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1 Introduction and main results

This paper considers random ensembles of uniformly parabolic systems

ut = ∇ · a∇u, (1)

where the law of the coefficient field a is assumed to be stationary with respect to
space-time translations and ergodic. Precisely, for a probability space of coefficient
fields (Ω,F , 〈·〉), where 〈·〉 is used simultaneously to denote the law and expectation of
the ensemble, the stationarity asserts that the coefficients are statistically homogeneous
in time and space in the sense that

∀x ∈ R
d ,∀t ∈ R : a(·, ·) and a(· + x, · + t) have the same law under 〈·〉 . (2)

The ergodicity asserts that every translationally invariant function of the coefficient
field is constant. That is, for every bounded random variable F :

if ∀x ∈ R
d ,∀t ∈ R, and for 〈·〉 -a.e. a : F(a) = F (a(· + x, · + t)) ,

then F = c 〈·〉 -a.s. (3)

The ensemble is stochastically continuous in the sense that, for each δ > 0, for h ∈ R
d

and s ∈ R,
lim|h|,|s|→0

〈{a ∈ Ω| |a(· + h, · + s) − a| > δ}〉 = 0, (4)

which, in particular, guarantees the almost-sure measurability of the random fields
appearing in this paper with respect to the Lebesgue measure on R

d+1. Finally, the
ensemble is bounded and uniformly elliptic in the sense that there exists a deterministic
λ ∈ (0, 1] such that

|aξ | ≤ |ξ | and λ |ξ |2 ≤ ξ · aξ ∀ξ ∈ R
d , and for 〈·〉 -a.e. a. (5)

Assumptions (2) and (3) are statistical requirements for the ensemble 〈·〉 that guarantee
the qualitative homogenization of equations like (1), see (13). Their role in this paper,
and in homogenization theory generally, appears most essentially through applications
of the ergodic theorem. See, for instance, the foundational work of Papanicolaou and
Varadhan [23], who worked in the elliptic setting.

However, conditions (2) and (3) are merely qualitative and contain no quantitative
information about the mixing properties of the ensemble. Therefore, while the results
of this paper apply to a very general class of environments, the corresponding homog-
enization may occur at an arbitrarily slow rate. In order to obtain more quantitative
statements, such as in the recent work Armstrong et al. [3], it would be necessary
to quantify the ergodicity in the way, for example, of a spectral gap inequality or a
finite-range of dependence.
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A Liouville theorem for stationary and ergodic ensembles… 761

The qualitative theory of homogenization for systems like (1) aims to characterize,
for 〈·〉-a.e. a, the limiting behavior, as ε → 0, of solutions to the rescaled equation

{
uε
t = ∇ · aε∇uε in R

d × (0,∞)

uε = u0 on R
d × {0}, (6)

where

aε(·, ·) := a
( ·
ε
,

·
ε2

)

is a parabolic rescaling of the coefficient field. This is understood classically through
the introduction of a space-time corrector φ = {φi }i∈{1,...,d} satisfying, for each i ∈
{1, . . . , d},

φi,t = ∇ · a(∇φi + ei ) in R
d+1. (7)

Then, in view of the linearity, for each ξ ∈ R
d the corresponding corrector φξ is

defined by the sum
φξ := ξiφi , (8)

where here, and throughout the paper, the notation employs Einstein’s summation
convention over repeated indices.

The gradient of the corrector ∇φ is a random field which is stationary with finite
energy. That is, for each x ∈ R

d , t ∈ R and a ∈ Ω ,

∇φ(x, t; a) = ∇φ (0, 0; a(· + x, · + t)) ,

and, for each i ∈ {1, . . . , d},
〈
|∇φi |2

〉
< ∞.

These facts are used to prove the strict sublinearity of the large-scale L2-averages of
φ on parabolic cylinders. Namely, for each R > 0, let BR denote the ball of radius R
centered at the origin and let CR denote the parabolic cylinder

CR := BR × (−R2, 0].

The corrector satisfies, for 〈·〉-a.e. a, for each i ∈ {1, . . . , d},

lim
R→∞

1

R

( 
CR

|φi |2
) 1

2 = 0, (9)

where here, and throughout the paper, the integration variables will be omitted unless
there is a possibility of confusion. This sublinearity is essentially equivalent to homog-
enization, see (13) below, and is crucial for the arguments of this paper.
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762 P. Bella et al.

The corrector is used to identify the homogenized coefficient field ahom as the
expectation of the components of the flux {qi }i∈{1,...,d}. The flux is defined, for each
i ∈ {1, . . . , d}, by

qi := a(∇φi + ei ), (10)

and the homogenized coefficient field is defined, for each i ∈ {1, . . . , d}, by

ahomei := 〈a(∇φi + ei )〉 . (11)

It is a classical fact that the homogenized coefficient field ahom is uniformly elliptic
and bounded, as is shown in Lemma 1. The solution of the corresponding constant-
coefficient parabolic equation

{
vt = ∇ · ahom∇v in R

d × (0,∞)

v = u0 on R
d × {0}, (12)

then characterizes the limiting behavior, for 〈·〉-a.e. a and as ε → 0, of the solutions to
(6). Indeed, by obtaining an energy estimate for the error in the asymptotic expansion

uε 
 v + εφi

( ·
ε
,

·
ε2

)
∂iv,

which relies upon the sublinearity (9), it follows that, for 〈·〉-a.e. a, for every u0 ∈
L2(Rd) and T > 0, as ε → 0,

uε → v strongly in L2(Rd × [0, T ]). (13)

This almost sure convergence is the qualitative homogenization of the original ensem-
ble.

Looking ahead, observe that the behavior of the solution uε to (6) on a unit scale,
for ε > 0 small, corresponds to a characterization of the large-scale behavior of the
solution u satisfying (1). Namely, the behavior of the solution uε on a unit scale
corresponds to the behavior of u on scale ε−1 in space and ε−2 in time. The purpose of
this paper will be to characterize the extent to which solutions of (1) inherit, on large-
scales and for 〈·〉-a.e. a, the regularity of solutions to constant-coefficient parabolic
equations.

A concise statement of this large-scale regularity is contained in the following
first-order Liouville theorem, which is the main theorem of the paper.

Theorem 1 Suppose that 〈·〉 is stationary (2), ergodic (3), stochastically continuous
(4), and bounded and uniformly elliptic (5). Then, 〈·〉-a.e. a satisfies the following
first-order Liouville property: if u is an ancient whole-space a-caloric function, that
is if u is a distributional solution of

ut = ∇ · a∇u in R
d × (−∞, 0),
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A Liouville theorem for stationary and ergodic ensembles… 763

which is strictly subquadratic on parabolic cylinders in the sense that, for some α ∈
(0, 1),

lim
R→∞

1

R1+α

( 
CR

|u|2
) 1

2 = 0,

then there exists c ∈ R and ξ ∈ R
d such that

u(x, t) = c + x · ξ + φξ (x, t) in R
d × (−∞, 0),

for the corrector φξ defined in (8).

The proof of Theorem 1 is strongly motivated by the work of Gloria, Neukamm
and Otto [18], who considered precisely these questions for stationary and ergodic
ensembles of elliptic equations. It is based on controlling the large-scale L2-deviation
of the gradient of an a-caloric function from the span of the a-caloric gradients {ξ +
∇φξ }ξ∈Rd . The excess of an a-caloric function measures this deviation, and is defined,
for each R > 0 and a-caloric function u on CR , by

Exc(u; R) := inf
ξ∈Rd

 
CR

(∇u − ξ − ∇φξ ) · a(∇u − ξ − ∇φξ ). (14)

In Proposition 2 below, for 〈·〉-a.e. a, the excess of an a-caloric function will be shown
to decay like a power law in the radius. However, before the statement, it is useful to
observe some essential differences between the parabolic and elliptic settings. In what
follows, the superscript “ell” will be used to differentiate elliptic objects from their
parabolic counterparts.

In the elliptic case, for a stationary and ergodic ensemble 〈·〉ell of bounded, uni-
formly elliptic coefficient fields aell, the corrector φell = {φell

i }i∈{1,...,d} is defined by
the equations, for i ∈ {1, . . . , d},

− ∇ · aell(∇φell
i + ei ) = 0 in R

d , (15)

and, for each ξ ∈ R
d ,

φell
ξ := φell

i ξi .

These correctors play a virtually identical role to the parabolic correctors (7) in elliptic
homogenization theory.

We remark that a version of excess for uniformly elliptic ensembleswas first defined
by Armstrong and Smart [6], where it was also used in a Campanato iteration. The
methods of this paper and definition (16) below follow most closely [18, Lemma 2],
although they worked with the equivalent L2-energy as opposed to the intrinsic energy
defined by the coefficient field. This differs, for instance, from the definition used in the
work of the Bella et al. [12], which considered degenerate elliptic ensembles for which
it was essential to incorporate the environment a. These notions motivated definition
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764 P. Bella et al.

(14), and measured the deviation of the gradient of an aell-harmonic function u on BR ,
by which is meant a solution

−∇ · aell∇u = 0 in BR,

from the span of aell-harmonic gradients {ξ + ∇φell
ξ }ξ∈Rd . Precisely, for each R > 0

and aell-harmonic function u on BR ,

Excell(u; R) := inf
ξ∈Rd

 
BR

(∇u − ξ − ∇φell
ξ ) · aell(∇u − ξ − ∇φell

ξ ). (16)

The decay of the excess was controlled in [18, Lemma 2] through the introduction
of a flux correction σ ell = {σ ell

i }i∈{1,...,d}. Namely, the flux qell = {qelli }i∈{1,...,d} is
defined, for each i ∈ {1, . . . , d}, by

qelli := aell(∇φell
i + ei ),

where, in analogy with the parabolic setting, the homogenized coefficient field aellhom
is defined by the expectation of the components of the flux, for i ∈ {1, . . . , d},

aellhomei :=
〈
aell(∇φell

i + ei )
〉ell

.

Therefore, strictly in the elliptic case, the corrector Eq. (15) asserts that the components
of the flux are divergence-free andmay be viewed as closed (d−1)-forms on thewhole
space. Hence, for each i ∈ {1, . . . , d}, there exists a (d−2)-form, which is represented
by a skew-symmetric matrix σ ell

i = (σi jk)
ell
j,k∈{1,...,d}, satisfying

∇ · σ ell
i = qelli − aellhomei , (17)

where the divergence of the tensor-field σ ell
i is defined, for each i, j ∈ {1, . . . , d}, by

(∇ · σ ell
i ) j =

d∑
k=1

∂kσ
ell
i jk .

Furthermore, the flux correction σ ell is fixed according to the choice of gauge, for each
i, j, k ∈ {1, . . . , d},

Δσ ell
i jk = ∂kq

ell
i j − ∂ j q

ell
ik .

In [18, Lemma 2], the sublinearity of the large-scale L2-averages of the extended
corrector (φell, σ ell) on large balls is shown to imply that the elliptic excess (16)
decays as a power law in the radius.
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Precisely, for each α ∈ (0, 1), there exists Cell
0 = Cell

0 (α, d, λ) > 0 and Cell
1 =

Cell
1 (α, d, λ) > 0 for which, whenever a pair of radii 0 < r < R < ∞ satisfy, for

every ρ ∈ [r, R], for each i ∈ {1, . . . , d},

1

ρ

( 
Bρ

∣∣∣φell
i

∣∣∣2 +
∣∣∣σ ell

i

∣∣∣2
) 1

2

≤ 1

Cell
0

,

then, for every aell-harmonic function u in BR ,

Excell(u; r) ≤ Cell
1

( r

R

)2α
Excell(u; R). (18)

Observe, in particular, that this is a deterministic result. Indeed, the stochastic prop-
erties of the extended corrector (φell, σ ell) are necessary to prove that, for 〈·〉-a.e. a,
the large-scale L2-averages are sublinear. But, by taking this fact as an input, it fol-
lows from a Campanato iteration that the excess of an arbitrary aell-harmonic function
decays according to (18). In this paper, the analogous result will also be obtained for
the parabolic excess, as shown in Proposition 2 below.

Thefirst essential difference is that, unlike in the elliptic case, the fluxes {qi }i∈{1,...,d}
defined in (10) are not divergence-free, and so an immediate analogue of the flux
correction σ ell = {σ ell

i }i∈{1,...,d} cannot be defined. Instead, the flux is essentially
decomposed according to the Weyl decomposition, where the parabolic σ is con-
structed to correct the divergence-free component. Precisely, for each i ∈ {1, . . . , d},

qi = qi,sol + ∇ψi + ci ,

where ci is a constant, the solenoidal part qi,sol is divergence-free, and the potential
part ∇ψi is constructed to be a stationary, finite-energy gradient satisfying

Δψi = ∇ · qi . (19)

Indeed, for each i ∈ {1, . . . , d}, one first defines ∇ψi according to (19) and then
observes that qi − ∇ψi is divergence-free.

The flux correction σ = {σi }i∈{1,...,d} is then defined, for each i ∈ {1, . . . , d}, by
the equation

∇ · σi = (qi − ∇ψi ) − 〈
qi | FRd

〉
, (20)

where
〈
qi | FRd

〉
denotes the conditional expectation of qi with respect to the sub-

sigma-algebra FRd ⊂ F of subsets of Ω which are invariant with respect to spatial
translations of the coefficient fields. They are fixed following the choice of gauge, for
each i, j, k ∈ {1, . . . , d},

Δσi jk = ∂k(qi − ∇ψi ) j − ∂ j (qi − ∇ψi )k . (21)
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766 P. Bella et al.

We remark that the choice of gauge (21) fixes the normalization constant appearing
in (20). Indeed, informally, for each i, j ∈ {1, . . . , d}, it follows from the definition
of the divergence of the tensor σi , Eq. (21), and the equality of mixed derivatives that

Δ(∇ · σi ) j = Δ
(
∂kσi jk

) = ∂k
(
Δσi jk

)
= ∂k∂k(qi − ∇ψi ) j − ∂k∂ j (qi − ∇ψi )k

= Δ(qi − ∇ψi ) j − ∂ j∇ · (qi − ∇ψi )

= Δ(qi − ∇ψi ) j ,

where the final inequality uses the fact that (qi − ∇ψi ) is divergence free. That is, for
each i, j ∈ {1, . . . , d},

Δ
(
(∇ · σi ) j − (qi − ∇ψi ) j

) = 0,

from which it follows that the stationary random field

(∇ · σi ) j − (qi − ∇ψi ) j

is invariant with respect to spatial shifts of the coefficients a ∈ Ω . From this it follows
that the difference is equal to the conditional expectation appearing in (20), after
observing that the conditional expectation of ∇ψi with respect to Fd

R
vanishes, which

is proven in Lemma 3 of Sect. 3.
Finally, for each i ∈ {1, . . . , d}, it is necessary to correct the oscillations of the

conditional expectation
〈
qi | FRd

〉
about its mean. The corrector ζ = {ζi j }i, j∈{1,...,d}

is constructed explicitly for this purpose and satisfies, for each i ∈ {1, . . . , d},

∂tζi = 〈
qi | FRd

〉 − 〈qi 〉 = 〈
qi | FRd

〉 − ahomei . (22)

In particular, this final correction ζ is constant in space, as a FRd -measurable field,
and depends only on time.

