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Sommario

I rover marziani e, più in generale, i robot per l’esplorazione di asteroidi e piccoli corpi

celesti, richiedono un alto livello di autonomia. Il controllo da parte di un operatore deve

essere ridotto al minimo, al fine di ridurre i tempi di percorrenza, ottimizzare le risorse

allocate per le tele-comunicazioni e massimizzare l’output scientifico della missione.

Conoscendo la posizione obiettivo e considerando la dinamica del veicolo, gli algoritmi

di controllo forniscono gli input adeguati agli attuatori. Algoritmi di pianificazione della

traiettoria, sfruttando modelli tridimensionali del terreno circostante, evitano gli ostacoli

con ampi margini di sicurezza. Inoltre i rover per le missioni di sample and return, previste

per i prossimi anni, devono dimostrare la capacità di tornare in un luogo già visitato per il

campionamento di dati scientifici o per riportare i campioni raccolti ad un veicolo di risalita.

In tutte queste task la stima del moto risulta essere fondamentale. La stima del moto su altri

pianeti ha la sua peculiarità. L’odometria tramite encoder, infatti, presenta elevate incertezze

a causa dello slittamento delle ruote su superfici sabbiose o scivolose; i sistemi di navigazione

inerziale, nel caso della dinamica lenta dei rover, presentano derive non tollerabili per una

stima accurata dell’assetto; infine non sono disponibili sistemi di posizionamento globale

analoghi al GPS.

Sistemi della stima del moto basati su telecamere hanno dimostrato, già con le missioni

MER della NASA, di essere affidabili e accurati. Uno di questi sistemi è l’odometria visuale

stereo. In questo algoritmo il moto è stimato calcolando la roto-traslazione di due nuvole di

punti misurate a due istanti successivi. La nuvola di punti è generata tramite triangolazione

di punti salienti presenti nelle due immagini. Grazie a tecniche di Simultaneous Localization

and Mapping (SLAM) si dà la capacità ad un rover di costruire una mappa dell’ambiente

circostante e di localizzarsi rispetto ad essa. Le tecniche di SLAM presentano due vantaggi:

la costruzione della mappa e una stima della traiettoria più accurata, grazie alla soluzione di

problemi di minimizzazione che coinvolgono la stima di più posizioni e landmark allo stesso

tempo.

Subito dopo l’atterraggio, una delle task principali che devono essere svolte dal centro

operativo per il controllo di rover è il calcolo accurato della posizione del lander/rover
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rispetto al sisma di riferimento inerziale e il sistema di riferimento solidale al pianeta, come

il sistema J2000 e il Mars Body-Fixed (MBF) frame. Sia per le operazioni scientifiche che

ingegneristiche risulta fondamentale la localizzazione accurata rispetto a immagini satellitari

e a modelli tridimensionali della zona di atterraggio.

Nella prima parte della tesi viene trattato il problema della localizzazione di un rover

rispetto ad un’immagine satellitare geo referenziata e orto rettificata e la localizzazione

rispetto ad un modello di elevazione digitale (DEM), realizzato da immagini satellitari. È

stata svolta l’analisi di una versione modificata dell’algoritmo Visual Position Estimator for

Rover (VIPER). L’algoritmo trova la posizione e l’assetto di un rover rispetto ad un DEM,

comparando la linea d’orizzonte locale con le linee d’orizzonte calcolate in posizioni a priori

del DEM. Queste analisi sono state svolte in collaborazione con ALTEC S.p.A., con lo scopo

di definire le operazioni che il Rover Operation Control Center (ROCC) dovrà svolgere per la

localizzazione del rover ExoMars 2020. Una volta effettuate le operazioni di localizzazione,

questi metodi possono essere nuovamente utilizzati come verifica e correzione della stima

della traiettoria.

Nella seconda parte della dissertazione è presentato un metodo di odometria visuale

stereo per rover ed un’analisi di come la distribuzione dei landmark triangolati influisca

sulla stima del moto. A questo scopo sono stati svolti dei test in laboratorio, variando la

distanza della scena. L’algoritmo di odometria visiva implementato è un metodo 3D-to-3D

con rimozione dei falsi positivi tramite procedura di RANdom SAmple Consensus. La stima

del moto è effettuata minimizzando la distanza euclidea tra le due nuvole di punti.

L’ultima parte di questa dissertazione è stata sviluppata in collaborazione con il Jet Propul-

sion Laboratory (NASA) e presenta un sistema di localizzazione per rover hopping/tumbling

per l’esplorazione di comete e asteroidi. Tali sistemi innovativi richiedono nuovi approcci

per la localizzazione. Viste le risorse limitate di spazio, peso e energia disponibile e le

limitate capacità computazionali, si è scelto di basare il sistema di localizzazione su una

monocamera. La localizzazione visuale in prossimità di una cometa, inoltre, presenta alcune

peculiarità che la rendono più difficoltosa. Questo a causa dei grandi cambiamenti di scala

che si presentano durante il movimento della piattaforma, le frequenti occlusioni del campo

di vista, la presenza di ombre nette che cambiano con il periodo di rotazione dell’asteroide e

la caratteristica visiva del terreno, che risulta essere omogeno nel campo del visibile.

È stato proposto un sistema di visual SLAM collaborativo tra il rover tumbling/hopping

e il satellite “madre”, che ha portato il rover nell’orbita di rilascio. È stato effettuato lo

stato dell’arte dei più recenti algoritmi di visual SLAM open-source e, dopo un’accurata

analisi, si è optato per l’utilizzo di ORB-SLAM2, che è stato modificato per far fronte al

tipo di applicazione richiesta. È stata introdotta la possibilità di salvare la mappa realizzata
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dall’orbiter, che viene utilizzata dal rover per la sua localizzazione. È possibile, inoltre,

fondere la mappa realizzata da orbiter con altre misure d’assetto provenienti da altri sensori a

bordo dell’orbiter.

L’accuratezza di tale metodo è stata valutata utilizzando una sequenza di immagini

raccolta in ambiente rappresentativo e utilizzando un sistema di riferimento esterno. Sono

state effettuate simulazioni della fase di mappatura dell’asteroide e localizzazione della

piattaforma hopping/tumbling e, infine, è stato valutato come migliorare le performances di

questo metodo, in seguito al cambiamento delle condizioni di illuminazione.





Abstract

Planetary exploration rovers should be capable of operating autonomously also for long paths

with minimal human input. Control operations must be minimized in order to reduce traverse

time, optimize the resources allocated for telecommunications and maximize the scientific

output of the mission.

Knowing the goal position and considering the vehicle dynamics, control algorithms have

to provide the appropriate inputs to actuators. Path planning algorithms use three-dimensional

models of the surrounding terrain in order to safely avoid obstacles. Moreover, rovers, for

the sample and return missions planned for the next years, have to demonstrate the capability

to return to a previously visited place for sampling scientific data or to return a sample to an

ascent vehicle.

Motion measurement is a fundamental task in rover control, and planetary environment

presents some specific issues. Wheel odometry has wide uncertainty due to slippage of

wheels on a sandy surface, inertial measurement has drift problems and GPS-like positioning

systems is not available on extraterrestrial planets. Vision systems have demonstrated to be

reliable and accurate motion tracking measurement methods. One of these methods is stereo

Visual Odometry. Stereo-processing allows estimation of the three-dimensional location of

landmarks observed by a pair of cameras by means of triangulation. Point cloud matching

between two subsequent frames allows stereo-camera motion computation. Thanks to Visual

SLAM (Simultaneous Localization and Mapping) techniques a rover is able to reconstruct a

consistent map of the environment and to localize itself with reference to this map. SLAM

technique presents two main advantages: the map of the environment construction and a

more accurate motion tracking, thanks to the solutions of a large minimization problem

which involves multiple camera poses and measurements of map landmarks.

After rover touchdown, one of the key tasks requested to the operations center is the

accurate measurement of the rover position on the inertial and fixed coordinate systems, such

as the J2000 frame and the Mars Body-Fixed (MBF) frame. For engineering and science

operations, high precision global localization and detailed Digital Elevation Models (DEM)

of the landing site are crucial.
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The first part of this dissertation treats the problem of localizing a rover with respect to

a satellite geo-referenced and ortho-rectified images, and the localization with respect to a

digital elevation model (DEM) realized starting from satellite images A sensitivity analysis

of the Visual Position Estimator for Rover (VIPER) algorithm outputs is presented. By

comparing the local skyline, extracted form a panoramic image, and a skyline rendered from

a Digital Elevation Model (DEM), the algorithm retrieve the camera position and orientation

relative to the DEM map. This algorithm has been proposed as part of the localization

procedure realized by the Rover Operation Control Center (ROCC), located in ALTEC, to

localize ExoMars 2020 rover after landing and as initialization and verification of rover

guidance and navigation outputs. Images from Mars Exploration Rover mission and HiRISE

DEM have been used to test the algorithm performances.

During rover traverse, Visual Odometry methods could be used as an asset to refine the

path estimation. The second part of this dissertation treats an experimental analysis of how

landmark distributions in a scene, as observed by a stereo-camera, affect Visual Odometry

measurement performances. Translational and rotational tests have been performed in many

different positions in an indoor environment. The Visual Odometry algorithm, which has

been implemented, firstly guesses motion by a linear 3D-to-3D method embedded within

a RANdom SAmple Consensus (RANSAC) process to remove outliers. Then, motion

estimation is computed from the inliers by minimizing the Euclidean distance between the

triangulated landmarks.

The last part of this dissertation has been developed in collaboration with NASA Jet

Propulsion Laboratory and presents an innovative visual localization method for hopping and

tumbling platforms. These new mobility systems for the exploration of comets, asteroids,

and other small Solar System bodies, require new approaches for localization. The choice

of a monocular onboard camera for perception is constrained by the rover’s limited weight

and size. Visual localization near the surface of small bodies is difficult due to large

scale changes, frequent occlusions, high-contrast, rapidly changing shadows and relatively

featureless terrains.

A synergistic localization and mapping approach between the mother spacecraft and the

deployed hopping/tumbling daughter-craft rover has been studied and developed. We have

evaluated various open-source visual SLAM algorithms. Between them, ORB-SLAM2 has

been chosen and adapted for this application. The possibility to save the map made by orbiter

observations and re-load it for rover localization has been introduced. Moreover, now it is

possible to fuse the map with other orbiter sensor pose measurement.

Collaborative localization method accuracy has been estimated. A series of realistic

images of an asteroid mockup have been captured and a Vicon system has been used in order
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to give the trajectory ground truth. In addition, we had evaluated this method robustness to

illumination changes.
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Chapter 1

Introduction

Thanks to in situ scientific measurements, robotics explorers could greatly increase the

scientific return of planetary and small solar system bodies exploration missions. NASA

Mars Exploration Rovers with the synergistic coordination of three orbiter, Mars Odyssey,

Mars Express and Mars Reconnaissance Orbiter, have shown that the surface of Mars has

been modelled by the iteration with water across its history. Mars exploration program is

now following a scientific goal know as “Seek Signs of Life”. Mars Science Laboratory

(MSL), which was designed to search for past and present habitable environments at Gale

crater, has the capability to detect complex organic molecules in rocks and soils [1]. MSL

mission had also demonstrated long-range mobility, long term surface operations and the

sky crane precision landing. MSL, launched in 2011, has the following scientific objectives:

assess the biological potential of at least one target; study the geology and geochemistry of

the landing region; examine planetary process relevant to past habitability and describe the

spectrum of the surface radiation. The Pasteur payload of the ExoMars 2018 rover, with his

suite of instruments dedicated to exobiology and geochemistry, is able to analyse sample up

to a depth of 2 m [2]. It will investigate signs of the past and present life on Mars, inspect the

planet’s subsurface and deep interior in order to figure out the evolution and the habitability

of Mars.

In the next decade Mars Exploration efforts will be focused in the preparation of a Mars

sample-return campaign. The possibility to analyse Mars samples on Earth will be open a

deeper understanding of the planet Mars, understand the process and history of climate, the

geological evolution of the surface and determine if life ever arose on Mars. NASA scheme

for this campaign foresee a sequence of three mission: a rover mission to collect and cache

the samples, afterward the cached samples will be sent to a Mars Sample Return Orbiter by

means of a Mars Ascent Vehicle (MAV) and returned to Earth for an intensive analysis.
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Key Technologies for achieves these scientific output are the development of surface

robotic explorer that should be able to select samples and documenting the geological context.

These explorers should integrate imaging system and remote spectroscopy to establish the

context and identify targets. The ability to select potential samples should not be only related

to location where liquid water has occurred but also related to the detection of organic

molecules and to the possibility of reconstructing the geochemical history of the target rock

formation as indicator of organic matter or coupled redox reactions characteristic of life [3].

Rover and robotic technologies will be also fundamental to prepare and as support

for a manned mission to Mars. Robotic explorers will be essential to obtain information

about hypothetical resources and hazards, testing flight system and build infrastructures for

astronauts’ exploration activities [4].

The benefit of in situ measurement for the solar system exploration it is not only limited

to the Mars and planetary investigations. In situ exploration at designated or multiple location

of small solar system body such as Near-Earth Objects and the moons of Mars, will help

the scientific community to characterize the early solar system history, to study planetary

habitats and highlight the mechanism of planetary process formation [5]. Asteroids, comets

and small solar system bodies are characterized by weak gravitational fields, for this reason

new mobility concept are needed. Many different small-body mobility concepts have been

proposed: hopping, wheeled, legged, hybrid and other mobility platforms.

Spacecraft orbiter and landers soft-landing have been realized on asteroids and comets. In

2001 NASA’s NEAR Shoemaker landed on asteroid Eros after a year of observations, during

the soft-landing has been possible to obtain images at a resolution much greater than during

orbit [6]. JAXA’s Hayabusa mission performed two touchdown at Muses Sea on asteroid

Itokawa in 2005 [7]. The Philae lander, part of the ESA Rosetta mission, landed on the surface

if comet 67P/Churyumov-Gerasimenko in November 2014. Thanks to the circumstances of

the multiple landings, it was possible to characterize the mechanical properties (strength and

layering) of multiple regions of the comet surface [8]. The 30th of September 2016 token

place the controlled impact of Rosetta with the comet, giving the opportunity to study the

comet’s gas, dust and plasma environment very close to comet surface [9].

To date no robotics mobility system have ever been successfully deployed to the surface

of a small body. It is possible to find a review of the attempted deployment to the surface

of a small body, and of the state of the art design of such mobility systems in [5]. Soviet

RKA Phobos 2 mission was designed to carry on the surface of Phobos a 41-kg robotic

hopper called PROP-F, but communications were lost before the hopper deployments [10].

MINERVA rover was developed by JAXA/ISAS for the Hayabusa mission, but unfortunately
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the rover fails upon deployments. Currently the DLR rover MASCOTT is part of the Haybusa

2 mission, launched on December 2014 its arrival to the comet is planned to July 2018 [11].

A synergistic approach between an orbiter and a robotic explorer is fundamental for

mission success and increase its scientific output. Global positioning is needed to corre-

late Rover scientific measurements with remote orbiter measurement, and other mission

measurement to the same celestial body, and validate planetary global models. Detailed

Digital Elevation Models (DEM), produced from orbiter images and stereo-photogrammetry,

provides significant support to the landing site selection and to plan rover operations.

Due to spacecraft low-bandwidth and communication delay to Earth, rovers must utilize

a high degree of autonomy. Starting from MER rovers, vision system measurements have

demonstrated to be an asset for rovers operations during traverse. Relative localization by

means of Visual Odometry (VO) has enabled the rovers to drive safely and more effectively

in highly sloped and sandy terrains. Indeed, methods that rely on wheel odometry and

Inertial Measurement Units (IMU) perform poorly in harsh terrain. As a results of using VO

and vision system techniques mission science return has been increased, because they have

reduced the number of days required to drive into interesting areas [12].

Nowadays rovers navigate the surface at a rate of 20-30 m/sol using a very computational

demanding pipeline. First of all the terrain traversability is verified thanks to stereo imagery,

then the rover plans its motion and finally conducts its manoeuvre. Every half-meter step can

take up to several minutes. These limits are caused by the available on-board computation

and power of the flight-qualified processors. Of great interest for future applications, will

be to fuse onboard sensing with higher-resolution orbital imagery for assessing terrain

traversability in more effective and automated ways (starek et al.). Moreover, sample and

return missions rovers, planned for the next years, have to demonstrate the capability to

return a collected sample to the ascent vehicle. This thesis work presents the attempts to

fuse the visual information collected by surface imaging of a rover with orbital imagery

data. In collaboration with ALTEC and in the framework of the operational analysis for

ExoMars 2020 rover, a global localization algorithm which exploited surface images and a

DEM obtained by orbiter images has been investigated. For local traverse we have studied a

stereo Visual Odometry algorithm.

A synergistic localization and mapping approach between the mother spacecraft and

the deployed hopping/tumbling daughter-craft rover has been studied and developed in

collaboration with NASA Jet Propulsion Laboratory. By means of visual Simultaneous

Localization and Mapping had been possible to use the same computer efficient algorithm

for global localization on the asteroid and relative localization during traverse. Visual

localization near the surface of small bodies is difficult due to large scale changes, frequent
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occlusions, high-contrast, rapidly changing shadows and relatively featureless terrains. Visual

localization near the surface of small bodies is difficult due to large scale changes, frequent

occlusions, high-contrast, rapidly changing shadows and relatively featureless terrains

1.1 Mars Exploration

In 1997, twenty years after the Viking missions, NASA revisited the planet Mars with

Pathfinder lander. The lander contained the mobile robot, Sojourner, a 12 kg six-wheeled

mobile robot, which was designated in order to demonstrate mobile robot mobility on Mars.

Sojourner rover has taken pictures and has positioned a science instrument against designated

soil and rocks.

In [13] we can find a detailed description of Sujourner operations. This rover, which

was based on Rocky III and IV JPL robotics demonstrators [14], had six wheels powered

by six separate motors (four of these wheels were steerable) and the rocker-bogie system.

Rocker-bogie system with six motorized wheels enable the rover to turn around in-place and

climb a rock with a rise greater than the diameter of the wheels. Moreover, this rover is able

to accomplish multiple movements like wheel spinning, skidding, plowing and trenching.

The nominal speed of this rover was 0.4 m/min and maximal turning rate was 7 deg/s. A

scheme of Sojourner is depicted in Figure 1.1.

Fig. 1.1 Sketch of Sojourner Rover; solar panel with color calibration targets along the

edge, rockebogie suspension system, wheels, front cameras, UHF antenna, warm electronics

box, material adherence experiment, wheel abrasion experiment, and APXS deployment

mechanism. Image courtesy of [13].
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To navigate a step by step approach has been adopted. The moment to switch off the

motors was triggered on an average of motor encoder (drive) or potentiometer (steering)

readings. When the rover was stopped the on-board computer conducted proximity and

hazard detection function. The laser striping and camera system has been used to determine

the presence of obstacles in its path. In addition, the estimation of the travelled distance

and of the heading was computed while the rover was stopped. The number of turns of the

wheel motors and the onboard gyroscope was used to provide an estimate of progress to the

commanded location and the distance travelled from the lander, both was expressed in the

local reference frame.

The Sojourner rover operations range were limited by the lander camera field of view,

indeed at the end of each sol of rover traverse, the lander provided a stereo image of the

vehicle position in the surrounding terrain. Stereo images, portions of terrain panorama and

images from the rover camera was used by an operator at the control station to designated

new points as target location for next sol rover traverse. The image size provided by the rover

camera is 768×484 pixels.

Thanks to Rocky 7 prototype rover JPL has demonstrate the capability to traverse natural

terrain up to a distance of one kilometer. We can find a description of Rover 7 navigation in

[15]. The navigation sensors of Rocky 7 are listed below. Three accelerometers measured

the tilt of the chassis and potentiometers measured the configuration of the rocker-bogey

suspension. The relative heading was provided by the integration over time of the signal of a

quartz rate sensor, which measured the rate of rotation of the vehicle about its vertical axis.

The major drawback of this method is related to drift as noise and bias error are integrated

with the rate signal. In order to provide a reliable measurement of the vehicle heading a wide

field of view sun sensor has been employed. The sun sensor was attached to the rover facing

upward. By using the accelerometer signal to determine sensor tilt and local time from an

on-board clock, was possible to compute the absolute vehicle heading.

