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Abstract 

Recent studies indicate that systemic risk has predictive power over severe economic 

downturns. We propose a novel methodology that employs sparsity and targeting approaches 

to optimally select and combine systemic risk measures to forecast the tail of a given 

economic variable. Out-of-sample analysis shows that the optimal combination of systemic 

risk metrics may vary over time, forecasting horizons and economic proxies. Moreover, a few 

systemic risk measures contain all the important information for capturing the relation 

between systemic risk and real economy; therefore, a rigid combination approach may not be 

optimal, and the flexible parsimonious extension we introduce leads to improvement in 

forecasting performance. 
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1. Introduction 

Since the financial crisis of 2008, systemic risk has attracted extensive research interest, 

resulting in the definition of new metrics aimed at measuring the stability of the financial 

system. Systemic risk presents several dimensions, including the degree of interconnectedness 

among financial institutions, illiquidity, financial leverage, and the likelihood of financial losses 

(Hansen, 2014). Given the endogenous and multidimensional nature of systemic risk, its 

measurement is a complex task (Allen et al., 2012; Morley, 2016). In that respect, a recent 

strand of literature advocates the use of a multipronged approach combining risk metrics into 

an index (Holló et al., 2012; Louzis & Vouldis, 2017). As Giglio et al. note (2016, p. 458), 

systemic risk measures can be thought of as “imperfectly measured versions of an unobservable 

systemic risk factor.” Therefore, a dimension-reduction technique may improve the 

identification of the most relevant features of systemic risk. Among the methods belonging to 

the class of dimension-reduction methods, Factor Analysis (FA) and Principal Component 

Analysis (PCA), applied to a set of systemic risk measures, have recently received attention, 

i.e., Giglio et al., 2016 and Nucera et al., 2016. In particular, the first contribution shows that 

the composite index obtained from a PCA exhibits significant association with the real 

economic activity and is helpful in predicting future economic downturns.  

We further investigate this relationship and make use of both sparsity and targeting 

approaches to propose a generalised method to predict downturn risk in proxies of the economic 

activity. The relationship between the unobservable systemic risk factor and a proxy for 

economic activity may only partially reflect the different dimensions characterising systemic 

risk. This suggests that only a specific subset of the systemic risk measures available may be 

required to unveil the connection between systemic risk and the real sector. Furthermore, the 

association between systemic risk and economic activity could change depending on the 

economic proxy considered; it could also be time-varying and associated with the forecasting 
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horizon. The exclusion of redundant information resulting from a dimension-reduction 

approach may provide better identification of the systemic risk features related to given 

economic variables; therefore, the adoption of a more flexible approach might lead to an 

improvement in forecasting performance. 

We introduce a TArgeted Sparse SYstemic Risk Index (TASSYRI). Our approach aims 

at adapting a parsimonious selection of variables to the features of the economic proxy 

downturns to be forecasted. Our methodology is in line with the focus of policymakers who 

closely follow key indicators and with recent literature that has explored the systemic risk 

impact on macroeconomic shocks. Consequently, we focus on the left tail (the downturns) and 

not on the central tendency of reference economic indicators. 

The TASSYRI methodology builds on two steps. First, a sparse selection applied to a 

group of systemic risk measures provides a set of composite risk indexes featuring different 

degrees of sparsity, as governed by a smoothing parameter. We note that the classical PCA 

approach appears as a specific case where there is no sparsity; in that circumstance, all the 

systemic risk measures are included in the risk index, leading to the solution proposed in Giglio 

et al. (2016). The second stage involves targeting and leads to identification of the sparse index 

that best causes extreme variations in a given economic proxy. This is achieved through 

constrained optimisation of the smoothing parameter that drives the regularised Singular Value 

Decomposition (SVD) governing sparsity. This optimisation builds on the tail Granger 

causality test proposed by Hong et al. (2009). The index identified in this second step is the 

TASSYRI. 

In the first part of the paper, we illustrate the construction of the TASSYRI and show 

how sparsity and targeting lead to the selection of a reduced set of systemic risk measures. We 

then perform several validity checks on the index construction procedure. The second part 

presents detailed out-of-sample analysis to test the predictive ability of our methodology in a 
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quantile regression framework. We implement our tests on several measures of economic 

activity. Our empirical exercise extends that of Giglio et al. (2016), as we consider a wider set 

of systemic risk measures and economic proxies and longer forecast horizons (up to 12 months). 

Our empirical studies involve well-known systemic risk metrics computed on a dataset for 95 

US financial institutions, similar to the data adopted in recent articles on systemic risk (e.g., 

Acharya et al., 2017; Brownlees & Engle, 2017). 

Our results provide novel evidence. First, we find that indexes of systemic risk exhibit 

predictive ability over downturns for forecasting horizons of up to 12 months for the various 

proxies of economic activity we consider. Second, we show that the introduction of sparsity 

and targeting provides an improvement in forecasting ability with respect to the simple adoption 

of a set of control variables, or when considering alternative indexes based on dimension 

reduction. Further, empirical results confirm that the optimal combination of systemic risk 

metrics varies over time and, consequently, that the adoption of a rigid combination approach 

might not prove optimal. Consistent with the findings of Giglio et al. (2016), we do not find a 

specific combination of systemic risk measures that outperforms other approaches for all 

economic proxies and forecast horizons. In addition, empirical estimations reveal that the 

TASSYRI is most of the time the best approach for horizons over one month. Finally, our results 

indicate that only five systemic risk measures carry the most information on the latent systemic 

risk factor: The Value-at-Risk (VaR); the Conditional Value-at-Risk (CoVaR) and the Delta 

Conditional Value-at-Risk (∆CoVaR) of Adrian and Brunnermeier (2016); the Marginal 

Expected Shortfall (MES) of Acharya et al. (2012); and the Conditional Expected Shortfall 

(CES) of Banulescu and Dumitrescu (2015). 

 The remainder of the article is organised as follows. Section 2 presents the TASSYRI 

construction methodology. Section 3 provides an illustration of the index construction and 

discusses methodological details. Section 4 focuses on the out-of-sample analysis of the 
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TASSYRI features using several proxies of real economic activity, contrasting our index with 

available alternative proposals. Section 5 presents conclusions. Extra definitions, descriptions, 

complementary results, and further supporting materials are provided in an online appendix. 

 

2. Building an Aggregated Index of Systemic Risk Measures with Sparsity 

 In this section, we show how to build the TASSYRI, starting from a set of systemic risk 

measures, considering only the relevant ones based on regularised Singular Value 

Decomposition and targeting the TASSYRI sparsity to the reference economic variable and 

forecast horizon by using the extreme causality test of Hong et al. (2009). 

 

2.1 About Systemic Risk Measures  

 Our approach relies on a set of 16 systemic risk measures.3 We group them into micro- 

and macro-focused. In the first group, we include individual systemic risk measures evaluated 

at the firm level: The Component Expected Shortfall (CES, Banulescu and Dumitrescu, 2015), 

the Conditional Value-at-Risk (CoVaR), the Delta Conditional Value-at-Risk (ΔCoVaR) and 

the Conditional Expected Shortfall (CoES, Adrian & Brunnermeier, 2016), the Marginal 

Expected Shortfall (MES, Acharya et al., 2013; Brownlees & Engle, 2017), the SRISK 

(Acharya et al., 2012; Brownlees & Engle, 2017), the Amihud Illiquidity Measure (AIM, 

Amihud, 2002), and the Kyle Lambda measure (Kyle, 1985). We also include in this group the 

Volatility (Vol) and the Value-at-Risk (VaR), which allows us to account for the evolution of 

the return’s dispersion and tail risk. Finally, we complement this selection by adding a 

 
3 For a survey on available systemic risk measures, see Bisias et al. (2012), Benoit et al. (2017), and Di Cesare 
and Rogantini Picco (2018). 
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(restricted) daily CATastrophic risk in the FINancial sector (CATFIN, Allen et al., 2012).4 The 

second group includes measures that focus on a single aspect of systemic risk directly evaluated 

at the system level. In this category, among the measures available in the literature, we select 

the Spillover Index (SI, Diebold & Yilmaz, 2009), the Dynamic Causality Index (DCI, Billio 

et al., 2012), the Turbulence Index (TI, Kritzman & Li, 2010), the Absorption Ratio (AR, 

Kritzman et al., 2011), and a concentration measure, namely, the Herfindahl-Hirschman Index 

(HHI).5 

For the evaluation of company-specific systemic risk measures, we select a database 

adopted in previous studies of systemic risk (e.g., Acharya et al., 2017; Brownlees & Engle, 

2017) and focus on the largest 95 US financial institutions. We recover daily price data from 

Thomson Reuters Datastream covering January 2000 to December 2017.6 Following Giglio et 

al. (2016), we first compute the individual measures for each of the 95 financial institutions at 

daily frequency. Whenever necessary, we make use of a rolling-sample estimation method and 

evaluate the measures using a one-year window. Next, we take an equally weighted average of 

the individual measures. To allow comparability across the aggregated measures, we transform 

all of them into z-ratios (i.e., we remove the mean and standardise each measure by its sample 

variance).  

 
4 Concerning the ‘restricted’ CATFIN, we build a constrained version of the CATFIN measure, following the same 
methodology as Allen et al. (2012) but based on our limited sample of 95 US financial institutions. Moreover, we 
work on a daily basis for coherence and time-consistency reasons with respect to the other 15 SRM. It appears that 
when aggregating the daily restricted CATFIN on a monthly and quarterly basis, we end up with a series that 
exhibits highly significant Pearson and Spearman correlations with the original monthly CATFIN. The correlations 
are 78% and 70%, respectively.  
5 We also performed preliminary tests using the GZ spread of Gilchrist and Zakrajsek (2012) and the Pástor and 
Stambaugh (2003) Illiquidity measure. The TASSYRI resulting from using the 16 systemic risk measures 
considered in the article and the one obtained with 18 measures (the 16 in the article and the 2 previously quoted 
ones) are similar (with a 20%-extreme Spearman correlation coefficient of 100%); in other words, these two 
additional indicators were not adding much to the analysis and were accordingly neglected.  
6 Web Appendix A.1 details the computation of the systemic risk measures; Web Appendix A.2 presents the list 
of the 95 financial institutions in the sample; and Web Appendix A.3 shows the correlation matrix of the systemic 
risk measures. 
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Figure 1 shows the dynamics of the aggregated micro- and macro-focused systemic risk 

indicators; all are standardised over the full sample.7 We note a significant increase in the level 

of all global systemic risk measures over the period 2007–2008, at the beginning of the financial 

crisis. Although common trends seem to emerge, there are some discrepancies between these 

measures, which confirm that systemic risk is a multidimensional phenomenon; each of the 

metrics captures one or several these dimensions. The analysis of correlations between the 

different risk measures (included in Web Appendix A.3) shows that the correlations differ 

across the measures, and that almost all are statistically significant at the 5% significance level. 