In comparisonwith the elliptic setting,where the decayof the excesswasdetermined
by the sublinearity of the large-scale L2-averages of (φell, σ ell), the decay of the
parabolic excess will be determined by the sublinearity of the large-scale L2-averages
of the corrector (φ,ψ, σ ), measured with respect to the scaling in space, and the
sublinearity of the large-scale L2-averages of ζ , measured with respect to the scaling
in time. The first lemma of the paper establishes the existence of the extended corrector
(φ,ψ, σ, ζ ).

Lemma 1 Suppose that the ensemble 〈·〉 satisfies (2), (3), (4), and (5). There exist
C = C(d, λ) > 0 and random fields φ = {φi }i∈{1,...,d}, ψ = {ψi }i∈{1,...,d}, σ =
{σi jk}i, j,k∈{1,...,d} and ζ = {ζi j }i, j∈{1,...,d} on Rd+1 with the following properties:

The gradient fields are stationary, finite energy random processes with vanishing
expectation: for each i, j, k ∈ {1, . . . , d},

〈
|∇φi |2

〉
+

〈
|∇ψi |2

〉
+

〈∣∣∇σi jk
∣∣2〉 +

〈∣∣∂tζi j ∣∣2
〉
≤ C,
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A Liouville theorem for stationary and ergodic ensembles… 767

and

〈∇φi 〉 = 〈∇ψi 〉 = 〈∇σi jk
〉 = 〈

∂tζi j
〉 = 0.

For each i ∈ {1, . . . , d}, the field σi = (σi jk) j,k∈{1,...,d} is skew-symmetric in its
last two indices: for each i, j, k ∈ {1, . . . , d},

σi jk = −σik j .

The fields ψ and σ are stationary in time: for each x ∈ R
d , t ∈ R and a ∈ Ω ,

ψ(x, t; a) = ψ (x, 0; a(·, · + t)) ,

and

σ(x, t; a) = σ (x, 0; a(·, · + t)) .

Furthermore, for 〈·〉-a.e. a, the following equations are satisfied in the sense of
distributions on R

d+1. The field φ satisfies (7): for each i ∈ {1, . . . , d},

φi,t = ∇ · a(∇φi + ei ).

The potential part of the flux is corrected by ψ according to (19): for each i ∈
{1, . . . , d},

Δψi = ∇ · qi .

The field σ corrects the divergence-free part of the flux according to (20): for each
i ∈ {1, . . . , d},

∇ · σi = qi − ∇ψi − 〈
qi | FRd

〉
,

where
〈· | FRd

〉
denotes the conditional expectation with respect to the sub-sigma-

algebra FRd ⊂ F of subsets of Ω which are invariant with respect to spatial
translations of the coefficient field. Furthermore, σ is constructed according to the
choice of gauge, for each i, j, k ∈ {1, . . . , d},

Δσi jk = ∂k(qi − ∇ψi ) j − ∂ j (qi − ∇ψi )k .

The field ζ corrects the oscillation of the conditional expectation about its mean:
for each i ∈ {1, . . . , d}, the random vector field ζi is constant in space and satisfies

∂tζi = 〈
qi | FRd

〉 − 〈qi 〉 = 〈
qi | FRd

〉 − ahomei .
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768 P. Bella et al.

Finally, the homogenized coefficient field ahom defined in (11) is bounded and uni-
formly elliptic: for each ξ ∈ R

d ,

λ |ξ |2 ≤ ξ · ahomξ and |ahomξ | ≤ 1

λ
|ξ | .

The following two propositions effectively split the probabilistic and determinis-
tic aspects of the paper. Proposition 1 contains the probabilistic parts, and uses the
stationarity and ergodicity of the ensemble to prove that the large-scale L2-averages
of (φ,ψ, σ ) are sublinear with respect to the spatial scaling and that those of ζ are
sublinear with respect to the time scaling. This fact is essentially classical for the
case of the correctors φ and ζ , although a new argument for the sublinearity of φ is
presented which may be of independent interest. A new argument is required to prove
the sublinearity of σ and ψ .

The difference is the following. The corrector φ is, in general, not stationary in
either space or time but Eq. (7) yields some control over both its spatial and temporal
derivatives. Similarly, the corrector ζ has an explicit, stationary time derivative but is
itself not stationary. In the second case, since Eqs. (19) and (20) yield only the spatial
regularity for ψ and σ , it is necessary to use the fact that both fields are stationary in
time in order to obtain the convergence.

In fact, the following proposition will prove the sublinearity of the normalized
corrector where, in the case of φ, the components are normalized by their large-scale
averages on a parabolic cylinder, in the case of ζ , using the fact that the Sobolev
embedding implies that ζ is continuous, the components are normalized by their
values at time zero and, in the case of ψ and σ , the functions are normalized, for
each fixed time, by their large-scale averages on a ball. This is in fact equivalent to
the sublinearity of the corrector (φ,ψ, σ, ζ ) without a normalization, see for instance
[12, Lemma 2], but since this observation is not necessary for the arguments of the
paper it is omitted.

For an arbitrary function ϕ : Rd+1 → R, define, for each R > 0 and t ∈ R,

(ϕ)R :=
 
CR

ϕ and (ϕ)t,R :=
 
BR

ϕ(·, t).

The precise normalization considered and the corresponding sublinearity are contained
in the following proposition.

Proposition 1 Suppose that the ensemble 〈·〉 satisfies (2), (3), (4), and (5). Then, for
〈·〉-a.e a, the corrector (φ,ψ, σ ) is strictly sublinear with respect to the spatial scaling
and the corrector ζ is strictly sublinear with respect to the time scaling in the sense
that, for each i, j, k ∈ {1, . . . , d},

lim
R→∞

1

R

( 
CR

|φi − (φi )R |2 + ∣∣ψi − (ψi )t,R
∣∣2 + ∣∣σi jk − (σi jk)t,R

∣∣2)
1
2 = 0, (23)
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A Liouville theorem for stationary and ergodic ensembles… 769

and

lim
R→∞

1

R2

( 
CR

∣∣ζi j − ζi j (0)
∣∣2)

1
2 = 0. (24)

Furthermore, for 〈·〉-a.e. a, for each i ∈ {1, . . . , d}, the large-scale L2-averages of
the components of the flux satisfy

lim
R→∞

( 
CR

|qi |2
) 1

2 =
〈
|qi |2

〉 1
2
. (25)

It is important to observe at this point that Eqs. (19) and (20) defining ψ and σ are
invariant if either ψ or σ is altered by a time stationary constant. This explains why
in (23), for each R > 0, it is possible and, for our arguments required, to allow for a
time-dependent normalization. The Eqs. (7) and (22) defining φ and ζ are not likewise
invariant, and therefore the corresponding normalizations appearing in (23) and (24)
are necessarily achieved by subtracting a true constant.

The deterministic aspect of the paper uses a Campanato iteration, which takes the
conclusion of Proposition 1 as input. Namely, it will be shown that, for any α ∈ (0, 1),
the parabolic excess decays like a power law in the radius as soon as the quantities
appearing in (23) and (24) are sufficiently small and as soon as (25) is sufficiently
close to its expectation. This is to say that there exists a random but 〈·〉-a.e. a finite
radius r∗(a) such that, whenever r∗ < r < R < ∞, for every a-caloric function u in
CR , the parabolic excess satisfies, for C1 = C1(α, d, λ) > 0,

Exc(u; r) ≤ C1

( r

R

)2α
Exc(u; R).

This is the content of the following proposition.

Proposition 2 Suppose that the ensemble 〈·〉 satisfies (2), (3), (4), and (5). Fix a
Hölder exponent α ∈ (0, 1). Then, there exist constants C0 = C0(α, d, λ) > 0 and
C1(α, d, λ) > 0 with the following property:

If R1 < R2 are two radii such that, for each R ∈ [R1, R2] and for each i, j, k ∈
{1, . . . , d},

1

R

( 
CR

|φi − (φi )R |2 + ∣∣ψi − (ψi )t,R
∣∣2 + ∣∣σi jk − (σi jk)t,R

∣∣2)
1
2 ≤ 1

C0
,

and

1

R2

( 
CR

∣∣ζi j − ζi j (0)
∣∣2)

1
2 ≤ 1

C0
,

and such that, for each i ∈ {1, . . . , d} and R ∈ [R1, R2],
( 

CR

|qi |2
) 1

2 ≤ 2
〈
|qi |2

〉 1
2
,
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then any distributional solution u to the parabolic equation

ut = ∇ · a∇u in CR2

satisfies

Exc(u; R1) ≤ C1

(
R1

R2

)2α

Exc(u; R2).

The proof of Proposition 2 is motivated by the proof of [18, Lemma 2] from the
elliptic setting. There, the flux correction σ ell was used to express the residuum of
the homogenization error in a useful divergence form. That is, for R > 0, given an
aell-harmonic function u in BR , define its aellhom-harmonic extension v into BR to be
the solution

{−∇ · aellhom∇v = 0 in BR

v = u on ∂BR .

Then, for a smooth cutoff function η vanishing along the boundary ∂BR , define the
augmented homogenization errorwell to be the following modification of the classical
two-scale expansion

well := u − (1 + ηφell
i ∂i )v,

where the cutoff is used in order to guarantee the difference well vanishes on the
boundary.

It was proven that the augmented homogenization error well satisfies, in BR ,

− ∇ · aell∇well = ∇ ·
(
(1 − η)(aell − aellhom)∇v + (φell

i aell − σ ell
i )∇(η∂iv)

)
(26)

which, by testing the equation with well, yields a useful energy estimate that provides
the starting point for a Campanato iteration.

In particular, by analyzing the right hand side of (26), the energy of well can be
controlled by the growth of the extended corrector (φell, σ ell), the choice of the cutoff
function η and the interior and boundary regularity of the aellhom-harmonic function
v. The argument is completed by observing that, owing to the regularity of aellhom-
harmonic functions, the energy of the homogenization error is a good approximation
for the excess.

The methods of this paper apply the same philosophy to the parabolic setting.
However, similarly to what was done in the proof of [12, Theorem 2], it is furthermore
necessary to introduce a spatial regularization of the a-caloric function u. The purpose
of this is to quantify the regularity in time, since such functions are already sufficiently
regular in space. Precisely, if u is an a-caloric function then, in general, its time
derivative ut ∈ H−1 and no better, where H−1 denotes the dual space of the Sobolev
space H1. However, for every ε > 0, if uε denotes the spatial convolution of u on
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scale ε > 0, then it is possible to show that uε
t ∈ L2 with a precise quantification of

the L2-norm of uε
t in terms of the energy of ∇u, see Sect. 5.1 below. This additional

approximation is necessary in order to quantify the boundary estimate of Sect. 5.3,
which is necessary for the Campanato iteration and the quantitative homogenization
result contained in Proposition 3 below.

For ε > 0, the ahom-caloric function vε will then be the ahom-caloric extension of
the spatial regularization uε into CR . Namely, for R > 0 and ε > 0, given an a-caloric
function u in CR+ε , define the ahom-caloric extension vε of uε into CR to be the solution

{
vε
t = ∇ · ahom∇vε in CR

vε = uε on ∂pCR,
(27)

where ∂pCR denotes the parabolic boundary

∂pCR :=
(
BR × {−R2}

)
∪

(
∂BR × [−R2, 0]

)
.

Then, again motivated by the classical two-scale expansion, for ε > 0 and a smooth
cutoff function η vanishing on the parabolic boundary ∂pCR , the augmented homog-
enization error w will be defined as

w := u − (1 + ηφi∂i )v
ε.

It will be shown in the proof of Proposition 2 that the augmented homogenization
error satisfies, in CR ,

wt − ∇ · a∇w = ∇ · (
(1 − η)(a − ahom)∇vε + (φi a + ψi − σi )∇(η∂iv

ε)
)

+ ∂tζi · ∇(η∂iv
ε) − φi

(
η∂iv

ε
)
t − ψiΔ(η∂iv

ε), (28)

with

w = u − uε on ∂pCR .

As in the elliptic setting, the energy estimate obtained by testing this equation with
w, for an appropriately chosen cutoff η, will be the starting point of the Campanato
iteration used to control the decay of the excess. In this case, there is a contribution
from the boundary, which will be controlled first by fixing ε > 0 small. From the
right hand side of (28), the energy of the homogenization error will then be controlled
by the growth of the extended parabolic corrector (φ,ψ, σ ) and, after integrating in
parts by time, the growth of ζ and q. It is furthermore necessary to make a good
choice for the cutoff function η and to use the interior and boundary regularity of the
ahom-caloric function vε . The argument is completed by observing that, owing to the
interior regularity of ahom-caloric functions, the homogenization error w provides a
good approximation for the excess.

The following proposition makes the previous intuition rigorous, and its proof is
contained in Sect. 5.4 of the proof of Proposition 2. In the following, the constant
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ε > 0 quantifies the regularization on the boundary, and the constant ρ > 0 quantifies
a boundary layer introduced by a cutoff function. This is done in the proof to exploit the
interior regularity of ahom-caloric functions, and in order to impose useful boundary
conditions for the homogenization error.

Proposition 3 Suppose that the ensemble 〈·〉 satisfies (2), (3), (4), and (5). Let a ∈ Ω

and R > 0 be arbitrary. For every a-caloric function u on CR and ε ∈ (0, R
4 ), there

exists Rε = Rε(u, ε) ∈ ( R
2 , 3R

4

)
such that, for the ahom-caloric extension vε of u on

CRε in the sense of (27), for the homogenization error

w := u − (1 + φi∂i )v
ε,

there exists C = C(d, λ) > 0 such that, for 〈·〉-a.e. a, for each ρ ∈ (0, 1
8 ),

 
C R

4

∇w · a∇w ≤ Cε

 
CR

|∇u|2 + C
ρ

2
d

ε2

 
CR

|∇u|2

+ C

R2ρd+4

 
CR

(
|φ|2 + |ψ |2 + |σ |2

)  
CR

|∇u|2

+
(

C

R2ρ
d
2 +3

(ˆ
CR

|ζ |2
) 1

2 + C

R4ρd+6

ˆ
CR

|ζ |2
) ˆ

CR

|∇u|2

+ C

R2ρd+4

( 
CR

|ζ |2
) 1

2
( 

CR

|q|2
) 1

2
 
CR

|∇u|2 ,

for the extended corrector (φ,ψ, σ, ζ ) from Lemma 1.

Finally, the following parabolic Caccioppoli inequality will be used in the proofs of
Theorem1andProposition 2.Theproof is classical, and is included for the convenience
of the reader.

