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ABSTRACT 

The past thirty years have reported the introduction of multiple anticancer 

therapies targeting various aspects of the cancer hallmarks, which are essential for 

successful tumor propagation and dissemination. In this sense, the evolution of 

molecular-scale technology has been central to the identification of new cancer 

targets.  

The receptor tyrosine kinase (RTK) Hardy-Zuckerman 4 feline sarcoma virus 

homolog (c-KIT) is a critical regulator of growth, differentiation, migration and 

proliferation in the hematopoietic system, in germ cells and melanocytes. Since it 

activates a number of intracellular signaling pathways implicated in the tumor 

progression, it is one of the most studied proto-oncogenes as well as the target of 

drugs belonging to the family of tyrosine kinase inhibitors (TKIs). Actually, TKIs are 

employed for the treatment of human and canine c-KIT-dependent tumors as an 

alternative to standard chemotherapy. Nevertheless, multiple resistance phenomena 

frequently occur. 

Recently, the discovery of G-quadruplex (G4) structures highlighted a new role 

for DNA in cancer biology. DNA G4 are four-stranded globular nucleic acid 

secondary structures, formed in specific G-rich sequences with biological 

significance; among these ones, the human telomeres and the promotorial region of 

oncogenes such as c-KIT. 

In the first part of this dissertation, three compounds were proved to bind in 

silico c-KIT G4 and were tested in human and canine cell lines to check for their 

potential usefulness as therapeutic agents. Interesting results, e.g. c-KIT mRNA and 

protein inhibition, were obtained with an anthraquinone derivative (AQ1) that caused 

a block of cell proliferation. 

In another study, the occurrence of c-KIT mutations was investigated in 

matched primary and metastatic canine cutaneous mast cell tumor (MCT), to make a 

recommendation for the best therapeutic choice. In dogs, 10-30% of MCTs possess c-

KIT mutations, and the relevance of the mutational status for the therapy with TKIs is 

nowadays accepted also in this species; however, little is known on c-KIT mutational 

status in metastatic MCTs. In all analyzed dogs, there was a perfect concordance 

between c-KIT mutational status in primary MCT and the relative lymph node 

metastasis. This has a relevant implication for clinical practices. 



Finally, during the Ph.D. program, a collaboration was established with the 

Centre de Recherche en Cancérologie de Marseille, and particularly with Dr. Patrice 

Dubreuil. In his most recent articles, he discovered a set of genes that are frequently 

mutated in human systemic mastocytosis (SM) and cooperate with c-KIT in the 

disease malignant evolution. In the last study illustrated in this Ph.D. thesis, the 

mutational profile of these hotspot genes in canine MCTs samples has been screened, 

in order to find molecular similarities between the two diseases, thereby justifying the 

use of domestic dog as an animal model in comparative oncology. 

  



RIASSUNTO 

Negli ultimi trent’anni, l’evoluzione delle tecnologie in campo medico-

scientifico ha permesso la più profonda conoscenza dei meccanismi molecolari alla 

base dello sviluppo, della crescita e della diffusione del tumore. Tutto ciò ha 

permesso di sviluppare le cosiddette terapie mirate, identificando nuovi bersagli 

terapeutici.  

Il recettore tirosin-chinasico c-KIT è un fattore critico per la regolazione della 

crescita, differenziazione, migrazione e proliferazione delle cellule germinali, di 

quelle del sistema ematopoietico e dei melanociti. c-KIT è anche coinvolto 

nell’attivazione di numerosi meccanismi intracellulari implicati nella progressione 

tumorale e, allo stesso tempo, è uno dei proto-oncogeni più studiati ed il bersaglio di 

farmaci appartenenti alla famiglia degli inibitori tirosin-chinasici (TKIs). 

Attualmente, i TKIs sono approvati come trattamento alternativo alla chemioterapia 

tradizionale in tumori c-KIT dipendenti in uomo e cane tuttavia, fenomeni di 

resistenza a questi farmaci si verificano frequentemente. 

Negli ultimi anni, la scoperta di strutture secondarie del DNA chiamate G-

quadruplex (G4) ha evidenziato un nuovo ruolo degli acidi nucleici nella biologia 

tumorale. Tali conformazioni si formano in specifiche sequenze del DNA ricche in 

residui di guanina, localizzate principalmente nei telomeri e nelle regioni 

promotoriali di alcuni oncogeni come c-KIT. 

Nella prima parte di questa tesi di dottorato, tre composti scelti sulla base della 

loro capacità di legare e stabilizzare le conformazioni G4 sono stati testati in linee 

cellulari stabilizzate di uomo e cane al fine di determinare la loro efficacia come 

potenziali agenti terapeutici. In questo senso, alcuni risultati interessanti in termini di 

blocco della proliferazione nonché della trascrizione e traduzione di c-KIT si sono 

ottenuti con un derivato della famiglia degli antrachinoni chiamato AQ1. 

In un altro studio proposto, il profilo mutazionale di c-KIT è stato analizzato in 

una coorte di campioni di mastocitoma del cane composti da tumore primitivo e 

relativa metastasi linfonodale. Nel cane infatti, la percentuale tra il 10 ed il 30% dei 

mastocitomi presenta almeno una mutazione di c-KIT nel tumore primitivo, tuttavia, 

poche conoscenze si hanno relativamente al profilo mutazionale nelle metastasi. Dai 

risultati ottenuti, tutti i cani analizzati hanno dimostrato avere una perfetta 

concordanza tra tumore primitivo e metastasi in termini di status mutazionale di c-



KIT con rilevanti implicazioni cliniche per la scelta della miglior terapia da attuare da 

parte degli oncologi veterinari. 

Infine, nel corso del secondo anno di dottorato, è nata una collaborazione con il 

Dr. Patrice Dubreuil del Centre de Recherche en Cancérologie de Marseille, a 

Marsiglia. Nei suoi recenti articoli sulla mastocitosi dell’uomo, egli ha scoperto un 

set di geni che presentano mutazioni in talune percentuali di casi e cooperano con c-

KIT nello sviluppo delle forme più gravi ed aggressive della malattia. Nell’ultima 

pubblicazione illustrata in questa dissertazione, è stato eseguito lo screening del 

profilo mutazionale di questi nuovi geni in campioni di mastocitoma di cane al fine di 

trovare analogie molecolari che possano giustificare l’uso del cane come animale 

modello nell’oncologia comparata. 
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1. GENERAL INTRODUCTION 

 

1.1 CANCER TARGETED THERAPY 

In developed countries, cancer is a leading cause of death mainly associated 

with population ageing and lifestyle, with 14.1 million of new cases and 8.2 million 

of deaths worldwide in 2012. Despite this, early diagnosis, universal access to health 

cares and the development of even more innovative therapies resulted in a significant 

improvement of cancer survival (Urruticoechea et al., 2010). 

Among the therapeutic strategies, surgery is the oldest and remains an effective 

treatment for localized primary tumors and associated regional lymphatics 

(Urruticoechea et al., 2010).  

The advent of radiation therapy (1920s) and chemotherapy (1940s) permitted 

the cure and the control of the metastatic processes but, in contrast to surgery, they 

are efficient only against a fraction of tumor cells by each treatment. For these 

reasons, the three processes are complementary: as an example, radiotherapy 

protocols are today used pre- and post-surgery in a number of tumor locations such as 

rectal and esophageal carcinomas or breast and central nervous system tumors. Also 

intraoperative radiation therapy, consisting in the delivery of a single large fraction 

during surgery with either electrons or low energy photons, is occasionally used. 

Chemo- and radiotherapy combined approaches (the administration of chemotherapy 

prior to, during or following radiotherapy) have been shown to improve local control 

and eradicate micro-metastatic disease (Urruticoechea et al., 2010). 

For more than 50 years, the systemic therapy of cancer has been dominated by 

the use of cytotoxic chemotherapeutics. Most of these drugs are designed to kill or 

rapidly inhibit all dividing cells through the creation of DNA-damages. They are 

administered either in single doses or in short courses of therapy at the "Maximum 

Tolerated Dose" (MTD), which means the highest administrable doses without no 

life-threatening toxicity levels (Schrama et al., 2006). Owing to the high doses of 

these anticancer drugs, a wide treatment-free period is needed to permit normal host 

cells recovery. Moreover, it is nowadays clear that the genetic instability and high 

mutation rate of cancer cells resulting from chemotherapy carries a high risk of 

selection for drug-resistant cell clones (Urruticoechea et al., 2010). 
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The concept of tumor heterogeneity refers to the existence of cell 

subpopulations harboring distinct phenotypic profiles resulting from the integration, 

within and between tumors (intra- and inter-tumor heterogeneity), of both genetic and 

non-genetic influences (Huang et al., 2014). In this sense, the past decade has borne 

witness to a transformation in cancer treatment options. The elucidation of the 

molecular basis of cellular transformation, the concept that cancer is a genetic disease 

of somatic cells and that these genetic and epigenetic alterations underlie an aberrant 

transcription program has created a novel framework actually changing the clinical 

practice (Abou-Jawde et al., 2003). Furthermore, the realization that cancer cells need 

a microenvironment (i.e. fibroblasts, vessels, macrophages, lymphocytes, etc.) to 

survive and fully display their phenotype opened the door to new therapeutic 

strategies termed as ‘targeted therapy’. The new targets included signaling molecules, 

cell-cycle proteins, apoptosis modulators, growth factors, and molecules promoting 

angiogenesis. Although each cancer seems to have its own pattern of signature 

mutations, some common aberrations in signaling appear in several tumors. These 

looked as interesting targets for drug development and have changed the concept of 

therapy (Urruticoechea et al., 2010).  

Three main classes of targeted therapies are now routinely employed in a clinical 

setting: monoclonal antibodies, small molecule inhibitors and fusion proteins (Tobin 

et al., 2015). The first example of antibody used to cure cancer was trastuzumab 

(Herceptin
®
, Genentech) approved in 1998 as a second line treatment for metastatic 

breast cancer (Nahta et al., 2006; Huang et al., 2014). It is directed against the 

extracellular domain of the transmembrane Erb-B2 Receptor Tyrosine Kinase 2 

(ERBB2), which is overexpressed in 20-30% of breast cancer. This high expression 

is relatively homogeneous among ERBB2+ tumor cells, both in the primary tumor 

and metastatic sites, suggesting for its effectiveness in all disease locations and 

against most of cancer cells (Nahta et al., 2006). Trastuzumab is generally well 

tolerated but some infusion-related reactions are likely to occur, including fever, 

rigors, chills, nausea, dyspnea and hypotension. A cardiac toxicity was the most 

problematic adverse event ever noted in combination chemotherapy trials 

(trastuzumab plus standard chemotherapy; Stern and Herrmann, 2005). 

The use of the monoclonal chimeric IgG1 antibody IDEC-C2B8, also called 

Rituximab (Rituxan or MabThera or Zytux, distributed by different brands), 
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permitted the successful treatment of single patients with non-Hodgkin lymphoma 

(NHL). The antibody recognizes and binds the CD20 antigen, a transmembrane 

phosphoprotein essential for B-lymphocytes differentiation and proliferation. 

Rituximab does not severely compromise the immunity of the patience since 

immature precursor cells and the other components of the immune system do not 

possess CD20 (Adams and Weiner, 2005; Stern and Herrmann, 2005). Therefore, 

despite B-lymphopenia, rituximab has only infusion related toxicity. 

The bevacizumab (Avastin
®
, Genentech, Roche) is a monoclonal antibody that 

binds and neutralizes all the human vascular endothelial growth factor A (VEGF-A) 

isoforms. Firstly approved in 2004, it is used in combination with standard 

chemotherapy for metastatic colon cancer. It is used for treatment of other types of 

metastatic cancers as certain lung cancers, renal cancers, ovarian cancers, and 

glioblastoma multiforme of the brain. It acts inhibiting the growth and proliferation of 

blood vessels, which are part of the body's normal healing and maintenance. In this 

sense, the main side effects are hypertension and increased risk of bleeding. 

One example of fusion protein used against cancer is constituted by Aflibercept 

(VEGF-Trap; ziv-aflibercept; Zaltrap, Sanofi-Aventis SpA), an intravenously 

administered recombinant protein, designed to block angiogenesis promoters. 

Aflibercept is a fully human, recombinant fusion protein acting as a soluble decoy for 

VEGF receptor. It is formed by the second and the third extracellular binding 

domains of human VEGF receptors 1 and 2 (VEGFR-1 and VEGFR-2) fused to the 

crystallisable fragments (Fc) portion of a human immunoglobulin G1. Aflibercept 

binds to VEGF-A, VEGF-B and to the placenta growth factor (P1GF) to form a stable 

inert complex; this latter prevents them from binding to their appropriate receptors 

(Weidle et al., 2012; Syed and McKeage, 2015). 

Another molecular target for new therapeutic strategies is constituted by the 

apoptosis pathway. Apoptosis is one of the major mechanisms of cell death in 

response to cancer therapies. Modifications in susceptibility to apoptosis by tumor 

cells not only contribute to neoplastic development, but also can enhance resistance 

to conventional anticancer therapies (Kang and Reynolds, 2009). The first agent 

targeting the B-Cell CLL/Lymphoma 2 (BCL2) that entered in clinical trials was a 

BCL2 antisense oligonucleotide (oblimersen sodium), which has shown chemo-

sensitizing effects when combined with conventional chemotherapy in chronic 

lymphocytic leukemia (CLL) patients, thereby improving survival (Kang and 
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Reynolds, 2009). More recent advances include the discovery of small molecule 

inhibitors of the B-cell lymphoma 2 (Bcl-2) family proteins, and three of them have 

entered clinical trials (gossypol, ABT-737, GX 15-070; Kang and Reynolds, 2009; 

Fulda, 2015). They are designed to bind the hydrophobic groove of anti-apoptotic 

Bcl-2 proteins in place of BH3-only proteins (i.e., BH3-mimetics). They can bind 

Bax or Bak, which can subsequently depolarize mitochondrial membrane potential, 

favor the cytochrome c release, begin caspase cascade and, consequently, activate 

apoptosis.  

The Figure 1 reassume the most common examples of targeted therapies. 

 

Figure 1. Mechanisms of targeted therapy. Some drugs (e.g., sorafenib 

[Nexavar], sunitinib [Sutent], imatinib [Gleevec], dasatinib [Sprycel]) have 

multiple targets, most of which are not indicated (CD=cluster of 

differentiation; BCR-ABL= breakpoint cluster region-Abelson; EGFR = 

epithelial growth factor receptor; VEGFR = vascular endothelial growth 
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factor receptor; VEGF = vascular endothelial growth factor). Modified 

from: Gerber, 2008. 

 

1.2 RECEPTOR TYROSINE KINASE 

Tyrosine kinases catalyze the transfer of the γ phosphate group from adenosine 

triphosphate (ATP) to target proteins. They can be classified either as receptor 

tyrosine kinases (RTKs) or non-receptor protein kinases (Arora and Scholar, 2005). 

RTKs are transmembrane receptors for extracellular signaling molecules, 

including growth factors and hormones. The typical RTK structure consists of an 

extracellular ligand-binding domain, a regulatory transmembrane region, and a 

cytoplasmic kinase domain (KD) that becomes phosphorylated on tyrosine residues 

upon dimerization or oligomerization (Lemmon and Schlessinger 2010). Once 

phosphorylated, RTKs recruit adaptor proteins to cause a cascade of protein 

interactions among intracellular effectors that eventually result in altered gene 

expression and protein functions. Some examples of these downstream effectors 

include small GTP kinases (RAS proteins), members of the mitogen activated protein 

kinase (MAPK) family, phosphoinositide 3-kinases (PI3K) and Janus kinase/signal 

transducers and activators of transcription (JAK/STAT) proteins. Overall, these 

proteins regulate critical cellular processes such as cell metabolism, survival, 

proliferation, differentiation as well as cell–cell communication. Since these 

processes are essential for cell maintenance and division, it is not surprising that 

dysregulation of RTKs, or their down-stream effectors, is considered a “driver event” 

in a wide range of cancers (Sun and Bernards, 2014). 

There are approximately 60 receptor tyrosine kinases identified so far, and 

these ones are divided into around 20 subfamilies defined by the receptor and/or their 

ligand (Arora and Scholar, 2005). Some examples of RTKs are represented by c-KIT 

or the platelet-derived growth factor receptor alpha (PDGFRα) and beta (PDGFRβ). 

 

1.3 TYROSINE KINASE INHIBITORS 

Small molecule tyrosine kinase inhibitors (TKIs) actually represent a major 

class of cancer targeted therapeutics.  

Their small size (usually <500 Da) allows them to translocate through the 

plasma membrane and interact with the cytoplasmic domain of cell-surface receptors, 
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competing with adenosine triphosphate (ATP) for the binding site and, thereby, 

inhibiting the kinase activity.  

In 2000, imatinib mesylate (IM, STI-571 or Gleevec) was introduced for the 

treatment of chronic myelogenous leukemia (CML; Arora and Scholar, 2005). In over 

90% of human patients with CML, and approximately 15-30% of adult patients with 

acute lymphoblastic leukemia (ALL), the t(9;22) translocation or Philadelphia 

chromosome (Ph) is a characteristic cytogenetic abnormality. This defect results in 

the formation of the BCR-ABL oncogene by fusing the breakpoint cluster region 

(BCR) on chromosome 22 with the tyrosine kinase Abelson murine leukemia viral 

oncogene homolog 1 (ABL) located on chromosome 9 (An et al., 2010). The fusion 

protein interacts with multiple downstream signaling pathways mediating the 

development and maintenance of CML, resulting in altered cellular adhesion, 

activation of mitogenic signaling, inhibition of apoptosis, and defective DNA repair. 

Imatinib is the first BCR-ABL tyrosine kinase inhibitor (An et al., 2010) and its 

mechanism of action is showed in Figure 2 (Deininger and Druker, 2003). 

 

Figure 2. Imatinib binding on 

BCR-ABL. ADP= adenosine 

diphosphate; ATP= adenosine 

triphosphate; P= phosphate. 

Modified from 

http://kohnpharmaceuticals.weebly.

com/biochemical-pathways.html. 

Besides BCR-ABL, imatinib also inhibits c-kit and pdgfr tyrosine kinases in 

gastrointestinal stromal tumor (GIST; Hirota et al., 1998). Most GIST carry c-KIT 

mutations associated with constitutive activation and receptor phosphorylation. 

Several clinical trials have shown a significant response to imatinib in more than half 
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the patients with advanced GISTs; those with mutations in the exon 11 of c-KIT had 

the best response, whereas the few patients without either c-KIT or PDGFRα 

mutations were not responsive. Imatinib is now approved for the treatment of patients 

with c-KIT-positive unresectable and/or malignant GISTs (Krause and Van Etten, 

2005; Antonescu, 2011).  

Other FDA (US Food and Drugs Administration) approved TKIs and their 

cellular targets are reported in Table 1. 

Inhibitor Trade Name Target Cancer Type 

Imatinib masylate Gleevec ABL, c-KIT, PDGFR Ph+ CML, GISTs, ALL 

Dasatinib Sprycel SFK, ABL CML, ALL 

Nilotinib Tasigna ABL CML 

Bosutinib Bosulif SFK, ABL CML 

Gefitinib Iressa EGFR NSCLC 

Erlotinib Tarceva EGFR Lung 

Lapatinib Tykerb EGFR, ERBB2 Breast, others 

Vandetanib Caprelsa EGFR, VEGFR, RET Medullary tryroid 

Crizotinib Xalkori EML4-ALK NSCLC 

Sunitinib Sutent VEGFR, PDGFR, c-KIT, FLT3 GIST, renal 

Sorafenib Nexavar B-Raf, VEGFR, PDGFR Renal, hepatocellular, 
prostate 

Pazopanib Votrient VEGFR, c-KIT, PDGFR Renal: soft tissue sarcoma 

Regorafenib Stivarga VEGFR, TIE2, PDGFR, RET, c-
KIT, RAF 

Colorectal 

Cabozantinib Cometriq VEGFR, RET, MET, TRKB, TIE2 Medullary thyroid 

Table 1: FDA approved tyrosine kinase inhibitors used for treatment of cancer. SFK= Src 

family kinase; EGFR= human epidermal growth factor receptor; ERBB2= Erb-B2 Receptor 

Tyrosine Kinase 2; RET= Ret proto-oncogene; EML4-ALK= echinoderm microtubule 

associated protein like 4 – anaplastic lymphoma kinase; FLT3= Fms-related tyrosine kinase 

3; BRAF= B-Raf Proto-Oncogene, Serine/Threonine Kinase; TIE2= TEK tyrosine kinase, 

endothelial; RAF= Raf Proto-Oncogene, Serine/Threonine Kinase; MET = MET Proto-

Oncogene, Receptor Tyrosine Kinase; TRKB = Neurotrophic Tyrosine Kinase, Receptor, 

Type 2. From Miller et al., 2013. 

Gefinitib and erlotinib are other TKIs acting as anti-epithelial growth factor 

receptor (EGFR) drugs in non-small cell lung carcinomas (NSCLC) and head and 

neck squamous cell carcinomas (HNSCC).  

1.3.1 LIMITS AND SECOND GENERATION TKIs 

Targeted cancer therapies are less toxic than conventional chemotherapy 

because they are specific for tumor cells. However, some toxic effects of TK-targeted 

therapies may be related to inhibition of tyrosine kinase in normal tissues. Defects in 

cell-mediated immunity have been reported in patients with imatinib-treated CML 
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and may be a consequence of blockade of c-ABL signaling in T-lymphocytes (Krause 

et al., 2005). 

Other clinical and in vitro evidences showed that cells treated with TKIs tend to 

acquire genetic modifications resulting in resistance to these agents. Up to now, more 

than 100 mutations have been described affecting more than 70 amino acids and 

causing resistance by heterogeneous molecular mechanisms. The most common and 

prevalent mechanism leading to resistance to TKIs therapy is the occurrence of point 

mutations within the KD, which decrease the affinity of the TKI to the receptor 

binding domain. Other mutations may affect the binding site, resulting in extensive 

conformational changes, which impede TKIs bond through steric hindrance.  

Around 30% of patients with CML interrupt Imatinib therapy due to intolerance 

and resistance. Only the T315I mutation (resulting in the substitution of Ile with Thr 

at the position 315) is responsible for 14% of reported cases. In CML, there are 

several second-generation ABL kinase inhibitors (i.e. nilotinib and dasatinib) 

showing increased potency and effectiveness against most of imatinib-resistant BCR-

ABL mutants (Weisberg et al., 2007). 

Secondary mutations in exon 14 of c-KIT and in its exon 17 (activation loop: 

D816V/H, D820Y, N822Y/K, Y823D), as well as in exon 14 of PDGFRα (D842V, 

ATP binding site: T670I) confer imatinib and sunitinib-resistance in GIST (Chen and 

Fu, 2011). Sunitinib is a new TKI that exerts its effects on various TKs such as 

VEGFR, c-KIT, and PDGFR and shows a broad-spectrum antitumor activity by 

inhibiting both tumor proliferation and angiogenesis. 

Although the precise mechanisms behind the incoming of these new alterations 

are not very clear, one evidence for these phenomena is that specific TKI treatments 

help tumor to select a preexisting cell population, which has a selective advantage in 

a sort of striking analogy to a bacterial culture treated with an antibiotic. In addition, 

TKIs increase patients’ genetic instability that promotes the acquisition of new 

mutations (Chen and Fu, 2011). 

Other well-defined mechanisms of resistance in patients are represented by the 

overexpression of genes, increments in protein level and activation of alternative 

survival pathways (Deininger and Druker, 2003). About this latter mechanism, MET 

amplification in EGFR-mutants NSCLC represents the strongest evidence that cells 

treated with TKIs tend to undertake new strategies to overcome the inhibition. The 

activation of MET, a transmembrane RTK acting as an hepatocytes growth factor 
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(HGF) receptor, leads to sustained activation of the PI3K/AKT signaling pathway, 

bypassing the inhibition of EGFR conferred by TKIs (Stewart et al., 2015). 

For the antiangiogenic agents (e.g., semaxinib, etc.), there may be additional 

explanations for the poor responses obtained against cancers up to date. VEGF is 

thought to be the most potent direct-acting stimulatory regulator of angiogenesis, and 

its expression is excessive in human cancers; however, there are a myriad of 

stimulatory and inhibitory factors involved in angiogenesis; some of these are 

produced by tumor cells, whilst others are produced by host cells. In addition, for 

each angiogenic factor, multiple regulatory factors and signaling pathways exist. 

With all this redundancy, inhibiting one factor or one pathway is often not sufficient 

to inhibit tumor growth. Furthermore, some factors such as VEGF, exist in multiple 

isoforms, contributing to the difficulty of inhibiting the angiogenic process (Arora 

and Scholar, 2005). 

Finally, in tumor cell lines, multidrug resistance (MDR) is often associated with 

an ATP-dependent decrease in cellular drug accumulation, which is usually attributed 

to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. 

Among ABC-transporters, the overexpression of P-glycoprotein (MDR1/P-

gp/ABCB1) and the breast cancer resistance protein (BCRP/ABCG2) confer 

resistance to imatinib in CML or gefitinib in NSCLN. Further investigations 

indicated that imatinib, gefitinib, tandutinib, dasatinib, sunitinib and sorafenib are 

high-affinity substrates of MDR1 and ABCG2 (Ozvegy-Laczka et al., 2005). 

Collectively, the chemo-immune system seems to recognize targeted TKIs as 

xenobiotics at the membrane barriers and, in case of active extrusion, protects 

intracellular targets from the action of the TKIs (Chen and Fu, 2011). These findings 

suggest that overexpression of ABC-transporters protects tumor cells from TKIs 

inhibition activity contributing to their pharmacokinetics and pharmacodynamics. 

 

1.4 c-KIT 

The v-kit oncogene was identified in 1986 in the Hardy-Zuckerman 4 feline 

sarcoma virus (Besmer et al., 1986), and its human homolog c-KIT in 1987 (Yarden 

et al., 1987). It is located on chromosome segment 4q11 of the human’s genome and 

in the chromosome 13 of dog’s genome (Reimann-Berg et al., 2012). In both species, 

it consists of 21 exons spanning more than 34 kb of DNA. The first exon encodes the 
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translational initiation codon and the signal peptide. The RTK encoded by the KIT 

gene is a transmembrane protein where exons 2-9 code for the extracellular domain, 

the transmembrane region is encoded by exon 10, while the remaining exons encode 

for the intracellular part of the receptor. 

