the
subsequent fine analyses focused on the relevant gene families
or genes involved in specific metabolic pathways.

In the world wide web a great amount of resources, tools and
databases allowing to infer gene and gene products properties
are available. The developed annotation platform pursued two
main strategies, a similarity approach and a predictive approach.
The former extracts information for inter-species sequence sim-
ilarities. The latter uses software tools predicting structures or
domains based only on sequence properties. Moreover, a mod-
ule for gene clustering to group genes of the same genome was
developed, able to form gene families and highlight intra-species
evolutionary relationships.

It has to be noted that the annotation platform is an automated
computational procedure, useful for seeking any type of large-
scale functional evidence. For this reason, a manual review is
advisable to refine data and discard poorly-confirmed or unreli-
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able annotations.

In this chapter, an overview of the main annotation methods and
the first annotation results for grapevine genome are presented
along with a strategy to interpret functional data and to point
out significant genes at genome-level.

5.1 SIMILARITY APPROACH

According to a similarity approach, functional information is
collected based on inter-species sequence similarity data, assum-
ing that regions highly conserved maintain the same functions
or roles in different species. Since protein folding and function
depends on protein primary structure, proteins sharing amino
acidic sequence, or part of the sequence, probably have the same
or correlated biological behavior. Starting from this assumption,
the first thing to do with a functionally uncharacterized gene
set is to search for sequence similarities with annotated proteins
from other organisms and/or species.

This search can be carried out for similarities that span either
the entire sequence or, small parts of the sequence or domains.
Furthermore, some amino acids in specific non-adjacent posi-
tions are decisive and sufficient for the definition of the biologi-
cal function. If global similarities can be searched with the usual
alignment algorithms, as Blast, the situation is more complicated
for elucidating domains or position patterns. To address these
needs, different strategies have been pursued and several tools
developed in the last years. All these tools exploit the availability
in the world wide web of biological databases containing well-
annotated protein sequences and domains, patterns and profiles.
The similarity-based approach raises two problems, the error
propagation due to the continuous transfer of annotations among
different organisms, and the different function of proteins with
high similarity. The first case occurs when the annotations have
been not manually curated and undergone many transfers from
genomes to genomes. By this way, some falsely characterized
cases can "infect" the ongoing annotation transfers [51]. For in-
stance, an annotating protein A could be annotated with func-
tions coming from a protein B, which inherited the annotation
from a protein C, etc. If the similarity between B and C is ques-
tionable, protein A will acquire dubious annotations.

The second problem occurs when proteins in spite of sharing
a high sequence similarity display different biological functions
because of the presence of small specific domains that are funda-
mental for differentiating their biological localization, structures
and physiological role.

Both problems are implied in automated computational meth-
ods, that have no direct control over the punctual annotation, al-
though conservative annotation parameters are adopted. Indeed,
the choice of more or less stringent cutoff values or different pro-
tein databases can heavily influence the annotation sensitivity.
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To avoid mis-annotations due to one of the above described prob-

lems, the platform annotates gene products according to differ-

ent independent methods, ranging from orthologous proteins to

protein domains.

In this scenario, it becomes clear that a manual review process

with experimental data support is fundamental for a complete,

reliable and high-quality functional annotation. However, it is A manual review is
worth to note that such a process is extremely time-consuming  fundamental to -
at genome-level. Automated computational procedures repre- Zif;’:ﬁf}gquamy
sent the first tier of the functional annotation stage, giving a

draft rather than the final annotation book.

5.1.1 Biological databases

Nowadays, an huge amount of biological data have became
available thanks to the development of molecular biotechnology
techniques and sequencing methods. This continuous produc-
tion of nucleotide or amino acids sequences requires appropri-
ate repositories where these biological data can be stored and
made accessible for the scientific community. For this reason, in
the last years there has been an enormous increase of biological
databases, that are hosted and maintained by different research
centers spread around the world. They can be classified in sev-
eral categories according to the data type, that range from nu-
cleotide or protein sequences to protein domains, from motives
and profiles to transcription factors binding sites, etc.
In this paragraph, the attention is focused on the description of
a protein database, that was used as reference by the annota-
tion platform in the preliminary annotation step. This database,
called UniProtKB [3], represents a comprehensive, high-quality
and freely-accessible resource of protein sequences and is pro-
vided with rich functional information. The other well-known UniProtKB is an
protein database is the NCBI nr [111], that greatly overlaps Uni-  universal resource of
ProtKB since it shares a similar set of sequence repositories and rotein sequences
sources by which the sequences are derived [101]. To avoid re-
dundancy, UniProtKB has been chosen for the assignment of
preliminary annotations to the set of predicted gene products
of Vitis vinifera.

UNIPROTKB  The UniProt Knowledgebase is a resource for the

collection of functional information on proteins. These accurate

and consistent data include disparate information as the amino

acid sequence, the protein name and description, the taxonomy

group, the biological ontologies and classifications, etc.

The protein sequences are derived from the translation of the

coding sequences submitted to the public nucleic acid database Protein sequences
INSDC?, the EMBL-Bank/GenBank/DDB]J database, or they come  mainly derive from
from PDB database. They can also come from direct protein se- CDS translation
quencing, sequences scanned from literature and sequences de-

1 International Nucleotide Sequence Database Collaboration
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rived from CDS not submitted to INSDC.
UniProtKB is divided in two parts:

UniProtKB/Swiss-prot: containing non-redundant manu-
ally annotated records supported by experimental data and
with information extracted from literature and curator-e-
valuated computational analysis. In this section, proteins
encoded by a same gene are merged into a single UniProt-
KB/Swiss-prot entry.

UniProtKB/TrEMBL: containing unreviewed computation-
ally analyzed records that have been obtained with large-
scale functional characterization and that are awaiting full
manual annotation.

In the annotation method implemented in the platform, a BLAST
analysis against UniProtKB database is executed for each Vi-
tis vinifera gene product. In particular, a filtered UniProtKB
database is used, where a restriction on the plant taxonomic
range limits the number of proteins to query. This restriction
is important because it cuts the hits with no-plant proteins that
could supply not appropriate functions to grapevine proteins,
and it decreases the execution time, necessary to obtain blast re-
sults for whole gene set. In the Blast results, the annotation pro-
cedure selects all the hits that satisfy predefined criteria of iden-
tity, similarity, coverage and e-value and uses them as source for
annotation. This approach results less conservative compared to
the one that consider only the best-hit (which is the probable or-
tholog) as source of annotation. Such an approach evaluates also
a series of differently scored hits and overcomes the problem
that most of the time the best hit, that can be a putative or hypo-
thetical protein, does not give any useful annotations. Instead,
the second or third hit often gives more informative annotations.
However, enough stringent cut-off values were selected for all
the above listed criteria. At the moment the parameters are rep-
resented by an e-value of 1e~>, a percentage identity greater or
equal to 30%, a similarity greater or equal to 60% and a percent-
age coverage greater or equal to 60% for both query and subject.
Different parameters were evaluated and these ones seemed to
be a good balance between stringency and sensitivity.

5.1.2 Protein domains

Database searching is an useful tool to individuate in novel
sequences structural and functional properties already found
in other well-annotated sequences. However, sequence-based
searching methods, e.g. Blast analysis against protein databases,
are not sufficient to detect evolutionary and functional corre-
spondences for two main reasons:

these techniques are focused on the global sequence, search-
ing for similarity evidences that span much nucleotides or



amino acids as possible. This kind of approach does not al-
low to find sequence motifs or modules that are conserved
in the course of time despite of the global sequence diver-
gence.

alignment algorithms, e.g. Blast, compare two sequences
and determine their similarity scores using standard sub-
stitution matrices and gap penalties, attributing one single
score for each substitution of one amino acid with another,
independently from the context. However, amino acids in
specific positions may have different conservation patterns
in different contexts. A solution for similarity searches
could be represented by the usage of substitution matrices
that reflect the amino acids frequencies in specific positions
according to different gene families [31].

A working out of the sequence-based similarity methods is repre-
sented by the profile searching techniques. They are based on an
higher-level similarity concept by which amino acids positions
and frequencies are contextualized and the alignment matches
are not necessarily determined by stretches of similar or identi-
cal adjacent amino acids. Moreover, these methods do not search
for similarities on the entire sequence, but focus on the individ-
uation of protein domains, motives and patterns.

Protein domains are structural or functional modules that com-
pose proteins. The combinations of different domains produce
the diverse range of proteins found in nature. The identifica-
tion and analysis of specific protein domains can help in eluci-
dating the function of the entire protein. Motives and domains
can be coded (and stored in public databases) through simple
regular expressions or through more complex forms as multi-
alignments, profiles, position weight matrices (Fig. 5.1) or Hid-
den Markov Models. The set up of all these novel encoding
systems have been paralleled by the development of appropri-
ate alignment programs.

Protein profiles or matrices derive from multiple alignments of
members of protein families. In a multiple alignment, the most
important functional or structural residues are extremely con-
served among all the sequences of the multi-alignment. A pro-
file summarizes the alignment information combining data from
the critical conserved positions of the sequences, the substitution
frequencies and the propensity of gap inserts. Another efficient
method is represented by the usage of HMMs that define a prob-
abilistic model describing and generalizing protein domains or
families.

The underlying idea of these approaches is to compare a se-
quence to a statistical model that describes a family or pattern
of sequences as opposite to a simple pairwise comparison of sin-
gle amino acids. Thus, these methods facilitates and improves
the search of distantly related sequences and the identification
of conserved functional or structural domains.

In the developed platform, the predicted gene products are com-
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pared with three popular databases of protein domains and pat-
terns: Pfam [41], SMART [66] and Prosite [49].