Lemma 2 Suppose that 〈·〉 satisfies (5). There exists C = C(λ) > 0 such that, for
〈·〉-a.e. a, for every R > 0 and distributional solution u of the equation

ut = ∇ · a∇u in CR,

and for every c ∈ R and ρ ∈ (0, R
2 ),

ˆ
CR−ρ

|∇u|2 ≤ C

ρ2

ˆ
CR\CR−ρ

|u − c|2 . (29)

In comparison with the elliptic setting, the qualitative homogenization theory of
divergence-form operators with coefficients depending on time and space is relatively
under studied. While the case of periodic coefficients has long been understood, and a
full explanation can be found in the classic reference Bensoussan et al. [13, Chapter 3],
the qualitative stochastic homogenization of stationary and ergodic ensembles like (1)
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was obtained only more recently by Rhodes [25,26]. However, related problems were
earlier handled, such as the case of a Brownian motion in the presence of a divergence-
free drift, by Komorowski and Olla [19], Landim et al. [21] and Oelschläger [22]. In
the discrete setting, related questions have been considered, for instance, by Andres
[1], Bandyopadhyay and Zeitouni [10] and Rassoul-Agha and Seppäläinen [24] in the
uniformly elliptic setting and, for degenerate environments, by Andres et al. [2].

The quantitative homogenization of such ensembles has only recently been consid-
ered, and the preprint [3] contains, to our knowledge, the first results in this direction.
In particular, in [3, Theorem 1.2], a full hierarchy of Liouville theorems is obtained
for ensembles satisfying a finite-range dependence in space and time. Their method
is motivated by the work of Armstrong and Smart [6] from the elliptic setting, which
adapted the approach of Avellaneda and Lin [7] from the context of periodic homog-
enization.

In [7], a full hierarchy of Liouville properties was established for uniformly elliptic
and periodic coefficient fields based upon the previous works Avellaneda and Lin
[8,9], which developed a large-scale regularity theory in Hölder and L p-spaces. In
[6], the approach of [7] was adapted to stationary and ergodic ensembles satisfying
a finite-range dependence. Their proof, which obtained a large-scale C0,1-regularity
theory,was basedupon avariational approach and the quantification of the convergence
of certain sub-additive and super-additive energies. Their work was later extended by
Armstrong andMourrat [5] to more general mixing conditions, and subsequently gave
rise to a significant literature on the subject. The interested reader is pointed to the
recent monograph Armstrong et al. [4], and the references therein.

The approach of this paper follows closely the work [18], which derived, for
uniformly elliptic ensembles, a large-scale C1,α-regularity estimate and first-order
Liouville property under the qualitative assumptions of stationarity and ergodicity.
The method was based upon the introduction of an intrinsic notion of excess, as
defined in (16), as well as the construction of the flux correction σ ell defined in (17).
The introduction of σ ell was used to prove that the homogenization error solves the
divergence-form Eq. (26), which provided the starting point for a Campanato iteration
as explained above.

Subsequently, Fischer andOtto [16] obtained a full hierarchy of Liouville properties
under a mild quantification of the ergodicity. In Fischer and Otto [17], the necessary
quantification of ergodicity from [16] was shown to be satisfied by a general class
of Gaussian environments. However, absent some mild quantification of ergodicity in
the sense of either [5] or [16], the existence of higher order Liouville and large-scale
regularity statements remains an open question.

Finally, motivated by the work of Chiarini and Deuschel [15], the Bella et al.
[12] derived a large-scale C1,α-regularity theory and first-order Liouville theorem for
degenerate elliptic equations, where the boundedness and uniform ellipticity (5) was
replaced by certain moment conditions. It is expected that the results of this paper can
be similarly extended to degenerate environments, and the setting of [2] will serve as
the starting point for future work.

In principle, one could also hope to combine the methods of this paper with those
of [18], in the presence of a logarithmic Sobolev inequality like that used in [18,
Theorem 1], to obtain more quantitative information. For example, the minimal radius
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r∗(a) > 0 quantifying the first scale for which the assumptions of Proposition 2 are
satisfied, and which effectively defines the initial scale on which theC1,α-regularity of
Proposition 2 begins to take effect, is expected to have stretched exponential moments
in the sense of [18, Theorem 1]. Furthermore, again assuming a logarithmic Sobolev
inequality, it should be possible to obtain a quantitative two-scale expansion for a-
caloric functions like [18, Corollary 3]. Lastly, following the methods of [16], it may
be possible to prove higher order Liouville statements under a mild quantification of
the ergodicity.

The paper is organized as follows. The proofs are presented in the order of their
appearance: Theorem 1, Lemma 1, Propositions 1, 2 and Lemma 2. In order to simplify
the notation, the statements and proofs arewritten for the non-symmetric scalar setting.
However, at the cost of increasing some constants, all of the arguments carry through
unchanged for non-symmetric systems. Throughout, the notation � is used to denote
a constant whose dependencies are specified in every case by the statement of the
respective theorem, proposition or lemma.

2 The proof of Theorem 1

Fix a coefficient field a satisfying the conclusions of Lemma 1, Propositions 1 and 2,
and suppose that u is a distributional solution of

ut = ∇ · a∇u on R
d × (−∞, 0),

which is strictly subquadratic in the sense that, for some α ∈ (0, 1),

lim
R→∞

1

R1+α

( 
CR

|u|2
) 1

2 = 0.

Fix C0 = C0(α, d, λ) > 0 satisfying the hypothesis of Proposition 2. Then, using
Proposition 1, fix R0 > 0 such that, for every R > R0, for each i, j, k ∈ {1, . . . , d},

1

R

( 
CR

|φi − (φi )R |2 + ∣∣ψi − (ψi )t,R
∣∣2 + ∣∣σi jk − (σi jk)t,R

∣∣2)
1
2 ≤ 1

C0
,

and

1

R2

( 
CR

∣∣ζi j − ζi j (0)
∣∣2)

1
2

<
1

C0
,

and such that, for each i ∈ {1, . . . , d} and R > R0,

( 
CR

|qi |2
) 1

2 ≤ 2
〈
|qi |2

〉 1
2
.
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The definition of the excess, Proposition 2 and the Caccioppoli inequality (29)
imply that, for each R0 < ρ < R,

Exc(u; ρ) �
( ρ

R

)2α
Exc(u; R) ≤

( ρ

R

)2α  
CR

|∇u|2 � ρ2α

(2R)2+2α

 
C2R

|u|2 .

Therefore, since u is strictly subquadratic,

Exc(u; ρ) � ρ2α lim sup
R→∞

1

(2R)2+2α

 
C2R

|u|2 = 0.

This implies that, for every ρ > 0,

Exc(u; ρ) = 0.

It is then immediate from the definition of parabolic excess (14), since CR1 ⊂ CR2

whenever R1 < R2, that there exists ξ ∈ R
d for which the difference

z(x, t) := u(x, t) − ξ · x − φξ (x, t)

satisfies

∇z = 0 in R
d × (−∞, 0).

However, because z is a distributional solution of

zt = ∇ · a∇z in R
d × (−∞, 0),

it follows that z is necessarily constant in time as well. Therefore, there exists c ∈ R

such that u = c + ξ · x + φξ , which completes the argument.

3 The proof of Lemma 1

The construction of the corrector (φ,ψ, σ, ζ ) will be achieved by lifting the relevant
Eqs. (7), (19), (20) and (22) to the probability space Ω , and thereby identifying φ by
its stationary, finite energy gradient and time derivative, ψ and σ by their stationary,
finite energy gradients, and ζ by its stationary time derivative. For this, it is necessary
to define the horizontal derivative of a random variable as induced by shifts of the
coefficient field in space and time. Then, these will be used to define an analogue of
the Sobolev space H1 on the probability space.

Given an L2(Ω) random variable f , define, for each i ∈ {1, . . . , d}, the horizontal
derivative

Di f (a) := lim
h→0

f (a(· + hei , ·)) − f (a)

h
, (30)

where the above limit is understood in the sense of strong L2(Ω)-convergence. Of
course, it is not true in general that the above limit exists for every f ∈ L2(Ω), but
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the horizontal derivatives are closed, densely defined operators on L2(Ω), see [23],
with domains, for i ∈ {1, . . . , d},

D(Di ) :=
{
f ∈ L2(Ω) | Di f exists as an element of L2(Ω)

}
.

Similarly, for each f ∈ L2(Ω), define the horizontal time derivative

D0 f (a) := lim
h→0

f (a(·, · + h)) − f (a)

h
, (31)

which is a closed, densely defined operator on L2(Ω) with domain

D(D0) :=
{
f ∈ L2(Ω) | D0 f exists as an element of L2(Ω)

}
.

The analogue of the Hilbert space H1 is then defined on the probability space as
the intersection

H1 := ∩d
i=0D(Di ),

equipped with the inner product, for each f, g ∈ H1,

( f, g)H1 = 〈 f g〉 + 〈D0 f D0g〉 + 〈Df · Dg〉 ,

for the horizontal spatial gradient

Df := (D1 f, . . . , Dd f ).

Finally, define the space of spatial potentials

L2
pot(Ω;Rd) := {

Df | f ∈ H1
}L2(Ω)-weak

, (32)

as the L2(Ω)-weak closure of spatial gradients arising from H1 functions. Indeed, it
is immediate from the weak convergence that elements of L2

pot(Ω;Rd) are potentials

in the sense that every F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd) satisfies the distributional

equality, for each i, j ∈ {1, . . . , d},

Di Fj = Dj Fi .

In other words, every F ∈ L2
pot(Ω;Rd) is curl-free.

The following general fact about potential vector fields will be used in the construc-
tion of σ and to prove the sublinearity for the corrector (φ,ψ, σ, ζ ). It will be shown
that, with respect to the sub-sigma-algebra of subsets that are invariant with respect to
spatial translations of the coefficient fields, the conditional expectation of a potential
vector field vanishes as a random variable.
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Lemma 3 For every F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd), for each i ∈ {1, . . . , d},

〈
Fi | FRd

〉 = 0 in L2(Ω), (33)

where
〈· | FRd

〉
denotes the conditional expectation with respect to the sub-sigma-

algebra FRd ⊂ F of subsets which are invariant with respect to spatial translations
of the coefficient field.

In particular, for every F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd), for every i ∈ {1, . . . , d},

〈Fi 〉 = 0.

The proof of Lemma 3 now follows. Let F = (F1, . . . , Fd) ∈ L2
pot(Ω;Rd) be

arbitrary. Owing to the definition of the conditional expectation, it is sufficient to
show that, for every FRd -measurable function g ∈ L2(Ω), for each i ∈ {1, . . . , d},

〈Fi g〉 = 0. (34)

To prove (34), owing to definition (32) there exists a sequence of functions {ϕn}∞n=1 ⊂
H1 such that, as n → ∞,

Dϕn ⇀ F weakly in L2(Ω;Rd). (35)

The weak convergence (35) implies that, for each i ∈ {1, . . . , d},

lim
n→∞ 〈(Diϕn) g〉 = 〈Fi g〉 . (36)

Then, for each n ≥ 1, since ϕn ∈ H1, it follows that, since spatial translations of the
coefficient field preserve the measure, see (2), for each i ∈ {1, . . . , d},

〈(Diϕn) g〉 = lim
h→0

1

h
〈(ϕn (a(· + hei , ·)) − ϕn(a)) g〉

= lim
h→0

1

h
〈ϕn (g (a(· − hei , ·)) − g(a))〉 = 0,

(37)

where the final equality follows from the fact that g ∈ L2(Ω) and the fact that g is
invariant with respect to spatial shifts of the coefficient field as an FRd -measurable
function. In combination, (36) and (37) imply (34). Since the FRd -measurable g ∈
L2(Ω) and F ∈ L2

pot(Ω;Rd) were arbitrary, this completes the proof of (33).

The final statement is then immediate since, for every F ∈ L2
pot(Ω;Rd) and i ∈

{1, . . . , d}, the conditional expectation satisfies

〈Fi 〉 = 〈〈
Fi | FRd

〉〉 = 0,

where the final equality follows from (33) and completes the proof of Lemma 3.
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3.1 The construction of φ

For the construction of the corrector φ, it is sufficient to construct, for each k ∈
{1, . . . , d}, a stationary gradient Dφk ∈ L2

pot(Ω;Rd) and a stationary time-derivative

D0φk ∈ H−1, where H−1 denotes the dual-space ofH1, satisfying

〈D0φk f 〉 + 〈Df · a(Dφk + ek)〉 = 0 for every f ∈ H1. (38)

The corrector φ will then be defined on R
d+1, for 〈·〉-a.e. a, by integration. Observe

that in order to define φ via integration it is necessary to choose a base point, and it is
this choice that ruins the stationarity.

We remark that the following proof is essentially theLax–Milgramargument,where
the only small subtlety is that the operator defining Eq. (38) is not coercive for H1,
since it is not coercive with respect to the horizontal derivative in time.

The first step is to introduce an approximation of (38) which is coercive with respect
to the H1-norm. The Riesz representation theorem and the uniform ellipticity of the
ensemble (5) guarantee that, for each k ∈ {1, . . . , d} and β ∈ (0, 1), there exists a
unique element φβ

k ∈ H1 satisfying, for every f ∈ H1,

β
〈
φ

β
k f

〉
+ β

〈
D0φ

β
k D0 f

〉
+

〈
D0φ

β
k f

〉
+

〈
Df · a(Dφ

β
k + ek)

〉
= 0. (39)

Therefore, for each k ∈ {1, . . . , d} and β ∈ (0, 1), after testing (39) with φ
β
k , the

uniform ellipticity of the ensemble and Hölder’s inequality yield the estimate

〈∣∣∣Dφ
β
k

∣∣∣2
〉
+ β

〈∣∣∣φβ
k

∣∣∣2 +
∣∣∣D0φ

β
k

∣∣∣2
〉

� 1, (40)

where the fact that

〈
D0φ

β
k φ

β
k

〉
= 1

2

〈
D0(φ

β
k )2

〉
= lim

h→0

1

2h

〈
(φ

β
k )2 (a(·, · + h)) − (φ

β
k )2(a)

〉
= 0 (41)

is also used to obtain (40), and follows from the fact that shifts of the coefficient field
in time and space preserve the underlying measure of the ensemble, see (2), and since
φ

β
k ∈ L2(Ω).
Then, for each k ∈ {1, . . . , d} and β ∈ (0, 1), Eq. (39), Hölder’s inequality and

(40) imply that, for each f ∈ H1,

∣∣∣〈D0φ
β
k f

〉∣∣∣ � ‖ f ‖H1 and, therefore, ‖D0φ
β
k ‖H−1 � 1. (42)

Hence, for each k ∈ {1, . . . , d}, the definition of the potential space (32)with estimates
(40) and (42) imply that there exist Ψk ∈ L2

pot(Ω;Rd) and ξk ∈ H−1 such that, after
passing to a subsequence {β j → 0}∞j=1, as j → ∞,

Dφ
β j
k ⇀ Ψk weakly in L2(Ω;Rd) and D0φ

β j
k ⇀ ξk weakly in H−1. (43)
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The convergence (43) combined with Eq. (39) and estimate (40) prove that, for each
k ∈ {1, . . . , d},

〈ξk f 〉 + 〈Df · a(Ψk + ek)〉 = 0 for every f ∈ H1.

