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Abstract
Understanding how correlations can be used for quantum communication 
protocols is a central goal of quantum information science. While many 
authors have linked the global measures of correlations such as entanglement 
or discord to the performance of specific protocols, in general the latter may 
require only correlations between specific observables. In this work, we first 
introduce a general measure of correlations for two-qubit states, based on the 
classical mutual information between local observables. Our measure depends 
on the state’s purity and the symmetry in the correlation distribution, according 
to which we provide a classification of maximally mixed marginal states 
(MMMS). We discuss the complementarity relation between correlations 
and coherence. By focusing on a simple yet paradigmatic example, i.e. the 
remote state preparation protocol, we introduce a method to systematically 
define the proper protocol-tailored measures of the correlations. The method 
is based on the identification of those correlations that are relevant (useful) for 
the protocol. On the one hand, the approach allows the role of the symmetry 
of the correlation distribution to be discussed in determining the efficiency of 
the protocol, both for MMMS and general two-qubit quantum states, and on 
the other hand, it allows an optimized protocol for non-MMMS to be devised, 
which is more efficient with respect to the standard one. Overall, our findings 
clarify how the key resources in simple communication protocols are the purity 
of the state used and the symmetry of the correlation distribution.
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1. Introduction

The study of correlations in quantum systems has a long, deep and complex history indeed. In 
particular, enormous effort has been devoted to characterizing the ‘quantumness’ of correla-
tions, or devising measures of correlations aimed at capturing the ‘quantum content’ present 
in a generic quantum state, such as quantum entanglement [1, 2] and quantum discord [8, 9]. 
Three premises underlie the derivation of such measures [10]: (i) in a quantum state there 
can be ‘classical’ and ‘quantum’ correlations that coexist; (ii) it is possible to algorithmically 
identify and separate the quantum versus the classical part of the correlations; and (iii) both 
parts can be quantified by means of a single number. In agreement with these assumptions, 
measures of the correlations have been used to establish a classification of quantum states 
based on a clear-cut distinction between the quantum versus the classical states (e.g. separable 
versus entangled states and discordant versus zero-discord states). Furthermore, the correla-
tion measures have been directly connected to the performance of specific quantum protocols. 
An additional premise is implicit in this effort: (iv) quantum correlations, interpreted as prop-
erties of a given quantum state as a whole, underlie the efficiency of quantum protocols, and in 
particular they are responsible for the ‘quantum advantage’ over classical protocols [14]. For 
instance, entanglement has been cited as an essential resource for quantum computation [3], 
quantum teleportation [4], quantum dense coding [5], quantum cryptography [6] and quantum 
metrology [7]. Quantum discord has been indicated as a resource in mixed-state quantum 
computation [11], quantum cryptography [12] and quantum communication [13, 24].

However, the strategy that follows the above premises (i)–(iv) is sometimes unable to une-
quivocally provide a connection between the performance of the protocol, as measured by a 
suitable figure-of-merit, and a given measure of quantum correlations. Therefore, the search 
for other perspectives is indeed possible and also in order. In particular, we propose to ‘forget’ 
about the quantum versus classical distinction, and rather focus on (classical) correlations 
between sets of local observables. Our proposal is based on an idea that has been highlighted 
within the framework of the consistent (decoherent) history approach to quantum mechanics 
[17, 18] (and sometimes also within the standard interpretation [16]). The state ρ of a system, 
rather than being a ‘property’ of the system, can be intended as a ‘pre-probability’, i.e. a math-
ematical device that is useful for calculating the probabilities of the measurement outcomes 
pertaining to (possibly incompatible) experiments. In a bipartite setting for example, where A 
and B share a given state ρ and want to implement a communication task, the probability dis-
tributions pertaining to all pairs of local observables define the set of ‘available correlations’ 
stored in the state. When a specific protocol is enacted, one is led to identify the subset of pairs 
of local observables that are relevant for its realization, and therefore the corresponding subset 
of relevant correlations. In this sense, a bipartite state can be imagined as a multiple-input/
multiple-output system [19], i.e. a communication system that can exploit several parallel 
channels linking the transmitter and the receiver; the ‘relevant channels’ are those identified 
by the pairs of local observables that are relevant for a given protocol. From this perspective, 
on the one hand quantum states can be characterized as a whole by the average amount of 
(classical) correlations between all pairs of local observables. As we will show, this value is 
determined by the purity of the state and the symmetry of the correlation distribution, i.e. the 
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symmetry group that connects pairs of local observables that have equal correlations. On the 
other hand, the efficiency of specific quantum protocols can be connected with specific sets 
of local observables and their mutual correlations. In this way, one is able to find protocol-
specific measures of correlations and, as we demonstrate with a specific example, modify 
existing protocols in order to enhance their efficiency.