The promoter region of murine and human c-KIT has been thoroughly 

investigated (Yamamoto et al., 1993; Maeda et al., 2010). It includes binding sites for 

AP-2, basic helix-loop-helix proteins, Sp1, Ets, and Myb. Park et al. in 1998, 

demonstrated the importance of Sp1 for maximal activity of the c-KIT promoter, 

while loss of AP-2 expression caused loss of c-kit expression in malignant 

melanocytes (Huang et al., 1998). Finally, the basic helix-loop-helix microphthalmia 

associated transcription factor (MITF) binds to a CACCTG motif and regulates c-KIT 

expression in mast cells (MC) and melanocytes (Huang et al., 1998). 

The c-kit ligand is constituted by the stem cell factor (SCF, also called Steel 

factor or Kit ligand), a growth factor expressed by fibroblasts and endothelial cells; 

this ligand promotes proliferation, migration, survival, and differentiation of 

hematopoietic progenitors, melanocytes, and germ cells. It maps to chromosome 12 

and 15 in humans and dog genomes, respectively. Both membrane-bound and soluble 

SCF binds to c-kit and activate its intrinsic tyrosine kinase activity. 

The c-kit protein is a member of the class III of RTKs and it consists of 976 

amino acids, representing the core protein (110 kDa). Heterogeneous N-linked 

glycosylation results in a mature protein of between 145 and 160 kDa. It is formed by 

an extracellular part composed of five immunoglobulin-like domains, followed by a 

single spanning transmembrane region. The intracellular part of c-kit starts with the 

juxtamembrane domain (JM), a region of great importance for the regulation of c-kit 

kinase activity and the KD (Lennartsson and Rönnstrand, 2012). 

The c-kit activation process mediated by SCF is summarized in Figure 3. In cell 

membrane, c-kit is diffused as monomer. Each SCF molecule can bind to one c-kit 

molecule through contacts with the first three Ig-like domains (D1-D2-D3) of the 

receptor’s extracellular region, which have a complementary shape and charge to 

allow tight binding of SCF (Lemmon and Schlessinger, 2010; Lennartsson and 

Rönnstrand, 2012). When association with the SCF takes place in two c-kit 

monomers, their D1-D2-D3 regions are kept structurally unaltered but the two 

receptors are drawn closer to each other to form a dimer, leading to a reorientation on 

D4 and D5 (Lemmon and Schlessinger, 2010). Through homotypic interactions 
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between D4 and D5 across the dimer interface, the transmembrane regions and the 

intracellular tyrosine KDs get closer to each other, enabling their activation and 

transphosphorylation along the receptor. These mechanisms leads to initiation of 

downstream signal transduction.  

 

Figure 3. Representation of SCF-mediated c-KIT 

activation. (1) The stem cell factor (SCF) interact, at 

cell membrane level, with c-KIT Ig-like domains 1-3 of 

two monomers. (2) The SCF binding drive the two 

monomers close to each other and favored their 

interactions between Ig-domains 4 and 5. (3) c-kit 

homodimer allows for efficient trans-phosphorylation 

in the juxtamembrane region (Tyr568 and 570), kinase 

insert region (Tyr703, 721, 730, and 747), kinase 

domain (Tyr823 and 900) (by Src kinases), and 

COOH-terminal tail (Tyr936). Modified from 

Lennartsson and Rönnstrand, 2012. 

 

The expression pattern of c-KIT and SCF during mouse embryogenesis 

suggested that they are involved in migration of cells of the hematopoietic, germ cell, 

and melanoblast lineages as well as in the differentiation and proliferation of these 

cells. c-KIT expression is down-regulated upon differentiation of hematopoietic 

progenitors into mature cells of all lineages, except MC, which retain high levels of 

cell surface c-kit expression (Maeda et al., 2010).  

 

1.5 HUMAN c-KIT MUTATIONS AND RELATED DISEASES 
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The oncogenic c-KIT mutations found in neoplasms are gain-of-function 

mutations resulting in ligand-independent tyrosine kinase activity and consequent 

ligand-independent proliferation, differentiation and survival of the affected cells.  

Dysregulation of c-KIT activity plays a central role in the pathogenesis of those 

malignancies originated from cells dependent on SCF for differentiation/survival, 

such as MC and Cajal interstitial cells. These include MC proliferative disorders, 

GIST, melanoma, and acute myeloid leukemia (AML). Increased expression of 

normal c-KIT may also contribute to tumorigenesis in solid lung cancers from small 

lung cells that constitutively do not express c-KIT but are exposed to environments 

rich in SCF (Cruse et al., 2014).  

Gastrointestinal stromal tumors derive from Cajal interstitial cells and multiple 

activating mutations, involving c-KIT exons 8, 11, 13 or 17, have been reported in up 

to 80% of cases (Corless et al., 2011).  

Likewise, approximately 90% of adults with diseases characterized by an 

abnormal MC proliferation (mastocytosis) have, at least, a point mutation consisting 

of a substitution of Aspartic acid to Valine in the catalytic domain of c-KIT (D816V) 

rendering it constitutively active (Arock et al., 2015). The reasons behind the 

prevalence of exon 17 mutations in hematological malignancies compared to those in 

exon 11 in GISTs are still unknown. Activating mutations in JM alter the suppressive 

control effect of this region on the activity of the receptor, while those in the KD are 

catalytic in nature. Mutations occurring on other exons, such as 8, 9 and 10, coding 

either for the extracellular domain (8 and 9) than for the RTK transmembrane domain 

(10), have been described in AML (Malaise et al., 2009), GISTs (Corless et al., 2011) 

and in childhood patients with mastocytosis, albeit their incidence result much lower 

(Cruse et al, 2014). 

 

1.5.1 MASTOCYTOSIS 

Mastocytosis results from a clonal, neoplastic proliferation of morphologically 

and immunophenotypically abnormal MC that accumulate in one or more organ 

systems. It was considered one of eight subcategories of myeloproliferative 

neoplasms (MPN) in World Health Organization (WHO) classification of tumors of 

hematopoietic and lymphoid tissues (WHO, 2008). 

The clinical presentation of mastocytosis is quite heterogeneous; a skin-limited 

disease, peculiar in pediatric patients, in which it occurs within the first 2 years of 
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life, and that commonly results in a spontaneous regression of skin lesions (cutaneous 

mastocytosis, CM); alternatively, a more aggressive variant with extra-cutaneous 

involvement, generally seen in adult patients, that may be associated with multi-organ 

dysfunction/failure and shortened survival (systemic mastocytosis, SM; Arock et al., 

2015). 

The gold standard for diagnosis, according to WHO criteria, is the presence of 

multifocal clusters of morphologically abnormal MC in the bone marrow. Minor 

diagnostic criteria include elevated serum tryptase level, abnormal MC expression of 

CD25 and/or CD2, and presence of KIT D816V mutation. In 2008, the WHO 

recognized seven mastocytosis categories, listed in Table 2. 

 

Variant Subvariant 

Cutaneous mastocytosis (CM) Urticaria pigmentosa (UP), 

maculopapular CM (MPCM), diffuse 

CM (DCM), mastocytoma of skin 

Indolent systemic mastocytosis (ISM) Smoldering SM, isolated bone marrow 

mastocytosis 

Systemic mastocytosis with an associated clonal 

hematologic non-mast cell lineage (SM-AHNMD) 

SM–acute myeloid leukemia (SM-

AML), SM-myelodysplastic syndrome 

(SM-MDS), SM- myeloproliferative 

disorders (SM-MPD), SM- Chronic 

Myelomonocytic Leukemia (SM-

CMML), SM- Non-Hodgkin's 

Lymphoma (SM-NHL). 

Aggressive systemic mastocytosis (ASM)  

Mast cell leukemia (MCL) Aleukemic MCL 

Mast cell sarcoma  

Extracutaneous mastocytoma  

 Table 2. WHO systemic mastocytosis variants. From Metcalfe et al., 2008. 

 

Current therapy in WHO-defined SM is largely palliative and directed against 

MC degranulation symptoms (e.g. urticarial, angioedema, nausea, vomiting, diarrhea, 

abdominal pain), symptomatic skin disease (e.g. urticaria pigmentosa) and/or organ 

dysfunction resulting from MC tissue infiltration (e.g. hypersplenism; Pardanani, 

2015). 
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Among other types of treatments for SM there are cytoreductive agents as 

interferon-α (IFNα) and 2 chlorodeoxyadenosine (2-Cda). The IFNα acts against all 

SM subcategories, and improve dermatological, hematological, gastrointestinal, and 

systemic symptoms associated with histamine release. Imatinib mesylate 

demonstrates in vitro efficacy against wild-type c-KIT and certain transmembrane 

(F522C) and juxta-membrane (V560G) mutations, but not on D816V mutants. New 

TKIs are currently under investigation for SM treatment and are represented by 

dasatinib and midostaurin (PKC412). However, treatment of advanced SM remains 

one of the most challenging areas in clinical hematology; in fact, whereas mediator-

related symptoms can be controlled in most cases, MC expansion is usually resistant 

to most conventional antineoplastic drugs (Valent et al., 2010; Pardanani, 2015). 

 

1.6 CANINE c-KIT MUTATIONS AND RELATED DISEASES 

In dog MCTs, several c-KIT mutations, leading to uncontrolled signaling, have 

been identified (Bavcar & Argyle, 2012). These mutations are similar to those found 

in human GIST (Marech et al., 2014).  

Approximately 10-30% of canine MCTs present KIT mutations, more 

frequently localized in the JM (exon 11), and mostly consisting of internal tandem 

duplications (ITDs: Marech et al., 2014; Bonkobara, 2015). Mutations in the 

extracellular domain, namely in D5 (exons 8 and 9) are less frequent than those found 

in exon 11 (Letard et al., 2008; Takeuchi et al., 2013). Finally, mutations in other 

exons 2, 6, 7, 15 and 17 are quite infrequent (<3%: Bonkobara, 2015). 

Increased c-KIT mRNA levels and gene mutations occurring in exons 11 and 17 

were also observed in canine AMLs (Usher et al., 2009). In addition, also canine 

GIST evidenced c-KIT mutations occurring in the JM (Frost et al., 2003). 

 

1.6.1 CANINE MCT 

MCT is one of the most common tumor occurring in dogs. It is characterized by 

an abnormal MC accumulation in tissues, and mostly it appears as a solitary non-

painful cutaneous mass with preferred localization in the head/neck and in the arts. 

Systemic symptoms, such as anorexia, erythema, abdominal discomfort, edema, 

gastrointestinal ulceration, vomiting, and melena, are less common; these ones are 

frequently associated with visceral forms of MCT with a poorer prognosis and/or 
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with paraneoplastic disease due to the release of bioactive constituents from MC 

granules (Welle et al., 2008; Blackwood et al., 2012). 

The MCT clinical presentation varies according to the tumor grade: well-

differentiated cutaneous MCTs consist of slow growing, hairless and solitary lesions, 

while poorly differentiated cutaneous MCTs are characterized by rapid growing, 

ulcerated and pruritic lesions, sometimes surrounded by small “satellite lesions” 

(Blackwood et al., 2012). 

Upon the suspicion of a MCT, the definitive diagnosis can be achieved through 

cytology examination, for the most part using fine needle aspirate (FNA). 

Histological examination is also an important tool for MCTs grading and prognosis 

(Sabattini et al., 2015). Various histological grading systems have been proposed, but 

the mostly used one is the classification proposed by Patnaik et al. (1984), which 

divides MCTs into three grades: grade I MCTs (well-differentiated), which are 

mostly benign and slowly developed; grade III MCTs (poorly differentiated) that 

exhibit aggressive growth with local invasion. They are also more prone to 

metastasize and show a high recurrence potential. Finally, grade II (intermediately 

differentiated) MCTs; these latter are more difficult to predict, thereby accounting for 

more subjective and inconsistent classifications (Blackwood et al., 2012; Sabattini et 

al., 2015). The Patnaik grading scheme has inherent weaknesses characterized by 

subjective criteria and inter-observer variability. In particular, this traditional and 

widely accepted grading system has failed to reliably differentiate between aggressive 

and nonaggressive grade II MCTs (Giantin et al., 2014). There is another grading 

system, proposed by Kiupel and co-authors (2011), which divided tumors into high or 

low grade MCTs. Such a classification has improved prediction of metastasis and/or 

new tumor development, tumor mortality and survival (Takeuchi et al., 2013; 

Sabattini et al., 2015).  

Since histological grading alone is not suitable to predict the MCT biological 

behavior and treatment response, some supplementary prognostic markers have been 

investigated. Amon these ones, c-KIT mutational status has been identified as a useful 

prognostic and therapeutic marker. Furthermore, the expression of c-kit protein can 

be immunohistochemically characterized, and has been correlated with 

histopathological grading and prognosis in some studies, albeit not consistently 

(Takeuchi et al., 2013; Sailasuta et al., 2014; Patruno et al., 2014; Costa Casagrande 

et al., 2015). Other prognostic markers have been investigated, such as cellular 
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proliferation markers (e.g. mitotic index, the argyrophilic nucleolar organizer region 

AgNOR, the immunohistochemical markers Ki-67 and proliferating cell nuclear 

antigen, PCNA), angiogenesis markers and DNA ploidy analysis (Blackwood et al., 

2012; Fonseca-Alves, 2015; Gil da Costa, 2015; Sabattini et al., 2015).  

Complementary to histological grading, clinical staging is recommended to 

define the nature and extent of MCT, especially after diagnosis of a poorly 

differentiated tumor or when an expensive treatment is planned; this should include, 

at least, FNAs of draining lymph nodes and abdominal ultrasound. In cases of nodal 

metastasis presence, full staging is required with abdominal ultrasound (along with 

spleen and liver biopsies aspiration) and, if the case, bone marrow aspiration and lung 

radiographs (Blackwood et al., 2012). A clinical staging system was proposed by 

WHO: stage 0 is usually assigned to single tumors incompletely excised from the 

dermis without regional lymph node involvement; stages I and II comprise single 

tumors confined to the dermis without or with regional lymph node involvement, 

respectively; in stage III are included multiple dermal tumors, or large infiltrating 

tumors with or without regional lymph node involvement; stage IV includes any 

tumor with distant metastasis or recurrence with metastasis (Rogers, 2010). However, 

stage and prognosis do not directly correlate in all clinical situations (Blackwood et 

al., 2012). 

The prognostic indicators outlined above serve to aid in the therapeutic 

approach of MCT. Surgery is the treatment of choice in localized, non-metastatic 

canine MCTs. Most of dogs with low to intermediate grade MCTs experience longer 

survival times with complete surgical excision alone if compared with high grade 

MCTs. During surgery, safety margins should be included all around the mass. In 

cases in which a surgical excision with adequate margins is not feasible and/or poor 

prognostic factors such as histologic intermediate to high grade MCTs are 

encountered, radiation therapy and/or systemic chemotherapy is indicated. Due to the 

risk of radiation-induced MC granulation and consequent systemic effects, 

radiotherapy is generally avoided as a sole therapy. It is preferentially used as a 

postoperative adjunctive therapy after incomplete excision. Best results are achieved 

where radiation is planned prior to surgery, rather than afterthought following by an 

inadequate surgery (Blackwood et al., 2012). 

The most commonly used cytotoxic agents for the treatment of canine MCT 

include vinblastine (VBL) and lomustine (CCNU); in addition, systemic 
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corticosteroids have been shown to have some clinical efficacy. Indeed, the response 

rate to prednisone has been shown to be 20%, with remission times comprised 

between 10 and 20 weeks (London and Seguin, 2003). The use of an adjuvant 

systemic protocol (corticosteroids, CCNU and VBL), following surgical excision of 

intermediate grade MCT with evidence of local-regional lymph node metastasis, 

showed a median survival time of 1359 days (Lejeune et al., 2013).  

Recently, two TKIs have been approved by the European Medicines Agency 

(EMA) for the therapy of canine MCTs: 

(1) Toceranib phosphate (Palladia®, Pfizer Animal Health), approved for the use in 

recurrent, non-resectable grade II/III MCTs. Dogs with mutated c-KIT showed the 

highest response rate (69% against 37%: London et al., 2009). 

(2) Masitinib (Masivet ®, AB Science), approved for non-resectable grade II/III 

MCTs, particularly those with a c-KIT mutation. 

 

1.7 G-QUADRUPLEX (G4) 

G4, discovered by Gellert and collaborators in 1962, are stable DNA secondary 

structures alternative to the double helix of Watson and Crick. The basic elements 

that formed a G4 are showed in Figure 4. 

 

 

Figure 4. The dominant G4 conformation in the B-cell 

lymphoma 2 (BCL-2) promoter as an example of G4 

structure. Modified from Balasubramanian et al., 

2011. 

 

G4 originate in guanine-rich nucleic acids sequences when four guanine form a 

square planar platform called G-tetrad through cyclic Hoogsteen hydrogen bonding, 

in which each of the four bases is the donor and the acceptor of two hydrogen bonds 

(Bryan and Baumann, 2011). Stacked G-quartets form a G4 structure, and the 

interpose sequences are extruded as single-strand loops (although tetra-molecular G4 
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structures may also lack loops). The sequence and size of the loop regions varies but 

are usually small (1–7 nucleotides nucleotides), and smaller loops result in more 

stable G4 structures, as do longer G-tracts. Spaces between the loops, termed 

grooves, are bounded by charged phosphodiester backbones. 

This structure is stabilized by monovalent cations (mostly K
+
 and Na

+
) that 

occupy the central cavities and neutralize the electrostatic repulsion of inwardly 

pointing guanine oxygens (Bochman et al., 2012).  

Oligonucleotides containing G-stretches can form monomeric, dimeric or 

tetrameric G4 by folding/assembling one, two or four separate strands (Phan, 2009). 

DNA strands may be oriented in anti-parallel, parallel, or hybrid configuration. G4 

conformation is influenced by both the DNA sequence and the conditions used in the 

folding reaction, such as the nature of the stabilizing cation. Thus it is difficult to 

predict the propensity of a sequence to fold into a particular structure, and each 

sequence needs to be characterized under different folding conditions.  

Also the stability of G4 varies; it depends on the identity of the stabilizing 

cation, the DNA length and sequence, the length of intervening loops and, finally, the 

strand stoichiometry and alignment. In this respect, there have been some recent 

progresses in developing computational methods for predicting G4 stability. 

Many proteins have been shown to interact with G4 structures; these proteins 

may bind and stabilize G4 or unwind and destabilize them.  

One of the most important G4 structures are telomeres and telomerases. Human 

telomeres comprise tandem repeats of the DNA motif (TTAGGG) for ~5–10 kb, 

together with associated telomeric proteins. The shortening of telomeres to a critical 

length is a signal for cellular senescence. This phenomena is counteracted by 

telomerase, the telomere-specific reverse transcriptase that contains the RNA 

template to direct the addition of telomeric DNA by the catalytic telomerase reverse 

transcriptase (TERT) component. Telomerase is upregulated in ≥85% of tumors, 

providing a telomere maintenance mechanism that contributes to cellular 

immortalization and tumor progression. Telomeric DNA can fold into compact G4 

structures inhibiting the activity of telomerase. There are a large number of small-

molecule ligands showing a high binding affinity for G4, and most of them cause 

telomere dysfunction in vivo and inhibit telomerase activity in vitro (Moye et al., 

2015). 
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1.7.1 G-QUADRUPLEX IN PROMOTER REGIONS 

The potential for G4 formation in promoter regions is largely concentrated in 

genes associated with cell growth and proliferation. These oncogene promoters are 

typically TATA-less with G-rich regions in their proximal promoters; among these 

ones, there are the v-myc avian myelocytomatosis viral oncogene homolog (MYC), 

VEGF, BCL-2, PDGFR, the Kirsten rat sarcoma viral oncogene homolog (KRAS), 

as well as c-KIT (Onel et al., 2014). Furthermore, these structures seem to be 

underrepresented in tumor suppressor genes (Bochman et al., 2012). These evidences 

suggest that G4s may play a functional role in gene regulation (Bryan and Baumann, 

2011). 

MYC is an oncogene most commonly found to be altered in cancer, and its 

promoter is the one most extensively studied in terms of G4 formation (Chen and 

Yang, 2012). It encodes for a transcription factor that regulates the expression of 

several genes (Bidzinska et al., 2013). The G4-forming region within the MYC 

promoter is a sequence of 27-nucleotides , e.g. a Nuclease Hypersensitive Element 

(NHE) III1, which regulates most of the gene’s transcriptional activity (Chen and 

Yang, 2012; Onel et al., 2014). This sequence contains five consecutive runs of 

guanine (“G-runs”), and may fold into several G4s and loop isomers with different 

stabilities; the major G4 formed in K+ solution involves four consecutive 3G-runs 

that adopt a parallel folding (Myc2345), with the major loop isomer being 1:2:1 

(Chen and Yang, 2012; Onel et al., 2014).  

In MYC, the G4 structure is a negative regulator of the expression because a 

single base mutation, which destabilizes the chair form, increases MYC expression up 

to three-fold. Furthermore, compounds that stabilize this G4 structure (i.e., the 

cationic porphyrin TMPyP4) decrease c-MYC expression (Siddiqui-Jain et al., 2002; 

Tian et al., 2010).  

Two G-rich sequences capable of forming G4s have been identified in the 

promotorial region of human proto-oncogene c-KIT: KIT1 and KIT2, respectively 

located -12 /-34, and -64 / -84 base pairs upstream the transcription start site (TSS: 

McLuckie et al., 2011). They are located within a nuclease hypersensitive region, and 

are separated by 31 bp which contain an active SP1 site. Both sequences form G4s 

under physiological conditions, as proved by NMR and X-ray crystallography (Bryan 

and Baumann, 2011). A large number of G4 ligands have been reported in the 

literature, and TMPyP4 is the ligand most extensively studied to date. It inhibits both 
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telomerase (half maximal inhibitory concentration, IC50  0.7–10 µM) and Taq DNA 

polymerase (IC50  2 µM). It exhibits some promising anticancer activities in vivo, 

but it has very poor DNA specificity, causes anaphase bridges in sea urchin embryos, 

and is highly toxic in vivo. When administered at 0.1 mM (a dose near its MTD in 

cell cultures), TMPyP4 elicits a dramatic effect on gene expression, and it down-

regulates the transcription of both c-MYC and the catalytic subunit of telomerase. 

Moreover, it binds to duplex, triplex, G4, single stranded and bulk genomic DNA 

with similar affinities (Kd ≅ 200 nM); therefore, it cannot be considered a structure-

selective ligand. 

Telomestatin (SOT-095), a natural product isolated from Streptomyces anulatus 

3533-SV4, is one of the strongest and most specific inhibitors of telomerase reported 

to date (IC50 ≅ 1 μM).Telomestatin has molecular dimensions similar to those of G-

tetrad DNA, and can bind to various G4 with modest affinity (Kd ≅ 30 nM). 

Telomestatin exhibits good selectivity for intramolecular versus intermolecular G4 

structures, and it has a 70-fold lower affinity for duplex DNA. Telomestatin induces 

telomere shortening in treated cells more rapidly than through a single mechanism 

involving telomerase inhibition. Recent studies have shown that telomere uncapping 

and the loss of telomeric DNA is related to the competition between telomestatin and 

POT1, a shelterin protein that binds to the 3’ single-stranded overhang (Gomez et al., 

2006; Luedtke, 2009). While it is unknown if this type of activity might be cancer-

selective, telomestatin induces senescence and apoptosis in a number of different 

tumor cell types and exhibits less toxicity towards normal progenitor cells (Luedtke, 

2009). 

 

1.7.2 G-QUADRUPLEX IN CANINE c-KIT PROMOTER 

In 2014, part of this PhD study aimed to characterize the canine KIT proximal 

promoter. Similarly to the human KIT proto-oncogene, two putative quadruplex 

sequences were identified and reported in Figure 5: canine KIT1 (“d_kit1”, -117 to 

138 bp upstream the ATG), and KIT2 (“d_kit2”, -154 to -174 bp upstream the ATG). 

Both positions were not referred to TSS, because the 5’UTR of canine KIT gene has 

not yet been fully characterized. Da Ros and co-authors published these results in the 

same year (Da Ros et al., 2014). Canine KIT1 showed a high degree of sequence 
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homology with its human counterpart and shared a common overall parallel G4 

folding in a K+ containing solution (Da Ros et al., 2014).  

On the other hand, human and canine KIT2 sequences largely differ to each 

other. Two isoforms of canine KIT2 were identified; although a defined structure has 

not yet been attributed, it is conceivable that the multiplicity of folded structures that 

human KIT2 can form in solution may also occur in the canine species (Da Ros et al., 

2014).  

Overall, the potential functional role of the aforementioned G4 motifs may be 

of important relevance, not only for the canine, but also as a comparative model for 

human disease (Da Ros et al., 2014).  

 

 

 

 

Figure 5. Sequences involved in the formation of the two G4s 

present in the promoter regions of human and canine KIT 

(Rankin et al., 2005; Da Ros et al., 2014). 
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2. AIMS OF THE THESIS 
 

 
In human and canine cancer, c-KIT represents one of the best examples of 

therapeutic target, and its inhibition allows oncologists to treat tumors whose 

malignancy is partly or completely dependent on its activity. 

The present thesis groups together four scientific contributions related to c-KIT 

expression in human and canine tumors; overall, it attempted the exploration of new 

strategies for anticancer chemotherapy targeting c-KIT in multiple in vitro models. In 

particular, the specific aim of the first part of the thesis (chapters 3 and 4) consisted in 

the identification of candidate c-KIT G4 ligands that could stabilize G4 DNA 

secondary structures in the c-KIT promoter region and, hence, block its transcription 

in human and canine established cell lines. These studies were conducted in 

collaboration with the research group of Claudia Sissi, a Full Professor affiliated to 

the Department of Pharmacological Sciences of the University of Padua; she 

performed the compounds library screening. 