Finally, for each k ∈ {1, . . . , d}, as weak limits of functions φ
β
k ∈ H1, the pair (Ψk, ξk)

are curl-free in the sense that, for each i ∈ {1, . . . , d}, distributionally

D0Ψki = Diξk .

Therefore, for each k ∈ {1, . . . , d}, the argument is completed by defining Dφk := Ψk

and D0φk := ξk .

3.2 The construction of ψ

For each k ∈ {1, . . . , d}, let Dφk ∈ L2
pot(Ω;Rd) denote the stationary gradient

corresponding to φk , which was constructed in the previous step. Then, for each
k ∈ {1, . . . , d}, define the lift of the flux qk to the probability space according to the
rule

Qk := a(Dφk + ek). (44)

The existence of ψ follows from the following general fact, which follows again from
a small modification of the Lax–Milgram argument.

Lemma 4 For every F ∈ L2(Ω;Rd), there exists Ψ ∈ L2
pot(Ω;Rd) satisfying

〈Ψ · Df 〉 = 〈F · Df 〉 for every f ∈ H1. (45)

The existence of ψ follows from Lemma 4 in the following way. For each k ∈
{1, . . . , d}, choose F = Qk and define Dψk := Ψ , which defines ψk , for 〈·〉-a.e. a, as
a function on Rd via integration. In this case, it is the choice of spatial base point that
destroys the spatial stationarity of ψ . However, for 〈·〉-a.e. a, for each k ∈ {1, . . . , d},
the function ψk can then be extended to R

d+1 as a stationary function in time.
In order to prove Lemma 4, the Riesz representation theorem asserts that, for each

β ∈ (0, 1), there exists a unique ψβ ∈ H1 satisfying

β
〈
ψβ f

〉 + β
〈
D0ψ

βD0 f
〉 + 〈

Dψβ · Df
〉 = 〈F · Df 〉 for every f ∈ H1. (46)

For each β ∈ (0, 1), after testing (46) with ψβ , Hölder’s inequality and Young’s
inequality yield the estimate

〈∣∣Dψβ
∣∣2〉 + β

〈∣∣ψβ
∣∣2 + ∣∣D0ψ

β
∣∣2〉 � 1. (47)

Therefore, the definition of the potential space (32) and estimate (47) imply that there
exists Ψ ∈ L2

pot(Ω;Rd) such that, after passing to a subsequence {β j → 0}∞j=1, as
j → ∞,
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Dψβ j ⇀ Ψ weakly in L2(Ω;Rd). (48)

In combination with Eq. (46), estimates (47) and the convergence (48) imply that Ψ

satisfies (45), which completes the proof of Lemma 4.

3.3 The construction of σ

For each k ∈ {1, . . . , d}, let Dψk ∈ L2
pot(Ω;Rd) denote the stationary gradient

corresponding to ψk constructed in the previous step and let Qk denote the lift of the
flux from (44). Lemma 4 applies directly to this situation, and proves that, for each
i, j, k ∈ {1, . . . , d}, there exists Σi jk ∈ L2

pot(Ω;Rd) satisfying

〈
Σi jk · Df

〉 = 〈
(Qi − Dψi )k D j f

〉 − 〈
(Qi − Dψi ) j Dk f

〉
= 〈(

(Qi − Dψi )ke j − (Qi − Dψi ) j ek
) · Df

〉
for every f ∈ H1.

(49)
Then, for each i, j, k ∈ {1, . . . , d}, the definition Dσi jk := Σi jk defines σi jk , for
〈·〉-a.e. a, on Rd via integration in space. As in the case of ψ , the choice of base point
ruins the spatial stationarity of σ . However, for each i, j, k ∈ {1, . . . , d}, for 〈·〉-a.e.
a, the corrector σi jk can then be extended to R

d+1 as a stationary function in time.
Since it is clear from the proof of existence that, for each i, j, k ∈ {1, . . . , d}, the

gradients can be constructed to satisfy

Σi jk = −Σik j ,

after integrating it follows that, for each i, j, k ∈ {1, . . . , d},

σi jk = −σik j .

Or, perhaps more simply, for each i ∈ {1, . . . , d}, one may first construct σi jk for
every j > k ∈ {1, . . . , d} and then simply define σik j := −σi jk .

It remains to prove that, for each i ∈ {1, . . . , d},

D · σi = (Qi − Dψi ) − 〈
Qi | FRd

〉
, (50)

where, for each i, j ∈ {1, . . . , d},

(D · σi ) j =
d∑

k=1

Dkσi jk . (51)

To simplify the notation in what follows, define the vector, for each i ∈ {1, . . . , d},

Ψi := (Qi − Dψi ), (52)
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where the construction of ψi guarantees that the vector Ψi is divergence-free in the
sense of the distributional equality

DlΨil = 0. (53)

Equation (50) now follows from the following distributional equalities. For each i, j ∈
{1, . . . , d}, thanks to Eq. (49), in the sense of distributions

Dl(Dl(D · σi ) j ) = Dl(Dl(Dkσi jk) = Dk
(
Dl(Dlσi jk)

) = Dk(DkΨi j − DjΨik).

Therefore, for each i, j ∈ {1, . . . , d}, in view of (53) and after relabeling the final
integral,

Dl(Dl(D · σi ) j ) = Dk(DkΨi j − DjΨik) = Dk(DkΨi j ) − Dj (DkΨik) = Dl(DlΨi j ).

Hence, in the sense of distributions, for each i, j ∈ {1, . . . , d},

Dl
(
Dl

(
(D · σi ) j − Ψi j

)) = 0. (54)

Equation (54) implies that, for each i, j ∈ {1, . . . , d}, the difference
(
(D · σi ) j − Ψi j

)

is invariant with respect to spatial translations of the coefficient field. That is, for each
i, j ∈ {1, . . . , d},

(
(D · σi ) j − Ψi j

) = 〈(
(D · σi ) j − Ψi j

) | FRd

〉
. (55)

The fact that (55) implies (50) follows fromLemma 3. Indeed, for each i ∈ {1, . . . , d},

Dψi ∈ L2
pot(Ω;Rd),

and by a straightforward repetition of the arguments leading to Lemma 3, for each
i ∈ {1, . . . , d},

〈
(D · σi ) | FRd

〉 = 0 in L2(Ω;Rd).

Therefore, for each i, j ∈ {1, . . . , d},
(
(D · σi ) j − Ψi j

) = 〈(
(D · σi ) j − Ψi j

) | FRd

〉 = − 〈
Qi j | FRd

〉
,

which is (50). This completes the argument.
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3.4 The construction of ζ

The construction of ζ is explicit. Namely, for each i ∈ {1, . . . , d}, for the lift of the
flux Qi defined in (44), define the stationary derivative in time according to the rule

D0ζi = 〈
Qi | FRd

〉 − 〈Qi 〉 .

For each i ∈ {1, . . . , d}, the function ζi is defined on R, for 〈·〉-a.e a, by fixing a base
point and integrating in time, which destroys the stationarity, and then extended to
R
d+1 as a spatially constant function.

3.5 The boundedness and uniform ellipticity of ahom

For the reader’s convenience, the argument of [18, Lemma 2] is repeated here. For
each ξ ∈ R

d , the linearity and (11) assert that the homogenized coefficients are defined
according to the rule

ahomξ := 〈
a(∇φξ + ξ)

〉
.

It is first shown that, for each ξ ∈ R
d ,

|ahomξ | ≤ 1

λ
|ξ | . (56)

For each ξ ∈ R
d , since φξ satisfies (7), the uniform ellipticity of the ensemble (5) and

Jensen’s inequality imply that

|ahomξ |2 = ∣∣〈a(∇φξ + ξ)
〉∣∣2 ≤

〈∣∣a(∇φξ + ξ)
∣∣2〉

≤
〈∣∣(∇φξ + ξ)

∣∣2〉 ≤ 1

λ

〈
(∇φξ + ξ) · a(∇φξ + ξ)

〉
.

Then, using the corrector Eqs. (7), (41) and the Cauchy-Schwarz inequality,

|ahomξ |2 ≤ 1

λ

〈
(∇φξ + ξ) · a(∇φξ + ξ)

〉 = 1

λ
ξ · 〈

a(∇φξ + ξ)
〉 ≤ 1

λ
|ξ | |ahomξ | .

Dividing by |ahomξ | yields (56) and completes the proof.
It remains only to prove that, for each ξ ∈ R

d ,

λ |ξ |2 ≤ ξ · ahomξ. (57)

This follows from the convexity of the map

(X, v) ∈ S(d)>0 × R
d → v · X−1v, (58)
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where S(d)>0 denotes the space of positive, d × d symmetric matrices. Indeed, if
X ∈ S(d)>0 and v ∈ R

d ,

1

2

(
v · X−1v

)
= sup

w∈Rd

{
w · v − 1

2
w · Xw

}
,

is a supremum over linear functions in (X, v), and therefore the map (58) is convex.
Hence, for each ξ ∈ R

d , using the corrector Eq. (7) and Jensen’s inequality,

ξ · ahomξ = 〈
(∇ϕξ + ξ) · a(∇ϕξ + ξ)

〉 = 〈
(∇φξ + ξ) · asym(∇φξ + ξ)

〉

=
〈(∇φξ + ξ

) ·
(
a−1
sym

)−1
(∇φξ + ξ)

〉

≥ 〈∇φξ + ξ
〉 · 〈

(a−1
sym)

〉−1 〈∇φξ + ξ
〉 ≥ λ |ξ |2 ,

where asym denotes the symmetric part of a, and where the final inequality is obtained
using the boundedness of the ensemble (5) and the vanishing expectationof the gradient
from Lemma 3. This completes the proof of (57).

4 The proof of Proposition 1

4.1 The sublinearity of ψ and σ

The sublinearity of ψ and σ will follow from the following general fact. Recall that,
for a function ϕ : Rd+1 → R, for each R > 0 and t ∈ R,

(ϕ)R =
 
CR

ϕ and (ϕ)t,R =
 
BR

ϕ(·, t).

Furthermore, for each x ∈ R
d , define

(ϕ)t,R(x) =
 
BR(x)

ϕ(·, t).

Lemma 5 Suppose that ϕ is a scalar random field onRd+1 which is stationary in time
and has a stationary, finite energy gradient ∇ϕ in the potential space L2

pot(Ω;Rd).
That is, assume that

〈
|∇ϕ|2

〉
< ∞ with ∇ϕ ∈ L2

pot(Ω;Rd). (59)

Then, for 〈·〉-a.e. a, the normalized large-scale L2-averages of ϕ are strictly sublinear
in the sense that

lim
R→∞

1

R2

 
CR

∣∣ϕ − (ϕ)t,R
∣∣2 = 0. (60)
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To prove Lemma 5, let ε ∈ (0, 1) and R > 0 be arbitrary, and define

δεRϕ(x, t) = ϕ(x, t) − (ϕ)t,εR(x) for (x, t) ∈ R
d+1.

The triangle inequality implies that

1

R2

 
CR

∣∣ϕ − (ϕ)t,R
∣∣2

≤ 1

R2

 
CR

∣∣δεRϕ − (δεRϕ)t,R
∣∣2 + 1

R2

 
CR

∣∣(ϕ)t,εR(·) − ((ϕ)t,εR)t,R
∣∣2 .

(61)

For the first term of (61), observe that from the standard convolution estimate

 
CR

|δεRϕ|2 =
 0

−R2

 
BR

∣∣∣∣
 
BεR

ϕ(x, t) − ϕ(y, t) dy

∣∣∣∣
2

dx dt

=
 0

−R2

 
BR

∣∣∣∣
 
BεR

ˆ 1

0
∇ϕ (y + s(x − y)) · (x − y) ds dy

∣∣∣∣
2

dx dt

≤ (εR)2
 

−R2

 
B2R

|∇ϕ|2 � (εR)2
 
C2R

|∇ϕ|2 ,

(62)
where the penultimate step follows from ε ∈ (0, 1) and Jensen’s inequality. Therefore,
the triangle inequality and (62) imply that

1

R2

 
CR

∣∣δεRϕ(x, t) − (δεRϕ)t,R
∣∣2 � ε2

 
C2R

|∇ϕ|2 . (63)

For the second term of (62), the Poincaré inequality in space implies that

1

R2

 
CR

∣∣(ϕ)t,εR(·) − ((ϕ)t,εR)t,R
∣∣2

≤
 
CR

∣∣∇(ϕ)t,εR(·)∣∣2 =
 
CR

∣∣∣∣
 
BεR(x)

∇ϕ(y, t) dy

∣∣∣∣
2

dx dt.

(64)

The maximal ergodic theorem, see Becker [11, Corollary 2], implies that, for C =
C(d) > 0,

〈∣∣∣∣sup
R>0

 
BεR

∇ϕ(y, 0) dy

∣∣∣∣
2
〉

≤
〈(

sup
R>0

 
BR

|∇ϕ(y, 0)| dy
)2

〉

≤C
〈
|∇ϕ|2

〉
.

(65)
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Furthermore, the ergodic theorem [11, Theorem 2, Theorem 3] implies that, for 〈·〉-a.e.
a, for each ε ∈ (0, 1),

lim
R→∞

 
BεR

∇ϕ(y, 0) dy = 〈∇ϕ〉 = 0. (66)

The proof now follows from a straightforward application of Egorov’s theorem.
Let ε ∈ (0, 1) be arbitrary but fixed. For each η ∈ (0, 1), use Egorov’s theorem and
(66) to find a measurable subset Aη ⊂ Ω and Rη > 0 such that, for every a ∈ Aη and
R > Rη, ∣∣∣∣

 
BεR

∇ϕ(y, 0) dy

∣∣∣∣
2

< η with
〈
χAη

〉
> 1 − η, (67)

where χAη ∈ L∞(Ω) denotes the indicator function of Aη. Returning to (64), form
the decomposition

 
CR

∣∣∣∣
 
BεR(x)

∇ϕ(y, t) dy

∣∣∣∣
2

dx dt

=
 
CR

χAη (a(· + x, · + t))

∣∣∣∣
 
BεR(x)

∇ϕ(y, t) dy

∣∣∣∣
2

dx dt

+
 
CR

(
1 − χAη (a(· + x, · + t))

) ∣∣∣∣
 
BεR(x)

∇ϕ(y, t) dy

∣∣∣∣
2

dx dt.