Visual Odometry odometry capabilities have been demonstrated for the first time on

a planetary environment during Mars Exploration Rover missions: Spirit (MER-A) and

Opportunity (MER-B). The twin rovers carries identical science and engineering instrument

payloads, a scheme of the rover with its sensors is shown in Figure 1.2. Spirit have explored

the landing sites of Gusev Crater, while Opportunity is still exploring Meridiani Planum on

the Martian surface. Pancam (panoramic camera) and Navcam (navigation camera) not only

have been used for scientific investigation but also as primary instrument for localization

and mapping. A description of MER rover sensor, localization strategy and topographic

measurements are given in [16–19]. Pancam and Navcam are two stereo cameras with

different characteristics. Navcam is used in mapping close objects, has a baseline of 20 cm, a
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focal length of 14.67 mm, and an effective depth of fiels of 0.5 meters to infinity, it has a

field of view of 45 deg. Pancam is used in mapping far object, has a stereo base of 30 cm and

a focal length of 43 mm, the focal depth of field is 3 meters to infinity, its FOV is 16 degrees.

The image size for both the cameras is 1024×1024 pixel.

Remote observations performed with Pancam and mini-TES, an infrared spectrometer,

are used for identifying promising rocks and soil for detailed studies with the other sensor

onboard the rover. After target selection from science team, the rovers were then commanded

to position the instrument deployment device (IDD) to the target location. IDD is used to

place the rovers analysis tools, like the Mössbauer Spectrometer (MB), Alpha Particle X-Ray

Spectrometer (APXS), Microscopic Imager (MI), or Rock Abrasion Tool (RAT) onto rocks

or soil for in situ observations. All the rovers operations require accurate relative three-

dimensional position of the rover itself and of the target object. Moreover, rover localization

has to be converted into the Mars inertial and Mars body-fixed (MBF) reference frame, in

order to localize the observations in a regional context captured from orbiter images. An

illustration of MER rover cameras and sensors is presented in Figure 1.2

Fig. 1.2 Sketch of Mars Exploration Rovers.

The global localization of the MER rovers were fundamental for planning science and

engineering operations. The localization procedure were accomplished during the first eight

days after landing (before the rover starts its traverse). First of all rovers position has been

estimated in the inertial reference frame through UHF Two-Way Doppler Tracking. Thanks

to this technique rover could be localized up to an accuracy of 10 m. The conversion from
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the inertial frame to the MBF frame led to an uncertainty in the position of ± 250 m. In order

to have an accurate positioning in the regional context, landing site positions were calculated

reconstructing Entry, Descent and Landing in DIMES descent images and finding common

features with orbiter images in the MBF frame and in the Landing Site Local (LSL) reference

frame. When the first panoramas composed by surface images from Navcam and Pancam

were available, was possible to triangulate crater and mountain peaks that may appear in the

orbital images.

For example the Spirit lander location determined in the inertial space and translated to the

MBF system (MOLA IAU 2000) is 14.571892◦S, 175.47848◦E, and using the cartographic

triangulation, exploiting the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), is

14.5692◦S, 175.4729◦E. The Opportunity lander location in the inertial reference frame is.

1.948282◦S, 354.47417◦E, and using the cartographic triangulation 1.9462◦S, 354.4734◦E

[20].

Fig. 1.3 Plot of Spirit’s traverse history using Visual Odometry in the Columbia Hills from

sols 1–850. Units are in meters from the landing site origin, as measured onboard the rover.

Cyan lines indicate directly commanded “blind” drives, red lines indicate blind drives with

autonomous heading compensation, green lines indicate autonomous hazard detection, and

blue lines indicate Visual Odometry. Spirit only used Visual Odometry within the Columbia

Hills, not during its 3 km trek to reach them. Image courtesy of [12].

The navigation sensors of MER rovers consist of an a Litton LN-200 IMU, and odometer

and the Pancam used as solar imaging camera. The position estimation by means of the

integration of IMU gyros led to several degrees of drift. The sun vector, measured by Pancam,

with the local vertical and the current local solar time, were used in order eliminate the
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angular drift. Generally, MER rovers have been commanded only once per “sol” through a

prescheduled sequence of precise metrically specified commands. As explained in [12], the

navigation goal for MER rovers was to bound the position estimation error to be no more

than 10% during a 100 m drive. At each rover movement the Rover pose was updated at

8Hz. The movement estimation was given by the combination of IMU attitude signal with

wheel odometry. This navigation technique was efficient for great part of the terrains, but

not on slippery surfaces or slippery slopes. Furthermore [12] paper of highlight the Visual

Odometry process and performances used on-board the MER rovers. Visual Odometry has

been mainly used to correct the erroneous wheel odometry-based estimation when wheel

lose traction on large rocks and steep slopes. VO onboard MER rovers computed an update

of 6-DOF rover pose (x, y, z, pitch, roll and yaw) tracking the position of terrain features

between two stereo images, in the 2D image space and in 3D space. Rover final motion

estimation was realized thanks to a maximum likelihood estimator applied to the computed

3D offset.

Visual Odometry was conceived as an “extra credit” capability and evolved into a critical

vehicle safety system, the VO software has been extensively used during high-tilt operations,

as shown in Figure 1.3. VO processing on-board MER rover taken long time, effective

time speed was reduced up to an order of magnitude. The necessity to use VO has been a

compromise between the better position estimation an the desire to cover longer distances.

VO has demonstrated good performance with high rates of successful convergence 97% on

Spirit, 95% on Opportunity and measured movements as small as 2 mm. VO was used over

14% of the first 10.7 km driven by both rovers during the first two years of operations.

An overview of the MER rover autonomous capabilities is given in [21, 22]. Many

software functionality were implemented in the flight software before landing moment, many

others were uploaded during surface mission (April 2004, January 2005, September 2006). It

is possible to identify four main autonomous driving modes. Direct drives commanded the

rover to a target position, expressed in the local reference frame, without any compensation

for position and attitude drift, and no checking for obstacles. Visual Odometry drives com-

pensated the position and attitude drifts but did not check for obstacles. Terrain Assessment

drives checked for geometric hazards, but did not measure any slip. Local Path Selector

drives corrected the path based on VO drift estimation and Terrain Assessment.

The geometric information needed by Terrain Assessment software for safe navigation

was provided by a 3D point cloud. The 3D point cloud has been obtained by applying to the

stereo images a windowed 1D search using the Sum-of-Absolute-differences. Images for

point cloud generation were down sampled to 256×256 pixels. Geometric hazards in the

area around the rover were detected thanks to GESTALT (Grid-based Estimation of surface
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Traversability Applied to Local Terrain), the system was able to detect step obstacles, tilt

hazards and roughness hazards. Terrain Assessment has been principally used in combination

with other driver modes in order to extend the distance driven by the rovers beyond the edge

of what can be see by the surface images sent to the human operator.

Local Path Selector mode foreseen a correction of rover’s path as it drives toward the

target location. In the simplest version of this mode there is not vision mode. The on–board

computer uses information by rover current pose obtained by wheel encoders and IMU. It

is different form directed drives where the commands are pre-planned motor rotations not

taking into account other sensor measurements than wheel encoders. Terrain Assessment

used in combination with Local Path Selector has given to MER rovers a complete obstacle

avoidance capability.

The Local Path Selector was useful only for the presence of small obstacle. The Field D∗

planner has been implemented to avoid bigger obstacles, it maintains a much larger world

map (typically 50× 50 meters2 with 0.4 meter cells) and provides the ability to plan arbitrary

paths through its map.

As reported in [22], during the first two years of operations, Sprit’s longest commanded

drive was 124 meters, for 62 meters it used direct driving mode and for the other 62

meters it used Terrain Assessment and Local Path Selection. Opportunity’s longest drive

travelled distance was 390 meters, divided in 106 meter Local Path Selection without any

vision processing and 284 meters using a combination of Local Path Selection with Terrain

Assessment. Figure 1.4 Spirit avoided obstacles in previously-unseen terrain

Fig. 1.4 On Sol 107, Spirit avoided obstacles in previously-unseen terrain. Image courtesy of

[22].

The last NASA’s rover sent to Mars has been Curiosity, in the frame of Mars Science

Laboratory (MSL) mission. Landed on August 5, 2012, Curiosity is still exploring Gale

Crater. [1] describes MSL primary scientific objectives and instruments. Figure 1.5 sows an
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image of Curiosity rover [23] report the hazard detection and navigation cameras on-board

Curiosity. MSL rover is equipped with 12 engineering cameras, Navigation cameras have a

45 deg FOV and are mounted to a pan/tilt mast. The Hazard Avoidance Cameras have a FOV

of 124 deg, and are rigidly mounted to the rover chassis in the front and rear of the vehicle.

All of the cameras utilize a 1024 × 1024 pixel detector.

Fig. 1.5 Curiosity self-portrait mosaic acquired by the Mars Hand Lens Imager on the robotic

arm on sols 868 to 884. Image courtesy of [24].

[25] reviews Curiosity’s rover autonomous capabilities. Curiosity inherited many tech-

nologies developed for MER rovers mission, like the rocker/bogie suspension, the attitude

measurement framework by means of the on-board IMU, the hazard detection system and

the navigation cameras. Great part of Curiosity autonomous capabilities are similar to MER

rovers ones, but, in order to face the challenges le by a bigger and more complex system

onboard software has been updated and the onboard CPU, 200 MHz, is 10 times faster

than MER CPU. Multiresolution tracking has been added to the VO software and the total

processing time has been reduced to 40 seconds per step. The changes made by [26] to the

VO software have enable a more extensive use of VO during MSL mission. Curiosity is able

to detect about terrain hazard by looking stereo, it look to step, tilt or roughness hazards

using an updated version of GESTALT terrain assessment software.

1.1.1 ExoMars Mission 2020

The ExoMars mission is a join collaboration between ESA and Roscosmos, it consist of

the Trace Gas Orbiter plus an Entry, Descent and landing demonstrator Module (EDM),
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Schiaparelli, launched on March 2016, and the other, will carry a rover, the launch date is

2020. The ExoMars rover has been designed to search for signs of life. It will collect samples

with a drill and analyse them with next-generation instruments [2]. ExoMars will be the first

mission to study Mars at depth up to two meters [m].

The ExoMars Trace Gas Orbiter, part of the 2016 ExoMars mission, will support commu-

nications. The Rover Operations Control Centre (ROCC) will be located in ALTEC, Turin,

Italy. The ROCC will monitor and control the ExoMars rover operations. Commands to the

Rover will be transmitted through the Orbiter and the ESA space communications network

operated at ESA’s European Space Operations Centre (ESOC).

The global localization studies have been developped in collaboration with ALTEC for

ExoMars 2020 rover.

Fig. 1.6 The ExoMars rover. Image Credit: ESA.

1.2 Small Solar System Bodies Exploration

To date no robotics mobility system have ever been successfully deployed to the surface of a

small body. The two attempted deployment to a small body surface have been: the Soviet

RKA PROP-F hopper of the Phobos-2 mission, and the JAXA/ISAS MINERVA rover for the

Hayabusa mission. Currently the DLR rover MASCOTT, part of the Haybusa 2 mission, it is

heading towards the asteroid 162173 Ryugu.

MINERVA (MIcro/Nano Experimental Robot Vehicle for Asteroid) a small 591 g explorer

was part of the JAXA mission Hayabusa, the target of the mission was the exploration

of asteroid “Itokawa”. The rover was able to move autonomously over the microgravity

environment and had few science instruments to characterize the surface of the asteroid. The
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rover was deployed on 12 November 2005, unfortunately the rover fails upon deployment.

[27, 28] describe the rover actuation system and navigation strategy.

Fig. 1.7 MINERVA small rover. Image courtesy of [28].

DC motors gave MINERVA hopping ability. The torque given by one of the two motors

was used for making the rover hop, the second one rotates the plate which supported the first

motor. The friction between the rover and the surface is not predictable, so it is not possible

to control precisely the hopper speed. The on-board DC motor provides a maximal speed of

9 [cm/s], the hop speed was set in order to nor exceed the asteroid escape velocity.

Sensors dedicated to navigation were limited in size and weight, also the computational

capabilities were limited: the clock speed of the CPU was 10 MHz. The attitude and position

of the rover was supposed to be calculated in two steps. The solar direction is measured after

the robot awakes and before the robot falls into sleep and it is used to calculate the rover

attitude with reference to the small body. The attitude is then reconstructed by gyroscope

signal integration. Then surface images of the asteroid, captured during rover hopping, are

used to estimate the hop velocity and gravity, these value were used to estimate absolute and

discrete localization. The velocity was estimated using the optical flow, and the distance

from the comet by considering rover’s own shadow in the acquired image.

Of great interest is the navigation framework developed by [29, 30] for the navigation of

the ESA Rosetta spacecraft in proximity of comet 67P/ Churyumov-Gerasimenko. Navigation

phases that have seen the use of optical measurements have been the approach, mapping and

characterization, landing and comet escort phases. The cometary phase of the navigation

has been characterized form 100 km to 50 km distance by hyperbolics arcs in pyramidal

shape, and form 30 km to 10 km by circular orbits, moreover Rosetta has performed several
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flybys around the comet. The maplet technique has been used to automatically detect comet

landmark in order to estimate the spacecraft relative pose.

During the initial characterization phase landmarks were placed by an human operator

on NAVCAM comet images, landmarks observations were computed on ground. After few

weeks of operations landmark detection techniques passed in automatic mode on order to

augment the landmark grid. Mission budget limits the frequency of acquisition of navigation

images to one image each hour. This made impossible to use classical feature detectors, like

corner or blob detectors, because after one hour the comet appearance might be completely

different. To overcome the appearance related problems, maplets technique has been used.

Maplets are small scale 3D high resolution maps generated by means of stereophotocli-

nometry techniques. Stereophotoclinometry consists on the conversion of relief shadows

into slopes and then into height maps. Then the rectified images are inverted into slopes

and albedo maps using a photometric model. Finally the slopes are integrated into a height

map. A maplet is the information union between an height and an albedo. For each maplet

it is associated a distance of observation. Maplet landmarks are use to reduce the orbit

attitude and prediction errors, as first approximation the error correspond to a shift in x and

y position of the expected position of the landmark. Using orbit and attitude prediction

model the expected image is build using maplet database, the true image and the simulated

one are cross correlated and the pose estimation error computed and corrected. Thanks to

this computational expensive technique it is possible to achieve sub-pixel accuracy in the

landmark pixel coordinates. These coordinates are converted into the spacecraft attitude.

Table 1.1 Rosetta camera characteristics, as reported by[31].

Parameter NAVCAM OSIRIS/NAC OSIRIS/WAC

Optics type 7 lenses, 3 filters 3 mirrors off-axis,

dual filter wheel

2 mirror off-axis,

dual filter wheel

Aperture diameter 7 cm 9 cm 2.5 cm

Field of view 5◦×5◦ 2.20◦×2.22◦ 11.34◦×12.11◦

Focal length 152.5 mm 717.4 mm 136 mm

CCD 1024×1024 pixels 2048×2048 pixels 2048×2048 pixels
Signal resolution 12 bit 16 bit 16 bit

1.2.1 Hedgehog: JPL/Stanford Hopping/Tumbling Platform

In order to overcome the challenges posed by the asteroid/cometary environments, Jet Propul-

sion Laboratory together with Stanford University are proposing a new mobility concept,
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Fig. 1.8 Rosetta mission selfie at 16 km. Credit: ESA/Rosetta/Philae/CIVA.

called “Hedgehog”. The novelty of the project consists to develop a mission architecture

based on the spacecraft/rover hybrid concept. Spacecraft/rover hybrids are characterized by

small size and low power consumption, less than 5 kg for 15 Watts. The actual prototype is

equivalent to an 8U design and is designed for mobility in low gravity environments (micro-g

and milli-g). In the paper of [32] we can find a detailed contact dynamical analysis of the

JPL platform prototype. The dynamics and control of tumbling/hopping platforms, and

key design features (e.g., flywheel design and orientation, geometry of external spikes, and

system engineering aspects) are discussed in [33]. The mission architecture is highlighted in

[34].

Thanks to attitude-controlled hops, the rover hybrid is capable to achieving large surface

coverage, by means of tumbling, it is able to achieve fine mobility and coarse instrument

pointing is given by changing orientation relative to the ground. In Figure 1.9 we can see the

JPL prototype of the rover, enclosing inside the cube three mutually orthogonal flywheels

surrounded by external spikes give the manoeuvre capabilities. External propulsion is not

needed, the mobility is given by accelerating and decelerating the flywheels. The mother

spacecraft will be needed for communication purposes and as a support for the rover hybrid

localization as we will see in Chapter 4.
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Fig. 1.9 Hedgehog gets around by spinning and stopping three internal flywheels using

motors and brakes. Credit: NASA/JPL-Caltech/Stanford.





Chapter 2

Machine Vision Algorithms

The analyzed machine vision algorithms are presented in this chapter. The chapter is divided

in two parts, a first shows the state of the art of Visual Odometry algorithms, the basis

and the three different families od motion estimation techniques: 3D-to-3D, 3D-to-2D and

2D-to-2D. Moreover, the basis of Bundle Adjustment are give. The second part of the chapter

analyses Visual SLAM (Simultaneous Localization and Mapping) algorithms and explains

how ORB-SLAM2 works. ORB-SLAM2 is the software that has been modified to solve the

synergistic localization and mapping problem between a mother and a daughter spacecraft.

As we have seen in Chapter 1 in GPS denied environment, like Mars or other solar system

bodies, Visual Odometry, visual SLAM and more in general geometric vision is an asset to

resolve robots egomotion problem. Geometric vision is a subdomain of computer vision that

deals with the mathematical process behind the image formation given a three dimensional

scene. Thanks to the optical projection theory, given camera parameters and its position

relative to an object, it is possible to describe the object formation in the image space. In

other word it exist a projection function which maps the three dimensional space to a two

dimensional space. Geometric vision has a wide range of applications like camera egomotion

tracking, camera calibration, object tracking, geometric consistency test in place recognition,

large-scale reconstruction and many others. The interested reader is referred to the works of

[35] and the dissertation of [36].

Figure 2.1 shows the structure from motion (SfM) problem, given a set of images taken

at different positions and orientations it is possible to reconstruct the three dimensional

environment and camera relative positions. In structure from motion problems images

are unordered and the three dimensional environment is computed simultaneously. The

fundamental building blocks of SfM is the computation of the relative pose between two

view-points, it is then possible to retrieve a first information about the three dimensional

scene and then to compute the absolute and relative pose of the other viewpoints. Considering
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Fig. 2.1 The Structure from Motion problem

the unordered sequence of images a challenging part of the SfM problems is to firstly identify

images that observes the same part of the scene. [37] shows the possibility to reconstruct

entire cities from an extremely large set of photos, the sequence is composed of 150K images.

[38] reconstructs the three dimensional model of the asteroid Lutetia with the images captured

with the OSIRIS NAC telescope. Furthermore, SfM is widely use also in other applications

like the archaeological research [39].

We can consider that Visual Odometry is a subset of SfM problem, where the relative

pose computation between two view-points (the SfM building block) is applied sequentially

to a temporally ordered series of images, the incremental transformations between ordered

camera frames are computed in order to reconstruct camera trajectory. Visual Odometry

gains interest in robotic applications with the reduction of the processing time. A tutorial on

Visual Odometry is presented in [40] and [41].
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Simultaneous localization and mapping (SLAM) attempts to solve the problem of a

robot placed at an unknown environment, the robot incrementally build a map and localize

itself relative to the map that he is building. The first SLAM algorithms uses laser scanners

for online perception of the environment and to tracking robot motion. Mostly SLAM

approaches are realized thanks a filter-based solution, like the Extended Kalman Filter, the

Particle Filter or the Graph-Based SLAM. Recently the filter-based SLAM paradigm has

been ported to monocular and stereo camera, we talk then about visual SLAM. Thanks to

parallel computing, the state of the art of visual SLAM algorithm foreseen an egomotion

estimation and a parallel geometric optimization in the background, like a Local or a Global

Bundle Adjustment. It is possible to pose other constraints on the egomotion estimation like

a motion model or the integration with other sensor measurements. [42] gives a tutorial about

SLAM problems.