A
1 2 3 4 5 6 7
A 1 4 1 2 0 17 13
C 28 5 5 0 3 3 2
G 0 0 4 0 1 7
T 2 22 21 29 4 10 9
B 2
n
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Figure 5.1: An example of a Position Weight Matrix for a nucleotide se-
quence [33]: horizontally there are the positions along the
sequence and vertically there are the four possible DNA
bases. Each number in the matrix defines the frequency
of a base in a specific position. The most conserved nu-
cleotide is highlighted for each position. In B, the PWM is
visualized with sequence logo.

PFAM  The Pfam database is a large collection of protein fam-
ilies having in common functional or structural domains. Each
family is represented by multiple sequence alignments and Hid-
den Markov Models. Each Pfam entry is characterized by one of
the following types a) family, joining proteins with the same do-
mains, b) domain, defining a structural unit present in different
families, c) repeats, representing short units present in multiple
copies in globular proteins, d) motifs, consisting of short units
outside globular proteins. Moreover, Pfam provides also a clan
classification, grouping related families according to similarity
of sequence or profile-HMM.

The Pfam database is divided into Pfam-A and Pfam-B. Pfam-
A entries are derived from the most recent release of UniProt-
KB and family groups are detected using profile-HMM searches.
For each Pfam-A family there is a curated seed alignment, formed
by the most representative members of the family, profile-HMMs
generated from seed alignment and an automatically produced
full alignment containing all the family proteins (Fig. 5.2). Other-
wise, Pfam-B entries are automatically generated, unannotated
and of lower quality, but useful to identify conserved regions
where Pfam-A entries fail. Actually Pfam database contains
11,912 families.

A software implementation that compares query sequences against
profile-HMM libraries is HMMER [38]. It assigns to the compar-
ison a score that represents the probability for the sequence to
be related to the given model.
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Figure 5.2: A Pfam multi-alignment from the Pfam web-site.
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SMART  The Simple Modular Architecture Research Tool (SMART)

is a web resource that collects data for the identification and
annotation of protein domains and the analysis of protein do-
main architectures. This collection is characterized by annota-
tion quality and completeness. It can be used by two ways, ac-
cording to the kind of underlying protein database, that can be
normal, containing Swiss-Prot, SP-TrEMBL and stable Ensembl
proteomes, and genomic, representing only proteomes of com-
pletely sequenced genomes (Ensembl for metazoans and Swiss-
Prot for the rest). At present, normal SMART contains manually
curated models for 784 protein domains and genomic SMART
contains proteomes for 630 genomes. As Pfam, SMART library
consists of alignments, profiles and profile-HMMs and can be
inspected by HMMER software.

prosITE PROSITE is a database of protein families, domains
and functional sites. They are determined by in silico analy-
sis or literature-confirmed experimental evidences and are pro-
vided with rich descriptions and annotations about structures
and functions. Moreover, each PROSITE entry is classified by its
reliability and confirmation level. The data contained in PROSITE
database are represented by patterns and profiles. Profiles are
the same position-specific weight matrices or profile-HMMs al-
ready used in Pfam and SMART database. Patterns are short
amino acidic signature defined by a grammatical syntax similar
to that of regular expressions (Fig. 5.3).

PROSITE currently contains patterns and profiles specific for
more than a thousand protein families or domains. The Scan-
Prosite software program is used to compare a sequence against
the PROSITE database.

5.1.3 Metabolic pathways

The functional annotation methods above described have been
focused on the characterization of the functional or structural
properties of a single gene or gene product, representing the
ultimate goal of annotation procedures. However, the biological
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[A,G]x4GK[S,T]

[Ala or Gly]-x-xXx-x-xXx-GlyLys[Ser or Thr]

— | T

AFGTRGKS ADTSSGKT GSVHTGKS

Figure 5.3: An example of PROSITE pattern (red) and its translation
for a better explanation (black). Xs mean that any amino
acid is allowed. Square brackets indicate possible alter-
natives. In blue there are short signatures recognized by
pattern.

function of the living cell is a result of many metabolic pathways
and interactions between molecules and proteins, and it can not
be attributed to a single gene or gene product. Therefore, the
genes are simple units that acquire a biological mean thanks to
the interactions with molecules or products of other genes and
thanks to their role in specific metabolisms. Genes are important
as part of higher-level systems or networks and different biolog-
ical contexts determine their expression or repression, and so
the realization of their functions. Thus, in genome annotation
projects the determination of metabolic roles and identification
of localization in biological networks of gene products become
extremely important.

KEGG (Kyoto Encyclopedia of Genes and Genomes) [55] is a
database resource for understanding high-level functions of the
biological systems from genomic and molecular information. It
gives a computational representation of biological systems, con-
sisting in building blocks and wiring diagrams necessary for
simulation, modeling and data analysis. The KEGG integrated
database consists of 16 databases classified into systems, genomic,
and chemical information: systems information represents func-
tional aspects of the biological systems, e.g. pathway database,
while genomic and chemical information represents the molecu-
lar building blocks of life, e.g. genes or enzyme databases.

In the annotation platform, a module that makes use of KEGG
databases has been developed to associate predicted genes to
metabolic maps, via enzyme targeting. In particular, for Vitis
vinifera annotation, the reference database was the proteins con-
tained in the KEGG genes database. This database was filtered to
exclude no-plant proteins. Then, a Blast analysis was carried out
using the grapevine predicted proteins as query and the KEGG
plant proteins as reference database. The parameter setting was
identical to the UniProt configuration (see above). The associ-
ation of grapevine gene catalog with pathway information was
achieved by the EC numbers associated to KEGG protein hits:
the predicted genes inherited the EC numbers (if present) that
denote specific enzymes participating to specific metabolic path-
ways. Moreover, the genes—EC—map associations were graph-
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ically transposed using KEGG pathway diagrams, formed by se-
ries of nodes (e.g. enzymes) and edges (biological relationships).
The figure 5.4 shows an example of this graphical representation
that highlights the annotated grapevine genes (enzymes) for the
gluconeogenesis pathway.
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Figure 5.4: A typical KEGG representation of metabolic pathways.
Nodes are represented by blocks (gene products) and cir-
cles (chemical compounds). Edges represent molecular in-
teractions or relations.

In the next future, KEGG annotations will be integrated with
expression profiles. The idea is to code the expression values
coming from RNA of different tissues and organs sequenced
with NGS technologies by using different colors. This would
allow to further investigate and rapidly interpret the expres-
sion profiles in different tissues, in relation to specific metabolic
maps.

5-1.4 Gene Ontology

In annotation projects, a great problem is represented by the
gene or protein nomenclatures. Frequently, the annotation pro-
cedures assign to genes the gene symbols or descriptions inher-
ited from proteins used for annotation, e.g. UniProtKB hits. This
habit arises some issues because there are cases where the same
gene has different names in different organisms (e.g. caused also
by typographical errors) or where genes with the same name
have different functions [51]. In this way, the database searches
by gene name criteria can have an high rate of false positives. To
avoid problems deriving from mis-annotations, methods defin-
ing standard descriptions of biological functions or processes
have been developed. By this way, the annotations can be trans-
ferred among organisms and biological databases without dis-
figuring the annotation information.

To address these needs, the Gene Ontology (GO) Consortium

There is the need of
standard
vocabularies
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(GOC) [9] has developed a controlled and structured vocabulary
to describe biological properties for each gene or gene product,
assuming that a large fraction of genes, and the related biologi-
cal functions, are shared by organisms and/or species.

The Gene Ontology consists of three vocabularies describing genes
and gene products, the cellular component, the molecular func-
tion and the biological process ontologies. A gene product might
be associated with or located in one or more cellular compo-
nents; it is active in one or more biological processes, during
which it performs one or more molecular functions.

All the biological concepts are defined by terms, identified by an
unique numerical ID (e.g. GO:0006915). GO is implemented as
a Directed Acyclic Graph (DAG) allowing multiple parent terms
for each child term. From the top moving down to the bottom of
the DAG, the terms (or nodes) become more specialized. At the
end of the path the terms are called leaves. GO terms are linked
by three relationships: is_a, part_of and regulates. A particular
protein can be associated with more than one node within the
three ontologies, reflecting the fact that it may function in sev-
eral processes, contain domains that carry out different molecu-
lar functions and be localized in different cell compartments.
GO terms were assigned to grapevine gene products using data
produced by similarity-based methods: protein database search-
ing (UniProtKB), protein domains identification (Pfam, SMART
and Prosite) and enzymes associations (Kegg). A platform mod-
ule realizes the GO associations based upon two different data
sources provided by Gene Ontology Consortium:

annotation file: the GOA? group provides high-quality GO
annotations to proteins in the UniProtKB, generated by
means of a combination of electronic and manual tech-
niques [12].

mapping files: mappings between GO terms and concepts
from other databases, e.g. Pfam domains, Kegg enzymes,
etc.

At first, the procedure starts collecting the results of the blast
analysis of query grapevine genes against UniProtKB database.
The protein hits, necessary for gene annotation, are frequently
associated with GO terms. These associations are provided by
GOA annotation file. Thus, each gene product inherits the GO
terms associated with the related protein hits. In the second step,
the obtained GO terms are enriched with the annotation coming
from other resources. Pfam or SMART domains, Prosite pat-
terns or Kegg enzymes can be mapped, using the available map-
ping files, to correspondent GO terms. Therefore, gene products
inherits further GO terms from the associated domains or en-
zymes, only if the GO terms represent novel annotations.