In order to thoroughly examine the proposed strategy, here we focus on the simplest case of 
quantum communication bipartite channels provided by two-qubit quantum states ρAB, where 
the tensor product structure H = C2 ⊗ C2 naturally provides the sets of local observables to 
study. In particular, we start our analysis by focusing on states with maximally mixed mar-
ginals (MMMS). The latter are particularly simple to study and have been widely used in the 
literature as prototypical instances of bipartite communication channels [1, 8, 15]. We will 
consider pairs of local von Neumann observables and their correlations, as measured by the 
classical mutual information I  of measurement outcomes. On the basis of I , in the first place 
we define a measure of the ‘available correlations’ by taking a suitable average 〈I〉Ω over the 
manifold Ω of local observables (which, in the case of two qubits, are given by the product of 
two spheres Ω = S2 × S2). However, two states, with possibly different purities, can well have 
the same amount of average correlations 〈I〉Ω (just as two states can have the same amount 
of entanglement or discord) and yet be strikingly different from the point of view of how the 
correlations are distributed among the various observables. From this perspective, bipartite 
quantum states can be classified on the basis of both the purity-dependent quantity given by 
the average correlations, and by the purity-independent feature given by the symmetry of the 
correlation distribution. Furthermore, it is possible to introduce a relation between the correla-
tions of the pairs of observables and the coherence of the product bases they define. In this 
respect, we show that fixed purity correlations and coherence can in general be identified as 
complementary resources.

To assess the role of correlations in a quantum protocol, 〈I〉Ω may not be the most sig-
nificant quantity. When analyzing a given communication task, one should pick out the set of 
observables that is relevant for its realization. This is possible, for example, when there exists 
a figure-of-merit F  for the protocol that explicitly depends on a specific subset of observables, 
i.e. a set ΩRO ⊆ Ω of relevant observables (RO). If this is the case, then one can immediately 
derive a protocol-related measure of correlations by taking the average 〈I〉ΩRO on this subset 
only. From the conceptual point of view, our perspective is radically different from others: 
instead of considering an overall property of the state, such as the entanglement, the discord or 
the average mutual information 〈I〉Ω, we establish a direct connection between the (average) 
performance of the protocol and the correlations pertaining to the relevant observables. In the 
following, we will fully develop the first example of this method by applying it to the (two-
qubit) remote state preparation (RSP) protocol [20–23]. The latter has been widely studied in 
the literature and there have been many attempts to link its performance to specific kinds of 
quantum correlations, such as quantum discord [24] or entanglement [26]. However, it has 
been shown that on the one hand discord is neither sufficient nor necessary for the efficiency 
of the protocol [25], and on the other hand that states with a lower content of entanglement or 
discord can provide better efficiency than states with higher values of both quantities [31]. In 
our case, we will analyze the protocol for both MMMS and general non-MMMS states. We 
will define a functional F  for RSP that allows us to identify the set of relevant observables. 
While for states with maximally mixed marginals (MMMS) all relevant observables are use-
ful, i.e. they can always be used to enhance F , for general non-MMMS only a subset of the 
relevant observables has this property. One can therefore define the set of useful observables 
ΩU ⊆ ΩRO and correspondingly introduce an alternative way of enacting RSP based on useful 
observables only, such that the overall efficiency of the protocol is improved. In both cases 

P Giorda and M Allegra J. Phys. A: Math. Theor. 50 (2017) 295302



4

(MMMS and non-MMMS), we measure the advantage of using the correlations versus not 
using them by means of a gain function G , which explicitly depends on the correlation of the 
useful observables. The average gain will provide the link to the desired measure of correla-
tions pertaining to the protocol.

Throughout the whole discussion, we analyze how the purity versus the symmetry of the 
correlations affect the protocol. In general, the purity and the symmetry of the correlations can 
be thought of as two fundamental resources: the purity fixes the amount of available correla-
tions, and the symmetry determines how the correlations are distributed between the relevant 
observables. As for symmetry alone, we finally show how it can be recognized as the key 
resource that allows the communication channel between parties A and B to be established 
before the state one wants to transfer is known.

The paper is organized as follows. In section 2.1 we briefly define the formalism and the 
conventions used. In section 2.2 we introduce our measure of correlations and study the  general 
properties of 〈I〉Ω, as well as their relation to the state’s symmetry for MMMS. In section 3, 
we discuss in detail the RSP protocol for MMMS and non-MMMS. In section 4 we finally 
discuss the relation between symmetry and freedom in implementing the different steps of 
RSP. In section 5 we derive our conclusions.

2. Classification of quantum states based on correlations between 
observables

We start by discussing how two-qubit quantum states can be characterized on the basis of 
the pairwise correlations between local observables, I(n̂, m̂). For simplicity, we focus on a 
subset of states: those with maximally mixed marginals (MMMS). We show that MMMS can 
be characterized by the average 〈I〉Ω as well as the symmetry of I(n̂, m̂), as defined below. 
Finally, we discuss how the correlation content described by I(n̂, m̂) is complementary to the 
coherence of the product basis defined by n̂, m̂ in the given state.