2.1 Camera Model

The pinhole camera model is fundamental for the most of the geometric vison problem

discussed in this work. The model is developed for CCD like sensor and it describes the

central projection of 3D points through the centre of projection onto the image plane.
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Fig. 2.2 Pinhole camera model. o is the camera centre and p′ the projection on the image

plane of the point p.
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Let the pinhole camera centre being the origin of a reference frame (O,x,y,z), the z-axis

is the same as the camera pointing direction, the image plane or focal plane is the plane

z = f , see Figure 2.2. The line from the camera centre perpendicular to the image plane is

called the principal axis or principal ray of the camera, and the point where the principal axis

meets the image plane is called the principal point. A point in the 3D space p = (px, py, pz)

is mapped to the image plane where there is the intersection between the line joining the

point p to the centre of the camera (u,v). Considering the principal point offset (cx,cy) the

projection equation is: (
u

v

)
=

(
fx

px

pz
+ cx

fy
py

pz
+ cy

)
(2.1)

where fx and fy are the camera’s focal lengths in the x and y directions. In the example Figure

2.2 f = fx = fy is considered. Equation 2.1 can be written in terms of matrix multiplication

as:
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where s ∈ IR+ is an arbitrary positive scalar associated with the depth of the point. During

the projection the scale information is lost; it means that the projection of all the points that

belong to the line from the point p to the camera centre is the image plane point (u,v). This

is a mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2. The focal length and

the principal point offset are the intrinsic parameters of the camera, they can be estimated

through the camera calibration process. They does not depends from the scene viewed, and

if the camera focal length is fixed, they can be reused for all the image sequence.

The camera motion around the scene is described by the joint rotation-translation matrix

[R|t], or camera extrinsic parameters. The joint rotation-translation matrix could also express

the rotation and translation of an object around a fixed camera. Considering the extrinsic

camera parameters we obtain the projection function:
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Lens Distortion Real lenses present distortions that have to be considered in the projection

model. Distortions arise mainly form the lens shape, we talk then about radial distortion,

and from CCD alignment respect to the optical axis, we talk in this case about tangential
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distortion. In this work we adopt the polynomial distortion model, the same used in the

OpenCV library [43]. In literature it is possible to find other distortion models, like the FOV-

model [44] suited for fish-eyes lenses and wide FOV cameras. The polynomial distortion

model limited to the 3rd order, with the tangential distortion is given by :

xd = xu(1+ k1r
2+ k2r

4+ k3r
3)+2p1xuyu + p2

(
r2+2x2u

)

yd = yu(1+ k1r
2+ k2r

4+ k3r
3)+2p2xuyu + p1

(
r2+2y2u

) (2.4)

where r2 = x2u + y2u and xu = px/pz yu = py/pz. k1, k2, k3 are radial distortion coefficients,

p1 and p2 are tangential distortion coefficients.

In this work all the intrinsic and extrinsic camera parameters are calculated using Zhang

calibration method [45].

2.2 Feature detection and matching

In SfM, VO and feature-based SLAM the first step begins with the identification of image

salient regions, this computer vision process is called feature detection. For each feature is

associated a descriptor. Then the features are matched the one with the others based on some

similarity metric between their descriptors.

Corner detectors or blob detectors allow a precise measurement of the salient region in

images coordinates. The first type of feature, the corner, correspond to image regions that

have high intensity gradient in two orthogonal directions, generally is the intersection of one

or more edges. The second type of feature, the blobs, correspond to image spot that have an

intensity different from the neighbouring regions.

The attractive properties for a feature detector are listed in Tab. 2.1. A feature should

be redetected in the next images that look to the same scene, this property is the detector

repeatability. We talk about robustness when the detector it is not sensitive to image noise.

Furthermore a feature should be detected after images photometric and geometric changes,

like rotations, scale and affine transformations.

In the choice of a feature detector, localization accuracy, robustness and invariance

properties have to be weighed against computational efficiency. For example, if the purpose

of our application is to reconstruct a detailed three dimensional topographic map with sparse

images the feature detector should be accurate and invariant to geometric changes. Instead

it the rationale is the computational time we should opt for the efficiency against other

performances. The last case is the case of many robotics application, where the lower
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Table 2.1 Comparison of feature detectors: properties and performance, data from [41].
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Haris × × +++ +++ ++ ++

Shi-Tomasi × × +++ +++ ++ ++

FAST × × × ++ ++ ++ ++++

SIFT × × × × +++ ++ +++ +

SURF × × × × +++ ++ ++ ++

CENSURE × × × × +++ ++ +++ +++

performances of the detector are compensated with smarter feature searching techniques,

like reducing the searching window by using camera motion priors.

Among the corner detectors we count Harris [46], Shi-Tomasi [47] and Features from

Accelerated Segment Test (FAST) [48]. Among the blob detectors we count Scale Invariant

Feature Transform (SIFT) [49], Speeded Up Robust Feature (SURF) [50], CENter SUrround

Extremas (CENSURE) [51] and many others.

After feature extraction we need to establish correspondence between different image

features, we pass through the feature descriptors extraction phase for each local invariant

keypoint. The information about feature surroundings is embedded in a floating point or

binary value vector. One of the methods used to find the feature correspondence between two

images, consists in the calculation of the vectorial distance between all the image descriptor,

the smalles L2-norm corresponds to a feature matching. In the binary case we compute

the Hamming distance. Two descriptors that provide the properties of scale and rotation

invariance are the SIFT and SURF descriptors. One of the most computationally efficient

descriptor is the Binary Robust Independent Elementary Features (BRIEF) [52], which uses

binary string to represent the kepoint surroundings. The Binary Robust invariant scalable

keypoints (BRISK) [53] combine the efficiency of a binary descriptor with the rotation

invariant properties.

The Visual Odometry study presented in Section 3.3 have been realized as verification

tool for the rovers ego-motion estimation, the algorithm rationale is the accuracy for this
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reason the highest number of points is suited for relative pose measurement. The Harris

detector the SIFT detector have been used. In the ORB-SLAM framework developed by [54],

which has been used and modified in Chapter 4, Oriented FAST and Rotated BRIEF (ORB)

[55] descriptor has been employed.

2.3 Visual Odometry

Visual Odometry is the process of reconstructing vehicle trajectory and attitude by processing

images of an single or a multiple camera attached to it. VO can find application in ego-motion

estimation, where the camera’s motion is estimated incrementally with reference to its initial

position. To ensure a low error in the final trajectory reconstruction, the incremental error of

the step motion estimation errors have to been kept as small as possible, as it accrues rapidly.

VO, as has been highlighted in the introduction chapter, compared to wheel odometry is

not affected by vehicle slippage on the soil, it can be used as integration or substitution of

a GPS receiver, or an IMU. Its importance increases for navigation system in GPS denied

environments. As reported by [40] a great part of modern VO system have a relative position

error ranging between 0.1 and 2%.

Nowadays VO has a wide range of application from the UAV navigation to the underwater

vehicle passing thorough the autonomous driving cars, without forgetting the Mars rovers!

One of the first work about estimating the motion of a vehicle with images is the work of

Moravec [56], and most of the earlier research was done with stereo systems for the NASA

Mars Exploration program [57–59]. One of the first real time VO system s was introduced

by Nistér [60].

Figure 2.3 shows a general scheme for a VO system, it is possible to identify three main

VO family: for monocular cameras, stereo cameras or multi-camera (an example is given in

[61]).

Stereo VO Most of the Stereo VO methods have in common that for each stereo pair the

point cloud of the triangulated features is calculated, the motion estimated with a 3D-to-3D

point cloud registration. In this case for each stereo pair the feature matching is performed

intra stero-pair and inter stero-pair, in other word the same feature is matched in the four

available images. Bu the stereo VO methods are not only limited to a 3D-to-3D estimation.

Nistér et al. [60] estimated the relative motion using a 3D-to-2D camera-pose estimation

problem. Moreover, they incorporated RANdom SAmple Consensus (RANSAC) outlier

rejection into the motion estimation step. In Comport et al. [62] the motion estimation relies

on 2D-to-2D images matches, this method avoids the triangulation of the 3D points.
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Image Sequence

Feature Detection

Feature Matching

Motion Estimation & RANSAC

3D-to-3D2D-to-2D 3D-to-2D

Local Optimization

Fig. 2.3 Generalized block diagram showing the main components of a VO system. There

are three relative pose estimation methods: 2D-to-2D, 3D-to-3D, or 3D-to-2D.
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Monocular VO In monocular systems the absolute scale is unknown for the three dimen-

sional scene and the trajectory. Usually the distance between the two first images is set to the

unity, as consequence everything is scaled to this unit distance. As suggested by Mur-Artal et

al. [54], if the scene is planar dominant, the relative transformation between the two images

can be described by a homography pc = Hcrpr and they suggest to use the normalized DLT

algorithm [35] to retrieve the homography matrix Hcr. On the other hand a non-planar scene

with enough parallax can be described by the fundamental matrix p⊤c Fcrpr = 0, which is

possible to retrieve thanks to the 8-point algorithms [35]. As a new image arrives its pose

relative to the first two frames could be computed by exploiting the knowledge of the three

dimensional structure, in this case it is necessary first to triangulate the scene points, or using

the trifocal tensor [35].

2.3.1 Motion Estimation

As we have seen, in VO there are three categories of camera absolute and relative pose

estimation: 3D-to-3D, 3D-to-3D, 2D-to-2D. If we have a set of images taken at a discrete

time k, in the monocular case the sequence is notes as I0:n = {I0, . . . , In}. If we analyse

the sequence of a stereo camera we have the left and the right images at the instant k:

Il,0:n =
{

Il,0, . . . , Il,n

}
and Ir,0:n =

{
Ir,0, . . . , Ir,n

}
.

The rigid body transformation in IR3 between two cameras at two different instants k and

k−1 is given by a 4×4 matrix of the following form:

Tk,k−1 =

[
Rk,k−1 tk,k−1

1 0

]
(2.5)

where Rk,k−1 ∈ SO(3) is the rotation matrix and tk,k−1 the translation vector. SO(3) being

the Lie group of rotation matrices and Tk,k−1 ∈ SE(3) is a Special Euclidean group. The

vector of poses T1:n =
{

T1,0, . . . ,Tn,n−1

}
contains all the step poses. If we want to retrieve

the camera pose relative to the initial frame we have to concatenate all the poses, for example

Tn,0 = ∏
k=n
k=1Tk,k−1. All the trajectory is contained in the vectorC1:n =

{
T1,0,T2,0, . . . ,Tn,0

}

3D-to-3D In this case, both fk−1 and fk are specified in 3-D. To triangulate the 3D points it

is necessary a stereo camera system. The motion estimation is obtained by the minimization

of the L2 distance between the two feature sets, both specified as a 3D position:

argmin
Tk,k−1

∑
i

∥∥p̃i
k−Tk,k−1p̃

i
k−1

∥∥ (2.6)
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where p̃i
k−1 are the homogeneous coordinates (p̃ = (px, py, pz,1)

⊤) of the 3D point corre-

spondent to the feature i A solution to this minimization problem is given by the Arun’s

method for aligning point clouds [63–65]. The minimal-case solution involves 3 non-collinear

correspondences.

3D-to-2D The pose is estimated by minimizing the re-projection error of the triangulated

3D points [66, 67]:

argmin
Tk,k−1

∑
i

∥∥ui
k−π(pi

k−1,Tk,k−1)
∥∥2 (2.7)

where π(pi
k−1,Tk,k−1) is the reprojection of the 3D point pi

k−1 into the image Ik through the

transformation Tk,k−1. pi
k−1 can be estimated from stereo data or, in the monocular case, from

triangulation of the image measurements ui
k−1 and ui

k−2. The minimal-case solution involves

3-point correspondences. One of the most used solution is the PnP algorithm proposed by

Lepetit et al. [68]., which is a non-iterative solution whose computational complexity grows

linearly with n, n ≥ 4. Widely used is also the Perspective-Three-Point (P3P) solution of

Kneip et al. [67], which aims at determining the position and orientation of the camera from

three point correspondences. by using a RANSAC scheme for robust motion estimation in

presence of outliers, to a lower number of points needed for the minimal case correspond a

lower number of RANSAC iterations and a more efficient implementation of the VO system.

2D-to-2D Both the feature fk and fk−1 are expressed in the 2D image space. The rota-

tion and translation estimation between two subsequent frames pass trough the essential

matrix E estimation. The minimal case solution involves five correspondences, an efficient

implementation is proposed by Nistér in [66].

2.3.2 RANdom SAmple And Consensus

As we can see form the general scheme of Figure 2.3, the motion estimation process is

embedded in a RANSAC scheme. In computer vision literature RANSAC is became a

standard to fitting a model to experimental data in presence of a great part of outliers. Indeed,

the probability of an erroneous feature correspondence between two images it is elevated.

RANSAC was introduced by Fischler and Bolles in [69] in order to determine the absolute

pose of a camera given an image depicting a set of landmarks with known locations. The

different steps involved in a RANSAC scheme may be summarized as follow:

• Select randomly a minimum set of points required s to determine the model parameters.

For example in the for the PnP algorithm of the 3D-to-2D case the minimal set is four

points. These points are needed in order to compute a motion hypothesis Tk−1,k.
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• Compute a motion hypothesis Tk,k−1.

• Project all the set of n points using the motion hypothesis Tk,k−1 and compute the error

for each point ei
k−1,k =

∥∥ui
k−π(pi

k−1,Tk,k−1)
∥∥. Verification of the motion hypothesis

by the determination of how many points from the set of all points fit with a predefined

tolerance ei
k−1,k < ε . For a 3D-to-3D method the 3D error for each point has to be

computed.

• If the fraction of the number of inliers over the total number points in the set exceeds a

predefined threshold τ , re-estimate the model parameters using all the identified inliers

and terminate.

• Otherwise, repeat all the steps for maximum of N times.

[69] gives also the minimum number of iterations N that it is necessary to find the correct

solution:

N =
log(1− p)

log(1− (1− ε)s)
(2.8)

where p is the required probability of success, s the minimum set of point required by the

model and ε is an estimation of the point set outlier percentage. As we can see greater is s

greater will be the number of iterations N required for the same values of p and ε .

2.3.3 Local Optimization

The final of a VO algorithm consists into optimize the first estimation of Tk,k−1, obtained

through the RANSAC procedure, using all the n inliers. Many computer vision problems are

non linear, in VO pose refinement could be performed through the Levemberg-Marquardt

algorithm.

In the Stereo Visual Odometry system proposed in Chapter 3.3 the pose refinement is

computed though the minimization of the the L2 distance between the triangulated 3D points

(3D-to-3D implementation). Equation 2.11 shows the non-linear cost function Enl . We can

see that each component of the error vector ei of feature i is weighted taking into account

landmark uncertainty. The uncertainties of the 3D points are represented by 3×3 covariance

matrices as calculated by the Kline-McClintock formula, see GUM [70].

ei = pi
k−Rk,k−1p

i
k−1− tk,k−1 (2.9)

Ωi = Ωi
k +Rk,k−1Ω

i
k−1R

⊤
k,k−1 (2.10)
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Enl =
n

∑
i=1

(ei⊤Ωi −1ei) (2.11)

pi
k are the three dimensional coordinates of the landmark i, expressed relative to the stereo

camera during step k, pi
k−1 is the same 3D point expressed relative to the stereo camera

during at the previous location k−1. Rk,k−1 ∈ SO(3) is the rotation matrix between the two

positions and tk,k−1 is the system translation expressed in the frame of reference k-1; finally,

Ωi
k and Ωi

k−1 are the 3×3 covariance matrices of the same landmark in the two frames of

reference.

In the monocular case is possible to refine the camera pose by minimizing the reprojection

error ei.

ei = ui
k−π(pi

k−1,Tk,k−1) (2.12)

where π() is the projection function in Eq. 2.3. The cost function to be minimized is:

Enl =
n

∑
i=1

(ei⊤Ωi −1ei) (2.13)

where Ωi = σ2
i I2×2 is the covariance matrix associated to the uncertainty of the feature in the

2D image. This minimization problem is the base of the localization framework of Chapter 4.

In ORB-SLAM2 [54] Ωi is the covariance matrix associated to the scale at which the feature

is detected, and the Huber robust cost function is used.

In VO all the trajectory is given by the concatenation of all the step poses. Each estimation

of the relative pose transformation Tk,k−1 has an uncertainty, the uncertainty of the pose

estimation of the last frame in the initial reference frame is give by the propagation of all

the step uncertainties. As shown by [41], the camera-pose uncertainty is always increasing

when concatenating transformations. As follows, it is important to keep the step uncertainty

as small as possible to reduce the drift.
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Ck,R

Ck,k-1

Fig. 2.4 The uncertainty of the pose estimation drifts over the time. The final uncertainty is a

combination of the step uncertaintyCk,k−1 and the actual uncertaintyCk−,R.

2.4 Bundle Adjustment

A map point could be observed by multiple frames. Thus it is possible to set up a large

optimization problem which attempts to optimize all the camera poses and the 3D points

position, we talk about Global Bundle Adjustment. If we optimize only the poses of the

frames that seen las frame 3D points we talk then about Local Bundle Adjustment. In the

case that we would like to optimize m camera poses and n 3D points, the optimization

step involve the computation of 2mn× (6m+ 3n) Jacobian matrices, by considering the

6DOF (tx, ty, tz,φ ,θ ,ψ) for the camera pose and 3DOF (px, py, pz) for the 3D points. The

computational cost become very expensive with the number of frame and points. Moreover,

do to the non linear nature of the problem the solution could easily converge to a local

minima, so good initial conditions are needed. Bundle adjustment is used to refine the initial

camera and structure parameters.

Assume that n 3D points are seen in m views. ui, j is the 3D point projection of point i in

the camera j. Each camera j is parametrized by a vector a j and each 3D point i by a vector

bi. νi, j = 1 if the point i is visible in j view.

argmin
ai,b j

n

∑
i=1

m

∑
j=1

νi, j

∥∥ui, j−π(a j,bi)
∥∥2 (2.14)

where π(a j,bi) is the projection of the point i to the image j.

In IR3, one possible parametrization for ai is the 6-vectors (ωωω,ννν), where ωωω = (ω1,ω2,ω3)

is the axis-angle representation of the rotation and ννν is the rotated version of the translation
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t. Elements of (ωωω,ννν) can be mapped to the SE(3) group using the exponential mapping

expSE(3) (for further details see [71]):

expSE(3)(ωωω,ννν) =

[
expSO(3)(ωωω) V ννν

1 0

]
=

[
R t

1 0

]
(2.15)

where expSO(3)(ωωω) = I+ sinθ
θ (ωωω)×+

1−cosθ
θ2 (ωωω)2×,V = I+ 1−cosθ

θ2 (ωωω)×+
θ−sinθ

θ3 (ωωω)2× and

θ = ‖ω‖2.

This large optimization problems could be solved using the Newton-Raphson or Levenberg-

Marquart (LM) optimization methods. In the next section we will see how the LM algorithm

works. Let h be the measurement function which maps a parameter vector p to an estimated

measurement vector x̂ = h(p). If we have an initial parameter p0 and a measured vector x

are provided and it is desired to find the vector p+ that best satisfies the function h locally,

that is, minimizes the squared distance ε⊤ε with ε = x− x̂ the residual error. The basis of

the LM algorithm is an affine approximation to h in the neighbourhood of p. For a small

‖δp‖, h is approximated by:

h(p+δp)≈ h(p)+ Jδp (2.16)

where J is the Jacobian of h. Like all nonlinear optimization methods, LM is iterative,

initiated at the starting point p0, the vector parameter p is updated with the rule:

pl = pl+1+δp (2.17)

that converge toward a local minimum value p+ for h. Hence, at each iteration, it is required

to find the step δp that minimizes the quantity

‖x−h(p+δp)‖ ≈ ‖x−h(p− Jδp‖= ‖ε− Jδp‖ (2.18)

The sought δp is thus the solution to a linear least-squares problem: the minimum is attained

when Jδp− ε is orthogonal to the column space of J. This leads to J⊤(Jδp− ε) = 0, which

yields δp as the solution of the so-called normal equations:

J⊤Jδp = J⊤ε (2.19)
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where J⊤J is the first order approximation to the Hessian of 1
2
ε⊤ε , δp is the Gauss-Newton

step and J = dh
dp
. The LM method actually solves a slight variation of Equation 2.19:

Nδp = J⊤ε (2.20)

where N = J⊤J+µI, J⊤J is also called the Hessian matrix and µ > 0 is the damping term.

