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Abstract: In a recent study (Duma et al., 2020), we used the dynamic temporal prediction (DTP) task 

to demonstrate that the capability to implicitly adapt motor control as a function of task demand is 

grounded in at least three dissociable neurofunctional mechanisms: expectancy implementation, 

expectancy violation and response implementation, which are supported by as many distinct 

cortical networks. In this study, we further investigated if this ability can be predicted by the 

individual brain’s functional organization at rest. To this purpose, we recorded resting-state, high-

density electroencephalography (HD-EEG) in healthy volunteers before performing the DTP task. 

This allowed us to obtain source-reconstructed cortical activity and compute whole-brain resting 

state functional connectivity at the source level. We then extracted phase locking values from the 

parceled cortex based on the Destrieux atlas to estimate individual functional connectivity at rest in 

the three task-related networks. Furthermore, we applied a machine-learning approach (i.e., 

support vector regression) and were able to predict both behavioral (response speed and accuracy 

adaptation) and neural (ERP modulation) task-dependent outcome. Finally, by exploiting graph 

theory nodal measures (i.e., degree, strength, local efficiency and clustering coefficient), we 

characterized the contribution of each node to the task-related neural and behavioral effects. These 

results show that the brain’s intrinsic functional organization can be potentially used as a predictor 

of the system capability to adjust motor control in a flexible and implicit way. Additionally, our 

findings support the theoretical framework in which cognitive control is conceived as an emergent 

property rooted in bottom-up associative learning processes. 

Keywords: cognitive control; functional connectivity; high-density EEG; machine learning;  

resting-state 

 

1. Introduction 

Imagine you have been driving the same road to reach your job for years. Likely, you 

have memorized the duration of each traffic light and can adjust your car’s speed 

automatically according to your implicit temporal expectation of the red light. Now, 

imagine that a new law decreases the duration of yellow lights from 4 to 3 s. Even if one 

does not consciously notice this difference, it will nevertheless not make it difficult to 

adapt one’s driving habits automatically according to this change. This is because our 

cognitive system is flexible enough to adapt to environmental changes without requiring 

a great deal of mental energy. Nevertheless, cognitive flexibility, a core function of 

cognitive control, has been traditionally considered as a top-down process able to guide 

actions based on both internal goals and the external context, therefore requiring volition 

and attention to down-regulate behavior [1–7]. However, a recent theoretical framework 
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posits that cognitive control can be successfully driven by simple low-level associative 

learning processes, rather than necessarily requiring voluntarily controlled top-down 

processes [8–12]. 

In our recent work [13], we provided evidence supporting this hypothesis by 

showing that motor control can be shaped proactively by the implicit learning of stimulus 

temporal regularities. Specifically, we used the dynamic temporal prediction task (DTP) 

[14], a warned reaction-time (RT) paradigm in which the global presentation rate of the 

imperative stimulus is manipulated covertly in order to create “fast” (short-expectancy 

biased) or “slow” (long-expectancy biased) experimental blocks. We observed that both 

participants’ response speed and accuracy were shaped dynamically by the implicit 

learning of the global changes in the stimulus-presentation rate, so they were faster in the 

fast blocks and slower in the slow ones. Notably, because participants in the DTP are 

unaware of the implicit changes in the task speed, we argued that the cognitive flexibility 

underlying motor regulation is not exclusively enchained to voluntary control but can 

also be seen as an emergent property shaped by contextual factors. Furthermore, we 

showed that implicit flexibility is grounded in at least three functionally dissociable 

cognitive processes underlying adaptive motor control: expectancy implementation, 

expectancy violation and response implementation. These three separate computational 

stages were associated with a modulation of distinct event-related potential (ERP) 

components. Specifically, expectancy implementation was associated with a modulation 

of the pre-stimulus contingent negative variation (CNV) potential, while expectancy 

violation was related to a modulation of the omission detection (ODP) potential. Finally, 

the response implementation stage was associated with an increment of the post-stimulus 

P3 response. Importantly, all these effects were maximally expressed in the fast blocks, 

which induced participants to exert maximal implicit adjustment of behavioral 

performance (faster RTs). In our previous work [13], we had estimated the cortical 

generators of the above-mentioned ERP modulations, identifying three dissociable 

networks supporting expectancy implementation, expectancy violation and response 

implementation networks, respectively. 

In the present study, we expanded upon our previous results by focusing on the 

question whether the intrinsic functional organization of the brain at rest may itself 

predict the capability to implicitly and flexibly adjust motor control as a function of 

contextual task demand. The possibility to foresee behavioral outcome or, even better, 

neural measures related to a given task by just decoding the intrinsic functional 

organization of the brain at rest has been revealed to be a promising methodological 

approach of the last decade. However, to the best of our knowledge, most of the studies 

have used functional magnetic resonance imaging (fMRI) [15,16] or were simply focusing 

on the scalp EEG activity [17,18]. Yet, the investigation of the EEG scalp activity does not 

allow us to make reliable spatial inferences about the underlying cortical generators, due 

to the volume conduction problem. In fact, in order to generate inferences related to brain 

areas or networks, the source reconstruction is necessary [19]. Moreover, the higher 

temporal and spectral resolution of the EEG compared to fMRI allows a more detailed 

investigation of the neural mechanism underlying cognitive processes. Here, we recorded 

high-density electroencephalography (HD-EEG, 128 channels) resting state activity and 

then computed source activations, from which we derived RS functional connectivity (RS-

FC). We adopted a machine-learning approach (support vector regressions) to test the 

hypothesis of whether the RS oscillatory activity of the above-mentioned cortical 

networks, identified in our previous study [13], may predict both task-related behavioral 

performance and ERP modulations. 

We observed that the intrinsic functional organization at rest in the response 

implementation and expectancy violation networks predicted the implicit adaptation of 

the motor response (task-related performance) in the theta and alpha band, respectively. 

