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DOME: recommendations for supervised 
machine learning validation in biology
DOME is a set of community-wide recommendations for reporting supervised machine learning–based analyses 
applied to biological studies. Broad adoption of these recommendations will help improve machine learning 
assessment and reproducibility.

Ian Walsh, Dmytro Fishman, Dario Garcia-Gasulla, Tiina Titma, Gianluca Pollastri, ELIXIR Machine 
Learning Focus Group, Jennifer Harrow, Fotis E. Psomopoulos and Silvio C. E. Tosatto

With the steep decline in the 
cost of many high-throughput 
technologies, large amounts 

of biological data are being generated 
and made accessible to researchers. 
Machine learning (ML) has come into 
the spotlight as a very useful approach 
for understanding cellular1, genomic2, 
proteomic3, post-translational4, metabolic5 
and drug discovery data6, with the potential 
to result in ground-breaking medical 
applications7,8. This is clearly reflected in the 
corresponding growth of ML publications 
(Fig. 1), reporting a wide range of modeling 
techniques in biology. While ideally ML 
methods should be validated experimentally, 
this happens only in a fraction of the 
publications9. We believe that the time is 
right for the ML community to develop 
standards for reporting ML-based analyses 
to enable critical assessment10 and improve 
reproducibility11,12.

Guidelines or recommendations  
on how to appropriately construct ML 
algorithms can help to ensure correct  
results and predictions13,14. In biomedical 
research, communities have defined 
standard guidelines and best practices 
for scientific data management15 and 
reproducibility of computational tools16,17. 
On the ML community side, there is 
demand for a cohesive and combined  
set of recommendations with respect  
to data, the optimization techniques,  
the final model, and evaluation protocols  
as a whole.

A recent comment highlighted the  
need for standards in ML18, arguing for  
the adoption of on-submission checklists10 
as a first step toward improving publication 
standards. Through a community-driven 
consensus, we propose a list of minimal 
requirements asked as questions to ML 
implementers (Box 1) that, if followed,  
will help to assess the quality and reliability 
of reported methods more faithfully. We 
have focused on data, optimization, model 
and evaluation (DOME) as each component 

of an ML implementation usually falls 
within one of these four topics. We do 
not propose new specific solutions, only 
recommendations (Table 1). A reporting 
checklist is also provided (Box 1). Our 
recommendations are made primarily for 
the case of supervised learning in biological 
applications in the absence of direct 
experimental validation, as this  
is the most common type of ML approach 
used. We do not discuss how ML can be 
used in clinical applications19,20. It also 
remains to be determined whether  
the DOME recommendations can be 
extended to other fields of ML, like 
unsupervised, semisupervised and 
reinforcement learning.

Development of the recommendations
The recommendations outlined below were 
initially formulated through the ELIXIR 
Machine Learning Focus Group after 
the publication of a Comment calling for 
the establishment of standards for ML in 
biology18. ELIXIR, initially established in 
2014, is now a mature intergovernmental 
European infrastructure for biological 
data and represents over 220 research 
organizations in 22 countries across 
many aspects of bioinformatics21. Over 
700 national experts participate in the 
development and operation of national 
services that contribute to data access, 
integration, training and analysis for the 
research community. Over 50 of these 
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Fig. 1 | Exponential increase of ML publications in biology. The number of ML publications per year 
is based on Web of Science from 1996 onwards using the topic category for “machine learning” in 
combination with each of the following terms: “biolog*”, “medicine”, “genom*”, “prote*”, “cell*”, “post 
translational”, “metabolic” and “clinical”.
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experts involved in the field of ML have 
established the ELIXIR Machine Learning 
Focus Group (https://elixir-europe.org/
focus-groups/machine-learning), which 
held meetings to develop and refine 
recommendations based on a broad 
consensus.

Scope of the recommendations
The recommendations cover four major 
aspects of supervised ML according to 
the DOME acronym. The key points and 

rationale for each aspect of DOME are 
described below and summarized in  
Table 1. Box 1 provides an actionable 
checklist (with the recommendations 
codified as questions), which we suggest 
authors use as a guide when reporting 
ML-based methods in manuscripts.

Data. State-of-the-art ML models are often 
capable of memorizing all the variation in 
training data. Such models when evaluated 
on data that they were exposed to during 

training would create the illusion of 
mastering the task at hand. However, when 
tested on an independent set of data (termed 
a test or validation set), the performance 
would seem less impressive, suggesting low 
generalization power of the model. To tackle 
this problem, initial data should be divided 
randomly into non-overlapping parts. The 
simplest approach is to have independent 
training and testing sets (and possibly a 
third validation set). Alternatively, the 
cross-validation or bootstrapping techniques 

Box 1 | Structuring a Methods section for supervised machine learning approaches

Here we suggest a list of questions that 
authors should address in the Methods 
sections of manuscripts describing 
supervised ML approaches, in order to 
conform to the DOME recommendations 
and ensure a high quality of ML analysis.