We going to apply the example proposed by [72] to the Bundle Adjustment of a 3D-to-2D

problem, the same example explains the local and the global bundle adjustment in ORB-

SLAM [54]. Assume that n = 4 points are visible in m = 3 different views taken by the same

cameras. We are supposing that feature 1 is seen by cameras 1, 2 and 3, feature 2 by 1 and 2,

feature 3 by cameras 1, 2, 3, feature 4 by cameras 2 and 3. Thus, the measurement vector

is u = (u11,u12,u13,u21,u22,u31,u32,u33,u42,u43)
⊤ and the parameter vector is given by

p = (a1,a2,a3,b1,b2,b3,b3)
⊤. We can write the Jacobian as:

dh(p)

dp
=




dπ(a1,b1)
da1

0 0
dπ(a1,b1)

db1
0 0 0

0
dπ(a2,b1)

da2
0

dπ(a2,b1)
db1

0 0 0

0 0
dπ(a3,b1)

da3

dπ(a3,b1)
db1

0 0 0
dπ(a1,b2)

da1
0 0 0

dπ(a1,b2)
db2

0 0

0
dπ(a2,b2)

da2
0 0

dπ(a2,b2)
db2

0 0
dπ(a1,b3)

da1
0 0 0 0

dπ(a1,b3)
db3

0

0
dπ(a2,b3)

da2
0 0 0

dπ(a2,b3)
db3

0

0 0
dπ(a3,b3)

da3
0 0

dπ(a3,b3)
db3

0

0
dπ(a2,b4)

da2
0 0 0 0

dπ(a2,b4)
db4

0 0
dπ(a3,b4)

da3
0 0 0

dπ(a3,b4)
db4




(2.21)
dπ(a j,bi)

da j
is a 2×6 Jacobian matrix and

dπ(a j,bi)
dbi

a 2×3 matrix. They can be calculated by

the chain rule as in [73]:

dπ(a j,bi)

da j
=

∂π(b′)

∂b′

∣∣∣
b′=Tjbi

∂T bi

∂T

∣∣∣
Tj

∂T Tj

∂T

∣∣∣
I

∂ expSE(3)(a j)

∂a j

∣∣∣
0

=




fx
pz, j

0 − fx
px, j

p2z, j
− fx

px, j py, j

p2x, j
fx

(
1+

p2x, j

p2z, j

)
− fx

py, j

p2z, j

0
fy

pz, j
− fy

py, j

p2z, j
− fy

(
1+

p2y, j

p2z, j

)
fy

px, j py, j

p2x, j
fy

px, j

p2z, j




(2.22)
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dπ(a j,bi)

dbi
=

∂π(b′)

∂b′

∣∣∣
b′=Tjbi

∂T bi

∂bi

∣∣∣
0

=




fx
pz, j

0 − fx
px, j

p2z, j

0
fy

pz, j
− fy

py, j

p2z, j


Ri

(2.23)

where (px, py, pz) are the components of the vector bi, and (px, j, py, j, pz, j) are the com-

ponents of the vector Tjbi. If we consider the uncertainties of our measurements, that in a

3D-to-2D framework corresponds to the uncertainty of the 2D feature position, Eq. 2.19

becomes:

(J⊤Ω−1i j J+µI)δp = J⊤Ω−1i j ε (2.24)

where Ωi, j = σ2
i, jI2×2 is the covariance matrix associated to the features uncertainty. By

considering the example of Equation 2.21 the Hessian, given by (J⊤Ω−1i j J), is:

H =




U1 0 0 W11 W21 W31 W41

0 U2 0 W12 W22 W32 W42

0 0 U3 W13 W23 W33 W43

W⊤
11 W⊤

12 W⊤
13 V1 0 0 0

W⊤
21 W⊤

22 W⊤
23 0 V2 0 0

W⊤
31 W⊤

32 W⊤
33 0 0 V3 0

W⊤
41 W⊤

42 W⊤
43 0 0 0 V4




(2.25)

where

U j =
4

∑
i=1

dπ(a j,bi)

da j

⊤

Ωi j

dπ(a j,bi)

da j
(2.26)

Vi =
3

∑
j=1

dπ(a j,bi)

dbi

⊤

Ωi j

dπ(a j,bi)

dbi
(2.27)

Wi j =
dπ(a j,bi)

da j

⊤

Ωi j

dπ(a j,bi)

dbi
(2.28)

in this particular caseW23 =W41 = 02×2.

The iterative scheme to solve a minimization problem with the Levenberg-Marquardt

algorithm can be summarized this way:

1. Given the initial guess/current state estimate pl , calculate for each measurement

εi j,l = ui j−h(pl) and the Jacobian matrix Ji j,l =
dπ(a j,bi)

da j

∣∣∣
l
or Ji j,l =

dπ(a j,bi)
dbi

∣∣∣
l
from

Equation 2.22 and 2.23.
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2. Build the linear system 2.24 with εεε⊤ = ∑i, j J⊤i j,lΩi jεi j,l and H = ∑i, j J⊤i j,lΩi jJi j,l . Note

that the uncertainty of the measurements Ωi j does not depends by the iteration l.

3. Solve the linear system (J⊤Ω−1i j J + µI)δp = J⊤Ω−1i j ε for the increment δp, update

the state pl = pl+1+δp and iterate.

In Levenberg-Marquardt iterations the computation of H−1 is computational expensive.

Different calculation strategies exist for the inversion of the matrix H. As shown by [72]

the nature of this matrix is sparse due to the lack of interaction among certain subgroups of

parameters, and this can be exploited to achieve considerable computational savings.

In the framework of Visual SLAM techniques for synergistic localization between the

mother and daughter spacecraft, the optimization problems have been solved using the g2o

library [71]. Also the Ceres Solver library is widely used by the SfM and robotics community

for modelling and solving large, complicated optimization problems [74].

2.5 Simultaneous Localization and Mapping

The simultaneous localization and mapping problem solution is seen by the robotic com-

munity the means to make a robot truly autonomous. If we place a robot in an unknown

environment, thanks to its sensors the robot is able to reconstruct a consistent map of the en-

vironment and a to localize itself with reference to this map. The tutorials of Durrant-Whyte

and Bailey [42] and [75] provides a brief history of the early development of SLAM prob-

lems, the formulation of the problem and the most common solutions, issues in computation,

convergence, and data association. In Cadena et al. [76] we can find a review of the state of

the art SLAM codes and the open challenges and the newest research issues in SLAM.

Figure 2.5 shows a graphical model of the SLAM problem, a robot is moving through an

environment and is taking relative measurement about the position of a series of unknown

landmarks. We want to estimate robot path and landmarks relative positions. The following

quantities are considered in the problem: xi the robot state of represented by position and

attitude at a time instant i and X0:i = {x0, . . . ,xi} the history of robot state; ui the input

vector, applied at time instant i− 1 to drive the robot from the state xi−1 to the state xi,

U0:i = {u0, . . . ,ui} is the history of inputs; l j is the jth landmark, its position is supposed to

be time invariant and l = {l1, . . . , l j} is the set of all the landmarks; mi, j is the observation of

the jth landmark made from the robot at instant i.

It is possible to reformulate the SLAM problem as an estimation of the posterior probabil-

ity distribution over the robot’s trajectory and the landmark set, given all the measurements
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x0

u1

x1 · · · xi−1

ui

xi

m0,1 m1,1 mi−1,1 mi−1, j mi, j

l1 l j

Fig. 2.5 A graphical model of the SLAM problem. xi indicate the robot pose, l j are landmarks

positions directly observable by the robot, mi, j are the landmarks measurements and ui the

control vector. Through these quantities, we want to estimate the path of the robot and the

landmarks map.

[42, 77], the control inputs and the robot initial state:

p(xi, l|M0:i,U0:i,x0) (2.29)

The probability distribution is computed for all times i.

To solve the SLAM problem we have also to introduce a motion model and an observation

model. The motion model relies input measurements ui to robot state xi−1 and xi. Supposing

that motion model is subject to Gaussian noise, its description in terms of probability

distribution is:

p(xi|xi−1,ui)∼N (g(xi−1,ui),Ri) (2.30)

It is then defined by a normal distribution centred at g(xi−1,ui), where g() is the kinematic

model of robot motion and Ri a 3×3 covariance matrix.

The probability of making an observation mi, j when the vehicle location and landmark

locations are known is generally described in the form:

p(mi, j|xi, l j)∼N (h(xi, l j),Q) (2.31)

where h(xi, l j) is the measurement function and Q the covariance matrix describing the sensor

uncertainty.

[77] identifies three main mathematical framework developed up to date: Extended

Kalman Filter (EKF) SLAM, Particle Filter SLAM and the Grpah-Based SLAM.
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EKF SLAM

In EKF SLAM the robot estimate is represented by a multivariate Gaussian:

p(xi, l|M0:i,U0:i,x0)∼N (µi,Σi) (2.32)

where µi is a vector containing robot position and orientation, and the environment landmark

positions. By considering a robot moving on a 2D environment, µi dimension would be

3+2N, indeed, we need two variables to define robot position and one variable fo the robot

orientation, 2N variables for the N landmarks in the map. Σi is the robot state covariance

matrix, representing the uncertainty in µt estimate, it is a (3+ 2N)× (3+ 2N) matrix.

Supposing that the g() and f () function are linear in their arguments the Kalman filtering is

applicable, g() and f () will be linearised by using the Taylor expansion.

The major issue related to EKF SLAM techniques is the quadratic nature of the covariance

matrix. As the robot moves new landmarks are added to the map and then to the state vector,

the covariance matrix grows quadratically. This pose a grat limitation also for medium scale

maps because the processing time and memory consumption are O(N2) in the size of the

map.

Particle Methods SLAM

In particle methods the posterior probability of robot position is represented by a set od

particles. Particle methods were introduced in the SLAM literature by [78] with FastSLAM.

For example, FastSLAM maintains each time the robot moves a set of K particles:

X
[k]
i µ

[k]
i,1 , . . . ,µ

[k]
i,N Σ

[k]
i,1, . . . ,Σ

[K]
i,N (2.33)

k denote the index of the sample. Each particle contains the robot path estimation X
[k]
i , an

estimation of the the landmarks position µ
[k]
i, j with the relative variance Σ

[K]
i, j . j is the landmark

index (1< j < N).

The initialization is performed by setting each particle at the robot known position, at this

state the map is empty. When a new input is given to the robot, or a new odometry reading is

received, for each particle new position variables are generated stochastically. New particle

positions are generate through the motion model:

x
[k]
i ∼ p(xi|x

[k]
i−1) (2.34)
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For each new measurement mi, j the filter computes the measurement probability:

w
[k]
i ∼N (mi, j|x

[k]
i ,µ

[k]
i, j ,Σ

[k]
i, j) (2.35)

w
[k]
i is the importance weight, it measure how important is the particle in the light of the

new sensor measurement. The weight is normalized so that the sum of all particle weights is

1. Then the resampling step is performed: a set of new particle is created, the probability

of drawing a new particle is based on the normalized importance weight. The landmarks

estimate µ
[k]
i, j and Σ

[K]
i, j is updated for the new set of particles based on the measurement mi, j

using the Extended Kalman Filter rules. As the robot moves and time passes good particles

survive while bad estimates of the state are discarded.

One of the advantage of particle methods over EKF methods is to break down the posterior

over maps into low-dimensional Gaussians. Moreover, using tree methods to represent the

landmark estimates is possible to improve algorithm efficiency: the update can be performed

in O(log(N)), logarithmic in the number of landmarks, and linear in the number of particles

M, O(M).

Graph-Based SLAM

The SLAM method used in this work, ORB-SLAM, is a Graph-Based method. In these

methods landmarks l j and robot state xi are thought as nodes in a graph. Two consecutive

positions xi−1 and xi are connected by an edge which represents the information obtained by

the input kinematics or the odometry reading ui. Other edges are set up between the robot

positions xi and the j-th landmark. Figure 2.5 shows a nodes and edges in a SLAM graph.

These edges are soft constraints in the graph. The best estimates for the map and the full path

is retrieved by relaxing these constraints.

Often the graph is treated as a spring-mass model, to find a solution is equivalent to

compute the state of minimal energy of the model. The graph correspond to the log-posterior

of the full SLAM problem:

log p(xi, l|M0:i,U0:i) = const+∑
i

log p(xi|xi−1,ui)+∑
i, j

log p(mi, j|xi, l j) (2.36)

where p(xi|xi−1,ui) are the motion constraints and p(mi, j|xi, l j) are the landmark measure-

ments constraints.
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Assuming kinematic model and sensors with Gaussian noise we obtain the following

quadratic expression:

log p(xi, l|M0:i,U0:i) =const

+∑
i

‖xi−g(xi−1,ui)‖
⊤R−1i ‖xi−g(xi−1,ui)‖

+∑
i, j

‖mi, j−h(xi, l j)‖
⊤Q−1i, j ‖mi, j−h(xi, l j)‖

(2.37)

Thanks to the sparse associations of the graph representing the SLAM problem, the update

time of the graph and the amount of memory is linear with the number of landmarks, O(N).

Moreover, we can easily add or remove constraints between nodes and optimize only a subset

of the graph.

Graph based methods are divided in two parts the front-end and the back-end. The

front-end part converts sensor measurements into graph node and edge informations, is the

part responsible of building the graph. The optimization process take place in the SLAM

back-end.

Bundle Adjustment techniques, see Chapter 2.4, are an affordable method to optimize

Graph-Based SLAM problems when the sensitive element is a camera.

2.5.1 Visual SLAM

The more recent monocular visual SLAM open source codes have been analysed and com-

pared in order to retrieve the best candidate for the hopping/tumbling platform application.

Visual SLAM codes can be divided into two main categories: feature based methods and

direct methods. Feature-based methods are based on the minimization of the re-projection

errors. The estimation of the camera motion is performed by matching and tracking a set

of sparse interest points. As indicated in [40], a general scheme for a feature based method

could be:

• Image acquisition.

• Feature detection with an interest point operator.

• Feature matching or tracking.

• Motion estimation (3D-to-3D, 3D-to-2D, 2D-to-2D).

• Mapping.

• Optimization.
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On the other hand, direct methods are based on the minimization of the photometric error.

The camera motion is retrieved directly from the intensities of the pixels of the images, all

the pixels information are used to retrieve the camera pose. The assumption is the so-called

photo-consistency constraint, the intensities of the projections of a world point PW = (X ,Y,Z)

on two frames are the same. Due to the great amount of data these methods are generally

slower and work best for small motions and sufficient image overlap. A comparison between

the two methods are outlined in Table 2.2.

Table 2.2 Feature-based visual SLAM and direct SLAM methods characteristics.

Feature based Direct methods

• Can only use and reconstruct feature

points

• Can use and reconstruct the whole im-

age

• Faster • Slower (but good for parallelism)

• Flexible: outliers can be removed

retroactively

• Inflexible: difficult to remove outliers

retroactively

• Robust to inconsistencies in the

model/system

• Not robust to inconsistencies in the

model/system

• Good initialization not needed • Needs good initialization

Table 2.6 shows the comparison between the analyzed monocular visual SLAM codes.

PTAM (Parallel Tracking and Mapping) [79] authors introduce for the first time the idea

of splitting tracking and mapping into two separate tasks, processed in parallel threads.

Indeed, the optimization of a big landmarks map is not possible in real-time, but the tracking

of the map is kept at the frame rate. This software was specifically designed to track a

hand-held camera in a small workspace. C2TAM [80] is a collaborative SLAM software,

based on PTAM, where robots build sub maps and transfer the local information to a central

station that performs the map optimization. REMODE [81] and DTAM [82] rely on a dense

method. They can outperform feature-based methods in scenes with poor texture, defocus,

and motion blur, but they are very computationally expensive, thus, they are prohibitive for

this application. LSD-SLAM [83] is a semi-dense method, it overcomes the high computation

requirement of dense methods by exploiting only pixels with strong gradients. Moreover, this

algorithm is able to manage scale-drifting. DPPTAM [84] is a direct method, in this algorithm

the authors made the assumption that homogeneous color regions belong to approximately

planar area. That assumption is a limit for our operational environment constraints. SVO

[85] is a semi-direct method: it uses both sparse features (such as corners or edges) and direct

methods. The absence of loop closure mechanism is a limit for our application.
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Indeed, re-localization is one of the major characteristics that we are looking for in

a visual SLAM code for the tumbling/hopping navigation. The possibility to relocalize

the hybrid rover is based on the place recognition module of the code. For this reason,

we decided to discard all the visual SLAM codes that do not present this characteristic.

After this pre-selection, a choice has to be done between ORB-SLAM (or the more recent

ORB-SLAM2), a feature based SLAM code and LSD-SLAM. [54] shows that their code is

more accurate in an indoor environment. For that reason and considering that direct SLAM

methods need a god initialization, we decided to use ORB-SLAM2 code to realize the visual

SLAM code for the tumbling/hopping platform.

Fig. 2.6 Monocular visual SLAM open source algorithms comparison.

2.5.2 ORB-SLAM

ORB-SLAM is based on PTAM algorithm, it has many improvements in comparison, like

a loop closing mechanism, an adequate handling of occlusions and a low invariance to

the viewpoint of the re-localization. Moreover, there is no need of human intervention

for map initialization. This algorithm is a graph-based SLAM method, where the graph

(camera poses and map points) is built with a keyframe-based strategy (see Figure 2.7). After

map initialization, new frames are tracked using a 3D-to-2D approach, as soon as possible
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new frames are promoted to keyframes, which provide new map points by triangulation of

salient features. Frames are tracked with reference to keyframes. The insertion of too many

keyframes grows the computational complexity of the optimization phase, for that reason

ORB-SLAM2 provided an efficient way to select keyframes, to triangulate map points and to

match them. Table 2.3 summarize the mappoint and keyframe classes.

Map Pointcloud New Triangulate Points

Keyframe 1

Keyframe 2 Keyframe 3
Keyframe 4

New Keyframe
Frames

Fig. 2.7 Keyframe-based monocular visual SLAM concept.

Table 2.3 shows the parallels threads that track and optimize the frame poses and the map

points position. Table 2.4 shows in which way the keyframes are connected among them.

ORB features allow real-time performance without GPUs, indeed, the use of a binary

descriptor reduces the computation time during feature comparison. Moreover, ORB features

provides good invariance to changes in viewpoint and illumination.

ORB-SLAM2 uses a third part library, DBoW [86], for place recognition. Thanks

to DBoW2 it is possible to perform fast localization on an image sequence. This place

recognition library is based on the bag of words model, the possibility to process a set of

binary descriptors (like ORB) is available.

In the bag of words model, image features are converted into “words”. We can retrieve two

similar images by checking the frequency of the repeated words. Using a bag of word model

the computational cost is lighter compared to check feature by feature on the whole sequence

of images. Word generation is based on a vocabulary that has been trained previously with a

dataset of images.

Vocabulary has to be trained in order to achieve the image descriptors clustering. The

vocabulary words are the leaf nodes of the tree. The inverse index stores the weight of the

words in the images in which they appear. The direct index stores the features of the images

and their associated nodes at a certain level of the vocabulary tree. Inverse index is used
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Table 2.3 Mappoint and Keyframe classes

Mappoint pi Keyframe Ki

• 3D position in the world coordinates

system X(w,i)

• The camera pose Tiw, rigid transforma-

tion from the world to the camera coordi-

nate system

• The viewing direction ni, which is the

means of the unit vector between the point

and the Keyframe that see it

• Camera intrinsic parameters

• Mappoint ORB descriptor Di, ORB

descriptor that minimize the distance be-

tween the associated Keyframe’s keypoint

descriptor

• All the ORB features extracted in

the frame, associated or not to a map

point. The keypoint’s coordinates are

undistorted if a distortion model is pro-

vided

• The maximum dmax and minimum dmin

distances at which the point can be ob-

served. This distance is based on the asso-

ciated keypoint scale

Table 2.4 Covisibility graph and Essential graph

ORB-SLAM graphs Description

Covisibility graph An edge between two keyframes exists if they share the

observation of the same map points (at least 15)

Spanning tree It is a connected subgraph of the covisibility graph with

a minimal number of edges. A link is formed between

keyframes which share most points observation

Essential graph It contains the spanning tree and the subset of edges from

covisibility graph with high covisibility (100 shared points)

to retrieve similar images. Direct index is used to efficiently obtain point correspondences

between images, during feature matching phases only features that belong to the same node

are compared, reducing the computation time. A vocabulary tree is divided into branches k

and levels L (see Figure 2.8).

ORB-SLAM2 default vocabulary has been generated with 10K images from a dataset

containing sequences of indoor and outdoor images, it has 6 levels and 10 clusters per level.

The conversion from the asteroid mock-up images features to vocabulary words does not

work in a proper way, because there is not clustered descriptors that represent an asteroid

feature. For these reasons, a custom vocabulary has been created. The vocabulary has been

created with a series of images of comet 67P, asteroid Ceres, asteroid Itokawa, asteroid Eros,
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Fig. 2.8 Example of vocabulary tree and direct and inverse indexes. Image courtesy of [86]

©2012 IEEE

images of the Moon taken during Apollo missions, and the JPL asteroid mock-up, Figure 2.9

shows a subset of the collected images.
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(a) Subset of images used for vocabulary generation.