The other two publications (chapters 5 and 6) aimed to cover some scientific 

gaps in canine and comparative oncology. Precisely, in chapter 5 the characterization 

of c-KIT mutational profile in primary canine MCT and its own metastases was 

undertaken, to make a more careful recommendation about the use of c-KIT 

mutational analysis (and, consequently, decision therapy) in the clinical setting; in 

chapter 6, the occurrence of mutations in genes already known to be involved in 

pathogenesis of human SM (TET2, SF3B1, SRSF2, KRAS, NRAS, IDH1, IDH2) 

was investigated in canine MCT, to find out analogies between the two neoplastic 

diseases. Part of chapter 3 and the whole work discussed in chapter 6 were carried 

out, during my eight-months foreign internship, at the Centre de Recherche en 

Cancérologie de Marseille and under the supervision and support of Dr. Patrice 

Dubreuil and his research group. 
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3. Screening of candidate G-quadruplex ligands for the 

human c-KIT promotorial region and their effects in 

multiple in-vitro models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: Zorzan E., Da Ros S., Musetti C., Zorro Shahidian L., Ramos 

Coelho N.F., Bonsembiante F., Létard S., Gelain M. E., Palumbo M., Dubreuil 

P., Giantin M., Sissi C., and Dacasto M., 2015. Screening of candidate G-

quadruplex ligands for the human c-KIT promotorial region and their effects in 

multiple in-vitro models. Oncotarget, under revision. 
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3.1 ABSTRACT 

The V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-

KIT) encodes for a tyrosine kinase receptor (RTK) and it is implicated in the 

pathogenesis of gastrointestinal stromal tumors, melanoma and acute leukemia. Two 

guanine-rich strands within c-KIT promoter can fold into G-quadruplex structures 

(G4). In this study, an “in house” library of compounds was screened for the 

recognition of the two G4 regions, hypothesizing a possible down-regulation of gene 

expression and the consequent discovery of potentially selective anticancer drugs. 

The cytotoxicity of the three most promising G4 ligands was measured in 

MCF7 and HGC27 cell lines, and transcriptional effects on c-KIT as well as on other 

oncogenes known to possess G4 structures in their promoters were investigated at 

different concentrations and times of culture. An anthraquinone derivative (AQ1) was 

the most effective inhibitor of c-KIT mRNA and protein amounts in both cell lines.  

Confirmatory experiments were executed in other in vitro models which strictly 

depend on c-KIT for survival (α155, HMC1.2 and ROSA cell lines), and an 

encouraging block of cell proliferation was noticed, also in cell lines having c-KIT 

mutations.  

In conclusion, AQ1 represent a promising compound for the treatment of c-

KIT-dependent tumors, worth of further and more in depth molecular investigations. 
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3.2 INTRODUCTION 

The c-KIT proto-oncogene (c-KIT) codes for a tyrosine kinase receptor (c-kit) 

that, when activated by stem cell factor (SCF) in mast cells, melanocytes, and Cajal 

interstitial cells, is involved in a broad range of physiological processes, including 

cell proliferation, migration, maturation and survival (Metcalfe, 2008; Gregory-

Bryson et al., 2010). 

c-KIT is dysregulated in many diseases, including cancer (Lennartsson and 

Rönnstrand, 2012); in neoplastic diseases, its increased expression and auto-

phosphorylation allows tumor cells to develop independently from growth and 

survival signals (Hanahan and Weinberg 2000; Pittoni et al., 2011). Furthermore, 

several mutations, potentially leading to c-kit activation in the absence of SCF 

binding, have been reported (Liang et al., 2013). Gain of function mutations can be 

found in gastrointestinal stromal tumor (GIST, >90%), mast cell tumors (>70%), 

nasal T-cell lymphomas (>17%), seminoma/dysgerminoma (>9%) and some acute 

myeloid leukemia (>68%; Ashman and Griffith, 2013). 

Less than fifteen years ago, tyrosine kinase inhibitors (TKIs) were approved for 

the treatment of human cancers overexpressing c-kit. The immediate results obtained 

by using TKIs were promising; nevertheless, drug-resistance phenomena have been 

observed for some TKIs such as imatinib (Rosenzweig, 2012). It has been 

hypothesized that several cellular mechanisms contribute to drug resistance; 

moreover, the same drug may show differential clinical responses depending on the 

presence of a wild type or a mutated c-KIT genotype (Ustun et al., 2011). To 

overcome this limit, the promoter region of c-KIT has been considered attractive as a 

molecular target (Rankin et al., 2005; Fernando et al., 2006). G-rich sequences are 

known to fold into non-canonical structures named G4. They are formed by stacked 

G-tetrads, each constituted by four guanines connected by a Hoogsteen-hydrogen 

bonds network to provide a square planar platform (Bryan and Baumann, 2011). 

Clusters of guanines are typically present at telomere level, however, they are also 

frequently found in the promoter regions of proto-oncogenes including c-KIT, where 

G4 structures have been assumed to act as regulatory elements for gene expression 

(Balasubramanian et al., 2011; Bryan and Baumann, 2011). Within the human c-KIT 

promoter, two guanine-rich (G-rich) sequences have been identified: KIT1 and KIT2, 
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occurring respectively between positions -12 and -34 bp and positions -64 and -84 bp 

upstream the transcription starting site (McLuckie et al., 2011). 

Therefore, the idea of applying G4 targeting ligands that can induce/stabilize 

these non-canonical tetrahelices, is considered a novel approach in cancer treatment 

(Balasubramanian et al., 2011) and the goal is the identification of compounds 

capable of repressing target gene transcription through the stabilization of G4 

structures. 

Up-to-date, several small molecules that efficiently bind the G4 form of c-KIT 

have been identified. For some of them a drug-mediated inhibition of c-KIT 

expression has been confirmed: these include trisubstituted isoalloxazines, 

naphthalene diimide derivatives, substituted indenoisoquinolines and 

benzo[a]phenoxazines (Bejugam et al., 2007; Gunaratnam et al., 2009; Bejugam et 

al., 2010; McLuckie et al., 2011). 

To further optimize the promising outcome of these derivatives, here we set up a 

library of “in house” available compounds and composed of derivatives which can be 

clustered into six different families according to their main scaffold: anthraquinone 

(AQ; Zagotto et al., 2011), anthracene (AN; Folini et al., 2010), phenantroline (Phen; 

Musetti et al., 2009; Bianco et al., 2010; Bianco et al., 2013), naphthalene diimide 

(NDI; Milelli et al., 2012) and heterocyclic diamidines (HAD; Nanjunda et al., 2012). 

Within each family of compounds, structural variations concern mostly the side 

chains in terms of composition or relative localization on the pharmacophore. This 

represents a precise choice. Indeed, upon stacking of the planar core, the side chains 

are available to achieve selective recognition of the G4 loops and grooves which are 

the structural domains that mainly define the unique conformational signature of G4s. 

According to this model, compounds able to drive the preferential recognition of 

nucleic acid structures which are structurally divergent in these portions, might be 

expected to modulate the affinity/selectivity towards different G4 arrangements.  

Giving the purpose of the present study, the whole library has been screened 

against both the G-rich c-KIT sequences to select the most promising candidates (G4-

ligands) for the suppression of c-KIT expression by efficient stabilization of KIT1 

and/or KIT2 G4 structures. From the binding studies, three positive hits were selected 

and subsequently tested for cytotoxicity. Finally, their effects on c-KIT mRNA levels 

and protein expression were evaluated in different human cancer cell lines including 

some well-known in vitro models of c-KIT-dependent tumors. 
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3.3 MATERIALS AND METHODS 

3.3.1 Ligands 

AQ and AN derivatives were synthesized by Prof. G. Zagotto (University of 

Padua, Italy); NDI were synthesized by Prof. V. Tumiatti and A. Milelli (University 

of Bologna, Italy), HAD by Prof. D. W. Boykin (Georgia State University, USA) and 

Phen analogues by Prof. A. P. Krapcko (University of Vermount, USA). Stock 

solutions (1 mM) of each library member were prepared in dimethyl sulfoxide 

(DMSO, Sigma-Aldrich Co., St. Louis, USA) and stored at -20°C. For positive hits 

(AQ1, AQ7 and AN6), 10 mM stock solutions were prepared in DMSO and freshly 

diluted in culture medium the day of the experiment. 

  

3.3.2 Fluorescence melting assay 

Fluorescence melting analyses were performed with a Roche Light Cycler® 

480 II (Roche Applied Science, Indianapolis, USA), using an excitation source at 488 

nm and recording the fluorescence emission at 520 nm. Samples (20 µl final volume) 

containing 0.25 M DNA were loaded on a 96-well plate in 10 mM LiOH pH 7.5 

with H3PO4, containing 50 mM KCl and increasing concentrations of ligands. 

Samples were first heated to 95°C at a rate of 0.1°C/s, maintained at 95°C for 5 min 

and then annealed by cooling to 30°C at a rate of 0.1°C/s. Then samples were 

maintained at 30°C for 5 min before being slowly heated to 95°C (1°C/min) and 

annealed at a rate of 1°C/min. For the analyses with double strand oligonucleotides, 

the two complementary strands were annealed before ligand addition and melting 

acquisition. Each curve was repeated at least three times and errors were ± 0.4°C. 

Melting temperatures were determined from the first derivatives of the melting 

profiles using the Roche Light Cycler software (Roche Diagnostics, Mannheim, 

Germany). 

 

3.3.3 Fluorescent Intercalator Displacement (FID) assay 

FID screening assay was performed in a 96-well plate reader Victor3TM 1420 

Multilabel Counter Perkin Elmer (Perkin Elmer, Waltham, USA) set at 25°C. An 

excitation λ of 485 nm and emission λ of 535 nm were used. Before data acquisition 

the 96-well plate was shaken for 2 s. In each well, 80 µl of reaction mixture 

containing oligonucleotide (1 M), Thiazole Orange (TO, Sigma-Aldrich Co., St. 
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Louis, USA) (2 µM) and increasing concentrations of each compound (1-2-8 µM) in 

10 mM Tris, 50 mM KCl, pH 7.5 were loaded. Fluorescence titrations were 

performed in a Perkin Elmer LS55 Luminescence spectrometer (Perkin Elmer, 

Waltham, USA) equipped with a cell holder termostated at 25°C and using an 

excitation wavelength of 501 nm. For FID, a solution containing 0.62 μM of target 

DNA and 1.24 μM of TO was added of increasing concentrations of tested 

compounds in 10 mM Tris, 50 mM KCl, pH 7.5. The percentage of TO displacement 

was calculated as TO displacement = 100 - [(F/F0) × 100], where F0 is the 

fluorescence in the absence of ligand and F the fluorescence recorded at each point of 

titration. TO displacement was plotted as a function of compound concentration. 

From these plots the EC50 (half maximal effective concentration) was calculated. 

Each titration was repeated at least in triplicate. 

 

3.3.4 Surface Plasmon Resonance (SPR) 

Surface Plasmon Resonance measurements were performed on a Biacore X100 

(GE Healthcare Life Sciences, Little Chalfont, United Kingdom) set up with a 

streptavidine-coated sensor chips prepared for use by conditioning with injections of 

1 M NaCl, 50 mM NaOH in 50% isopropanol for 1 min and finally extensively 

washed with a 0.22 µm filtered buffer (10 mM Tris pH7.5, 50 mM KCl, 0.025% 

P20). Previously annealed, 5’-biotinylated oligonucleotides were then immobilized 

on one cell of the chip surface by flowing a 50 nM DNA solution at a 1 µl/min flow 

rate until the level of 400 response unit (RU) was obtained. A second cell was left 

blank as control. Sensorgrams were acquired using serial dilution of tested ligands in 

the same buffer. To avoid interference by DMSO, its concentration was kept constant 

and added to the running buffer too (1.7%). Compounds solutions were injected at a 

25 µl/min flow rate until a constant steady-state was reached (60-200 s). After each 

run, a 30 s regeneration step was performed with 10 mM glycine pH 2.5 followed by 

a 60 s stabilization period in the running buffer. The experimental RU values were 

recorded at the steady state. Data were fitted according to a binding site model. 

 

3.3.5 Polymerase stop assay 

A 20 nM equimolar mixture of 
32

P 5’-labeled primer and the human telomeric 

template sequence HT4-temp 

d[TC2A2CTATGTATAC(T2AG3)4ACATATCGATGA3T2GCTATAGTGAGTCGTA
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T2A] was annealed in the required polymerase buffer and subsequently added of 

increasing tested ligand concentrations. After incubation (30 min at room 

temperature), 2.5 U of Taq polymerase (Thermo Scientific, Waltham, USA) and 100 

µM dNTPs mixture were added to each sample and the resulting solutions were kept 

for 30 min at 55°C. Reaction products were resolved by gel electrophoresis (12% 

polyacrylamide gel with 7 M urea) in 1X TBE (89 mM Tris base, 89 mM boric acid, 

2 mM Na2EDTA). Gels were dried and resolved bands were visualized on a 

PhosphorImager (GE Healthcare, Little Chalfont, United Kingdom). 

 

3.3.6 Cell cultures 

The breast adenocarcinoma human cell line MCF7 (Leibniz Institute DSMZ-

German Collection of Microorganisms and Cell Cultures) and the human gastric 

carcinoma cell line HGC27 (European Collection of Cell Cultures) were maintained 

in 25 or 75 cm
2
 flasks under a humidified 5% CO2 atmosphere, at 37°C. Cells were 

grown in Eagle’s Minimal Essential Medium (EMEM, Gibco
®
 Life Technologies, 

Carlsbad, USA) supplemented with 10% fetal bovine serum (Gibco
®

 Life 

Technologies, Carlsbad, USA), 2 mM L-glutamine (Euroclone, Milan, Italy), 1% 

non-essential amino acids (Euroclone, Milan, Italy) and 1% penicillin/streptomycin 

(Euroclone, Milan, Italy). MCF7 were cultured in presence of 10 µg/ ml of human 

insulin (Elli Lilly & Co., Indianapolis, USA). 

The human mast cell leukemia HMC1.2, containing both juxtamembrane and 

catalytic c-KIT domain mutations (V560G and D816V), was kindly provided by Dr. 

Joseph Butterfield (Mayo Clinic, Rochester, MN, USA). This cell line, as well as the 

human mast cell leukemia α155 (possessing only the V560G mutation), the human 

prostate cancer cell line PC3, the human lymphoma cell line KARPAS 299 and 

ROSA mast cell lines (WT and transfected with KITD816V; Saleh et al., 2014) were 

cultured in RPMI medium (Gibco
®
 Life Technologies, Carlsbad, USA) supplemented 

with 10% FBS, 2 mM L-glutamine and 1% penicillin/streptomycin. 

Cell number and viability were checked by using Trypan Blue dye exclusion 

test (Sigma-Aldrich Co., St. Louis, USA). For all the experiments, cells were used 

from passage 5 to passage 25 maximum. 

Cell cultures were checked for Mycoplasma contamination both before and at 

the end of experiments through PCR Mycoplasma Test Kit (PromoKine, Heidelberg, 

Germany). 
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3.3.7 G4-ligands cytotoxicity 

MCF7 and HCG27 cells were seeded at concentrations comprised between 

0.3x10
4
 and 0.5x10

4
 cells/well in a 96-well flat bottom plate (Sarstedt Italia, Verona, 

Italy). After 24 hours, AQ1 or AN6 were added at concentrations from 0.01 µM up to 

10 µM for 72 hours. Additional wells exposed to the vehicle (DMSO, 0.1% final 

concentration) and medium alone were prepared, too. At the end of the experiment, 

20 µl of CellTiter-Blue
®
 Cell Viability Assay (Alamar Blue, Promega, Madison, 

USA) were added to each well and the fluorescence was measured at 560 nm as 

excitation wavelength and 590 nm as emission wavelength, by using a VICTOR
™

X4 

Multilabel Plate Reader (Perkin Elmer, Waltham, USA). Three separate experiments 

were executed and each concentration was tested in sestuplicate. For AQ7, the 

sulforhodamine B (Sigma-Aldrich Co., St. Louis, USA) assay was used as 

proliferation test instead of Alamar Blue. Both cell lines were exposed to a range of 

concentrations up to 10 µM for 0, 24, 48, 72, and 96 hours. Three separate 

experiments were executed, and each concentration was tested in sestuplicate. 

 

3.3.8 Target genes constitutive expression 

Since no information about the constitutive expression of c-KIT were available 

in literature, a first set of experiments were undertaken to define the best 

experimental settings for measuring G4-ligands efficacy. 

Cells were seeded onto 6-well plates at concentration of 5x10
5
 and 4x10

5
 

cells/well (for MCF7 and HGC27, respectively) and collected after 6, 24, 48, 72 and 

96 hours. Monolayers were washed with 1 ml of fresh PBS, scraped off and 

centrifuged at 100g for 5 min. Cell pellets were resuspended in 0.5 ml of 

TRIzol
®
reagent (Invitrogen

™
, Life Technologies, Carlsbad, USA), and total RNA 

was extracted according to manufacturer’s instructions. Nucleic acids yield and purity 

(260/280 and 260/230 nm absorbance ratios) were measured by using the Nanodrop 

ND-1000 Spectrophotometer (Nanodrop Technologies, Wilmington, UK), whilst 

their quality was checked by 1% agarose gel electrophoresis. Total RNA (1 μg) was 

reverse transcribed by using the High Capacity cDNA Reverse Transcription Kit 

(Life Technologies, Foster City, USA) and following the manufacturer instructions.  

The full list of primers used in the present study for qPCR analysis is reported 

in Table 1. 
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Gene UPL probe Primers (5’- 3’) Source 

MYC  #67 

F : TGGTGCTCCATGAGGAGACA 

R : GTGGCACCTCTTGAGGACCA 

Gunaratnam et al., 2009 

PDGFA 
 

#77 

F: ACACGAGCAGTGTCAAGTGC 

R: CCTGCAGTATTCCACCTTGG 

Iqbal et al., 2012 

PDGFRB #14 

R: TGCTCATCTGTGAAGGCAAG 

F: TGGCATTGTAGAACTGCTCG 

Chanakira et al., 2012 

BCL2 
 

#75 

F: ATGTGTGTGGAGAGCGTCAA 

R: GCCGTACAGTTCCACAAAGG 

Brassesco et al., 2010 

B2M 
 

#42 

F: AGGCTATCCAGCGTACTCCA 

R: TGTCGGATGGATGAAACCCA 

designed ex novo 

GAPDH  #60 

F: CTCTGCTCCTCCTGTTCGAC 

R: ACGACCAAATCCGTTGACTC 

designed ex novo 

HPRT1 
 

#22 

F: TGATAGATCCATTCCTATGACTGTAGA 

R: CAAGACATTCTTTCCAGTTAAAGTTG 

designed ex novo 

KIT  #29 

F: GGCACGGTTGAATGTAAGGC 

R: CAGGGTGTGGGGATGGATTT 

designed ex novo 

KRAS
 

#62 

F: GGAGCTGGTGGCGTAGGCAAG 

R: GCCCTCCCCAGTCCTCATGT 

designed ex novo 

hTERT
 

#68 

F: GGAGAACAAGCTGTTTGCGG 

R: AGCCATACTCAGGGACACCT 

designed ex novo 

Table 1. Primers and probes used for the qPCR analysis either obtained from previous 

publications or specifically designed for this study. UPL=Universal Probe Library; F= 

forward; R= reverse 

 

Despite c-KIT, which is the main target of this study, we also analyzed other 6 

genes known to contain putative G4 structures in their promoter region: such as the 

V-Myc Avian Myelocytomatosis Viral Oncogene Homolog (MYC), the Kirsten rat 

sarcoma viral oncogene homolog (KRAS), the beta-type platelet-derived growth 

factor receptor (PDGFRβ), the B-cell lymphoma 2 (BCL2), the Platelet-Derived 
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Growth Factor Alpha Polypeptide (PDGFA) and the Telomerase Reverse 

Transcriptase (hTERT). Gene-specific primers for MYC, PDGFA, BCL2 and 

PDGFRß were selected from previously published studies (Gunaratnam et al., 2009; 

Brassesco et al., 2010; Chanakira et al., 2012; Iqbal et al., 2012), and the most 

appropriate Universal Probe Library (UPL) probe was later determined by using the 

UPL Assay Design Centre web service (Roche Diagnostics, Mannheim, Germany). 

For the remaining genes, primers were designed ex novo by using the Primer3 

software (http://primer3.ut.ee/). Assay specificity was evaluated either in silico, by 

using the BLAST tool, than experimentally by Power SYBR Green I (Life 

Technologies, Carlsbad, CA) amplification and melting curve analysis. 

Quantitative real-time RT-PCR (qPCR) reactions (10 µl final volume) consisted 

of 1X LightCycler 480 Probe Master (Roche Applied Science, Indianapolis, USA), 

300 or 600 nM forward and reverse primers (Eurofins MWG Operon, Ebersberg, 

Germany) derived from the assay set-up, 200 nM human UPL probe (Roche Applied 

Science, Indianapolis, USA) and 2.5 µl of 1:7.5 diluted cDNA. The analysis was 

performed in a LightCycler 480 Instrument (Roche Applied Science, Indianapolis, 

IN) using standard PCR conditions (95°C for 10 min; 45 cycles at 95°C for 10 s and 

at 60°C for 30 s; 40°C for 30 s). Calibration curves, using 3-fold and 4-fold serial 

dilutions of a cDNA pool, were performed, and corresponding values of slope, 

efficiency (E) and dynamic range, for each cell line, are reported in Table 2. 
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Table 2. qPCR assay standard curve values for MCF7 and HGC27. 

 
 Only qPCR assays with E (%) comprised between 90% and 110% were 

considered acceptable. qPCR data were analyzed with the LightCycler480 software 

release 1.5.0 (Roche Applied Science, Indianapolis, USA), by using the second 

derivative method. mRNA relative quantification was performed by using the ΔΔCt 

method (Livak et al., 2001). Three internal control genes (ICGs), e.g. Hypoxanthine 

Phosphoribosyltransferase 1 (HPRT1), Glyceraldehyde-3-Phosphate Dehydrogenase 

(GAPDH) and Beta-2-Microglobulin (ß2M) were amplified in all samples, but only 

ICGs genes whose expression was not statistically varied during experimental 

conditions were considered for the relative quantification (RQ). A cDNA pool was 

used as calibrator.  

Experiments were performed in triplicate and, for each experiment, two biological 

replicates were included.  

 

3.3.9 Determination of G4-ligands efficacy by qPCR 

To measure the transcriptional effects of each candidate G4-ligand, cells (24 

hours after seeding) were incubated with vehicle (DMSO, 0.1% final concentration) 

or two sub-cytotoxic doses of G4-ligands (1/3 and 2/3 of IC50 value, respectively). 

Based on constitutive c-KIT expression during time culture, cells were collected as 

Gene MCF7 HGC27 

 Slope Efficiency (%) Dynamic range (Ct) Slope Efficiency (%) Dynamic range (Ct) 

B2M -3,192 105,7 18,78 - 32,06 -3,34 99,1 18,74 - 30,85 

BCL2 -3,41 96,5 25,82 - 34,13 -3,27 102,2 24,90 - 33,43 

GAPDH -3,48 93,7 15,81 - 30,59 -3,28 102 16,20 - 30,64 

HPRT1 -3,324 99,9 20,23 - 32,63 -3,3 101 20,96 - 33,18 

KIT -3,137 108,3 29,01 - 35,78 -3,531 92 29,58 - 39,58 

KRAS -3,34 99 21,50 - 32,28 3,352 98,8 21,30 - 32,41 

MYC -3.3 100.7 26.85 - 33.06 -3,502 93 22,47 - 30,89 

PDGFA -3,169 106,8 22,97 - 31,68 -3,18 106,3 23,87 - 33,02 

PDGFRB Not expressed -3,36 98,4 24,84 - 32,28 

hTERT -3,11 109,2 33,24 - 38,82 -3,34 99,2 29,38 - 35,78 
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described above after 6, 12 and 24 hours of incubation. Methods used for RNA 

extraction, reverse transcription and qPCR were the same described in the previous 

paragraph. ICGs expression was checked within every experimental condition. The 

choice of the most suitable ICGs to be used for normalization was cell line- and 

ligand-dependent. 

 

3.3.10 Determination of G4-ligands efficacy by flow cytometry 

Cells (5x10
5
/well

 
and 4x10

5
/well

 
for MCF-7 and HGC-27 cell lines, 

respectively) were seeded in 6-well plates; after 24 hours, the vehicle (DMSO, 0.1% 

final concentration) or AQ1 or AN6 (1 µM, final concentration) were added to the 

medium. Forty-eight hours post-exposure, monolayers were washed twice with PBS 

1X 0.02% EDTA, detached and centrifuged at 100g for 4 min. Cells were 

resuspended in RPMI medium (Gibco
®
 Life Technologies, Carlsbad, USA) 

supplemented with 3,3% FBS (Gibco
®
 Life Technologies, Carlsbad, USA). Fifty µl 

of the cell suspension were incubated for 15 min at 4°C with 50 µl of a rat anti-mouse 

monoclonal antibody raised against cell surface c-KIT (CD117PE: clone ACK 45, BD 

Pharmingen, California, USA), concentrated 1:25; then, a wash step with 500 µl of 

PBS and a centrifugation step at 100g at 4°C for 10 min, were performed. After 

removing the supernatant, 900 µl of PBS 1X were added to the cells. For BCL2 

detection, 100 µl of the cell suspension were fixed and permeabilized with the 

IntraStain kit (DAKO Italia SRL, Milano, Italy) and then incubated with an anti-

BCL2 antibody FITC conjugated (clone 124, DAKO Italia SRL, Milano, Italy). For 

acquisitions, the CyFlow® Space (Partec® GmbH, Münster, Germany) was used. 

Cells not incubated with the anti-CD117PE and anti-BCL2FITC were considered as 

negative controls. For each sample, c-kit expression was evaluated either in terms of 

events that stained for CD117 and in terms of mean fluorescent intensity (MFI), 

calculated as the ratio of the MFI in neoplastic cells by the MFI of unstained cells. 

Samples were analyzed by using FlowMax® software (Quantum Analysis GmbH, 

Münster, Germany), version 2.82. 

 

3.3.11 Confirmatory experiments with other cellular models 

Confirmatory proliferation studies were executed on α155, HMC1.2, PC3, 

ROSA
WT

 and ROSA
KITD816V

 cell lines, by using methods and conditions mentioned 

above (IC50 determination). Cells were treated with AQ1 or AN6 at concentrations 
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from 0.2 µM up to 3 µM and for 72 hours. To check for the resistance or sensitivity 

of the used cellular models, an imatinib control (1 µM final concentration) was 

included in the experimental setting. 