Data (this section should be repeated 
separately for each dataset)

•	 Provenance: What is the source of the 
data (database, publication, direct 
experiment)? If data are in classes, how 
many data points are available in each 
class—for example, total for the posi-
tive (Npos) and negative (Nneg) cases? If 
regression, how many real value points 
are there? Has the dataset been previ-
ously used by other papers and/or is it 
recognized by the community?

•	 Data splits: How many data points are in 
the training and test sets? Was a separate 
validation set used, and if yes, how large 
was it? Are the distributions of data types 
in the training and test sets different? Are 
the distributions of data types in both 
training and test sets plotted?

•	 Redundancy between data splits: How 
were the sets split? Are the training 
and test sets independent? How was 
this enforced (for example, redundancy 
reduction to less than X% pairwise 
identity)? How does the distribution 
compare to previously published ML 
datasets?

•	 Availability of data: Are the data, 
including the data splits used, released 
in a public forum? If yes, where (for 
example, supporting material, URL) 
and how (license)?

Optimization (this section should be 
repeated separately for each trained model)

•	 Algorithm: What is the ML algorithm 
class used? Is the ML algorithm new? 

If yes, why was it chosen over better 
known alternatives?

•	 Meta-predictions: Does the model use 
data from other ML algorithms as 
input? If yes, which ones? Is it clear that 
training data of initial predictors and 
meta-predictor are independent of test 
data for the meta-predictor?

•	 Data encoding: How were the data 
encoded and preprocessed for the ML 
algorithm?

•	 Parameters: How many parameters 
(p) are used in the model? How was p 
selected?

•	 Features: How many features (f) are 
used as input? Was feature selection 
performed? If yes, was it performed 
using the training set only?

•	 Fitting: Is p much larger than the 
number of training points and/or is f 
large (for example, in classification is 
p ≫ (Npos + Nneg) and/or f > 100)? 
If yes, how was overfitting ruled out? 
Conversely, if the number of training 
points is much larger than p and/or f is 
small (for example, (Npos + Nneg) ≫ p 
and/or f < 5), how was underfitting 
ruled out?

•	 Regularization: were any overfitting pre-
vention techniques used (for example, 
early stopping using a validation set)? If 
yes, which ones?

•	 Availability of configuration: Are 
the hyperparameter configurations, 
optimization schedule, model files and 
optimization parameters reported? If 
yes, where (for example, URL) and how 
(license)?

Model (this section should be repeated 
separately for each trained model)

•	 Interpretability: Is the model black box 
or interpretable? If the model is inter-
pretable, can you give clear examples 
of this?

•	 Output: Is the model classification or 
regression?

•	 Execution time: How much time  
does a single representative  
prediction require on a standard 
machine (for example, seconds on a 
desktop PC or high-performance com-
puting cluster)?

•	 Availability of software: Is the source 
code released? Is a method to run the 
algorithm—such as executable, web 
server, virtual machine or container 
instance—released? If yes, where (for 
example, URL) and how (license)?

Evaluation

•	 Evaluation method: How was the 
method evaluated (for example 
cross-validation, independent dataset, 
novel experiments)?

•	 Performance measures: Which perfor-
mance metrics are reported? Is this set 
representative (for example, compared 
to the literature)?

•	 Comparison: Was a comparison to pub-
licly available methods performed on 
benchmark datasets? Was a comparison 
to simpler baselines performed?

•	 Confidence: Do the performance met-
rics have confidence intervals? Are the 
results statistically significant to claim 
that the method is superior to others 
and baselines?

•	 Availability of evaluation: Are the raw 
evaluation files (for example, assign-
ments for comparison and baselines, 
statistical code, confusion matrices) 
available? If yes, where (for example, 
URL) and how (license)?

The above description is provided  
in table format in Supplementary  
Table 1, together with two fully  
worked out examples (Supplementary 
Tables 2 and 3).
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that choose a new training/testing split 
multiple times from the available data are 
often considered a preferred solution22.