(68)

For the second term of (68), it follows from the stationarity of ∇ϕ, the stationarity of
χAη , and the ergodic theorem [11, Theorems 2, 3] that

lim sup
R→∞

 
CR

(
1 − χAη (a(· + x, · + t))

) ∣∣∣∣
 
BεR(x)

∇ϕ(y, t) dy

∣∣∣∣
2

dx dt

≤ lim sup
R→∞

 
CR

(
1 − χAη (a(· + x, · + t))

) (
sup
R>0

 
BR(x)

|∇ϕ(y, t)| dy
)2

dx dt

=
〈(
1 − χAη

) (
sup
R>0

 
BR

|∇ϕ(y, 0)| dy
)2

〉
.

(69)
In combination (64), (67), (68), and (69) imply that, since η ∈ (0, 1) was arbitrary,

lim sup
R→∞

1

R2

 
CR

∣∣(ϕ)t,εR(·) − ((ϕ)t,εR)t,R
∣∣2

≤ lim inf
η→0

(
η +

〈(
1 − χAη

) (
sup
R>0

 
BR

|∇ϕ(y, 0)| dy
)2

〉)
= 0, (70)

where the final equality follows from (65), (67), and the dominated convergence theo-
rem. Hence, returning to (61), it is immediate from the stationarity of ∇ϕ, the ergodic
theorem [11, Theorems 2, 3], (63), and (70) that
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lim sup
R→∞

1

R2

 
CR

∣∣ϕ − (ϕ)t,R
∣∣2 ≤ ε2 〈∇ϕ〉2 .

This, since ε ∈ (0, 1) is arbitrary, completes the proof.

4.2 The sublinearity of φ

The sublinearity of φ will follow from the following general fact.

Lemma 6 Suppose that ϕ is a scalar random field on R
d+1 which has a stationary,

finite energy gradient ∇ϕ in the potential space L2
pot(Ω;Rd). That is, assume that

〈
|∇ϕ|2

〉
< ∞ with ∇ϕ ∈ L2

pot(Ω;Rd). (71)

Furthermore, assume that, for 〈·〉-a.e. a, the field ϕ satisfies

ϕt = ∇ · F distributionally in R
d+1, (72)

for the stationary extension of a finite energy field F ∈ L2(Ω;Rd). Then, for 〈·〉-a.e.
a, the normalized large-scale L2-averages of ϕ are strictly sublinear in the sense that

lim
R→∞

1

R

( 
CR

|ϕ − (ϕ)R |2
) 1

2 = 0. (73)

To prove Lemma 6, for each R > 0, use the triangle inequality to obtain

1

R

( 
CR

|ϕ − (ϕ)R |2
) 1

2 ≤ 1

R

( 
CR

∣∣ϕ − (ϕ)t,R
∣∣2)

1
2

+ 1

R

( 
CR

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

. (74)

Since ϕ has a stationary spatial gradient, for each R > 0 and t ∈ R, the scalar random
field

(x, t) → (ϕ − (ϕ)t,R)(x, t) =
 
BR

ϕ(x, t) − ϕ(y, t) dy

is stationary in time, with a stationary, finite-energy gradient in the potential space.
Therefore, Lemma 5 applies to this random field, and asserts that, for 〈·〉-a.e. a,

lim
R→∞

1

R

( 
CR

∣∣ϕ − (ϕ)t,R
∣∣2)

1
2 = 0. (75)

123



A Liouville theorem for stationary and ergodic ensembles… 787

It remains to prove that, for 〈·〉-a.e. a,

lim
R→0

1

R

( 
CR

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2 = lim

R→0

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

= 0.

Let ρ ∈ C∞
c (Rd) be a smooth, symmetric convolution kernel supported in B1 and, for

each ε > 0, define the rescaling ρε(·) = ε−dρ( ·
ε
). Then, for each ε > 0, define the

spatial convolution, for each x ∈ R
d and t ∈ R,

ϕε(x, t) :=
ˆ
Rd

ρε(y − x)ϕ(y, t) dy.

The introduction of the convolution kernel provides a test function which will be used
to apply the Eq. (72) satisfied by ϕ.

First, for each R > 0 and ε ∈ (0, R), it follows from the support of the convolution
kernel, Fubini’s theorem, and Jensen’s inequality that

∣∣(ϕ)R − (ϕε)R
∣∣2 =

∣∣∣∣
 
CR

ˆ
Rd

ρε(x) (ϕ(x + y, t) − ϕ(y, t)) dx dy dt

∣∣∣∣
2

≤ ε2
∣∣∣∣
ˆ 1

0

ˆ
Rd

ρε(x)
 
CR

|∇ϕ(y + r x, t)| dy dx dt dr
∣∣∣∣
2

≤ ε2
ˆ 1

0

ˆ
Rd

ρε(x)
 
CR

|∇ϕ(y + r x, t)|2 dy dx dt dr

� ε2
 
C2R

|∇ϕ|2 . (76)

Similarly, the identical argument yields, for each R > 0, t ∈ R, and ε ∈ (0, R),

∣∣(ϕ)t,R − (ϕε)t,R
∣∣2 � ε2

 
B2R

|∇ϕ(·, t)|2 . (77)

Therefore, for each R > 0 and ε ∈ (0, R), the triangle inequality, (76) and (77)
imply that, after adding and subtracting ((ϕε)t,R − (ϕε)R),

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

� 1

R

( 0

−R2

∣∣(ϕε)t,R − (ϕε)R
∣∣2)

1
2

+ ε

R

( 
C2R

|∇ϕ|2
) 1

2

. (78)
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For the first term on the right hand side of (78), the Eq. (72) satisfied by ϕ and the
Poincaré inequality in time yields, for each R ≥ 1 and ε ∈ (0, R),

1

R

( 0

−R2

∣∣(ϕε)t,R − (ϕε)R
∣∣2)

1
2

�
( 0

−R2

∣∣∂t (ϕε)t,R
∣∣2)

1
2

�
( 0

−R2

∣∣∣∣
 
BR

ˆ
Rd

∇ρε(x − y) · F(x, t) dx dy

∣∣∣∣
2

dt

) 1
2

�
( 0

−R2

∣∣∣∣
ˆ
Rd

∣∣∇ρε(x)
∣∣  

BR(x)
|F(y, t)| dy dx

∣∣∣∣
2

dt

) 1
2

�
( 0

−R2

∣∣∣∣
(ˆ

Rd

∣∣∇ρε(x)
∣∣ dx

) ( 
B2R

|F(y, t)| dy

)∣∣∣∣
2

dt

) 1
2

. (79)

Then, continuing with (79), the definition of the convolution kernel and Jensen’s
inequality yield

1

R

( 0

−R2

∣∣(ϕε)t,R − (ϕε)R
∣∣2)

1
2

� 1

ε

( 0

−R2

( 
B2R

|F(y, t)| dy

)2

dt

) 1
2

� 1

ε

( 
C2R

|F |2
) 1

2

. (80)

Therefore, combining (78) with (80), for each R > 0 and ε ∈ (0, R),

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

� 1

ε

( 
C2R

|F |2
) 1

2 + ε

R

( 
C2R

|∇ϕ|2
) 1

2

.

Let δ ∈ (0, 1) be arbitrary and, for each R > 0, fix ε(R) := δR. For this choice, for
each R > 0 and δ ∈ (0, 1),

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

� 1

δR

( 
C2R

|F |2
) 1

2 + δ

( 
C2R

|∇ϕ|2
) 1

2

. (81)

Since the ergodic theorem [11, Theorems 2, 3] implies that, for 〈·〉-a.e. a,

lim
R→∞

( 
C2R

|F |2
) 1

2 =
〈
|F |2

〉 1
2

and lim
R→∞

( 
C2R

|∇ϕ|2
) 1

2 =
〈
|∇ϕ|2

〉 1
2
,

it follows from (81) that, for 〈·〉-a.e. a, for every δ ∈ (0, 1),

lim sup
R→∞

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

� δ
〈
|∇ϕ|2

〉 1
2
.
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Therefore, since δ ∈ (0, 1) is arbitrary,

lim
R→0

1

R

( 
CR

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2 = lim

R→0

1

R

( 0

−R2

∣∣(ϕ)t,R − (ϕ)R
∣∣2)

1
2

= 0.

(82)
In combination, (74), (75) and (82) combine to prove (73), and thereby complete the
proof of Lemma 6. The sublinearity of the corrector φ, for 〈·〉-a.e. a, is then immediate
from Lemma 1.

4.3 The sublinearity of ζ

The fact that, for 〈·〉-a.e. a, for each i, j ∈ {1, . . . , d},

lim
R→0

1

R2

( 
CR

∣∣ζi j − (ζi j )R
∣∣2)

1
2 = lim

R→∞
1

R2

( 0

−R2

∣∣ζi j − (ζi j )R
∣∣2)

1
2

= 0,

is essentially classical. For each i ∈ {1, . . . , d}, the Poincaré inequality and the ergodic
theorem [11, Theorems 2, 3] together with the Rellich-Kondrachov embedding theo-
rem imply that the family

{
ε2ζi j

( ·
ε2

)
− ε2

 0

− 1
ε2

ζi j

}

ε∈(0,1)

is compact in L2([0, 1]) and converges weakly to zero, as ε → 0, in H1([0, 1]).
Therefore, for 〈·〉-a.e. a, for each i, j ∈ {1, . . . , d}, as ε → 0,

(
ε2ζi j

( ·
ε2

)
− ε2

 0

− 1
ε2

ζi j

)
→ 0 in L2([0, 1]). (83)

Furthermore, now exploiting the fact that ζ is a one-dimensional function, it follows
from the Sobolev embedding theorem and the Arzelà-Ascoli theorem that, for 〈·〉-a.e.
a, for each i, j ∈ {1, . . . , d}, the family

{
ε2ζi j

( ·
ε2

)
− ε2

 0

− 1
ε2

ζi j

}

ε∈(0,1)

is pre-compact in C0, 12 ([0, 1]) and, by repeating the argument of (61), converges
weakly to zero, as ε → 0, in H1([0, 1]). Therefore, for 〈·〉-a.e. a, for each i, j ∈
{1, . . . , d}, as ε → 0,

(
ε2ζi j

( ·
ε2

)
− ε2

 0

− 1
ε2

ζi j

)
→ 0 in C0, 12 ([0, 1]).
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In particular, for each i, j ∈ {1, . . . , d}, as ε → 0,

∣∣∣∣∣ε2ζi j (0) − ε2
 0

− 1
ε2

ζi j

∣∣∣∣∣ → 0. (84)

Hence, in combination, (83) and (84) prove after rescaling that, for 〈·〉-a.e. a, for each
i, j ∈ {1, . . . , d},

lim sup
R→0

1

R2

( 0

−R2

∣∣ζi j − ζi j (0)
∣∣)

1
2

≤ lim sup
R→∞

1

R2

( 0

−R2

∣∣ζi j − (ζi j )R
∣∣)

1
2

+ lim sup
R→∞

1

R2

∣∣(ζi j )R − ζi j (0)
∣∣ = 0,

which completes the argument since ζ is constant in space.

4.4 The large-scale averages of q

It is an immediately consequence of the ergodic theorem [11, Theorems 2, 3] and
the fact that the flux q is stationary with finite energy that, for 〈·〉-a.e. a, for each
i ∈ {1, . . . , d},

lim
R→∞

( 
CR

|qi |2
) 1

2 =
〈
|Qi |2

〉 1
2
,

which completes the argument, and the proof of Proposition 1.

5 The proof of Proposition 2

The proof of Proposition 2 is split into five steps. The first defines the augmented
homogenization error. The second proves that the augmented homogenization error
satisfies a parabolic equation. The third recalls some classical estimates governing the
interior and boundary regularity ofahom-caloric functions. The fourth uses the equation
satisfied by the augmented homogenization error to derive an energy estimate. And,
finally, the fifth uses the energy estimate to complete the proof of excess decay.

In what follows, to simplify the notation, observe that it may be assumed without
loss of generality that, for the R > 0 of interest, t ∈ R and i, j, k ∈ {1, . . . , d},

(φi )R = (ψi )t,R = (σi jk)t,R = ζi j (0) = 0.

Indeed, otherwise in the arguments to follow, at each step replace the components
of the corrector, for the R > 0 of interest, t ∈ R and i, j, k ∈ {1, . . . , d}, by the
normalizations defined by
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φ̃i := φi (x, t) − (φi )R, ψ̃i := ψi − (ψi )t,R, σ̃i jk := σi jk − (σi jk)t,R,

and ζ̃i j := ζi j − ζi j (0). (85)

The argument now begins with the definition of the augmented homogenization error.

5.1 The augmented homogenization error

The analysis of the augmented homogenization error and its corresponding energy
estimate will first be obtained on scale R = 1. The general results will then follow
by scaling. Suppose that u is an a-caloric function in C1. That is, in the sense of
distributions, suppose that u satisfies

ut = ∇ · a∇u in C1. (86)

Then, let ρ ∈ C∞
c (Rd) be a standard convolution kernel satisfying supp(ρ) ⊂ B1. For

each ε ∈ (0, 1
4 ), let ρ

ε(·) := ε−dρ( ·
ε
) and define the spatial convolution

uε(x, t) =
ˆ
Rd

ρε(y − x)u(y, t) dy on C1−ε .

It is necessary to observe some useful energy estimates for u and its convolution.
First, it is immediate from (86) and the uniform ellipticity of a from (5) that

‖ut‖L2([−1,0];H−1(B1)) �
ˆ
C1

|∇u|2 .

Therefore, since the convolution preserves this estimate, for each ε ∈ (0, 1
4 ),

‖uε
t ‖L2([−1,0];H−1(B1−ε )) �

ˆ
C1

|∇u|2 . (87)

It is important to keep these estimates in mind when considering the application of the
constant-coefficient regularity estimates (106) and (110) below.

Next, although there is no convolution in time, the spatial convolution nevertheless
provides some temporal regularity in the sense that, for each ε ∈ (0, 1

4 ),

uε
t (x, t) = −

ˆ
Rd

∇ρε(y − x) · a∇u(y, t) dy in C1−ε .

Therefore, the time-derivative has a uniformly bounded energy. That is, for each ε ∈
(0, 1

4 ), the Minkowski integral inequality, Hölder’s inequality, the definition of the
convolution kernel, and the uniform ellipticity of a imply that
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⎛
⎝ˆ

C 3
4

∣∣uε
t

∣∣2
⎞
⎠

1
2

≤
(ˆ

C1−ε

∣∣∣∣
ˆ
Rd

∇ρε(y − x) · a∇u(y) dy

∣∣∣∣
2

dx dt

) 1
2

�
ˆ
Rd

(ˆ
C1−ε

∣∣∇ρε(y)
∣∣2 |∇u(y + x, t)|2 dx dt

) 1
2

dy

=
ˆ
Rd

∣∣∇ρε(y)
∣∣ (ˆ

C1−ε

|∇u(y + x, t)|2 dx dt

) 1
2

dy

� 1

ε

(ˆ
C1

|∇u|2
) 1

2

.