Finally, the GO annotation module envisages the assignment of

2 Gene Ontology Annotation
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GO slim terms. GO slims are cut-down versions of the GO on-
tologies containing a subset of the terms in the whole GO. They
give a broad overview of the ontology content without the detail
of the specific fine grained terms. For Vitis vinifera genes, the
plant GO slim provided by TAIR3 was used.

5.1.5 Plant Ontology

The Plant Ontology (PO) Consortium (POC) [102] shares with
GO the need to describe biological properties in a structured and
standardized manner. However, the PO differences are relevant Plant Ontology
because it focuses on plant species and on different biological ~ describes plant
aspects as plant structures and developmental stages. Indeed, ;tmcmres and
. . evelopmental
in plants the nomenclature used to describe anatomy and de- 006
velopment varies across taxa. Hence, its main objectives are to
provide a shared language to describe tissue-specific gene ex-
pression and phenotype information in plant databases and in
literature. The Plant Ontology vocabularies cover two biolog-
ical domains: plant structure and plant growth and development.
Plant structure terms describe the morphological and anatomi-
cal structures of whole plants, including organs, tissues and cell
types, e.g. stamen, parenchyma, guard cell, etc. Growth stages
terms describe whole plant growth stages and plant structure
developmental stages, e.g. seedling growth, leaf development
stages, germination, etc.
PO has the same DAG structure of GO and the relationships be-
tween terms are a) is_a, type_of (e.g. a silique is a type of fruit),
b) part_of (e.g. pericarp is part of the fruit) and c) develops from
(e.g. a leaf develops from a leaf primordium).
In the TAIR website a PO annotation of Arabidopsis thaliana pro-
teins is provided. To annotate grapevine gene products with PO
terms, Arabidopsis proteome was considered as reference database
for a blast analysis. In a procedure similar to that used for GO
annotations, grapevine gene products exploit sequence similari-
ties to inherit PO terms associated to Arabidopsis thaliana protein
hits.

5.2 PREDICTIVE APPROACH

In the last sections, methods for the functional characteriza-
tion of gene products based on inter-species similarity evidences
and database searching procedures have been described. How-
ever, there are different computational techniques that mainly fo-
cus on the composition of protein sequence itself for functional
assignments. These techniques strongly resemble to ab-initio soft-
ware tools, using parameters obtained by training procedures
and avoiding the usage of databases. In particular, a great im-
portance is given to specific sequence portions and physical-

3 http://www.arabidopsis.org/
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chemical properties of amino acids that make up the protein.
Such type of approach refers to software tools suitable for the
identification of specific sequence features such as targeting pep-
tides or transmembrane domains.

However, the distinction between similarity-based and ab-initio
approaches are not so evident, because frequently some ab-initio
methods use homology evidences to improve their results and
the employed algorithms are similar to those used in identifica-
tion of protein domains.

5.2.1  Protein targeting and cellular localization

An important role for the functional annotation of genes is
played by the identification of signal peptides. The importance
of signal peptides derives from the discovery that proteins have
intrinsic signals governing their transport and localization in the
cell, determining the protein targeting. Indeed, protein targeting
or protein sorting is the mechanism by which a cell transports
proteins to the appropriate locations into the cell or outside of it
where they can perform their tasks.

A signal peptide is a short peptide chain frequently placed at the
N-terminus and the correctness of the sorting signals becomes
fundamental for the cell life because errors can lead to biologi-
cal disorders or diseases. The targeting motives can be cleaved
by signal peptidase or maintained in the mature protein after
reaching the final destination.

Targeting sequence motives can be divided into secretory sig-
nal peptides (SP) and transit peptides (TP) [39]. The secretory
signal peptide targets a protein for translocation across the en-
doplasmic reticulum (ER) membrane. Transit peptides refer to
targeting signals for chloroplasts and mitochondria. Otherwise,
global sequence properties as amino acid composition can de-
fine proteins of different subcellular compartments.

A large class of proteins is also represented by integral mem-
brane proteins. The sequence of transmembrane proteins have
one or more hydrophobic domains that cross the membrane once
or several times.

Experimentally identifying protein targeting signals is cost in-
tensive and time consuming. For this reason, in the last years
numerous methods for prediction of signal peptides, transmem-
brane domains and subcellular localizations have been devel-
oped. These methods are based on amino acid composition of
the protein, specific sorting signals or targeting sequences con-
tained in the protein sequence, or homology search in databases
of proteins with known localization. However, the annotation
platform envisages the usage of sequence-based tools, that do
not require database searching procedures and predict subcellu-
lar localizations through sequence properties.

Prediction methods differ in the employed algorithms, ranging
from weight matrices to machine learning techniques as k-nearest
neighbor methods, support vector machines (SVM), neural net-
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works or Hidden Markov Models. However, no prediction method
is able to cover all the different types of signal.

There are two significant advantages of using prediction meth-
ods based on sequence composition for the annotation of grapevine
gene catalog: a) signal predictions can be obtained also for incor-
rect gene predictions, lacking N-terminal residues, and b) there
is the possibility to predict localizations for which sorting sig-
nals are not known or not well defined.

In the annotation platform, WoLFPSORT [47] and TargetP [40]
are the software tools used for identification of protein cellular
compartments, and TMHMM [64] and HMMTOP [105] are the
programs that annotate transmembrane domains. The combina-
tions of similar programs was adopted to obtain more reliable
predictions.

WOLFPSORT It is an extension of PSORTII, it uses the PSORT
localization features, some iPSORT parameters and amino acid
composition. For the final classification, it adopts a k-Nearest
Neighbors method. It contemplates the possibility of a dual lo-
calization prediction.

TARGETP It predicts the cellular location of eukaryotic proteins,
based on the presence of any of the N-terminal signal: chloro-
plast transit peptide (cTP), mitochondrial targeting peptide (mTP)
or secretory pathway signal peptide (SP). In addition, it pro-
vides the cleavage site location. TargetP integrates SignalP and

ChloroP tools for the identification of SP and cTP respectively. It

uses a combination of Neural Networks, Hidden Markov Mod-
els and weight matrices techniques.

TMHMM It is a transmembrane «-helix predictor, based on a
HMM approach. It provides also the transmembrane topology,
that is the in/out orientation of helices relative to the membrane.
The implemented model describes various regions of membrane
proteins: helix caps, middle of helix, regions close to the mem-
brane, and globular domains. HMM approach is well suited for
transmembrane prediction because it integrates several impor-
tant features as hydrophobicity, charge bias, helix lengths, and
grammatical constraints.

HmMmTOP It provides a topology prediction of helical transmem-
brane proteins, using an HMM that computes the topology with
highest probability among all the possible topologies of a given
protein. It is based on the assumption that the transmembrane
domains are determined by the differences in the amino acid dis-
tributions in various structural parts of the protein rather than
specific amino acid compositions in these parts.

The combined usage
of similar programs
increases the

prediction reliability
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5.3 GENE FAMILIES

A common feature shared by many genomes is the presence
in the DNA sequence of gene groups characterized by an iden-
tical or similar sequence. These groups are named multigene
families and derive from gene duplication events in the course
of evolution.

Gene groups can be divided in simple (or classical) and complex
multigene families [17]. The simple class refers to gene clus-
ters where all the members have identical or nearly identical
sequences. The presence of multiple copies of the same gene
implies the strong action of a conservative evolutionary process
that allows limited substitutions in all gene copies. Such behav-
ior is typical for genes or gene products required in great abun-
dance, e.g. rRNA genes.

The complex class refers to gene families that contain members
similar in sequence denoting a common evolutionary origin but
sufficiently different to have distinct properties. The duplica-
tion and the following specialization events caused by evolution
may indicate the need to accomplish similar tasks in different de-
velopmental stages or tissues, or the competitive action for the
same biological process. The complex gene families can be clus-
tered but also dispersed around the genome.

Sometimes, there can be sequence relationships between differ-
ent families forming gene superfamilies.

The importance represented by gene families in the post-genomics
era required the development of a platform module for the indi-
viduation and description of gene families at genome-level. This
module consists of a comparison between genes of the same or-
ganism (in this case Vitis vinifera), a grouping step according to
sequence similarity criteria and a final description of the evolu-
tionary relationships between members of the same group by
means of evolutionary trees. In practice, the developed module
is formed by three levels:

1. clustering: gene groups were identified comparing protein
sequences of the grapevine gene catalog. The utilized clus-
tering algorithm was CDHIT [68] that grouped the sequences
with 90% identity of the global alignment.

2. multi-alignment: the members of each group identified in
the clustering step were multialigned, resulting in the con-
struction of a multi-alignment for each gene family. For
multi-aligning sequences, the ClustalW algorithm [103] was
used.

3. tree construction: PHYML software tool [45] was used to
build evolutionary trees, implementing a phylogeny recon-
struction method, based on maximume-likelihood principle.
The resulting tree topologies and branch lengths help in
the interpretation of the evolutionary relationships occur-
ring between gene family members.
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In addition, to inspect gene family trees, a web-applet, based
on PhyloWidget [53] libraries, was integrated. It offers the op-
portunity to graphically visualize the evolutionary trees in an
interactive manner (Fig. 5.5).
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Figure 5.5: The evolutionary unrooted tree relates to terpene synthase
family in grapevine genome.