As regards qPCR, three independent confirmatory experiments were executed 

in α155 and HMC1.2 cell lines to confirm the transcriptional effects of AQ1 on c-KIT 

mRNA. About 9x10
5
/well cells

 
were seeded onto 6-well plates, and DMSO or AQ1 

were added at final concentrations of 0.1% and 1 µM, respectively. Cells were 

incubated for 6 and 12 hours and centrifuged at 100g for 5 min; pellets were then 

washed once with 1 ml PBS and, finally, submitted to the same methodological 

procedure reported above (determination of G4-ligands efficacy by qPCR). For each 

cell line, values of slope, efficiency and dynamic range of qPCR assays are reported 

in Table 3. 

 

Gene α155 HMC1.2 

 Slope Efficiency 

(%) 

Dynamic range 

(Ct) 

Slope Efficiency 

(%) 

Dynamic range 

(Ct) 

B2M -3.33 99.6 17.18-31.68 -3.38 97.7 17.46-31.25 

GAPDH -3.37 98 16.43-30.91 -3.40 96.7 17.34-31.36 

HPRT1 -3.39 97.1 21.75-35.65 -3.38 97.5 22.14-37.67 

KIT -3.32 99.7 18.00-32.32 -3.30 101 19.08-32.90 

Table 3: qPCR assay standard curve values for α155 and HMC1.2. 

 

For confirmatory flow cytometry investigations, HMC1.2, α155 and KARPAS 

299 cells were seeded in P6-well plates (3x10
5
 cells/well); then, DMSO or AQ1 were 

added at final concentrations of 0.1%, and 1 or 2 µM, respectively. After 48 hours, 

3x10
5
 cells were collected. HMC1.2 and α155 cells were labeled, at 4°C for 30 min, 

with mouse monoclonal anti-CD117 SC 13508 (Santa Cruz Biotech, Texas, USA), 

diluted 1:100. The secondary antibody used was an anti-mouse PE conjugated 

(diluted 1:50). The high affinity IgE receptor (FcεRI), present on mast cell 

membrane, was saturated by incubation with human serum for 10 min at room 

temperature. The human leukocyte antigens (HLA) were used as reference proteins 

and α155, HMC1.2 and KARPAS 299 cell lines were labeled with monoclonal anti-

human leukocyte antigen (HLA) PeCy5 conjugated (W6-32 eBioscience, California, 
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USA). Unstained cells with the proper isotype control were used to check for non-

specific fluorescence signals. 

The cytofluorimetric analysis was made in a BD LSRFortessa™ (Becton 

Dickinson, New Jersey, USA) and data were analyzed by using DIVA
TM

 (BD 

Pharmingen, California, USA) software. The c-kit expression was evaluated, for each 

sample, in terms of median fluorescent intensity (mFI), calculated as the ratio of the 

mFI in neoplastic cells by the mFI of unstained cells. Final results consisted in the 

mean of three different experiments. 

 

3.3.12 Statistical analysis 

 The statistical analysis of data was performed by using GraphPad Prism 

version 5.00 for Windows (GraphPad Software, San Diego, USA). Dose-response 

curves and IC50
 
values were determined by nonlinear regression analysis, fitting a 

sigmoid dose-response curve.  

Data on the time-dependent constitutive expression of target genes were 

expressed as -fold change (%) of the respective T6 value, and analyzed with one-way 

analysis of variance (ANOVA) followed by Bonferroni post-test.  

The statistically significant differences in mRNA levels in cells treated with 

G4-ligands were checked by the two-way ANOVA followed by Bonferroni post-test 

to identify if any difference in terms of transcriptional response was dependent either 

from the dose and/or time of treatment. Each RQ value of treated cells was 

normalized to the average RQ of the respective time-control samples.  

In cell proliferation experiments, the viability data obtained with the different 

cell lines were analyzed with the Student t-test. 

Data from cytofluorimetric analysis were expressed as n–fold changes against 

control cells; either the Student t-test nor the one-way ANOVA were used to unveil 

statistically significant differences between cells treated with vehicle only and AQ1. 
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3.4 RESULTS 

 

3.4.1 Ligands selection 

As anticipated, all members of the library were previously tested for their 

ability to stabilize the G4 structure of the human telomeric sequence as well as a 

random DNA double helix and a general preference for G4 vs dsDNA was previously 

reported for most compounds of the library (Musetti et al., 2009; Bianco et al., 2010; 

Folini et al., 2010; Zagotto et al., 2011; Milelli et al., 2012; Nanjunda et al., 2012; 

Bianco et al., 2013). Consistently, as a first preliminary screening tool, we analyzed 

all the members of our library by fluorescence melting measurements. The induced 

thermal stabilization on the G4s assumed by the target sequences in the same 

experimental conditions are reported in Figure 1A and Table 4.  

 

Figure 1. (A) Increments of the melting temperature of the G4 arrangements of tested c-KIT 

sequences induced by 1 µM concentrations of tested ligands. Data were acquired in LiP 

buffer with 50 mM or 1 mM KCl for KIT1 or KIT2, respectively. (B) Percentage of TO 

displacement from KIT1 or KIT2 induced by a 4-fold excess of AQ, AN and HAD derivatives.  
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Compound Ref      KIT1      KIT2      HTS dsDNA 

HAD1 DB832
a
 12.5 13.3 10.9 2.4 

HAD2 DB1450
 a
 21.8 11.3 12.8 12.1 

HAD3 DB2037
 a
 19.6 17.5 16.8 7.8 

HAD4 DB1463
 a
 10.1 1.2 7.3 2.0 

HAD5 DB1438
 a
 3.5 11.0 13.3 1.2 

HAD6 DB1972
 a
 14.0 13.1 9.9 4.2 

HAD7 DB1949
 a
 15.7 13.4 12.6 2.6 

HAD8 DB934
 a
 7.4 5.8 5.0 2.9 

HAD9 DB1693
 a
 12.1 9.5 9.4 2.2 

HAD10 DB1694
 a
 10.6 13.9 5.6 1.1 

HAD11 DB1093
 a
 12.9 13.4 11.7 11.5 

HAD12 DB1999
 a
 8.1 13.1 4.9 2.4 

NDI1 2
b
 1.5 8.3 10.3 3.0 

NDI2 1
 b
 0.6 0.7 9.2 2.8 

NDI3 20
 b
 2.0 3.3 13.5 4.4 

NDI4 22
 b
 0.4 0.7 7.0 1.9 

NDI5 8
 b
 0.2 0.5 10.1 5.0 

Phen1 K34
c
 0.0 0.0 0.1 0.0 

Phen1_Ni(II) (K34)2Ni(II)
 c
 1.9 0.0 3.1 0.0 

Phen2 P120
d
 0.0 0.0 0.1 0.0 

Phen2_Ni(II) (P120)2Ni(II)
d
 1.8 0.0 10.0 0.0 

Phen3 P115
e
 2.5 5.2 0.1 0.0 

Phen3_Ni(II) (P115)Ni(II)
e
 30.9 30.6 23.6 0.3 

AQ1 D-13
f
 13.1 15.3 18.0 4.6 

AQ2 E-13
 f
 6.7 8.4 18.9 4.5 

AQ3 B-13
 f
 9.9 12.9 14.2 2.5 

AQ4 C-13
 f
 5.2 5.1 9.9 1.4 

AQ5 D-15
 f
 10.2 6.0 18.2 1.2 

AQ6 E-15
 f
 13.0 1.7 4.5 0.1 

AQ7 B-15
 f
 9.5 11.1 7.0 0.3 

AQ8 C-15
 f
 4.0 6.4 4.3 0.1 

AN1 Ant1
g
 0.0 2.4 1.0 1.2 

AN2 Ant2
 g
 0.0 0.1 0.3 0.6 

AN3 Ant9
 g
 0.0 0.2 1.0 1.6 

AN4 Ant9,10
 g
 5.0 6.5 1.7 0.9 

AN5 Ant1,5
 g
 2.0 6.7 13.6 0.5 

AN6 Ant1,8
 g
 5.2 8.0 3.0 0.8 

AN7 Ant2,6
 g
 4.4 7.2 4.7 0.1 

AN8 Ant2,7
 g
 1.2 3.6 2.0 0.1 

Table 4. Library of tested compounds and variation of the melting 

temperature they induced at 1 µM concentration of each tested DNA 

sequence. Errors were ± 0.4 °C. The previously used compound name and 

the corresponding reference are reported in the ref column. 
a
 Nanjunda

 
et 

al., 2012, 
b
 Milelli et al., 2012, 

c
 Musetti et al., 2009, 

d
 Bianco et al., 2013, 

e 
Bianco et al., 2010, 

f 
Zagotto et al., 2011, 

g 
Folini et al., 2010. 
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Interestingly, some behaviors were conserved among derivatives belonging to 

the same scaffold. As an example, all tested polyamine derivatives recognized G4 

irrespectively of DNA sequence (telomere, KIT1 or KIT2). As regards the NDI 

derivatives, all of them showed a preferential stabilization of the telomeric G4. Thus, 

none of these compounds were selected for further investigations. About Phen-

derivatives, only their Ni(II) complexes involving two Phen moieties were confirmed 

to be active, as previously shown on the telomeric sequence; thus, we considered 

them as not appropriate for in cells studies, since in the living environment the 

distribution among complexes with different stoichiometry can be hardly monitored. 

On average, anthraquinone derivatives (AQ) showed higher thermal 

stabilization in comparison to the tested anthracenes (AN). Moreover, for both 

families of compounds, some variations in terms of efficiency and selectivity were 

highlighted according to the nature and relative position of the side chains. This led 

us to consider them as promising candidates. In order to further reduce the number of 

hits we added a second screening protocol, a G4 fluorescent intercalator displacement 

(G4-FID). This assay is based on competitive displacement of TO form DNA by our 

putative ligands. In agreement with literature data, we confirmed that, in our 

experimental conditions, TO showed comparable binding constant for KIT1 and 

KIT2 (Largy et al., 2011). Consequently, this assay provides a direct indication of the 

affinity ranking order by tested competitors. For comparison, in this assay we 

included some HAD derivatives which are suggested to bind G4 into the grooves. 

Accordingly, they were not able to displace the end-stacking agent TO. The results of 

FID are summarized in Figure 1B. 

FID and thermal stabilization data are in good agreement. On average, AQ 

derivatives were the best TO competitors. This result prompted us to perform full 

titrations with some derivatives. We focused on the comparison between 1,5 and 2,6 

regioisomers within the AQ family (AQ1 and AQ5 vs AQ3 and AQ7, respectively) 

since they appear to be the best performing compounds (Table 5).  
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Table 5. DC50 (50% displacement concentration;M) derived from TO
 
displaces (FID) by 

selected ligands (AQ and AN derivatives) with KIT sequences.  

 

Within the 1,5 series, the aminoacidic composition of the side chain (βAla-Lys 

in AQ1 vs βAla-Phe-Lys in AQ5) did not cause significant variations in TO 

displacement. Conversely, the insertion of a phenylalanine moiety seemed to 

positively affect it within the 2,6 series (βAla-Lys in AQ3 vs βAla-Phe-Lys in AQ7). 

As far as AN derivatives are concerned, they were confirmed to be remarkably less 

efficient than AQs. Among them, AN6 was the best performing on both the tested 

KIT sequences. Noteworthy differences were never observed between KIT1 or KIT2 

sequences. 

Hence, by merging FID and thermal stabilization results, anthracene derivative 

AN6 and anthracenedione derivatives AQ1 and AQ7 were selected for further 

investigations.  

 

3.4.2 Binding affinity and functional interaction of selected ligands 

To better characterize the interaction between the selected ligands and the G4 

folded form of KIT1 and KIT2, we performed SPR. For this experiment, 

oligonucleotides labeled at 5’with Biotin-TEG (tetra-ethyleneglycol) were folded in 

KCl and subsequently immobilized on a gold chip functionalized with streptavidine. 

Sensorgrams were acquired and the data at the steady state were used to evaluate the 

binding constants of the selected binders towards the c-KIT sequences (Figure 2, 

Table 6). 

 

 AQ1 AQ5 AQ3 AQ7 AN6 

KIT1 0.32 ± 0.05 0.27 ± 0.02 0.50 ± 0.04 0.24 ± 0.04 4.11 ± 0.7 

KIT2 0.35 ± 0.05 0.41 ± 0.03 0.62 ± 0.05 0.25 ± 0.02 3.63 ± 1.00 
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Figure 2. Representative examples of SPR analysis. (A) Sensorgrams derived from the 

analysis of AQ1 with KIT2. (B) Plots of the RU at the steady state plotted vs the 

concentration of injected ligand on chip functionalized with KIT1.  

 

 KIT1 KIT2 

AQ1 1.99 ± 0.15 1.01 ± 0.15 

AQ7 3.04 ± 0.43 2.29 ± 0.28 

AN6 71.5 ± 20.1 25.5 ± 4.01 

Table 6. Dissociation constants, (Kd, M) of selected ligands (AQ and AN derivatives) with 

KIT sequences determined by SPR
 
in 10 mM Tris, 50 mM KCl, pH 7.5, 0.025% surfactant 

P20. 

 

All experimental equilibrium data well fitted with a single binding model. 

Interestingly, all tested ligands showed a preferential, albeit modest, interaction with 

KIT2. However, in line with the above presented results, the binding constant of AN6 

was confirmed to be at least one order of magnitude lower than those provided by AQ 

derivatives. 

Before moving toward the cell system, we assessed if the binding of our ligands 

to the c-KIT sequences can actually impairs the processing of the c-KIT promoter. 

Thus, we performed polymerase stop assay: KIT1 and KIT2 sequences were inserted 

into a template strand and the elongation of a complementary primer by Taq 

polymerase was monitored. As shown in Figure 3, increasing concentrations of each 

ligand in the reaction mixture resulted in a progressive reduction of the full length 

product. In parallel, a predominant arrest product, which corresponds to the primer 

elongation up to the G-rich region, appeared. According to the above reported 
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binding affinity ranking order, this effect occurred at lower ligand concentration 

when the AQ derivatives were used and with a slight more pronounced efficiency on 

KIT2 sequence. This reinforces a model in which the G4-ligand complex prevents the 

oligonucleotide replication by Taq polymerase. 

 

Figure 3. Polymerase stop assay with 0-15 µM of tested ligands. P, A and F correspond 

respectively to primer, arrest product and full length product. 

 

3.4.3 G4-ligands cytotoxicity 

In short-term cultures (72 hours) AQ1 and AN6 showed dose-dependent 

cytotoxic effects in both MCF7 and HGC27 cell lines. Dose-response curves, the 

relative IC50 values and the corresponding linear regression coefficients (R
2
) for each 

G4-ligand are reported in Figure 4. AQ7 was comparatively less cytotoxic, and the 

IC50 value could not be determined even using concentrations up to 10 µM (Figure 

4E and 4F). 
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Figure 4. Dose-response curves and proliferation curves of HGC27 and MCF7 after 

treatment with the G4-ligands. (A) HGC27 and (B) MCF7 dose-response curves from Alamar 

Blue experiments to determine IC50 values and R
2
 following the incubation with AQ1. (C) 

HGC27 and (D) MCF7 dose-response curves from Alamar Blue experiments to determine 

IC50 values and R
2
 after the exposure to AN6. (E) HGC27 and (F) MCF7 proliferation curves 

from sulforhodamine B experiments following the incubation with AQ7. Data are expressed 

as mean values ± standard deviation of three independent experiments, each one performed 

in different passages. 
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3.4.4 Target genes constitutive expression 

To define the best protocol of exposure to G4-ligands, we measured the time-

dependent (from T6 and up to T96) changes in the constitutive expression of c-KIT, as 

well as of 6 other genes known to contain G4 forming sequences in their promoter 

region, e.g., MYC, BCL2, PDGFA, PDGFRβ, KRAS and hTERT. Results are shown in 

Figure 5. 
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Figure 5. Effects of culturing time on gene expression. (A) Total RNA was isolated from 

HGC27 monolayers and mRNA levels of c-KIT, MYC, PDGFA, hTERT, KRAS, BCL2 and 

PDGFRβ were measured by using a qPCR approach. (B) Total RNA was isolated from 

MCF7 monolayers and mRNA levels of c-KIT, MYC, PDGFA, hTERT, KRAS and BCL2 were 

measured by using a qPCR approach. Data (arithmetic means ± S.D.) are expressed as n-

fold change (a.u.) normalized to the RQ mean value of cells stopped at T6, to which an 

arbitrary value of 100 was assigned.
a, aa, aaa

: P<0.05; P<0.01; P<0.001 T6 vs T24; 
b, bbb

: 

P<0.05; P<0.001 T6 vs T48; 
c, cc, ccc

: P<0.05; P<0.01; P<0.001 T6 vs T72; 
ddd

: P<0.001 T6 vs 
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T96; 
e, eee

: P<0.05; P<0.001 T24 vs T48; 
f, ff, fff

: P<0.05; P<0.01; P<0.001 T24 vs T72; 
g, gg, ggg

: 

P<0.05; P<0.01; P<0.001 T24 vs T96; 
hhh

: P<0.001 T48 vs T72; 
ii, iii

: P<0.01; P<0.001 T48 vs 

T96; 
jjj

: P<0.001 T72 vs T96. 

 

Overall, c-KIT seemed to be the most variable gene, with a differential pattern 

of expression between the two cell lines. In the HGC27 cell line, it reached a peak of 

expression at T24, then it significantly decreased day by day; however, in MCF7 cell 

line, c-KIT expression increased slowly and reached a top at T96. As regards the other 

genes, no evident time-dependent differences in gene expression were ever noticed, 

except for BCL2 in MCF7 and PDGFRβ in HGC27 whose mRNA levels significantly 

increased with time; however, in MCF7 cell line both MYC and PDGFA mRNAs 

decreased after T6. Worth mentioning, PDGFRβ gene expression was not detectable 

in MCF7 cell line. Taking into consideration the present results and since the 

objective of the treatment was to block the promoter activity, the transcriptional 

effects of candidate G4-ligands on c-KIT gene were investigated in cells incubated for 

6, 12 and 24 hours. 

Table 7 summarized qPCR and flow cytometry experimental settings chosen for each 

cell line and ligand. 
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Cell line Ligand IC50 qPCR 

Concentration 

Tested 

qPCR 

Time 

Tested 

Flow 

cytometry 

Concentration 

Tested 

Flow  

cytometry 

Time tested 

HGC27 AQ1 1.65 0.5 µM - 1 µM T6, T12, T24 1 µM - 2 µM
a
 T48 

 AQ7 >10 µM 10 µM
 b
 T6, T12, T24

b
 / / 

 AN6 2.04 0.5 µM - 1 µM T6, T12, T24 1 µM T48 

MCF7 AQ1  3.00 1 µM -2 µM T6, T12, T24 1 µM - 2 µM
a
 T48 

 AQ7 >10 µM 10 µM
 b
 T6, T12, T24

 b
 / / 

 AN6 2.70 1 µM -2 µM T6, T12, T24 1 µM T48 

α155 AQ1 / 1 µM T6, T12 1 µM - 2 µM T48 

HMC1.2 AQ1 / 1 µM T6, T12 1 µM - 2 µM T48 

Table 7. qPCR and flow cytometry experimental settings chosen for each cell line and ligand 

tested in the study. 
a
 2 µM concentration was used only in BCL2 detection experiment,

 b 
data 

not shown in the manuscript. 
 

3.4.5 Evaluation of G4-ligands efficacy 

The incubation with AQ1 led to an inhibition of c-KIT expression (range 2-10-

fold) in HGC27 cells (Figure 6A), while in MCF7 cell line the gene was almost 

completely suppressed after 24 hours (37-fold; Figure 6B). In both cell lines, the 

down-regulation by treatment was always statistically significant (P<0.0001). 
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Figure 6. Effect of AQ1 on c-KIT mRNA and protein expression in HGC27 and MCF7 cell 

lines. The c-KIT mRNA level (A) and (B) was measured by using qPCR approach, and data 

(arithmetic means ± S.D.) are expressed as n-fold change normalized to the RQ of control 

cells at each time (T6, T12, T24) to which an arbitrary value of 1 (a.u.) was assigned. Two-way 

ANOVA followed by Bonferroni post-test were used to assess statistical differences between 

doses and time of treatment. The c-kit protein amount (C) and (D) was measured by flow 

cytometry and data are expressed as n-fold change (a. u.) to the mean fluorescence intensity 

(MFI) of not treated cells. Student t-test was used to assess statistical differences between 

cell treated with AQ1 and those treated with the vehicle (DMSO).
 *,**, ***

: P<0.05; P<0.01; 

P<0.001. 

 

 

c-KIT transcriptional results were confirmed, although to a lower magnitude, at 

the protein level by flow cytometry analysis. A significant decrease of c-KIT (2-fold) 

was observed in HGC27, and a similar trend was also noticed in MCF7 cell line 

(Figure 6C and 6D, respectively). An example of flow cytometry dot plots, with 

population gate and histograms showing the fluorescence of CD117, is reported in 

Figure 7. 
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Figure 7. Evaluation of CD117 expression in HCG27 cells after 24h of incubation: 

Control sample: (A) morphological scatter (forward scatter, FSC; side scatter, SSC); (B) 

isotype control, histogram; (C) CD117 expression, histogram;  

HCG27 cells incubated with DMSO (D) morphological scatter (forward scatter, FSC; side 

scatter, SSC); (E) isotype control, histogram; (F) CD117 expression, histogram. 

HCG27 cells incubated with AQ1 1 µM: (G) morphological scatter (forward scatter, FSC; 

side scatter, SSC); (H) isotype control, histogram (I) CD117 expression, histogram. 

 

 

Besides c-KIT, AQ1 caused a marked and significant inhibition (P<0.0001) of 

BCL2 gene expression in both cell lines (Figure 8).  
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Figure 8. Effect of treatment with AQ1 on BCL2 mRNA and protein in HGC27 and MCF7 

cell lines. The BCL2 mRNA level (A) and (B) was measured by using a qPCR approach, and 

data (arithmetic means ± S.D.) are expressed as n-fold change normalized to the RQ of 

control cells at each time (T6, T12, T24) to which an arbitrary value of 1 (a.u.) was assigned. 

Two-way ANOVA followed by Bonferroni post-test was used to assess statistical differences 

between doses and time of treatment. 
***

: P<0.001. The bcl2 protein amount (C) and (D) was 

measured by flow cytometry, and data are expressed as n-fold change (a.u.) of the mean 

fluorescence intensity (MFI) measured in untreated cells. One-way ANOVA followed by 

Bonferroni post-test was used to assess statistical differences between cell treated with AQ1 

and those treated with the vehicle (DMSO).
 *,**

: P<0.05; P<0.01. 

 

 

The magnitude of such inhibition accounted for 2.5-5 and 4-6 -fold for HGC27 

and MCF7, respectively. No post-transcriptional effects were noticed in HGC27 

under the present experimental conditions (Figure 8C); however, a significant 

decrease (P<0.01) of bcl2 protein amount was observed, at 48 hours, only in MCF7 

cells with AQ1 treatment at 2 µM (Figure 8D). 

Concerning the other oncogenes, known to possess G4 structures in their 

promoter region, a significant, although of minor importance, down-regulation was 

observed for PDGFRβ in HGC27 (P=0.0003; Figure 9), and for MYC and hTERT in 

MCF7 with P<0.0001 (Figure 10). 
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Figure 9. Effect of AQ1 on mRNA of other oncogenes possessing G4 structures in HGC27. 

(A) MYC, (B) hTERT, (C) KRAS, (D) PDGFA and (E) PDGFRβ mRNA level were measured 

using qPCR, and data (arithmetic means ± S.D.) are expressed as n-fold change (a.u.) 

normalized to the RQ of control cells at each time (T6, T12, T24) to which an arbitrary value of 

1 was assigned. Two-way ANOVA and Bonferroni post-test were used to assess statistical 

differences between doses and time of treatment. 
*, **, ***

: P<0.05; P<0.01; P <0.001. 
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Figure 10: Effect of AQ1 on mRNA of other oncogenes possessing G4 structures in MCF7. 

(A) MYC, (B) hTERT, (C) KRAS and (D) PDGFA mRNA level were measured using qPCR, 

and data (arithmetic means ± S.D.) are expressed as n-fold change (a.u.) normalized to the 

RQ of control cells at each time (T6, T12, T24) to which an arbitrary value of 1 was assigned. 

Two-way ANOVA and Bonferroni post-test were used to assess statistical differences between 

doses and time of treatment. 
*, **, ***

: p<0.05; p<0.01; p<0.001. 

 

As regards AN6, it did not affect c-KIT mRNA in HGC27 cell line, whereas a 

decrease, only at T12 hours and at the highest ligand concentration, was observed in 

MCF7 cell line (P<0.05; Figure 11A and 11B). The amount of c-kit protein was 

significantly decreased, after 48 hours of incubation in both cell lines (P<0.01 and 

P<0.05 in HCG27 and MCF7, respectively; see Figure 11C and 11D). On the 

contrary, contrasting results were obtained for the other oncogenes under 

investigation.  
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Figure 11: Effect of AN6 on c-KIT mRNA and protein expression in HGC27 and MCF7 cell 

lines. The c-KIT mRNA levels (A and B) were measured by using a qPCR approach; data 

(arithmetic means ± S.D.) are expressed as n-fold change normalized to the RQ of control 

cells at each time (T6, T12, T24), to which an arbitrary value of 1 (arbitrary units, a.u.) was 

assigned. Two-way ANOVA, followed by Bonferroni post-test, were used to assess statistical 

differences between doses and time of treatment. 
**

: P<0.01. The c-kit protein amounts (C 

and D) were measured by flow cytometry, and data are expressed as n-fold change (a.u.) 

with respect to the mean fluorescence intensity (MFI) of untreated cells. Student t-test was 

used to assess statistical differences between cell treated with AN6 and those treated with the 

vehicle (DMSO).
 *,**

: P<0.05; P<0.01. 