The convolution error is also well controlled by the energy of u. Precisely, for each
ε ∈ (0, 1

4 ), it follows from Jensen’s inequality and the definition of the convolution
kernel that

⎛
⎝ˆ

C 3
4

∣∣uε − u
∣∣2

⎞
⎠

1
2

=
⎛
⎝ˆ

C 3
4

∣∣∣∣
ˆ 1

0

ˆ
R

ρε(y)∇u(x + sy, t) · y dy ds
∣∣∣∣
2

dx dt

⎞
⎠

1
2

≤ ε

⎛
⎝ˆ

Rd
ρε(y)

ˆ 1

0

ˆ
C 3
4

|∇u(x + sy, t)|2 dx dt ds dy

⎞
⎠

1
2

≤ ε

(ˆ
C1

|∇u|2
) 1

2

.

Lastly, it is immediate from Jensen’s inequality that the convolution preserves the
energy in the sense that, for each ε ∈ (0, 1

4 ),

⎛
⎝ˆ

C 3
4

∣∣∇uε
∣∣2

⎞
⎠

1
2

≤
(ˆ

C1
|∇u|2

) 1
2

.

Fubini’s theorem therefore implies that, for each ε ∈ (0, 1
4 ), there exists rε ∈ ( 12 ,

3
4 )

such that (ˆ
∂pCrε

∣∣uε − u
∣∣2

) 1
2

� ε

(ˆ
C1

|∇u|2
) 1

2

, (88)

and (ˆ
∂pCrε

∣∣uε
t

∣∣2
) 1

2

� 1

ε

(ˆ
C1

|∇u|2
) 1

2

, (89)
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and, finally, such that

(ˆ
∂pCrε

|∇u|2
) 1

2

+
(ˆ

∂pCrε

∣∣∇uε
∣∣2

) 1
2

�
(ˆ

C1
|∇u|2

) 1
2

. (90)

It will be for this radius that the ahom-caloric extension of uε is constructed.
Namely, for each ε ∈ (0, 1

4 ), let v
ε denote the solution

{
vε
t = ∇ · a∇vε in Crε

vε = uε on ∂pCrε .
(91)

These functions will now come to define the augmented homogenization error after
the introduction of a cutoff function.

For each ε ∈ (0, 1
4 ) and ρ ∈ (0, 1

8 ), let η
ε
ρ ∈ C∞

c (Rd+1) be smooth cutoff function
satisfying 0 ≤ ηε

ρ ≤ 1 with, for each x ∈ R
d and t ∈ R,

ηε
ρ(x, t) =

{
1 if (x, t) ∈ Crε−2ρ

0 if (x, t) ∈ (
R
d × (−∞, 0)

) \Crε−ρ.
(92)

Furthermore, for each ε ∈ (0, 1
4 ) and ρ ∈ (0, 1

8 ), for each x ∈ R
d and t ∈ R,

∣∣∇ηε
ρ(x, t)

∣∣ + ∣∣∂tηε
ρ(x, t)

∣∣ � 1

ρ
and

∣∣∣∇2ηε
ρ(x, t)

∣∣∣ � 1

ρ2 . (93)

Then, for ρ ∈ (0, 1
4 ) and ε ∈ (0, 1

4 ) to be specified later, define the augmented
homogenization error w according to the rule

w = u − (
1 + ηε

ρφi∂i
)
vε. (94)

The augmented homogenization error (94) will now be shown to satisfy a useful
parabolic equation. The computation is motivated by the analogous computation in
[18, Lemma 2], but there are significant differences owing to the parabolic setting and
the use of the parabolic extended corrector (φ,ψ, σ, ζ ).

5.2 The equation satisfied by the augmented homogenization error

It is now shown that the augmented homogenization error (94) satisfies, in Crε ,

wt − ∇ · a∇w = ∇ · ((
1 − ηε

ρ

)
(a − ahom)∇vε + (φi a + ψi − σi )∇

(
ηε

ρ∂iv
ε
))

+ ∂tζi · ∇ (
ηε

ρ∂iv
ε
) − φi

(
ηε

ρ∂iv
ε
)
t
− ψiΔ

(
ηε

ρ∂iv
ε
)

(95)
with

w = u − uε on ∂pCrε .
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Fix ρ ∈ (0, 1
8 ) and ε ∈ (0, 1

4 ) and let w be defined by (94). Since the boundary
condition is immediate from the definition, it remains only to compute the equation.
First, using definition (94), the gradient is defined by

∇w = ∇u − ∇vε − ∇ (
φiη

ε
ρ∂iv

ε
)
.

Then, because u satisfies (86),

− ∇ · a∇w = −ut + ∇ · a∇vε + ∇ · a (∇φiη
ε
ρ∂iv

ε + φi∇
(
ηε

ρ∂iv
ε
))

. (96)

It is necessary to further analyze the term

∇ · a∇vε + ∇ · a (∇φiη
ε
ρ∂iv

ε
)
,

which, after adding and subtracting the unit vectors {ei }i∈{1,...,d}, satisfies, for the
fluxes {qi }i∈{1,...,d} defined in (10),

∇ · a∇vε + ∇ · a (∇φiη
ε
ρ∂iv

ε
) = ∇ · ((

1 − ηε
ρ

)
a∇vε

) + ∇ · (
qiη

ε
ρ∂iv

ε
)
.

Then, after adding and subtracting the vectors {ahomei }i∈{1,...,d},

∇ · a∇vε + ∇ · a (∇φiη
ε
ρ∂iv

ε
)

= ∇ · ((
1 − ηε

ρ

)
a∇vε

) + ∇ · (
(qi − ahomei ) ηε

ρ∂iv
ε
) + ∇ · (

ηε
ρahom∇vε

)
.

Therefore, since v satisfies (91),

∇ · a∇vε + ∇ · a (∇φiη
ε
ρ∂iv

ε
)

= vε
t + ∇ · ((

1 − ηε
ρ

)
(a − ahom)∇vε

) + ∇ · (
(qi − ahomei ) ηε

ρ∂iv
ε
)
. (97)

Returning to (96), in view of (97),

− ∇ · a∇w = −ut + vε
t + ∇ · ((

1 − ηε
ρ

)
(a − ahom)∇vε

)
+∇ · (

(qi − ahomei )η
ε
ρ∂iv

ε + φi a∇ (
ηε

ρ∂iv
ε
))

. (98)

For the derivative in time, owing to definition (94),

wt = ut − vε
t − φi,tη

ε
ρ∂iv

ε − φi
(
ηε

ρ∂iv
ε
)
t
,

which, in combination with (98), yields the distributional equality

wt − ∇ · a∇w = ∇ · ((
1 − ηε

ρ

)
(a − ahom)∇vε + φi a∇ (

ηε
ρ∂iv

ε
))

+ (qi − ahomei ) · ∇ (
ηε

ρ∂iv
ε
)

+ (
(∇ · qi ) − φi,t

)
ηε

ρ∂iv
ε − φi

(
ηε

ρ∂iv
ε
)
t
.
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Therefore, since the correctors {φi }i∈{1,...,d} satisfy (7), distributionally

wt − ∇ · a∇w = ∇ · ((
1 − ηε

ρ

)
(a − ahom)∇vε + φi a∇ (

ηε
ρ∂iv

ε
))

+(qi − ahomei ) · ∇ (
ηε

ρ∂iv
ε
) − φi

(
ηε

ρ∂iv
ε
)
t
. (99)

It remains to analyze the term

(qi − ahomei ) · ∇ (
ηε

ρ∂iv
ε
)
.

For the correctors {ψi }i∈{1...,d} satisfying (19), for each i ∈ {1, . . . , d}, add and subtract
the gradient ∇ψi and the conditional expectation

〈
qi | FRd

〉
to obtain

(qi − ahomei ) · ∇ (
ηε

ρ∂iv
ε
)

= (
qi − ∇ψi − 〈

qi | FRd

〉) · ∇ (
ηε

ρ∂iv
ε
)

+ (〈
qi | FRd

〉 − ahomei
) · ∇ (

ηε
ρ∂iv

ε
) + ∇ψi · ∇ (

ηε
ρ∂iv

ε
)
.

Since the correctors {σi }i∈{1,...,d} satisfy (20) and the correctors {ζi }i∈{1,...,d} satisfy
(22),

(qi−ahomei )·∇
(
ηε

ρ∂iv
ε
) = (∇·σi )·∇

(
ηε

ρ∂iv
ε
)+∂tζi ·∇

(
ηε

ρ∂iv
ε
)+∇ψi ·∇

(
ηε

ρ∂iv
ε
)
.

(100)
Then, for each i ∈ {1, . . . , d}, the skew-symmetry of σi proven in Lemma 1 implies
the distributional equality

∇ · (
σi∇

(
ηε

ρ∂iv
ε
)) = −(∇ · σi ) · ∇ (

ηε
ρ∂iv

ε
)
. (101)

Indeed, for each i ∈ {1, . . . , d}, distributionally

∇ · (
σi∇

(
ηε

ρ∂iv
ε
)) = ∂ j

(
σi jk∂k

(
ηε

ρ∂iv
ε
))

= ∂ jσi jk∂k
(
ηε

ρ∂iv
ε
) + σi jk∂ j∂k

(
ηε

ρ∂iv
ε
)

= −∂ jσik j∂k
(
ηε

ρ∂iv
ε
) + σi jk∂ j∂k

(
ηε

ρ∂iv
ε
)

= −(∇ · σi ) · ∇ (
ηε

ρ∂iv
ε
)
,

where the penultimate inequality follows from the skew-symmetry of σ and the final
equality from the skew-symmetry of σ and the equality of mixed partial derivatives.

Therefore, returning to (100), the equality (101) and the distributional equality

∇ψi · ∇ (
ηε

ρ∂iv
ε
) = ∇ · (

ψi∇
(
ηε

ρ∂iv
ε
)) − ψiΔ

(
ηε

ρ∂iv
ε
)

imply that

(qi − ahomei ) · ∇ (
ηε

ρ∂iv
ε
)

= ∇ · ((ψi − σi )∇
(
ηε

ρ∂iv
ε
)) + ∂tζi · ∇ (

ηε
ρ∂iv

ε
) − ψiΔ

(
ηε

ρ∂iv
ε
)
. (102)
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Therefore, returning to (99), in view of (102), it follows that

wt − ∇ · a∇w = ∇ · ((
1 − ηε

ρ

)
(a − ahom)∇vε + (φi a + ψi − σi )∇

(
ηε

ρ∂iv
ε
))

+ ∂tζi · ∇ (
ηε

ρ∂iv
ε
) − φi

(
ηε

ρ∂iv
ε
)
t
− ψiΔ

(
ηε

ρ∂iv
ε
)
,

(103)
which completes the proof of (95). This equation will later be used to obtain an energy
estimate for the augmented homogenization error. However, before this it is useful
to recall three classical estimates concerning the boundary and interior regularity of
ahom-caloric functions.

5.3 Interior and boundary estimates for ahom-caloric functions

In this subsection, three classical estimates are presented to control the interior and
boundary regularity of ahom-caloric functions.

In what follows, the boundary conditions will be assumed to be the trace of a
function ũ : C1 → R satisfying

ũ ∈ L2
(
[−1, 0]; H1(B1)

)
and ũt ∈ L2

(
[−1, 0]; H−1(B1)

)
. (104)

The first estimate is the a priori energy estimate for the ahom-caloric extension of ũ
into C1. That is, if ṽ satisfies

{
ṽt = ∇ · ahom∇ṽ in C1
ṽ = ũ on ∂pC1, (105)

then, ˆ
C1

|∇ṽ|2 �
ˆ
C1

|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1))
. (106)

To prove (106), let z̃ denote the distributional solution of

{
z̃t = ∇ · ahom∇ z̃ + ∇ · ahom∇ũ − ũt in C1
z̃ = 0 on ∂C1. (107)

Then, testing (107)with z̃ and, after applying the Poincaré inequality,Hölder’s inequal-
ity and Young’s inequality and using the uniform ellipticity of ahom from Lemma 1, it
follows that ˆ

C1
|∇ z̃|2 �

ˆ
C1

|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1))
. (108)

However, thanks to (104) and (105), it is then immediate that

ṽ = z̃ + ũ.
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Hence, with (108) and the triangle inequality,

ˆ
C1

|∇ṽ|2 �
ˆ
C1

|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1))
,

which proves (106).
An interior regularity estimate will now be obtained for ahom-caloric functions.

Suppose that ṽ satisfies (105) for ũ satisfying (104). It then follows from a repeated
application of the Caccioppoli inequality (29) that, for each k ≥ 0, there existsC(k) >

0 such that

ˆ
B1−ρ

∣∣∣∇k ṽ

∣∣∣2 ≤ C(k)

(Rρ)2k

ˆ
B1

|∇ṽ|2 .