2.1. Notation

By using the Bloch–Fano representation, one can show that an arbitrary two-qubit state is 
equivalent, up to the local unitary operations UA ⊗ UB, to the state:

ρAB =
1
4
(IA ⊗ IB +�a · �σA ⊗ IB + IA ⊗�b · �σB + κ

∑
i

ciσ
A
i ⊗ σB

i ) (1)

where �a = |a|â and �b = |b|b̂ are the Bloch vectors of the marginal states, E = κ diag(c1, c2, c3) 
is the correlation matrix in its diagonal form, and �σ = (σx,σy,σz) is the vector of the Pauli 
matrices. Therefore, the state is identified by three vectors: the vectors �a,�b  describing the 
reduced density matrices ρA, ρB and the correlation vector �c = κĉ = κ(c1, c2, c3), κ = |�c|. 
In the following, we will focus on maximally mixed marginal states (MMMS), defined as 
the states for which �a = �b = �0 , and which hence have maximally mixed reduced states on 
ρA = ρB = 1

2 I:

ρ
(MMMS)
AB =

1
4
(IA ⊗ IB + κ

∑
i

ciσ
A
i ⊗ σB

i ).

The MMMS are completely characterized by the correlation vector �c . The condition for 
ρAB to be a good quantum state is the positivity condition ρAB > 0. The latter implies that 
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�c ∈ T , i.e. �c  is a vector in R3 contained in the tetrahedron T  with the vertices (−1, −1, −1),  
(−1, 1, 1), (1, −1, 1), (1, 1, −1) [15]. The value of the parameter κ defines the purity of the 
state, which reads (1 + κ2)/4.

In the following, we will focus on pairs of von Neumann observables. The latter are opera-

tors that can be represented as OA(B) =
∑

k okΠ
A(B)
k , with 

{
Π

A(B)
k

}
 being a complete orthogo-

nal set of projectors on the Hilbert space HA(B). Since we are dealing with qubits, any projector 
can be written in terms of the Pauli matrices as

Π
A(B)
± (m̂) =

(
I± m̂ · �σA(B)

)
/2

where m̂  is a unit vector belonging to a single qubit Bloch sphere and Π± = |±m̂〉〈±m̂|. We are 
interested in the correlations between pairs of observables ̂n · �σA, m̂ · �σB (pertaining to the sub-
systems A and B respectively), whose projectors are given by ΠA

±(n̂),Π
B
±(m̂). The measure of 

correlations we use is the standard classical mutual information I(n̂, m̂) ≡ I(ΠA
±(n̂),Π

B
±(m̂)), 

which can be written in terms of the joint probability distribution

pij = Tr
[
ρABΠ

A
i (n̂)⊗ΠB

j (m̂)
]

, i, j = ±

and of the marginals pi = Tr
[
ρAΠ

A
i (n̂)

]
, pj = Tr

[
ρBΠ

B
j (m̂)

]
 as

I(n̂, m̂) = −
∑

i

pi log2 pi −
∑

j

pj log2 pj +
∑

ij

pij log2 pij.

For MMMS, the probability for the joint measurements defined by (n̂, m̂) can be expressed 
in terms of the correlation matrix as pij =

(
1 + ij m̂En̂T

)
/4, i, j = ±, whereas the probabili-

ties for the single local measurements yield pA(B)
± = 1/2.

2.2. Symmetry and distribution of correlations

With the above notations, the mutual information between two local observables n̂, m̂ in 
MMMS can be simply expressed as

I(n̂, m̂) =
1
2

(
(1 − x) log2(1 − x) + (1 + x) log2(1 + x)

)

where x = n̂Em̂T = κ n̂diag(c1, c2, c3)m̂T . From this formula, it immediately follows that the 
correlations between any two observables are a monotonic function of κ, i.e. of the purity, 
and that for any fixed κ the distribution of correlations between different pairs of observables 
depends on the direction of the correlation vector ĉ. States, identified by their ĉ, can be clas-
sified on the basis of the distribution of the correlations they yield.

A first classification of the states and the corresponding directions ĉ can be done on the 
basis of the local symmetries of the correlations, which follow from the local symmetries for 
the state. A state ρ has a local unitary symmetry if there are local unitaries UA ⊗ UB such that 
UA ⊗ UBρU†

A ⊗ U†
B = ρ. The local unitary symmetries of the state form a group LU  called a 

local unitary stabilizer [29], which is a discrete or continuous subgroup of SU(2)⊗ SU(2). 
Local unitaries U ∈ SU(2) acting on the Hilbert space can be mapped to rotations O ∈ SO(3) 
acting on the Bloch sphere: indeed, there exists a (unique) rotation O ∈ SO(3) such that 
Un̂ · �σU† = (On̂) · �σ . By virtue of this SU(2) → SO(3) mapping, local unitary symmetries 
can be expressed in terms of special orthogonal transformations that leave the correlation 
matrix invariant:
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OAEOT
B = E (2)

where OA, OB ∈ SO(3). The fact that a state defined by �c  has a symmetry group LU  can be 
viewed in two equivalent ways. On the one hand, for all n̂, m̂, I(n̂, m̂)(�c) is also left invari-
ant by the action of LU  on ρ. On the other hand, local symmetries of the state imply a sym-
metry in the distribution of correlations: given a pair of local observables (n̂, m̂), all the pairs 
(n̂′, m̂′) = (n̂OA, m̂OB) have the same value of mutual information.