Notably, we also observed that the RS-FC connectivity within a given network is able to 

predict its task-dependent activity modulation expressed in the related ERP modulation. 
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Additionally, the topological properties (e.g., the degree, strength, clustering coefficient, 

and local efficiency) of each network of interest were studied using graph theory to 

explore the roles of single cortical nodes in predicting either behavioral or neural 

signatures of implicit motor control. We found converging evidence about the potential 

roles of the left motor area and the frontal right/parietal left regions as distinct nodes 

whose intrinsic functional organization may explain part of the variability in task 

performance. These results showed that the brain’s intrinsic functional organization can 

potentially be used as a predictor of the system’s capability to adjust motor control flexibly 

and implicitly. Additionally, our findings support the theoretical framework in which 

cognitive control is conceived of as an emergent property rooted in bottom-up associative 

learning processes, which does not necessarily need top-down voluntary processes to 

work efficiently. Finally, in the light of the investigated cognitive processes and the 

methodological approach, the present work adds two novelty points: (i) the study of the 

adaptive cognitive control using the DTP task, which is a task grounded on simple 

stimulus-response association; (ii) the prediction of task-related behavioral performance 

and networks modulation based on the resting state connectivity derived from the HD-

EEG based source reconstruction, which provides an optimal compromise between 

temporal and spatial resolution to investigate at rest functional brain architecture. 

2. Materials and Method 

2.1. Participants 

Participants were the same included in our previous study [13]. The sample included 

46 participants (mean age = 22.8 years, SD = 1.12, range 20–27, 8 males). For 40 of these 46 

participants, we had both the resting state and the EEG data registered during the task. 

This implies that the prediction of task-dependent ERP modulations was possible only for 

this subset of 40 participants, whereas all participants’ data were used for behavioral 

performance prediction. All participants reported normal or corrected-to-normal vision 

and had no history of neurological and/or psychiatric disorders. All participants gave 

their informed consent before the experiment. All experimental procedures were 

approved by the Ethics Committee of the School of Psychology at the University of Padua 

(protocol n° 2536) and were conducted according to the principles expressed in the 

Declaration of Helsinki. 

2.2. EEG Resting State Recording 

For each participant, the RS HD-EEG activity was recorded before the task. We used 

a Geodesic high-density EEG System (EGI® GES-300) with a pre-cabled 128-channels 

HydroCel Geodesic Sensor Net (HCGSN-128) and electrical reference to the vertex. EEG 

data were recorded during the entire experiment. The sampling rate was 500 Hz. The 

impedance was kept below 60 kΩ for each sensor. Continuous EEG resting state activity 

was recorded for two minutes while participants were passively watching the movie 

Inscapes, which has been specifically conceived and validated as a reliable tool to avoid 

drowsiness or sleepiness during task-free neuroimaging data collection [20]. 

2.3. Experimental Task 

The experimental task was the same as described in [13]. Stimuli were presented on 

a 17-inch monitor at a resolution of 1280 × 1024 pixels. Participants were seated 

comfortably in a chair at a viewing distance of around 60 cm from the monitor. All 

participants performed a warned simple reaction time (RT) task adapted from an 

experimental paradigm previously employed from our lab to investigate voluntary and 

automatic temporal attention effects in adults and school-aged children [21]. This task, 

defined as Dynamic Temporal Prediction (DTP) [14,22] was originally conceived to 

investigate children’s behavioral performance in relation to either local or global 
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probabilistic rules as two distinct sources of temporal predictability. We used a modified 

version adapted for ERP investigation here. 

2.4. Trial Structure 

Each trial began with the display of a warning visual stimulus (S1), followed by the 

presentation of an imperative visual stimulus (S2) that stayed on the screen for a 

maximum of 3000 ms. S1 consisted of a picture of a black camera lens (see Figure 1) 

surrounded by a circle (total size of the stimulus: 840 × 840 pixels, 10.62° × 10.54° of visual 

angle). S2 consisted of a picture of a cartoon character, which was displayed centrally 

within the camera lens. The inter-trial-interval was randomly manipulated between 600 

and 1500 ms. The task consisted of speeded target detection. Participants were required 

to press a button on the response box with the index finger of the dominant hand as 

quickly as possible on S2 occurrence. 

 

Figure 1. Trial structure. The circle (S1) warned participants on the presentation of the imperative 

S2 stimulus (a cartoon character; here represented with colored disks for illustrative purposes due 

to copyright restriction). Participants had to make speeded reaction times at S2 onset by pressing a 

button on the keyboard. The effect of local prediction was assessed by manipulating S1–S2 stimulus 

onset asynchrony (SOA) within each experimental block. 

2.4.1. Local Predictive Context 

To investigate the effect of the local predictive context on behavioral performance, 

the S1–S2 stimulus-onset-asynchrony (SOA) was varied trial by trial within each 

experimental block so that three possible fixed foreperiod (FP) intervals were created 

(Figure 1). These included a short (500 ms), a medium (1000 ms), or a long (1500 ms) FP, 

resulting in three discrete levels of hazard rate [23–26]. 

2.4.2. Global Predictive Context 

In order to assess the effect of the global changes on the predictive context, different 

probability distributions per each SOA interval were introduced and manipulated block-

wise, as described below (see also Figure 2). 
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Figure 2. Experimental Design. The effect of global prediction was assessed by manipulating the 

between-block, a priori percentage of each SOA to create three probabilistic distributions in which 

the SOAs were equally distributed (uniform) or skewed toward the short (short-biased) or long 

(long-biased) SOA. 

2.4.3. Uniform (U) Blocks 

In this block, a rectangular distribution of the three SOAs was used (33.3%, for each 

SOA) so that the probability of each SOA in the block was equally distributed. This type 

of distribution is the most classic probabilistic distribution employed in both adult 

[23,27,28] and developmental [21,29–31] SOA literature. 

The use of an a priori uniform distribution has long been described to translate into 

a biased a posteriori temporal preparation. Indeed, as time goes by, the conditional 

probability of S2 onset increases exponentially in virtue of the fact that it has not occurred 

yet [23,32]. As a consequence, motor preparedness will be lowest at the shortest SOA and 

highest at the longest SOA. 

2.4.4. Fast Blocks (Short-Biased or SB) 

In this case, an a priori distribution biased toward the short SOA was delivered. In 

particular, the relative percentage was 50%, 33.33%, and 16.67% for the short, medium, 

and long SOA, respectively. This distribution gives a faster stimulus frequency rate. 

2.4.5. Slow Blocks (Long-Biased or LB) 

In this block, the relative percentage was 16.7%, 33.3%, and 50% for the short, 

medium, and long SOA, respectively. This kind of distribution, also known in the 

literature as aging distribution [32,33], is purposely intended to exacerbate the hazard-

based increment of temporal expectancy as a function of SOA length. This distribution 

turned out to be a slowing down of the stimulus frequency rate. 