The empirical evidence confirms the presence of multicollinearity and indicates different 

informational content related to the measures. This further motivates the development of an 

indicator that integrates all dimensions of systemic risk using an information reduction 

technique. 

Figure 1.  
Dynamics of global systemic risk measures. 

 

 
7 When performing the out-of-sample evaluation, the standardisation of the measures will account only for the 
available information, thus excluding the presence of a look-ahead bias. 
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Notes: Datastream, daily data from 01/03/2001 to 12/29/2017; authors' computation. These measures 
estimated from rolling windows of one year. Presented here are monthly averages of z-scores of the 16 
computed (aggregated) systemic risk measures, in the following order: M1: CoVaR, M2: VaR, M3: 
∆CoVaR, M4: COES, M5: MES, M6: Volatility, M7: CES, M8: Kyle’s Lambda, M9: SRISK, M10: AIM, 
M11: Spillover Index, M12: CATFIN, M13: AR, M14: Turbulence Index, M15: Herfindahl-Hirschman 
Index, M16: DCI. 
 
 
2.2. Deriving a Composite Index Based on Regularised Singular Value Decomposition  

The methodology adopted for the construction of the TASSYRI builds on the 

regularised Singular Value Decomposition (rSVD) proposed by Shen and Huang (2008). 

Application of the rSVD leads to a ‘sparse’ index and may allow identification of the most 

relevant features of systemic risk measures. Generally speaking, rSVD belongs to a class of 

Sparse Principal Component Analysis (SPCA) tools that generalise the classical PCA. While 

the PCA generates linear combinations of all input variables, SPCA methods select subsets of 

the input variables. The set of SPCA methods also include, besides that of Shen and Huang 

(2008), the SPCA of Zou et al. (2006). We stress that all those methods include as a special 

case the classical PCA; in fact, if all input measures in the SPCA or rSVD are identified as 

relevant, we end up with the classical PCA.8  

 
8 For the sake of completeness, we recall the principles of PCA and the full derivation of SPCA in Web Appendix 
B. 
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Shen and Huang (2008) propose to recover a principal component subject to sparsity 

building on a SVD, which has a methodological advantage compared to the approach of Zou et 

al. (2006). The latter requires a preliminary estimate of the dominant factor by classical PCA, 

and, in a second step, the first principal component is sparsified. On the contrary, rSVD does 

not require estimation of the target principal component. Moreover, as shown in Shen and 

Huang (2008), rSVD is not computationally intensive and leads to better identification of the 

null loadings. 

In a classical SPCA of Zou et al. (2006), the sparse dominant factor is identified as an 

approximation of the first Principal Component, which is estimated in a preliminary step. The 

penalised regressions leading to the SPCA can be written as the following minimisation 

problem (Zou et al., 2006): 

min
𝜷𝜷�𝑠𝑠∈ℝ𝑝𝑝

��𝑭𝑭 −𝑴𝑴𝜷𝜷�𝑠𝑠�
2

+ 𝜆𝜆𝜆𝜆(𝜷𝜷�𝑠𝑠)�, (1) 

where the (𝑇𝑇 × 𝑝𝑝)  matrix 𝑴𝑴  contains the data—in our case the collection of standardised 

systemic risk indicators, where 𝑭𝑭 is the (𝑇𝑇 × 1) first Principal Component (PC) of a classical 

PCA on 𝑴𝑴  and represents here the target of the minimisation problem, 𝜷𝜷�𝑠𝑠  is the (𝑝𝑝 × 1) 

parameter vector we want to identify, ‖⋅‖𝑎𝑎  is the ℓ𝑎𝑎 -norm, 𝜆𝜆  is a pre-specified tuning 

parameter, and 𝜆𝜆(𝜷𝜷�𝑠𝑠) represents a penalty function, depending on the coefficients in 𝜷𝜷�𝑠𝑠. The 

sparse principal component loadings are then obtained by normalisation of the estimated 

weights 𝜷𝜷�𝑠𝑠 . Shen and Huang (2008) propose to replace the targeted minimisation term by 

resorting to a singular value decomposition (SVD). The SVD of the matrix 𝑴𝑴 reads: 

𝑴𝑴 = 𝑼𝑼𝑼𝑼𝑼𝑼′, (2) 

where 𝑼𝑼 = �𝒖𝒖𝟏𝟏 …𝒖𝒖𝒑𝒑 �  is a (𝑇𝑇 × 𝑝𝑝 ) matrix containing the left Singular Vectors, 𝑼𝑼  is the 

diagonal (𝑇𝑇 × 𝑝𝑝) matrix of Singular Values, with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑼𝑼) = �𝑑𝑑1 …𝑑𝑑𝑝𝑝�, where {𝑑𝑑1 ≥ ⋯ ≥
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𝑑𝑑𝑝𝑝} are the Singular Values, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∙) is a matrix operator that extracts the diagonal of a matrix, 

and, finally, 𝑼𝑼 = �𝒗𝒗𝟏𝟏 …𝒗𝒗𝒑𝒑 � is a (𝑇𝑇 × 𝑝𝑝) matrix which includes the right Singular Vectors of 

𝑴𝑴. The columns of the (𝑇𝑇 × 𝑝𝑝) matrix 𝒁𝒁 = 𝑼𝑼𝑼𝑼 are the Principal Components and the columns 

of 𝑼𝑼 are the corresponding Loadings. The first Principal Component 𝑭𝑭 of a classical PCA is 

simply the first column of the (𝑇𝑇 × 𝑝𝑝) matrix 𝒁𝒁 = �𝒛𝒛𝟏𝟏 … 𝒛𝒛𝒑𝒑 �, such as 𝑭𝑭 = 𝒛𝒛𝟏𝟏. 

Shen and Huang (2008) thus focus on the following minimisation problem: 

min
𝒗𝒗�∈ℝ𝑝𝑝

[‖𝑴𝑴 − 𝒖𝒖�𝒗𝒗�′‖𝐹𝐹2 + 𝜆𝜆 𝜆𝜆(𝒗𝒗�)], (3) 

where 𝒖𝒖� = [𝒖𝒖𝟏𝟏 …𝒖𝒖𝒍𝒍 ] and 𝒗𝒗� = 𝑼𝑼𝑙𝑙[𝒗𝒗𝟏𝟏 …𝒗𝒗𝒍𝒍 ] are the best rank-𝑙𝑙 approximations (with 𝑙𝑙 ≤ 𝑝𝑝) of 

the original 𝒖𝒖 and 𝒗𝒗, with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑼𝑼𝑙𝑙) = [𝑑𝑑1, … ,𝑑𝑑𝑙𝑙]. Therefore, the data matrix is approximated 

using the first l Singular Values (and the corresponding left and right Singular Vectors), with 

‖⋅‖𝐹𝐹2  the squared Frobenius norm, that is ‖𝑴𝑴− 𝒖𝒖�𝒗𝒗�′‖𝐹𝐹2 = 𝑡𝑡𝑡𝑡{(𝑴𝑴−𝒖𝒖�𝒗𝒗�′)(𝑴𝑴− 𝒖𝒖�𝒗𝒗�′)′} =

∑ ∑ (𝑚𝑚𝑖𝑖,𝑗𝑗 − 𝑢𝑢�𝑖𝑖𝑣𝑣�𝑗𝑗)2𝑝𝑝
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1  , where 𝑡𝑡𝑡𝑡(⋅) is the trace operator. Finally, 𝜆𝜆 is a tuning parameter, 

selected a priori, and 𝜆𝜆(𝒗𝒗�) is the penalty function defined over the Loadings; in our analyses, 

we adopt a soft Least Absolute Shrinkage and Selection Operator (LASSO) penalty, i.e., we set 

𝜆𝜆(𝒗𝒗�) to the ℓ1-norm, such as: 𝜆𝜆(𝒗𝒗�)  ≡ ‖𝒗𝒗� ‖1 = 𝟏𝟏′|𝒗𝒗� | ≤ 𝜆𝜆.  

More precisely, for an integer 𝑙𝑙 ≤ 𝑝𝑝 , the matrix 𝑿𝑿(𝑙𝑙) = 𝒖𝒖�𝒗𝒗�′  is such as 𝑿𝑿(𝑙𝑙) =

∑ 𝑑𝑑𝑘𝑘𝒖𝒖𝑘𝑘𝒗𝒗𝑘𝑘′𝑙𝑙
𝑘𝑘=1 , where 𝒖𝒖𝑘𝑘, 𝒗𝒗𝑘𝑘  and 𝑑𝑑𝑘𝑘 are the 𝑘𝑘-th column of 𝑼𝑼 and 𝑼𝑼 and the 𝑘𝑘-th element of 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑼𝑼), respectively. The optimal solution is chosen in such a way that it is the closest rank-

l approximation of 𝑴𝑴  that minimises the squared Frobenius distance between 𝑴𝑴  and any 

arbitrary rank-𝑙𝑙 matrix 𝑿𝑿(𝑙𝑙), also accounting for the sparsity induced by the penalisation term. 

Finally, Shen and Huang (2008) show that the optimal 𝒗𝒗�𝑠𝑠 for a LASSO penalty equals: 

𝒗𝒗�𝑠𝑠  = 𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠(𝑿𝑿′𝒖𝒖�)(|𝑿𝑿′𝒖𝒖�| − 𝜆𝜆)+, (4) 
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where 𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠(⋅)  is the sign function, |⋅|  the absolute value, and (⋅)+ = 𝑚𝑚𝑑𝑑𝑚𝑚(0,⋅)  the max 

function. 

Then, we standardise the optimal parameters’ vectors in (4), using the ℓ2 -norm 

obtaining 𝒙𝒙�𝑖𝑖𝒔𝒔 = 𝒗𝒗�𝑖𝑖
𝒔𝒔

�𝒗𝒗�𝑖𝑖
𝒔𝒔�2

, for   𝑑𝑑 = [1, 2, … , 𝑙𝑙];  𝒙𝒙�𝑖𝑖𝒔𝒔 is the 𝑑𝑑-th sparse loading vector and, by collecting 

the l 𝒙𝒙�𝑖𝑖𝒔𝒔 vectors into the (𝑇𝑇 × 𝑙𝑙) matrix 𝒙𝒙�𝑠𝑠, we obtain the first l Sparse Principal Components as 

𝒁𝒁� = 𝑴𝑴𝒙𝒙�𝑠𝑠. 

By following the approach of Shen and Huang (2008), we are thus able to identify the 

first l sparse Principal Components; in the following, we consider 𝑙𝑙 = 1 and 𝑙𝑙 = 2, consistently 

with Giglio et al. (2016), who empirically consider the first two Principal Components, 

recovered from a classical PCA. When focusing on a single Sparse Principal Component, this 

will yield, by construction, our TASSYRI. Conversely, when 𝑙𝑙 = 2, we will derive two indexes: 

one associated with the first component and the other matching the second component. We 

highlight that rSVD identifies sparse approximations for different Principal Components of the 

data, thus allowing us to analyse the impact of different orthogonal dimensions of systemic risk 

on the target economic variables.  