Given a direction ĉ with a specific LU , we are interested in identifying the equivalence 
class of directions that yield isomorphic distributions of correlations for fixed κ (purity). 
Formally, for any fixed κ and any given ĉ, we want to identify the directions d̂ , such 
that for any pair of observables (n̂, m̂) there exists a pair of observables (n̂′, m̂′) such that 
I(n̂, m̂)(κĉ) = I(n̂′, m̂′)(κd̂), i.e. there exists a bijective map φ : (n̂, m̂) → (n̂′, m̂′), realizing 
a change of local coordinates on the Bloch spheres, such that I(n̂, m̂)(κĉ) = I(φ(n̂, m̂))(κd̂). 
Thus, given a direction ĉ = (c1, c2, c3), we want to identify the following equivalence class 
LU eq

ĉ  of directions d̂ = (d1, d2, d3):

LU eq
ĉ ≡

{
d̂ : ∃κ | ∀(m̂, n̂), ∃(m̂′, n̂′) | I(n̂, m̂)(κd̂) = I(n̂′, m̂′)(κĉ)

}
.

In order to identify the components of a given class, one has to notice that a local change 
of coordinates on the Bloch spheres S2 × S2 corresponds to a pair of orthogonal trans-
formations OA, OB ∈ O(3) acting on n̂, m̂ as n̂′ = n̂OA and m̂′ = m̂OB. In order to have 
I(n̂, m̂)(κd̂) = I(n̂′, m̂′)(κĉ) we must have

|n̂′diag(d1, d2, d3)m̂′T | = |n̂diag(c1, c2, c3)m̂T |

which can be rewritten as

OAdiag(c1, c2, c3)OT
B = ±diag(d1, d2, d3). (3)

Equation (3) severely constrains the form of d̂ . Indeed, since the matrices diag(c1, c2, c3) and 
diag(d1, d2, d3) are related by two orthogonal rotations as above, they must have the same 
singular values. This implies that |d1|, |d2|, |d3| are related to |c1|, |c2|, |c3| by a permutation. As 
a result, we must have

LU eq
ĉ =

{
d̂ = (s1cσ(1), s2cσ(2), s3cσ(3))| si ∈ {±},�σ ∈ P(1, 2, 3)

}
 (4)

where P(1, 2, 3) is the set of permutations of three indices. LU eq
ĉ  can be seen as the orbit of a 

discrete subgroup of O(3) that acts on the given ̂c and is isomorphic to G ∼ S3 ⊗ E8, where S3 
is the symmetric group of order 3, corresponding to the permutations of three indices, and E8 
is the elementary Abelian group of order 8 that realizes the changes of signs si in equation (4). 
As discussed in the appendix A, the transformations in G can be realized by a combination 
of local unitary rotations and a non-unitary local spin-flip that implements the transformation 
ĉ → −ĉ; furthermore, the total number of different equivalent directions |LU eq

ĉ | � 48 depends 
on the specific LU  and ĉ.

In [29] a complete classification of the continuous LU  for N-qubit states was given; starting 
from such a classification we identify the following classes of MMMS:

 1. ρ3iso states (‘isotropic states’), which belong to the class LU eq
ĉ  with ĉ = (1, 1, 1)/

√
3. 

These states are invariant with respect to local unitaries of the kind U ⊗ U, U ∈ SU(2) 
and we define the class as LU3iso with |LU3iso| = 8. Bell and Werner states belong to this 
class of isotropic states.

P Giorda and M Allegra J. Phys. A: Math. Theor. 50 (2017) 295302



7

 2. ρε2iso states, which are equivalent to ĉ = (ε, ε,
√

1 − 2ε2), 0 < ε2 � 1/2; these states are 
invariant with respect to the subset of the local unitaries of the kind U ⊗ U, U = exp−iθσA(B)

z ; 
we define the class as LUε

2iso, which has |LUε
2iso| = 24 elements if ε �= 0 and |LUε

2iso| = 12 
elements if ε2 = 1/2.

 3. ρ0
2iso states, which are equivalent to ĉ = (0, 0, 1); these states are invariant with respect to 

the subset of local unitaries of the kind UA ⊗ UB, UA = exp−iθσA
z , UB = exp−iησB

z , 
where in general θ �= η . We define the class as LU0

2iso, which has |LU0
2iso| = 6. This class 

coincides with the MMMS states that are called ‘classical’ in the literature because they 
are diagonal on a product basis and have zero quantum discord [8].

The above classes constitute a fine-graining of the local stabilizer formalism. For example, 
while in our case LUε

2iso consitute different classes for different values of ε, since they give 
rise to an inequivalent distribution of correlations, they are all equivalent in the local stabilizer 
setting.