5.4 ANNOTATION IMPROVEMENTS

In this chapter, the main annotation methods integrated in the
platform are described. However, the final goal has not been
achieved and further efforts have to be done in order to obtain
more reliable and rich annotation for predicted genes. The plat-
form extension and enrichment could follow different directions:

e Biological databases: the main existent annotation method
based on sequence similarity is the comparison of gene cat-
alog with UniProtKB database. This resource is absolutely
complete and richly-annotated, but the usage of additional
sequence databases can enlarge the annotation coverage.

e InterPro integration: functional domains and patterns are
discovered using Pfam, SMART and Prosite databases. How-
ever, InterPro [50] is a web resource, developed at EBI, that
allows to parallely search for these information in different
distributed databases. The integrated InterPRO databases
include Prosite, Pfam, Prints, ProDom, TIGR, PDB, Pan-
ther, etc.

o Structure annotation: at present, in the platform, tools for
predicting or annotating protein secondary or tertiary struc-
tures are partially present (or not at all). These kind of
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information is extremely important to assign protein func-
tion and cell localization. Database as PDB [14], CATH [76]
or software tools like PSIPRED [19] or JPRED [32] could be
implemented in the platform.

5.5 ANNOTATION RESULTS

In this section, the first results for the functional annotation of

Vitis vinifera genes obtained with the above explained methods
are presented. They comprise the main functional data regard-
ing the more abundant domains or GO categories, the pathways
more populated and the type of enzymes more common, but
they will not be biologically interpreted as the data analysis step
will begin in the next future and functional data results have
to be confirmed and validated. However, a brief functional land-
scape could be useful to design the general map of the grapevine
genome.
In the table 5.1 there are a summary of the data showing the
number of genes annotated with different methodologies and
the annotation redundancy determined by the number of objects
relative to each methods. For example, there are 16,923 genes
annotated with 4,174 different GO terms, or 17,054 genes an-
notated with 2,909 Pfam domains: in the first case, the object
refers to GO term, while in the second case refers to Pfam domain.
When the object represents transmembrane domain, the number
2 describes its presence or absence in the sequence.

Table 5.1: Functional annotation data.

Method Gene number Redundancy
Object  Number
Uniprot 17,738 protein 172,587
GO 16,923 GO term 4,174
PO 17,580 PO term 353
ec 649
KEGG 2,044 map 102
PFAM 17,054 domain 2,909
SMART 7,843 domain 412
Prosite 9,986 pattern 1,150
WoLF-PSORT 26,093 localization 24
TargetP 26,347 localization 4
TMHMM 26,347 transmembrane dom. 2
HMMTOP 26,263 transmembrane dom. 2
Gene family 17,555 family 3,973

5.5.1 Pfam, SMART and Prosite

In the figure 5.6 there are three pie-charts, representing the
data of Pfam, SMART and Prosite, respectively. In particular,
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each pie shows the 7 most represented domain categories found
in grapevine genes. A rapid inspection of the three charts points
out a similar pattern of domain abundance, showing little differ-
ences.

WD domain

LRR

protein kinase Ankyrin repeat

Myb-like
DNA-binding
protein tyrosine
kinase
PPR repeat
ATPases
associated
protein tyrosine
kinase Ankyrin repeat
ring finger

Serine/Threonine
protein kinase

WD domain

Ser/Thr protein kinase
WD domain

protein kinase
ATP-binding

protein kinase

Ankyrin repeat

Myb-like
DNA-binding

PPR repeat

Figure 5.6: The three pie-charts represent the proportions of the 7
more abundant domains respectively in Pfam, SMART and
Prosite. NB: the dimension of a pie section reflect its percentage
value compared with the other 6 sections.

The more important domains are*:

e PPR: pentatricopeptide repeat (PPR) proteins are charac-
terized by tandem repeats of a degenerate 35 amino acid
motif. Most of PPR proteins have roles in mitochondria
or plastids. These proteins seem to play a role in post-
transcriptional processes within organelles, RNA stabiliza-

4 http://www.ebi.ac.uk/interpro/
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tion and processing. It is known that this family is greatly
expanded in plants.

WD domain: WD-40 repeats (WD or beta-transducin re-
peats) are short ~ 40 amino acid motifs, often terminating
in a Trp-Asp (W-D) dipeptide. WD-repeat proteins are a
large family found in all eukaryotes and are implicated in
a variety of functions ranging from signal transduction and
transcription regulation to cell cycle control and apoptosis.
In Arabidopsis, several WD40-containing proteins act as
key regulators of plant-specific developmental events.

protein kinase: protein kinases can be divide in two groups:
serine/threonine specific and tyrosine specific. They are a
group of enzymes that possess a catalytic subunit which
transfers the gamma phosphate from nucleotide triphos-
phates (often ATP) to one or more amino acid residues in a
protein substrate side chain, resulting in a conformational
change affecting protein function and for this reason they
have a role on a multitude of cellular processes.

Ankyrin repeat: ankyrin repeat is a 33aa-long tandemly re-
peated module and it is one of the most common protein-
protein interaction motifs in nature. They have no clear
functions.

Myb-like DNA-binding: the myb-type domain is a DNA-
binding, helix-turn-helix (HTH) domain of ~ 55 amino
acids, typically occurring in a tandem repeat in eukary-
otic transcription factors and specifically recognizing the
sequence YAAC(G/T)G.

LRR: leucine-rich repeats (LRR) consist of 2-45 motives of
20-30 amino acids in length and appear to provide a struc-
tural framework for the formation of protein-protein inter-
actions. Proteins containing LRRs are involved in a variety
of biological processes, including signal transduction, cell
adhesion, DNA repair, recombination, transcription, RNA
processing, disease resistance, apoptosis, and the immune
response.

ATPase associated: AAA ATPases (ATPases Associated with
diverse cellular Activities) domain is responsible for ATP
binding and hydrolysis and proteins containing AAA play
a large number of roles in the cell including cell-cycle reg-
ulation, protein proteolysis and disaggregation, organelle
biogenesis and intracellular transport. They also act as
DNA helicases and transcription factors.

552 GO annotation

The GO terms obtained by inheritance from UniProtKB pro-
teins, protein domains and Kegg enzymes permit to annotate
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16,923 genes of Vitis vinifera. This means that nearly 64% of
grapevine genes are annotated with at least one GO term of any
ontologies and that there are on average about 6 slim associa-
tions per gene. In particular, 56% of genes are annotated with
molecular function terms, 49% with biological process terms and
nearly 43% with cellular component terms (Fig. 5.7).

annotated not annotated molecular function biological process cellular component

Figure 5.7: The left-hand graph shows the percentage of genes anno-
tated with at least one GO term. The righ-hand graph
describes the disjoint distribution of annotations amongst
the 3 different ontologies.

Moreover, the figure 5.8 describes the distribution of GO an-

notations among ontologies, showing that 8,663 genes are an-
notated with terms coming from all 3 ontologies and approxi-
matively 80% are associated with terms belonging to at least 2
different ontologies. Finally, the figure 5.9 shows the 10 most
represented terms for each category.
GO annotations are very useful when there is the need to com-
pare two situations, e.g. microarray experiments, or to extract
and collect a set of genes with some specific functional features
or cellular localizations in database searching processes. How-
ever, the genome-level analysis of GO annotations is not trivial.
The description of a genome by means of more or less populated
GO terms can result useless or uninformative. Thus, a method
to analyze GO annotations at genome-level will be described in
a following section.

5.5.3 Protein targeting and transmembrane domains

The transmembrane helices prediction was accomplished by
TMHMM and HMMTOP software. To analyze the transmem-
brane domain distribution, only the common predictions between
the two programs are considered. Shared transmembrane pre-
dictions regard 18, 268 genes, representing nearly 70% of grapevine
genome. The remaining 30% demonstrates conflicting predic-

64% of grapevine
genes are annotated
with at least one GO
term
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cellular component
I molecular function
I biological process

Figure 5.8: The Venn diagram describes the joint distribution of GO annotations amongst
the 3 different GO categories.
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Figure 5.9: These three pie-charts represent the 10 most populated GO terms for molecular
function (blue), biological process (green) and cellular component (red) ontologies,
respectively. NB: the dimension of a pie section reflect its percentage value compared
with the other 9 sections.
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tions and can be referred as unclassified. The following analysis 20% of genes has a
shows that nearly 20% of shared predictions found at least one transmembrane
transmembrane domain, ranging from 1 (about 60%) up to 25 domai

(only one case) domains (Fig. 5.10).

transmembrane ' “UNCLASSIFIED

SHARED ——
NOT transmembrane

Figure 5.10: The outer circle describes the percentage of common (SHARED) and
dubious (UNCLASSIFIED) predictions between two programs used
for transmembrane domain finding. The inner circle focuses on the
SHARED predictions, highlighting the percentage of the proteins hav-
ing at least one transmembrane domain.

Gene localization was performed using TargetP and WoLFP-
SORT software. Both programs assign to their results a score,
symbolizing the reliability of the predictions, and give in output
several alternatives. Thus, the combined analysis of sub-cellular
localization predictions is critical and there is a need to normal-
ize and weight the diverse scores. To address this need, for each
i gene the normalized scores were computed according to the
formula:

(Targ etP_score]f + WOLFPSORT_scoreX)

i

(BEST_TargetP_score; + BEST_WOoLFPSORT_score;)

where k is a common localization prediction from the set of al-

ternative ones of TargetP and WoLFPSORT, and BEST score is

the prediction with the highest score. For example, we suppose

that the scores for chloroplast localization of TargetP is 3.2 and

of WoLFPSORT is 4. However, while the localization with the

highest score predicted by WoLFPSORT is effectively chloroplast

(score 4), the best localization for TargetP is mitochondrion with

score 5. In this case, the reliability value for chloroplast results

from (3.2+4)/(5+4) « 100 = 80.

Using this scoring system, three classes of reliability were ob-

tained: 100%, 80% and 50%. 100% means that the two predic-

tions agree and both have the best score.