(b) Vocabulary features that belong to the same cluster.

Fig. 2.9 Asteroid vocabulary training.
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Table 2.5 ORB-SLAM threads

Tracking Local Mapping Loop Closing Global Bundle Ad-

justment

• Process new

frame

• Check if there

are keyframes in the

queue

• Check if there

are keyframes in the

queue

• This thread is

launched from the

Loop Closing thread

• Extract ORB fea-

tures

• BoW conversion

and insertion in Map

• Detect loop can-

didates and check

co-visibility consis-

tency (3D-to-3D)

• Perform the

Global Bundle Ad-

justment, only the

initial KeyFrame is

fixed

• Initial pose es-

timation from last

frame or Relocaliza-

tion (2D-to-3D)

• Check recent Map-

Points

• Compute similar-

ity transformation

[sR | t]

• Track local map • Triangulate new

MapPoints

• Perform loop fu-

sion and global pose

graph optimization

• Check if we

need to insert a

new keyframe (local

mapping is busy?)

• Find more

matches in neigh-

bour keyframes and

fuse point duplica-

tions

• Launch a new

thread to perform

Global Bundle Ad-

justment

• Local Bundle Ad-

justmentm

• Check redundant

local Keyframes

• Run continuously • Run continuously • Run continuously • Lunched if a Loop

Closure is detected

• Stopped if a Loop

Closure is detected

• If a Loop Closure

is detected send a

stop signal to Local

Mapping, wait until

Local Mapping has

effectively stopped

• Lunched if a Loop

Closure is detected

• If a Loop Closure

is detected abort the

Bundle Adjustment

thread



Chapter 3

Planetary Rover Global and Local

Localization

The study of algorithms and methods for rover global localization are here presented. This

algorithms have been studied and applied for the ExoMars 2020 localization at Rover

Operative Control Centre in ALTEC. The adopted methodologies highlight computer vision

methods. Global localization techniques uses HiRISE images and Digital Elevation Models.

A method, which uses the rover panoramic horizon curve and the site Digital Elevation

model, is presented. During traverse a classical stereo Visual Odometry algorithm has been

studied, some tests have been performed in laboratory environment and using a Martian-like

visual dataset.

3.1 Global Localization

Global positioning on extraterrestrial planets is needed to correlate rover scientific mea-

surements with orbiters remote measurements and to validate planetary local and global

models. Orbiter surface images and detailed Digital Elevation Models (DEM), produced from

stereophotogrammetry or stereo photoclinometry techniques, provides significant support to

the landing site selection and to plan rover operations. After rover touchdown, one of the key

tasks requested to the operations center is the accurate measurement of the rover position on

the inertial and fixed coordinate system, such as the J2000 frame and the Mars Body-Fixed

(MBF) frame.

Based on orbital mechanics and astrodynamics, after landing, the Rover position is known

with an uncertainty ranging between a hundred to a few kilometres depending on the used

Entry Descent and Landing (EDL) method. Spirit landing ellipse has major and minor axes
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of 78 km and 10 km [17]. The EDL architecture developed for Mars Science Laboratory [87]

has reduced the landing ellipse to a 20-kilometre ellipse. For ExoMars, the landing ellipse is

104 km by 19 km [2]. Starting from a landing position evaluated with an uncertainty of some

kilometres a possible sequence of further localizations could be:

1. Sextant: ∼1 km uncertainty. To obtain the necessary data this technique could take up

to a sol, it could be performed just after rover egress phase. The position is retrieved in

the MBF frame.

2. Doppler: ∼250 m uncertainty. The Rover does not move during some satellite passages,

this method could take few sol, and could be performed during rover egress phase or

just after. Thanks to the UHF Two-Way Doppler Tracking technique the rover could be

localized up to an accuracy of 10 m. However, the conversion from the inertial frame

to the MBF frame led to an uncertainty in the position of 250 m, and all topographic

maps are expressed in the MBF frame.

3. Triangulation: ∼100 m uncertainty. This method consists on the cartographic triangu-

lation of craters and hills and retrieves the rover position relative to an orbiter image of

the landing site. It can be performed as soon as the rover panoramic and navigation

cameras start to be fully operative.

4. Orbital imaging: ∼3.5 m uncertainty (depending on orbiter telescope resolution and

calibration). As shown by [88], using HiRISE camera images is possible to localize the

rover directly on the surface images. This is possible if the orbiter camera is available,

during satellite allowable passages and when localization is already performed within

∼1km.

As the orbiter image used for localization is georeferenced we can considered that the

rover is globally localized.

3.1.1 Map-based localization using rover surface panorama and or-

biter images

This localization method is a refinement of rover position estimation performed by a human

operator [20]. The location is calculated by correlation of hills and craters between a

NAVCAM or PANCAM panorama and a Mars referenced image (like HiRISE image). We

have applied this method for Spirit lander localization. We assume that the HiRISE image

has been Mars referenced on Mars Orbiter Laser Altimeter (MOLA) topographic model

previously [89]. Figure 3.1 shows the flowchart to generate HiRISE georeferenced images.
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Parameters

Fig. 3.1 Flowchart of HiRISE registration on MOLA points. Image courtesy of [88]
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Li et al. [88] shows the step by step procedure used to georeferencing the HiRISE orbiter

images:

1. Photogrammetric processing of HiRISE stereo-images, DEM and orthoimage genera-

tion. The generated 3-D model is based on orbital spacecraft orientation and orbital

position data. The orthoimage may need to be georeferenced to Mars global topo-

graphic model. MOLA is considered the most accurate data source for Mars global

topographic mapping.

2. Registration of MOLA points onto HiRISE stereo images. Direct integration of HiRISE

to MOLA is difficult, so firstly MOLA and MOC data are integrated, than each MOLA

point are manually transferred onto HiRISE stereo images by comparing image features

of MOC and HiRISE. MOC (Mars Orbiter Camera) and MOLA are mounted together

on Mars Global Surveyor satellite, so integration of MOLA with MOC is less difficult.

3. Based on the adjusted HiRISE EO parameters an orthoimage (0.25 m resolution) is

generated.

In this example we will use NASA/JPL/University of Arizona processed HiRISE images,

which are widely used in Mars geography to localize the rover position, using as input a

surface panoramic image from the rover and the knowledge of the azimuth of the platform.

Table 3.1 shows the proposed global localization method inputs and outputs. By visual

inspection of a panorama it is possible to identify hills and craters in rover horizon. A

NAVCAM panorama of landing site, processed by MIPL (Multimission Image Processing

Laboraory) team [90], has been used for the test.

Table 3.1 Correlation method inputs and output

Input

NAVCAM or PANCAM panorama

Rover azimuth α
Previous estimated position (λ0,φ0)
Orbiter image (Mars referenced)

Landing site DTM

Output

New rover position (λnew,φnew)

In order to test this method we have used the images at the landing site collected by the

NASA MER rover Spirit. The rover camera images have been retrieved from the from the
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MER Analyst’s Notebook website http://an.rsl.wustl.edu// [91]. The orbiter images used

for localization are the orthorectified HiRISE NASA MarsReconnaissance Orbiter (MRO)

mission camera HiRISE [92], available online from https://hirise.lpl.arizona.edu/. Thanks to

direct observation of the landing site by HiRISE camera orbiter was possible to estimate the

error of our method.

Spirit Localization

Figure 3.2 shows the NAVCAM cylindrical projection mosaic taken at Spirit landing site

(2nn001edn00cyl00p1501l000m2).

Fig. 3.2 NAVCAM Cylindrical projection mosaic of Site 0 Position 0, from Spirit on Sol1.

Image Credit: NASA/JPL/Cornell.

Fig. 3.3 Mountain features in Site 0 Position 0 mosaic.

The following equations correlate the azimuth α and elevation ϑ of the observed objects

with the panorama image:

α =
i

IMAGE_RESOLUTION
+α0 (3.1)

ϑ =
IMAGE_ELEVATION_LINE− j

MAP_RESOLUTION
(3.2)

where (i, j) are the pixel coordinates and α0 is the starting azimuth. In the image label we

can find informations about the IMAGE_RESOLUTION, the START_AZIMUTH and the

PROJECTION_ORIGIN_VECTOR (expressed with reference to the SITE_FRAME) [90].

The image size is 557×1866 pixels, the pixel resolution is 5.18515 pixel/deg, the starting

azimuth is 0 deg, and (−0.556355,0.113974,−0.896827) m is the projection origin vector.
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It is possible to know α0 by knowing sun position relative to the rover and the current

time [15].

By starting to observe the panorama it is possible to identify some landmarks, that it will

possible to observe also in the orbiter image, like hills and craters. By knowing their pixel

positions, thanks to Equations 3.1, we retrieve their azimuth.

In the Fig.3.3, we have identified five features (coloured lines), that belong to surrounding

hills and mountains. The following azimuths are identified: 65.96◦, 101.25◦, 114.75◦,

124.59◦, 216◦.

Fig. 3.4 Mars Exploration Rover landing site at Gusev Crater (PSP_001513_1655_RED). Red

star shows Spirit lander position as estimated from two-way Doppler techniques. Coloured

lines are the direction of the mountainous landmarks identified in the landing site panorama.
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The location of Spirit landing site, estimated by fitting direct-to earth (DTE) two-way X-

band Doppler and two passes of UHF two-way Doppler between MER-A and Mars Odyssey,

is 14.571892◦S 175.47848◦E [20]. This position is used to identify the corresponding moun-

tainous features in the orbiter image, as shown in Fig.3.4. The figure shows lander two-way

Doppler position estimation, and hills view direction, superimposed to the equirectangular

projection of HiRISE image.

The following equations shows the correlation between a pixel of the image (u,v) and

the corresponding latitude and longitude (λ ,ϕ):

u = r (λ −λW ))

v = r (ϕmax−ϕ))
(3.3)

where r is the map resolution. In the HiRISE image of Mars Exploration Rover landing site

at Gusev crater (PSP_001513_1655_RED.JP2) the latitude goes from -14.779191204696◦ to

-14.405986429528◦, and the longitude from 175.42815231742◦ to 175.56889973542◦, the

image size is 88471×32859 pixels. Thus, the image resolution is 237056 pixel/deg.

Fig. 3.5 Hills and craters used for cartographic triangulation of Spirit landing site (HiRISE

PSP_001513_1655_RED image), the yellow star is the estimated position, lander’s position

estimated with two-way Doppler method is highlighted by a red square, the blue square is

the estimation made by [20] with MOC images. The yellow square is the landing position

captured by HiRISE, and used as ground truth.
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Table 3.2 shows the peaks location on the map. The peak corresponding to 216◦ azimuth

direction is outside PSP_001513_RED image. By triangulating the located points we can

estimate the new rover position P(X ,Y ) [93]:

tanαi =−
Xi−X

Yi−Y
(3.4)

(1 tanαi)

(
X

Y

)
= Xi + tanαiYi (3.5)

where αi is the azimuth location of the landmark and (Xi,Yi) is the landmark location on

the map (in pixel). By using the following notation: Ai = (1 tanαi), Bi = Xi + tanαiYi,

A = [A1, . . . ,An]
⊤ and B = [B1, . . . ,Bn]

⊤ Eq. 3.5 becomes:

AP = B (3.6)

a direct solution can be obtained thanks to a least square minimization:

P = (A⊤A)−1A⊤B (3.7)

Table 3.2 Location of azimuth landmarks in PSP_001513_1655_RED HiRISE image.

Azimuth Orbiter Image Location

65.96◦ (12907, 38982) pixel

101.25◦ (22552, 42100) pixel

114.75◦ (22605, 44706) pixel

124.59◦ (25173, 49693) pixel

Using Table 3.2 data, we find the new rover position estimation, which is P=(11198, 39790)

pixels, using the inverse of Equation 3.3 we find that P = (14.5738387◦S, 175.4753884◦E).

Considering that the HiRISE images resolution is 0.25 m/pixel, the distance between the

estimated positions and the HiRISE detected location are: 161.33 m by using the Two-Way

Doppler technique, 307.55 m by using the cartography method with MOC images and 55.55

m by using the cartographic method with HiRISE images.
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3.1.2 Map-based localization using the Panoramic Horizon and orbiter

images Digital Elevation Models

This algorithm, through an exhaustive search, attempts to estimate rover position with a high

resolution Digital Elevation Model (DEM) and panoramic images. We consider a vector

of N template positions and orientations X = {X1, . . . ,XN}, the state of the rover is defined

by Xi = (pi,αi), where pi = [xi,yi] defines the position, and αi the heading relative to the

map. The rover will be localized in one of the template positions. A vector of skylines is

rendered from the DEM for each template position, each rendered skylines is compared to the

measured skyline, which is retrieved from a panoramic image of the surface. The algorithm

is capable to retrieve rover’s heading (αi), platform roll and pitch angles are supposed to be

known before capturing panoramic images.

Algorithm pipeline

The used algorithm is summarized in the following steps (see also [94, 95]):

1. Skyline measurement. A segmented panorama of the landing site, or of the current

rover location, is generated by combining images with overlapping field of view. The

skyline is defined by a vector of elevation samples mφ measured for each azimuth φ .

In order to compute the skyline vector, the grey-scale panorama has been converted to

a black and white binary image by applying a luminance threshold. The pixels where

is located the limit between the two regions is the local skyline. Fig.3.6a shows the

skyline automatic extraction passages. The conversion between image coordinates,

expressed in pixel and the azimuth/elevation coordinates is performed by knowing the

camera intrinsic parameters. By sampling the skyline every 1 deg, φ = [0, . . . ,359]

deg, the skyline vector m = [m0, . . . ,m359] is then obtained.

2. Skyline rendering from DEM. A Digital Elevation Model (DEM) is a digital representa-

tion of terrain surface, for each position p = [x;y] it is associated an altitude z(p). The

HiRISE DEM resolution is ∼1 m, and as an example, the expected vertical precision

EP of the Victoria crater DEM (used below for Opportunity localization), assuming

0.2-pixel matching error, is 0.22 m [96]. Given an azimuth angle φ j the interpolation

line between the viewing direction and the DEM is:

a j,k = z

(
p+ k

[
cos(φ j +α)

sin(φ j +α)

]
δ p

)
−d(kδ p) (3.8)
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Fig. 3.6 (a-Top) Panoramic image taken by opportunity from sol 1530 to sol 1545 on the

slopes of Victoria crater (credit NASA/JPL/Cornell). (a-Middle) Conversion of panorama

to a binary image for automatic skyline extraction. (a-Bottom) Measured skyline converted

form pixel to azimuth/elevation coordinates. (b) Skyline segmentation.

where α is the rover heading, k = 0, . . . ,M are the number of step where the DEM is

interpolated along the viewing direction and d(kδ p) = r−
√

r2− (kδ p)2 is the planet

curvature correction. r is the planet radii and (kδ p) is the interpolation step. Knowing

the height of the camera above the ground h, the elevation angle e j,k is given by:

e j,k = arctan

(
a j,k− (a j,0+h)

kδ p

)
(3.9)

The elevation at the horizon s j is the maximum elevation max(e j,k). The vector

s(p,α) = [s0, . . . ,s359] is then obtained. Fig.3.8 shows the horizon on the DEM used

for Spirit localization at the landing site and Fig.3.9 the corresponding skyline.
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lowest skyline error wins

(b)

Fig. 3.7 (a) Altitude correction based on the curvature of the planet. (b) Best candidate

location searching.

3. An exhaustive search is performed in order to find the best candidate location and

the platform azimuth. The best candidate position is evaluated on a grid of template
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Fig. 3.8 Horizon viewed from Spirit landing site on the HiRISE DEM used for the skyline

rendering. The rendered skyline is limited by the DEM surface coverage.

positions, a database of template skylines is build for each point of the grid. The

squared error between the measured skyline and the rendered skyline is evaluated at

each position of the grid and for each sampled azimuth.

ε2(p,α) = ∑
j

(
m j− s j(p,α)

)⊤ (
m j− s j(p,α)

)
(3.10)

Fig.3.7b shows the error computation for each template position of the grid.

4. The best candidate location (p∗,α∗) is the one which has the lowest error:

(p∗,α∗) = argmin
(p,α)

e2(p,α) (3.11)
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Spirit landing site localization

In the Spirit landing site panorama it is possible to see the Columbia Hills Complex, see

Fig.3.9. This dataset allows us to evaluate the algorithm performance when it is possible to

see a series of mountain landmarks in the distance. The mosaic view1 available on the MER

Analyst’s Notebook website has been used as panorama for the skyline extraction.

Fig. 3.9 Skyline rendered at the landing site position (blue line)

Equation 3.1 and equation 3.2 correlate the azimuth and elevation of the observed objects

with the panorama mosaic pixels.

Equation 3.12 gives the relation between latitude/longitude and DEM coordinates in

meters. The coordinates of Spirit landing site HiRISE DEM2 are expressed with reference

to the central_meridian = 175.5 deg and standard_parallel =−10 deg. The DEM, which

cover an area of 6.6×11 km has a size of 6524×10847 pixel and a resolution of µ = 1.01

m/pixel.

x = x0+uµ

y = y0− vµ
(3.12)

(x0,y0) are the coordinates of the upper-left corner of the DEM expressed in meters and (x,y)

are the coordinates in meters corresponding to the image point (u,v).

Template positions are selected on a regular spaced grid disposed inside a square area of

1000×1000 m centred on an initial position, see Fig.3.11. The initial position is the location

of Spirit landing site estimated by fitting direct-to earth (DTE) two-way X-band Doppler

and two passes of UHF two-way Doppler between MER-A and Mars Odyssey, which is

14.571892◦S 175.47848◦E [20].

As we can see from Fig.3.10 only a subset of mountainous features is contained in the

HiRISE DEM, only the Columbia hills complex is covered by the DEM model. In this case,

1The used mosaic view is 2pp003iff02cyl00p2211l222m4
2The used DEM is DTEEC_001513_1655_001777_1650_U0
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using the whole skyline could lead to a wrong result. In order to overcome the limited DEM

size related issues, we have used only the skyline within a range.

In order to identify the best skyline range for localization purposes, we rendered N

skylines corresponding to N different positions using the pipeline detailed in Section 3.1.2.

As first guess we use N = 50 random locations. Fig.3.10 shows the skylines rendered at 50

random positions around the estimated landing site location. We can see that rendered sky-

lines approach the measured skyline around the Columbia Hill complex (α = 95.2◦/129.7◦),

instead rendered skylines does not match the measured skyline around Grissom Hill and

Apollo 1 Hills. Skyline range between 91◦ and 145◦ has been considered in this example for

rover localization.

The algorithm has been tested for different grid, DEM resolution and view line step (δ p),

with an angular resolution of 0.5 [deg]. Table 3.3 shows the results. The best candidate

location is the one which has the lowest root mean square error between the measure skyline

and the rendered skylines.
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Fig. 3.10 Rendered skylines around the estimated landing site, red line shows the measured

skyline.

As explained in [97], some artefacts are present in USGS HiRISE DEMs, as the long line

that we can see in Fig.3.12. The seams are caused by the characteristic of HiRISE images,
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Table 3.3 Localization error and measured azimuth, for different grid, DEM resolutions and

view line step.

Grid [m] DEM [m] δp [m] Error [m] αmes [deg]

4 4 10 55 90

8 4 10 51 90

8 4 20 51 90

8 4 30 51 90

8 4 100 51 90

8 8 10 51 90

8 8 20 51 90

8 8 30 51 90

8 8 100 51 90

8 16 10 72 89.5

which are made up to 10 individual images (HiRISE focal plane is composed by 10 different

CCD). These lines may lead to an error in the DEM reconstruction up to 1-2 meters and,

consequently, to a bias in elevation angle estimation, (as we can see in Figure 3.13).

Fig.3.11 shows the five best candidate location for the grid 8 [m], DEM 8 [m], δ p = 10

[m] and δα = 0.5 [deg]. Fig.3.12 shows the five best location on the DEM.

We consider as candidate location the position that shows the lowest difference between

the measured and the rendered skyline. Considering Table 3.3 results for a DEM resolution of

8 [m] and a searching grid of 8 [m], the best candidate position is P = (−13883, −863399)

[m] (DEM reference frame). By using the inverse of Equation (3.12) we find that P =

(14.5680859◦S 175.4762191◦E). The distance between the estimated landing positions

and the HiRISE detected landing location on PSP_0011513_1655_RED_A_01_ORTHO are

289 [m] with the Two-way Doppler method and 51 [m] with the method described hereby.