We note that the solution of the minimisation problem requires knowledge of the tuning 

parameter 𝜆𝜆, and thus, assuming for the time being that 𝑙𝑙 = 1, the TASSYRI is also a function 

of 𝜆𝜆. In the following, we denote the penalised Principal Component as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆). We 

already pointed out the sparsity induced by rSVD on the index. Beyond this principle, the use 

of rSVD leads to a volatility reduction that comes from the usual trade-off between bias and 

variance; therefore, the main factor from sparse SVD, by definition, has more stable time 

dynamics relative to classical PCA (since and if rSVD selects only a subset of the systemic risk 

measures). This property is desirable since the implementation of regulatory policies should not 

be based on noisy and erratic metrics of systemic risk. 



M. Caporin, M. Costola, J.-C. Garibal, B. Maillet  

12 
 

A fundamental aspect of rSVD relates to the choice of the tuning parameter 𝜆𝜆 that 

controls the degree of sparsity. Unlike the extensive statistical literature on regularisation and 

penalisation, we do not identify the optimal λ by resorting, for instance, to cross-validation 

approaches. Instead, we identify the turning points over the λ support that lead to aggregated 

indexes characterised by different levels of sparsity. If we consider a rank-1 approximation, 

i.e., if we focus only on the first principal component, then when 𝜆𝜆 increases, the number of 

active elements (i.e., those different from zero) in 𝒗𝒗�𝒔𝒔 , and therefore the number of active 

elements (the underlying systemic risk measures) in the ‘sparse’ loading vector 𝒙𝒙�𝑠𝑠, approaches 

zero. This leads to a small number of columns of 𝑴𝑴 in the estimated sparse principal component 

𝒁𝒁� . The degenerated limiting case is when 𝜆𝜆 = ∞, for which 𝒗𝒗�𝒔𝒔  and 𝒙𝒙�𝑠𝑠  correspond to zero 

vectors (i.e., no systemic risk measure is selected). In the opposite case, when 𝜆𝜆 goes to zero, 

𝒙𝒙�𝑠𝑠 tends to the loading vector characterising the first Principal Component of a traditional PCA, 

and the number of active elements then converges to its maximum value 𝑝𝑝. Therefore, there 

exist intermediate values of 𝜆𝜆 (between zero and plus infinity) that give a composite index 𝒁𝒁� 

based on different selections of the elements in 𝑴𝑴, with a cardinality of 𝒙𝒙�𝑠𝑠 ranging from 1 to 

𝑝𝑝. The values for 𝜆𝜆 can be identified by adopting a grid search, or by fixing the number of non-

null elements in the vector 𝒗𝒗�𝒔𝒔 and searching for the minimum 𝜆𝜆 that satisfies the constraint. In 

our analyses, we follow the second approach. The step function in Figure 2 shows how the 

number of selected components (on the y-axis) changes according to 𝜆𝜆 (on the x-axis). Each 

turning point, from left to right, indicates when a new systemic risk measure exits from the 

composite index. 
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Figure 2.  
Number of selected systemic risk measures in the rSVD according to the value of 𝜆𝜆. 

 
Notes: The total number of systemic risk measure is equal to 𝑝𝑝. The represented step function shows 
how the number of the selected components (y-axis) changes according to 𝜆𝜆 (x-axis), where each turning 
point indicates when a measure leaves the dominant principal component. When 𝜆𝜆 tends to infinity, the 
number of selected components approaches to zero while, on the opposite, when 𝜆𝜆 tends to infinity, all 
the components are selected as in the classical PCA. 
 

Given 𝑝𝑝 systemic risk measures, there will be a corresponding number of turning points 

for 𝜆𝜆 , each of which is associated with a specific selection of systemic measures and, 

consequently, a specific 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) for 𝑑𝑑 = [1, . . . ,𝑝𝑝]. These indexes might include from 

one systemic risk measure to the full set of the available risk measures. The latter case, with the 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑝𝑝), corresponds exactly to the seminal proposal by Giglio et al. (2016), i.e., the 

classical PCA. When 𝑙𝑙 = 2, we will have two sets of TASSYRI, namely 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1(𝜆𝜆𝑖𝑖) and 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2(𝜆𝜆𝑖𝑖). The two sets will be separately identified and, consequently, the two TASSYRI 

might be associated with different values of the penalisation parameters and with different 

cardinality (i.e., TASSYRI1 might include either a larger or a smaller number of systemic risk 

measures than TASSYRI2). 
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2.3. Identifying the Optimal Index 

The rSVD approach leads to 𝑝𝑝  different TASSYRI associated with an increasing 

number of underlying systemic risk measures. Our objective at this stage is to identify the 

optimal combination of (a restricted small number of) systemic risk measures, according to a 

statistical or an economic selection rule. Since we aim to identify an index connected to 

economic fragility, we focus on causal links between systemic risk and real economic activity. 

In our analyses, following Giglio et al. (2016), we start by taking the Industrial Production 

Index (IPI) as the reference proxy for real economic activity.  

Several empirical analyses have shown that the propagation of financial shocks to the 

real economy is non-linear. This implies that reaching extreme values in the aggregated index 

could help to explain systemic events, inducing slowdowns in economic activity. Consequently, 

to measure the association between a composite index of systemic risk measures and a real 

activity proxy, we select the Granger causality test of extremes proposed by Hong et al. (2009). 

Such a choice is consistent with the method adopted by Giglio et al. (2016); in fact, the authors 

first measured the predictive power of their aggregated index obtained from a classical PCA 

using a quantile regression setting. Then, they proceeded to test whether the lagged value of the 

index of systemic risk indicators explains extreme variations in industrial production by 

focusing on specifications that include or exclude the aggregated systemic risk index. Our 

proposal, however, differs in that we assess the extent to which positive or upper extreme values 

of the aggregated index of systemic risk Granger-cause the negative extreme movements in a 

measure of economic activity. In our setting, the Hong et al. (2009) test is used to identify the 

optimal TASSYRI across the 𝑝𝑝 alternatives we compute, where each was obtained according 

to the methodology outlined in the previous subsection. In addition, the introduction of a delay 
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factor allows us to identify the optimal index with a clear link to a predictive horizon.9 We now 

summarise the test before describing the selection of the optimal TASSYRI. 

Let 𝑦𝑦1,𝑡𝑡+ℎ be a proxy of the real economic activity at time 𝑡𝑡 + ℎ and 𝑄𝑄1,𝑡𝑡+ℎ(𝛼𝛼;𝜽𝜽1) the 

quantile of order 𝛼𝛼  of the conditional distribution of 𝑦𝑦1,𝑡𝑡+ℎ , with 𝜽𝜽1  being a vector of 

parameters associated with the specification adopted for the dynamic of 𝑦𝑦1,𝑡𝑡+ℎ  conditional 

quantiles. Note that h is the horizon factor that monitors the time distance between the economic 

variable and the aggregated systemic risk index. The horizon factor is introduced for flexibility 

purposes. 

 As in Giglio et al. (2016), we set 𝛼𝛼 to 20%. This is based on a trade-off between the 

limited sample size (due to the use of monthly data for most proxies of real economic activity) 

and the need to have a significant number of observations in the left tail of the distribution of 

𝑦𝑦1,𝑡𝑡+ℎ to perform the Hong et al. (2009) test. Let 𝐻𝐻𝑑𝑑𝑡𝑡1,𝑡𝑡+ℎ(𝛼𝛼;𝜽𝜽1) be a dummy variable defined 

as follows: 

𝐻𝐻𝑑𝑑𝑡𝑡1,𝑡𝑡+ℎ(𝛼𝛼;𝜽𝜽1) = 𝕀𝕀�𝑦𝑦1,𝑡𝑡+ℎ≤ 𝑄𝑄1,𝑡𝑡+ℎ(𝛼𝛼;𝜽𝜽1)� = �1 𝑑𝑑𝑖𝑖 𝑦𝑦1,𝑡𝑡+ℎ ≤  𝑄𝑄1,𝑡𝑡+ℎ(𝛼𝛼;𝜽𝜽1)
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠𝑒𝑒.

 (5) 

This variable is equal to 1 when 𝑦𝑦1,𝑡𝑡+ℎ is extreme and negative (corresponding, for instance, to 

a severe contraction of economic activity). In the same manner, 𝑦𝑦2,𝑡𝑡 = −𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖), the 

opposite of the aggregated index of systemic risk obtained via the rSVD methodology described 

in the previous section. Moreover, 𝑄𝑄2,𝑡𝑡(𝛼𝛼;𝜽𝜽2) is the quantile of order 𝛼𝛼  of the conditional 

distribution of 𝑦𝑦2,𝑡𝑡 , 𝜽𝜽2  is a vector of parameters, and 𝐻𝐻𝑑𝑑𝑡𝑡2,𝑡𝑡(𝛼𝛼;𝜽𝜽2) is the dummy variable 

defined as follows: 

𝐻𝐻𝑑𝑑𝑡𝑡2,𝑡𝑡(𝛼𝛼;𝜽𝜽2) = 𝕀𝕀�𝑦𝑦2,𝑡𝑡≤ 𝑄𝑄2,𝑡𝑡(𝛼𝛼;𝜽𝜽2)�, (6) 

 
9 Coherently with Giglio et al. (2016), we consider the systemic risk index in levels since we are interested in the 
intensity of the risk. 
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where 𝕀𝕀{.} is the indicator function. 

Note that this variable is equal to 1 when the aggregated systemic index is extremely high (i.e., 

located on its right tale), indicating a systemic event. Under the null, the extreme levels of the 

aggregated index of systemic risk at time 𝑡𝑡 have no predictive power with the negative extreme 

movements in the real economy proxy at time 𝑡𝑡 + ℎ. 

The 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) indexes, as well as the underlying systemic risk measures, have daily 

frequency, while the proxy for real economic activity (here, the IPI) is available at monthly 

frequency. We therefore convert the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) indexes to monthly frequency by averaging 

the daily data index values for each month.10 

The test statistic proposed by Hong et al. (2009) depends on a weighted sum of the 

estimated cross-correlations between 𝐻𝐻𝑑𝑑𝑡𝑡1,𝑡𝑡+ℎ�𝛼𝛼;𝜽𝜽�1� and 𝐻𝐻𝑑𝑑𝑡𝑡2,𝑡𝑡�𝛼𝛼;𝜽𝜽�2�, where 𝜽𝜽�1 and 𝜽𝜽�2 are 

consistent estimators of the true parameter vectors. This weighted sum (making explicit the 

dependence on the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖)) is precisely defined as follows: 

𝑍𝑍[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖)] = 𝑇𝑇�𝜅𝜅2(𝑗𝑗/𝑑𝑑)𝜌𝜌�2(𝑗𝑗)
𝑇𝑇−1

𝑗𝑗=1

, (7) 

where the function 𝜅𝜅(⋅) is the Daniell kernel11, 𝑑𝑑 is a positive integer, and 𝜌𝜌�(𝑗𝑗) is the cross-

correlation of order j between 𝐻𝐻𝑑𝑑𝑡𝑡1,𝑡𝑡+ℎ�𝛼𝛼;𝜽𝜽�1� and 𝐻𝐻𝑑𝑑𝑡𝑡2,𝑡𝑡�𝛼𝛼;𝜽𝜽�2�. 