The sub-cellular localization results are summarized in the fig-  Nearly 30% of genes
ure 5.11, where the most represented cellular localizations are has a nuclear
plotted with percentage values and colored with three different destination
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Figure 5.11: The most represented cellular compartments, scored as a percentage value
on the total number of genes. The three colors stand for different reliability
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colors according to the belonging reliability class. From the fig-
ure, it can be clearly visible that nuclear, chloroplast and cytosol
are the preferred destinations of grapevine gene catalog.

A careful inspection of data and graphs can arise some doubts
about the correctness of annotations. For example, if we focus
on membrane proteins, we can note that there are some apparent
discrepancies between GO annotations, transmembrane predic-
tions and targeting results. Indeed, GO annotations regarding
cellular component (CC) ontology show that membrane, or plasma
membrane, are the terms more abundant amongst all CC annota-
tions (Fig. 5.9). Otherwise, transmembrane predictions suggest
that only the 20% of genes have a transmembrane domains, and
moreover, the targeting predictions assign to plasma membrane
the 8% of genes. These error effect becomes less evident if we
consider the absolute number of different annotations, all clas-
sifying approximately 3,000 genes as having a transmembrane
domain or belonging to plasma membrane. Probably, the incor-
rect interpretation is due to artifacts given by different numbers
of considered annotations. Indeed, GO CC annotations only re-
gard about 11,000 genes, the greatest part of them annotated
with the term membrane, maybe because membrane proteins are
better studied or simply because they have a greater number of
GO annotations.

M 100% 80%s [M50%

mitochondria

extracellular

plasma membrane

nuclear chloroplast cytosol

classes.

5.5.-4 Metabolic pathways and enzymes

The gene associations with enzymes and metabolic maps were
accomplished using KEGG database. Unfortunately, the analy-
ses of most abundant enzymes and metabolic pathways could be
biased because of the small number of annotations (only 2,044
genes have a KEGG annotation). However, the figure 5.12 shows
the 5 metabolic pathways with more genes and the most repre-
sented enzymes. It is worth to note the predominant presence of
maps related to the biosynthesis of secondary metabolites and
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the high number of genes involved in the cell wall modification
and alteration (pectinesterase and beta-glucosidase).

Biosynthesis of Phqnylpropaqoid
terpenoids and steroids = biosynthesis
Starch and

Biosynthesis of sucrose metabolism

plant hormones |

— Biosynthesis of
alkaloids

" oxidoreductase peroxidase glutathione H-transporting b-glucosidase pectinesterase
transferase ATPase

Figure 5.12: The pie-chart highlights the 5 most populated metabolic path-
ways. The histogram shows the number of genes classified ac-
cording to enzyme category.

555 GO analysis

As already pointed out, a genome-level functional analysis by
means of GO terms arises some problems. The choice of the
correct level of specificity, the stringency used in the annotation,
the quality and abundance of associations between proteins or
domains and GO terms strongly affect the final annotation, lead-
ing to results difficult to interpret. Moreover, the description
of the genome functional landscape through more or less pop-
ulated GO categories is useless and uninformative. Otherwise, Evolution dynamics
the comparison between GO categories differently populated in ~ ¢f GO categories

different organisms could be more useful. This would allow to ;ZZZIZE; light
follow the GO categories dynamics through evolution, highlight- . stzints

ing metabolisms maintained in some organisms and depleted in

others. It could be interesting to observe if some differences

could be visible already at genome-level and not only at tran-

scriptional level.

Thus, Vitis vinifera was compared with three different organisms:

Arabidopsis thaliana, Oryza sativa and Populus tricocharpa. To avoid Genome-level
bias due to annotation methods, the three organisms were rean-  functional insights
notated with GO module of CRIBI platform. In this way, all the CZ’;ZZSZZJ; e;;ii(ggg
organisms were annotated with the same method. Because the fompm-sons
platform annotates genes with most specific terms (leaf nodes

in the GO tree), it could be possible to consider differently an-

notated genes that are described by parent terms (annotation at



70 | GETTING THE INFORMATION

different level of the same path). This possibility was avoided
by annotating genes not only with leaf nodes, but also with
all ancestors. Then, the procedure made a pairwise compari-
son between Vitis vinifera and the others three organisms. For
each comparison, a proportion test was performed for each GO
category, assuming an equal distribution between organisms as
null hypothesis, followed by a Bonferroni correction. The results
of this procedure were the GO categories that are significantly
over/under-represented between organisms (with a g-value =
0.01), and thus, evolutionary remarkable.

A graphic clustering script was developed to aid correct inter-
pretation of obtained results (Fig. 5.13).
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Figure 5.13: Graphic representation of the significant GO terms resulting from a pairwise
comparison between V.vinifera and A.thaliana. The red color intensities indi-
cate the over-representation of GO term in V.vinifera compared to A.thaliana
(dark red — great over-representation).

The preliminary results coming from this method highlight
two different aspects:

e the number of significant GO categories follows the phylo-
genetic relationships between the four organisms: poplar
is the organism with the smallest number of significant GO
categories for all three ontologies, while rice has the great-
est number of significant GO categories.

e arapid analysis of the GO terms over-represented in Vitis
compared to Arabidopsis shows that grape has more genes
involved in the lignin catabolic process.

These preliminary results are not sufficient to validate the method,
but they indicates that the direction is correct. However, there
could be some problems due to differences in number and qual-
ity of annotations that can bias the final results and erroneously
consider remarkable some GO terms that are not.
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5.5.6 Orthology analysis

The word homology refers to any similarity between biologi-
cal sequences that is due to their shared ancestry. Genes with
highly similar DNA or amino acid sequences are likely homolo-
gous. Orthologs and paralogs are two types of homologous se-
quences. Orthology describes genes in different species that orig-
inate from a common ancestor, thus, separated by a speciation
event. Orthologous genes may or may not have the same func-
tion. Otherwise, homologous sequences are paralogous if they
derived from a gene duplication event and they can be present
in the same organism.

For the study of orthologous relationships of Vitis vinifera with
other plant species, an approach similar to that used for GO
analysis was adopted. Indeed, the grapevine predicted proteins
were aligned against A.thaliana, P.trichocarpa and O.sativa pro-
teomes, in order to search the orthologs in these three species. To
qualitatively estimate the level of orthology between grape genes
and genes of other plant species, a similarity score was assigned
to each alignment. At first, each grapevine gene i was aligned
with the other plant counterparts using the Smith-Waterman al-
gorithm, finding the ortholog. The resulting score s; is com-
pared with the best score BS; obtained by the self-alignment of
grapevine gene. The final score for an othologous alignment is
computed with the formula g * 100.

At this point, the scores are partitioned in four classes with inter-
vals of 25 p.p., and each species-specific alignment are assigned
to the correct class according to its score. Then, the number of
genes for each similarity class are computed and plotted. The
results, summarized in the figure 5.14, shows three clear tenden-
cies:

1. a great majority of O.sativa genes has poor similarity val-
ues. Indeed, the rice genes outperform the genes of other
organisms in the first two classes that represent up to 50%
similarity values.

2. an huge amount of P.trichocarpa genes has high similarity
values, outperforming the genes coming from other organ-
isms in the last two classes, that correspond to similarity
values grater than 50%.

3. A.thaliana genes maintain a medium behavior in all simi-
larity classes.

This analysis seem to confirm the phylogenetic relationships that
consider poplar as the nearest neighbor and rice as the most
distant organism.
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Figure 5.14: The histogram shows the similarity scores of orthologs

in different plant species. In x-axis the similarity scores
are subdivided in four classes. In y-axis the percentage
of grape proteins are indicated. The grape proteins show
a geater similarity score with poplar than with rice and
A.thaliana orthologs.
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In the previous chapters, the main methods for computational

prediction and functional annotation along with their applica-
tion in the Vitis vinifera genome were described. The annotation
data production is only the first step in the study of a genome,
because they have to be inspected, analyzed and validated by the
scientific community. Indeed, computational methods are auto-
mated systems and they can easily produce incorrect predictions
or annotations, due to stringency choices, quality of reference
database annotations, etc. Thus, the annotation data have to be
made available to the researchers for the subsequent biological
analysis and validations.
In this chapter, the grapevine database structure, storing all ge-
nome data, is described. However, genome analysis procedures
require efficient, flexible and scalable solutions to facilitate ac-
cess to these data in a rapid and interactive manner and from
disparate locations around the world. The underlying idea is
to give to the end-users an interface to the Vitis vinifera genome
database, where it can be possible to easily choose the query cri-
teria and collect the desired information. A new modular query
system that represents an useful platform to access to the grape
data was developed with CRIBI collaboration.
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6.1 DATABASE STRUCTURE

Grapevine annotation data were stored in a MySQL database?,
developed for the purpose. The designed database structure is
simple and sufficient for current data, but can easily adapted
and modeled to face the future increasing of data complexity,
e.g. alternative splicings, protein isoforms, protein tertiary struc-
tures, etc. The database has a star-topology, meaning that all
database tables refer to a central object, that in this case is gene.
Each table contains data relative to diverse, independent biolog-
ical concepts. Indeed, there is the table containing chromosome
coordinates of genes, the table with GO terms associated to each
gene, table of paralogs and orthologs, etc. All these tables are
linked to the central object gene_name, ideally represented as a
table with the sole gene name field. However, the actual cen-
tral table is gene_structure, that describes the gene chromosome,
the positions in the chromosome, the plus or minus direction of
gene and the exon-intron structure (e.g. composition of the gene
by means of CDS or UTRs). The other surrounding tables are:

o Gene_seq: this table contains the nucleotide sequences of
genes and the relative translated amino acid sequences.

o Gene_annotation: it contains the UniProtKB proteins used
for preliminary annotation of the grapevine genes.