The panorama starting azimuth is 0 deg, the azimuth measured thanks to the skyline matching

techniques is -1 deg. Figure 3.14 shows Spirit lander location on HiRISE map-projected

image, its coordinates has been used to evaluate the distances of estimated positions of the

table above.

Localization error seams to not decrease with the reduction of the view line step. This

may be caused by some artefacts present on the DEM. As we can see in Fig.3.15, some

skylines points are rendered in correspondence of HiRISE DEM artefacts (see reference [97]).

These points will not be present in the measured skyline and will increase the difference

with the rendered skyline. Fig.3.12 shows that spirit landing site is closer to this line. Most

probably if we increase the view line step the first interpolation point on the DEM is beyond

the DEM artefact.
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Fig. 3.11 Localization algorithm results using [m91, . . . ,m145]. (Blue dot) Location

of the rendered skylines, prior positions of the map. (Magenta cross) Estimated lo-

cation with two way Doppler. (Black dot) Spirit landing site on HiRISE image

PSP_0011513_1655_RED_A_01_ORT HO.IMG, reference position. (Red dot) Best five

position estimates.

Localization error seams to not decrease with the reduction of the view line step. This

may be caused by some artefacts present on the DEM. As we can see in Figure 3.15, some

skylines points are rendered in correspondence of HiRISE DEM artefacts (see reference [97]).

These points will not be present in the measured skyline and will increase the difference with

the rendered skyline. Figure 3.12 shows that spirit landing site is closer to this line. Most

probably if we increase the view line step the first interpolation point on the DEM is beyond

the DEM artefact.

Opportunity localization

Two different operative scenarios have been investigated for the Opportunity dataset. The

DEM of Victoria crater produces using HiRISE images has been used. Two panorama has

been analysed: one taken from outside the crater and the other taken from inside the crater.
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Fig. 3.12 HiRISE DEM of Spirit Landing site with estimated landing positions. (Magenta

cross) Two-way X-band Doppler estimation of landing position. (Black) Spirit landing site on

HiRISE image PSP_0011513_1655_RED_A_01_ORT HO.IMG, reference position. (Red

dot) Best five guessed positions.

During sol 952 Opportunity taken a panorama from outside Victoria crater. The algorithm

has been run with a skyline obtained obtained form Figure 3.16, as we can see the scene is

almost plat. With these conditions has not been possible to localize the rover.

From sol 1530 to 1545 Opportunity rover was located in the crater slopes, Figure 3.17

shows the position of the rover inside the Victoria crater and prior positions of the searching

grid. Figure 3.16 shows the panoramic image used for rover localization and Figure 3.6a the

image converted in a binary image based on greyscale threshold.

Figure 3.17 shows the reference position and the algorithm estimated position on Victoria

crater DEM. Table 3.4 reports localisation errors and azimuth measurements. In order to

estimate the accuracy, rover position at sol 1530-1545 on traverse map (Figure 3.19) has

been taken as reference.

The global localization algorithm based on the skyline matching, and presented in this

chapter, it is part of the framework under development at ALTEC S.p.A. for the Mars global

localization of ExoMars 2020. The contest of utilization is highlighted in Figure 3.20.
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Fig. 3.13 Comparison between detected skyline (red line) and the five best matched positions

skylines.

Fig. 3.14 Spirit lander location on HiRISE image.



62 Planetary Rover Global and Local Localization

Fig. 3.15 Horizon and DEM around the landing position. Some horizon points correspond to

a DEM artefact, like a CCD seams, which limits the possibility to reduce the localization

error.

Fig. 3.16 Panoramic image taken by Opportunity during sol 952 of Victoria Crater.

Table 3.4 Four best position estimation for Victoria crater localization scenario, DEM

resolution 1 [m], prior grid spacing 4 [m] and skyline resolution 0.5 [deg].

e2(p,α) [rad] Error [m] αmes [deg]

0.2782 28 184

0.2865 22 181

0.3533 24 179

0.4254 25 185.5
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Fig. 3.17 HiRISE DEM of Victoria crater and Opportunity rover estimated position.

Fig. 3.18 Panoramic image taken by opportunity from sol 1530 to sol 1545.

Fig. 3.19 Opportunity rover location on traverse map (on Analyst’s Notebook web site).
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Fig. 3.20 Block diagram of the global localization framework under development at ALTEC

S.p.A. Courtesy of ALTEC S.p.A.
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3.2 Localization During Traverse

During rover traverse ROCC should be provided with Visual Odometry algorithms that refine

the on-board estimated path with stereo images processed off-line.

We have investigated a stereo Visual Odometry method based on a 3D-to-3D method. The

pseudo code of the algorithm is highlighted in Algorithm 1. It has been realized considering

the theoretical aspects described in Chapter 2.3. First of all the intrinsic and extrinsic camera

parameters are calculated using Zhang calibration method [45]. At each motion step, the left

and right images are captured by the stereo pair. Images are then processed in order to find

the keypoints, which are the projection of the 3D physical landmarks in the camera’s image

plane. Furthermore, a Harris detector [46] and the Scale Invariant Feature Transform (SIFT)

detector [49] are used in order to exploit both corner and blob features of the scene, and so to

have a high number of 3D points. The matching between stereo pairs and subsequent images

is performed with a SIFT descriptor. This is the major difference between the employed

algorithm and that of [98].

After 2D feature detection and matching, the 3D coordinates of the landmark are cal-

culated via the middle point algorithm [59]. The detected 2D features are then filtered: the

features that are less than 1 pixel apart and the features which have a re-projection error

(erri−j)

√
err2

1−2 + err2
3−4 > 4 are removed. Since each motion step is relatively small, a

single physical landmark should have its image projections relatively close to one another,

thus, corresponding features that have a distance larger than a given threshold value of

500 pixels are discarded. Then, the maximum number of features used for computing the

displacement and rotation is limited to the 1000 points, with the lowest descriptor distance.

The system pose is calculated in two steps, as in [59]. First, the motion is calculated by a

least square estimation coupled with a RANdom SAmple Consensus (RANSAC) process

to remove outliers. Then, a nonlinear minimization procedure is performed in order to take

into account the uncertainty of landmarks. Only 3D points that are not removed during the

RANSAC procedure are passed to the non-linear phase.

Levemberg-Marquardt algorithm is used to refine the stereo camera pose (rotation matrix

and translation), the L2 distance between the triangulated 3D points is minimized. Equations

2.9, 2.10 and 2.11 show the non-linear cost function Enl . We can see that each component

of the error vector ei of feature i is weighted taking into account landmark uncertainty. The

uncertainties of the 3D points are represented by 3×3 covariance matrices as calculated by

the Kline-McClintock formula, see GUM [70].

The stereo VO algorithm has been tested on Mars/Moon analogue site image dataset,

called The Devon Island Rover Navigation Dataset [99]. The dataset provides ground truth
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Algorithm 1: Pseudo code of the tested stereo Visual Odometry algorithm for rover

relative localization during traverse.

Input :Il
0:n =

{
Il
0, . . . , I

l
n

}
and Ir

0:n =
{

Ir
0, . . . , I

r
n

}

Output :T1:n =
{

T1,0, . . . ,Tn,n−1

}

Parameters :NRANSAC: number of RANSAC iterations, τRANSAC: threshold, Kl , Kr:

Camera calibration parameters

✴✴ ❋"❛♠❡ ✵ ■♥✐*✐❛❧✐③❛*✐♦♥

1 [ul
0]=DETECT_HARRIS&SIFT_FEATURES(I

l
0);

2 [ur
0]=DETECT_HARRIS&SIFT_FEATURES(I

r
0);

✴✴ ❋"❛♠❡ ❦❃✵ ✐*❡"❛*❡

3 for (k = 1,k++) do

4 [ul
k]=DETECT_HARRIS&SIFT_FEATURES(I

l
k);

5 [ur
k]=DETECT_HARRIS&SIFT_FEATURES(I

r
k);

6 [indr
k, ind

l
k, ind

r
k−1, ind

l
k−1, N]=INTER&INTRA_FEAUTRE_MATCHING(ur

k,

ul
k,u

r
k−1,u

l
k−1);

7 [pk−1]=STEREO_TRIANGULATE(u
l
k−1(ind

l
k−1), ur

k−1(ind
r
k−1), Kl , Kr);

8 [pk]=STEREO_TRIANGULATE(u
l
k(ind

l
k), ur

k(ind
r
k), Kl , Kr);

✴✴ 0*❛"* ❘❆◆❙❆❈

9 nc,max← 0;

10 for (i = 1, i≤ NRANSAC, i++) do

11 choose random keypoint indices [ind1, ind2, ind3];

12 p̃k−1←
[
p
ind1
k−1 , p

ind2
k−1 , p

ind3
k−1

]
;

13 p̃k←
[
p
ind1
k , p

ind2
k , p

ind3
k

]
;

✴✴ ❢✐♥❞ *"❛♥0❢♦"♠❛*✐♦♥ ✇✐*❤ "❛♥❞♦♠ 0❛♠♣❧❡0

14 [R̃k,k−1, t̃k,k−1]=POINT_CLOUDS_ALIGNMENT(p̃k, p̃k−1);
15 foreach pind

k ∈ pk and pind
k−1 ∈ pk−1 do

16 if (pind
k −Rk,k−1pind

k−1− tk,k−1)< τRANSAC then

17 nc← nc +1;

18 store index ind;

19 end

20 if nc > nc,max then

21 nc,max← nc;

22 RRANSAC← R̃k,k−1;
23 tRANSAC← t̃k,k−1;
24 end

25 end

26 end

✴✴ ♥♦♥ ❧✐♥❡❛" ♦♣*✐♠✐③❛*✐♦♥✱ ❘❆◆❙❆❈ ♠✐*✐♦♥ ❡0*✐♠❛*✐♦♥ ✐0 ✉0❡❞ ❛0

✐♥✐*✐❛❧ ❝♦♥❞✐*✐♦♥ ❢♦" *❤❡ ▲▼ ❛❧❣♦"✐*❤♠

27 [Rk,k−1, tk,k−1]=LEVENBERG_MARQUART(p
indRANSAC

k , p
indRANSAC

k−1 , RRANSAC,

tRANSAC);

28 end



3.2 Localization During Traverse 67

information s on the captured stereo couples by means of a differential GPS, an inclinometer

and a sun sensor Figure 3.21 shows a couple of images of the dataset.

Figure 3.22 shows a comparison between the ground truth and the trajectory reconstructed

by means of the VO software. The error of this stereo Visual Odometry method is 2.04%.

Fig. 3.21 Stereo Images from The Devon Island Rover Navigation Dataset [99].
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Fig. 3.22 Estimated trajectories using images from The Devon Island Rover Navigation

Dataset. Comparison between the differential GPS signal and a 3D-to-3D VO method.
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3.3 Visual Odometry System Performance for Different Land-

mark Average Distances

As we have done in [100], hereby, we have performed an analysis of how the landmark

distance affects the VO motion estimation. This is important in VO studies in order to set up

possible solutions to reduce Visual Odometry drift.

Efforts are being made to reduce error in motion measurements operated by VO systems.

Uncertainty modeling for 3D captured landmarks, as shown by [57], need to be anisotropic.

It is well known that the position uncertainty of the triangulated points, along the viewing ray,

increases as the two camera rays become more parallel [101, 65]. As a result, a stereo camera

whose baseline is small, the triangulated point uncertainty is greater along the viewing ray

compared to the other directions. Moreover, in a stereo camera system, the 3D points are less

precisely localized as the landmark moves away from the stereo camera. For this reason, as

discussed in [102, 103], the cost function to be minimized during the pose optimization takes

into account Mahalanobis distances. Each 3D error is weighted by its inverse covariance

matrix, this generally improves the accuracy obtained by a 3D-to-3D approach.

Reference [104], considers the anisotropic uncertainty of the acquired landmarks, showing

that is possible to reduce the error of the position estimates recovered from stereo VO by

changing the perspective of the stereo camera in relation to the moving platform. In [103], we

applied the same VO algorithm as described here to the measurement of a vehicle trajectory

in order to investigate how camera’s FOV affects the whole camera trajectory error and

uncertainty. [105] points out that stereo VO has two sources of bias: the distribution of

landmarks and incorrect modeling of their associated uncertainty.

Hereby, we focus on comparing the measurement uncertainties obtained by a visual

odometry system when the average features distance of the scene changes. In order to change

the average feature distance, the VO system has been tested in seven different positions

progressing further into the laboratory environment. In order to give a direct experimental

comparison, only the system position and pose were changed, while all other influencing

parameters were kept constant (for example same cameras, same FOV, same relative positions

of cameras, same elevation angle of cameras, same imposed rotary and linear motions) while

a rigorous uncertainty analysis, according to [70, 106], has been performed. Although

the cost function for the pose optimization takes into account Mahalanobis distances, the

translational pose uncertainty still grows with landmarks average distance.

The VO method used [98] is described in Algorithm 1, it is a 3D-to-3D method based

upon NASA’s Mars rovers approach [59] and [58]. Compared to [98] we used a different

feature detector, moreover in [98] the analysis is limited to how the motion amplitude affects
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SIFT

Harris

Fig. 3.23 Features extracted by the Harris and the SIFT detector. Two detectors have been

used in order to have an high number of 3D points.

a single step error and uncertainty. In the following sections the experimental set-up and the

obtained results are discussed.

3.3.1 Experimental set-up and results

Figure 3.23 shows the scene with the observed features, by utilizing two different descriptor

algorithm the features have a more dispersed distribution and increases the overall number of

features.

Experimental set-up consists of a stereo camera mounted on a high precision motor-

driven rotary stage, which was, atop a linear slide; thus translations and rotations could be

independently achieved. A stepper motor drove the rotary stage, which resolution is equal

to 0.0003◦, its position repeatability is 0.02◦. The linear slide had a resolution equal to 1

mm; reading to the nearest division gave an error of no more than ±0.5 mm. We can take

these to be a uniformly distributed uncertainty. Experimental set-up and Visual Odometry

1-sigma uncertainties are highlighted in Table 3.5, while Figure 3.24a shows the employed

set-up. In Table 3.5 σZ is expressed in a range because, as we can see in Figure 3.27, the
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Fig. 3.24 (a) Experimental set-up. (b) Rotary stage position in the laboratory environment.

Table 3.5 Uncertainties of the Visual Odometry system compared to the experimental set-up

uncertainties.

Visual Odometry system

σZ 0.5 - 3 [mm]

σθ 2.5 ·10−2 [deg]

Experimental set-up

σlinear slide 0.3 [mm]

σrotary stage 5.7 ·10−3 [deg]

translational step uncertainty changes by changing the experimental set-up position.Thanks

to the motor-driven rotary stage used in the experimental set-up, each imposed rotation from

frame to frame are known with an uncertainty of at least one order of magnitude better than

that of the VO’s estimate. The linear slide resolution is limited to 1 mm, so its uncertainty

is not one order of magnitude better than the Visual Odometry system as requested by a

reference system, but at least it is lower.

During the translation test, stereo camera images are acquired exactly every 50 mm for a

total span of 1350 mm along the z-axis, as shown in Figure 3.24a; while the rotation test goes

from 0◦ to 90◦ around the y-axis, in increments of 1◦, as driven by the stepper motor. Rather

than considering the uncertainty arising from the initial rigid transformation between the

linear slide’s reference frame and that of the camera, and having to propagate it through the

final position uncertainty; during the tests we only measured the magnitude of the translation

vector.
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Fig. 3.25 Position 1 landmark point cloud, each point is colored with the value of the

uncertainty ellipsoid major axis.

In order to see how the average feature distance affects the rotation and the translation

measurements we have repeated the test in seven different positions, as depicted in Figure

3.24b. The experimental set-up is manually brought to each new position, as it approaches

the wall the feature distances, with reference to the stereo-camera system, decrease. Each

matched feature is triangulated, so we know the point position within the camera’s reference

frame, from this it is then possible to measure the average feature distance as a function of

stereo-camera movement; as shown in Figure 3.26c.

Figure 3.25 shows the point cloud corresponding to the triangulated features. For each

point, the correspondent uncertainty ellipsoid has been calculated. The uncertainty el-

lipsoids of the 3D points are represented by 3×3 covariance matrices calculated by the

Kline-McClintock formula, see GUM [70]. As is visible, the 3D points ellipsoid major axis

grows with the distance from the stereo camera centre Table 3.6 shows the variances of

the camera properties that have been propagated to variances in the landmark 3D positions.

The uncertainty of the intrinsic (σ f ocal length,σoptical center) and extrinsic camera parameters

(σθ ,σα ,σβ ,σX ,σY ,σZ) have been retrieved from the Zhang calibration procedure [45]. The

half width divided by
√
3 of a uniform distribution has been taken as standard uncertainties

for the intrinsic and extrinsic camera parameters.
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Table 3.6 Camera characteristics and intrinsic and extrinsic parameters uncertainties, they

have been propagated to obtain the variances in the landmark 3D positions.

Camera characteristics

Image size 1084×2040 [pixels]
Focal length 6 [mm]

FOV 86◦×53◦

Baseline 546 [mm]

σ f ocal length 1 [pixel/mm*mm]

σoptical center 1 [pixel]

σθ ,σα ,σβ 5 ·10−2 [deg]
σX 2 [mm]

σY ,σZ 1 [mm]

Translations

Linear translation test results obtained for the seven tested positions are summarized by the

following figures. Figure 3.26a illustrates the measured total errors for each motion step,

which are the differences between the measured and imposed total displacements. Here

we have considered, as an error, the difference between the modulus of the measured dis-

tance (
√

∆x2+∆y2+∆z2), and the imposed displacement. Figure 3.26b shows the standard

uncertainty evaluated by the Monte Carlo approach for the total position along the z axis

(the z-axis being parallel to the linear slide). Figure 3.26c depicts the number of features

used during the non-linear phase of the VO flowchart to estimate the motion step. Figure

3.26d shows the features average distance as function of the imposed displacement. These

uncertainties are obtained combining all the single uncertainties of each motion step from

the first one to the considered position. Relative displacement error is less than 0.41% for all

the tested positions. For the linear translation tests, the relative standard uncertainty is less

than 1.39% along the x-axis and 0.9% in the z-direction.

The uncertainty grows faster in the first part of the sequence, when the camera moves

forward the feature distances decrease, so, as is shown in Figure 3.25, also their uncertainty

decreases. As result the step uncertainty is greater when the features are located far away

from the camera, as shown in Figure 3.27. The uncertainty of the 3D-to-3D matched features

are still affecting the motion estimates despite during motion optimization Mahalanobis

distance has been taken into account.
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Fig. 3.26 (a) Total displacement error in the linear translation test; (b) total position standard

uncertainty along z-axis in the linear translation test; (c) number of features used in the

non-linear optimization, during the linear translation test; (d) features average distance in the

linear translation test.

Rotations

0◦/90◦ rotation test results obtained for the seven tested positions are summarized by the

following figures: Figure 3.28a illustrates the measured total errors for each motion step,

which are the differences between the measured and the imposed total rotation. Figure 3.28b

shows the standard uncertainties evaluated by the Monte Carlo approach for the total rotation

around the y-axis (z-axis is parallel to the linear slide, while the x-axis is orthogonal, see

Figure 3.24a). These uncertainties are obtained by combining all the single uncertainties of

each rotation step from the initial position to that of the point being considered. Landmark

distances do not seem to affect the uncertainty of the measurements. The feature average

distance decreases around θ = 60◦, when the camera starts to face the closest wall side,

parallel to z-axis. In correspondence of the same point, and for the same reason, the number
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Fig. 3.27 Translation step standard uncertainty along z-axis as a function of features average

distance.

of matched features decreases. Relative rotation error is less than 0.27% for all the tested

positions and the relative standard uncertainty is less than 0.38%.

Despite 3D landmark uncertainty growing with distance from stereo-camera center, the

rotation uncertainty does not. If landmarks are uniformly distributed within the stereo

camera’s FOV, rotation uncertainty does not depend on feature distance. This is because

pixel position measures angles.

Figure 3.29 shows the step rotation uncertainty, evaluated using the experimental data in

all the considered positions, as a function of features average distances. The mean value of

rotation step standard uncertainty is 0.0249 [deg], this is the mean value for the seven 0/90

and -90/0 counter-clockwise tests.