2.3. Average correlations

Given the above classification, we now move on to analyze the average amount of pairwise 
correlations between observables as measured by the average mutual information

〈I〉Ω =
1
2
〈(1 − x) log2(1 − x) + (1 + x) log2(1 + x)〉Ω (5)

where the average [27] is taken over (m̂, n̂) ∈ Ω = S2 × S2 i.e. the Bloch spheres for the 
two qubits where the observables are identified by the unit vectors n̂, m̂. The study of this 
function will allow us to identify, among the above classes of states, those that are extremal 
with respect to 〈I〉Ω. Evidently, for a fixed direction of the correlation vector ĉ the aver-
age 〈I〉Ω is a growing function of κ, and hence of the state’s purity. In order to perform the 
average, we can first evaluate the average over n̂ only. To this end, we use the expansion 

ln(1 + x) =
∑∞

n=1
(−1)(n+1)

n xn and the fact that 
〈
x2n+1

〉
(n̂) = 0 to obtain

1
2
〈(1 + x) log2(1 + x) + (1 − x) log2(1 − x)〉n̂∈S2 =

1
(2 ln 2)

∞∑
h=1

〈x2h〉n̂∈S2

h(2h − 1)
.

Integrating with respect to ̂n, we get 
〈
x2h

〉
n̂∈S2 =

1
2h+1 Rh, with R = (c2

1m2
1 + c2

2m2
2 + c2

3m2
3). 

Upon resumming the series, the overall average mutual information 〈I〉S2 (m̂) for a single 
observable m̂  can thus be evaluated as

〈I〉S2 (m̂) =
(1 + R) atanh

√
R −

√
R(1 − ln(1 − R))√

R ln 4
. (6)

〈I〉S2 (m̂) is a monotonically growing function of R = m̂EETm̂T , and we have 
0 � 〈I〉n̂ (m̂) � 0.278 65. The average mutual information 〈I〉Ω can be obtained by further 
averaging with respect to m̂ . The average can only be expressed analytically in simple cases. 
For the states ρ0

2iso, we get

〈I〉Ω (κ) =
−6κ+

(
6 + 2κ2

)
atanhκ

8κ log 2
+

κ3Φ(κ2, 2, 3
2 ) + 4κ log(1 − κ2)

8κ log 2

where Φ is the Lerch transcendent function. For the isotropic states ρ3iso,
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〈I〉Ω (κ) =
(3 + κ2)atanh(κ/

√
3)√

3κ log 4
−

√
3κ

(
1 − log

(
1 − κ2/3

))
√

3κ log 4
.

At fixed κ, ρ0
2iso and ρ3iso are found to be extremal in terms of the average correlations. Indeed, 

one can study some general properties of MMMS with respect to 〈I〉Ω (κĉ) as a function 
of ĉ = (sinα cosβ, sinα sinβ, cosβ). The results can be summarized in the following 
proposition.

Proposition 1. For fixed κ � 1, the states with minimal 〈I〉Ω (κĉ) are ρ3iso and the states 
with maximal 〈I〉Ω (κĉ) are ρ0

2iso. If κ � 1, the minima remain in correspondence with ρ3iso, 
while the maxima are to be found on the intersection between the sphere of radius κ and the 
tetrahedron T .

The proof of proposition 1 can be found in appendix B. In figure 1, we plot 〈I〉Ω (κĉ) 
for ρ3iso and ρ0

2iso. From this plot, one can see that for κ � 1 the value of 〈I〉Ω (κĉ) is essen-
tially determined by the purity of the state and has weak dependence on the direction ĉ. This 
fact dims the relevance of the symmetry properties of the correlation distribution, which 
becomes quite evident when one considers a specific communication protocol, for which only 
a specific subset of correlations is relevant. For example, the effect of the symmetry is very 
apparent when one considers the subset of maximally correlated observables, i.e. the sub-
set ΩMax ⊂ S2 × S2 defined by ΩMax = {(n̂M , m̂M) |n̂MEm̂M = maxn̂,m̂ n̂Em̂}. For the classes 
LU eq identified above:

 • For ρ0
2iso, ΩMax is defined by the equation  n3m3 = 1, which is only satisfied if 

n̂ = (0, 0,±1), m̂ = (0, 0,±1). We have ΩMax = {n̂ = (0, 0,±1), m̂ = (0, 0,±1)} with 
dimΩMax = 0.

 • For ρε2iso and ε ∈
(

1/
√

3, 1/
√

2
)
, ΩMax is defined by the equation  n1m1 + n2m2 = 1, 

which is satisfied if the directions of both observables lie on the equatorial circle S1 (i.e. 
m3 = n3 = 0) and are coincident. We have ΩMax ∼ S1 with dimΩMax = 1.

 • For ρ3iso, ΩMax is defined by the equation n̂ · m̂ = 1, which is satisfied if the direction of 
the two observables coincide. Thus, ΩMax ∼ S2 with dimΩMax = 2.

Therefore, it is evident that the symmetry can have important implications for protocols based 
on maximally correlated observables. This will become clear in the discussion about RSP, see 
for example figure 2 and the related discussion.