Therefore, by choosing k = d
2 , k = d

2 + 1, and k = d
2 + 2, the Sobolev embedding

theorem implies that

sup
C1−ρ

(
|∇ṽ| + ρ

∣∣∣∇2ṽ

∣∣∣ + ρ2
∣∣∣∇3ṽ

∣∣∣)2 � ρ−(d+2)
ˆ
C1

|∇ṽ|2

� ρ−(d+2)
(ˆ

C1
|∇ũ|2 + ‖ũt‖2L2([−1,0];H−1(B1))

)
, (109)

where the final inequality follows from (106).
The boundary regularity statement follows from a simplified version of Ladyzen-

skaja, Solonnikov and Uraltceva [20, Theorem 9.1] or, for the optimal statement,
Weidemaier [27, Theorem 3.1]. This estimate will obtain H2-regularity, and therefore
requires more from the boundary condition. In particular, this estimate explains the
necessity of introducing the boundary regularization in the definition of the augmented
homogenization error. Suppose that ũ satisfies the trace estimates

ũ ∈ L2
(
[−1, 0]; H1(∂B1)

)
∩ H1(B1 × {−1}) and ũt ∈ L2

(
[−1, 0]; L2(∂B1)

)
,

and that ṽ is the ahom-caloric extension of ũ into C1 in the sense of (105). Then, it
follows from [20, Theorem 9.1] or [27, Theorem 3.1] that

ˆ
C1

|∇ṽ|2 +
∣∣∣∇2ṽ

∣∣∣2 �
ˆ

∂pC1

∣∣∇ tanũ
∣∣2 +

ˆ 0

−1

ˆ
∂B1

|ũt |2 , (110)

where ∇ tanũ denotes the tangential derivative of ũ on the parabolic boundary. In
particular,∇ tanũ coincides with the full gradient on B1×{−1}. Estimates (106), (109)
and (110) will play an important role in the energy estimate to follow.
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5.4 The energy estimate for the augmented homogenization error

Equation (95) will now be used to obtain an energy estimate for the augmented homog-
enization error w defined in (94). Precisely, it will be shown that

ˆ
Crε

∇w · a∇w � ε

ˆ
C1

|∇u|2 + ρ
2
d

ε2

ˆ
C1

|∇u|2

+ 1

ρd+4

ˆ
C1

(
|φ|2 + |ψ |2 + |σ |2

) ˆ
C1

|∇u|2

+
(

1

ρ
d
2 +3

(ˆ
C1

|ζ |2
) 1

2 + 1

ρd+6

ˆ
C1

|ζ |2
) ˆ

C1
|∇u|2

+ 1

ρd+4

(ˆ
C1

|ζ |2
) 1

2
(ˆ

C1
|q|2

) 1
2
ˆ
C1

|∇u|2 . (111)

The idea is to test Eq. (103) with w. However, for this it is necessary to introduce a
cutoff to ensure that w vanishes along the upper boundary of the cylinder. For each
δ ∈ (0, 1), define a smooth cutoff function γδ : R → R which is non-increasing and
satisfies 0 ≤ γδ ≤ 1 with

γδ(t) =
{
1 if t ≤ −δ,

0 if t ≥ 0.
(112)

Furthermore, for the Dirac mass δ0 at zero, as δ → 0,

|(γδ)t | ⇀ δ0 as distributions on R. (113)

To begin, Eq. (103) is tested against γδw. Properties of the cutoff ηε
ρ from (92)

and (93), the uniform ellipticity of a from (5) and ahom from Lemma 1 and Hölder’s
inequality imply that, after bounding the time derivative of vε by its Hessian matrix,

ˆ
Crε

|(γδ)t | |w|2 +
ˆ
Crε

γδ∇w · a∇w �
ˆ 0

−r2ε

ˆ
∂Brε

γδ(u − uε)ν · a(∇u − ∇vε)

+
ˆ
Brε ×{−rε2}

γδ

∣∣u − uε
∣∣2 +

ˆ
Crε \Crε−2ρ

γδ

∣∣∇vε
∣∣ |∇w|

+ sup
Crε−ρ

(∣∣∣∇2vε
∣∣∣ + 1

Rρ

∣∣∇vε
∣∣) ˆ

Crε
γδ (|φ| + |ψ | + |σ |) |∇w|

+ sup
Crε−ρ

(
1

ρ2

∣∣∇vε
∣∣ + 1

ρ

∣∣∣∇2vε
∣∣∣ +

∣∣∣∇3vε
∣∣∣
)ˆ

Crε
γδ (|φ| + |ψ |) |w|

+
∣∣∣∣∣
ˆ
Crε

∂tζi · ∇ (
ηε

ρ∂iv
ε
)
γδw

∣∣∣∣∣ ,
(114)
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where ν denotes the interior normal vector and

|φ| :=
(

d∑
i=1

|φi |2
) 1

2

, |ψ | :=
(

d∑
i=1

|ψi |2
) 1

2

and |σ | :=
⎛
⎝ d∑

i, j,k=1

∣∣σi jk∣∣2
⎞
⎠

1
2

.

For the first two boundary terms, it is immediate from the choice of rε ∈ ( 12 ,
3
4 ) in

(88) and (90), the uniform ellipticity of a, Hölder’s inequality and the estimate for the
Dirichlet to Neumann map, see [14], that

ˆ 0

−r2ε

ˆ
∂Brε

(u − uε)ν · a(∇u − ∇vε) +
ˆ
Brε ×{−r2ε }

∣∣u − uε
∣∣2

�
(ˆ

∂pCrε

∣∣u − uε
∣∣2

) 1
2
(ˆ

∂pCrε
|∇u|2 + ∣∣∇ tanu

∣∣2
) 1

2

+
ˆ

∂pCrε

∣∣u − uε
∣∣2

� ε

ˆ
C1

|∇u|2 .

(115)

It is then necessary to analyze the final term on the right hand side of (114). Using
the definition of w from (94) and the fact that ζ vanishes at t = 0 owing to (85), it
follows after integrating by parts variously in time and space that

ˆ
Crε

∂tζi · ∇ (
ηε

ρ∂iv
ε
)
γδw =

ˆ
Crε

(
ηε

ρ∂iv
ε
)
t
ζi · γδ∇w −

ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
(γδ)tw

−
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ(ut − vt )

−
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ

(
ηε

ρφ j∂ jv
ε
)
t
,

(116)
where this equality uses the fact that the corrector ζ and the cutoff γδ are constant in
space.

The first two terms of (116) are bounded immediately using the definition of the
cutoff ηε

ρ from (92) and (93), which yields

∣∣∣∣∣
ˆ
Crε

(
ηε

ρ∂iv
ε
)
t
ζi · γδ∇w

∣∣∣∣∣ � sup
Crε−ρ

(
1

ρ2

∣∣∇vε
∣∣ +

∣∣∣∇3vε
∣∣∣
)ˆ

Crε
γδ |ζ | |∇w| , (117)

where

|ζ | :=
⎛
⎝ d∑

i, j=1

∣∣ζi j ∣∣2
⎞
⎠

1
2

.
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Similarly,

∣∣∣∣∣
ˆ
Crε

(
ζi · ∇ (

ηε
ρ∂iv

ε
))

(γδ)tw

∣∣∣∣∣ � sup
Crε−ρ

(
1

ρ

∣∣∇vε
∣∣ +

∣∣∣∇2vε
∣∣∣
)ˆ

Crε
|(γδ)t | |ζ | |w| .

(118)
It is necessary to analyze the final two terms of (116). For the first of these, using

the Eqs. (86) and (91) satisfied by u and v respectively,

ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ(ut − vt ) = −

ˆ
Crε

γδζi ·
(
∇2 (

ηε
ρ∂iv

ε
) · a∇u

)

+
ˆ
Crε

γδζi ·
(
∇2 (

ηε
ρ∂iv

ε
) · ahom∇vε

)
.

Therefore, using the uniform ellipticity (5) of a and the uniform ellipticity of ahom
from Lemma 1, after bounding the time derivative of v by the norm of its Hessian
matrix,

∣∣∣∣∣
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ(ut − vε

t )

∣∣∣∣∣
� sup

Crε−ρ

(
1

ρ2

∣∣∇vε
∣∣ + 1

ρ

∣∣∣∇2vε
∣∣∣ +

∣∣∣∇3vε
∣∣∣
) ˆ

Crε−ρ

γδ |ζ | (|∇u| + ∣∣∇vε
∣∣) .

(119)

For the final term of (116),

ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ

(
ηε

ρφ j∂ jv
ε
)
t
=
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδφ j

(
ηε

ρ∂ jv
ε
)
t

+
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδφ j,t

(
ηε

ρ∂ jv
ε
)
,

and, therefore, using the Eq. (7) satisfied by the correctors {φi }i∈{1,...,d},

ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ

(
ηε

ρφ j∂ jv
ε
)
t
=
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδφ j

(
ηε

ρ∂ jv
ε
)
t

−
ˆ
Crε

γδ∇
(
ζi · ∇ (

ηε
ρ∂iv

ε
)
ηε

ρ∂ jv
ε
) · q j ,
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for the fluxes {qi }i∈{1,...,d} defined in (10). Hence, after bounding the time derivative
of v by its Hessian matrix,

∣∣∣∣∣
ˆ
Crε

ζi · ∇ (
ηε

ρ∂iv
ε
)
γδ

(
ηε

ρφ j∂ jv
ε
)
t

∣∣∣∣∣
� sup

Crε−ρ

(∣∣∇vε
∣∣ ( 1

ρ2

∣∣∇vε
∣∣ + 1

ρ

∣∣∣∇2vε
∣∣∣ +

∣∣∣∇3vε
∣∣∣
)) ˆ

Crε
γδ |ζ | |q|

+ sup
Crε−ρ

(
1

ρ

∣∣∇vε
∣∣ +

∣∣∣∇2vε
∣∣∣
)2 ˆ

Crε
γδ |ζ | |q|

+ sup
Crε−ρ

((
1

ρ

∣∣∇vε
∣∣ +

∣∣∣∇2vε
∣∣∣
) (

1

ρ2

∣∣∇vε
∣∣ +

∣∣∣∇3vε
∣∣∣
)) ˆ

Crε
γδ |ζ | |φ| ,

(120)

where

|q| :=
(

d∑
i=1

|qi |2
) 1

2

.

Therefore, in view of (87), (114) and (115), it follows from the uniform ellipticity of
a from (5), the definition of γδ , the Poincaré inequality in space, Hölder’s inequality,
and Young’s inequality that

ˆ
Crε

|(γδ)t | w2 +
ˆ
Crε

γδ∇w · a∇w � ε

ˆ
C1

|∇u|2 +
ˆ
Crε \Crε−2ρ

∣∣∇vε
∣∣2

+ 1

ρd+4

ˆ
C1

(
|φ|2 + |ψ |2 + |σ |2

) ˆ
C1

|∇u|2 +
∣∣∣∣∣
ˆ
Crε

∂tζi · ∇ (
ηε

ρ∂iv
ε
)
γδw

∣∣∣∣∣ .
(121)

For the second term of (121), the choice of the radius rε ∈ ( 12 ,
3
4 ) satisfying (89) and

estimate (106) for ahom-caloric functions imply that

ˆ
Crε

∣∣∇vε
∣∣2 +

∣∣∣∇2vε
∣∣∣2 �

ˆ
∂pCrε

∣∣∇ tanuε
∣∣2 +

ˆ 0

−r2ε

ˆ
∂Brε

∣∣uε
t

∣∣2

� 1

ε2

ˆ
Crε

∣∣∇uε
∣∣2 ≤ 1

ε2

ˆ
C1

|∇u|2 . (122)

Furthermore, for each i ∈ {1, . . . , d}, differentiating (91) in space and testing with
∂iv

ε yields with an application of Hölder’s inequality and Young’s inequality the a
priori estimate
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‖∂ivε‖2L∞([−r2ε ,0];L2(Brε ))
+ ‖∇∂iv

ε‖2L2(Crε )

� ‖∂i uε‖2L2(Brε ×{−r2ε }) +
ˆ 0

−r2ε

ˆ
∂Brε

∂i u
ε
(
ν · ∇∂iv

ε
)

� ‖∂i uε‖2L2(Crε )
+
ˆ 0

−r2ε

ˆ
∂Brε

(
ν · ∇∂iv

ε
)2

� ‖∂i uε‖2L2(Crε )
+
ˆ 0

−r2ε

ˆ
∂Brε

∣∣∇ tan∂i u
ε
∣∣2

� 1

ε2
‖∂i uε‖2L2(Crε )

� 1

ε2

ˆ
C1

|∇u|2 , (123)

where ν denotes the interior normal, the third inequality relies on the boundedness
of the Dirichlet to Neumann map, see [14], and the final inequality follows from the
choice of rε in (90).

Therefore, it follows from the (122), (123), Hölder’s inequality, and the Sobolev
embedding theorem that

ˆ
Crε \Crε−2ρ

∣∣∇vε
∣∣2

=
ˆ 0

−(rε−ρ)2

ˆ
Brε

χBrε \Brε−2ρ

∣∣∇vε
∣∣2 +

ˆ −(rε−ρ)2

−r2ε

ˆ
Brε

∣∣∇vε
∣∣2 ,

�
ˆ 0

−(rε−ρ)2

(ˆ
Brε

χBrε \Brε−2ρ

) 2
d

(ˆ
Brε

∣∣∇vε
∣∣ 2d
d+2

) d+2
d

+ ρ

ε2

ˆ
C1

|∇u|2

� ρ
2
d

ˆ
Crε

∣∣∣∇2vε
∣∣∣2 + ρ

ε2

ˆ
C1

|∇u|2

� ρ
2
d

ε2
|∇u|2 ,

(124)

where χBrε \Brε−2ρ is the indicator function of the set (Brε \Brε−2ρ) in R
d , and where

the argument is only written for the case d ≥ 3, since the modifications necessary
for the cases d = 1 and d = 2 are straightforward and rely only upon the Sobolev
embedding theorem.

For the final term of (121), estimates (117), (118), (119) and (120) together with
estimates (87) and (109), where Hölder’s inequality is used for the final term, prove
that, since removing γδ from the final three terms of the right hand side increases their
magnitude,

123



A Liouville theorem for stationary and ergodic ensembles… 803

∣∣∣∣∣
ˆ
Crε

∂tζi · ∇ (
ηε

ρ∂iv
ε
)
γδw

∣∣∣∣∣ � 1

ρ
d
2 +3

ˆ
Crε

γδ |ζ | |∇w|
(ˆ

C1
|∇u|2

) 1
2

+ 1

ρ
d
2 +1

ˆ
Crε

|(γδ)t | |ζ | |w|
(ˆ

C1
|∇u|2

) 1
2

+ 1

ρ
d
2 +3

(ˆ
C1

|ζ |2
) 1

2
ˆ
C1

|∇u|2

+ 1

ρd+4

(ˆ
C1

|ζ |2
) 1

2
(ˆ

C1
|q|2

) 1
2
ˆ
C1

|∇u|2

+ 1

ρd+5

(ˆ
C1

|ζ |2
) 1

2
(ˆ

C1
|φ|2

) 1
2
ˆ
C1

|∇u|2 .

(125)

Therefore, following an application ofHölder’s inequality and thenYoung’s inequality,
it follows from (121) and (125) that

ˆ
Crε

γδ∇w · a∇w � ε

ˆ
C1

|∇u|2 + ρ
2
d

ε2

ˆ
C1

|∇u|2

+ 1

ρd+4

ˆ
C1

(
|φ|2 + |ψ |2 + |σ |2

) ˆ
C1

|∇u|2

+
(

1

ρ
d
2 +3

(ˆ
C1

|ζ |2
) 1

2 + 1

ρd+6

ˆ
C1

|ζ |2
)ˆ

C1
|∇u|2

+ 1

ρd+4

(ˆ
C1

|ζ |2
) 1

2
(ˆ

C1
|q|2

) 1
2
ˆ
C1

|∇u|2

+ 1

ρd+2

ˆ
C1

|(γδ)t | |ζ |2
ˆ
C1

|∇u|2 . (126)

In view of the construction of γδ from (112), and owing to the distributional con-
vergence (113), the fact that ζ vanishes at t = 0 thanks to (85) implies, for 〈·〉-a.e.
a,

lim
δ→0

ˆ
C1

|(γδ)t | |ζ |2 = 0.