Overlap of training/testing data splits 
is particularly troublesome to overcome 
in biology. For example, in predictions 
on entire gene and protein sequences, 
independence of training and testing 
could be achieved by reducing the number 
of homologs in the data10,23. Modeling 
enhancer–promoter contacts requires a 
different criterion, for example, not sharing 
one endpoint24. Modeling protein domains 
might require the multidomain sequence  
to be split into its constituent domains 
before homology reduction25. In short,  

each area of biology has its own recommen
dations for handling overlapping data  
issues, and previous literature is vital 
to putting forward a strategy. In Box 1, 
we propose a set of questions under the 
category ‘data splits’ that should help to 
evaluate potential overlap between training 
and testing data.

Reporting statistics on the dataset size 
and distribution of data types can help 
show whether there is a good domain 
representation in all sets. Simple plots and/
or tables showing the number of classes 
(classification), a histogram of real values 
binned (regression) and the different types 
of biological molecules in the data are vital 

pieces of information for each set. Further, 
in classification, inclusion of methods that 
address imbalanced classes26,27 is also needed 
if the class frequencies show as much. 
Models trained on one dataset may not 
be successful in dealing with data coming 
from adjacent but not identical datasets, a 
phenomenon known as covariance shift. The 
scale of this effect has been demonstrated 
in several recent publications—for example, 
for prediction of disease risk from exome 
sequencing28. Although covariance shift 
remains an open problem, several potential 
solutions have been proposed in the area of 
transfer learning29. Moreover, the problem 
of training ML models that can generalize 

Table 1 | Supervised ML in biology: concerns, the consequences they impart and recommendations

Broad topic Be on the lookout for Consequences Recommendation(s)

Data • Inadequate data size & quality
• �Inappropriate partitioning, dependence 

between train and test data
• Class imbalance
• No access to data

• �Data not representative of domain 
application

• �Unreliable or biased performance 
evaluation

• Cannot check data credibility

• �Use independent optimization (training) and 
evaluation (testing) sets. This is especially 
important for meta algorithms, where independence 
of multiple training sets must be shown to be 
independent of the evaluation (testing) sets.

• �Release data, preferably using appropriate 
long-term repositories, and include exact splits.

• �Offer sufficient evidence of data size & distribution 
being representative of the domain.

Optimization • �Overfitting, underfitting and illegal 
parameter tuning

• Imprecise parameters and protocols given

• �Reported performance is too 
optimistic or too pessimistic

• �The model models noise or misses 
relevant relationships

• Results are not reproducible

• �Clarify that evaluation sets were not used for 
feature selection, preprocessing steps or parameter 
tuning.

• �Report indicators on training and testing data that 
can aid in assessing the possibility of under- or 
overfitting; for example, train vs. test error.

• �Release definitions of all algorithmic 
hyperparameters, regularization protocols, 
parameters and optimization protocol.

• �For neural networks, release definitions of training 
and learning curves.

• �Include explicit model validation techniques, such as 
N-fold cross-validation.

Model • Unclear if black box or interpretable model
• �No access to resulting source code, trained 

models & data
• �Execution time impractical

• �An interpretable model shows no 
explainable behavior

• �Cannot cross compare methods 
& reproducibility, or check data 
credibility

• �Model takes too much time to 
produce results

• �Describe the choice of black box or interpretable 
model. If interpretable, show examples of 
interpretable output.

• �Release documented source code + models + 
executable + user interface/webserver + software 
containers.

• �Report execution time averaged across many 
repeats. If computationally tough, compare to similar 
methods.

Evaluation • Performance measures inadequate
• �No comparisons to baselines or other 

methods
• Highly variable performance

• �Biased performance measures 
reported

• �The method is falsely claimed as 
state-of-the-art

• �Unpredictable performance in 
production

• �Compare with public methods & simple models 
(baselines).

• �Adopt community-validated measures and 
benchmark datasets for evaluation.

• �Compare related methods and alternatives on the 
same dataset.

• �Evaluate performance on a final independent held-out 
set.

• �Use confidence intervals/error intervals and 
statistical tests to gauge prediction robustness.

Key recommendations are bolded.
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well on small training data usually requires 
special models and algorithms30.

Lastly, it is important to make as much 
data available to the public as possible12. 
Having open access to the data used for 
experiments, including precise data splits, 
would ensure better reproducibility of 
published research and as a result will 
improve the overall quality of published ML 
papers. If datasets are not readily available 
in public repositories, authors should be 

encouraged to find the most appropriate 
vehicle—for example, ELIXIR deposition 
databases or Zenodo—to guarantee the 
long-term availability of such data.

Optimization. Optimization, also known 
as training, refers to the process of changing 
values that constitute the model (parameters 
and hyperparameters), including 
preprocessing steps, in a way that maximizes 
the model’s ability to solve a given problem. 