We note that all possible lags are considered in the 𝑍𝑍-statistic in Equation (7), but terms 

corresponding to the longest ones are multiplied by a weight that is decreasing with the lag. 

This is relevant in the current context, as the inclusion of a significant number of lags helps to 

 
10 See Section 3.2 for different frequency conversion criteria. 
11 We use the kernel function from Daniell (1946) that induces optimal properties for the causality test. See Hong 
et al. (2009) for further details. 



M. Caporin, M. Costola, J.-C. Garibal, B. Maillet  

17 
 

capture the stronger (or weaker) inertia in the reaction of the economy to a systemic event.12 

As shown in Hong et al. (2009), under the null hypothesis of no causality in extreme 

movements, we have: 

𝑈𝑈[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖),𝑑𝑑] =
𝑍𝑍[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖)] − 𝐶𝐶𝑇𝑇(𝑑𝑑)

[𝐷𝐷𝑇𝑇(𝑑𝑑)]1/2 , (8) 

which follows a standard normal distribution, with zero mean and unit variance, where: 

𝐶𝐶𝑇𝑇(𝑑𝑑) = �(1 − 𝑗𝑗/𝑇𝑇)𝜅𝜅2(𝑗𝑗/𝑑𝑑)
𝑇𝑇−1

𝑗𝑗=1

,  

and: 

𝐷𝐷𝑇𝑇(𝑑𝑑) = 2�(1 − 𝑗𝑗/𝑇𝑇)(1− (𝑗𝑗 + 1)/𝑇𝑇)
𝑇𝑇−1

𝑗𝑗=1

𝜅𝜅4(𝑗𝑗/𝑑𝑑).  

 When the parameter 𝑑𝑑 increases, the value of the kernel weights increases for values of 

𝑗𝑗 above 1. Consequently, larger values of 𝑑𝑑 are associated with a much larger dependence on 

past lags. Given the monthly frequency of the data, we set 𝑑𝑑  equal to 10  as a reasonable 

compromise, as it does not place too much weight on shorter lags and almost ignores the longer 

ones. 

 We propose to identify the optimal TASSYRI by means of the Hong et al. (2009) test 

outcomes. The optimal index is defined as the one that returns the highest value of the criterion 

function in the Hong et al. (2009) test statistics. Given our selection of different TASSYRI, that 

 
12 The Monte Carlo simulations carried out by Hong et al. (2009) show that the test has good properties at a finite 
distance. It is important here to note that the minimum sample size considered by the authors in the simulations is 
T = 500, and the minimum quantile is 5% (approximately 25 observations in the tails of distributions). In our case, 
if we use the monthly data for the changes in the IPI as the considered real economy proxy, we have 204 
observations. With a 20% quantile, this leaves 40 observations. Such a figure is close to the test application 
conditions suggested by Hong et al. (2009) and corresponds to a relatively adequate amount of data in the tails of 
the distributions. 
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is, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) for 𝑑𝑑 = [1, . . . ,𝑝𝑝], we evaluate the Hong et al. (2009) test for each 𝑑𝑑 for a 

given economic proxy. Then, we adopt a simple criterion function, which concisely reads as 

follows: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆∗) = 𝑇𝑇𝑡𝑡𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) {𝑈𝑈[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖),𝑑𝑑]}  for 𝑑𝑑 = [1, 2, … ,𝑝𝑝]. (9) 

The optimal 𝜆𝜆∗ is one of the turning points identified in the first step (its role is explained in 

Figure 2), and it is matched with an aggregated index: the one that provides the highest Hong 

et al. (2009) test statistics. If two or more 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖) indexes provide the same Hong et al. 

(2009) statistic, we should prefer the more parsimonious one—that is, the one associated with 

a smaller number of systemic risk measures. In fact, if the two indexes are equivalent in terms 

of quantile causality with respect to the real economy proxy, it simply means that the additional 

information included in the index with higher 𝑑𝑑 (i.e., based on a larger set of systemic risk 

indexes) does not provide any statistical gain. 

We now explain the implications of setting different values of ℎ in Equation (5). If ℎ =

0, we are monitoring, for a given sample, the cross-correlation between tail exceedances of both 

the TASSYRI and our target economic variable, where the TASSYRI is lagged with respect to 

the economic target, with a minimum lag of 1. Conversely, when ℎ > 0, the TASSYRI we 

derive is tailored to a sort of predictive horizon for the target variable drawdown. In fact, the 

cross-correlations will measure the association between the exceedances of the economic 

variable and the TASSYRI, where the latter is lagged by a minimum of ℎ + 1 period. We thus 

identify the optimal index with the goal to maximise the association between the actual systemic 

risk index and the tail exceedance of the economic target variable ℎ periods ahead. This is a 

distinctive feature of our approach, which is not present in the framework of Giglio et al. (2016). 

The additional flexibility of our method allows for identification of the optimal TASSYRI on 

demand. In fact, the ability to choose both a target variable and a forecast horizon permits 
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construction of the optimal combination of systemic risk measures that present the largest 

association with the downward movements of the target variables in ℎ periods. This is in line 

with the common perception that systemic risk is a multidimensional phenomenon, the various 

facets of which could differently impact various proxies of economic activity with time-varying 

intensity. On the contrary, the use of standard PCA, without sparsity and without a horizon-

based composition, is less flexible in some sense, as it relies on a unique combination of all 

systemic risk measures, irrespective of the target variable and of the predictive horizon. 

 

3. An Illustrative Example: The Index of Systemic Risk Measures for US Financial 

Institutions 

Focusing on the financial institutions mentioned in Section 2.1, we illustrate the final 

construction of the index based on the systemic risk measures using rSVD, identify the optimal 

index, and provide validation checks of the proposed methodology. We stress that the purpose 

of this section is to illustrate the construction of the TASSYRI; it is not focussed on the 

economic meaning of the index we identify. For that reason, we first simply set ℎ = 0. The use 

of a predictive perspective with ℎ > 0  within the construction of the TASSYRI and the 

economic and financial implications are discussed in the following section, where in-depth, out-

of-sample analyses are developed. 

 

3.1 Empirically Building the Index of Systemic Risk Measures 

Table 1 shows the normalised Loadings 𝒙𝒙�𝑠𝑠 derived from the rSVD methodology for 

different values of the parameter 𝜆𝜆 (i.e., the turning points). We run all estimates using the 

systemic risk measures introduced in Section 2 and the full sample (from January 2000 to 

December 2017). For ease of reading, in Table 1 we report the indexes in columns, from the 
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sparsest to the largest corresponding to a classical PCA, and in rows the measures from the 

most to the less relevant. 

For the lowest value of 𝜆𝜆 (i.e., 𝜆𝜆 = 0) we consider that all measures are active in the 

dominant component since the penalisation does not operate. In that case, the rSVD corresponds 

to the first component of a classical PCA, as in Giglio et al. (2016). When 𝜆𝜆 =  .79, the number 

of active global systemic risk measures in the approximated first Principal Component is equal 

to 𝑑𝑑 =  1, and the selected index contains only the CoVaR (Adrian and Brunnermeier, 2016). 

At the other end, when 𝜆𝜆 increases from 0 to higher values, the constraint becomes tighter, and 

other systemic risk measures are discarded in the approximated first Principal Component. For 

illustration, when 𝜆𝜆 =  .75, four measures are active in the index (namely: M1: CoVaR, M2: 

VaR, M3: ∆CoVaR, M4: COES). 

 

Table 1 
Normalised Loadings 𝒙𝒙�𝑠𝑠 (see Equation 5) of the various aggregated indexes 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖).  

Notes: M1 to M16 represent the 𝑑𝑑 = [1, . . ,16] systemic risk measures and are in the following order: M1: CoVaR, 
M2: VaR, M3: ∆CoVaR, M4: COES, M5: MES, M6: Volatility, M7: CES, M8: Kyle’s Lambda, M9: SRISK, M10: 
AIM, M11: Spillover Index, M12: CATFIN, M13: AR, M14: Turbulence Index, M15: Herfindahl-Hirschman Index, 
M16: DCI. Id1 to Id16 represent the 16 TASSYRI according to the values of 𝜆𝜆 turning points reported in the first 
row, i.e., 𝑇𝑇𝑑𝑑𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖).  
 

 

𝜆𝜆𝑖𝑖 .79 .77 .75 .75 .75 .74 .73 .70 .63 .50 .40 .31 .17 .03 .02 .00 
Idi Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 
M1 1.00 .82 .70 .70 .69 .67 .64 .54 .43 .38 .36 .35 .34 .33 .32 .32 
M2 .00 .57 .61 .61 .61 .59 .58 .50 .42 .37 .36 .35 .33 .32 .32 .32 
M3 .00 .00 .38 .39 .39 .41 .42 .41 .38 .35 .34 .34 .33 .32 .32 .32 
M4 .00 .00 .00 .02 .02 .12 .17 .27 .31 .32 .32 .32 .31 .30 .30 .30 
M5 .00 .00 .00 .00 .00 .08 .15 .25 .31 .32 .32 .31 .31 .31 .30 .30 
M6 .00 .00 .00 .00 .00 .10 .15 .26 .31 .32 .32 .31 .31 .30 .30 .30 
M7 .00 .00 .00 .00 .00 .00 .09 .21 .29 .31 .31 .31 .31 .30 .30 .30 
M8 .00 .00 .00 .00 .00 .00 .00 .18 .27 .30 .31 .31 .30 .30 .30 .30 
M9 .00 .00 .00 .00 .00 .00 .00 .00 .21 .26 .28 .29 .29 .29 .29 .29 
M10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17 .21 .23 .24 .25 .25 .25 
M11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .09 .14 .18 .20 .20 .21 
M12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .07 .12 .16 .16 .16 
M13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .08 .12 .12 .13 
M14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .06 .06 .07 
M15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 
M16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 
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Figure 3 shows the dynamics of all 16 aggregate indexes of systemic risk obtained 

through the analysis of the main sparse components. We obtained these indexes for values of 

the smoothing parameter 𝜆𝜆 ranging from 𝜆𝜆16 =  0 to 𝜆𝜆1 = .79. 

Figure 3.  

Dynamics of the various 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖), with 𝜆𝜆𝑖𝑖 being turning points reported in legend.  