Figure 1. Average mutual information 〈I〉Ω (κ) for ρ0
2iso and ρ3iso. The average shows a 

weak dependence on the symmetry class of the states (see text for discussion).
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2.4. Complementarity between correlations and coherence

An important aspect of the correlations between between observables (n̂, m̂) is that they can 
be seen as complementary to the coherence properties of the product basis identified by n̂, m̂, 
i.e. B(n̂,m̂) = {|±n̂〉|±m̂〉}, with respect to the given state. In order to address this point, one 
can use the coherence function [30, 32] given by CohB(̂n,m̂)

(�c) = HB(̂n,m̂)
(�c)− S(ρ) where 

HB(̂n,m̂)
(�c) is the entropy of the joint probability distribution obtained by a measurement of the 

observables identified by n̂, m̂. For MMMS, we obtain

CohB(̂n,m̂)
(�c) = 2 − I(n̂, m̂)(�c)− S(ρ) (7)

where S(ρ) is the von Neumann entropy of ρ. The above formula establishes a clear link 
between the correlations of the local observables and the coherence of the product bases they 
define. Therefore, the coherence properties for MMMS can be inferred from I(n̂, m̂) and 
〈I〉Ω. We obtain that:

Proposition 2. (i) For fixed ĉ, CohB(̂n,m̂)
(�c) and 〈Coh(�c)〉Ω are a growing function of  

κ, i.e. of the purity of the state; (ii) at fixed κ, the higher the correlations between pairs of 
observables (n̂, m̂) the lower their coherence with respect to the global state ρ. (iii) At fixed κ, 
for all states such that ĉ ∈ LU eq

ĉ , CohB(̂n,m̂)
 enjoys the LU  symmetry. (iv) At fixed κ, in general 

CohB(̂n,m̂)
(�c) �= CohB(̂n,m̂)

(−�c), since in general S(ρ�c) �= S(ρ−�c), and therefore each equiva-

lence class splits as LU eq
ĉ = L̃U eq

+ĉ
⋃
L̃U eq

−ĉ. (v) All the states such that d̂ ∈ L̃U eq
+ĉ

(
L̃U eq

−ĉ

)
 

have the same value of 〈Coh(�c)〉Ω
(
〈Coh(−�c)〉Ω

)
.

The first property simply stems from the fact that the coherence function 
CohB(̂n,m̂)

(�c) = HB(̂n,m̂)
− S(ρ), since HB(̂n,m̂)

 is a growing function of κ and S(ρ) is a decreas-
ing function of κ.

The second property is quite relevant since it can be stated that for pairs of observables 
(n̂, m̂) correlations and coherence are complementary properties. In particular, for pure (Bell) 
states, the pairs (n̂, m̂) ∈ ΩMax that have maximal mutual information have minimal coher-
ence. Therefore, communication protocols involving MMMS and that are based on (n̂, m̂) 

(a) (b)

Figure 2. (a) The figure-of-merit 〈F〉ΩRO
 versus gain 〈G〉ΩRO

 for ρ0
2iso and ρ3iso and 

0 < κ < 1. At fixed 〈G〉ΩRO
 (vertical dashed line), 〈F〉ΩRO

 is lower for ρ3iso. At fixed 

〈F〉ΩRO
 (horizontal dashed line), 〈G〉ΩRO

 is lower for ρ3iso. (b) The relative difference 
between the average gains ∆G  and the relative difference between the average figures-
of-merit δF  for ρ0

2iso and ρ3iso. At fixed purity, the symmetry properties entail differences 
of up to 8% for the gains and up to 25% for the figures-of-merit.
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pairs can, in principle, be divided into two different categories: those that rely on correlations 
and those that rely on coherence. Although this subdivision is in principle sharp, we will see 
that the RSP protocol, for example, falls into the first category. In [33], we have provided an 
example of a protocol that falls into the second category—quantum phase estimation—which 
turns out to be based on coherence rather than correlations.

The third property descends from the fact that S(ρ) is invariant with respect to any unitary 
rotation in SU(4), and it allows us to extend the discussion had already regarding I(n̂, m̂)(�c) 
and 〈I(�c)〉Ω to CohB(̂n,m̂)

(�c) and 〈Coh(�c)〉Ω, since they inherit the same symmetry properties.
The fourth property marks a difference between the set of states that is locally unitarily 

equivalent to �c = κĉ and those that are unitarily equivalent to �c = −κĉ: they both have the 
same purity, and therefore the same linear entropy, but in general different S(ρ�c), since the 
transformation ĉ → −ĉ does not preserve the spectrum of ρ. For the states that have higher 
S(ρ�c), the pairs (n̂, m̂) have the lower coherence. This is a property which is consistent with 
the fact that states with higher values of S(ρ�c) are more ‘mixed’ or entropic when one consid-
ers them in terms of their global SU(4) property S(ρ), which depends on the spectrum.

The fifth property is analogous to the same property for I(n̂, m̂)(�c) and 〈I(�c)〉Ω, since 
S(ρ�c)

(
S(ρ−�c)

)
 is constant for fixed κ.

3. Relevant observables, useful correlations and performance in RSP

We are now ready to introduce the main quantifiers necessary for the description of how the 
correlations are used in a remote state preparation protocol. We first define the figure-of-merit 
F , optimize it, and find out what the relevant observables for the protocol are. This will allow 
us to introduce the gain G , which measures the advantage of using the correlations in the 
protocol. While we mainly focus our discussions on the relevant classes of states previously 
defined, the tools and procedures we outline can, in general, be applied to any two-qubit state.