2.4.6. Experimental Design 

The experimental manipulations yielded a factorial design in which either the SOA 

(short vs. medium vs. long) and the block type (fast vs. uniform vs. slow) factors were 

orthogonally contrasted to investigate the effect of local and global predictive context, 

respectively (Figure 2). 

Each single block included 60 trials and was delivered three times, for a total of nine 

experimental blocks and 540 trials. Specifically, the total number of delivered trials were 

90, 60 and 30, respectively, for short, medium and log SOA in the fast block; 60 trials for 

each SOA in the Uniform block and 30, 60 and 90 trials respectively for short, medium 

and log SOA in the slow block. All blocks were matched for sensorimotor requirements, 

as the visual stimuli and the required response were always the same across the 

experiment. The only differences were related to the changes in the predictive context 

experienced through the task. The total length of the experiment was about 25 min. It is 

important to note that participants were unbeknownst of both local and global 

manipulations since no explicit information was given about this. Furthermore, no pauses 

were introduced between blocks. Instead, a blank slide was inserted at the middle of each 

block to allow participants to rest. In this way we avoided participants to become aware 
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about global changes occurring at any block switch. The block-type order was randomly 

sorted between subjects. This ensured that spurious effects due to introducing either local 

or global predictive contexts induced by a fixed SOA or block sequence did not bias the 

performance. To ensure that the experimental manipulation was effective in inducing 

implicit prediction, after completing the task we asked all participants if they realized that 

the task could change in speed, becoming faster or slower over time. None of the 

participants reported having noticed these changes, supporting that the change in the 

probabilistic context had an implicit impact on the behavior. Before starting the 

experimental session, participants were presented with a block of 20 training trials for 

each condition to ensure they understood task instructions. During training, all 

participants received feedback at every trial according to their performance. Specifically, 

a neutral yellow smile was displayed in cases in which either anticipatory (before target 

onset) or premature (<150 ms before target onset) responses were provided. A yellow 

smile was displayed if the RT was between 1000 and 1500 ms from target onset. Finally, a 

green smile was displayed if the RT was between 150 and 1000 ms. E-prime 2 software 

(Psychology Software Tools, Pittsburgh, PA, USA) was used to create and administer the 

stimuli. Behavioral data are available on Figshare public repository 

(https://doi.org/10.6084/m9.figshare.12248933, 14 November 2021). 

2.5. Predicted Measures 

The behavioral and ERP data used in the present study were derived from a 

previously published database [13] and are publicly available 

(https://doi.org/10.6084/m9.figshare.12248933, 14 November 2021, 

https://doi.org/10.6084/m9.figshare.12246218, 14 November 2021). In the present study, 

we measured the mean accuracy and speed of response to the imperative stimulus for 

each participant. Only responses between 150 ms and 1500 ms from the target onset were 

considered correct responses and included in the RT analyses. To measure the implicit 

flexibility of motor control, we calculated the delta global index for each participant, 

which was the difference in his or her performance in the fast minus the slow blocks. We 

computed this measure for response speed (RT) and accuracy (non-premature responses). 

Moreover, we computed the inverse efficiency score (IES) to control for any speed–

accuracy trade-off [14,34–36]. The IES is calculated by the following formula: IES = RT/(1 

− PE), where RT is the subject’s average (correct) RT for the condition, and PE is the 

subject’s proportion of premature responses in the condition. In addition to behavioral 

data, we also targeted three distinct ERP modulations, which we found to be elicited by 

the DTP task in our original study [13]. Specifically, we identified the pre-stimulus 

modulation of the contingent negative variation (CNV), the omission detection potential 

(ODP) [13,31] elicited by the missed occurrence of an expected stimulus and the post-

stimulus P3 response as neural signatures of expectancy implementation, expectancy 

violation and response implementation, respectively. Then, we performed machine-

learning analyses to investigate whether RS-FC predicts both behavioral (RT, ACC and 

IES) and neural signatures (CNV, ODP and P3 modulation), separately. Moreover, we 

correlated these three behavioral and neural indexes with nodal graph-theory measures. All 

of the details are described in the following sections. The whole analysis pipeline is illustrated 

in Figure 3. 
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Figure 3. Graphical representation of the analysis pipeline. The present figure illustrates all the 

computational steps of the analysis pipeline of the present work starting from the resting state 

electroencephalography (EEG). 

2.6. EEG resting State Pre-Processing 

Signal preprocessing of the resting EEG was performed through EEGLAB 14.1.2b 

[36]. The continuous EEG signal was first down sampled at 250 Hz and then bandpass-

filtered (0.1 to 45 Hz) using a Hamming windowed sinc finite impulse response filter (cut-

off frequency = −6 dB; roll-off = (0.05–45.05) Hz. The signal was successively segmented in 

epochs of 2 s. Extremely noisy (>350 μV) and flat (<1 μV) channels were automatically 

detected through the Trimoutlier EEGLAB plug-in. Epoched data were subjected to an 

automated bad-channel and artifact detection algorithm by using the TBT plugin 

implemented in EEGLAB. This algorithm identified the channels that exceeded a 

differential average amplitude of 250 μV and marked those channels for rejection. 

Channels that were marked as bad on more than 30% of all epochs were excluded. Epochs 

with more than 10 bad channels were also excluded. Data cleaning was performed by 

means of an independent component analysis (ICA) [37], using the Infomax algorithm 

[38] implemented in EEGLAB, obtaining 40 components. The resulting independent 

components were visually inspected in topography and time-series, and those related to 

eye blinks, eye movements, muscle and cardiac artifacts were discarded. The remaining 

components were then projected back to the electrode space to obtain cleaner EEG epochs. 

Finally, bad channels were reconstructed with the spherical spline interpolation method 

and the data were then re-referenced to the average of all electrodes [39,40]. 