 

 

The dynamics of the indexes move between the two extremes: the CoVaR (Adrian and 

Brunnermeier, 2016) and the traditional first Principal Component. The addition of any extra 

systemic risk measure in the index increases its variability, even if a relevant fraction of the 

dynamic comes from the CoVaR. The latter is a consequence of the Loading vectors reported 

in Table 1, where we note that the weight of the CoVaR is always the largest across all 16 

different aggregated indexes. Notably, the second systemic risk measure, in terms of Loadings 

size, is the VaR, and the ∆CoVaR and the COES are, respectively, third and the fourth in terms 

of relevance. 

As illustrated in the previous section, the criterion for the selection of the optimal index 

is based on the rank provided by the 𝑈𝑈-statistic, which infers the existence of tail causality 
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between aggregated indexes of systemic risk and our proxy for measuring the real economic 

activity. 

 The results of causality tests for the different competing TASSYRI (denoted below Id1 

to Id16 for the sake of simplicity) are summarised in Table 2. The optimal index derived from 

the rSVD methodology is the aggregated index Id7, containing 7  systemic risk measures, 

namely, M1: CoVaR, M2: VaR, M3: ∆CoVaR, M4: COES, M5: MES, M6: Volatility and M7: 

CES. This index provides the best rank (indicated by 1 in the last line of Table 2), followed by 

the other specifications (Id8 and Id3-Id6). The index that includes all the systemic risk measures 

in the standard PCA proposed by Giglio et al. (2016) obtains a rank equal to 9 but other 

specifications (Id11-Id15) also have the same U-statistic, meaning that indexes with fewer 

measures have the same performance as that of the full index Id16, corresponding to a classical 

PCA. 

 
Table 2 
Causality tests in extreme movements - Indexes of Systemic Risk Measures targeting the Industrial 
Production Index.  

Notes: Datastream, daily data from 01/03/2001 to 12/29/2017; authors' computation. The Table shows 
the values of the 𝑈𝑈(10) statistic of Hong et al. (2009) for inference on causality from monthly values of 
each aggregated index to the monthly change in the Industrial Production Index (IPI). In bold are 
highlighted the highest statistics for the best index. The threshold for significance at nominal risk level 
of 5% is 1.96. Id1 to Id16 represent the 16 Indexes according to the values of 𝜆𝜆 turning points reported in 
the first row, i.e., 𝑇𝑇𝑑𝑑𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜆𝜆𝑖𝑖). 
 

3.2 Validation of the Index of Systemic Risk Measures Construction 

To validate the proposed approach, we perform a battery of tests to check whether the 

selection of the optimal index is driven by the informational content of the measures selected 

or only by the methodology itself. We consider three criteria related to 1) alternative 

 PCA SPCA 
𝜆𝜆𝑖𝑖 .79 .77 .75 .75 .75 .74 .73 .70 .63 .50 .40 .31 .17 .03 .02 .00 
Idi Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

U(10) 3.27 8.34 9.73 9.73 9.73 9.73 10.56 10.03 8.80 8.80 8.40 8.40 8.40 8.40 8.40 8.40 
Rank 16 15 3 3 3 3 1 2 7 7 9 9 9 9 9 9 
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penalisation methods; 2) alternative criteria for selecting the dimension-reduction approach; 

and 3) alternative frequency conversion rules for computing monthly indexes. 

Alternative Penalisation Methods 

Regarding the choice of the penalisation methodology, we further examine a variation 

of the penalty, in which LASSO, RIDGE, or Elastic-net penalties replace the rSVD. The four 

penalised regressions provide almost identical results and thus similarly lead to the construction 

of the same aggregated optimal index. Results are included in Web Appendix D.1.  

Alternative Criteria for Selecting the Dimension Reduction Approach 

We also consider alternative criteria to validate whether rSVD is preferred with respect 

to the classical PCA proposed by Giglio et al. (2016). In this respect, we consider the Kaiser 

criterion, which is a common choice in a PCA framework, as well as three information criteria 

(AIC, BIC, and SIC) and another indicator of the strength of the link between the aggregate 

systemic risk index and a measure of economic activity, namely, the Linear Granger Causality 

test (Granger, 1969), in addition to the tail Granger Causality test (Hong et al., 2009) we 

previously used. The findings are reported in Web Appendix D.2 and clearly show that: 1) the 

full PCA-related index is never selected as the optimal one; 2) the SPCA index is preferred in 

each considered case; 3) as predicted, the optimal index, depending on the chosen criterion, is 

in some cases more or less restrictive with respect to previously identified optimal Id7: 

sometimes only 1 and 2 variables are selected whilst often additional measures are highlighted, 

but with a maximum of 10 variables. 

Alternative Frequency Conversion Rules  

Finally, we check for differences in alternative aggregation rules for the monthly 

TASSYRI computed with daily systemic risk measures. More specifically, since the target 

variables have monthly frequency, the issue of averaging arises in a mixed-frequency setting. 
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Accordingly, we may select: 1) averaging first using the monthly SRM (averaged before 

entering into the rSVD); 2) averaging then by aggregating the daily TASSYRI to a monthly 

frequency (as for the actual version of the TASSYRI); or 3) using the last value of daily SRM 

for computing the last TASSYRI at daily frequency to target the economic variable one month 

ahead. The three methods lead to similar results (with coefficients of extreme correlation 

between the variants of the various resulting indexes close to 100%); therefore, we can conclude 

that the averaging process has almost no effect on the proposed outcome.13 

 

4. Systemic Risk and Economic Activity: TASSYRI and the Prediction of Downturns  

We now focus on the out-of-sample predictive ability of our methodology over severe 

economic downturns and consider a set of economic target variables and a number of relevant 

control variables. From a methodological standpoint, we associate severe variation with the 

lower tails of the shocks hitting the target variable and thus adopt a quantile regression 

framework to predict a lower quantile of the target variable, using the TASSYRI lagged level 

as a predictor.  

Consistently with Giglio et al. (2016), we consider macroeconomic shocks14 on a set of 

alternative measures of economic activity, such as: 1) the Industrial Production Index (IPI); 2) 

the Chicago Fed National Activity Index (CFNAI); 3) the Aruoba-Diebold-Scotti Business 

Conditions Index (ADSI) introduced by Aruoba et al. (2009); 4) the New Privately Owned 

Housing Units Started (HOUST); 5) the Advance Retail Sales Excluding Food Services 

(RSXFS); 6) the Total Nonfarm Payrolls–All Employees (PAYEMS); 7) the Total Capacity 

 
13 Robustness checks on this point are available upon request to the authors. We are indebted to an anonymous 
referee for making the suggestion to further study, outside the IPI and CFNAI, the various proxies listed here. 
14 Macroeconomic shocks for a given economic proxy of real economic activity are obtained by removing the 
predictable component deriving from the own past values of the analysed variable; see Stock and Watson (2012) 
and Giglio et al. (2016).  
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Utilisation (TCU); 8) Total Vehicle Sales (TOTALSA); 9) Manufacturers' Value of Shipments 

on Durable Goods (AMDMVS); 10) Manufacturers' New Orders on Durable Goods 

(DGORDER); 11) Manufacturers–Inventories to Sales Ratio (IRSA); 12) Retail Sales on 

Furniture and Home Furnishings Stores (RSFHFS); and 13) the unemployment rate 

(UNRATE). We link the movements in the TASSYRI with the changes in the previously listed 

variables. 

We also include a set of control variables: 1) the Economic Policy Uncertainty Index 

(EPU) and the Equity Market-related Economic Uncertainty Index (EMEUI) by Baker et al. 

(2016); 2) two Term Spreads15; 3) the TED spread; 4) the Default Spread (BAA10Y); and 5) 

the Consumer Sentiment of the University of Michigan (CSUM). Consistently with the target 

variables reported above, we include levels of the control variables in the analysis. 

We compare the information contained in two TASSYRI (associated with the first and 

second regularised Principal Components, TASSYRI1 and TASSYRI2, respectively)16 to three 

alternatives proposed by Giglio et al. (2016), namely, the first and second Principal Components 

coming from the Principal Components Quantile Regressions (PCQR1 and PCQR2, 

respectively) and the Partial Quantile Regression (PQR), which is an adaptation to the quantile 

regression framework of the Three-Pass Regression Filter (3PRF) proposed by Kelly and Pruitt 

(2015). We suppress the dependence on the tuning parameter in both TASSYRI and analyse 

the sparsity of the index in a specific subsection. Moreover, consistently with our discussion at 

the end of Section 2, we now focus on optimal TASSYRI identified on an adaptive basis for 

each target variable (and not only considering the IPI, as previously) and for predictive horizons 

ranging from 1 to 12 steps ahead (i.e., in Equation 5 we set ℎ to a value from 1 to 12, coherently 

 
15 We consider the 10-Year Treasury Constant Maturity minus 3-Month Treasury Constant Maturity and the 10-
Year Treasury Constant Maturity minus 2-Year Treasury Constant Maturity. 
16 This choice is equivalent to Giglio et al. (2016) that considers two Principal Component Quantile Regression 
indexes, i.e., PCQR1 and PCQR2. 
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with the predictive horizon defined below). We stress that for each target variable and predictive 

horizon, we have two TASSYRI, as we sparsify the first and second Principal Components by 

resorting to rSVD. 

Accordingly, the out-of-sample analysis is conceived in a quantile regression setting 

with alternative horizons ℎ, from 1 to 12 months:17 

Q1,𝑡𝑡+ℎ
𝑖𝑖 (𝛼𝛼;𝜽𝜽1) = 𝜔𝜔 + 𝜗𝜗𝑗𝑗𝑋𝑋𝑡𝑡

𝑗𝑗 + 𝜁𝜁𝑤𝑤 𝑒𝑒𝑡𝑡, (10) 

where Q1,𝑡𝑡+ℎ
𝑖𝑖 (𝛼𝛼;𝜽𝜽1) is the conditional 𝛼𝛼-quantile of the monthly change in the i-th measure of 

economic activity, denoted 𝑦𝑦𝑡𝑡+ℎ𝑖𝑖  at horizon ℎ, 𝑋𝑋𝑡𝑡
𝑗𝑗 is the level of the j-th predictor at time t (i.e., 

one among TASSYRI1, TASSYRI2, PCQR1, PCQR2, or PQR), and 𝜗𝜗𝑗𝑗  is the associated 

regression coefficient. Moreover, in model (10), we allow for the impact of control variables. 