e Grape2GO: in this table, genes are associated to correspon-
dent GO terms. In addition, beyond the description and
belonging ontology relative to GO terms, there are associa-
tions with GO plant slim terms and sources of annotation
(e.g. UniProt, Pfam, Kegg, etc.). It is worth to note that re-
dundancy is minimized: it is not possible to find the same
gene—GO term association coming from more than one
source.

o Grapezpfam: a protein domain table stores all data regard-
ing code and description of domains and position in the
protein sequence. Repeat domains can have several ta-
ble records for the same gene, representing the diverse
matches in the protein sequence. SMART and Prosite data
have the same table structure.

o Grapezkegg: in this table, each gene is associated to one or
more enzymes and to metabolic pathways involving the
associated enzymes.

o Grapeztargetp: it resumes the information regarding the
subcellular localizations of genes predicted by targetP. The
possible localizations are chloroplast, mitochondrion, secre-
tory pathways and other. A reliability score is recorded for
each gene—localization association. A similar table struc-
ture is present for WoLFPSORT data. In this case, the lo-

1 http://www.mysql.com/
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calization alternatives are more abundant, contemplating
also the dual localization.

o Grapeztmhmm: this table contains the position (if present)
of transmembrane helices in the protein sequence. More-
over, the domain topology is described. The same structure
is present for HMMtop data.

o Gene_family: each gene can be member of a gene family. In
this table there are the gene families identified by CD-HIT
with the relative number of components.

o Gene_syn: it contains the possible alternative names, gene
symbols or synonyms of genes found in the annotation
procedures.

The current database structure offers a rapid, simple but exhaus-
tive solution for the management of grapevine data. However,
in the next future there is the need to re-model and extend the
database structure to deal with an huge amount of heteroge-
neous data and to fully exploit the relational potentialities.

6.2 DATABASE INTERFACE FEATURES

Genome databases management systems already exist [94; 60;

43], providing fast and flexible querying procedures of large bio-
logical data sets and integration with third-party data and tools.
However, these systems are useful for integrating information
deposited into diverse databases around the world and deal-
ing with not domain-specific knowledge. This implies an high-
level configuration process, reflecting a database complexity not
present in the Grape database. For these reasons, a simpler sys-
tem that maintains flexibility but involves a more agile config-
uration procedure was implemented. This does not exclude in
the future, with the growth of grape data volume and complex-
ity, to extend and improve actual functionalities or adopt a solid
system as BioMart [94].
The main goal of this project is to provide to the users a power-
ful tool for the delivery of customized sets of grape genome data.
In the planning phase, there was the definition of the main prop-
erties that a database interface must have to be useful in data
retrieval processes: effectiveness, efficiency, modularity, ease of
use and configuration. Moreover, since database are organized
around genes, the system can be defined as gene-centric. All the
possible queries are built in relation to the central object, that
is gene. In this way, all delivered data refer to the presence or
absence of some properties on the genes. The query results are
lists of genes that have some protein domains, that are anno-
tated with some kind of GO term or that participate in specific
metabolic pathways, etc., according to defined criteria.

77

Interface to Grape
database has to be
simple but efficient
in data mining
processes



Ranking system
helps the user in the
evaluation of results

Modularity faces the
interface update or
extension problems

78

EFFECTIVENESS Two common problems affect the enquiring
of genome databases: the large amount of information that can
result from query procedures and the little flexibility in the choice
of query criteria. In this way the results analysis and the selec-
tion of the significant data become extremely difficult.

A possible solution for the first aspect can be represented by
classification systems, that assign a significance score to results.
Therefore, in the query platform a ranking system, that can aid
the end-user in the evaluation of results, was implemented al-
lowing a direct assessment of result significance. In particular,
all resulting data are shown in decreasing order on the base of
satisfied criteria, chosen in a previous step.

For what concerns the second aspect, the database interface is
extremely flexible because it can be easily extended with new
queries according to the user needs, covering any information
present in the database.

erFriciENCY The choice of a large number of selection criteria
can result in long waiting periods, because the server needs a
lot of time to process complex queries. This issue was resolved
dividing complex queries in simple ones. Each simple query
is independently processed by the server, decreasing the execu-
tion time. The merging of results is accomplished in a post-
processing phase, when the ranking system collects all the out-
put of simple queries and produces the final weighted results.

MODULARITY Ina genome project there is a continuous increase
of data volume and heterogeneity, and database update or exten-
sion events are not rare. Thus, it is essential for a database inter-
face to be modular and flexible, adapting to new structures and
allowing the composition of new selection possibilities or the
modification of the old ones. In the query platform this mod-
ularity was implemented separating the software implementa-
tion from configuration level. In this way any modification of
query possibilities is realized without the modification of soft-
ware code. To do that, the interface software has to maintain the
same behavior in presence of different configurations, that de-
scribe the query parameters. This is possible by structuring the
information and encapsulating it in a general data structure that
describes and generalizes all database queries. Thus, different
configuration data are presented to the software with the same
form. This goal was achieved using an XML data structure. XML
(eXtensible Markup Language) is a meta-language that defines
and describes the structure of information (appendix A). In par-
ticular, an XSD (XML Schema Definition) was designed to guide
the construction of XML configuration files. In this way, through
a simple editing process of XML files, it is possible to change the
database interface, adding (or removing) database interrogation
possibilities without intervening on software code.
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USER-FRIENDLINESS A database interface is a tool developed
for users that probably have no computing expertise. Thus, it
has to be easy and immediate. The interface software employs
intuitive web forms for searching and it has been implemented
through CGI scripts, that automatically read XML files and trans-
late them in HTML pages. Hence, the user can interactively fill
out forms, choosing the criteria for filtering the output data. The
results are shown in another web page, where they are ordered
according to score assigned by the ranking system.

On the configuration side, although XML helps the developers
in the description of queries, it is not easy to edit without ap-
propriate tools. For this reason, there is a planning to develop a
Graphical User Interface that improves and facilitates the config-
uration procedures (reading and writing the XML configuration
files).

63 INTERFACE IMPLEMENTATION

The first release of database interface has been developed us-
ing a web-based system written in Perl. The querying of Grape
database through this interface is organized into three web pages
that accomplish all interface functionalities: query page, result
page and gene report page. Below is a detailed description of
each page. The system is designed around three levels:

o the first level consists of the Grape database, implemented
in MySQL RDBMS. It contains all genome data organized
in several tables gene-centered.

o the second level is represented by the web interface and
the XML configuration files. In particular, there are two
XML files that guide the construction of query page and
gene report page. Both files are built on an unique XSD
starting from two different root nodes. These files contain
mainly the information about query construction, but also
for graphical templates and layouts.

e the third level is centered on the engine, a server-side pro-
gram that collects the user input provided using the guery
page, transforms them in SQL statements, processes them
and elaborates the results through the ranking system. Fi-
nally, it outputs the scored list of genes in the result page.

The modular architecture based on XML gives the possibility in
future releases to extend this interface to other implementation
forms, as web services.

6.3.1  Query page

The query page represents the first stage in the querying pro-
cedures (Fig. 6.1). It is the real query interface that allows users
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to group and refine data based upon many different criteria. The
page is organized in several sections, each one representing a
simple, independent query to database. At present, for conve-
nience of thinking, each section corresponds to a single biologi-
cal property of the gene (e.g. presence of protein domains, signal
patterns, annotation with some GO terms, etc.), but it is possi-
ble to create more complex queries involving different biological
domains. In any case, the linkage between diverse biological
features is highlighted by the ranking system in following steps,
and there is not particular reason to complicate server requests.
Each section is described in the XML query file, that specifies
the parameters used for database request (database, table, fields
to extract, filters, etc.), the form layout (scrolling list, popup
menu, textfield), the data to use for selection (select HTML
tag in scrolling list), the graphical template, the titles and header
comment and position in the left-side menu. Moreover, some
sections could represent data of great importance, and that are
essential for further analysis. In this case, for each section there
is the mandatory box that excludes from the output, if checked,
all the genes that do not satisfy the criteria chosen in that particu-
lar section. The sections are grouped in biological class (Protein
domains, ontologies, etc.) and subclass (Gene Ontology, PFAM,
etc.), according to the information extracted from the associated
query. This classification is summarized in the left-side menu.
In this page, the user has only to select the interesting sections
and the criteria to filter the results. After the "Submit" button
clicking, the chosen parameters are sent to the engine for query
processing.

Query page allows
to configure the
searching criteria

GRAPE query page

Selected Data

GO Molecular function Gene Ontology/Molecular function
KEGG Metabalic pathways/KEGG

Gene Ontolagy: molecular_function { 27 ):

= Metabolic pathways

Protein domains

= Ontologies binding
carbohydrate binding
catalytic activity
chrematin binding

Plant Ontology
= Gene Ontology

Malecular function DNA binding -
Cellular companent
- o select
Term (all ontologies) manl:jata
Biological process i
Annotation KEGG maps

= Cellular localization;

Metabalic pathways (97 ):

Signalling
Transmembrane beta-Alanine metabolism
Biosynthesis of unsaturated fatty acids
= General Biotin metabolism
Butanoate metabolism
Gene name Carban fixation in photesynthetic organisms

T

Figure 6.1: Page of query selection criteria.
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6.3.2 Result page

This web page is directly generated by the engine. This script

receives the user input provided by the query page and auto-
matically generates all of the structured query language (SQL)
required to process the query. As explained in the previous para-
graph, each section corresponds to a simple, independent query.
The engine system processes each query independently from the
others. The single query results consist of two terms: the key
term, that is gene_name, and the database field corresponding to
the filtering criteria. Only in the next stage the results of the
single queries are merged referring to the key term. The rank-
ing system counts for all the gene occurrences in the different
queries and sorts genes in decreasing order based on the number
of satisfied queries. Obviously genes that do not satisfy manda-
tory sections are cleaned from the ranking.
The generated web page gives a brief summary of the score dis-
tribution amongst results, allowing to decide the score threshold
for filtering (Fig.6.2). The gene list is presented in a table where
rows correspond to genes and columns to submitted queries.
Each row describes the scoring pattern of a gene, where the cell
related to satisfied criteria is highlighted.