A poor choice of optimization strategy may 
lead to issues such as over- or underfitting31. 
A model that has suffered severe overfitting 
will show an excellent performance on 
training data while performing poorly 
on unseen data, rendering it useless for 
real-life applications. On the other side of 
the spectrum, underfitting occurs when 
very simple models capable of capturing 
only straightforward dependencies between 
features are applied to data of a more 
complex nature. Algorithms for feature 
selection32 can be employed to reduce the 
chances of overfitting. However, feature 
selection and other preprocessing actions 
come with their own recommendations. 
The main one is to abstain from using 
non-training data for feature selection and 
preprocessing—a particularly hard issue to 
spot for meta-predictors, which may lead to 
an overestimation of performance.

Finally, the release of files showing the 
exact specification of the optimization 
protocol and the type of parameters or 
hyperparameters are a vital characteristic of 
the final algorithm. Lack of documentation, 
including limited accessibility to relevant 
records for the parameters, hyperparameters 
and optimization protocol, may further 
compound the understanding of the overall 
model performance.

Model. Equally important aspects  
related to ML models are their 
interpretability and reproducibility. 
Interpretable models can infer causal 
relationships from the data and can 
output logical reasoning for each of their 
predictions. They are especially relevant 
in areas of discovery such as drug design6 
and diagnostics33. Conversely, black box 
models often give accurate predictions 
but may not provide insight in a way 
humans can understand into why they 
made the predictions. Both interpretable 
and black box models are discussed 
in more detail elsewhere34. However, 
developing recommendations on the choice 
of black box or interpretability is not 
straightforward as both have their merits. 
The main recommendation would be that 
there is a statement as to whether the model 
type is black box or interpretable (Box 1), 
and if it is interpretable, clear examples of 
interpretable output should be given.

Reproducibility is a key component for 
ensuring research outcomes can be further 
used and validated by the wider community. 
Poor model reproducibility extends beyond 
the documentation and reporting of the 
involved parameters, hyperparameters and 
optimization protocol. Lacking access to 
the various components of a model (source 
code, model files, parameter configurations 
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and executables), as well as having steep 
computational requirements for executing 
the trained models to generate predictions 
based on new data, can make reproducibility 
of the model either limited or practically 
impossible.

Evaluation. There are two types of 
evaluation scenarios in biological research. 
The first is the experimental validation of 
the predictions made by the ML model in 
the laboratory. This is highly desirable but 
beyond the scope of many ML studies. The 
second is a computational assessment of 
the model performance using established 
metrics. The following deals with the 
latter. There are a few possible risks in 
computational evaluation.

To start with performance metrics—that 
is, the quantifiable indicators of a model’s 
ability to solve the given task—there are 
dozens of metrics available35 for assessing 
different ML classification and regression 
problems. The plethora of options available, 
combined with the domain-specific 
expertise that might be required to select the 
appropriate metrics, can lead to the selection 
of inadequate performance measures. Often, 
there are critical assessment communities 
advocating certain performance metrics for 
biological ML models—for example, Critical 
Assessment of Protein Function Annotation 
(CAFA)3 and Critical Assessment of Genome  
Interpretation (CAGI)28—and we recommend 
that a new algorithm should use metrics from 
the literature and community-promulgated 
critical assessments. In the absence of 
literature, the ones shown in Fig. 2 could be a 
starting point.

Once performance metrics are decided, 
methods published in the same biological 
domain must be cross-compared using 
appropriate statistical tests (for example, 
Student’s t-test) and confidence intervals. 
Then, to prevent the release of ML methods 
that appear sophisticated but perform no 
better than simpler algorithms, baselines 
should be compared to the ‘sophisticated’ 
method and proven to be statistically 
inferior (for example, as in comparison of 
shallow vs. deep neural networks).

Open areas and limitations of the  
proposed recommendations
The primary goal of this work is to define 
best practices that can be of use in writing 
of ML-related papers while remaining 
agnostic as to the actual underlying 
solutions. We also expect that our proposed 
recommendations will be useful for peer 
reviewers of biological studies that use ML. 
Our intent is to trigger a discussion in the 
wider ML community leading to future work 
addressing possible solutions.

Several key issues related to reproduci
bility (for example, data are not published, 
data splits are not reported and model 
source code with its final parameters and 
hyperparameters are not released) can be 
aided by workflow systems that automate 
multistep processes to help to ensure that 
they are completely reproducible by tracking 
model parameters and exact versions of 
the source code and libraries. Examples of 
commonly used workflows include Galaxy36 
and Nextflow37. Another de facto standard 
practice in software engineering is using 
version control systems such as Github 
to create an online copy of the source 
code, which can also include parameters 
and documentation. Similar version 
control systems exist for datasets. Public 
repositories can store experimental data 
on demand on a long-term basis, enabling 
long-term reproducibility of the experiment. 
Existing software engineering tools can 
be used to address many of the DOME 
recommendations.