Therefore, after passing to the limit δ → 0 in (126), the construction of γδ in (112)
implies that
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ˆ
Crε

∇w · a∇w � ε

ˆ
C1

|∇u|2 + ρ
2
d

ε2

ˆ
C1

|∇u|2

+ 1

ρd+4

ˆ
C1

(
|φ|2 + |ψ |2 + |σ |2

) ˆ
C1

|∇u|2

+
(

1

ρ
d
2 +3

(ˆ
C1

|ζ |2
) 1

2 + 1

ρd+6

ˆ
C1

|ζ |2
) ˆ

C1
|∇u|2

+ 1

ρd+4

(ˆ
C1

|ζ |2
) 1

2
(ˆ

C1
|q|2

) 1
2
ˆ
C1

|∇u|2 , (127)

which completes the proof of (111).
To obtain (127) for an arbitrary radius R > 0, suppose that u is an a-caloric function

on BR . Then, for each ε ∈ (0, R
4 ), there exists a radius Rε ∈ ( R2 , 3R

4 ) and a cutoff

function η
Rε
ρ with 0 ≤ η

Rε
ρ ≤ 1 and such that

ηRε
ρ (x, t) =

{
1 if (x, t) ∈ CRε−2ρRε

0 if (x, t) ∈ (
R
d × (−∞, 0)

) \CRε−ρRε ,
(128)

which, for the ahom-caloric extension vε of uε into CRε , define the corresponding
augmented homogenization error

w = u − (1 + ηRε
ρ φi∂i )v

ε.

Then, for each ε ∈ (0, R
4 ), after performing the rescalings

(w̃, ũ, ṽε, q̃)(·, ·) = 1

Rε

(w, u, vε, q)
(
Rε ·, R2

ε ·
)

,

it follows using Eqs. (7), (19), (20) and (22) that the correctors rescale according to
the rules

(φ̃, ψ̃, σ̃ )(·, ·) = 1

Rε

(φ, ψ, σ )
(
Rε ·, R2

ε ·
)

and ζ̃ (·) = 1

R2
ε

ζ
(
R2

ε ·
)

.

Hence, after applying (127) and returning to the original scaling, it follows that, for
each ε ∈ (0, R

4 ) and ρ ∈ (0, 1
8 ),
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CRε

∇w · a∇w � ε

 
CR

|∇u|2 + ρ
2
d

ε2

 
CR

|∇u|2

+ 1

R2ρd+4

 
CR

(
|φ|2 + |ψ |2 + |σ |2

)  
CR

|∇u|2

+
(

1

R2ρ
d
2 +3

(ˆ
CR

|ζ |2
) 1

2 + 1

R4ρd+6

ˆ
CR

|ζ |2
) ˆ

CR

|∇u|2

+ 1

R2ρd+4

( 
CR

|ζ |2
) 1

2
( 

CR

|q|2
) 1

2
 
CR

|∇u|2 ,

(129)
which is the general form of the energy estimate that will be used in the proof of excess
decay to follow.

5.5 The proof of excess decay

The energy estimate will now be used to prove the excess decay of Proposition 2. Fix
R > 0 and suppose that u is an a-caloric function CR . Then, for each ε ∈ (0, R

4 )

and ρ ∈ (0, 1
8 ), choose a radius Rε ∈ ( R2 , 3R

4 ) and a cutoff η
Rε
ρ such that, for the

ahom-caloric extension vε of uε into CRε , the conclusion of (129) is satisfied for the
augmented homogenization error w defined by

w = u −
(
1 + ηRε

ρ φi∂i

)
vε in CRε . (130)

The proof of excess decay will now proceed in four steps.
Step 1: In the first step of the proof, it will be shown that, for any δ > 0, there

exists C2 = C2(d, λ, δ) > 0 such that, whenever, for each i ∈ {1, . . . , d},

( 
CR

|qi |2
) 1

2 ≤ 2
〈
|qi |2

〉 1
2
, (131)

and
1

R

( 
CR

|φi |2 + |ψi |2 + |σi |2
) 1

2 + 1

R2

( 
CR

|ζi |2
) 1

2 ≤ 1

C2
, (132)

then  
CRε

∇w · a∇w � δ

 
CR

∇u · a∇u. (133)

The proof is a simple consequence of estimate (129) and the definition (130).
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Fix δ > 0. Then, assuming that (131) and (132) are satisfied for some C2 > 0 to be
fixed later, estimate (127), the choice (130) and the uniform ellipticity of a imply that

 
CR1

∇w · a∇w

�

⎛
⎝ε + ρ

2
d

ε2
+ 1

C2
2ρ

d+4
+ 1

C2ρ
d
2 +3

+ 1

C2
2ρ

d+6
+

〈|q|2〉 12
C2ρd+4

⎞
⎠ 

CR1

∇u · a∇u.

Therefore, first choose ε0 ∈ (0, 1
4 ) satisfying

ε0 <
1

3
δ.

Then, choose ρ0 ∈ (0, 1
8 ) sufficiently small so as to guarantee that

ρ
2
d

ε20
<

1

3
δ.

Finally, fix C2 > 0 large enough to ensure that

⎛
⎝ 1

C2
2ρ

d+4
0

+ 1

C2ρ
d
2 +3
0

+ 1

C2
2ρ

d+6
0

+ 1

C2ρ
d+4
0

〈∣∣∣q2∣∣∣〉
1
2

⎞
⎠ <

δ

3
.

Then, it follows that, for this choice of ε0, ρ0 and C2,

 
CRε0

∇w · a∇w � δ

 
CR

∇u · a∇u,

which proves (133).
In particular, since ρ0 ∈ (0, 1

8 ) and Rε0 ∈ ( R2 , 3R
4 ), using the definition (128) of

the cutoff η
Rε0
ρ0 , it follows that

w = u − (1 + φi∂i )v
ε0 on C R

4
. (134)

Therefore, since Rε0 ∈ ( R2 , 3R
4 ), it follows from (133) and (134) that, for any δ > 0

there exists C2 = C2(d, λ) > 0 such that, whenever (132) and (133) are satisfied, for
each r ∈ (0, R

4 ],
 
Cr

(∇u − ∇vε0 − ∇(φi∂iv
ε0)

) · a (∇u − ∇vε0 − ∇(φi∂iv
ε0)

)

� δ

(
R

r

)d+2  
CR

∇u · a∇u.

(135)
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This completes the first step of the proof.
Step 2: The second step will show that the left hand side of (135) is a good approx-

imation for the excess by using the interior regularity of ahom-caloric functions and
the Caccioppoli inequality. To simplify the notation in what follows, define

v := vε0 in CRε0
.

Then, form the decomposition

∇u − ∇v − ∇(φi∂iv) = ∇u − ∇v(0, 0)(Id + ∇φ)

+ (∇v(0, 0) − ∇v) (Id + ∇φ) − φi∇(∂iv),
(136)

where Id denotes the (d × d)-identity matrix and, for each i, j ∈ {1, . . . , d},

(∇φ)i j := ∂ jφi .

After fixing ξ0 = ∇v(0, 0), use (136), the triangle inequality, and Young’s inequality
to prove that, in Cr for any r ∈ (0, R

4 ],
∣∣∇u − ξ0 − ∇φξ0

∣∣2
� |∇w|2 + sup

Cr
(|∇v − ∇v(0, 0)|)2 |I + ∇φ|2 + sup

Cr
(|∇(∂iv)|)2 |φi |2 .

(137)

Estimate (109) implies that, after bounding the time derivative of v by the norm of
its Hessianmatrix, and using the uniform ellipticity of a and the choice Rε0 ∈ ( R2 , 3R

4 ),
for each r ∈ (0, R

4 ],

sup
Cr

(|∇v − ∇v(0, 0)|) � sup
Cr

(
r
∣∣∣∇2v

∣∣∣ + r2
∣∣∣∇3v

∣∣∣)2

�
( r

R

)2
sup
C R

4

(
R

4

∣∣∣∇2v

∣∣∣ +
(
R

4

)2 ∣∣∣∇3v

∣∣∣
)2

�
( r

R

)2  
CR

∇u · a∇u. (138)

Similarly, for each i ∈ {1, . . . , d}, using estimate (109), the uniform ellipticity of a
and Rε0 ∈ ( R2 , 3R

4 ), it follows that, for each r ∈ (0, R
4 ],

sup
Cr

(|∇(∂iv)|)2 � sup
C R

4

(|∇(∂iv)|)2 � 1

R2

 
CR

∇u · a∇u. (139)

Finally, since for each i ∈ {1, . . . , d} the a-caloric coordinate (xi + φi ) satisfies

∂t (xi + φi ) = ∇ · a∇(xi + φi ) in R
d+1,
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the Caccioppoli inequality (29) implies that, for each r ∈ (0, R
4 ],

 
Cr

|ei + ∇φi |2 � 1

(2r)2

 
C2r

|φi |2 + 1

(2r)2

 
C2r

x2i � 1

(2r)2

 
C2r

|φi |2 + 1. (140)

Therefore, returning to (137), estimates (138), (139) and (140), with the uniform
ellipticity of a and the choice Rε0 ∈ ( R2 , 3R

4 ), imply that, for each r ∈ (0, R
4 ],

 
Cr

(∇u − ξ0 − ∇φξ0) · a(∇u − ξ0 − ∇φξ0)

�
(
R

r

)d+2  
CRε0

∇w · a∇w +
( r

R

)2 (
1

(2r)2

 
C2r

|φi |2 + 1

)  
CR

∇u · a∇u.

(141)
This completes the second step.

Step 3: In the third step, inequality (141) will be combined with (133) to prove
the excess decay along a subsequence. Namely, for every α ∈ (0, 1), it will be shown
that there exists C0 = C0(d, λ, α) > 0 and θ0 = θ0(α, d, λ) ∈ (0, 1

4 ) such that, if
r1 = θ0R and if, for each r ∈ [r1, R],

( 
Cr

|qi |2
) 1

2 ≤ 2
〈
|qi |2

〉 1
2
, (142)

and
1

r

( 
Cr

|φi |2 + |ψi |2 + |σi |2
) 1

2 + 1

r2

( 
Cr

|ζi |2
) 1

2 ≤ 1

C0
, (143)

then

Exc (u; r1) ≤
(r1
R

)2α
Exc(u; R). (144)

Notice that the inequality appearing in (144) is exact.
Let δ > 0 be arbitrary. In view of (133), there existsC2 = C2(δ, d, λ) ≥ 1 such that,

whenever (142) and (143) are satisfied for the constantC2, then, since Rε0 ∈ ( R2 , 3R
4 ),

 
CRε0

∇w · a∇w � δ

 
CR

∇u · a∇u.

Therefore, it follows from inequality (141) and (143) that, for C3 = C3(d, λ) > 0,
since Rε0 ∈ ( R2 , 3R

4 ),

 
Cr1

(∇u − ξ0 − ∇φξ0) · a(∇u − ξ0 − ∇φξ0)

≤ C3

(
δ

(
R

r1

)d+2

+
(r1
R

)2)  
CR

∇u · a∇u. (145)
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Choose θ0 ∈ (0, 1
4 ) sufficiently small so as to guarantee

C3θ
2
0 ≤ 1

2
θ2α0 , (146)

which is possible because α ∈ (0, 1), and choose δ0 > 0 sufficiently small so as to
guarantee

C3δ0θ
−(d+2)
0 ≤ 1

2
θ2α0 . (147)

It is then immediate from (145) that, by choosing θ0 as in (146) and choosing
C0 := C2(δ0, d, λ) for δ0 defined in (147), whenever (142) and (143) are satisfied for
the constant C0 and r1 = θ0R,

 
Cr1

(∇u − ξ0 − ∇φξ0) · a(∇u − ξ0 − ∇φξ0)

≤ θ2α0

 
CR

∇u · a∇u =
(r1
R

)2α  
CR

∇u · a∇u. (148)

Since the excess is defined, for each R > 0, by

Exc(u; R) = inf
ξ∈Rd

 
CR

(∇u − ξ − ∇φξ ) · a(∇u − ξ − ∇φξ ),

inequality (148) implies that

Exc(u; r1) ≤
(r1
R

)2α  
CR

∇u · a∇u. (149)

However, because the left hand side of inequality (149) is invariant with respect to the
addition of an arbitrary a-caloric gradient (ξ + ∇φξ ) in the sense that, with (149), for
every ξ ∈ R

d ,

Exc(u; r1) = Exc(u − (ξ · x + φξ ); r1)
≤

(r1
R

)2α  
CR

(∇u − ξ − ∇φξ ) · a∇(u − ξ − ∇φξ ),
(150)

taking an infimum on the right hand side with respect to ξ ∈ R
d yields

Exc(u; r1) ≤
(r1
R

)2α
Exc(u; R), (151)

which completes the proof of (144), and the argument’s third step.
Step 4: The final step completes the proof using (151) and an iteration argument.

Fix r1 < R such that, for C0 > 0 defined following (147), both (142) and (143) are
satisfied for the constant C0 for every r ∈ [r1, R]. It will be shown that, in this case,
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Exc(u; r) �
( r

R

)2α
Exc(u; R). (152)

Fix θ0 as defined in (143). If r ≥ Rθ0, then using the definition of the excess, for
C = C(θ0) > 0,

Exc(u; r) ≤
(
R

r

)d

Exc(u; R) =
(
R

r

)d+2α ( r

R

)2α
Exc(u; R)

≤ θ
−(d+2α)
0

( r

R

)2α
Exc(u; R) ≤ C

( r

R

)2α
Exc(u; R).

(153)

If r < θ0R, then let n be the unique positive integer satisfying θn−1
0 R ≤ r < θn0 R.

Proceeding inductively, and relying upon the fact that (151) obtains an exact inequality,
for constants C = C(θ0) > 0 which can change between inequalities,

Exc(u; r) ≤ CExc
(
u; θn0 R

) ≤ C(θn0 )2αExc(u; R)

= Cθ2α0

(
θn−1
0

)2α
Exc(u; R) ≤ C

( r

R

)2α
Exc(u; R).

(154)
In combination, (153) and (154) prove (152) and complete the proof of Proposition 2.

6 The proof of Lemma 2

Fix a coefficient field a satisfying (5). Fix R > 0 and suppose that u is a distributional
solution of

ut = ∇ · a∇u in CR . (155)

Let c ∈ R and ρ ∈ (0, R
2 ) be arbitrary. The Caccioppoli inequality is obtained by

testing Eq. (155) with η2(u − c) for an appropriately chosen cutoff function η.
Precisely, fix η ∈ C∞

c (Rd+1) satisfying 0 ≤ η ≤ 1 and, for x ∈ R
d and t ∈ R,

η(x, t) =
{
1 if (x, t) ∈ BR−ρ × [ρ2 − R2, 0]
0 if (x, t) ∈ R

d+1\CR .

Furthermore, choose η satisfying

|ηt | � 1

ρ2 and |∇η| � 1

ρ
on R

d+1.

Test Eq. (155) against η2(u − c) and use the the definition of η and the identity

∇
(
η2(u − c)

)
· a∇u = η2∇u · a∇u + 2η(u − c)∇η · a∇u
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to obtain
ˆ
CR

η2∇u · a∇u � 1

2

ˆ
CR

(u − c)2∂tη +
ˆ
CR

η |(u − c)| |∇η| |∇u| .

Therefore, following applications of Hölder’s inequality and Young’s inequality, and
after using definition of η and the uniform ellipticity of a, it follows that

ˆ
CR−ρ

|∇u|2 � 1

ρ2

ˆ
CR\CR−ρ

(u − c)2,

which completes the proof.
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