In the case of an unbalanced features distribution rotation uncertainty grows. As we can

see in Figure 3.29 when zave is between 2000 and 4000 [mm] the rotation step uncertainty

grows. The distribution of features in camera FOV is unbalanced when zave is between 2000

and 4000 [mm] because the distance between the stereo camera and the laboratory wall

is small, so the number of features matched correctly decreases between two consecutive

images.
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Fig. 3.28 (a) Total rotation error in the 0/90 rotation test, absolute value; (b) total rotation

standard uncertainty around y-axis in the 0/90 rotation test; (c) number of features used in

the non-linear optimization, during the 0/90 rotation test; (d) features average distance in the

0/90 rotation test.
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Fig. 3.29 Rotation step standard uncertainty along y-axis as a function of features average

distance, for counterclockwise rotations. Dashed-line: average value.



Chapter 4

Visual SLAM techniques for small

spacecraft and interplanetary

exploration

Hopping/tumbling mobility enables exploration and large coverage of comets, asteroids and

other small bodies. These new mobility systems require new approaches for localization.

Localization problem can be split into two main area: global localization and relative

localization. Global localization means that we retrieve the position of the rover in the frame

of reference of the small body under exploration. Could be useful to localize globally a

rover in order to enable the correlation of rover’s measurements with observations from other

platforms, like the mother spacecraft. Moreover, given a target location in the small body

reference frame and by knowing rover’s pose, global localization allows the rover to drive

autonomously. Relative localization is the localization of the platform with reference to

platform initial position, it is known also as tracking problem. It is helpful to keep tracking of

the rover’s trajectory when its global position is not known. Moreover, relative localization is

useful for hazard avoidance and path re-planning.

In this chapter, we present a synergistic localization and mapping approach between the

mother-craft and a deployed daughters. Before the daughter deployment into the small body

surface, the mother spacecraft provides the map of the small body surface. The a priori map

of the small body is built by using a narrow FOV camera on-board the mother-craft. The

daughter is relocalized during long-range hops, where the platform could reach altitudes as

high as of 100 m for a small-sized asteroid [33]. Figure 4.1 shows the hopping/tumbling

rover concept.

The limited size and power resources available for the platform had led the choice of

the navigation sensors and therefore the localization algorithm. The navigation algorithms
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Fig. 4.1 Spacecraft/rover hybrids concept for the exploration of comets, asteroids and small

bodies. Image courtesy of [34]

have to rely on a monocular camera, moreover, due to the limited knowledge of the asteroid

gravity model, the possibility to use an inertial navigation system is limited. A key aspect

that had led the choice of the algorithm is the presence of loop closure and place recognitions

mechanisms, these mechanisms are the basis of the localization on the prior map and of the

drift reduction during tumbling. Table 4.1 summarizes the requirements for the localization

algorithm.

Asteroid and comets present a challenging environment for visual localization, due

to large-scale changes, frequent occlusions, high-contrast, rapidly changing shadows and

featureless terrain. Due to the absence of air scattering on asteroid/comets surface, shadows

are very sharp, a visual characteristic of an area could change suddenly during small body

rotation.

In Chapter 2.5.1 we have evaluated various open-source monocular visual SLAM software.

Between them, ORB-SLAM2 has been chosen and adapted for this application. Indeed, the

place recognition module of this software enables re-localization on a prior map and loop

closure, which is an asset to reduce the uncertainty drift in SLAM trajectory estimation.

In Section 2.5.2 the process used for the realization of a bag-of-words vocabulary for

visual localization on asteroids, comets, and moon is presented. Section 4.2 describes the

main method of collaborative localization between orbiter and daughter spacecraft: the

possibility to share the same map, that has been previously realized and stored.

The illumination related problems are presented in Section 4.3. Finally, a metrological

evaluation of this method accuracy is presented. Tests have been performed by considering

the exploration scenario of the hybrid rover/spacecraft on a medium size asteroid.
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Table 4.1 Requirements for localization algorithm

Requirements for algorithm Rationale

• Monocular vision • Limited space on the platform

• Weight constraints

Computationally efficient and Memory ef-

ficient

• Limited on-board computational capa-

bilities

• Loop closure • Drift reduction during tumbling

• Place recognition • Localization of the platform

• Large topographic changes • Operations in an asteroid environment

• Limited inertial navigation • Asteroid gravity model unknown

• Possibility to set different cameras pa-

rameters

• Synergistic approach between mother

spacecraft/tumbling rover

• Map reuse capabilities

• Landmarks invariance to sunlight direc-

tion

• Different time between the mapping

and the surface operation phase

• Fish-eye camera model • Tumbling rover FOV camera, large

image footprint

• Open source code • Avoid license issues

4.1 ORB-SLAM Vocabulary parameters optimization

By processing the image sequences of an asteroid mock-up asteroid, place recognition shows

poor performances and multiple failures in most of the cases if we use the default ORB-

SLAM2 vocabulary. The consequence of a place recognition failure is the discarding of a

loop closure. For this reason, we decided to build a custom vocabulary based on asteroid,

comets and moon images.

A greater number of vocabulary branches and levels allow a more efficient place recogni-

tion. The number of generates nodes, for feature clusterization, is given by n = kL, where

k is the number of branches and L the number of levels. If we augment the number of

nodes the average number of features for each cluster decrease, bringing some issue for a

correct clusterization. By adding some other images to our asteroid vocabulary like the lunar

mock-up images, MRO images and images from Mercury we obtain a vocabulary composed

by 1510 images.

We change the ORB extractor parameters in order to retrieve a number of features equal

to 2000 for each image. Finally, we have trained two vocabularies one with 5 levels and 10

branches, and the other one with 6 levels and 8 branches. This two vocabulary will be used

for testing ORB-SLAM2 performances. Table 4.2 shows the parameters of the generated

vocabularies.
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Table 4.2 Used vocabulary parameters and performances

Default Custom 1 Custom 2

N of training images 10000 1510 1510

Features/Images 1000 2000 2000

Vocabulary Tree Levels 6 5 6

Cluster/Level 10 10 8

N of nodes 10000000 100000 262144

Feature/Node 10 20 12

Loop closure 1 2 2

Frames before localization

(constant illumination)
10 14 1

Frames before localization

(rotating asteroid)
43 41 26

(a) Default (b) Custom 1 (c) Custom 2

Fig. 4.2 Vocabulary testing on asteroid mock up data-set

New vocabulary has been tested on the asteroid mock up data set, results shown in Figure

4.2. Using the default vocabulary the tracking is lost two times, instead, with our asteroid

vocabulary, the track is lost only one time. With both the vocabulary ORB-SLAM2 algorithm

is able to re-localize the camera. Performances between vocabulary 1, 2 and 3 are slightly

different.

4.2 Relocalization on the Mothercraft Map

For the tumbling/hopping platform relocalization, mapping and saving functions have been

added to ORB-SLAM2. The output of the saving function is a YML file with keyframes,

mappoints and keypoints information. For a map composed by 206 keyframes and 16674

mappoints the file size is 35.7 MB. The file contains all the information needed to process a

new sequence on the previous map. Figure 6 shows a scheme of that process.
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Fig. 4.3 Map saving and map loading function realized for the application.
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The saving/loading functionality has permitted to us to evaluate the localization capa-

bilities for a series of sequences taken at different distances from the comet/asteroid, the

utilization of different cameras and different illumination conditions. The ORB-SLAM2

code has been modified to allow large FOV camera localization. The modification consists

in:

• Increase the number of levels of the ORB extractor.

• Reduce threshold on min N of inliers for relocalization from 50 to 10.

• Do not allow scale filtering during tracking.

Figure 4.4 shows the performances of relocalization algorithm, is possible to relocalize

camera with a huge difference between the camera intrinsic parameters.

Fig. 4.4 Relocalization of a large FOV camera image ( f = 255 [pixel/mm∗mm], 640×
480 [pixel]) on a map realized with a narrow FOV camera ( f = 1527 [pixel/mm∗mm],
1920×1060 [pixel]).

4.3 Robustness of ORB-SLAM to illumination

Comets and asteroids present a very challenging environment for feature matching and

place recognition. The absence of the atmosphere and the related scattering effects led to

the formation of net shadows, which move simultaneously to the asteroid rotation. The

shadow of a rock or a crater could become a feature which position changes with the sunlight

direction. Localization algorithm robustness to illumination changes is a key property for

small body navigation and lunar Entry Descending and Landing problems [107].
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For these reasons, a series of experiments under different illumination conditions has been

performed. The experimental set-up allows us to rotating the asteroid and changing the light

incidence direction. During the tumbling rover operations, the illumination conditions could

be very different from the mapping phase. In order to evaluate at which angle the localization

on the previous map fail a series of new debug functionalities have been introduced into

ORB-SLAM2.

Figure 8 shows the relocalization of the rotating asteroid sequence (illumination changes)

on a previously recorded map. After a rotation of about 12 deg, there are 13 features matching,

after about 22deg there are no more features matching and the track on the previous map is

lost. The frame to frame tracking still works in the new sequence.

Fig. 4.5 Feature matching between the keyframes of the rotating asteroid sequence (left) and

the map keyframes (center). Map keyframes have been realized by keeping the illumination

conditions constant. The right image shows the new frames localized on the map.
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4.4 Mapping using prior camera pose

During the mapping phase the pose of the spacecraft relative to the asteroid is known by

other measurements [29, 30]. During the experiments with the asteroid mock-up, the prior

pose of the camera will be estimated thanks to a Vicon system.

In order to add this functionality, ORB-SLAM2 code has been modified. Now is possible

to store the frame pose to a text file (.yml) and load into the Frame class the image associated

camera pose. In order to optimize the frames pose by knowing the prior pose position we

have to add the prior adjustment thread.

The Frames that have a prior pose are “promoted” to keyframes and sent to the prior

adjustment thread. Table 4.3 shows the parallels threads that track and optimize the Frame

poses and the map points position with the addition of the “Prior adjustment” thread.
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Table 4.3 ORB-SLAM2 threads. The “prior adjustment” thread has been added to adjust camera’s trajectory when there is a prior

knowledge of the camera pose.

Tracking Local Mapping Loop Closing Global Bundle Adjust-

ment

Prior Adjustment

• Process new frame • Check if there are

keyframes in the queue

• Check if there are

keyframes in the queue

• This thread is launched

from the Loop Closing

thread

• Check if there are

keyframes in the queue

• Extract ORB features • BoW conversion and in-

sertion in Map

• Detect loop candidates

and check co-visibility con-

sistency (3D-to-3D)

• Perform the Global Bun-

dle Adjustment, only the ini-

tial keyframe is fixed

• Perform global pose

graph optimization

• Initial pose estimation

from last frame or Relocal-

ization (2D-to-3D)

• Check recent mappoints • Compute similarity trans-

formation [sR | t]
• Perform a global bun-

dle adjustment considering

prior poses

• Track local map • Triangulate new map-

points

• Perform loop fusion and

global pose graph optimiza-

tion

• Check if we need to in-

sert a new keyframe (local

mapping is busy?)

• Find more matches in

neighbour keyframes and

fuse point duplications

• Launch a new thread to

perform Global Bundle Ad-

justment

• Local Bundle Adjust-

mentm

• Check redundant local

keyframes

• Run continuously • Run continuously • Run continuously • Lunched if a Loop Clo-

sure is detected

• Run continuously

• Stopped if a Loop Closure

is detected

• If a Loop Closure is de-

tected send a stop signal to

Local Mapping, wait until

Local Mapping has effec-

tively stopped

• Lunched if a Loop Clo-

sure is detected

• If a new keyframe is

added in the queue send a

stop signal to Local Map-

ping, wait until Local Map-

ping has effectively stopped

• Stopped if a new

keyframe is added in Prior

Adjustment thread

• If a Loop Closure is de-

tected abort the Bundle Ad-

justment thread

• If a new keyframe is

added in the queue abort the

Bundle Adjustment thread
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The prior adjustment thread performs a pose graph optimization over the essential graph.

Both the prior pose of the prior keyframes and the pose issued by the tracking phase are

added into the optimization thread. The prior pose of the keyframes is fixed. A Sim(3)

transformation is added between the prior pose and the tracked pose, other keyframes

are connected each other by means of the essential graph, they are connected by Sim(3)

transformations. This optimization distributes the error between the keyframe prior pose and

the tracked pose over the essential graph.

An error in an edge (the connection between two keyframes) is defined as:

ri, j = logSim(3)(Si, jS j,wS−1i,w) (4.1)

where Si, j is the relative Sim(3) transformation between the connected keyframes computed

before the pose graph optimization, the scale is set to 1. As shown by [108] Sim(3) is a

Lie group and sim(3) is the corresponding Lie algebra, represented by a 7-vector (ωωω,ννν ,σ).

ωωω = (ω1,ω2,ω3) is the axis-angle representation of the rotation, ννν is the rotated version of

the translation t and σ = logs, where s is the scale. The exponential map from sim(3) to

Sim(3) is given by:

S = expSim(3)




ωωω

ννν

σ


=

[
sR t

0 1

]
(4.2)

Also, an inverse relation exists:




ωωω

ννν

σ


= logSim(3)

[
sR t

0 1

]
(4.3)

ωωω =
θ

2sinθ
(R−R⊤) (4.4)

where

θ = arccos

(
tr(R)−1

2

)
(4.5)

The rotated version of the translation t is given by:

ννν =W−1t (4.6)

W =
aσ +(1−b)θ

θ(σ2+θ 2)
(ωωω)×+

(
c− (b−1)σ +aθ

σ2+θ 2

)
(ωωω)2×

θ 2
+ cI (4.7)
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(a) Before Pose Graph Optimization (b) After Pose Graph Optimization

Fig. 4.6 Keyframe poses before and after the prior adjustment, the prior pose of a keyframe

is highlighted in magenta

a = ssinθ b = scosθ c =
eσ −1

σ
(4.8)

The cost function of the essential graph optimization is given by:

χ2(S2, . . . ,Sm) = ∑
i, j

r⊤i, jΩ∆Si, j
ri, j (4.9)

where Ω∆Si, j
is the information matrix:

Ω∆Si, j
= diag(σ2

r ,σ
2
r ,σ

2
r ,σ

2
t ,σ

2
t ,σ

2
t ,σ

2
s ) (4.10)

σr, σt , σs are respectively the rotation, the translation and the scale standard deviation. These

values are settable in that version of ORB-SLAM code. In the results section we will show

how these parameters influence the map construction. In the case of the connection between

the prior keyframe pose and the tracked pose the SE(3) transformation between the two is

set to the identity, and the scale to 1. In ORB-SLAM2 the optimizations are performed using

g2o libraries [71].

After the essential graph optimization, a global bundle adjustment is performed. An

SE(3) edge is added between the keyframe and its corresponding prior pose. The prior

information of the prior keyframes is also taken into account during the windowed bundle

adjustment.
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4.5 Tests and results

A series of experiment in order to test ORB-SLAM2 capabilities to localize a large FOV

camera on a map realized with a narrow FOV camera have been done. The large FOV camera

represents the tumbling rover camera. Figure 4.7 shows a concept of tumbling/hopping

rover operations. During phase A it is possible to localize the rover on the orbiter prior

map. Phase B highlights rover operations, tumbling movements and small hops, during

that phase the tracking is kept relative to previous frames, the estimate poses uncertainty

grows with the traveled distance. In order to reduce the collected uncertainty, a second big

hop is performed in order to close the loop on the satellite map, phase C. During tests, the

localization capabilities have been tested also by changing the illumination conditions.

The mapping phase will be limited to the planar case; we assume that the orbital plane of

the mother spacecraft will be similar to the equatorial plane of the small body. The comet

is rotating around its orbital plane perpendicular direction and during the mapping phase

the mother spacecraft is adequately far away to be considered not influenced by the asteroid

gravity, so the distance between the spacecraft and the asteroid centre does not change.

Loop closure

Loop closure

ABC

Mapping phase

Mother Space Craft

Hedgehog

Light direction

ql

qc

Fig. 4.7 Scheme of the experimental set-up.

As reference we consider a target comet which has a diameter of 1 km, we want to scale

the localization problem to the mock-up asteroid, which diameter is 1 m. Table 4.5 shows

the image footprint, the ground resolution, and how many images are necessary to map the
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asteroid diameter with a camera that has similar properties to the candidate rover camera.

For comparison, Rosetta’s camera properties are highlighted in Table 4.4. In order to scale

the problem to the asteroid mock up we have considered that to simulate the 10 m hop the

image footprint need to be 1/10 of the asteroid diameter. Table 4.6 shows the results.

Table 4.4 Rosetta’s cameras parameters.

NAC WAC

Field of view [deg] 2.20×2.22 11.35×12.11
Image size 2048×2048 2048×2048

Footprint @ 20 [km] 0.77×0.78 [km] 4.01×4.29 [km]
Footprint @ 100 [km] 3.84×3.88 [km] 20.07×21.46 [km]
Resolution @ 20 [km] 0.4 [m/pixel] 2 [m/pixel]

Resolution @ 100 [km] 2 [m/pixel] 10 [m/pixel]

Table 4.5 Performances of the tumbling rover camera, 160 deg FOV 640×480 pixels.

Distance Image footprint Resolution
Images to cover a 1 km

diameter asteroid

10 [m] 0.11×0.085 [km] 0.2 [m/pixel] 10

50 [m] 0.57×0.42 [km] 0.9 [m/pixel] 2

100 [m] 1.13×0.85 [km] 1.8 [m/pixel] 1

Table 4.6 Large FOV camera performances on the asteroid mock up.

Hop maximal

altitude

Image footprint to map

the asteroid mock up

Distance from

asteroid mock-up

10 [m] 0.11 [m] 0.01 [m]

50 [m] 0.57 [m] 0.05 [m]

100 [m] 1.13 [m] 0.10 [m]

The large FOV camera and the asteroid rotation will be tracked by means of a Vicon

system, which accuracy is of 2 mm. This is a limit of the experimental set up because the

lowest hops peak is of the order of 10 mm. The camera employed to create the asteroid mock-

up map is a GoPro Hero4 Black, used in “Narrow field of view” mode. The resolution of

images captured by the camera is 1920×1080 pixel. The image sequence for the localization
experiments are listed below.
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Sequence 1 – Mapping at fixed illumination conditions The narrow-angle FOV cam-

era (GoPro Hero 4) is mounted on a cart that is manually moved around the steroid mock

up in an “orbit like” way. The light direction is parallel to the asteroid orbital plane. Three

mapping distances have been tested. A 30 fps video sequence is captured. The motion of the

camera is recorded by a Vicon system. The knowledge of the pose is exploited in order to

create the prior map.

Sequence 2 – Relocalization on the previous map – fixed illumination conditions

Tumbling/hopping rover camera (160 deg FOV 640×480 pixels) is moved from the asteroid

surface up to the mapping orbit. The motion of the camera is tracked by a Vicon system in

order to have the ground truth and evaluate relocalization accuracy.

Sequence 3 – Mapping by changing the illumination conditions The narrow-angle

FOV camera (GoPro Hero 4) is mounted on a tripod, the distance between the tripod and

the asteroid is kept constant. The asteroid is rotated by keeping the light source angle of

incidence constant. This allows the formation of a circular orbit around the asteroid. A 30

fps video sequence has been captured. In the meanwhile, the pose of the asteroid is recorded

with the Vicon system. In addition, the pose of the illumination source is tracked during the

test.

Sequence 4 – Relocalization on the previous map – variable illumination conditions

Tumbling/hopping rover camera (160 deg FOV 640×480 pixels) is moved by performing
multiple hops on the comet surface. The relocalization capabilities are tested by loading a

map with different illumination conditions. The images are taken by a video sequence.

The used camera has been calibrated with the Zhang method described in [45]. Calibration

results are summarized in Table 4.7.

4.5.1 Vicon/ORB-SLAM synchronization

In order to analyze algorithm performances and generate the prior map, the timestamp of the

camera need to synchronize to the Vicon timestamp. Moreover, the trajectory output of the

two systems are in a different reference frame, that need to be aligned. The ORB-SLAM2

trajectory is expressed with reference to the first keyframe pose.

Vicon/GoPro camera alignment In order align the Vicon timestamp with the GoPro

timestamp and so align the two reference frame, first of all, an initial guess of the time-shift

has been estimated manually by identifying some interest point of the time-displacement
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Table 4.7 Camera experiment parameters.