2.7. Cortical Source Modelling 

Epochs were imported in Brainstorm [41] to model the underlying cortical 

generators. We used the ICBM152 anatomical template to approximate the individual 

anatomy of each participant [42]. Co-registration of EEG electrodes position was 

performed via Brainstorm, by projecting the digitized EEG sensor positions GSN 

Hydrocel 128 E1 available in Brainstorm on the head surface. We then derived an EEG 

forward model using the three-layer boundary element method (BEM) from OpenMEEG 

implemented as a Brainstorm routine [43,44]. The source space was constrained to the 

cortex and modeled as a grid of 15,002 orthogonal current dipole triplets. We used 

sLORETA (default parameter setting) as a source model, one kernel for each subject as 

suggested in the resting state analysis pipeline with Brainstorm [45]. 
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2.8. Network Definition and Functional Connectivity 

To compute resting state functional connectivity (RS-FC), we first parceled the 

cortical surface into 148 regions based on the Destrieux atlas [46], already implemented in 

the default anatomy of Brainstorm. Phase-locking value (PLV) [47] was computed in 

Brainstorm as a functional connectivity metric [48,49]. The phases of the two signals are 

extracted by the Hilbert transform and signed as ϕa and ϕb.. The formula takes the 

average of phase angle differences between the two signals over time. In detail, we 

computed for each resting epoch the PLV value between all the atlas nodes, and then 

averaging across epochs, finally obtaining a N × N (N = number of regions in the Destrieux 

atlas) adjacency matrix for each canonical frequency bands (Delta (2–4 Hz), Theta (4–7 

Hz), Alpha (8–12 Hz), Beta (13–30 Hz), Gamma (30–45 Hz)). The ROIs used to generate 

our target RS networks were derived from our previous work [13]. Specifically, in our 

previous study we reconstructed the cortical maps underlying the CNV, ODP and P3 

effects as neural signatures of expectancy-implementation, expectancy-violation and 

response-implementation ERP effects, respectively (see Figure 4 for a graphic 

representation of the three networks). Here we used the brain areas identified by the 

source reconstruction of the three ERP effects as the node to construct our RS networks. 

This allowed us to spot three discrete networks which were named based on their relation 

to the computational process, namely, expectancy implementation, expectancy violation 

and response implementation networks. It is worth noting that we named our target 

network in this way to emphasize a direct link to cognitive processes elicited in 

performance of the present task identified in our previous study [13]. We are not claiming 

that for example, the expectancy implementation network can be completely generalized 

to every task involving expectancy. Even though we already discussed in our previous 

work the consistency between our results and the present literature related to cognitive 

flexibility and temporal expectancy, the reader should be aware that our networks are 

referred to cognitive processes elicited by our task. The nodes forming each circuit are 

fully listed in the Supplementary Table S1. 

 

Figure 4. Networks of interest. The present figure represents the nodes included in each of the three 

networks of interest, namely expectancy implementation network (a), expectancy violation network 

(b) and response implementation network (c). 
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2.9. Support Vector Regression 

In order to predict both behavioral performance and neural modulations (i.e., ERP 

activity) at the single-subject level, we used a machine learning approach by applying a 

support vector regression (SVR) model to the obtained resting state connectivity patterns. 

The SVR, defined by [50], was derived from the support vector machine (SVM) that was 

first introduced by [51] as a supervised learning model for classification problems. Thus, 

SVR can be considered a generalization of the SVM model for regression problems. For 

each of the three networks of interest and frequency bands, we created a dataset of 

connectivity patterns, one per subject. In this case, we have only one sample (i.e., the PLV 

value) per subject for the entire RS activity, thus our regression problem was implemented 

at the population level. In more detail, each subject-connectivity pattern was obtained by 

extracting the inferior triangular part of the PLV adjacency matrix. The target parameters 

to be predicted from the population-connectivity data were the following: task 

performance (delta-global RT/Accuracy/IES) at the behavioral level and ERP effects (CNV, 

ODP, P3) at the neural level. A leave-one-subject-out cross-validation (i.e., a leave-one-out 

cross validation scheme, implemented across population) was used to estimate the test 

generalization prediction accuracy. Specifically, training and test were performed a 

number of times (runs) equal to the population size (e.g., 46 subjects). For each run, we 

randomly selected and used data from all the subjects but one (e.g., 45) for training and 

the data from the discarded subject as a test sample. As suggested by [52], leave-one-out 

is preferred with dataset ≤ to 100 samples. By contrast, with colossal dataset it could 

increase the overfitting probability, and therefore other cross-validation approaches, as k-

folds, can be used [52,53]. For these reasons we selected this cross-validation approach 

amongst other possible methods given our sample size dimension. Each target parameter 

that had to be predicted by the model was standardized (z-scored) in order to have zero 

mean and standard deviation one. Moreover, the connectivity data matrix for training was 

also standardized across subjects. We used the Matlab functions fitrsvm and predict, 

respectively, to train a linear SVR model (used with default parameters) and predict the 

target parameter of the test subject starting with its connectivity pattern. Matlab function 

cvpartition was used, at each run, for implementing the “leave one subject out” cross-

validation scheme. The prediction accuracy was computed at the end of the cross-

validation loop on the predicted parameter values for the test subjects. Specifically, we 

computed the Bayesian correlation between the vector containing the concatenation of the 

target value to be predicted at each run (i.e., one for each test subject) and the vector 

containing the concatenation of the corresponding predicted values. Thus, the prediction 

accuracy was expressed in terms of a correlation coefficient (see [54], for a similar 

procedure applied to fMRI data). We used Bayesian correlation since it provides a 

measure of the likelihood of the alternative hypothesis. Only positive correlations that 

were significant were reported as an index of a good-quality fitting. Note that negative 

correlations are an index of a very bad fitting and were just not considered. For the sake 

of completeness, the full results are given in an additional file on Open Science Framework 

(https://osf.io/xw8nq/, 14 November 2021). The analysis has been performed using the 

software JASP (https://jasp-stats.org/, 14 November 2021), reporting the Bayesian Factor 

(BF) in favor of the alternative Hypothesis H1 (positively correlated), according to which 

there is a correlation between the considered variables. Note that the reported BF values 

correspond to the assumption of a beta prior width = 0.5, but contextually, a BF robustness 

check will be reported in the following pictures in order to estimate the strength of the 

results. Considering the scale of interpretation of the Bayes factor (BF) given [55], here we 

only reported the BFs above √10, namely 3.162. 

2.10. Graph Theoretical Analysis 

In order to deeply investigate the results obtained from the first SVR analysis, we 

applied graph theoretical analysis to a new network of interest, defined as the ‘Intersection 
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network’. This included all the ROIs within the response-implementation network that 

also belonged to the expectancy-implementation or the expectancy-violation networks. 