 

 

The PDGFA mRNA levels increased after AN6 treatment in both cell lines 

(Figure 12D and 13D), while KRAS and PDGFRβ were up-regulated in HGC27 cell 

line only (Figure 12C and 12E).  
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Figure 12: Effect of treatment with AN6 on mRNA of oncogenes possessing G4 structures in 

HGC27. (A) MYC, (B) hTERT, (C) KRAS, (D) PDGFA, (E) PDGFRβ, and (F) BCL2 mRNA 

levels were measured by using qPCR, and data (arithmetic means ± S.D.) are expressed as n-

fold change (a.u.) normalized to the RQ of control cells at each time (T6, T12, T24) to which an 

arbitrary value of 1 was assigned. Two-way ANOVA and Bonferroni post-test were used to 

assess statistical differences between doses and time of treatment. 
*, **, ***

: p<0.05; p<0.01; 

p<0.001. 

 

On contrary, in MCF7 cell line a significant blocking effect was noticed for 

MYC and hTERT only at the highest tested concentration (P<0.01 and P<0.05; Figure 

13A and 13B, respectively).  
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Figure 13: Effect of exposure with AN6 on mRNA of oncogenes possessing G4 structures in 

MCF7. (A) MYC, (B) hTERT, (C) KRAS, (D) PDGFA and (E) BCL2 mRNA level were 

measured by using a qPCR approach, and data (arithmetic means ± S.D.) are expressed as 

n-fold change (a.u.) normalized to the RQ of control cells at each time (T6, T12, T24) to which 

an arbitrary value of 1 was assigned. Two-way ANOVA followed by Bonferroni post-test was 

used to assess statistical differences between doses and time of treatment. 
*, **, ***

: p<0.05; 

p<0.01; p<0.001. 

 

Finally, the exposure to AQ7 at 10 µM did not lead to a significant up- or 

down- regulation of c-KIT and the whole set of alternative genes considered in the 

present study (data not shown). 
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3.4.6 Confirmatory results with other cellular models 

To confirm that the effective molecular target of AQ1 is located in c-KIT 

promoter, a proliferation study was undertaken in a new mast cell line, e.g. the SCF 

dependent ROSA cell line and, particularly, the WT cell line (ROSA
WT

) as well as its 

SCF independent sub-clone ROSA
KITD816V

, engineered by lentiviral transfection 

(Saleh et al., 2014) and consequently regulated by a different promoter. In Figure 

14A the viability results obtained treating cells with imatinib at 1 µM as control of 

stable transfection were reported. As expected, ROSA
WT

 were much more sensitive 

to the treatment then the sub-clone transfected with the imatinib resistant mutation 

KITD816V. As reported in Figure 14B, AQ1 significantly inhibited proliferation to a 

greater extent in ROSA
WT

 than in ROSA
KITD816V

. The absence of G4 in the promoter 

region of ROSA
KITD816V

 favor the survival of cells under the treatment with AQ1. 

The anti-proliferative effects of AQ1 were then tested in other three cell lines: 

the α155 and the HMC1.2 in which the growth strictly depends on c-KIT, and PC3 

where c-KIT is not constitutively expressed (Simak et al., 2000). As shown in Figure 

14C, an overall inhibition of cell proliferation was observed, with a different order of 

magnitude and significantly less relevant for the non-expressing c-KIT PC3 cell line. 

The same experiment was also repeated on other cell lines where c-KIT is not 

responsible for growth namely TOV112 ovarian cancer cells and KARPAS299 

lymphoma cell line. Data obtained corroborated those described with PC3 cell line 

(data not shown). Interestingly, no differences in term of viability among AQ1 

concentrations were noticed between α155 and HMC1.2 cell lines, while a 

differential response was visible after treatment with imatinib between imatinib-

sensitive (α155) and imatinib-resistant (HMC1.2 and PC3) cell lines (Figure 14D). 

These results suggest that AQ1 and imatinib exert their actions at different molecular 

levels, because the former compound was not influenced by the mutation as the 

second. 
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Figure 14. Effect of exposure (72 hours) to imatinib, AQ1, and AN6 on proliferation of ROSA
WT

, ROSA
KITD816V

, α155, HMC1.2 and PC3 cell lines. Data are 

expressed as percentage of viability ± S.D. against cells treated only with the vehicle (DMSO). (A) Effect of imatinib 1 µM on ROSA cell lines. Student t-test. 
***

: P<0.001. (B) Effect of AQ1 on ROSA cell lines. Student t-test. 
*,
 
***

: P<0.05; P<0.001. (C) Effect of AQ1 on α155, HMC1.2 and PC3. Student t-test. 
aaa

: 

P<0.001 α155 vs PC3; 
bbb

: P<0.001 HMC1.2 vs PC3. (D) Effect of imatinib 1 µM on α155, HMC1.2 and PC3 cell lines. One-way ANOVA followed by 

Bonferroni post-test. 
aaa

: P<0.001 α155 vs HMC1.2; 
bbb

: P<0.001 α155 vs PC3; 
ccc

: P<0.001 HMC1.2 vs PC3. (E) Effect of AN6 on ROSA cell lines. Student 

t-test. 
***

: P<0.001. (F) Effect of AN6 on α155, HMC1.2 and PC3. Student t-test. 
aa

, 
aaa

: P<0.01; P<0.001 α155 vs PC3; 
b, bb, bbb

: P<0.05; P<0.01; P<0.001 

HMC1.2 vs PC3. 
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As far as AN6 is concerned, it seemed to bind specifically to the c-KIT 

promoter (Figure 14E). Indeed, a different pattern of inhibition between ROSA
WT 

and 

ROSA
KITD816V

 cells proliferation was noticed. Nevertheless, no antiproliferative 

effects were ever observed in PC3, α155 and HMC1.2 cell lines (Figure 14F). This 

would suggest a non-selective action of AN6 towards other G4 sequences, 

particularly when c-KIT is expressed to a lower extent or is undetectable. 

Consequently, and taking into account also the reduced inhibitory effect on c-KIT 

mRNA, we focused our attention on AQ1. 

 

Figure 15. Effect of AQ1 on c-KIT mRNA and protein in α155 and HMC1.2 cell lines. The c-

KIT mRNA levels (A and B) were measured by qPCR, and data (arithmetic means ± S.D.) are 

expressed as n-fold change normalized to the RQ of control cells at each time (T6, T12) to 

which an arbitrary value of 1 (a.u.) was assigned. Two-way ANOVA, followed by Bonferroni 

post-test, was used to assess statistical differences between doses and time of treatment. 
***

: 

P<0.001. The c-kit protein amounts (C and D) were measured by flow cytometry and data 

are expressed as n-fold change (a.u.) to the mFI of not treated cells. One-way ANOVA, 

followed by Bonferroni post-test, was used to assess statistical differences between cell 

treated with AQ1 and those treated with the vehicle (DMSO).
 a, aa

: P<0.05; P<0.01 DMSO vs 

1 µM AQ1; 
bb

: P<0.01 DMSO vs 2 µM AQ1. 

 

Following the treatment of α155 and HMC1.2 cell lines with 1 µM AQ1 (final 

concentration), we measured c-KIT mRNA and protein levels by qPCR and FACS, 

respectively. A significant transcriptional down-regulation was noticed, in both cell 

lines, after 6 and 12 hours of exposure (Figure 15A and 15B). This result was 
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confirmed at the post-translational level after 48 hours of exposure (Figure 15C and 

15D).  

An example of scatter plots and histograms obtained with α155 cell line is 

reported in Figure 

16. Following the 

treatment with 

AQ1, the side-

scatter of cell 

population 

change; this 

phenomenon 

might be 

attributed to a 

ligand-dependent 

morphological 

effect. 

 

 

Figure 16: Flow 

cytometry analysis 

of CD117 in α155 

cell line. 

Morphological 

scatter plot with 

forward scatter 

(FSC) vs side 

scatter (SSC) and 

c-kit histogram plot 

of fluorescence 

intensity (FI) of 

different samples: 

(A) and (B) 

irrelevant antibody 

IgG; (C) and (D) 

control cells; (E) 

and (F) DMSO 

treated cells FI; 

(G) and (H) AQ1 1 

µM treated cells; 

(I) and (J) AQ1 2 

µM treated cells. 
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To demonstrate that the inhibition of c-KIT protein was not due to a toxic 

effect, we performed the same experiment labeling the HLA complex, a protein 

supposed to be not influenced by the treatment. Data obtained with α155, HMC1.2 

and KARPAS299 cell lines (the last one survives independently from c-KIT) showed 

that HLA complex expression was never influenced by AQ1 exposure (see Figure 

17). 

 

Figure 17: Effect of treatment with AQ1 on HLA proteins of α155 (A), HMC1.2 (B) and 

KARPAS299 (C). HLA protein level was measured by flow cytometry and data are expressed 

as n-fold change (a. u.) to the mFI of not treated cells. One-way ANOVA with Bonferroni 

post-test were used to assess statistical differences between cell treated with AQ1 and those 

treated with the vehicle (DMSO).
 
 

 

An example of scatter plots and histograms obtained with α155 cell line is 

reported in Figure 18. This would confirm that the occurring morphological changes 

were not due to a high non selective toxicity of our candidate G4-ligand.  
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Figure 18: Flow 

cytometry analysis of 

HLA in α155 cell 

line. Morphological 

scatter plot with 

forward scatter 

(FSC) vs side scatter 

(SSC) and HLA 

histogram plot of 

fluorescence intensity 

(FI) of different 

samples: (A) and (B) 

irrelevant antibody 

IgG; (C) and (D) 

control cells; (E) and 

(F) DMSO treated 

cells FI; (G) and (H) 

AQ1 1 µM treated 

cells; (I) and (J) AQ1 

2 µM treated cells. 
 

  



- 66 - 
 

3.5 DISCUSSION 

The silencing of c-KIT is currently a promising therapeutic strategy to treat 

several types of cancers. Among the different tools, which can be applied to reach 

this goal, an interesting method is represented by G4-ligands. The advantages rest in 

the structural knowledge of the target (NMR and X-ray data of the G-rich promoter 

region of c-KIT are currently available) and on the small size of the potential ligands 

for these targets (thus allowing affordable subsequent optimization steps). To set the 

basis for a rational design of novel compounds working according to this mechanism, 

we started with a screening program of a library of compounds to clarify the 

molecular features required by a G4-ligand in order (a) to bind the selected KIT1 and 

KIT2 sequences and, (b) to consequently cause the downregulation of c-KIT 

expression in cancer cells.  

As regards the target recognition step, the combination of two different binding 

assays (thermal stabilization of the G4 form of KIT1/KIT2 and the displacement of a 

G4-bound dye) allowed us to identify three potential candidates out of 39 tested 

derivatives. They belong to the AQ or AN series thus supporting that the tricyclic 

aromatic structure can properly recognize the desired targets. 

Most of publications focused on c-KIT and G4 topic, use MCF7 and HGC27 

cell lines as experimental in vitro models (Bejugam et al., 2007; Gunaratnam et al., 

2009; Waller et al., 2009; McLuckie et al, 2011). Thus, our choice to test candidate 

G4-ligands on these cells reflects the need to use in vitro models suitable for this type 

of studies. Through the Alamar Blue cytotoxicity test, both AQ1 and AN6 provided 

lower IC50 values in HGC27 cell line than in MCF7 cell line. We could attribute such 

evidence to the different doubling time of the two cell lines (17 for HCG27 and 38 

hours and MCF7). Indeed, the obtained IC50 values are usually and comparatively 

lower in cell lines with a shorter doubling time that, therefore, perform a higher 

number of cell cycles in an equal period of time (Baguley et al., 2002). The third 

ligand (AQ7) did not show any relevant antiproliferative effects even at the highest 

tested concentration (10 µM); moreover, no transcriptional effects were noticed on c-

KIT expression; consequently, we decided to exclude it for the ensuing experiments. 

Nevertheless, this result is important because the affinity of AQ1 and AQ7 for the 

target sequence was comparable.  
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Overall, the most interesting results have been obtained with AQ1, followed by 

AN6. 

The exposure to AQ1 resulted in a significant inhibition of c-KIT mRNA levels 

in both cell lines. Moreover, this transcriptional effect was confirmed at the protein 

level by flow cytometry. This inhibitory effect was more pronounced in MCF7 than 

in HGC27 cells, probably due to the different constitutive expression of the gene in 

the two cell lines. An analogous behavior has already been observed by Bejugam et 

al. (2007), in a similar study with a different G4-ligand. Once characterized the 

inhibitory effect of AQ1 on c-KIT expression, a set of confirmatory studies were 

undertaken by using cellular models commonly recruited to study the effects of TKIs 

on c-KIT expression (Gabillot-Carré et al., 2006; Saleh et al., 2014). Firstly, the 

experiment with ROSA cells clearly demonstrated that the observed inhibition of 

proliferation was effectively due to the binding of AQ1 to c-KIT promoter. Moreover, 

the α155 and HMC1.2 cell lines showed a high sensitivity to AQ1, while the prostate 

cancer cell line PC3 did not. This further result supports that AQ1 binds specifically 

the oncogene c-KIT affecting mostly the proliferation of α155 and HMC1.2 cell lines 

which growth strictly depends on c-KIT. In the PC3 cell line, that do not express the 

proto-oncogene, the proliferation is less inhibited and this could demonstrate the 

absence of functional binding with other potential G4 structures in the genome 

(Simak et al., 2000). Worth mentioning, in the present study we also demonstrated 

that HMC1.2, a cell line naturally possessing the mutation D816V in the c-KIT 

protein and therefore resistant to imatinib, was highly responsive to AQ1. It is well 

known that some c-KIT mutations could represent a limitation in the use of the TKIs; 

for example, mutations involving exon 17 such as D816V and occurring in around 

80% of adult mastocytosis and some mutations of exon 9 in GIST (Liegl et al., 2008; 

Ustun et al., 2011). Present results are therefore very encouraging and unveil the 

potentialities of this compound also against tumor harboring c-KIT mutations in the 

coding region. The decrease of c-KIT mRNA and protein amounts, noticed in MCF7 

and HGC27, were also confirmed on α155 and HMC1.2 cell lines. To the best of our 

knowledge this is the first screening of candidate G4-ligands undertaken in a panel of 

designed target-specific cell lines and ever published so far. 

An important aspect that needs to be considered about G4-ligands is their 

affinity towards several different G4 structures that could be bound by the same 

molecule along the genome. However, it has been hypothesized that ligands capable 
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of binding several G4 structures might present an increased inhibitory effect due to 

interference on multiple cellular pathways (Chen et al., 2012). Boddupally et al., in 

2012, when studied the effects of G4-ligands on MYC’s G4, demonstrated how two 

G4-ligands, previously proved to have high affinity toward MYC’s G4 in cell-free 

models, inhibited cell growth by modulating, at the same time, the expression of 

several genes. For this reason we decided to check for possible ligand interactions 

with other oncogenes that contain, in the promoter, one or more putative G4 

sequences. In particular, we evidenced an inhibition of AQ1 against BCL2 in both 

MCF7 and HGC27 (confirmed also in α155 and HMC1.2 cell lines; data not shown). 

Huang et al. (2004) clarified that the anthraquinones decreased BCL2 expression and 

favored apoptosis. Present results confirmed this finding, despite the slighter 

inhibition noticed at the protein level, which has already been reported in other 

similar studies with other G4-ligands (Shen et al., 2013). At the same time, it is well 

documented that SCF, the endogenous c-KIT ligand, maintains the survival of human 

mast cells by repressing apoptosis through the expression of BCL2 (Mekori et al., 

2001); therefore, it is actually impossible to attribute the observed mRNA inhibition 

to a direct interaction of AQ1 with the G-rich region of BCL2 or to an indirect 

repression due to the decrease of c-KIT mRNA.  

In line with in solution data, the experiments in which we tested AN6 in c-KIT-

dependent cell lines showed that this ligand effectively binds the G4 sequence of c-

KIT, as demonstrated by the anti-proliferative effect measured in ROSA
KITD816V

 cells, 

where c-KIT expression is regulated by another promoter. At the same time, the 

proliferation studies conducted in the panel of cell lines showed a common and 

similar inhibition of cell replication irrespectively of their dependence upon c-KIT 

expression. This result might be justified with (a) a possible non-specific effect of 

AN6 on different cellular pathways or, (b) a lower affinity of AN6 for the G4 within 

c-KIT promoter, which might allow for a clearer detection of AN6-mediated effects 

on different cellular pathways. The AN6 exposure in MCF7 and HGC27 cell lines 

showed minor effect on c-KIT mRNA; however, c-kit protein was markedly 

inhibited. These contradictory results could derive from post-transcriptional 

modifications and/or the involvement of other pathways in c-kit mechanisms of 

regulation. To support such a hypothesis, we observed a decrease in MYC and hTERT 

and even an increase in KRAS, PDGFA and PDGFRβ gene expression. Noteworthy, 

the possible up-regulation of some target genes following the exposure to candidate 
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G4-ligands has already been described previously (Halder et al., 2012); therefore, 

more detailed studies are required to further decipher the exact mechanism 

underlying G4-mediated changes in oncogene transcription. Overall, taking into 

account that c-KIT was the gene target of the present study as well as that no 

differences in proliferation were noticed among the different cell lines, we cannot 

consider AN6 as a good candidate and worthy of further investigations. 

In conclusion, this work exhaustively demonstrated the capability of a putative 

G4-ligand, that is AQ1, to decrease c-KIT mRNA and protein amounts and, 

consequently, block proliferation in different but target-designed cellular models. 

Present results constitute a solid starting point for further studies about this promising 

molecule(s). Future studies will be addressed to demonstrate the specific binding of 

AQ1 to c-KIT promoter and elucidate the exact molecular mechanism of cell damage 

induced by the treatment of AQ1 and resulting in the blockage of cell proliferation. 
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4. Targeting Canine c-KIT Promoter by Candidate DNA 

G-quadruplex Ligands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: Zorzan E., Da Ros S., Zorro Shahidian L., Palumbo M., Giantin 

M., Sissi C., and Dacasto M., 2015. Targeting Canine c-KIT Promoter by 

Candidate DNA G-quadruplex Ligands. Manuscript in preparation. 
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4.1 ABSTRACT 

G-quadruplexes (G4) are DNA secondary structures formed by stacked G-

tetrads frequently located in telomeres and promoter regions of proto-oncogenes. 

Recently, two G-rich sequences, canine KIT1 (d_kit1) and KIT2 (d_kit2), folding 

into G4, have been identified in canine c-KIT promoter. In this study, three 

compounds known to stabilize specifically KIT1 and KIT2 G4 structures are tested in 

a canine cell line, in order to identify a promising G4 ligand able to decrease c-KIT 

expression in dog. 

The 50% inhibitory concentration (IC50) of each ligand was determined by 

using the Alamar Blue cytotoxicity test in the canine mast cell tumor (MCT) cell line 

C2. The constitutive gene expression of c-KIT and other proto-oncogenes (BCL2, 

VEGFα, VEGFR2, KRAS, TERT) mRNA was measured by quantitative RT-PCR 

(qPCR). Therefore, ligand time- and dose-dependent effects upon c-KIT and other 

target genes were evaluated by using qPCR. 

In canine cells, target genes were shown to be constitutively expressed and 

measurable up to 96 hours of culture. Two compounds named AQ1 and AN6 

significantly inhibited c-KIT mRNA and protein expression independently from times 

and ligand concentrations used. 

From these preliminary data, both ligands could represent promising candidate 

for targeting canine KIT-dependent tumors such as MCT. However, such an 

assumption needs to be confirmed with further molecular studies. 
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4.2 INTRODUCTION 

The G4 structure is formed in guanine-rich DNA sequences and consists in a 

stable, four-stranded structure alternative to the double helix conformation. Four 

guanine residues connected through Hoogsteen hydrogen bonds constitute a G-

quartets and three or more quartets stacked one upon the other formed a G4 (Zhao et 

al., 2007). Bioinformatics analysis revealed that around 400,000 putative G4 forming 

sequences are present in the human genome. They are mainly located within the 

telomeres and in the promoter region of oncogenes, suggesting that these particular 

conformations may be involved in multiple cellular processes as telomerase 

maintenance, RNA transcription and translation (Bidzinska et al, 2013). Such 

hypothesis is supported by promising results, in terms of antiproliferative effects and 

gene regulation, obtained targeting G4 with small molecules that stabilize these 

structures. The first evidence of the role of G4 structures in the regulation of gene 

transcription derived from studies carried out on the v-myc avian myelocytomatosis 

viral oncogene homolog (MYC, Siddiqui-Jain et al., 2002). Recently, other studies 

demonstrated that two G4 sequences are located in the proximal promoter of the v-kit 

Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (c-KIT) proto-oncogene 

(Rankin et al., 2005; Fernando et al., 2006). It codes for a tyrosine kinase receptor 

implicated in cell survival, proliferation and differentiation; furthermore, the 

occurrence of activating mutations and/or overexpression of this gene can result in 

aberrant functions and oncogenic cellular transformation in mast cells, interstitial 

cells of Cajal and myeloid cells (Balasubramanian et al., 2011). Recent encouraging 

results were published about the human c-KIT stabilization by different classes of G4 

ligands: trisubstituted isoalloxazines, bis-indole carboxamides, 

benzo[a]phenoxazines, anthraquinone and bisanthrene derivatives (Bejugam et al., 

2007; Dash et al., 2008; McLuckie et al., 2011; Zorzan et al., chapter 3 of the present 

thesis).  

In the canine species, the constitutive activation of c-kit and mutations 

occurring in its DNA sequence are considered relevant pathogenic events in the 

development of cutaneous mast cell tumor (MCT), the most common skin tumor of 

dogs (Marconato et al., 2014). 

The advent of target therapy, and in particular the use of a new class of drugs 

called tyrosine kinase inhibitors, brought some benefits in the treatment of canine 
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MCT; however, potential resistance effects and a different selectivity of the drug 

depending by the mutational status of the gene sequence could occur (London et al., 

2009; Bonkobara, 2015). 

The presence of G4 sequence in genomes other than the human one has already 

been investigated, particularly in prokaryotes (Rawal et al., 2006), chicken (Du et al., 

2007) and warm-blooded animals such as rat, mouse, dog and zebrafish (Zhao et al., 

2007; Verma et al., 2008). Also in animals, the maximum frequency of G4 DNA 

motifs occur in the gene transcriptional regulatory region, comprised among the -500 

and +499 base pairs, in particular in the 100 bp preceding the transcription starting 

site. 

The recent discovery that canine c-KIT promoter presents, alike the human one, 

two putative G4 sequences surrounding a predicted Sp1 binding site, addressed us to 

test, in a canine MCT cell line, three candidate human G4 ligands previously 

investigated in two human established cell lines (Zorzan, chapter 3 of the present 

thesis). The conclusions published in Da Ros and co-authors in 2014 remarked that 

KIT1 G4 was very similar among the two species, human and dog, while KIT2 

sequence presented more differences that could vary the molecule binding. The aim 

of the present work was to establish the possibility to find a promising G4 ligand able 

to decrease c-KIT expression in dog and prevent malignant cell proliferation. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Ligands 

Information and characteristic of ligands tested in the present study (named 

AQ1, AQ7 and AN6) are reported in chapter 3 of the present thesis. 

 

4.3.2 Cell cultures 

The canine MCT cell line C2, expressing mutated c-KIT (48 bp internal tandem 

duplication in the juxtamembrane domain) was kindly provided by Dr. Patrice 

Dubreuil (Centre de Recherche en Cancérologie de Marseille, France). Cells were 

cultured in RPMI 1640 medium supplemented with 10% FBS, 2 mM L-glutamine, 1 

mM sodium pyruvate and 1% penicillin/streptomycin (Gibco, Thermo Scientific, 

Waltham, USA). 
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Cell number and viability were checked by using Trypan Blue dye exclusion 

test (Sigma-Aldrich Co., St. Louis, USA). Cell cultures were checked for 

Mycoplasma contamination through PCR Mycoplasma Test Kit (PromoKine, 

Heidelberg, Germany). For all the experiments, cells were used from passage 5 to 

passage 15 maximum. 

 

4.3.3 Characterization of the G4 sequence 

The canine c-KIT proximal promoter region was amplified through PCR and 

cloned into TOPO TA vector as previously reported (Da Ros et al., 2014). Around 8 

different colonies and plasmids were sequenced for the obtainment of the exact c-KIT 

G4 sequence present in C2 cell line. 

 

4.3.4 G4-ligands cytotoxicity 

Cells were seeded in microplates at a concentration of 2 x 10
4
 cells per well; 

then, they were treated with AQ1, AQ7 and AN6 at concentrations ranging from 0.01 

µM up to 10 µM. Additional wells exposed to the vehicle (DMSO, 0.1% final 

concentration) and medium alone were included in each experiment, too. After an 

exposure of 72 hours, proliferation and cytoxicity were checked by adding 20 µl of 

CellTiter-Blue
®
 Cell Viability Assay (Alamar Blue, Promega, Madison, USA) to 

each well and the fluorescence was measured at 560 nm (excitation wavelength) and 

590 nm (emission wavelength), by using a VICTOR
™

X4 Multilabel Plate Reader 

(Perkin Elmer, Waltham, USA). Three separate experiments were executed and each 

concentration was tested in sestuplicate. 

 

4.3.5 Time-dependent constitutive expression of target genes  

mRNA levels of seven genes known to contain putative G4 structures in their 

promoter were measured in cultured cells during 96 hours without treatment. Cells 

were seeded onto 6-well plates at a final concentration of 6 x 10
5
 cells/well and 

collected after 6, 24, 48, 72 and 96 hours. Cell pellets were washed once with PBS 

1X 0.02% EDTA and, finally, resuspended in 0.5 ml of TRIzol
® 

reagent. The 

procedure of total RNA extraction, its quality and quantity evaluation and 

retrotranscription into cDNA are reported in chapter 3 of the present thesis. 