3.1. Remote state preparation

Let us start with a brief review of the remote state preparation (RSP) protocol [20, 24]. Starting 
with a state �AB, two parties A and B wish to prepare an arbitrary pure state |n̂〉 on the B side 
belonging to the Bloch sphere circle orthogonal to a given Bloch sphere axis β̂, where n̂ is the 
vector identifying the state in the Bloch sphere of B, such that n̂ · β̂ = 0 (note that here and 
in the following we will use n̂ for both the state |n̂〉 and the observable n̂ · �σ ; the meaning will 
be clear from the context). To prepare the state n̂ on B, A performs a local measurement on 
her qubit corresponding to the observable m̂ · �σ . Depending on the outcome i = ±, the condi-
tional post measurement states of B are identified by the vectors

�ri =
�b + im̂ET

2pA
i

 (8)

where pA
i = 1

2 (1 + im̂ · �a). Upon measurement, A sends a classical message to B revealing 
the measurement outcome i. If i  =  1, B leaves his qubit unperturbed; if i  =  −1 he performs 
a rotation of π around the axis β̂, Rπ(β̂). Taking into account B’s conditional rotations, the 
state in B is:

�̃B(m̂) = pA
+�B|+ + pA

−Rπ(β̂)�B|− (9)
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where �B|i are the corresponding post measurement states identified by �ri. The state �̃B(m̂) is 
identified by the Bloch vector

�r = m̂ET +
(
�b − m̂ET) · β̂ β̂ (10)

The effectiveness of the protocol depends on how close �r  is to the target state n̂.

3.2. Figure-of-merit, relevant observables and gain for MMMS

We now start to analyze the RSP protocol for MMMS and later extend the results to other 
classes of states. For MMMS, we have

pA
i =

1
2

�ri = im̂ET �r = m̂ET −
(
m̂ET) · β̂ β̂.

We first want to estimate the efficiency of the RSP procedure. One natural possibil-
ity is to compare the probabilities of a |±n̂〉 measurement performed by B on: (i) the 
desired output state +n̂, i.e. p+ = 1, p− = 0; (ii) the actual output of the protocol �r , i.e. 
pE
± = (1 ± n̂ ·�r) /2 =

(
1 ± n̂Em̂T

)
/2. We therefore define, as the relevant figure-of-merit, 

the relative entropy between these probability distributions:

F(n̂, m̂) = p+ log2
p+
pE
+

+ p− log2
p−
pE
−

= 1 − log2(1 + n̂Em̂T). (11)

This function describes how much the probability distribution given by a measure-
ment of n̂ onto �r  is statistically distinguishable from the probability distribution given by 
p+ = 1, p− = 0. One has that 0 � F(n̂, m̂); F(n̂, m̂) = 0 when �r = n̂; F(n̂, m̂) = 1 when 
n̂ ·�r = 0; and F(n̂, m̂) → ∞ when �r → −n̂. Therefore, the optimization with respect to the 
measurement axis m̂  along which A has to measure is simple, as F(n̂, m̂) is a decreasing func-
tion of n̂Em̂T. Then, since n̂Em̂T = (n̂E) · m̂, the protocol is optimized when m̂  is parallel to 
n̂E , i.e. when A measures the observable defined by m̂ = n̂E ≡ n̂E/|n̂E|; in this case the post-

measurement state on B is defined by �ropt = n̂EET −
(

n̂EET · β̂
)

β̂, while F(n̂, m̂) is minimal 

and reads

F ≡ F(n̂, n̂E) = 1 − log(1 + |n̂E|). (12)

Note that F(n̂, m̂) is a monotonic function of ̂nEm̂, which in the literature is called the ‘payoff’ 
of the protocol (see e.g. [24]); correspondingly, the optimal measurement nE is the same as 
that found in the literature, and F  is a monotonic function of the ‘optimal payoff’ |n̂E| (for a 
discussion about different figures-of-merit see also [26]). The above definition immediately 
leads to the identification of the sub-manifold of relevant observables ΩRO ⊂ S2 × S2 as the 
set ΩRO =

{(
n̂E, n̂

)
| n̂ ∈ S2

}
. In order to evaluate the average performance of the protocol 

we compute 〈F〉 =
〈
F(n̂, n̂E)

〉
ΩRO

, where the average is taken over the submanifold of the 
relevant observables ΩRO; since ΩRO ∼ S2, the average is computed with respect to the Haar 
measure over S2. Since |n̂E| =

√
n̂EETn̂T , one gets:

Proposition 3. At fixed κ, for all states corresponding to a given class LU eq
ĉ  defined by 

ĉ: (i) F(n̂, n̂E) is invariant with respect to the action of LU  on ρ; given a state n̂ to be trans-
ferred, all states connected via n̂ = n̂OB, where OB is the SO(3) representation of UB such that 
UA ⊗ UB ∈ LU , have the same value of F(n̂, n̂E); (ii) the average payoff 〈F〉ΩRO

 is the same 
for all states corresponding to LU eq

ĉ .
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The first property is simply a consequence of the symmetry of the states, i.e. 
n̂Em̂T = n̂OAEOT

Bm̂T = n̂AEm̂B; in order to transfer ̂nA one has to measure onto m̂B = n̂OA/|n̂OA| 
with |n̂OA| = |n̂E|. The second property is a consequence of the invariance of the Haar measure 
with respect to the local changes of bases that realize the given LU . Finally, both F , 〈F〉ΩRO

 
are decreasing functions of κ: the purer the state, the better the (average) result of the protocol.