We pulled together all the ROIs that maximally covered the three considered networks 

(see Supplementary Materials, Table S1), starting from the ROIs within the Response 

Implementation network, from which it was possible, as SVR showed, to predict all the 

behavioral effects. Our aim was to study whether network topology properties expressed 

in terms of nodal indexes like degree, strength, clustering coefficient, and local efficiency, 

should be predictive of the performance during the task, at both the behavioral and neural 

level. 

2.10.1. Graph Construction 

We used a single-subject-connectivity-matrix approach, as suggested by [56]. Thus, 

for each network of interest, frequency band, and subject, we constructed a graph and 

extracted graph measures (i.e., one global measure for graph construction and 4 local 

measures) by using the Brain Connectivity Toolbox (BCT) [57]. Graphs were constructed 

starting from the N × N adjacency matrix, where N is the number of ROIs included into 

the network under examination, using the proportional thresholding method. Note that 

graph connections were not binarized, in order to avoid a loss of information. More in 

detail, starting from a weighted adjacency matrix, we ranked the connections (i.e., the PLV 

values) in a descendent order and selected a specific percentage of the top ranked 

connections, expressed by a specific threshold. The selection of the graph threshold was 

performed by adopting a procedure based on controlling an important global measure 

(i.e., the small-word parameter) as a function of the selected threshold [56,58]. We 

computed the small-word parameter using the formulation in the [59], implemented in 

the BCT. Specifically, for each frequency band, we computed the small-word parameter 

on all the subjects and selected the larger threshold that preserved the small world 

network topology (i.e., mean small-world parameter > 1). This procedure discards the 

more defragmented graphs at the lower thresholds, which allow us to avoid information 

loss. Furthermore, it is a conservative procedure that maintains a connected graph and 

allows us to discard spurious connections [56,58]. 

2.10.2. Graph Measures 

All the measures were computed using the normalized weighted graphs obtained 

after thresholding. Specifically, after thresholding, we used the function weight 

conversion (used with the parameter option normalize), contained in the BCT [57] for 

normalizing the graph connectivity. This function scales all weight connections to the 

range (0, 1) by dividing the connection values to the maximal weight and should be done 

prior to computing some network parameters. Indeed, since network measures strictly 

depend on the mean of the weighted connections, weighted graphs obtained after 

thresholding need to be normalized in order to perform statistical analysis on the 

extracted measures. 

The global measure (i.e., the small-world parameter) was computed for the graph 

construction, as above mentioned. Small-worldness (i.e., small-world parameter > 1) is a 

property characterizing graphs with dense local clustering and relatively few long-range 

connections, and it can globally account for both specialized (segregated) and distributed 

(integrated) information processing. Smallworld organized networks are characterized by 

a clustering coefficient C that is higher than the C of a randomly organized network 

(Crandom), and a short characteristic path length L that is similar to that of an equivalent 

random network (Lrandom) [60]. Formally, small-world networks show a ratio c defined 

as Creal/Crandom that has to be >1 and a ratio k defined as Lreal/Lrandom that has to be 

about 1 [60]. For each subject, the small-world indices were derived from the comparison 

of the real (measured) network with a random network including the same number of 

nodes, edges, and preserving the same degree distribution of the real network. Random 

networks were constructed by using the function randmio_und contained in the BCT [58]. 
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In order to better distinguish between segregation and integration properties within 

brain networks, we extracted multiple local measures (i.e., nodal measures, one value per 

subject for each node within the graph) from each considered brain network modeled as 

a graph: (i) degree (or valency) of a graph node is the number of connections incident to 

the node, survived after thresholding [57,61], and could be interpreted as an index of 

integration; (ii) strength, which is computed for each node of the graph as the sum of the 

weights on its connections, and could be interpreted as an index of integration and 

synchronization of brain activity [57,61] (iii) local efficiency that provides an indication of 

how effectively information is integrated between the immediate neighbors of a given 

graph node; indeed, the topological organization of a network is directly related to its 

local and global efficiency, which jointly determine the network’s capability of integrating 

information effectively [57,61,62]; (iv) clustering coefficient, which is locally computed as 

the fraction of triangles around each individual node; it reflects the prevalence of clustered 

connectivity around individual nodes, and roughly corresponds to an index of 

segregation and specialization [57,61]. 

2.11. Correlation Analysis 

We investigated whether there was a correlation between local graph indexes, 

extracted from the graphs of interest and the corresponding behavioral (i.e., delta global 

ACC/RT/IES) and ERP effects (i.e., CNV, ODP and P3). As mentioned above, this second 

step of analysis aimed at a deeper investigation of those functional connectivity networks 

from which it was possible to predict both behavior and neural effects. Indeed, this 

analysis was applied only in the Intersection network, which was previously defined. The 

study of the topological properties of the networks of interest, is an appealing opportunity 

to interpret the connectivity information driving SVR prediction in terms of 

segregation/integration processes (see [63], for a similar argument in fMRI data analysis). 

In particular, we performed Bayesian correlation analysis using the software JASP 

(https://jasp-stats.org/, 14 November 2021), reporting the Bayesian Factor (BF) in favor of 

the alternative Hypothesis H1, according to which there is a correlation between the 

considered variables. Note that the reported BF values correspond to the assumption of a 

beta prior width = 0.5, but contextually, a BF robustness check was also reported. 

3. Results 

In the following sub-sections, we reported all of the SVR results in predicting both 

the neural and behavioral indexes, starting from the PLV connectivity matrices of the 

networks of interest (i.e., the expectancy implementation, expectancy violation and 

response implementation networks) in each frequency band. Finally, we reported the 

Bayesian correlations between graph theory indexes and behavioral or neural indexes. 