The full list of primers used in the present study for qPCR analysis is reported 

in Table 1. 
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Gene Sequence Source UPL 

probe 
c-KIT F: CCTTGGAAGTAGTAGATAAAGGATTCA designed ex novo #60 

R: CAGATCCACATTCTGTCCATCA 

BCL2 F: ACAACGGAGGCTGGGAATG designed ex novo #110 

R: CCTTCAGAGACAGCCAGGAGAA 

MYC F: GCTGCACGAGGAGACACC designed ex novo #77 

R: TCAATTTCTTCTTCGTCCTCTTG 

TERT F: TGACGTGGAAGATGAAGGTG designed ex novo #128 

R: CTCTCTCCGACGGTGTTC 

KRAS F: TGTGGTAGTTGGAGCTGGTG designed ex novo #62 

R: TCCCTCATTGCACTGTACTCCT 

VEGFA F: CGT GCC CAC TGA GGA GTT Giantin et al., 

2012 

#9 

R: GCC TTG ATG AGG TTT GAT CC 

VEGFR2 F: GGAACCCAATCAGAGACCCA designed ex novo #31 

R: GTCTTTGCCATCCTGCTGAG 

ATP5β F: TCTGAAGGAGACCATCAAAGG Giantin et al., 

2014 

#120 

R: AGAAGGCCTGTTCTGGAAGAT 

GOLGA1 F: GGTGGCTCAGGAAGTTCAGA Aresu et al., 2011 #149 

R: TATACGGCTGCTCTCCTGGT 

CGI-119 F: TCTACAATCTAAGAGAGATTTCAGCAA Aresu et al., 2011 #15 

R: TTCCTGACAAGCACAAAATCC 

CCZ1 F: TGAAGCACTGCATTTAATTGTTTAT Giantin, submitted 

manuscript 

#148 

R: CTTCGGCAAAAATCCAATGT 

Table 1: Primers and probes used for the qPCR analysis either obtained from previous 

publications or specifically designed for this study. UPL=Universal Probe Library; 

VEGFR= vascular endothelial growth factor receptor; ATP5β= ATP synthase, H
+
 

transporting, mitochondrial F1 complex, beta polypeptide; GOLGA1= the Golgin A1; CGI-

119= the transmembrane BAX inhibitor motif containing 4; CCZ1= CCZ1 vacuolar protein 

trafficking and biogenesis associated homolog. 

 

Candidate genes included were c-KIT, c-MYC, VEGF, VEGFR2, KRAS, BCL2 

and Telomerase Reverse Transcriptase (TERT). To design genes primers, the Primer3 

software (http://primer3.ut.ee/) was used. Assay specificity was evaluated either in 
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silico, by using the BLAST tool, than experimentally by Power SYBR Green I (Life 

Technologies, Carlsbad, CA) amplification and melting curve analysis. 

Quantitative real-time RT-PCR (qPCR) reactions (10 µl final volume) were 

performed as previously reported (Zorzan et al., chapter 3 of the present thesis) with 

2.5 µl of 1:150 diluted cDNA. The analysis was performed in a LightCycler 480 

Instrument (Roche Applied Science, Indianapolis, IN) using standard PCR conditions 

(95°C for 10 min; 45 cycles at 95°C for 10 s and at 60°C for 30 s; 40°C for 30 s). 

Calibration curves, using 3-fold serial dilutions of a cDNA pool, were performed, and 

corresponding values of slope, efficiency (E) and dynamic range are reported in 

Table 2. The qPCR assays with E (%) comprised between 90% and 110% were 

considered as acceptable. 

 

 
Name Slope Efficiency (%) Dinamic range Error 

c-KIT -3.32 99.9 17.67-28.85 0.00544 

BCL2 -3.42 95.9 26.36-36.46 0.0232 

VEGFA -3.29 101.4 22.04-31.05 0.00528 

CGI-119 -3.43 95.7 23.23-31.64 0.00665 

GOLGA1 -3.28 101.8 25.60-36.74 0.00866 

ATP5β -3.26 102.7 19.17-30.39 0.00585 

CTBP1 -3.37 98.2 23.63-34.85 0.0104 

CCZ1 -3.34 99.2 25.30-33.35 0.0116 

KRAS -3.33 99.7 20.97-32.11 0.00849 

MYC -3.34 99.4 22.40-33.06 0.0109 

TERT -3.21 105.1 27.12-37.92 0.0162 

VEGFR2 -3.33 99.6 24.87-36.25 0.0393 

Table 2: qPCR assay standard curve values for C2 cell line. 

The obtained qPCR data were analyzed using the LightCycler480 software 

release 1.5.0 (Roche Applied Science, Indianapolis, USA) and the second derivative 



- 78 - 
 

method; the mRNA relative quantification (RQ) was performed by using the ΔΔCt 

method (Livak et al., 2001). Four internal control genes (ICGs), e.g. ATP synthase, 

H
+
 transporting, mitochondrial F1 complex, beta polypeptide (ATP5β), the Golgin A1 

(GOLGA1), the transmembrane BAX inhibitor motif containing 4 (CGI-119) and 

CCZ1 vacuolar protein trafficking and biogenesis associated homolog (CCZ1). These 

genes were amplified in all samples, but only ICGs genes whose expression was not 

statistically modulated during experimental conditions were used for the relative 

quantification. A cDNA pool was used as calibrator.  
Experiments were performed in triplicate and, for each experiment, two 

biological replicates were included.  

 

4.3.6 Transcriptional effects of G4-ligands on target genes 

Cells were incubated with vehicle (DMSO, 0.1% final concentration) or two 

sub-cytotoxic doses of G4-ligands. After 6, 12 and 24 hours of incubation, cell pellets 

were collected as described above. Methods used for RNA extraction, reverse 

transcription and qPCR were the same described above. The ICGs expression was 

checked within every experimental condition and the choice of the most suitable 

ICGs to be used for normalization was cell line- and ligand-dependent. A cDNA pool 

was used as calibrator. Experiments were performed in triplicate and, for each 

experiment, three biological replicates were included.  

 

4.3.7 Confirmatory post-translational effects of G4-ligands  

The first day of experiment, 5.4 x 10
6
 cells/well were seeded in Petri dishes and 

treated with AQ1 (final concentration 1.5 µM) or just with the vehicle (DMSO, 0.1% 

final concentration) for 24 hours. Cell pellets were washed with PBS 1X 0.02% 

EDTA, resuspended in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% Triton X-100, 

0.5% Na-deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA, 0.2 mM Sodium 

Orthovanadate, 1% protein inhibitor cocktail), incubate 30 min on ice and centrifuged 

for 10 min at high speed. Proteins were separated in 4-12% NuPAGE
® 

Novex
®
 Bis-

Tris Gels by using the XCell SureLock™ Mini-Cell electrophoresis system (Thermo 

Scientific, Waltham, USA), and then transferred onto nitrocellulose filters through 

the iBlot™ Dry Blotting System (Thermo Scientific, Waltham, USA). On each gel, 

one prestained molecular marker (Thermo Scientific PageRuler Plus Prestained 

Protein Ladder, Thermo Scientific, Waltham, USA), one unstained molecular marker 
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(MagicMark
TM

 XP Western Protein Standard, Thermo Scientific, Waltham, USA), 

and a c-KIT positive control (TF1 cells stable transfected with KITD816V and kindly 

provided by Drs. Patrice Dubreuil and Paulo De Sepulveda CRCM, Marseille, 

France) were loaded. 

Membranes were incubated with goat anti-human c-KIT (C-14, Santa Cruz 

Biotechnology, Dallas, Texas, USA), and goat anti-human GAPDH (V-18, Santa 

Cruz Biotechnology, Dallas, Texas, USA) primary antibodies, both diluted 1:1000. 

The secondary antibody was a peroxidase conjugated anti-goat IgGs (Merck Spa, 

Milano, Italy). The peroxide signal was detected with the Super Signal West Pico 

Chemioluminescent Substrate Kit (Thermo Scientific, Waltham, USA). 

Images were captured by Canon MG 5150 and the integrate optimal density of 

each band was measured with the program ImageJ. Data were normalized with 

GAPDH values, and the TF1 KITD816V was used as reference. 

 

4.3.8 Statistical analysis 

Data statistical analysis was performed by using GraphPad Prism version 5.00 

for Windows (GraphPad Software, San Diego, USA). Any details about statistical 

analysis used in the proliferation experiment and in the qPCR expression analysis are 

reported in chapter 3 of the present thesis. 

Immunoblotting data were expressed as a percentage of control integrated 

density, where control is represented by normal cells in culture. Variations between 

DMSO control cells and AQ1-treated cells were statistically evaluated by using the 

Student t-test. 

 

4.4 RESULTS 

4.4.1 Sequencing of the C2 c-KIT proximal promoter 

Before testing the effects of the putative G4 ligands on canine cells, we 

confirmed that C2 cells possessed the exact KIT1 and KIT2 sequences already 

characterized by Da Ros et al. (2014); in particular, we focused our attention on 

nucleotide -159, owing to the polymorphism previously detected in dog samples (-

159 G>A). The exact sequences of KIT1 and KIT2 are the following: KIT1: 

AGGGAGGGCGCCGGGAGGAGGG; KIT2: AGGAGGGGCGCGGGGAAGGGG. 
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4.4.2 Cytotoxicity tests and qPCR results 

To identify a potential ligand for canine KIT1 and KIT2 G4 structures, three 

compounds were tested in canine C2 MCT cell line. By using the Alamar Blue 

cytotoxity test, the dose-response curve of each ligand was determined and the 

corresponding IC50 value identified. The IC50 values for AQ1, AN6 and AQ7 were 

1,27 µM (R
2
: 0.9813), 5,87 µM (R

2
: 0.9721) and IC50>10 µM, respectively. In Figure 

1, dose-response curves for AQ1 and AN6 are reported.  

 

 

Figure 1: Dose-response curves of AQ1 and AN6 tested in canine C2 MCT cell line. Data 

are expressed as mean values ± standard deviation of three independent experiments, each 

one performed in different passages. 

 

The constitutive expression analysis was indicative of a variable expression for 

almost all the genes taken into account in the present study (see Figure 2). The c-KIT 

and KRAS expressions were not affected by time of culture, while a significant 

decrease, after 24 or 48 hours, was noticed for BCL2, MYC and hTERT expressions. 

The unique gene showing increased (up to 96 hours) mRNA level depending on time 

was VEGFA. 
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Figure 2. Effects of culturing time on gene expression. Total 

RNA was isolated from C2 cells and c-KIT, BCL2, VEGFA, 

KRAS, MYC and hTERT mRNA levels were measured by using 

a qPCR approach. Data (arithmetic means ± S.D.) are 

expressed as n-fold change (a.u.) normalized to the RQ mean 

value of cells stopped at T6, to which an arbitrary value of 100 

was assigned. *: P<0.05; ***: P<0.001. 

 

Taking into consideration these results, we decided to treat cells with the three 

putative ligands at two sub-cytotoxic doses and three different time points: T6, T12 

and T24 hours. 
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With regard to AQ7, as already seen in human cell lines, no significant effects 

on mRNA levels of target genes were ever detected for the genes included in the 

study (data not shown). 

Concerning AQ1, Figure 3 shows a significant decrease in c-KIT mRNA at T12 

and T24 with both concentrations. No differences between the two concentration were 

noticed. Transcriptional results were confirmed at the protein level, as shown in 

Figure 3. The densitometric analysis revealed a 2-fold significant inhibition of c-kit 

protein level following the exposure to 1.5 µM AQ1. 

 

Figure 3: Effect of AQ1 on c-KIT mRNA and protein amounts. (A) mRNA was measured 

using qPCR, and data (arithmetic means ± S.D.) are expressed as n-fold change (a.u.) 

normalized to the RQ of control cells at each time (T6, T12, T24) to which an arbitrary value of 

1 was assigned. Two-way ANOVA and Bonferroni post-test were used to find out statistical 

differences between doses and time of treatment. The c-KIT protein amount (B and C) was 

measured by immunoblotting, and data are expressed as n-fold change (a.u.) with respect to 

the densitometry untreated cells. Student t-test was used to assess statistical differences 

between cell treated with AQ1 and those treated with the vehicle only (DMSO).
 *,**

: P<0.05; 

P<0.01. 

 

Concerning the other target genes investigated, no significant effects were ever 

detected except for BCL2, for which a moderate inhibition at T12 with the highest 

dose was noticed (see Figure 4). 
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Figure 4: Effect of AQ1 on MYC (A), BCL2 (B), KRAS (C), TERT (D), VEGFR2 (E), VEGFα 

(F) mRNA. mRNA levels were measured using qPCR, and data (arithmetic means ± S.D.) are 

expressed as n-fold change (a.u.) normalized to the RQ value of corresponding control cells 

(T6, T12, T24) to whom an arbitrary value of 1 was assigned. Two-way ANOVA and Bonferroni 

post-test were used to check for statistical differences between doses and time of treatment.  

 

About AN6 (Figure 5), the two-way ANOVA showed an overall significant 

decrease of c-KIT mRNA at the highest ligand concentration (4 µM), and a moderate 

down-regulation at T12 with the AN6 lowest dose (2 µM). Confirmatory post-

transcriptional investigations (immunoblotting) showed a 2-fold decrease of c-kit 

protein, after 24 hours of exposure, with 4 µM AN6. 
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Figure 5: Effect of AN6 on c-KIT mRNA and protein amounts. (A) mRNA was measured 

using qPCR, and data (arithmetic means ± S.D.) are expressed as n-fold change (a.u.) 

normalized to the RQ of control cells at each time (T6, T12, T24) to which an arbitrary value of 

1 was assigned. Two-way ANOVA and Bonferroni post-test were used to find out statistical 

differences between doses and time of treatment. The c-KIT protein amount (B and C) was 

measured by immunoblotting, and data are expressed as n-fold change (a. u.) with respect to 

the densitometry of untreated cells. Student t-test was used to assess statistical differences 

between cell treated with AN6 and those treated with the vehicle only (DMSO).
 *,**

: P<0.05; 

P<0.01. 

 

Other target gene mRNA levels did not show time- or treatment-dependent 

significant variations, with the exception of VEGFR2, for which a significant 

increase after 12 hours (T12) of exposure was noticed at the highest ligand 

concentration (Figure 6). 
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Figure 6: Effect of AQ1 on MYC (A), BCL2 (B), KRAS (C), TERT (D), VEGFR2 (E), VEGFα 

(F) mRNA. mRNA levels were measured using qPCR, and data (arithmetic means ± S.D.) are 

expressed as n-fold change (a.u.) normalized to the RQ value of corresponding control cells 

(T6, T12, T24) to whom an arbitrary value of 1 was assigned. Two-way ANOVA and Bonferroni 

post-test were used to check for statistical differences between doses and time of treatment.  
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4.5 DISCUSSION 

The discovery of G4 structures in specific, biologically important regions of the 

genome known to be essential for cancer cells to proliferate, made them a significant 

drug target; therefore, several compounds targeting these structures have been 

discovered and shown a promising anticancer activity. A number of molecules, 

showing good potentialities in term of G4 stabilization have been proposed as 

candidate anticancer drugs. However, the compounds discovered so far are either 

moving very slowly to clinical trials or have not yet fully passed pre-clinical 

investigations (Shalaby et al., 2013). In this sense, the discovery of two c-KIT G4 

sequences in dog similar to human ones could be of help either to better understand 

the G4 biological functions in vivo, than to develop new G4-ligand candidates with 

realistic drug-like structures, higher selectivity and decreased side effects. Worth 

mentioning, even the domestic dog suffers of c-KIT-related tumors and indirectly 

could benefit from these novel strategies. 

In the present study, three candidate G4 ligands, previously evaluated in human in 

vitro models, were tested in the canine C2 MCT cell line, which has been shown to be 

successfully used in TKIs validation studies (Dubreuil et al., 2009; Halsey et al., 

2014). In term of cytotoxicity, AQ1 was proved to be as the most cytotoxic ligand, 

while AQ7 showed a value of IC50 > 10 µM, likewise to human cells. Considering the 

qPCR results, AQ7 did not elicit appreciable effects on c-KIT transcription, 

corroborating human data. Based on these results, it should be hypothesized that AQ7 

might be unable to enter within the cell or, rather, it may possess a lower efficacy 

compared to other ligands.  

Independently from the incubation times and concentrations used, AQ1 

significantly down-regulated c-KIT mRNA. Nevertheless, if compared with human 

data, such an inhibition is less pronounced (2-fold decrease) than in human mast cell 

leukemia cells HMC1.2 (5-fold decrease). The inhibitory effect on c-KIT expression 

was confirmed also at the protein level in cells treated with the highest dose (1.5 µM). 

Among the other tested oncogenes, only BCL2 disclosed an inhibitory trend 

under treatment with AQ1, and such a down-regulation was significant at 12 hours in 

cells exposed to the highest G4-ligand concentration. This result was not unexpected; 

as a matter of fact, AQ1 caused a marked inhibition of BCL2 mRNA also in human 

cells as reported in chapter 3 of the present thesis. This is partly confirmed by the 
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evidence, that anthraquinones compounds decrease BCL2 levels and increase 

apoptosis (Huang et al., 2006).  

By contrast, the bisantrene derivative AN6, let to a significant inhibition of c-

KIT expression in canine cells while in humans such an effect was never observed. 

Even in this case, post-translational investigations confirmed the inhibition of gene 

transcription. Comparing results obtained in human and canine cells treated with this 

ligand, we should suppose that the different behavior observed between the two 

species could depend on differences between KIT1 and KIT2 G4. Multiple 

mutagenesis studies in human have already confirmed the direct correspondence 

between G-rich sequence composition, G4 conformation and ligand interaction; so, 

any modification in G4 sequences could influence the effectiveness of the ligand 

bond (Siddiqui-Jain et al., 2002; Patel et al., 2007; Tian et al., 2010). 

Besides this, approximately 30–40% of human promoters contain a putative G4 

motif, and actually there are no information about canine genome. Since many genes 

containing potential G4 structures are overexpressed in cancer tissues, striking 

importance assumes the development of highly selective G4 ligands avoiding an 

overall gene transcription inhibition, that could potentially result in non-specific 

toxicity. As regard AQ1, results are encouraging for both species. However, for AN6 

some species specific differences seem to be present, and further investigations are 

needed to clarify in depth the affinity of this candidate compound against c-KIT. 

To the best of our knowledge this work represent the first attempt to explore the 

capability of putative G4 ligands to inhibit c-KIT transcription in dog cancer, and 

particularly in a canine tumor cell line derived from MCTs. These preliminary results 

demonstrate that these ligands may decrease the c-KIT expression in cancer cells and 

seem encouraging particularly for canine c-KIT-dependent tumors such as MCTs. 

Further studies are needed to demonstrate the specific action of these ligands 

against c-KIT G4. In this sense, chromatin immunoprecipitation and/or gene reporter 

assays might demonstrate whether AQ1 and AN6 really bind KIT1 and KIT2. 

Furthermore, other in vitro models could be useful for an in depth characterization of 

molecular phenomena regulating gene inhibition and subsequent effects on kinase 

cascade and related pathways. 
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5. Concordance of c-KIT Mutational Status in Matched 

Primary and Metastatic Cutaneous Canine Mast Cell 

Tumors at Baseline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted with the permission of Wiley from: Marconato L.,* Zorzan E.,* Giantin M., Di 

Palma S., Cancedda S., and Dacasto M., 2014. Concordance of c-kit Mutational 

Status in Matched Primary and Metastatic Cutaneous Canine Mast Cell Tumors at 

Baseline: Implications for Clinical Practice. Journal of Veterinary Internal Medicine, 

28: 547-553. Copyright © 2013 by the American College of Veterinary Internal Medicine 

* These authors contributed equally to this work.  
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5.1 ABSTRACT 

Background: Mutation analysis of c-KIT is advisable before starting treatment 

with tyrosine kinase inhibitors in dogs with mast cell tumor (MCT), including 

those with metastatic disease. Testing is usually performed on primary tumors, 

assuming that c-KIT mutation status does not change in metastasis. 

Hypothesis/Objectives: To give an insight into the mutational processes and to 

make a recommendation on the use of c-KIT mutational analysis in the clinical 

setting. 

Animals: Twenty-one client-owned dogs with metastatic MCT. 

Methods: Dogs undergoing resection or biopsy for both primary and matched 

metastatic MCT were prospectively enrolled. Total RNA or DNA was extracted 

from primary MCT and corresponding metastases. Exons 8, 9 and 11 were 

amplified by PCR and sequenced. Genetic features between primary MCT and 

metastases were compared. Their correlation with clinicopathological features was 

investigated. 

Results: Concordance (mutated or wild type, WT) of mutational status, evaluable 

in 21 primary and matched metastatic (20 nodal and 1 splenic) MCTs, was 100%. 

Three new c-KIT mutations were identified. No significant correlation was noticed 

between c-KIT mutation and clinicopathological features.  

Conclusions and Clinical Importance: c-KIT mutational status is conserved 

between any primary and its matched secondary tumor, suggesting that both can 

be used for c-KIT mutational testing. Targeted therapies might be also used to treat 

metastatic disease. 
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5.2 INTRODUCTION 

The proto-oncogene c-KIT (c-KIT), which encodes for the transmembrane 

receptor c-kit, is known to play a critical role in mast cell development and tumors 

(Ma et al., 1999). In dogs, approximately 9 to 30% of mast cell tumors (MCTs) 

show c-KIT mutations, including internal tandem duplications (ITDs) in the 

juxtamembrane domain, resulting in constitutive activation of KIT in the absence 

of ligand binding (London et al., 1999; Ma et al., 1999), and activating point 

mutations in c-KIT extracellular domains (e.g., exons 8 and 9; Letard et al., 2008). 

In general, ITDs are associated with an increased risk of metastasis and local 

recurrence, higher tumor proliferation index, and aberrant KIT localization 

(London et al., 1999; Downing et al., 2002; Webster et al., 2006; Webster et al., 

2007).  

The importance of the mutational status has been elucidated by 2 clinical 

trials, which showed a lower objective response rate and a shorter survival time 

when tyrosine kinase inhibitors (TKIs) including toceranib and masitinib, 

respectively, were administered to dogs with wild-type (WT) tumors (Hahn et al., 

2008; London et al., 2009). Although TKI-based therapy is used in dogs with 

MCT to also treat metastatic disease in the lymph nodes (London et al., 2009), c-

KIT status is generally evaluated in the primary lesions because metastatic sites are 

rarely removed or biopsied before treatment. However, it is still unknown whether 

c-KIT status differs in metastases compared with primary tumors. The rationale for 

using small molecule inhibitors of oncogenic proteins as cancer therapies depends, 

at least in part, on the assumption that metastatic tumors are primarily clonal with 

respect to the mutant oncogene. If this is not the case, targeted therapies might 

only be partially efficacious. Therefore, it is of primary importance to verify the 

correlation between primaries and related metastases with regard to c-KIT status. 

In people, controversy exists regarding the stability of mutational status in 

various tumors throughout the course of the disease, leading to metastases with 

different mutational status from that of the primary tumor (Ganceberg et al., 2002; 

Scartozzi et al., 2004; Italiano et al., 2006). In veterinary medicine there are only 2 

studies comparing immunohistochemical phenotypes between primary mammary 

carcinomas and their related lymph node metastasis (Beha et al., 2012; Brunetti et 

al., 2013). In cats, concordance between primary mammary carcinoma and 
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matched metastasis was detected in 57.1% of cases (Brunetti et al., 2013),
 
whereas 

in dogs in 65% of cases (Beha et al., 2012). 

To the authors’ knowledge, very few studies have been conducted in dogs 

on the rate of concordance in terms of c-KIT mutations. One study showed c-KIT 

ITD heterogeneity in different sites of multiple MCTs in 2 dogs (Amagai et al., 

2013); in another study, c-KIT ITDs were used to provide evidence of tumor 

clonality in multiple MCTs developing over 1-2 years in 2 dogs (Zavodovskaja et 

al., 2004). 

In the current study, we prospectively analyzed matched primary and 

metastatic MCT specimens for c-KIT intra- and inter-tumor heterogeneity, (1) to 

give an insight into the mutational processes, and (2) to make a recommendation 

on the use of c-KIT mutational analysis in the clinical setting. Moreover, the 

treatment with TKIs is associated with potential toxicity and high costs; 

additionally, resistance to certain TKIs is often due to secondary mutations of c-

KIT (London et al., 2009; Gao et al., 2013), therefore it is important to critically 

review all aspects of the mutational testing to enhance upfront patient selection.  

We hypothesized a discordance of c-KIT mutational status between 

matched primary and metastatic MCT, thereby recommending the use of c-KIT 

mutational testing on all involved sites. 

 

5.3 MATERIALS AND METHODS 

 

5.3.1 Case selection - Inclusion Criteria 

Dogs with histologically confirmed MCT undergoing complete clinical 

staging and total or partial surgical excision of the primary tumor and 

corresponding metastasis were prospectively recruited. Treatment with 

neoadjuvant medical therapy (including steroids, chemotherapy, targeted therapy) 

was not permitted. 

Background information recorded for each dog included: signalment, body 

weight, and primary tumor description (location, dimension, presence of 

ulceration, grade according to Patnaik and Kiupel’s systems; Blackwood et al., 

2012). Initial staging included history and physical examination, complete blood 

cell count with differential, serum biochemistry, coagulation profile, cytological 
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evaluation of the cutaneous nodule and regional lymph node, thoracic radiographs 

(3 views), abdominal ultrasound, fine-needle aspirates of liver and spleen 

regardless of their sonographic appearance, and cytologic examination of bone 

marrow obtained from the iliac crest. Lymph nodes or viscera were considered 

metastatic, if mast cells appeared in clusters or sheets, in very large numbers or 

atypical on morphology, as previously documented (Stefanello et al., 2009).
 

Histologically, nodal metastatic spread was supported by the localization of mast 

cells in the subcapsular sinuses; special histochemical stains (Giemsa) were used 

to detect poorly granulated mast cells.  

Written informed consent was obtained from all owners. 

 

5.3.2 Tumor Specimens 

Tumor samples were obtained by partial or total surgical resection from 

each primary MCT and matched metastasis before starting any medical treatment. 

To formulate a histologic diagnosis, samples were fixed in 10% buffered formalin, 

processed, and embedded in paraffin by using a standardized protocol. Slides were 

reviewed by a single board-certified pathologist (SDP), and histopathological 

criteria for diagnosis were based on those previously published for canine MCT 

(Patnaik et al., 1984; Kiupel et al., 2011). 

With regards to c-KIT sequencing analysis, either one tissue core (2-mm 

diameter) or fine-needle aspirates (FNA) were obtained from each primary MCT 

sample and matched metastases. Specimens were submersed in a stabilization and 

storage solution
 
(RNAlater

®
 Solution, Life Technologies, Foster City, CA) and 

refrigerated at -20°C until use. Whenever the primary tumor was surgically 

excised by other veterinarians, 10 µm sections of the corresponding formalin-fixed 

and paraffin-embedded (FFPE) block were used for nucleic acid extraction. 