Although having further, more 
topic-specific recommendations in the 
future will undoubtedly be useful, in this 
work we aim to provide a first version that 
should be of general interest. Adapting 
the DOME recommendations to address 
the unique aspects of specific topics and 
domains would be a task of those particular 
communities. For example, having 
guidelines for data independence is tricky 
because each biological domain has its 
own set of guidelines for this. Nonetheless, 
we believe it is relevant to at least have a 
recommendation that authors describe 
how they achieved data split independence. 
Discussions on the correct independence 
strategies are needed for all of biology. 
Given constructive consultation processes 
with ML communities, relying on our 
own experience, it is our belief that this 
Comment can be useful as a first iteration 
of the recommendations for supervised ML 
in biology. This will have the added benefit 
of kickstarting community discussion with 
a coherent but rough set of goals, thus 
facilitating the overall engagement and 
involvement of key stakeholders. Topics 
to be addressed by communities include 
how to adapt DOME to entire pipelines 
and to unsupervised, semisupervised, 
reinforcement and other types of ML. 
For instance, in unsupervised learning, 
the evaluation metrics shown in Fig. 2 
would not apply and a completely new set 
of definitions would be needed. Another 
debate, as AI becomes more commonplace 
in society, is that ML algorithms differ in 
their ability to explain learned patterns 
back to humans. Humans naturally prefer 
actions or predictions to be made with 

reasons given. This is the black box vs. 
interpretability debate, and we point those 
interested to excellent reviews in refs. 38–41 as 
a starting point for thoughtful discussions.

Finally, we address the 
governance structure by suggesting 
a community-managed governance 
model similar to that of the open-source 
initiatives42. Community-managed 
governance has been used in initiatives 
such as Minimum Information About a 
Microarray Experiment (MIAME)43 or 
the Proteomics Standards Initiative (PSI) 
Molecular Interaction (MI) format44. 
This sort of structure ensures continuous 
community consultation and improvement 
of the recommendations in collaboration 
with academic (CLAIRE; see https://
claire-ai.org/) and industrial (Pistoia 
Alliance; see https://www.pistoiaalliance.
org/) networks. More importantly, this can 
be applied in particular to ML communities 
working with specific problems requiring 
more detailed guidelines—for example, 
imaging or clinical applications. We have 
set up a website (https://www.dome-ml.
org/) where news and upcoming events 
will be posted to provide a platform for 
governance and community involvement 
around the DOME recommendations. 
As the recommendations and minimal 
requirements evolve over time, a version 
history will be available on the website. 
A template supplementary checklist 
in human-readable (spreadsheet) and 
machine-readable (YAML) format, as well 
as software for the automatic conversion 
of a YAML file into a human-readable 
one, are available from a dedicated 
GitHub repository (https://github.com/
MachineLearning-ELIXIR/dome-ml).

Conclusion
The objective of our recommendations 
is to increase the reproducibility and 
clarity of ML methods for the reader, the 
experimentalist, the reviewer and the 
wider community. We accept that these 
recommendations are not complete and 
should be viewed as a first iteration of a 
consensus-based community discussion. 
One of the most pressing issues is to agree to 
a standardized data structure to describe the 
most relevant features of the ML methods 
being presented. As a first step in addressing 
this issue, we recommend including an 
ML summary table, derived from Box 1, in 
manuscripts describing ML-based studies 
(Supplementary Table 1). We recommend 
including the following sentence in the 
Methods section of a manuscript: “To 
support the reproducibility of the machine 
learning method of this study, the machine 
learning summary table (Table N) is 
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included in the supporting information as 
per DOME recommendations (https://doi.
org/10.1038/s41592-021-01205-4).”

We believe that the development of 
standardized reporting guidelines has 
the potential to make a major impact in 
increasing the quality of publishing ML 
methods. First, the current disparity  
among manuscripts in reporting key 
elements of the ML method can make 
reviewing and assessing the ML method 
challenging. Second, certain performance 
measures and essential statistics that may 
affect the validity of the publication’s 
conclusions are sometimes not mentioned 
at all. Third, there are unexplored 
opportunities associated with meta-analysis 
of ML datasets. Access to large sets of data 
can both enhance the comparison between 
methods and facilitate the development of 
better-performing methods while reducing 
unnecessary repetition of data generation. 
We believe that our recommendations to 
include a “machine learning summary table” 
and to make datasets available will greatly 
benefit the ML community and improve its 
standing with the intended users of these 
methods. ❐
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