GoPro Hero 4 camera parameters

Size 1920×1080 [pixel]
Focal length [1699.32, 1703.46] [pixel/mm·mm]
Principal point [964.62, 604.94] [pixel]

Distortion Coefficient [-0.2803, 0.1200, 0.0020, 0.0001, 0]

Large FOV camera parameters

Size 640x480 [pixel]

Focal length [274.13, 274.43] [pixel/mm·mm]
Principal point [315.29, 235.52] [pixel]

Distortion Coefficient [-0.2440, 0.0558, 0, 0, -0.0054]

plot, see Figure 4.9. Then the Vicon data is then interpolated on camera time stamp. We have

now two set of 3D points that have the same dimensions, and that represent the trajectory in

the two different frame of reference. To estimate the rotation, translation and scale difference

between the two point set we have used the Horn’s method [109]. The residual error is given

by:

ei = rW,i− sC/W RC/W (rC,i)− tC/W (4.11)

where rW,i and rC,i are the camera position expressed respectively in the Vicon frame of

reference and the GoPro camera frame of reference (ORB-SLAM2 frame of reference),

RC/W is the rotation matrix between the two frames, tC/W the translation and sC/W the scale.

We will minimize the sum of squares of these errors, if n is the number of sampled poses:

n

∑
i=1

‖ei‖
2 (4.12)

The time shift has been estimated by an exhaustive search, the candidate value is the one

that gives the minimal error, see Figure 4.10. In Figure 4.11 it is depicted the overlapping

between the two point set after the estimation of the roto-translation. It is possible to see

that the two trajectories are not perfectly overlapped. This is because the camera optical

center and the camera support tracked in the Vicon system are not coincident. A nonlinear

optimization is performed to obtain a more accurate estimation of the transformation, the

cost function considers also the translation between the camera optical center and the camera

rig:

ei = rW,i− sC/W RC/W (rC,i)− tC/W +RW tC/R (4.13)
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Fig. 4.8 Camera rig and experimental set-up.

where tC/R is the translation between the camera optical centre and the camera rig and

RW is the pose of the camera in the Vicon frame of reference. Figure 4.12 shows the

Cartesian components of the error between the camera position as measured by the Vicon

and the estimated trajectory registered to the Vicon frame of reference, after the non-linear

optimization.

For each mapping sequence, a .yml file with the correspondent Vicon poses has been

created to allow the prior map generation. The RMS error is about 0.44 cm, the accuracy of

the ground truth system (Vicon) is around 0.2 cm. The RMS angular error is equal to 0.2 deg

along the three reference frame axis.

Vicon/Large FOV camera alignment A similar pipeline has been used for the large FOV

camera alignment, but the time-shift estimation has been calculated using a different cost

function. The large FOV camera is localized on a map that is scaled, rotated and translated to

the Vicon frame of reference, so its frame of reference it is already up-to-scale, we need to

estimate the translation between the camera optical center and the camera support tracked by

the Vicon system. Considering that the Vicon clock was not perfectly aligned to the large

FOV camera clock, we have performed an exhaustive search to retrieve the time shift and
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Fig. 4.9 Interpolation of the Vicon data on the GoPro camera timestamp.

the correct timestamp before performing the alignment. The cost function considers the

translation between the camera optical center and the camera rig (tC/R):

ei = rW,i− rC,i +RW tC/R (4.14)

Figure 4.14a shows the overlapping of the large FOV camera trajectory as detected by the

Vicon system and estimated by ORB-SLAM, after the non-linear optimization and Figure

4.14b shows the difference between the two trajectories.

4.5.2 Mapping with priors

We have realized two maps, the first one with a sequence taken at a distance of about 160 cm

from the asteroid mock up (far mapping), the second one is the result of three consecutive

sequences closer and closer to the mock up, respectively 160 cm, 120 cm and 80 cm (three

distance mapping). Figure 4.15 shows the position of the keyframes that have realized the

map and the corresponding mappoints, for the two considered mapping sequences. During

the mapping phase, we have changed the prior insertion rate and the information matrix

values. A prior insertion rate of 30 means that we add a prior every 30 frames.
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Fig. 4.10 The time shift used in the non-linear is the one that gives the minimal error.

Add prior information to the map is needed in order to scale the map to a meaningful

length, and to have a common reference frame for accuracy analysis. Moreover, as we can

see from Figure 4.16, the trajectory estimation error decreases by adding priors. At the same

time the number of priors should not be to high, because there is the risk to over-constrain the

optimization algorithm. We attempt to give an higher weight to the translational components

of the prior pose (see information matrix Eq.4.10) because using the Vicon system the rotation

estimation is dependent by the tracking balls baseline. Considering a tracking accuracy of

the Vicon system of 0.2 cm and a baseline of 100 cm, the rotation accuracy is 0.3 deg.

In the three distance mapping sequence the median value of the trajectory estimation

error is 0.14 cm, with a prior addition rate of 15 and σr = σs = 10−9, σt = 104. With a

prior insertion rate of 10, and σr = σs = 10−9, σt = 104 the media error of the far mapping

sequence is 0.12 cm. As we can see from Figure 4.16 the map optimization algorithm led the

map to “break” due to numerical instabilities in two cases: in the far mapping sequence when

the prior insertion rate FPS = 10, σr = σs = 1, σt = 1, and in the three distance mapping

sequence when FPS = 15, σr = σs = 10−3, σt = 104. We were not able to produce an

accurate map with the three distance mapping when the prior addition rate FPS = 10.



4.5 Tests and results 95

440

x [cm]

420
400

380
360300

350

400

y [cm]

450

500

550

Vicon
GoPro

Fig. 4.11 Overlapping of the two trajectories using Horn’s method.
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Fig. 4.12 (Right) Absolute value of the Cartesian components of the error between the camera

position as measured by the Vicon and the estimated trajectory registered to the Vicon frame

of reference, after the non-linear optimization. (Left) Angular error of the three Euler angles

between the camera position as measured by the Vicon and the estimated ORB-SLAM

trajectory
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Fig. 4.14 (Left) Overlapping of the large FOV camera trajectory as detected by the Vicon

system and estimated by ORB-SLAM, after the non-linear optimization. (Right) Cartesian

components of the error between the large FOV camera position as measured by the Vicon

system and the estimated trajectory registered to the Vicon frame of reference, after the

non-linear optimization.

4.5.3 Relocalization accuracy

The relocalization accuracy of the large FOV camera on the saved map has been evaluated as

a function of the distance from the asteroid, and of the off-pointing direction. The distance
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Fig. 4.15 (Top) Map created by processing the far mapping sequence. The position of

the keyframes used to create the map are blue colored and the re-localized frames are

colored in magenta. The optical axis direction is highlighted by a red vector. The priors are

inserted every 15 frames and the information matrix values are σr = σs = 10−3, σt = 104.

(Bottom) Map created by processing the three distance mapping sequence. The position of

the keyframes used to create the map are blue colored and the re-localized frames are colored

in magenta. The optical axis direction is highlighted by a red vector. The priors are inserted

every 20 frames and the information matrix values are σr = σs = 10−9, σt = 104.
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Fig. 4.16 Box diagram of the frames error during the mapping sequence after prior keyframes

insertion. Comparison between different rate insertion and information matrix values. The

median value is highlighted in red, distribution outliers are represented by a red cross. (Top)

far mapping sequence. (Bottom) three distance mapping.
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from the asteroid is the Euclidean distance from the frame position and his projection in the

asteroid point cloud along the camera optical axis, as shown in Figure 4.15. The off-pointing

direction is the angular deviation between the localized frame optical axes and the reference

keyframe optical axis.

Figure 4.18 shows the percentage of localized frames as a function of the normalized

distance from the asteroid. The 5% of frames that are located at a distance corresponding to

the 0.13 of the asteroid diameter for all the tested sequences, which correspond to a height

above the surface of 100 m for an asteroid with a diameter of 769 m. The localized frames

percentage increases for the frames located closer to the comet surface if we use the three

distance map, shown in Figure 4.15. By using the far distance map we arrive to localize the

32% of the frames which are located at a distance equal to 0.47 of the asteroid diameter.

Localization performances have been evaluated by changing the number of map candi-

dates keyframes returned by the BoW library. Keyframes which do not share enough words

are discarded, in order to increase the keyframe candidates we decrease the percentage of

minimum common words required. Figure 4.19a and 4.19b show the number of candidate

map keyframes returned using the Bag of Word approach as function of the frames distance

form the asteroid. The candidate keyframe number is filtered using two parameters kwords

and kscore. kwords is used in order to compare the candidate keyframe only against those

keyframes that share enough words. The minimum number of words that two frames should

share is given by minwords = kwordsmaxwords. Then the similarity score is computed and the

remaining candidate keyframes are filtered again by retain only the keyframes that has the

highest score, minscore = kscorebestscore. The computational efficiency has to be weighted

against the possibility to localize a frame.

Frame localization on the map is performed by checking the geometric consistency of

a list of candidate keyframes chosen using the frequency of repeated words. Geometric

consistency is performed by using a PnP scheme embedded in a RANSAC scheme. In order

to show the bag of word effects on the map localisation, and to estimate the “upper bound” of

the number of frames that could be potentially localised on the map only with the geometric

consistency test, we have done a series of tests by returning all the keyframes stored in the

orbiter map. Results are shown in Figure 4.20.

By considering an average mapping distance of 160 cm from the comet, as for the far

map sequence, and the camera intrinsic parameters of Table 4.7, the overlap between the two

camera footprints takes place when the large FOV camera is located at 18.3 cm from the

surface of the mock-up, which is equal to a normalized distance of 0.23. If the footprint of

the camera to localize is smaller than the mapping camera footprint a part of the possible

feature matches is throw out, so the localization becomes more difficult. We can see from
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Fig. 4.17 Localization on ‘far map’, prior insertion rate = 15, σr = σs = 10−3, σt = 104, and

RANSAC iterations = 200. The localized frames are highlighted in green.
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Fig. 4.18 Percentage of localized frames as a function of the normalized distance from

the asteroid. The tests have been performed using different maps. The parameters of the

keyframes selection are unchanged.

Figure 4.18 that the percentage of localized frames grows when the normalised distance value

is between 0.3-0.6, which is correspondent to a large FOV camera footprint greater than the

mapping images. When the normalized distance greater than 0.6 map tracked features cover

only a small portion of the large FOV image, in this case the numerical errors are to high to

pass the geometric consistency test.

Figure 4.22 shows how accurate is the localization algorithm performances as a function

of the distance from the asteroid mock-up. The median value of the error is between 2 and 3

cm, which correspond to a normalized error between 0.014 and 0.022, the normalization is

calculated again over the asteroid diameter. If the asteroid diameter is 535 m, like asteroid

Itokawa, the localization accuracy will be between 7.5 and 11.8 m. We can notice that

the accuracy slightly decreases with the distance from the asteroid. Figure 4.23 shows the

normalized versions of Figure 4.22. As off-pointing angle we have considered the angle

difference between the optical axis of the localized frame and the reference map keyframe

optical axis. Figure 4.24 shows the localization accuracy and number of localized frames

as a function of the off-pointing direction, for different map types and RANSAC iterations.

Test conditions have allowed a limited number configuration which has the two optical axes

aligned, see Figure 4.17. In all the tested conditions we were able to localize frames up to an

off-pointing angle of 46 deg. The accuracy and the number of localized frames decrease with

the off-pointing angle.
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Fig. 4.19 Number of candidate map keyframes returned using the Bag of Word approach,

compared to the frames distance form the asteroid. The geometric consistency test is

performed between the current frame and the candidates keyframes. The localization is

performed over the three sequence map. (a) kwords = 0.8, kscore = 0.75, RANSAC=100
and (b) kwords = 0.01, kscore = 0.1, RANSAC=100. By reducing the minimum number of

common words that a map keyframe have to share with the current keyframe the number of

localized frame increases.

Figure 4.25 shows the box plot of the error for the two configuration which gave the

highest number of localized frames. We can see that the error median value is slightly

increasing as function of the distance from the asteroid.
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Fig. 4.20 Percentage of localized frames as a function of the normalized distance from

the asteroid. The tests have been performed by changing the parameters of the candidate

for localization selection. The used map is the three distance map. Red curves shows the

localization performances by using all the keyframes of the map.
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Fig. 4.21 Percentage of localized frames as a function of the normalized distance from the

asteroid. “Upper bound” of the number of frames that could be relocalised by changing the

map. Comparison between three distance map and far map.
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Table 4.8 Localized frames lower bound distance from the asteroid mock-up and maximal

off-pointing angle.

Map Lower

bound

distance

Lower

bound

distance

normalized

Max off-

pointing

angle

Far Map, FPS = 15, σr = 10−3, σt = 104 RANSAC = 40 17.47 [cm] 0.13 57.03 [deg]

Far Map, FPS = 15, σr = 10−3, σt = 104 RANSAC = 100 17.47 [cm] 0.13 53.25 [deg]

Far Map, FPS = 15, σr = 10−3, σt = 104 RANSAC = 200 17.47 [cm] 0.13 56.45 [deg]

Far Map, FPS = 30, σr = 1, σt = 1 RANSAC = 40 18.55 [cm] 0.13 49.83 [deg]

3 Dist Map, FPS = 15, σr = 10−9, σt = 104, RANSAC = 40 14.65 [cm] 0.11 46.50 [deg]

3 Dist Map, FPS = 15, σr = 10−9, σt = 104, RANSAC = 100 14.43 [cm] 0.10 49.29 [deg]
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Fig. 4.22 Relocalization accuracy as a function of the distance from the asteroid mock-up

surface, for different map types and RANSAC iterations. (a) (b) and (c) far map with

FPS = 15, σr = 10−3, σt = 104 and respectively 40, 100 and 200 RANSAC iterations. (d)

far map with FPS = 15, σr = 1, σt = 1 and 40 RANSAC iterations. (e) and (f) three sequence

map with FPS = 15, σr = 10−9, σt = 104.
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Fig. 4.23 Normalized relocalization accuracy as a function of the distance from the asteroid

mock-up surface, for different map types and RANSAC iterations. (a) (b) and (c) far map

with FPS = 15, σr = 10−3, σt = 104 and respectively 40, 100 and 200 RANSAC iterations.

(d) far map with FPS = 15, σr = 1, σt = 1 and 40 RANSAC iterations. (e) and (f) three

sequence map with FPS = 15, σr = 10−9, σt = 104.
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Fig. 4.24 Localization accuracy and number of localized frames as a function of the off-

pointing direction, for different map types and RANSAC iterations. (a) (b) and (c) far map

with FPS = 15, σr = 10−3, σt = 104 and respectively 40, 100 and 200 RANSAC iterations.

(d) far map with FPS = 15, σr = 1, σt = 1 and 40 RANSAC iterations. (e) and (f) three

sequence map with FPS = 15, σr = 10−9, σt = 104.
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Fig. 4.25 Relocalization accuracy as a function of the distance from the asteroid mock-up

surface, for different map types and RANSAC iterations = 10000. (a) far map with FPS = 15,

σr = 10−3, σt = 104 and (b) three sequence map with FPS = 20, σr = 10−9, σt = 104.



Chapter 5

Conclusions

In this dissertation, different visual localization methods for rover global positioning on

extraterrestrial planets, comets asteroid, and small celestial bodies have been analyzed and

improved. The investigated methods are based on a synergistic approach between rover and

orbiter. The first part has been developed in collaboration with ALTEC for the localization

operations that will be performed by Rover Operation Control Center (ROCC) for ExoMars

2020 rover. The second part has been carried out at NASA Jet Propulsion Laboratory

and presents a collaborative SLAM algorithm, based on ORB-SLAM, for tumbling rover

localization on asteroid comets and small bodies.

Map-based localization methods are fundamental to plan rover operations. For this

purpose two methods have been investigated, in the first one the map is an orbiter image and

in the second one the map is a Digital Elevation Model. Localization on orbiter image is

performed by correlation of hills and craters between a NAVCAM or PANCAM panorama

and an orbiter orthorectified image (like HiRISE image). This localization method is a

refinement of rover position estimation performed by a human operator. Spirit landing site

localization has been performed on an HiRISE image using a panoramic image.

Global localization with reference to a DEM model has been realized thanks to an

exhaustive research, the measured skyline is compared to a series of skylines rendered

from DEM on a grid of template positions. The localizations of Spirit landing site, and of

Opportunity inside Victoria crater, have been performed. Algorithm performances have been

tested with three different type of dataset: hills in the distance, rover outside a crater and

rover inside a crater. We have shown that the tested global localization algorithm is able

to localize the rover for the following dataset: far away hills and rover inside crater case.

The algorithm is not able to localize the rover on the DTM when the panoramic image is

taken from outside the crater and the skyline is almost flat. To perform this localization we

have supposed to know pitch and roll angles measures. The HiRISE products which have
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been used are already processed and Mars referenced, the PANCAM cylindrical mosaic has

been assumed to be pre-processed. The following localization errors have been retrieved:

Spirit landing site localization error is 51 m, this error seems to be limited by the quality of

the DTM. Error in azimuth measurement is 1 deg. Analyzing Opportunity image taken on

Victoria crater slopes, the localization error is 27m, and 5 deg in azimuth measurement.

Stereo Visual Odometry has been already used onboard MER rovers for relative lo-

calization during the traverse. In this dissertation, we have investigated the effects of 3D

detected landmarks distance from stereo-camera center on motion reconstruction, An ex-

perimental comparison between seven different positions in a laboratory environment has

been performed for both rotational and translational tests. Experimental results show that the

landmarks average distance affects the rotation and translation reconstruction in two different

ways: for translations, the uncertainty of camera position grows with the landmarks distance;

on the other end this distance does not affect rotation uncertainty if the spatial distribution

of landmarks is uniform. Despite, the covariance of the 3D landmarks has been used for

weighting the 3D error in the cost function, the effect of high uncertainty far points is still

visible in the motion computation and its uncertainty.

The accuracy of this visual odometry framework could be improved by using the tracked

points in two different ways: points that have a low uncertainty in the ray direction could

be useful to estimate the translation, instead points that have a large uncertainty in the ray

direction could be very informative for the rotation estimation of the camera.

A synergistic localization and mapping approach between the mother-craft and the

deployed daughters that exploit the visual SLAM approach has been investigated. Between

the state of the art visual SLAM algorithm, ORB-SLAM2 has been chosen and modified for

this application.

The capabilities to build a map and relocalize two different cameras with a modified

version of ORB-SLAM2 has been shown. It is now possible to localize a large FOV camera

on a map created with a narrow FOV camera, this condition is representative of the problem

of localizing the tumbling/hopping rover on a map created from mother-spacecraft images.

Moreover, we have pointed out how changes in illumination conditions limit the tracking

capabilities on the previous map. With ORB-SLAM2 is possible to track the daughter

spacecraft on the previous map with illumination changes up to 20 deg.

In order to test the algorithm performances, a series of realistic images of an asteroid

mockup have been realized. A Vicon system has been used in order to give the trajectory

ground truth. Tests show that the RMS trajectory estimation error is 0.44 cm and the RMS

angular error is 0.2 deg, using as dataset a video with an asteroid mock up diameter of

138 cm. Vicon measurements have been used in order to build the maps to evaluate the
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localization algorithm performances. The prior map accuracy is estimated to be 0.13 cm.

The generated maps have been used to estimate the localization error of a large FOV camera,

which represent the tumbling platform.

With the current configuration, it is possible to localize large FOV frames from a nor-

malized distance corresponding to 0.1 of the target asteroid diameter up to a distance

corresponding to the asteroid diameter, the normalized median error is between 0.014 and

0.022. If the asteroid diameter is 535 m, like asteroid Itokawa, the localization accuracy will

be between 7.5 and 11.8 m. Moreover, also the off-pointing condition has been taken into

account, the outlined framework is able to localize frames which have an off-pointing angle

up to 57 deg.





References

[1] John P. Grotzinger, Joy Crisp, Ashwin R. Vasavada, Robert C. Anderson, Charles J.
Baker, Robert Barry, David F. Blake, Pamela Conrad, Kenneth S. Edgett, Bobak
Ferdowski, Ralf Gellert, John B. Gilbert, Matt Golombek, Javier Gómez-Elvira, Don-
ald M. Hassler, Louise Jandura, Maxim Litvak, Paul Mahaffy, Justin Maki, Michael
Meyer, Michael C. Malin, Igor Mitrofanov, John J. Simmonds, David Vaniman,
Richard V. Welch, and Roger C. Wiens. Mars Science Laboratory Mission and
Science Investigation. Space Science Reviews, 170(1):5–56, 2012.

[2] J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blanc-
quaert, D. McCoy, and R. de Groot. ESA ExoMars program: The next step in exploring
Mars. Solar System Research, 49(7):518–528, 2015.

[3] L. Pratt, D. Beaty, and A. Allwood. The mars astrobiology explorer-cacher (MAX-C):
A potential rover mission for 2018. Astrobiology, 10(2):127–163, 2010.

[4] National Research Council. Vision and Voyages for Planetary Science in the Decade
2013-2022. The National Academies Press, Washington, DC, 2011.
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