However, as we are performing a quantile regression at a monthly frequency with limited 

sample size, we summarise the informative content of control variables by making use of the 

standard PCA, and we introduce in the model the first principal component extracted from a set 

of control variables, 𝑒𝑒𝑡𝑡; 𝜁𝜁𝑤𝑤  the associated coefficient. As previously discussed, we set 𝛼𝛼 equal 

to 20% following Giglio et al. (2016). Note that the indexes TASSYRI1 and TASSYRI2 are 

tailored to the target variable 𝑦𝑦𝑡𝑡+ℎ𝑖𝑖 ; thus, for different 𝑑𝑑 and different ℎ, distinct TASSYRI will 

be used. Conversely, PCQR1, PCQR2, and PQR are independent of the target variable and 

predictive horizon and are invariant over 𝑑𝑑 and ℎ. 

  At a given horizon and for each measure of economic activity, we obtain a series of the 

predicted out-of-sample quantiles according to the selected predictors (e.g., the TASSYRI and 

control variables and the PCQR/PQR indexes and control variables). For each case, we compute 

the out-of-sample quantile pseudo-𝑇𝑇2 as in Koenker and Machado (1999). We denote it as 𝑇𝑇𝑖𝑖𝑗𝑗2 , 

 
17 Giglio et al. (2016) focus in their studies on the case where h=1. 
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where 𝑑𝑑 identifies the target variable and 𝑗𝑗 the predictor. We evaluate the pseudo-𝑇𝑇2 using the 

following equation: 

𝑇𝑇𝑖𝑖𝑗𝑗2 = 1 −
1
𝑇𝑇∑ �𝜌𝜌𝛼𝛼�𝑦𝑦𝑡𝑡+ℎ𝑖𝑖  −  𝜔𝜔�  −  𝜗𝜗𝚥𝚥�𝑋𝑋𝑡𝑡

𝑗𝑗 − 𝜁𝜁𝑤𝑤 𝑒𝑒𝑡𝑡��𝑡𝑡

1
𝑇𝑇∑ �𝜌𝜌𝛼𝛼�𝑦𝑦𝑡𝑡+ℎ𝑖𝑖 −  𝜔𝜔�  − 𝜁𝜁𝑤𝑤 𝑒𝑒𝑡𝑡��𝑡𝑡

, (11) 

where 𝜌𝜌𝛼𝛼(𝑢𝑢) = 𝑢𝑢 × �𝛼𝛼 − 𝕀𝕀{𝑢𝑢<0}�, with 𝕀𝕀{.} the indicator function, is the tick loss function of 

Koenker and Bassett (1978). The pseudo-𝑇𝑇2  builds on a ratio between two losses: at the 

numerator, the loss of the proposed model taking into account the systemic risk index under 

evaluation, and at the denominator, the loss of the baseline model, which is the reference 

benchmark to be improved.  

 Note that parameters with hats in Equation (11) identify estimated quantities, and we 

stress that the pseudo-𝑇𝑇2 is evaluated out-of-sample. Also note that unlike the usual approach 

adopted for evaluating the quantile regression pseudo-𝑇𝑇2 as in Giglio et al. (2016), we do not 

consider the unconditional quantile as the benchmark model but rather the model with only the 

control variables plus a constant (the baseline case).18 In that respect, we compute the predicted 

out-of-sample quantiles of the corresponding baseline model for each measure of economic 

activity considered at a given horizon. Therefore, the loss at the numerator of Equation (11) 

refers to the use of conditioning information coming from the predictor and controls relative to 

the loss at the denominator coming from controls only. Consistently with the quantile regression 

literature, the out-of-sample 𝑇𝑇𝑖𝑖𝑗𝑗2  is negative when the information coming from the denominator 

provides a better forecast with respect to the numerator (i.e., the numerator is larger than the 

denominator). Following Diebold and Mariano (1995), the statistical significance for the out-

of-sample estimates is then obtained by evaluating the quantile forecast losses, 𝜌𝜌𝛼𝛼�𝑦𝑦𝑡𝑡+ℎ𝑖𝑖  −

 
18 We are indebted to one of the anonymous referees for this suggestion. 
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 𝜔𝜔�  −  𝜗𝜗𝚥𝚥�𝑋𝑋𝑡𝑡
𝑗𝑗 − 𝜁𝜁𝑤𝑤 𝑒𝑒𝑡𝑡� and 𝜌𝜌𝛼𝛼�𝑦𝑦𝑡𝑡+ℎ𝑖𝑖 −  𝜔𝜔�  − 𝜁𝜁𝑤𝑤 𝑒𝑒𝑡𝑡�, as in Giglio et al. (2016). We implement the 

modified test proposed by Harvey et al. (1997), which overcomes the issues that might emerge 

in small samples, especially with somewhat long forecast horizons (as in our case, in which the 

largest horizon is one year). The testing approach we adopt thus allows us to identify in which 

cases the various systemic risk indexes (namely: TASSYR1, TASSYR2, PCQR1, PCQR2, and 

PQR) are an improvement over the baseline case, which contains only the control variables. 

 We run our forecasting exercise following the usual back-testing process to deal with 

the look-ahead bias. We choose an expanding window approach, where the predictors 

(TASSYR1, TASSYR2, PCQR1, PCQR2, and PQR) are built recursively in each time frame, 

using all the information available at a given point in time.19 This implies that the degree of 

sparsity is time-varying, and that the selection of the systemic risk measure also vary over time. 

Accordingly, the TASSYRI are dynamically built in each window following the procedure 

presented in Section 2.3 and are based on the economic target variable to be forecast, i.e., the 

TASSYRI are adapted to the proxy of economic activity we consider and the prediction horizon 

ℎ. The out-of-sample period begins in January 2006, after having selected the initial window 

with a length of 60 observations. For the sake of comparison and clarity, we summarise here 

the results by reporting the percentage of significant 𝑇𝑇2 over the total for: 1) each considered 

proxy of real economic activity and thus aggregating on the forecasting horizons; and 2) on a 

given forecasting horizon and thus aggregating on the proxies of economic activity. Details of 

the results are reported in Web Appendix E. 

Table 3 reports the percentage of significant 𝑇𝑇2 for all the economic target variables on 

all the forecast horizons with a 10% significance level. We see first that overall (first column), 

the TASSYRI1 and the TASSYRI2 provide the highest percentage of significant 𝑇𝑇2 (28%), 

 
19 The same applies to the predictors that are based on the set of systemic risk measures built using a rolling 
approach (Billio et al., 2012; Giglio et al., 2016). 
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followed by the PCQR2 (21%), PCQR2 (16%), and PQR (4%). Regarding the Industrial 

Production Index (IPI), TASSYRI2 and PCQR1 reach the highest percentage (25%) of the 

significant 𝑇𝑇2, followed by TASSYRI1 (17%), PCQR2, and PQR (8%).20 The PCQR1 gives the 

highest percentage of significant 𝑇𝑇2  (33%) for the Chicago Fed National Activity Index 

(CFNAI), followed by the TASSYRI1 (17%).21 The TASSYRI1 gets the highest percentage of 

significant 𝑇𝑇2  (58%) for the Aruoba-Diebold-Scotti Business Conditions Index (ADSI), 

followed by the PCQR1 (42%). Again, the TASSYRI1 has the best performance (42%) for the 

New Privately Owned Housing Units Started variable (HOUST), followed by PCQR2 (33%), 

PQR (25%), PCQR1, and TASSYRI2 (17%). Regarding the Advance Retail Sales Excluding 

Food Services variable (RSXFS), the TASSYRI2 leads with the highest percentage of 

significant 𝑇𝑇2  (42%), followed by TASSYRI1 (33%). Focusing on the Total Vehicle Sales 

figures (TOTALSA), the Manufacturers' Value of Shipments on Durable Goods index 

(AMDMVS) and the Retail Sales on Furniture and Home Furnishings Stores (RSFHFS), the 

TASSYRI1 exhibits the highest percentage (25%) of the significant 𝑇𝑇2  followed by the 

TASSYRI2. On the other side, the TASSYRI2 provides the highest 𝑇𝑇2 for the Manufacturers' 

New Orders on Durable Goods variable (DGORDER) and the Unemployment Rate 

(UNRATE). Finally, the results for the Total Capacity Utilisation indicator (TCU) are equal for 

TASSYRI1, TASSYRI2, and PCQR1 (17%).  

Conversely, however, it is the PCQR2 that gives the higher significant percentage of 𝑇𝑇2 

for predictions on the Total Nonfarm Payrolls–All Employees figures (PAYEMS), with a value 

of 50%, followed by the TASSYRI1 (25%), PCQR1 (17%), and PQR (0%). Finally, the PCQR1 

and the PCQR2 show the highest percentage of significant 𝑇𝑇2 (75%) for the Manufacturers–

 
20 We have also considered the Vintage series for IPI.  Results are included in Web Appendix E (Table E.18–E.20), 
and it happens that using the Vintage series led to similar results.  
21 The results for the CFNAI subcomponents are included in Web Appendix E (Table E.3–E.6). 
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Inventories to Sales Ratio (IRSA), followed by TASSYRI2 and TASSYRI1 (67% and 58%, 

respectively). 

Second, as already shown in the empirical analysis of Giglio et al. (2016), there is no 

index or systemic risk measure that performs better than the baseline case (i.e., with only control 

variables) across all target variables. For instance, Giglio et al. (2016) find weak to no 

forecasting ability of PCQR1, PCQR2, and PQR for the Chicago Fed National Activity Index 

(CFNAI) and its subcomponents, while some systemic risk measures, such as the CATastrophic 

risk in the FINancial sector (CATFIN), for instance, perform well in several instances.22  

Third, by extending the forecasting horizons up to 12 periods, we show that when 

averaging the results on horizons, the TASSYR1 allows for superior forecasts for the Aruoba-

Diebold-Scotti Business Conditions Index (ADSI), the New Privately Owned Housing Units 

Started variable (HOUST), the Total Vehicle Sales figures (TOTALSA), the Manufacturers' 

Value of Shipments on Durable Goods index (AMDMVS), and the Retail Sales on Furniture 

and Home Furnishings Stores index (RSFHFS). The TASSYR2 instead provides better forecasts 

for the Advance Retail Sales Excluding Food Services variable (RSXFS), the Manufacturers' 

New Orders on Durable Goods variable (DGORDER), and the Unemployment Rate 

(UNRATE). Finally, summarising the results, it happens that TASSYR1 is ranked first in terms 

of percentage of significant 𝑇𝑇2  (among the 5 alternatives) for 6 of the 13 target variables 

considered, followed by TASSYR2 (4), PCQR1 (3) and PCQR2 (2), and, finally, PQR (0). 

Table 4 presents the overall 20th percentile shock forecasts in each horizon for a given Index of 

Systemic Risk Measures. Interestingly, the PQR provides the best forecast at horizon 1, 

consistently with the findings of Giglio et al. (2016). Moving to the longer horizons, the 

TASSYR1 and TASSYR2 show the best performance in every case except for horizons 10 and 

 
22 See Table 3 on page 464 in Giglio et al. (2016). 
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11, where the PCQR1 provides a better performance. It is worth noting that in those cases, the 

improvement of TASSYR1 versus PCQR1 is on average larger than 30%, while is larger than 

39% for TASSYR2 against PCQR2. Therefore, the combination of targeting and sparsity 

represents a valuable tool that can improve the forecasting ability of the systemic risk index 

with respect to the full case represented by methods combining all of the available risk 

measures.
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Table 3. 
The table reports the fraction of cases over the forecast horizons (1 to 12 months) where the aggregated index over the rows provides a statistically significant 
R2 with a 10% significance level compared to the baseline quantile model including only the controls.  