3.1. Predicting Behavioral Effects from the Networks of Interest 

The SVR results showed that all the behavioral indexes could be predicted from the 

connectivity pattern measured within the response implementation network. In 

particular, the delta global accuracy was significantly predicted only in the theta 

frequency band (R = 0.58; BF10 = 1845.94; c.i. = (0.31, 0.72); see Supplementary Figure S1a;), 

whereas in the alpha band, both the delta global RT (R = 0.31; BF10 = 4.04; c.i. = (0.05, 0.52); 

Figure 5a; for the robustness check see Figure 6 a,b) and the delta global inverse efficiency 

score (IES) (R = 0.33; BF10 = 5.53; c.i. = (0.06, 0.54]; see Figure 5a; for the robustness check 

see Figure 6c) could be predicted. Moreover, the connectivity patterns within the 

expectancy-implementation network in the theta frequency band predicted the delta 

global accuracy (R = 0.31; BF10 = 4.05; c.i. = (0.05, 0.52); see Figure 5b; for the robustness 

check see Figure 6d). 
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3.2. Predicting Neural Effects from the Networks of Interest 

The application of SVR on the neural measures revealed that the RS-FC measured 

within the response implementation network was able to predict the P3 amplitude 

modulation (response implementation ERP effect) in the theta frequency band (R = 0.37; 

BF10 = 7.06; c.i. = (0.07, 0.58); see Figure 5c; for the robustness check see Figure 6e). We 

also observed that expectancy violation network RS-FC predicted the task-dependent 

modulation of the omission-detection potential (ODP) (the expectancy-violation ERP 

effect) in the alpha (R = 0.40; BF10 = 12.70; c.i. = (0.10, 0.61); see Supplementary Figure S1b; 

for the robustness check see Figure 6f), beta (R = 0.32; BF10 = 3.79; c.i. = (0.05, 0.55); see 

Supplementary Figure S1b; for the robustness check see Figure 6g) and delta (R = 0.38; 

BF10 = 8.17; c.i. = (0.08, 0.59); see Figure 5d; for the robustness check see Figure 6h) 

frequency bands. 

 

Figure 5. Resting state functional connectivity (RS-FC) predicting task-dependent behavioral and 

event related potential (ERP) effects. The present figure shows the mean connectivity patterns 

(averaged across the subjects) for the target RS networks. (a) in the upper row represents the 

connectivity pattern, in the alpha band, of the response-implementation network predicting, using 

a support vector regression (SVR), the behavioral performance (delta global reaction time (RT) and 

inverse efficiency score (IES)). (b) represents the resting network activity of the expectancy-

implementation network in the theta band, predicting delta global accuracy. The lower row 

represents the RS-FC predicting the task-dependent ERP modulations. Specifically, functional 

connectivity at rest in the response-implementation network predicted the response-

implementation ERP effects (P3 amplitude increase) in the theta frequency band (c). Similarly, the 

RS-FC of the expectancy-violation network in the delta band predicted the ERP effect (omission 

detection potential (ODP) increase) elicited during the expectancy violation in the task (d). To avoid 



Brain Sci. 2021, 11, 1513 13 of 22 
 

 

overloading of images, we report only the main results here. Additional figures are provided in the 

Supplementary Material. 

 

Figure 6. Robustness check of Bayesian correlation in SVR prediction. The present figure shows the robustness check 

graphs of the Bayes Factor reported in the main text. Each panel shows a robustness check for the respective correlation 

reported in manuscript. The graph highlights the variation of the Bayes Factor (BF) in dependence of the beta prior width 

providing a check of the reliability of the result. The evidence is classified based on the BF magnitude. Here we report the 

BF10 showing the probability of the alternative hypothesis (1) vs. the probability of the null hypothesis (0). Namely, the 

higher the BF, the higher the probability of the alternative hypothesis. (a) robustness check of the connectivity in the 

response implementation network predicting the behavioral delta global accuracy in the theta band, and the behavioral 

delta global RT and the delta global inverse efficiency score (IES) in the alpha band respectively in (b,c). In (d) the 

robustness check of the BF of the connectivity patterns within the expectancy-implementation network in the theta band 

predicting the delta global accuracy. In (e) the robustness check of the BF of the connectivity within the response 

implementation network predicting the P3 amplitude modulation (response implementation ERP effect) in the theta band. 

(f) robustness check of expectancy violation network predicting the omission-detection potential (ODP) (the expectancy-

violation ERP effect) in the alpha, beta (g) and delta (h) frequency bands. 
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3.3. Correlations between the Local Graph Indexes and Behavioral Effects 

The results in the delta band showed a strong negative correlation (BF10 = 44.09) 

between the local efficiency in the left precentral gyrus (left-PCG) and both the delta 

global RT (R = − 0.47; c.i. = (− 0.64, − 0.19); see Figure 7a) and delta global IES (BF10 = 13.16; 

R = − 0.42, c.i. = (− 0.61, − 0.13); see Supplementary Figure S2a). The robustness check 

showed that the evidence for the alternative hypothesis (H1) remained strong when 

varying the beta prior width, supporting the robustness of our results (see Figure 8 a,b). 

 

Figure 7. Correlation between the nodal graph indexes and task-dependent behavioral and ERP 

effects. The pictures represent the significant correlations between the nodal graph indexes and 

behavioral or ERP effects. The shaded area around the regression line represents the 95% confidence 

interval. (a) correlation of the local efficiency in the delta band of the left Precentral Gyrus (left-PCG) 

with the behavioral performance (delta global RT). In (b) it is showed the correlation of the left-PCG 

nodal strength in the alpha band and the amplitude of the task-dependent P3 modulation 

(expectancy implementation). (c) correlation between clustering coefficient of the right Superior 

Frontal Gyrus in the gamma band and the omission detection potential (ODP) increase (expectancy 

violation). (d) correlation in the gamma band between left Superior Parietal Gyrus and task-

dependent expectancy violation potential. 
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Figure 8. Robustness check of Bayesian correlations between the graph theory indexes and the behavioral and neural task-

related measures. The present figure shows the robustness check graphs of the Bayes Factor reported in the main text. 

Each panel shows a robustness check for the respective correlation reported in manuscript. The graph highlights the 

variation of the BF in dependence of the beta prior width providing a check of the reliability of the result. The evidence is 

classified based on the BF magnitude. Here, we report the BF10 showing the probability of the alternative hypothesis (1) 

vs. the probability of the null hypothesis (0). Namely, the higher the BF, the higher the probability of the alternative 

hypothesis is. (a) BF of the correlation delta global Reaction Time and the left Precentral Gyrus (left-PCG) local efficiency; 

(b) BF of the correlation between delta global inverse efficiency score (IES) and the left-PCG local efficiency; (c) BF of the 

correlation between response implementation potential (ERP) effect (P3 modulation) and the left-PCG strength; (d) BF of 

the correlation between response implementation ERP effect (P3 modulation) and the left-PCG degree; (e) BF of the 

correlation between expectancy violation ERP effect (omission detection potential (ODP) modulation) and the right-PCG 

local efficiency; (f) BF of the correlation between expectancy violation ERP effect (ODP modulation) and the left Superior 

Parietal Gyrus local efficiency; (g) BF of the correlation between expectancy violation ERP effect (ODP modulation) and 

the right-PCG clustering coefficient. 