 

5.3.3 Nucleic Acid Extraction 

Total RNA was extracted from biopsies and FNA (Kobayashi et al., 2012) 

by using a nucleic acid isolation reagent (TRIzol
®
 Reagent, Applied Biosystems, 

Foster City, CA) and a commercial kit (High Pure RNA Isolation Kit, Roche 

Applied Science, Indianapolis, IN), respectively, according to the manufacturer’s 

instructions. Whenever nucleic acids were extracted from FFPE primary tumor 

sections, another commercial kit (AllPrep DNA/RNA FFPE kit, Qiagen, Milan, 
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Italy) was used. In this case, the genomic DNA was preferred to RNA because of 

the poor quality of the extracted RNA. 

Nucleic acids yield and purity (260/280 and 260/230 nm absorbance ratios) 

were measured by using a spectrophotometer Nanodrop ND-1000 

Spectrophotometer (Nanodrop Technologies, Wilmington, UK), whilst their 

quality was checked by 1% agarose gel electrophoresis. Two μg of total RNA 

were reverse transcribed by using a commercial kit
 
(High Capacity cDNA Reverse 

Transcription Kit, Life Technologies, Foster City, CA). Both cDNA and DNA 

were finally stored at -20°C until use. 

 

5.3.4 c-KIT Genotyping 

Exons 8, 9, and 11 considered the hotspot regions for activating protein 

mutations were screened by PCR and direct sequencing (Letard et al., 2008; 

Torres-Cabala et al., 2009). To amplify either c-KIT exons 8, 9, and 11 (starting 

from cDNA) or exon 11 (from DNA), previously published primers pairs and PCR 

conditions were used (Giantin et al., 2012). Conversely, exons 8 and 9 primers for 

genomic DNA amplification were designed ex novo (Primer3 software, 

http://primer3.ut.ee/) and forward and reverse primers as well as the expected 

amplicon sizes are reported in Table 1.  

 

exon primer sequence (5’-3’) expected amplicon size (bp) 

8 F: ACTCACTGGTTCCGATGCTC 408 

 R: CCCTTAAAAAGCCACATGGA  

9 F: CACCCTTGGTTGAAAAAGGA 458 

 R: ATATGGCAGGCAGAGCCTAA  

Table 1. Primers for genomic DNA amplification and sequencing of c-KIT exons 8 and 9 

 

Amplifications were carried out in a thermocycler (TPersonal, Biometra 

GmbH, Goettingen, Germany) by using a commercially available PCR kit 

(GoTaq
® 

Flexi DNA polymerase, Promega Corp., Madison, WI). Two μL of 5-

fold diluted DNA were used as template, while primers
 
(Eurofins MWG Operon, 
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Ebersberg, Germany) concentrations were 16.5 pmoles each. Amplicons were 

visualized in 1.5% agarose gel. 

Whenever the presence of additional bands of different length (roughly 30 bp) was 

noticed, these ones were at first individually excised from the agarose gel and, 

then, purified with a commercial kit (High Pure PCR Cleanup Micro Kit, Roche 

Applied Science, Indianapolis, IN), according to the manufacturer’s instructions. 

Hence, PCR products were sequenced, by using the same PCR primers, with either 

a capillary electrophoresis machine (ABI Prism 3100 Genetic Analyzer, Life 

Technologies, Foster City, CA) or an automatic sequencer (ABI 3730XL DNA 

Analyzer, Life Technologies, Foster City, CA). 

Sequences were analyzed with a commercially available software 

(FinchTV software, Geospiza Inc., Seattle WA). Alignments with the WT c-KIT 

mRNA sequence NM_001003181.1, to discover potential single nucleotide 

polymorphisms (SNPs), ITDs or deletions, were performed by using an open 

source software Multalin (http://multalin.toulouse.inra.fr/multalin/).  

 

5.3.5 Treatment and Response Criteria  

The type of treatment was at the investigator’s personal discretion, and 

included surgery, radiation therapy, chemotherapy, TKI or a combination of these. 

Response was determined by using RECIST criteria (Eisenhauer et al., 2009).
 

Briefly, disappearance of all lesions was defined as complete response (CR); a 

decrease of at least 30% in the diameter of a lesion was defined as partial response 

(PR); the appearance of new MCTs or at least a 20% increase of the diameter of a 

lesion was defined as progressive disease (PD); less than 30% reduction or 20% 

increase in the diameter of a lesion was defined as stable disease (SD). 

 

5.3.6 Statistical Analysis 

To evaluate the relationship between c-KIT mutations and 

clinicopathological factors, data were analyzed by Fisher’s exact test and Pearson 

χ
2
 test. To this purpose, the following clinicopathological features were taken into 

account: gender (male or female), reproductive status (intact or neutered), breed 

(purebred or crossbred; predisposition to biologically aggressive MCTs [meaning 

advanced grade or clinical stage], e.g. Shar-pei and Labrador retriever), age (< or 

≥ 10 years), weight (< or ≥ 10 kg), dimension of the primary lesion (< or ≥ 3 cm), 
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clinical stage (II or III or IV), substage (a or b), and histological grading (both 

Patnaik and Kiupel’s systems) (Kiupel et al., 2005; Murphy et al., 2006; White et 

al., 2011; Blackwood et al., 2012; Dobson, 2013). The anatomic site was 

categorized as benign or malignant, as some locations have been described as 

biologically aggressive (e.g. inguinal/perineal, head and neck, digit; Blackwood et 

al., 2012). Survival time was defined as the time interval between the initiation of 

treatment and death. Dogs dead from disease or MCT-related causes were 

classified as events; those dead for unrelated causes or lost to follow up at the time 

of the study closure were censored. 

Statistical calculations were performed using a commercial software 

package (GraphPad Prism 5, San Diego, California, USA). For all statistical 

analysis, significance was set at P < .05.  

 

 

5.4 RESULTS 

 

5.4.1 Dogs and MCT Demographics 

Between July 2011 and August 2013, 21 dogs met the inclusion criteria 

and were enrolled. There were 6 Labrador retrievers, 5 crossbred dogs, 3 Boxers, 

and one each of the following: Breton, Shih-Tzu, Shar-pei, Beagle, American 

Staffordshire terrier, German hound, and Dogue de Bordeaux. Twelve dogs were 

spayed females, 3 intact females, 4 intact males, and 2 castrated males. Median 

age was 8 years (range, 3 to 14 years), and median body weight was 26.7 kg 

(range, 7.4 to 50.2 kg). 

Eighteen (86%) dogs had single lesions, and 3 (14%) had concurrent 

multiple tumors. In these latter ones, the biggest MCT was sampled for both 

histopathological and mutational analysis. MCTs were in various locations, 

including 6 (29%) dogs with tumors on distal limbs; 4 (19%) dogs with their 

tumors on the head; 3 (14%) dogs with digital MCTs; 2 (10%) dogs with tumors 

on proximal limbs; 2 (10%) dogs with vulvar tumors; and 1 (5%) dog with a MCT 

on the abdominal wall. All dogs with multiple tumors had them in the same 

regional areas (axillary region, head, and abdominal wall).  
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Histopathology was available for all primary MCTs: 14 (66%) dogs had 

Patnaik’s grade 2 MCTs, 6 (29%) dogs had grade 3 MCTs, and 1 (5%) dog had a 

grade 1 MCT. Regarding the Kiupel’s grading system, 11 (52%) tumors were 

classified as low grade MCTs, and 10 (48%) as high grade MCTs. 

All dogs had metastatic disease: 20 (95%) dogs had regional lymph node 

involvement and, among these, 2 also had hepatic metastasis, 2 had splenic and 

hepatic metastasis, 1 had hepatic, splenic and marrow metastasis, 1 had splenic 

metastasis, and 1 had cutaneous metastasis. One (5%) dog had involvement of 

liver and spleen without regional lymph node metastasis. Lymph node metastases 

were confirmed in all 20 dogs by means of histopathology; the remaining dog 

without lymph node metastasis had only cytologic diagnosis of liver and spleen 

involvement. 

Overall, 11 (52%) dogs had stage II disease, 8 (38%) dogs had stage IV 

disease, and 2 (10%) dogs had stage III disease. Sixteen (76%) dogs were 

asymptomatic (substage a), and 5 (24%) dogs had signs of systemic effects of 

MCT (vomiting, diarrhea, pruritus, and regional edema). 

 

5.4.2 c-KIT Mutation Status 

All specimens of primary tumors and paired metastases were suitable for c-

KIT genotyping. Mutations of c-KIT sequence were detected in 3 (14%) MCTs: 1 

in exon 8 (Figure 1), and 2 in exon 11 (Figure 2). Two of them were noticed in 

dogs with grade 3 MCTs, and 1 in a dog with a grade 2 MCT. 

A new 28 amino acids (AAs) deletion affecting 10 AA codons, namely 

from Histidine-421 (H421) to Glutamine-430 (Q430), coupled with a 

contemporary insertion of 10 base pairs (bp) coding for four AAs (Leucine-

Threonine-Phenylalanine-Methionine, LTFM), was detected in exon 8 (Figure 1).  
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Figure 1. Direct sequencing of c-KIT exon 8 from canine MCTs. Both wild type (WT) and 

mutated nucleotide and protein alignments sequences are reported. In cDNA obtained 

from primary tumor and matched metastasis (the corresponding lymph node), a deletion 

of 10 AAs (HESLTNGMLQ), associated with an insertion of 4 AAs (LTFM), was detected. 

This new c-KIT mutation was termed 1262_1289delinsTGACTTTCAT, according to the 

nomenclature for human sequence variations (Den Dunnen and Antonarakis, 2001). 

 

This mutation was named 1262_1289delinsTGACTTTCAT, in agreement 

with the nomenclature for human sequence variations (Den Dunnen and 

Antonarakis, 2001). Moreover, 2 new ITDs were found in exon 11 (Figure 2): a 

first one, consisting in the insertion of 12 AAs at the residue 571 (ITD
571-582

), and 

a second one based on an addition of 14 AAs at the residue 574 (ITD
574-587

). 
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Figure 2. Direct sequencing of mutant c-KIT exon 11 from canine MCTs. Both wild type 

(WT) and mutated nucleotide and protein alignments sequences are reported. Two ITDs, 

namely ITD
571-582

 and ITD
574-587

, were detected in cDNA obtained from primary tumor and 

matched metastasis (the corresponding lymph node). 

 

Furthermore, 2 already known silent SNPs were detected in exon 8 

(1275G>A),
3
 and in exon 11 (1759C>T; Zemke et al., 2002). The relative 

frequencies were 33% (7/21) and 5% (1/21), respectively. 

Noteworthy, the comparison of c-KIT mutations and SNPs in primary 

tumors and corresponding metastases showed a concordance rate of 100%. 

Likewise, all dogs with a primary WT c-KIT genotype showed a WT c-KIT in 

their matched metastases. 

 

5.4.3 Treatment and Clinical Follow-up 

Eleven (52%) dogs (including the 3 dogs with c-KIT mutation) underwent 

surgical excision of their MCT. Four of these animals also received systemic 

chemotherapy (vinblastine and prednisone) as front-line treatment, 3 dogs received 

vinblastine and TKIs, 1 dog was treated with curative radiation therapy and TKIs, 

and 1 with curative radiation therapy and vinblastine. Two (10%) dogs received 

systemic chemotherapy (vinblastine and prednisone) as their only treatment. Six 
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(28%) dogs were treated with palliative radiation therapy; 4 out of these 6 also 

received vinblastine and prednisone, and 4 other ones TKI. Finally, 2 (10%) dogs 

were only treated with TKIs. 

Overall, 11 (52%) dogs achieved CR, 7 (33%) dogs PR, 2 (10%) dogs SD, 

whereas 1 (5%) dog did not respond to the treatment and experienced PD. At the 

end of the study, 10 (48%) dogs were still alive with a median follow-up of 205 

days (range, 41 to 473 days), and 11 (52%) dogs died or were euthanized because 

of progression of their MCT (n=10) or for tumor-unrelated causes (n=1). The 

overall median survival was 51 and 149 days for dogs harboring c-KIT mutations 

and with WT c-KIT gene, respectively. 

 

5.4.4 Relationship between c-KIT Mutational Status and Clinicopathological 

Features 

No significant correlation was found between primary c-KIT mutation and 

the considered clinicopathological characteristics (Table 2). 
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Variables 
 

c-KIT 

mutation 
 

 positive negative P value 

age (years)    

<10 2 9  1.000* 

>10 1 9  

sex    

male 2 4 0.184* 

female 1 14  

breed    

pure breed 3 13 0.549* 

crossbred 0 5  

breed predisposition to aggressive 

MCTs 
   

yes 2 5 0.247* 

no 1 13  

weight (kg)    

<10 1 1 0.271* 

>10 2 17  

primary lesion, anatomic site    

benign 0 11 0.090* 

malignant 3 7  

primary lesion, dimension (cm)    

<3 1 9 1.000* 

>3 2 9  

metastatic lymph node    

yes 3 17 1.000* 

no 0 1  

stage    

I-II 0 11 0.097** 

III 1 1  

IV 2 6  

substage    

a 1 15 0.128* 

b 2 3  

histological grade (Patnaik)    

I 0 1 0.283** 

II 1 13  

III 2 4  

histological grade (Kiupel)    

low 1 10 0.586* 

high 2 8  
Table 2. Relationship between c-KIT mutational status and clinicopathological features in 

21 primary MCTs. *: Fisher exact test; **: Pearson χ
2
 test. 
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5.5 DISCUSSION 

In the current study, we compared c-KIT mutational status of exons 8, 9 

and 11 between primary MCT and matched metastasis, and found a perfect 

(100%) concordance.  

Metastatic MCT represents a major health problem in the canine 

population, but the introduction of a novel class of targeted antineoplastic agents 

directed against KIT, TKI, has significantly changed the therapeutic options 

available for these dogs (Hahn et al., 2008; London et al., 2009). Indeed, the 

important role of targeted therapy against molecules contributing to tumor 

development, progression, and metastasis has attracted considerable attention 

(London, 2009).  

Because the identification of the mutational status of c-KIT could help to 

select dogs that have a high probability of benefiting from TKI (London et al., 

2009), it is of primary importance to verify the degree of correlation between 

primaries and related metastases with regard to c-KIT status. Indeed, mutations are 

mainly evaluated at the primary site and there is little data available regarding the 

possible concordance in mutational status between the primary tumor and the 

corresponding metastases (London et al., 2009; Hahn et al., 2008). However, the 

death of metastatic cells is the main goal of treatment in a metastatic setting. These 

cells might be biologically different from the primary tumor, which has 

implications for the clinical management of MCT.  

It is well known that the progression of cancer develops from a single 

mutated cell, followed by malignant clonal expansion secondary to additional 

genetic and genomic alterations. As a consequence, the ongoing acquisition of 

these alterations can result in the emergence of neoplastic subclones with varying 

genotypes and, consequently, phenotypes (Fidler and Kripke, 1977) leading to 

discordance between the primary tumor and its metastases. In people, several 

tumors including melanoma (Karatona et al., 2007), gastrointestinal stromal tumor 

(GIST; Liegl et al., 2008), and lung cancer (Taniguchi et al., 2008), show intra-

tumor and inter-tumor heterogeneity, indicating the presence of more than one 

clone of cancer cells within a given neoplastic mass, and the presence of different 

genetic alterations in different metastatic sites from a single patient, respectively. 

Therefore, determining if there is homogeneous mutational status between primary 
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tumor and its metastatic sites has important clinical implications, over all to select 

the appropriate treatment. 

To our knowledge, the question of mutational status in metastases versus 

primary MCT has not been addressed so far.  

Compared to previously published studies, the mutational status of our case 

series, including both primary and secondary metastatic tumors, showed a similar 

proportion of c-KIT mutations (Giantin et al., 2012). Two already known SNPs 

were found in exon 8 and 11 (Zemke et al., 2002; Letard et al., 2008); furthermore, 

3 novel mutations (1 in exon 8 and 2 in exon 11), with unknown clinical 

relevance, were found.  

The data presented in this study provide evidence that the WT or mutated 

c-KIT genotype is conserved in primary MCTs and their matched, concurrent 

metastases. Although a similar behavior has been reported in human melanomas 

(Torres-Cabala et al., 2009), this result is somewhat surprising, in the light of 

genomic instability and heterogeneity that characterize most malignant tumors. In 

fact, it is generally accepted as true that loss of primary mutation and/or gain of 

secondary mutation might occur in patients regardless of the use chemotherapy or 

targeted therapy; such a phenomenon can be explained by the fact that cells with 

different mutations coexist within the primary tumor, and clonal selection for 

mutations during tumor progression might lead to different c-KIT mutations status 

in metastatic sites from that of the primary tumors (Amagai et al., 2013; Dai et al., 

2013).  

In the present analysis, discordant cases were not observed, pointing out 

that in canine MCTs c-KIT status is maintained in all cases unchanged during the 

metastatic process. 

Another question, still matter of debate, is whether activating c-KIT 

mutations might be related to a poor prognosis in canine MCTs (Giantin et al., 

2012; Takeuchi et al., 2013). Based on our results, dogs with c-KIT mutations had 

a shorter survival time when compared with dogs with WT MCTs. However, due 

to the different treatments and the limited number of mutated cases, conclusions 

on the prognostic relevance of c-KIT mutations cannot be drawn. Also, a number 

of variables, including gender, reproductive status, breed, age, weight, dimension 

of the primary lesion, clinical stage, substage, and histological grading, were 

evaluated to determine whether they were correlated to c-KIT status. None of these 
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variables were found to be significantly associated with the presence of c-KIT 

mutations, although the small population might have led to an insufficient power 

to detect differences between subgroups. 

Although the current report is limited by the small sample size, our 

observations indicate that c-KIT mutation in the primary tumors might predict c-

KIT mutated metastases with a reasonably high probability, suggesting that c-KIT 

mutation represents a very early mutational step in MCT pathogenesis and plays a 

central role in tumor progression. The implication of these results for general 

oncology practice is that both tissues of primary tumor or metastasis can be used 

for c-KIT mutation testing. However, the low number of mutated cases analyzed at 

the present time does not allow drawing any definitive conclusions about the c-

KIT asset in synchronous and metachronous metastases, as well as their 

association with response to therapy. 

Clearly, further molecular studies, carried out on dogs with metastatic 

MCT and receiving chemotherapy and/or TKI, are needed to clarify whether c-KIT 

genotype might be somewhat affected by anticancer drugs.  

Finally, it must be stressed that the results of our study are valid for lymph 

node metastases and cannot be extrapolated to other metastatic locations, as only 

one dog with splenic involvement was evaluated here. The lymph node is the 

predominant site of metastases in the majority of dogs with metastatic MCT; 

therefore the results of our study of 20 lymph node metastases provide a reference 

for clinical decision-making as to TKI therapy. Nevertheless, as the molecular 

patterns might differ between metastatic sites (Stefanello et al., 2009; Amagai et 

al., 2013), and because c-KIT secondary mutations are likely to occur following 

TKIs administration (Wang et al., 2009; Ando et al., 2011; Gao et al., 2013), more 

results need to be obtained by testing additional metastatic sites, including spleen 

and liver, before and after targeted therapies. Also, the identification of new c-KIT 

ITDs underscores the need of further molecular investigations on their prognostic 

significance.  

In conclusion, the mutational status seems to be stable during MCT 

metastasis, which is encouraging for TKI use in the clinical setting. 
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6. Mutational Hotpots of TET2, IDH1, IDH2, SRSF2, 

SF3B1, KRAS, and NRAS from Human Systemic 

Mastocytosis Are Not Conserved in Canine Mast Cell 

Tumors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted with the permission of Plos One from: Zorzan E., Hanssens K., Giantin 

M., Dacasto M., Dubreuil P., 2015. Mutational hotspot of TET2, IDH1, IDH2, 

SRSF2, SF3B1, KRAS, and NRAS from human systemic mastocytosis are not 

conserved in canine mast cell tumors. Plos One 12; 10(11): e0142450. 
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6.1 ABSTRACT 

 

Introduction: Both canine cutaneous mast cell tumor (MCT) and human systemic 

mastocytosis (SM) are characterized by abnormal proliferation and accumulation of 

mast cells in tissues and, frequently, by the presence of activating mutations in the 

receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene 

Homolog (c-KIT), albeit at different incidence (>80% in SM and 10-30% in MCT). In 

the last few years, it has been discovered that additional mutations in other genes 

belonging to the methylation system, the splicing machinery and cell signaling, 

contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, 

the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate 

dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 

(SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral 

oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog 

(NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was 

investigated in canine MCTs. 

Methods: Using the Sanger sequencing method, a cohort of 75 DNA samples 

extracted from MCT biopsies already investigated for c-KIT mutations were screened 

for the “human-like” hot spot mutations of listed genes. 

Results: No mutations were ever identified except for TET2 even if with low 

frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift 

mutations were found in MCT samples. 

Conclusion: Results obtained in this preliminary study are suggestive of a substantial 

difference between human SM and canine MCT if we consider some target genes 

known to be involved in the pathogenesis of human SM. 
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6.2 INTRODUCTION 

In dogs, cutaneous mast cell tumor (MCT) is the most common skin tumor, and 

it accounts for up to 10-30% of all cases. MCTs occur mostly in the dermis and 

subcutaneous tissue but some visceral forms can also be located in other sites e.g. 

gastrointestinal tract and spine bone marrow as well as liver, oral cavity, urethra, 

salivary gland, nasopharynx and spleen (Ohmori et al., 2008; Blackwood et al., 2012; 

Takeuchi et al., 2010). It is commonly identified as a solitary neoplastic mass in the 

skin and/or subcutaneous tissue of older dogs, with a mean age of onset of 

approximately 9 years of age. Some dog breeds, such as Boxers, Labrador Retrievers 

and Shar Pei, are more prone to develop MCTs (Webster et al., 2007; Warland and 

Dobson, 2012). 

Activating mutations of the tyrosine kinase receptor c-kit, which binds to stem 

cell factor (SCF), a known hematopoietic cytokine, have been described in canine 

MCTs. Mutations in c-KIT occur in 15-50% of MCTs, and have been associated with 

a more aggressive tumoral phenotype (Webster et al., 2006), possibly due to an 

increased proliferation and a resistance to apoptosis (Gleixner et al., 2007; Letard et 

al., 2008). The most common type of mutations identified in canine MCTs are 

internal tandem duplications (ITD) involving exon 11 (Zemke et al., 2002; Webster et 

al., 2006) but also deletions and point mutations in exons 8, 9 and 11 can occur 

(Ohmori et al., 2008; Takeuchi et al., 2013). 

Human mastocytosis is a rare and clonal hematopoietic disease described as the 

proliferation and the accumulation of abnormal mast cells in the bone marrow and 

organs (Hanssens et al., 2014). Mastocytosis is schematically divided into cutaneous 

mastocytosis (CM) and systemic mastocytosis (SM). Localized mast cell tumors as 

mastocytomas and mast cell sarcoma are very rare. CM is usually diagnosed at birth 

or in childhood and spontaneously regress over time. However, some types are 

locally invasive, clinically very severe and, consequently, hard to treat. In most adult 

patients, the disease is systemic, although also the skin is often affected.  

Most cases of SM are associated with the presence of activating mutations in 

the c-KIT proto-oncogene. The most frequent KIT genetic alteration is the 

substitution of aspartic acid to valine at position 816 (KIT D816V), that leads to the 

constitutive activation of the kinase domain of the receptor (Arock et al., 2015).  
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It has been recently discovered as further cooperating events may contribute to 

the phenotype and/or the pathogenesis of SM (Traina et al., 2012; De Vita et al., 

2014) e.g. mutations in tet methylcytosine dioxygenase 2 (TET2) which have been 

reported in 40% of KIT D816V-positive SM cases (Tefferi et al., 2009). The enzyme 

TET2 regulates gene methylation and expression, catalyzing the conversion of 5-

methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) (Ito et al., 2011). In 

SM, it has recently been reported a more aggressive disease and an overall worse 

prognosis when there is the coexistence of KIT D816V and TET2 mutations (Soucie 

et al., 2012). Other mutations were identified in isocitrate dehydrogenase 1 and 2 

(IDH1 and IDH2, respectively). They affect both histone modifications and DNA 

methylation, catalyzing the decarboxylation of isocitrate to alpha-ketoglutarate (or 2-

oxoglutarate, 2-OG). Hotspot mutation sites are represented by heterozygous 

substitution clusters in conserved arginines R132 of IDH1 and R140 and R172 of 

IDH2 (Itzykson et al., 2013). Further additional mutations were found in genes 

encoding for components of the splicing machinery involved in the intron splicing 

during pre-mRNA maturation, in particular the serine/arginine-rich splicing factor 2 

and the splicing factor 3b, subunit 1 (respectively SRSF2 and SF3B1). Overall, recent 

data are suggestive of a specific hierarchy, where TET2 gene alterations arise in early 

progenitor cells, while SRSF2 mutation can occur relatively later during the ontogeny 

but both prior to KIT mutation during the disease progression (Hanssens et al., 2014). 

Likewise, neuroblastoma RAS Viral (V-Ras) oncogene homolog (NRAS) mutations 

have also been reported in SM, having the potential to precede KITD816V in clonal 

development (Wilson et al., 2011). 

Besides SM, loss-of-function mutations in TET2 as well as alterations in other 

genes mentioned above have been also reported in a variety of hematological 

malignancies, including acute myeloid leukemias (AMLs), chronic myelomonocytic 

leukemia (CMML), myeloproliferative neoplasms (MPNs), myelodysplastic 

syndromes (MDS) and lymphoid malignancies (Delhommeau et al., 2009; 

Langemeijer et al., 2009; Tefferi et al., 2009; Li et al., 2011; Moran-Crusio et al., 

2011). To the best of our knowledge, no data on mutational status of these genes are 

available for canine MCTs.  

In the present study, hypothesizing analogies in molecular mechanisms and 

gene dysfunctions with human SM and hematopoietic diseases, the mutation profile 

of genes commonly mutated in myeloid malignancies has been evaluated in a cohort 
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of 75 MCTs, most of them previously screened for c-KIT mutations (Letard et al., 

2008). 

 

6.3 MATERIALS AND METHODS 

6.3.1 Samples and ethical statement 

All tissue biopsies and blood samples were not specifically taken for the 

purposes of this study; they were part of authors in-house collections and were 

already used in previous studies (Hahn et al., 2008; Letard et al., 2008; Da Ros et al., 

2014). 