 Overall IPI CFNAI ADS HOUST RSXFS PAYEMS TCU TOTALSA AMDMVS DGORDER IRSA RSFHFS UNRATE 
TASSYRI1 28% 17% 17% 58% 25% 33% 17% 17% 25% 42% 8% 58% 42% 8% 
TASSYRI2 28% 25% 8% 25% 0% 42% 25% 17% 17% 33% 17% 67% 33% 50% 

PCQR1 21% 25% 33% 42% 17% 0% 17% 17% 0% 25% 0% 75% 8% 17% 
PCQR2 16% 8% 0% 17% 0% 8% 50% 0% 0% 0% 0% 75% 8% 42% 

PQR 4% 8% 0% 0% 0% 0% 0% 8% 0% 0% 0% 17% 0% 17% 

Notes: We focus on the 20th percentile shock forecasts for changes in the target variables reported over columns. The Overall column aggregates the results 
across the target variables. Over rows we have: the Index of Systemic Risk Measures replicating the first Principal Component (TASSYRI1) and the two first 
Principal Components (TASSYRI2); the first and second Principal Components from the Principal Components Quantile Regressions (denoted PCQR1 and 
PCQR2, respectively); and the Partial Quantile Regression (PQR) proposed in Giglio et al. (2016). The target variables are: i) the Industrial Production Index 
(IPI); ii) the Chicago Fed National Activity Index (CFNAI); iii) the Aruoba-Diebold-Scotti Business Conditions Index (ADSI); iv) the New Privately Owned 
Housing Units Started (HOUST); v) the Advance Retail Sales Excluding Food Services (RSXFS); vi) the Total Nonfarm Payrolls–All Employees (PAYEMS); 
vii) the Total Capacity Utilisation (TCU); viii) Total Vehicle Sales (TOTALSA); ix) Manufacturers' Value of Shipments on Durable Goods (AMDMVS); x) 
Manufacturers' New Orders on Durable Goods (DGORDER); xi) Manufacturers–Inventories to Sales Ratio (IRSA); xii) Retail Sales on Furniture and Home 
Furnishings Stores (RSFHFS); and xiii) the unemployment rate (UNRATE). 
 
Table 4. 
The table reports the fraction of cases over the target variables where the aggregated index over the rows provides a statistically significant R2 with a 10% 
significance level compared to the baseline quantile model including only the controls.  

  h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 
TASSYRI1 8% 8% 17% 17% 8% 25% 17% 58% 58% 42% 50% 58% 
TASSYRI2 8% 8% 25% 8% 8% 0% 42% 67% 75% 33% 42% 42% 

PCQR1 8% 0% 8% 8% 0% 17% 8% 25% 33% 67% 58% 42% 
PCQR2 8% 0% 8% 8% 8% 17% 17% 25% 25% 33% 42% 17% 

PQR 25% 0% 0% 0% 8% 0% 0% 8% 0% 0% 0% 8% 

Notes: We focus on the 20th percentile shock forecasts for changes in the target variables. The table corresponds to the split over forecast horizons of the results 
in the Overall column of Table 3. Over rows we have: the Index of Systemic Risk Measures replicating the first Principal Component (TASSYRI1) and the two 
first Principal Components (TASSYRI2); the first and second Principal Components from the Principal Components Quantile Regressions (PCQR1 and PCQR2); 
and the Partial Quantile Regression (PQR). 
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As a robustness check, we have also changed the initial bandwidth for the starting date 

in the forecasting exercise by selecting January 2004, January 2005, and January 2007. The 

results are included in Web Appendix E and are qualitatively similar to those reported here. We 

also run a set of additional robustness analyses23 by replacing the pseudo-𝑇𝑇2 with other loss 

functions (Lopez, 1999; Caporin, 2008). The results confirm the previous evidence and are in 

line with the findings of Giglio et al. (2016), showing that an optimal aggregated index with the 

best predictive performance over all forecast horizons and all target variables does not exist. 

 

Comparing systemic risk indexes and the control variables case 

The analyses reported above, despite being informative on the predictive advantage of a tailored 

TASSYRI (designed for each target economic variable), do not represent a proper horse-race 

against alternative aggregated indexes, namely PCQR and PQR. This is a consequence of the 

choice of introducing in the analyses a set of control variables that allows for definition of a 

reference specification not dependent on aggregated systemic risk indexes. We believe that 

before moving to a direct comparison between aggregated indexes, we should consider if a 

direct comparison is appropriate. In fact, a horse-race evaluation between two aggregated 

indexes is informative if the indexes forecasting ability is, for different target variables and 

forecast horizons, superior to the prediction obtained by using only control variables. Thus, we 

report in Figure 4 a comparison between selected pairs of aggregated indexes, namely 

TASSYRI1 vs. PCQR1 (i.e., SPCA vs. classical PCA), TASSYRI1 vs. PQR, TASSYRI2 vs. 

PCQR2, and TASSYRI2 vs. PQR.24 For each pair, still focusing on the statistical significance 

of the 𝑇𝑇2 (with respect to the baseline case with control variables only), we track the following: 

 
23 All results are available upon request. 
24  We exclude the comparison between aggregated indexes associated with different principal factors, i.e., 
TASSYRI1 vs. TASSYRI2, PCQR1 vs. PCQR2, TASSYRI1 vs. PCQR2, and ISMR2 vs. PCQR1. For the same 
reason, we also do not report the comparisons between PQR, PCQR1, and PCQR2.  
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1) the number of cases in which both indexes do not improve the forecasting performance over 

the baseline model with only controls (i.e., the 𝑇𝑇2 related to the indexes are both not statistically 

significant); 2) the cases where both indexes do improve with respect to the baseline case (i.e., 

both 𝑇𝑇2 are statistically significant); 3) the number of cases in which a TASSYRI improves 

over the baseline and the PCQR/PQR does not improve; and 4) the opposite of case 3, i.e., the 

number of cases in which the PCQR/PQR related index improves over the baseline and 

TASSYRI does not improve. 

Figure 4. 
Pairwise 𝑇𝑇2 comparison among the TASSYRI indexes and the PCQR or PQR indexes at each horizon 
and over all horizons, aggregative outcomes with respect to all the considered proxies of real economic 
activity.  

  

  

Notes: The comparison includes four cases: 1) both indexes do not provide a forecast gain with respect 
to the benchmark (grey); 2) both indexes do provide a forecast gain with respect to the benchmark (blue); 
3) the TASSYRI provides a forecast gain with respect to the benchmark, while neither the PCQR nor 
PQR do (green); and iv) the PCQR or PQR provides a forecast gain with respect to the benchmark, while 
the TASSYRI does not (red). The forecast gain corresponds to a 𝑇𝑇2 value at a 10% significance level 
when contrasting the aggregate index to a baseline specification including only control variables. 
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The number of cases where the models do not provide any forecast improvement with 

respect to the adoption of a model based only on control variables (case 1) above) is generally 

large. In this scenario, the composite indexes could have an 𝑇𝑇2  equivalent or statistically 

inferior to that of the baseline case. As shown in Appendix F (Figure F.1), the former realises: 

the two compared indexes are providing, in almost all cases, predictive performances equivalent 

(and not inferior) to those of the specification with only the controls. In addition, we observe 

different patterns over the prediction horizons. In fact, for shorter horizons, we note only minor 

improvements to the baseline case. Notably, and consistent with the evidence in Giglio et al. 

(2016), the PQR provides some better results (see right panels of Figure 4 for h=1). The 

behaviour changes when focusing on the longer horizons, where the percentage of cases in 

which the aggregated indexes outperform the baseline specification clearly increases. We note 

that TASSYRI1 and TASSYRI2 do dominate occasionally over PCQR1 and PCQR2, 

respectively. However, PCRQ1 and PCQR2 also outperform, in some cases, the corresponding 

TASSYRI; this happens, in particular, when focusing only on the first Principal Component 

(TASSYRI1 vs PCQR1) at horizons 9, 10, and 11. Conversely, TASSYRI1 and TASSYRI2 do 

provide sensibly better performances than PQR (right panels of Figure 4 for h>6), but the 

fraction of cases where the aggregated indexes dominate the model with only controls peaks 

around 50%. 

On the one hand, the different behaviour of TASSYRI, PCQR, and PQR depends on the 

features of our approach, features that are adaptive and related to specific target variables and 

specific various predictive horizons. This flexibility, overall, leads to better performance 

relative to fixed indexes. On the other hand, the fact that the indexes outperform the baseline 

model only in a fraction of the total number of cases limits the insight one might obtain from a 

proper horse-race comparison between models. In fact, an informative horse-race should focus 

only on the cases where both aggregated indexes over-perform the baseline specification. 



M. Caporin, M. Costola, J.-C. Garibal, B. Maillet  

36 
 

However, as our evidence shows, those cases represent only a fraction of all the combinations 

of horizons and target variables we study.25 

 

The role of sparsity 

To highlight the positive impact of sparsity combined with targeting as a more flexible approach 

than the classical PCA, we provide graphical evaluation of the systemic risk measures selected 

for the out-of-sample construction of TASSYRI1. We consider three proxies of real economic 

activity and three horizons (i.e., values of h), leading to a different level of sparsification in the 

associated TASSYRI1 indexes, reminding that the various TASSYRI are target-variable 

specific, i.e., their composition depends on the variable we adopt to track the economic activity. 

In our example, we consider the Retail Sales on Furniture and Home Furnishings Stores index 

(RSFHFS) at horizon h=12, the New Privately Owned Housing Units Started variable 

(HOUST) at horizon h=4, and the Total Nonfarm Payrolls–All Employees figures (PAYEMS) 

at horizon h=9. Figure 5 reports the TASSYRI1 composition for the period considered. It 

appears in these situations that RSFHFS forecast (respectively, the HOUST, the PAYEMS) 

goes with a high-level of sparsity (respectively, mid-level of sparsity, low-level of sparsity) 

since few systemic measures are selected (respectively, a few, many). The different level of 

sparsification can also be viewed in Table 5, where we report the average, the standard 

deviation, and the average turnover26 of the selected systemic risk measures. In fact, we observe 

that the sparsity levels (row 1) are negatively related to the statistics (rows 2–4).  