3.4. Correlations between the Local Graph Indexes and Neural Effects 

The correlational analysis between the local graph indexes and the neural effects 

showed strong positive correlations in the alpha and gamma frequency bands. In 

particular, in the alpha frequency band, we found a strong positive correlation (BF10 = 

16.97) between the strength computed in the left-PCG and the response implementation 

ERP effect (P3 modulation) observed in the task (R = 0.46; c.i. = (0.15, 0.65); see Figure 7b). 

A similar positive correlation emerged between the degree computed in the same node 

and the task-dependent P3 modulation (BF10 = 15.21; R = 0.45, c.i. = (0.15, 0.64); see 

Supplementary Figure S1b). The robustness checks (see Figure 8 c, d) showed that the 

evidence for the alternative hypothesis (H1) remained strong when varying the beta prior 
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with, supporting the robustness of our results. Furthermore, in the gamma frequency 

band, we found a strong positive correlation between the local efficiency computed in the 

right superior frontal gyrus (right-SFG) and the ERP effect of the expectancy violation 

(ODP modulation) induced by the task (BF10 = 10.96; R = 0.44, c.i. = (0.12, 0.63); see Figure 

7c) as well as between the clustering coefficient and the ODP modulation (BF10 = 20.5; R 

= 0.47, c.i. = (0.16, 0.65); Supplementary Figure S2c).Finally, a positive correlation emerged 

between the local efficiency computed in the left superior parietal gyrus (left-SPG) and 

the ODP modulation induced by the task (BF10 = 38.64; R = 0.50, c.i. = (0.19, 0.67); see 

Figure 7d). The robustness checks (see Figure 8 e, f, g) showed that the evidence toward 

the alternative hypothesis (H1) remained strong when varying the beta prior width, 

supporting the robustness of our results. 

4. Discussion 

Traditionally, cognitive control (or executive function) has been conceptualized as a 

supra-ordinate entity exerting voluntary top-down influences on human behavior [3]. In 

line with this old-fashioned idea, cognitive control is deemed as a by-product of a central 

volitional system in charge of supervising low-level subsystems (e.g., language, 

perception, numerical and social cognition, movement, etc.) in order to deliberately 

achieve a goal, overriding automatic tendencies to behave or think according to our habits. 

However, a new theoretical perspective is supporting a more ecological approach positing 

cognitive control as grounded in associative learning. In this view, cognitive control 

(especially flexibility) is more properly deemed as an emerging property sensitive to 

environmental stimuli that can operate in the absence of awareness or top-down attention 

[12]. In this regard, studies suggested that “low-level” learning and conditioning 

mechanisms may influence cognitive control [64]. Hence, stimuli in the environment can 

trigger cognitive control bottom-up [65], allowing for a more efficient allocation of control 

strategies. The ability to “capitalize” bottom-up resources to generate adaptive cognitive 

control is therefore essential for adjusting behavior as a function of both internal instances 

and external requests, avoiding being at the mercy of environmental events. In line with 

this, our experimental task specifically allows us to highlight not only the presence of 

associative learning but the influence that the latter exerts on proactive motor control. In 

fact, our participants not only succeed in adapting their response speed according to the 

task speed but also to control behavior to avoid false alarm responses. This means that the 

global predictive context (block-type) is able to modulate not only excitatory mechanisms 

(e.g., I become faster if the task requires it) but also inhibitory ones (I control the allocation 

of anticipatory resources so that I become faster BUT without losing accuracy). This means 

that in order to perform well, one must not only demonstrate the ability to speed-up or 

slow-down response speed according to task speed but also to (1) update continuously 

the internal representation of contextual factors (i.e., task speed) and (2) regulate 

accordingly behavior in a proactive way. Importantly, unlike other experimental designs 

traditionally used to test associative learning (i.e., artificial grammar language or serial 

reaction times), the DTP task introduces the possibility of measuring the degree of 

flexibility with which a given piece of implicitly learned information is updated bottom-

up according to contextual aspects. In other words, the task we used is not limited to 

measuring implicit learning but specifically taps on the degree of flexibility of the latter. 

This aspect represents a novel element in the literature [13,14] for further discussion. 

In the present study, we step further and address whether adaptive cognitive control 

is grounded in the brain’s intrinsic organization. We used the source-resolved oscillatory 

HD-EEG activity recorded at rest to measure the intrinsic FC. We then used this measure 

to predict the behavioral and neural effects elicited by a task requiring implicit, flexible 

motor control (i.e., the DTP task). Remarkably, this approach allowed different frequency 

bands to be targeted, deepening the functional link between rest and task oscillatory 

activity. We drew upon our previous findings and targeted three specific, task-informed 

neural networks reflecting expectancy implementation, expectancy violation and 
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response implementation as three distinct computational stages underlying implicit 

motor control [13]. We used an SVR approach to address whether the RS-FC oscillatory 

patterns within each of these three networks could predict both task response 

speed/accuracy and ERP modulations induced by global stimulus predictability. At first, 

we found that the RS connectivity in the theta band, measured in both the expectancy- 

and response-implementation networks, predicted the delta global accuracy. This index 

has been interpreted as a measure of one’s capability to inhibit motor schemas built upon 

prior experience and efficiently adapt one’s behavior to new environmental requests in 

order to prevent errors (i.e., premature responses) [14]. This finding is in line with the 

alleged core role of the theta band for cognitive control: it may be assumed to convey the 

feedback information that something needs to be done when an unexpected, upcoming 

event occurs that violates a previously established predictive model [13,65–67]. In the DTP 

context, which implies implicit and flexible motor control, this may suggest that theta 

band RS-FC can predict the system’s future capability to detect the covert changes in the 

task speed and adapt to them flexibly. This will turn into updating a motor schema 

implicitly built up from experience (e.g., preparing for a probable early response in fast 

blocks) into a new one (e.g., preparing for a probable late response in slow blocks) in order 

to optimize one’s behavior. Our findings suggest that these mechanisms can be at least 

partially accounted for by the theta oscillatory status at rest of two distinct cortical circuits, 

namely the expectancy- and the response-implementation networks. Interestingly, both 

of these networks include frontal and parietal areas that previously have been associated 

with either top-down or bottom-up orienting of attentional and motor resources over time 

[27,28,68,69]. Moreover, we found that alpha band RS-FC in the response implementation 

network predicted the response speed task-adaptation either when this was considered 

alone (delta global RT) or corrected for the speed-accuracy trade off (delta global IES). 