Results page
implements the
ranking system for

evaluating the result

data

Number of hits with score 4: 1 (1) &

Number of hits with score 3 - 529 (530) &

Number of hits with score 2 : 1720 [ 2260) &

Number of hits with score 1 : 7283 [ 9533) &

Submit

gene_name Score PFAM_desc PROSITE_desc KEGG BP MF PROSITE
JGVv90.120: 4 1 0 0 1 2 1
JGVVET.167 3 1 0 0 1 1 i
JGVv1.780 3 1 0 0 1 1 0
JGVv3.162 3 1 0 ] 1 1 0
JGVv28.245 3 1 0 ] 1 1 0
JGVv11.239 3 1 0 0 1 1 i
JGVv219.5 3 1 0 0 1 1 0
JGVVv100.55 3 1 0 ] 1 1 0
JGVv41.145 3 1 0 ] 1 1 0

Figure 6.2: Page of query results.

6.3.3 Gene report page

Once obtained a gene list of a particular interest, a biologist
may want to further investigate other genomic aspects, not in-
volved in the filtering phase. In the result page, each gene is
linked to another web page, called gene report, where all informa-
tion about gene stored in the database can be visualized (Fig. 6.3).
As the query page, this report is organized in sections correspond-

Gene report page
offers a complete

landscape of gene
properties
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ing to different biological features. An XML file, similar to that
which governs the creation of query page, guides the sections
construction. In this case, it is designed to deal with descriptive
data, focusing on information presentation rather than query
filters. An important feature is the possibility to define in the
XML a web link for a particular record presented in the report,
giving the possibility to reach external resources, increasing the
analysis potentialities. An example is the gene families section,
where the family_id is linked to a script that allows to investi-
gate graphically the phylogenetic tree.

GRAPE gene product report

Gbrowse link:
JGVv90.120
GO section
Report GO codes related to gene
GOcode GOdesc GOslim GOslim_desc ontology ref_db
G0:0005488 binding GO:0005488 binding F UniprotkB
GO:0003677 DNA binding GO:0003677 DNA binding F UniprotkB
G0O.0005634 nucleus GO:0005634 nucleus C UniprotkB
GO:.0055114 oxidation reduction GO:.0008152 metabolic process P Prasite
G0:0016491 |oxidoreductase activity G0:0003824 |catalytic activity F Prosite
G0:.0051090 regulation of transcription factor activity GO:.0006350 transcription P UniprotkKB
500003702  |RNA polymerase Il transeription factor activity G0:00305 transcription regulatar activity F Uniprot<s
G0O.0006352 transcription initiation GO:.0006350 transcription P UniprotkKB
00016986  |transcription initiation factor activity G0:00305 transcription regulatar activity F Uniprot<s
G0.0003743 translation initiation factor activity GO:.0008135 translation factor activity, nucleic acid binding F UniprotkKB
Gene structure section
Get the gene position and sequences
name JGWW90.120
nuc_seq getSeq |
prot_seq | getseq |
start
Prosite section
Protein demains
domain code description
(ASN_GLYCOSYLATION PS00001 N-glycosylation site
CAMP_PHOSPHO_SITE PS00004 CcAMP- and cGMP-dependent protein kinase phasphorylation site
PKC_PHOSPHO_SITE PS00005 Protein kinase C phospharylation site
CK2_PHOSPHO_SITE PS00006 Casein kinase Il phaspharylation site
TYR_PHOSPHO_SITE PS00007 Tyrosine kinase phaospharylation site
MYRISTYL PS00008 N-myristoylation site
AMIDATION PS00009 Amidation site
[ALDOKETO_REDUCTASE_2 PS00062 |Aldo/keto reductase family signature 2
PFAM section
Protein domains using HMMPFAM
Domain Code Description start end Score
DUF 1548 PFO7571 Protein of unknown function (DUF 1546) 262 355 1.6e-57
|TaF [PFo2969 | TATA box binding protein assaciated factor (TAF) |2 [68 [1e-a0

Figure 6.3: Gene report page.

6.4 QUERY XSD

The main feature of this query system is the modularity and
flexibility that allows to extend the interface in few simple oper-




ations. This goal can be achieved by structuring the query SQL
statements and describing them in an XML file. By this way,
query information is encapsulated in a standard data structure
and the system software can build and process the SQL state-
ments according to the parameters present in specific xml-tags.
Each XML file can be represented with a tree structure, com-
posed of nodes and node-linking branches, that obeys the rules
defined in an XSD (Xml Schema Definition). XSD is a language
that describes XML files and defines the allowed elements (or
nodes), the associated data-types and the hierarchical relations
between elements. In a XSD many root nodes can be identified as
starting elements guiding the XML formation. In other words,
the XML file represents the instance of an XSD, given a root
node.

For the query system, an XSD was designed to define the struc-
ture necessary for querying procedures and, since this is a web-
based system, features describing the layout and web environ-
ment. In this manner, for adding a section in the query page it
is enough to add a xml section in the query.xml, filling out all
the fields necessary to build a well-advised SQL statements and
HTML code.

The designed XSD consists of two root nodes, query and report,
that create respectively the query.xml, used by query page, and
report.xml, used by gene report page. There are few differences
between these files reflecting the different task accomplished by
the related stage. In fact, gene report page is focused more on
descriptive features and does not allow the interactivity given in
the query page.

Starting from the query root node, the XSD provides for three
child nodes, as summarized in Fig. 6.4:

secTioNs this node embodies all the query sections, that
correspond to the data structure used for queries. It has
one child node, that is section, with a 1 : n multiplicity.
This means that sections node can have min one and max n
section children.

DATABASE this node contains all the information for the
connection to Grape database.

LAYoUT the title, comments and web page templates related
to the query page can be defined trough this layout node.

Below is a description of xml trees that generate from these three
basic nodes.

6.4.1  Section definition

The sectioN node allows to completely define each section
that will appear in the query page. Each section consists of two
levels: a background and a foreground level. The former con-
tains the knowledge needed to build the SQL query as the refer-
ence database table or the table fields to extract; the latter groups
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Figure 6.4: Relation between QuUERY root and its three child nodes: sections, database and
layout.

all the visual and interactive features as the section title, the web
template, the web form layout and mainly the filtering criteria
that build the SQL where clause.

Each sectioN has an attribute sName, that is an unique identifier,
and is formed by four nodes (Fig. 6.4):

1. DATA: it contains all parameters necessary to the creation

of SQL statements. It is a mandatory node, because each
section must be associated to a database query. It gener-
ates a selectType subtree (Fig. 6.5) and its child nodes re-
flect the typical data required by a select SQL statement:
the piIsTINCT option, FIELDS representing the data to ex-
tract from database, reference TABLES, CONDITIONS for the
where clause and the optional nodes orRDER and LIMIT.
In particular, the TABLE node offers the possibility to inter-
sect two or more tables, if necessary (Fig. 6.6). The binary
relation for table pairs can be defined through the RELA-
TIoN node that allows to specify the intersection fields and
logic. A particular subtree class, named predType, is used in
several tree regions where data characterizing a database
field (reference table, field name and optional alias) are re-
quired, e.g. p1 or p2 child nodes of RELATION.

2. VALUEOPTIONS: it is the XSD portion that describes the
filtering criteria of each section. It gives to the user the
possibility to limit the initial search to a subset with partic-
ular characteristics. It consists of a FLAYouT node that de-
fines the visual web form types (e.g. scrolling list, popup
menu, textfield), the possibility of multiple choice or the
form size. In the case of a selection web form, the different
options to choose are determined by oPTDATA node, that
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bype | mitc; fieldType
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bype | mitey: formbsyvoLt Type

s positivelrteger
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Figure 6.5: Part of the secTioN subtree is represented. The nodes necessary to construct
the SQL query are expanded: DATA (figure on the top) and vALUEOPTIONS
(figure on the bottom).
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Figure 6.6: The TABLE node allows to specify the tables involved in the query: they can be
linked through the RELATION optional node that defines a binary connection.
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builds a selectType subtree (described above). In this way,
the listed options are specified by another database query.
The criteria selection accomplished by the user will com-
plete the where clause of the SQL statement defined by the

DATA node.

VALUEOPTIONS outlines the interactive part of the XSD and
this node represents the main difference between gquery and
gene report xml files, because the report stage does not con-

template interactivity.

3. SLAYouT: this node is necessary to set-up the web environ-
ment related to the specific section (Fig. 6.7). It is possible
to insert a section title and a brief description of the asso-
ciated query, or choose a visual template and position the
section in the left-side menu of query page. In particular,
the menu classification consists of at maximum three cate-
gories that stands for the abstraction levels: in increasing
order of specificity there are class, subclass and final nodes.

B attributes

mitg:data

] bype | mig selectType 4

mitgvalue Options

_type mte valueCptionsType 4

qSectionType [

_E)E'__ mitesLayout =
v |bype [mtgslayoutType

b UmtgsLink
Lo
thype | mteplinkType

Emt(|:sTitIe
mtcytitleDataType

Enlt(|:sDo.=.-st:ri|)tion
ey deschataType

“mtg:sTheme

xzck string

mtg:menu

=
bype | micmenuType

Figure 6.7: The sLAYyouT subtree is represented.