 

 
25 For the sake of completeness, we report in Appendix F, Figure F.2 the direct comparison between TASSYRI 
and PCQR/PQR, irrespective of the fact the models under/over-perform the baseline case with only controls. We 
stress that the use of the R2 is in this case rather inappropriate as this index is designed for the comparison of nested 
models, but the statistical test adopted by Giglio et al. (2016) could still be used. The figure shows that the 
TASSYRI has performances somewhat inferior to PCQR and somewhat superior to PQR. Nevertheless, the 
number of cases where the indexes are statistically equivalent dominates. 
26 The turnover is defined as the percentage of change in the selection of the systemic risk measures for the 
TASSYRI1 with respect to the previous period. 
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Figure 5.  
The selected systemic measures in each time frame for the TASSYRI1 according to the proxy of real 
economic activity at the specified horizon. The index is built recursively to perform the out-of-sample 
forecasting evaluation.  

Notes: Panel a) The Retail Sales on Furniture and Home Furnishings Stores index (RSFHFS) at horizon 
h=12 (high-level of sparsity); Panel b) The New Privately Owned Housing Units Started variable 
(HOUST) at horizon h=4 (mid-level of sparsity); and Panel c) The Total Nonfarm Payrolls – All 
Employees figures (PAYEMS) at horizon h= 9 (low-level of sparsity). 
 
 
Table 5. 
Descriptive statistics of the TASSYRI1 selected systemic risk measures over the period.  

 (a) (b) (c) 
 RSFHFS HOUST PAYEMS 
Sparsity High Medium Low 
Average selected 2.11 5.14 8.01 
Std Dev selected 3.16 4.30 5.54 
Average Turnover 5.94% 6.73% 7.65% 

Notes: For the selected systemic risk measures, the table reports the average (average selected 
measures), the standard deviation (Std Dev selected measures), and the average turnover. Column (a): 
The Retail Sales on Furniture and Home Furnishings Stores index (RSFHFS) at horizon h=12 (high-
level of sparsity); Column (b): The New Privately Owned Housing Units Started variable (HOUST) at 
horizon h=4 (mid-level of sparsity); and Column (c): The Total Nonfarm Payrolls–All Employees 
figures (PAYEMS) at horizon h=9 (low-level of sparsity).  

 
a) RSFHFS (high-level of sparsity)  

b) HOUST (mid-level of sparsity) 

 
c) PAYEMS (low-level of sparsity) 
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Finally, to monitor the strength of the relation between the degree of sparsity and the 

forecast performances of the TASSYRI, we compare the out-of-sample quantile forecasts for 

the three indexes considered in the graphical illustration. The closest competitor of TASSYRI1 

is, in these three cases, the PCQR1, i.e., the first Principal Component of the classical PCA 

taking into account all the systemic risk measures. Table 6 reports the out-of-sample quantile 

forecast pseudo-𝑇𝑇2 relative to the baseline quantile model using only control variables.27  

Table 6. 

Overall 20th percentile shock forecasts for the RSFHFS at horizon 12 (high-level of sparsity), the 
HOUST at horizon 4 (medium-level of sparsity), and the PAYEMS at horizon 9 (low-level of sparsity).  

 (a) (b) (c) 

Sparsity 
RSFHFS  

High 
HOUST 
 Medium 

PAYEMS  
Low 

TASSYRI1 0.039**  0.038** 0.033*** 
TASSYRI2 0.058**  0.012 0.05* 
PCQR1 0.023  0.0054 0.029 
PCQR2 0.020  0.022 0.066** 
PQR 0.003 -0.0082 0.028 

Notes: The table reports the out-of-sample quantile forecast 𝑇𝑇2 (in percentage) relative to the baseline 
quantile model including only the controls for the Indexes of Systemic Risk Measures replicating the 
first Principal Component (TASSYRI1), the first two Principal Components (TASSYRI2), the first and 
second Principal Components from the Principal Components Quantile Regressions (PCQR1 and 
PCQR2), and the Partial Quantile Regression (PQR). Column (a): The Retail Sales on Furniture and 
Home Furnishings Stores index (RSFHFS) at horizon ℎ = 12 (high-level of sparsity); Column (b): The 
New Privately Owned Housing Units Started variable (HOUST) at horizon ℎ = 4 (medium-level of 
sparsity); and Column (c): The Total Nonfarm Payrolls–All Employees figures (PAYEMS) at horizon 
ℎ = 9 (low-level of sparsity). Statistical significance at the 10%, 5%, and 1% levels are denoted by ∗, 
∗∗, and ∗∗∗, respectively.  

 

The TASSYRI1 provides a significant 𝑇𝑇2 for all three proxies of real economic activity, 

while the PCQR1 does not exhibit a significant 𝑇𝑇2. This indicates that TASSYRI1 improves 

over the baseline case and PCQR1 does not. These examples highlight how sparsity combined 

with the flexibility of our approach, where the TASSYRI is tailored to the target economic 

variable and forecast horizon, can improve the prediction of those economic variables. In this 

respect, the TASSYRI1 overcomes the disadvantage of PCQR1, where the Principal Component 

 
27 The full results for all the proxies of real economic activity are included in Web Appendix E (Table E1–E17). 
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is a linear combination of all the considered systemic risk measures and the index is unique for 

all target variables and forecast horizons. As stated by Giglio et al. (2016), the index might be 

understood as an imperfect version of “an unobservable systemic risk factor.” A cross-sectional 

dimension reduction can enhance the forecasting power of single systemic risk measures by 

aggregating the relevant informative content. We take our proposed analysis one step further, 

as the unobservable risk factor might be associated with only a subset of the available systemic 

risk measures. The inclusion of irrelevant information drivers in the set of systemic risk 

measures leads to an increase in noise, with an impact on the forecast performance of the 

aggregate measure. Moreover, as the systemic risk factor might impact in different ways the 

various measures of economic activities and with different intensity over time, the introduction 

of tailored systemic risk indexes acts as a clear advantage. Finally, our empirical evidence 

shows that the ability of those imperfect measures of systemic risk may also vary over time, 

and the adoption of a rigid combination approach may not prove optimal. 

 

On the Systemic Risk Measures in the TASSYRI 

Finally, we consider the systemic risk measures that are included in the TASSYRI 

within the out-of-sample analysis in order to check if there exists a set of systemic risk measures 

that are more selected than others during the period under study. In this respect, Figure 6 shows 

the frequency of the selected systemic risk measures for each proxy of real economic activity 

across the 12 forecast horizons.28 

Interestingly, a set of five measures emerge (red coloured bars in Figure 6) that are most 

often selected by the sparse and targeting approach for TASSYRI construction. Those measures 

 
28 Results for a given proxy of real economic activity at a given time horizon are available upon request.  
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are the VaR, the CoVaR, and the ∆CoVaR (Adrian and Brunnermeier, 2016); the MES 

(Acharya et al., 2012); and the CES (Banulescu & Dumitrescu, 2015). 

It is worth noting that all those five systemic risk measures represent the risk dimension 

of financial losses and are derived by two central measures that play a pivotal role in risk 

management: The Value-at-Risk (VaR) and the Expected Shortfall (ES). Furthermore, the 

frequency of the selected systemic risk measures shows a similar behaviour also for the less 

selected systemic risk measures. Those are the Dynamic Causality Index (Billio et al., 2012), 

the Amihud Illiquidity Measure (Amihud, 2002), and the Turbulence Index (Kritzman and Li, 

2010). The evidence we provide gives clear indication that the most relevant information related 

to the systemic risk is included in a small subset of the systemic risk measures. This further 

supports our proposal for a sparse and targeted systemic risk index. For instance, the VaR and 

CoVaR are selected approximately 80% of the time. The only exception is for the PAYEMS 

where the COES (Adrian and Brunnermeier, 2016) is selected instead of the MES.29 

 
29 We select five measures by looking at the patterns in Figure 6, where we note in several cases a drop in the 
frequency of most selected measures between the fifth and the sixth measures.  
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Figure 6.  
The frequency of the selected systemic risk measures for the considered proxy of economic variables.  
 

 
IPI 

 
CFNAI 

 
ADSI  

HOUST 

 
RSXFS 

 
PAYEMS 

 
TCU 

 
TOTALSA 
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DGORDER 

 
IRSA 

 
UNRATE 

Notes: The red bar colour highlights the five most selected systemic risk measures for all the considered horizons in the period.  
The target variables are: i) the Industrial Production Index (IPI); ii) the Chicago Fed National Activity Index (CFNAI); iii) the Aruoba-Diebold-Scotti Business Conditions Index (ADSI); 
iv) the New Privately Owned Housing Units Started (HOUST); v) the Advance Retail Sales Excluding Food Services (RSXFS); vi) the Total Nonfarm Payrolls–All Employees (PAYEMS); 
vii) the Total Capacity Utilisation (TCU); viii) Total Vehicle Sales (TOTALSA); ix) Manufacturers' Value of Shipments on Durable Goods (AMDMVS); x) Manufacturers' New Orders on 
Durable Goods (DGORDER); xi) Manufacturers–Inventories to Sales Ratio (IRSA); and xii) the unemployment rate (UNRATE). 
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Conclusion 

 This article introduces a novel approach to identify an aggregate measure of systemic 

risk, focusing on the left tail of an economic proxy at a given forecasting horizon. Our proposal 

complements and extends the literature on systemic risk and its non-linear association with 

economic downturns. The possibility of identifying an optimal subset of systemic risk metrics 

closely connected with a proxy of economic activity is a distinctive feature of our approach. 

The methodology allows us to account for the time-varying systemic risk-real economy nexus, 

which may further depend on the forecasting horizon. Our findings show that the ideal 

combination of systemic risk metrics may be time-varying; hence the adoption of a rigid 

combination approach might not be optimal. Sparsity and targeting result in superior forecasting 

ability with respect to the full information case, especially for forecasting horizons ranging 

above one month and up to one year. As with Giglio et al. (2016), we find no evidence that a 

specific combination of systemic risk measures dominates all others. Moreover, our analyses 

clearly highlight that most of the relevant systemic information is captured by five systemic 

risk measures, namely: the VaR, the CoVaR, and the ∆CoVaR (Adrian and Brunnermeier, 

2016); the MES (Acharya et al., 2012); and the CES (Banulescu and Dumitrescu, 2015). 

Finally, regular monitoring of the index of systemic risk measures can serve as a 

complementary guideline to assess market conditions and the dynamics of the overall systemic 

risk as an early warning indicator (Billio et al., 2016; Engle, 2018) targeted to specific economic 

variables of interest. 

 Among possible future extensions of this work, we mention first the application of 

our methodology to other datasets, which would allow us to assess the differences across 

markets in response to some crises (Engle et al., 2015; Dungey et al., 2020). Second, extending 

the analysis to non-market value systemic risk measures as well as to other indicators tracking 

additional systemic dimensions would also be of interest; as examples, one might consider other 
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illiquidity measures (Belkhir et al., 2020) or interconnectedness measures (Giudici et al., 2020; 

Bonaccolto et al., 2021). 
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