Alpha frequency, a predominant band in the RS EEG, recently has been associated with 

the activity of the BOLD-derived RS networks [70–72]. Furthermore, this band has also 

been related to network efficiency during the task in at least two ways. On one hand, trial-

by-trial alpha prestimulus fluctuations predict performance efficiency in cognitive tasks 

[73,74]. On the other hand, the RS alpha power of a given network is inversely correlated 

with its own task-related cerebral blood flow [75]. This pattern may suggest an efficient 

allocation of metabolic resources to process incoming stimuli due to higher preactivation 

(RS alpha power) of the task-relevant networks. Our results fit nicely with this framework, 

suggesting that the alpha pre-activation of the response-implementation network 

predisposes the system toward better computational efficiency, thus optimizing motor 

behavior (i.e., faster RTs in the fast blocks). Taken together, these findings suggest that the 

source-resolved HD-EEG can be a useful tool for investigating the role of intrinsic brain 

organization (RS-FC) in predicting the behavioral correlates of cognitive functioning and, 

in particular, of implicit motor-control mechanisms. 

In addition, we also explored the relationship between RS-FC and task-evoked neural 

activity. Specifically, the SVR highlighted significant predictions of the theta-band RS-FC 

regarding the task-driven ERP modulations. Indeed, the intrinsic oscillatory organization 

of the response implementation network at rest partially accounted for the larger P3 

modulation observed in fast vs. slow blocks. This finding converges with behavioral data 

and confirms that RS theta activity potential explains at least part of the variability in 

implicit motor-control adaptation. Moreover, we found an additional link between the 

RS-FC calculated within the expectancy violation network and its task-related activation 

(i.e., modulation of the omission detection potential). Overall, these findings suggest that 

the RS-FC of a given network is predictive of its subsequent task-related activity, in line 

with previous neuroimaging studies [70,76–78]. Notably, the present results align nicely 

with our previous ones [13], which showed task-related theta and delta synchronization 

for response implementation and expectancy violation, respectively. This frequency 

mirroring between resting and task-network activity suggests a possible link between the 

inner functional communication structure among network nodes and the system’s 
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oscillatory perturbation during the task. Besides looking at the global connectivity 

patterns, we also tried to unravel the specific contributions of all single nodes common to 

the three considered networks (i.e., the intersection network) by using graph-derived local 

measures. This analysis revealed a negative Bayesian correlation in the delta band 

between the local efficiency of the left-PCG and behavioral measures (both the delta global 

RT and IES indexes). Local efficiency indicates how effectively information is integrated 

among the immediate neighbors of a given network node [57]. We observed that the local 

efficiency increased when the two behavioral indexes decreased. Notably, lower 

behavioral delta scores indicate that the participant has efficiently adapted his or her 

performance to the implicit task demand [14]. Hence, this finding suggests that the 

intrinsic information exchange and elaboration efficiency of the left motor area (i.e., that 

is contralateral to most of the participants’ handedness) are related to an individual’s 

ability to flexibly adjust his or her proactive motor control. Previous studies proposed that 

the delta band may play a crucial role for large-scale cortical integration [79,80]. In light 

of this, the increase in the delta band’s local efficiency may represent a possible functional 

mechanism for integrating the information afferent from other nodes into the dominant 

motor area to regulate the motor program proactively [81,82]. In other words, the more 

efficiently the left motor area is intrinsically interconnected, the more successful the 

system will be in flexibly implementing implicit motor control. In support of this 

hypothesis, we also report that other local measures of this node (i.e., the strength and 

degree) were significantly correlated with the ERP modulation related to response 

implementation (P3). The graph analysis further disclosed a positive correlation between 

the nodal measures (local efficiency and clustering coefficient) in the gamma band of two 

regions of the intersection network, namely the right-SFG and the left-SPG, and the ERP 

signature of expectancy violation (ODP). The gamma band is generally involved in 

attention, memory and cognitive control [83,84], but it is also considered to mediate 

information integration [85,86]. In this view, a possible explanation of our findings is that 

these two nodes operate as network hubs (with high clustering coefficients and local 

efficiency) in the gamma band to optimize resource allocation when any potential bottom-

up conflict between the internal prediction and the external inputs arises [87,88]. In the 

DTP task, this occurs when an implicit temporal expectation is violated by a delayed 

stimulus onset (reflected by the ODP amplitude). 

5. Conclusions 

In conclusion, in this study, we propose a methodological approach based on the 

application of source-resolved functional connectivity to investigate the relationship 

between the intrinsic functional brain organization (RS-FC) and both behavioral and 

neural correlates elicited in the context of a motor task requiring implicit flexibility. These 

findings also have theoretical implications for understanding the nature of cognitive 

control because they follow the evidence that similar neural correlates are engaged upon 

explicit and implicit task demand [13]. Indeed, our findings indicate that a partial overlap 

between top-down and bottom-up control functional mechanisms is already grounded in 

the brain’s intrinsic oscillatory organization. In the present study, we focused on specific 

cortical networks, which were identified in our previous work [13] in relation to the three 

computational stages involved in the DTP task namely, expectancy implementation, 

expectancy violation and response implementation. We previously reported possible 

overlapping between the cortical areas engaged in these processes and the neuroimaging 

literature of cognitive control and temporal expectancy. Additional studies are needed to 

test the possibility to generalize our results to other experimental tasks. Moreover, future 

studies could expand upon the present findings to fit not only group level performance 

but trying to implement personalized models in order to predict individual performance 

based on the intrinsic brain connectivity. 
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Supplementary Materials: The following are available online at 

www.mdpi.com/article/10.3390/brainsci11111513/s1, Figure S1: RS-FC predicting task-dependent 

behavioral and ERP effects. Figure S2, Correlation between the nodal graph indexes and task-

dependent behavioral and ERP effects. Table S1, In the present table are listed the Destrieux Atlas 

nodes, as named in the Brainstorm software, forming each of our target networks. 
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