4. SLINK: in some cases it can be useful the association of a
web link (e.g. a simple URL or a web server script) to a
specific data record. For this purpose, the XSD affords the
linkType subtree allowing to specify the link typologies and
the potential parameters needed by the URL or script. In
this case, the sLINK is a linkType node that binds the query
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results of one specific section to a well-defined link in the
result page.

Complex queries definition

When there was the description of selectType subtree, the coNn-

DITIONS node was mentioned: it defines the where clause of a
SQL statement. This statement part is very important because
it determines the query filters. The usage of several databases
and tables or restriction conditions involving different fields and
values makes the queries extremely complex. The structuring
of this kind of information, and so the xml transformation, be-
comes very difficult without an appropriate strategy.
For this reason a system describing the where clause was studied.
This system represents a good balance between information clar-
ity and complexity. To better understand the adopted approach,
it is necessary to introduce the concept of simple and complex
predicate. A typical SQL statement is:

select f1,f2 from t1,t2 where pred:i and pred2

In this where clause model, two simple predicates, represented
by pred1 and predz, are connected trough a logic operator (e.g.
AND, OR), forming a complex predicate. Otherwise, a simple
predicate is a "key-value" pair bound by relational operators (e.g.
=,! =>etc.). In other words, simple states are filters and com-
plex states represent the logic relation between simple states.
Combinations of simple and complex predicates can create com-
plicated nested situations, as shown in Fig. 6.8, where there
are three simple and two complex predicates. To facilitate the
schema design and the software management, context-free gram-
mars were used. They provide a simple and precise mechanism
to describe the rules by which sentences in written language are
created starting from smaller blocks, e.g. words. In this case,
the sentence stands for the SQL where clause. Thus, the smaller
blocks and the rules that guide the sentence construction were
defined. A context-free grammar® is formed by a finite set of
states and relations amongst states, called rules or productions.
The resulting grammar is:

S — (POP)|Ale

P — (POP)|A

A — BDC

B—-k

C—v
D—->|>=|<|<=|l=
O — ORIAND

S is the start symbol that shows the possible alternatives for

where clause construction: complex predicate (POP), simple pred-

icate A or null (no filters). Complex predicates has the form POP

context-free means that the application of a rule is independent from the con-

text, formed by previous or following states.
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Figure 6.8: Decomposition of a where clause sentence.
key_n=val_n are simple predicates, the wrappers A and B outline the

| DATA STORAGE AND DATABASE INTERFACE

where two objects P (simple or complex predicates) are connected
by AND/OR logic. For example, in the fig. 6.8 the wrapper B is
a POP state where the right-hand P represents a simple predi-
cate (field3) and the left-hand P is a complex state, that is wrapper
A. Thus, the structure (POP) can be explicited as ((POP)OA).
The wrapper A embodies a second (POP) state formed by two
simple predicates (field1 and field2). Thus, ((POP)OA) becomes
((AOA)OA). In this way, this grammar contemplates all the
possible combinations of simple predicates, guiding a complete
definition of any SQL where clause.

According to the grammar rules, in the XSD there are two nodes,
siMPLE and comPLEX, that are both children of coNDITIONS
node (Fig. 6.9). Both simpLE and compLEX have two ID at-
tributes, respectively sid and cid, that are fundamental for the
construction of where sentence. In particular, the compLEX node
has three child nodes, F1, LoGic and F2 that reflect the grammar
POP state. The F1, F2 content is an unique identifier correspond-
ing to a cid, calling another compLEX node, or a sid, referring to
a simMpLE predicate. Differently from compPLEX, SIMPLE node co-
incides with the grammar simple state, BDC, representing the
key-value pairs. Moreover, the 1 : n multiplicity of vaLUE allows
the insertion of several values for each simple predicate, linked
each other by an OR logic operator.

field12

fieldl logicl_2 field2

wrapper A

logicl2_3  field3

key3=val3

wrapper B

complex predicates.

6.4.2 Layout definition

The second child of QUERY node is QLAYOUT. In this section, it
can be possible to specify all the graphical and descriptive fea-
tures of the web page. There is the possibility to set a title, an
optional subtitle and a brief description about what page is used
for (Fig. 6.10). Moreover, different css templates can be chosen
adjusting the PTHEME tag, allowing to change also the visual
properties when the database interface is configured for differ-
ent projects. At present, oLAYouUT is formed by a minimal set
of child nodes. In future, it is hopeful to extend the configur-

The boxes described by
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Figure 6.9: The XSD representation of SQL where clause. sid or cid data types are
the only admitted values for F1 and F2, that are comPLEX child nodes.

ing possibilities, providing for an extremely fine-grain web style
management.

6.4.3 Database definition

QDATABASE node refers to the database connection. The web
server needs some information to link to MySQL daemon, as
the database location, the username and password for accessing
a particular database. These data are used in every step involv-
ing a database connection, that is the querying processes that
are the basement of the database interface. This node offers the
possibility to set-up all the parameters necessary for database
connection (Fig. 6.10).

65 FUTURE PERSPECTIVES

The database interface project was born from the need of the
Grape consortium people to access the annotation data stored
in Grape database. The first attempts consisted of a simple in-
terface, where a fixed hard-coded database queries allowed to
collect a limited number of data. The increasing requests of in-
terface extensions required large amount of time to modify the
software code, and nobody else than the code developer was
able to change it. These facts brought to the decision to adopt
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Figure 6.10: XSD structure of QLAYOUT and QDATABASE nodes.

a different approach and to study an agile system to deal with
genome databases. The described database interface is the re-
sult of this need, but it is at its earlier release. A lot of work
has to be done to reach a strong and solid solution. The further
developments could follow three directions:

e xsD REFINEMENT: the XML schema seems to be complete,
at least to define the queries used in the Grape database.
However, the goal is to design a schema really general, that
comprises all SQL situations. Thus, the actual XSD needs
to be tested for all kind of SQL statement and, if necessary,
to be extended.

® SOFTWARE ADAPTATION: the actual release of interface soft-
ware bases on a previous XSD version compared with that
described above. This old version is simpler and deals with
minimal queries. The next step is represented by the adap-
tation of software code making it able to read the new XML
schema. Moreover, it is desirable to completely separate
the formal features from the content ones, e.g. managing
the whole graphical aspects from XML file.

°* WEB SERVICES IMPLEMENTATION: the database interface
has been developed as a web-system. All the querying pro-
cedures are processed by a web-server and the results are
published as HTML pages. This implementation approach
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can represent a limit, especially when a great number of
analyses has to be performed. In particular, the construc-
tion of workflows, that recursively and automatically exe-
cute some kinds of analysis, is avoided with this web im-
plementation, that rather requires the interactive user con-
tribution. In these cases, a system uncoupled with web en-
vironment could be more useful. The web services technol-
ogy considers these possibilities of automation. Web ser-
vices are software systems that allow the interoperability
and the communication between software applications. A
dedicated message system makes possible the data-exchange
through the HTTP protocol between software applications
written with different programming languages, realizing
an efficient request-response procedure.

In this case, with a web-services approach the human inter-
action will be minimized and the query procedures could
be iterated and processed by means of software scripts or
workflow applications as Taverna [48].

9
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XML

XML (eXtensible Markup Language) is a meta-language that
defines and describes the structure of a document or information.
In other words, XML is a set of syntactic rules to electronically
encode documents. These rules are specified and maintained by
W3C, that is the main international standards organization for
the World Wide Web'.

XML is particularly suitable for applications where data consis-
tency and structure are essential: it was designed to transport
and store data. Conceptually, XML is similar to HTML (used for
viewing web pages), but XML is more content-oriented: XML
was designed to carry and store data, not to display data.

XML documents are textual files, made up of storage units called
entities. They contain content data, that represent the informa-
tion to be stored in the document, and fags, that are markup
constructs necessary for the description of the document con-
tent and logical structure. XML has not predefined tags, and
one must define its own tags to built new languages.

The box below gives an example of an XML document that de-
scribes an hypothetical biological sequence.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <sequence>

3 <name id="scf1i_2">JGVvi.2</name>
4 <chromosome>14</chromosome>

5 <type>gene</type>

6 </sequence>

The first line is constituted by the mandatory XML declaration.
The remaining lines describe the XML elements. An element is a
logical component of a document and it is enclosed by a start-tag
and an end-tag. The former is enclosed by "<" and ">", while the
latter is enclosed by "</" and ">". Each element can include a
content or other elements (child elements). The second line rep-
resent the root element sequence that contains other elements:
name, chromosome and type. The markup construct type at line
5 constitutes the type element and its content is gene. A further
markup construct is represented by attribute, that is a key-value
pair present within a start-tag (attribute "id" in line 3).
Therefore, trough XML it is possible to encode any type of infor-
mation, because all tags can be freely defined.

1 http://www.w3.org/
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[ XML

An XML document has to be well-formed and valid. It is well-
formed if it satisfies a list of syntax rules, e.g. only one root el-
ement is admitted or start/end-tags have to be correctly nested.
It is valid if it is complying to an associated XSD (Xml Schema
Definition). XSD is a language that describes XML, defining the
permitted elements, the hierarchical relations between elements
and also the data-type associated to each element content. In
the box above, the XSD (not showed) specifies that sequence
element can have name, chromosome and type children. But
chromosome element can not be child of type element.

An XML document can be represented as a tree, where elements
represent tree nodes and the edges are the hierarchical relation-
ships between nodes (Fig. A.1).

sequence

i

chromosome
chromosome

Figure A.1: XML tree representing the XML document described in
the box. The XSD associated to the XML does not allow
the type—chromosome relation.
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