Tissue biopsies were originally collected as part of routine treatment procedures 

from dogs affected by at least one histologically-confirmed MCT (Patnaik grade II or 

III) (Patnaik et al., 1984), recurrent after surgery (as standard of care) and/or 

nonresectable. Female and male dogs, regardless of breed, were previously recruited 

with owner consent from veterinary clinics in France and in United States.  

Blood samples were collected in Italy from 39 healthy random-source adult 

kennel dogs undergoing routine examination as described in details previously (Da 

Ros et al., 2014). An Institutional Animal Care and Use Committee approval number 

was not requested because of an agreement between the Faculty of Veterinary 

Medicine of University of Padua (Italy) and the kennel for the execution of routinary 

clinical checkups as described in details previously (Da Ros et al., 2014). Animal care 

was carried out in accordance with good veterinary practices.  

 

6.3.2 DNA extraction, PCR and sequence analysis 

Genomic DNA was extracted from 75 frozen canine MCT tissue samples using 

QIAamp DNA Mini Kit (Qiagen France, Paris, France), according to manufacturer’s 

protocol. In the 23% of the cohort samples, different c-KIT mutations were previously 

identified in exons 8, 9 and 11 (Letard et al., 2008). Among them, internal tandem 

duplications of exon 11 represented 36% of total mutations registered. 

In the present study, PCR amplifications of all TET2 coding exons and the hot-

spot regions of IDH1 (exon 2), IDH2 (exon 1), SF3B1 (exons 13, 14, 15, 16), SRSF2 

(exon 1), NRAS (exons 1, 2) and KRAS (exon 1) were executed. Primer 

oligonucleotide sequences were designed using the AmplifX software 



- 110 - 
 

(http://crn2m.univ-mrs.fr/AmplifX) and CanFam3.1 genome sequences available 

http://www.ncbi.nlm.nih.gov/. Primer sequences, are reported in Table 1. For every 

exon analyzed, the extreme parts of the flanking introns were also sequenced (around 

100 bp upstream the 5´-end and downstream its 3´-end) to check for the presence of 

alternative splicing sites. All the detected variations were analyzed by using the tool 

Berkeley Drosophila Genome Project (BDGP, http://www.fruitfly.org) that computed 

splice sites predictions. Genes were amplified using Taq Phire® Hot Start II DNA 

Polymerase (Thermo Fisher Scientific, Walthman, MA, USA). The reaction mix 

contained the following reagents: 1X Phire® Reaction Buffer, 200 µM dNTPs, 0.5 

µM of each primer and 0.15 µL of the enzyme (in a final volume of 22 µL). 

Approximately, 30 ng of genomic DNA were added to each PCR reaction and 

amplified through the following thermal protocol: an initial denaturation step at 98°C 

for 30 sec, an amplification step of 35-40 cycles (denaturation at 98°C for 5 sec, 

annealing at the primer-specific temperature for 5 sec and elongation at 72°C for 5-10 

sec depending on the length of the PCR product) and a final elongation step at 72°C 

for 1 min. PCR products were purified and sequenced in an ABI 3730 sequencer. 

Sequence PCR reactions were performed with both primer forward (F) and reverse 

(R) using the Big Dye Terminator V1.1. (Applied Biosystem, Life Technologies, 

Carlsbad, USA) and the mix included: 3.2 pmol of oligo F or R, 1µL of Big Dye 

Terminator V1.1, 1X reaction buffer and water (in a final volume of 10 µL). The 

thermal protocol consisted in: an initial denaturation (1 min at 96°C) followed by 25 

cycles of 10 sec at 96°C, 5 sec at 50°C and 2 min at 60°C. 

 

GENE AND PRIMER SEQUENCES (5´-3´) EXON TEMP. ANNEALING PRODUCT 

LENGHT 

KRAS    

F: CTCATCTGTGGTCAACTGAA 1 60°C 466 bp 

R: AGCCAATGGAACCCAAGTA    

IDH1    

F: TGGCACTGTCTTCAGGGAAGCTAT 2 70°C 163 bp 

R: TGGGCAACCAAGGACAGGAAAA    

IDH2    

F: CTCCATCTCTGTCCTCGTAGAGT 4 67°C 343 bp 

R: TTAGCACCGCTGCCATCCTTT    

NRAS    

F: TCTCTAGTTGTGGCTCGCCCATTA 1 65°C 223 bp 

R:CAAAAGCCAGAGGTAGGGTCAGT    
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F:GCTAGGAGCTTATCTAACCTTGGC 2 60°C 367 bp 

R: TGCGGTATCCTCATTTCCTGTTCC    

SF3B1    

F: ACTGGAGGATCAAGAGCGTCAT 13 67°C 1101 bp 

R: GCTGTCGTGTTACGGACATACT    

F: ATGCTAGAGTGGAAGGTCGAGA 14 67°C 855 bp 

R: TGTGTTGGCGGATACCCTT    

F: GACCATTAGCGCTTTGGCCATT 15-16 67°C 529 bp 

R: GTTCCACAACACTGCTTCACCA    

TET2    

F: AGCCTGATGGAACAGGATAGA 3 60°C 782 bp 

R: GCCTGACTGTTAATGGCA    

F:CAAGAAAGTAATCCAGGCAAAGGC 3 60°C 718 bp 

R: AATACCGTTCAGAGCTGCCA    

F: CCTGTCCCTTCCAGAAACCAGAAA 3 60°C 605 bp 

R: TGTTGGGTTATGCTTGAGGTGTTC    

F: CCCCAACCAAAGTAACACAGCTCT 3 60°C 702 bp 

R: GCTTTGGATGAAGGGTCTGTCTTG    

F: GGCATCACTGCGGTCAGTTCTT 3 60°C 715 bp 

R: ATTCTGTCCTTGCTCCAATCCCA    

F: TCCCAAGGCAACAATGATCAGC 3 60°C 760 bp 

R: GGGGTGGAATCTCTTGCTTAGTTG    

F: CTCCCCAGAAGGACATTCAAAAG 3 60°C 784 bp 

R: CTCTCTTGCACAGCACAAGCAT    

F: GGATAAGCTTTGTGGATGTAGCCT 4 60°C 371 bp 

R: GCTCGCAGACTATTAGTCCTGT    

F: TCCAGTTTGCTTGGCTTAGAC 5 60°C 380 bp 

R: GAGCAACGTTCATTTCAACTAGC    

F: AATGCCCTAGTTGTGACCCAG 6 60°C 421 bp 

R: AAATGTCGGTTCAACTCCCTTCCC    

F: CCAGAATCCAAGATTGGTAGCC 7 60°C 295 bp 

R: GACTGCTTACTTCATCTGTACTCA    

F: TCATTTGGATCTAGGCTGTAGGGG 8 65°C 336 bp 

R: AACAGAACACTGTGGCTTCACT    

F: CGAGAGTCTTTCTGACCTGTTC 9 60°C 398 bp 

R: AAGGTCACCTTTGCAACAGC    

F: AGGCATGTCACTAATCTGGTCCAA 10 60°C 638 bp 

R:GGGACTTCAGGGAAGATTCTGGTA    

F: GGGGTTCTCACATACATTTAAGCA 11 65°C 920 bp 

R: GAGCTGTTGAACATGCCTGG    

F: ACTTCATGGGAGCCACCTCTAGAT 11 60°C 853 bp 

R: AGACAGGTTGGTTGGTTGGTTGTG    
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Table 1. Forward (F) and reverse (R) primer sequences of canine genes included in the 

present study and used for polymerase chain reaction with the corresponding annealing 

temperature and product length. 

 

Blood samples of 39 healthy dogs were collected and DNA extraction was 

performed as previously reported (Da Ros et al., 2014). Around 30 ng of genomic 

DNA were used in PCR reaction to amplify TET2 exon 11 and the products obtained 

were subsequently sequenced as described above.  

Sequences were analyzed and aligned by using the SeqScape software v3.0 

(Life Technologies, Carlsbad, USA) and identity percentage between dog protein 

sequences and mouse, rat, dog and cat were assessed through BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast). 

 

6.3.3 Statistical analysis 

To evaluate the possible relationship between the presence of glutamine 

repetitions in canine TET2 exon 11 and c-KIT mutations or the tendency to develop 

MCT, a Pearson χ
2
 correlation test was performed by GraphPad Prism version 5.00 

for Windows (GraphPad Software, San Diego, USA). A value of P< 0.05 was 

considered significant. 

 

6.4 RESULTS 

6.4.1 Gene sequences homology among canine and human species 

In myeloproliferative disorders and particularly in SM, the majority of the 

genes considered in this study possess hot spot sites for mutations; therefore, in the 

first part of the study, a comparison between human and canine genomic sequences 

was performed to verify the potential conservation of the same mutations sites in dog 

and, subsequently, their localization. To give a general overview, the percentages of 

protein sequence identities in target genes between the canine and the other most 

commonly studied species (human, cat, mouse and rat) are reported in Table 2. In 

general, a high degree of conservation was noticed among them and, for our 

purposes, the CanFam3.1 genome sequence proved to be definitely complete and 

reliable.  
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Gene Human Cat Mouse Rat 

TET2 84% 91% 58% 60% 

IDH1 97% 99% 95% 96% 

IDH2 96% 99% 97% 96% 

NRAS 100% 100% 100% 100% 

KRAS 99% 97% 96% 96% 

SF3B1 100% 100% 100% 100% 

SRSF2 100% NA 100% 100% 

Table 2. List of target genes and percentage of protein sequence identity between dog and 

other reference species (Homo sapiens, Felis catus, Mus musculus, Rattus norvegicus). NA: 

sequence not available in the databases.  

 

The amino acids residues considered hot spot sites for mutations in humans as 

R132 for IDH1, R140 and R170 for IDH2, G12 and Q61 for NRAS and G12 for 

KRAS were recognized in dog. Since in humans TET2 mutations occur almost all 

over the sequence, all the corresponding canine coding exons were amplified; the two 

sequences shared the 84% of amino acid identity (Table 2). On the other hand, the 

canine SRSF2 partial sequence obtained in this study differed, either in exons and 

introns, from NCBI release. Anyway, the analog of human hot spot site (P95) was 

conserved also in dog. The updated partial sequence was submitted to NCBI with the 

following accession number: KT072629. 

 

6.4.2 Target gene mutational status in MCTs samples 

All genes were successfully amplified in all the 75 samples except for SRSF2, 

that was amplifiable in only 37 samples cause of its complexity and GC-richness. 

In our MCT cohort, surprisingly, no mutations were ever found analyzing 

sequencing results of IDH1, IDH2, NRAS, KRAS, SF3B1 and SRSF2 genes (data 

not shown). 

Among samples, some intronic variants not related with splicing sites were 

detected in the target genes. These alterations, with the relative allelic frequencies and 

population distribution, are collected in Table 3. 
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Gene Intron/Exon Variation Population Frequency Allelic frequencies 

TET2 exon 3 c.732G>A p. = 3/75 (4%) G : 0.98, A : 0.02 

TET2 exon 3 c. 2315G>A: p.Gly772Asp 4/75 (5.3%) G : 0.97, A : 0.03 

TET2 intron 3 c.3439+75del 6/75 (8%) T : 0.96, delT : 0.04 

TET2 intron 8 c.4075-38del 5/75 (6.67%) T : 0.97, delT : 0.03 

TET2 intron 10 c.4212+63_4212+65insCAG 62/75 (82.7%) WT : 0.31, insCAG : 0.69 

TET2 intron 10 c.4568-65C>T 6/75 (8%) C : 0.95, T : 0.05 

TET2 exon 11 c.4914T>C:p= 58/75 (77.3%) T : 0.41, C : 0.59 

TET2 exon 11 c.5213A>G: p.Asn1728Ser 57/75 (76%) G : 0.41, A : 0.59 

TET2 exon 11 c.5278G>A: p.Ala1760Thr 1/75 (1.33%) G : 0.01, A : 0.99 

IDH1 intron 2 c. 292+37T>C 3/75 (4%) T : 0.98, C : 0.02 

NRAS intron 2 c. 290+44C>T 18/75 (24%) C : 0.87, T : 0.13 

KRAS intron 1 c. 93+104A>T 8/75 (10.67%) A : 0.95, T : 0.05 

KRAS intron 1 c. 93+139T>C 8/75 (10.67%) T : 0.95, C : 0.05 

SRSF2 intron 1 362+59_362+62dup 21/37 (58%) WT : 0.64, Dup : 0.36 

Table 3. List of genetic variations grouped for gene, relative population frequency and 

allelic frequencies in the MCT cohort of samples. 

 

6.4.3 TET2 mutational status in dog MCT 

In canine TET2 only two samples evidenced the presence of mutation in their 

coding sequence: one sample showed a heterozygous non-synonymous substitution 

(c.491A>G: p. Asp164Gly) in exon 3 while another sample was homozygous for a 

complete codon deletion (c.2226-2228del: p. His742del) always in exon 3. Both 

MCTs were histologically classified as Patnaik grade II. As regards to c-KIT 

mutations, the former had a wild-type sequence, while the second one had an internal 

tandem duplication occurring in exon 11 (ITD
572-583

). Since the frequency of TET2 

mutations was low (2.7%), a correlation between TET2 and c-KIT mutational status 

and/or MCT histological grading, was not possible. 

Also for TET2 gene, some intronic variants not related with splicing sites, and 

single nucleotide polymorphisms (SNPs) in the coding sequence were detected in the 

samples. These alterations, with the relative allelic frequencies and population 

distribution, are collected in Table 3. 
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Deepening in sequence analysis, other genetic variations were detected, in two 

specific regions of the gene. The protein database Uniprot (http://www.uniprot.org/) 

recognized them as polyglutamine rich-regions because they are rich in glutamine 

residues: one is located in exon 3 and another one in exon 11. The alignment of 

canine sequence with the same human, cat, mouse and rat sequence portion showed 

that poly-glutamines residues were quite conserved among species and dog possessed 

the highest number of glutamine repetitions (Figure 1).  

 

 

Figure 1. Sequence alignment between dog, cat, human, mouse and rat specific 

glutamine-rich regions located in exon 3 and 11 of TET2 gene. The image was 

obtained using the tool ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

 

In details, in canine exon 3, 65 out of 75 MCTs (86,66%) showed the deletion 

of glutamine 753 (c. 2250_2252del; p.Gln753del). In exon 11, different 

rearrangements in the number of glutamine repetitions were detected among samples. 

All variations observed in our cohort of samples with relative frequencies in the 

group are listed in Table 4. Performing a Pearson χ
2
 analysis between the number of 

glutamine repetitions in each sample and the presence of c-KIT mutations, no 

statistical correlations were evident (P=0.3427). Furthermore, the number of 

glutamine repetitions in exon 3 and 11 did not correlate with the histologic grade 

(Fisher exact test, P= 0.5808 and Pearson χ
2
, P= 0.2308, respectively). 
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Variation Population Frequency Glutamine repetitions 

Wild-type sequence 59/75 12 

c. 4682insGCA; p. 1562insQ 5/75 13 

c.4686_4697del; p. 1564_1567del 4/75 8 

c.4686_4694del; p. 1564_1566del 3/75 9 

c.4698_4700del; p.1568del 4/75 11 

 

Table 4. List of genetic variations detected in the glutamine rich region of TET2 

exon 11 with relative population frequency and total glutamine residues number in 

the 75 MCT samples. 

 

Afterwards, to better understand if these sequence rearrangements might have a 

correlation with the onset of the disease, we screened the DNA from 39 healthy dogs 

for the same polyglutamine region in TET2 exon 11. Subsequently, considering as the 

wild-type phenotype the 12 glutamine repetitions presented in the reference NCBI 

sequence (XM_535678-4) we categorized all samples (healthy and pathologic) in 

three groups: samples that evidenced less than 12 glutamines (Q<12), wild-type dogs 

and samples with more than 12 glutamines (Q>12). From the contingency table and 

the Pearson χ
2
 test, no significant correlation emerged between the number of 

glutamine repetitions and the risk to develop mast cell tumor (Figure 2). 

 

Figure 2. Association 

between the number of 

glutamine (Gln) 

repetitions and 

healthy/pathologic state 

in 114 canine blood and 

MCT samples. Pearson 

χ
2
 test (p = 0.3454; not 

significant). 
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6.5 DISCUSSION 

Mast cells (MCs) neoplastic disorders occur in both canine and human species 

sharing many but not all biological and clinical features. Spontaneous MCT has been 

proposed as a model to study biological and therapeutic approach for human 

neoplastic MCs diseases, i. e. mastocytosis (Ranieri et al., 2015). At the same time, 

due to the implications of c-KIT aberrations in the development of MCs tumors, 

canine MCT could represent a useful model to study human c-KIT driven 

malignancies and TKIs, targeting c-kit. Therefore, comparative studies of MCs 

disorders may represent an opportunity to improve our knowledge on both 

mastocytosis and c-KIT driven tumors for diagnosis in case of c-KIT wild type state 

and/or with the aim to develop novel treatment options that can be translated in 

human patients.  

In this respect, starting from a list of genes that showed recurrent somatic 

mutations in human myeloproliferative diseases and mastocytosis, we screened a 

cohort of 75 canine MCTs for hot-spot mutations sites. 

No mutations were identified in IDH1 and IDH2 genes in our cohort of MCTs 

while, in SM, IDH2 mutations occurred for 6.9% of cases (Hanssens et al., 2014). To 

the best of our knowledge, only one study has been published in dog (Reitman et al., 

2010) where no mutations in both these genes were found in canine gliomas. 

Considering the high percentage of mutations in the human analog tumor ( ̴ 80% in 

grades II-III) these results were surprising and might suggest a minor role of these 

genes in the pathogenesis of canine gliomas and MCT.  

In SM, two genes involved in spliceosome machinery, SRSF2 and SF3B1, 

showed a mutation occurrence of 24% and 5.6% respectively (Hanssens et al., 2014). 

However, no mutations were detected in canine MCT. No data about the relevance of 

these genes and their mutational status in canine oncology are actually available; 

therefore, present results, are the first data ever published so far. 

On the other hand, more information are available about NRAS and KRAS, in 

dog cancer. Present results showing the absence of mutations obtained in our MCTs 

samples are consistent with a number of previously published studies in which RAS 

mutations have been shown to be extremely rare in the most common types of canine 

tumor such as mammary tumors, soft-tissue tumors (included MCTs), melanomas 

and lymphoproliferative disorders (Watzinger et al., 2001; Terragni et al., 2014). In 
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contrast, higher mutational frequencies of RAS genes have been obtained in human 

lung, pancreatic, gastrointestinal, brain and liver tumor, in acute myelogenous 

leukemia, in follicular and undifferentiated papillary thyroid tumors (Richter et al., 

2005). Therefore and likewise to IDH1/2 we might hypothesized that RAS mutations 

do not play a major role in the pathogenesis of canine MCT and this supposition is in 

line with previously published data (Watzinger et al., 2001). 

About TET2, the high percentage of mutations found in aggressive form of 

human mastocytosis (20.8%) was not confirmed in canine MCT (2.7%). Moreover, 

the typical frame-shift mutations observed in humans and coding for a truncated 

protein with consequently loss of function, was never observed. These results 

surprised the authors and, until this moment, represented the first attempt, in 

veterinary medicine, to investigate the role of TET2 mutations in a canine tumor 

since no information are available in previous published studies. 

Noteworthy, a frequent rearrangement was observed in a glutamine-rich region 

of TET2 exon 11, resulting in variations of the number of glutamine repetitions (from 

8 to 13) among cases. Very little information are actually published in human 

oncology about a possible relationship between length of polyglutamine regions in 

some genes and the risk to develop cancer. The number of CAG repetitions in 

androgen receptor seems to be correlated with the risk of occurrence of prostate 

cancer; furthermore polymorphisms in glutamine regions of nuclear receptor 

coactivator 3 (NCOA3 also known as AIB1) seems to play a role in the susceptibility 

of some type of breast cancer (Ingles et al., 1997; Kadouri et al., 2004; Yoo et al., 

2014). The sequencing analysis conducted in a little group of healthy dogs and 

matched statistically with results of MCT samples did not reveal any significant 

relationship between number of glutamine repetitions and the risk of MCT 

development.  

In conclusion, this preliminary study aimed to investigate, in canine MCT, the 

mutational status of genes known to be involved in human myeloproliferative 

disorders. The study was undertaken in a relatively small cohort of canine samples, 

and only human analogue hot-spot sites for mutation were took into consideration. 

Further investigations are needed to better characterize the pathogenic pathways 

involved in both diseases. Among these ones, to sequence the entire IDH1, IDH2, 

NRAS, KRAS, SRSF2 and SF3B1 genes and, subsequently, to analyze interesting 

genes that were excluded from this preliminary study (i. e. Additional Sex Combs 
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Like 1 alias ASXL1, Janus Kinase 2 alias JAK2). Clearly, the advent of deep 

sequencing methods might be more useful in this sense, giving a more wide 

observation on genome modifications and allowing the identification of new hot-spot 

mutation sites in canine genes. This approach will permit to clarify the possible value 

of canine MCT as a comparative animal model for human SM. 
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7. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The c-KIT gain of function mutations and overexpression are driven events in 

several highly malignant human (GIST, AML, melanoma) and canine tumors (MCT, 

melanoma). Tyrosine kinase inhibitors are a class of anti-cancer drugs inhibiting the 

phospho-activation of c-kit protein, but despite their use is directly linked to tumor 

regression, the onset of resistance is likely to occur, sometimes after several years of 

therapy, in most patients. The heterogeneity of patterns of mutations in the protein 

and in the resistance mechanisms suggests that the clinical challenges of resistance 

still remain to be overcome (Gunaratnam et al., 2009). 

The first part of this thesis described an alternative approach to inhibit human c-

KIT by using an anthraquinone derivative (AQ1). The compound was previously 

selected among a library of putative G4 ligands by the Department of Pharmaceutical 

Sciences. In this work, AQ1 blocked the proliferation of multiple cancer in vitro 

models. It also decreased c-KIT expression in human cancer cells with an inhibition 

rate that is, to the best of our knowledge, one of the highest ever noticed. 

Contextualizing this study in the G4 research field, one of its merits stands in the use 

of multiple cancer cell lines to test AQ1 in different cancer types. Also the two-

variants statistical approach represented an innovation aspect in these types of 

complex studies that could provide more robust results. Moreover the use, for the first 

time, of in vitro model engineered for expressing a promoter free from G4 could be 

an helpful tool to check deeper the specificity of ligands. Actually, a major 

impediment to the validation of G4 DNA as a new anti-cancer drug target is the lack 

of small molecules that bind to G4 DNA with high affinity (Kd<1 nM) and high 

specificity (Luedtke et al., 2009). However, the potentialities of G4 compounds as 

alternative to the current TKIs therapies (imatinib) were evidenced in the treatment of 

c-KIT mutated cells comparing to the wild type.  

In the past decades, the domestic dog has gained increasing interest as one of 

the most suitable animal model for comparative oncologic studies on tumor 

molecular mechanisms as well as for the identification and validation of new 

therapeutic targets. The lack of information about G4 presence in dogs, prompt us to 

investigate canine c-KIT promoter. Two putative G4 sequences were identified; these 

ones comprise a putative Sp1 transcriptional binding site and mimic the situation 
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present in the human DNA (Da Ros et al., 2014). The treatment of a canine MCT cell 

line with the same ligands used for human cells evidenced two putative efficient c-

KIT inhibitors, suggesting that differences in the G-strands base composition can 

affect affinity and, consequently, the ligand binding. 

Besides this encouraging results in both species, further experiments are needed 

to confirm the validity of these ligands as possible therapeutic tools. For example, 

gene reporter assays should be performed to verify whether ligands inhibit gene 

transcription through a specific binding to G4 conformations in both human and 

canine cells. Particularly in dogs, transcription regulatory elements found in c-KIT 

promoter are still undefined; moreover, the Sp1 domain, comprised between the two 

G4 regions, has not yet been characterized. Further studies, aiming to investigate the 

c-KIT downstream activation pathways, should also be undertaken to clarify which 

type of cellular damage occur following the exposure to AQ1 and AN6. 

Results exposed in chapter 5 represented the first investigation in veterinary 

medicine about the c-KIT mutational status in mast cell tumor and relative 

metastases. In our study, the perfect concordance between primary lesion and relative 

metastases was detected, and it has important clinical implications; both matrices can 

be sampled by veterinarians for the mutational screening analysis and, the eventual c-

KIT targeted therapeutic approach should be successful also against metastases. The 

small cohort of samples could represent a limit of this study and also the 

heterogeneity in the treatment protocols used. In this respect, future perspectives 

might be the analysis of an increased number of MCTs that underwent the same 

treatment. Furthermore, distal metastases should be inserted in the investigation as 

well as the multicentric MCTs to ascertain whether multiple masses are likely to 

present the same c-KIT mutational profile.  

In general, further efforts should be spent to better understand MCT molecular 

biology; in this respect, the last study here presented offered an insight about the 

possible involvement of common genes in the pathogenesis of human systemic 

mastocytosis and canine MCT. The absence of mutations in genes considered as 

hotspots for SM suggest that the two diseases might differ in terms of gene-related 

pathogenetic pathways. From a comparative point of view, data obtained suggest 

researchers to be cautious in assuming canine MCT as a model for SM. A limit of the 

present work consist in the screening of only a restricted number of genes; as a matter 

of fact, the use of high-throughput methodologies, such as next generation 
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sequencing techniques, might give a wider view of cell pathways involved in tumor 

progression. Worth mentioning, a full, in-depth characterization of canine MCT 

transcriptome has only recently been considered (Giantin et al., 2014; Giantin et al., 

submitted); nevertheless, most of molecular mechanisms involved in tumoral onset 

and progression are still unknown and need more efforts to be spent for their 

characterization.  

In conclusions, the research activities conducted in the three-years of Ph.D. 

program allowed to clarify some scientific gaps about c-KIT, and other related genes, 

in specific tumors, and identify new targets and strategies for canine and human 

anticancer chemotherapy. This work could lay the foundations of deeper 

investigations about the therapeutic usefulness of the c-KIT G4 ligands AQ1 and 

AN6, as well as the reliability of canine MCT as a model for other human c-KIT 

dependent tumors. 
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