After having identified the relevant observables, one wants to know what the benefit of 
using the correlations present in the state is. By this we mean the following. Suppose one does 
not use the correlations present in the state; this means that B does not perform the conditional 
rotation on his qubit, so the output of the protocol is �r = �b = �0 , corresponding to the identity 
operator �̃B(�r) = I2. In this case F  (12) is independent of n̂ and simply reads

F�0 = 1. (13)

Note that the same result is obtained if: (i) A measures an observable m̂  such that n̂Em̂ = 0, 
i.e. an observable that has zero correlations with respect to n̂; (ii) A does not implement any 
measurement and always sends the bit 0 to B. For any desired output n̂, a simple way to 
compare the two protocols—the one that uses the correlations versus the one that does not—
is to compare the corresponding probability distributions: p±(�ropt) = (1 + |n̂E|)/2, i.e. the 
probability of measuring ±n̂ on �ropt; and p±(�0) = 1/2, i.e. the probability of measuring ±n̂ 
on �r = �0. By computing the relative entropy of the two distributions, and with some simple 
algebra, one obtains

D(�r opt‖�0) =
∑
i=±

pi(�ropt) log2
pi(�ropt)

pi(0̂E)
= I(n̂E, n̂). (14)

We define G(n̂, n̂E) ≡ D(�r opt‖�0) = I(n̂E, n̂) as the gain function of the protocol. The 
meaning of the gain stems, in the first place, from its definition in terms of relative entropy: 
the higher the G , the higher the statistical distinguishability between the probability dis-
tributions p±(�ropt), p±(�0) obtained by using or not using the correlations. In particular, if 
p±(�ropt) = p±(�0), then G = 0 and there is no profit in using the correlations. Equation (14) 
establishes a clear connection between the gain one gets in using the correlations in the state 
and the correlations between the relevant observables ΩRO as measured by the mutual infor-
mation I(n̂E, n̂). This is one of the main results of our analysis: among the available correla-
tions, the ones pertaining to the RSP for a given state ρAB are those that are relevant for the 
protocol. Thus, if one evaluates the average gain 〈G〉ΩRO

= 〈I〉ΩRO
, where the average is taken 

over the set of relevant observables ΩRO, one immediately has a measure of the correlations 
tailored to the overall protocol. The next proposition shows that the gain enjoys the same 
properties as the figure-of-merit F .

Proposition 4. At fixed κ, for all states corresponding to a given class LU eq
ĉ : (i) G(n̂, n̂E) 

is invariant with respect to the action of any UA ⊗ UB ∈ LU ; in particular, ∀n̂ all observables 
n̂OB, where OB is the SO(3) representation of UB such that UA ⊗ UB ∈ LU  have the same 
value of G(n̂, n̂E); (ii) the average gain 〈G〉RO is the same for all states corresponding to LU eq

ĉ .

The proof simply follows from the proof of proposition 3 and the fact that both F(n̂, n̂E) 
and G(n̂, n̂E) only depend on |n̂E|. One has that both G, 〈G〉ΩRO

 are increasing functions of κ, 
i.e. the purer the state the higher (on average) the correlations between the relevant observa-
bles, and the higher the profit one gets in using the correlations. Finally, due to the above 
definitions of F  and G—and thanks to the connection between the correlation and coherence 
previously found (7)—one has that for MMMS:
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Proposition 5. Given the desired output n̂ and the measurement m̂  on A: the optimization 
of the RSP protocol is equivalent to maximizing the correlations between the observables 
n̂ · �σA and m̂ · �σB, or equivalently to minimizing coherence with respect to ρAB of the product 
bases defined by n̂ and m̂ .

Our scheme therefore allows one to neatly distinguish what the relevant resource that 
 matters for the optimization of the RSP protocol is, and to quantify it in the form of the aver-
age gain 〈G〉ΩRO

. In particular, our scheme allows one to identify the RSP as a protocol that is 
based on correlations rather than on coherence.

〈F〉ΩRO
and 〈G〉ΩRO

for LU eq
ĉ states.

We now specify the previous results of some of the classes of states LU eq
ĉ  defined in the 

previous section, and we discuss their properties. Both 〈F〉ΩRO
 and 〈G〉ΩRO

 can be analytically 

evaluated in simple cases, i.e. for the classes LU3iso and LU0
2iso. For ρ3iso states κ ∈

[
0,
√

3
]
 

and one has

〈F3iso〉ΩRO
= 1 − log2(1 + κ/

√
3) (15)

〈G3iso〉ΩRO
= 〈I3iso〉ΩRO

=
1
2
(
(1 + κ/

√
3) log2(1 + κ/

√
3) + (1 − κ/

√
3) log2(1 − κ/

√
3
)
.

 (16)
For ρ0

2iso (the so-called ‘classical states’) κ ∈ [0, 1] and

〈
F0

2iso

〉
ΩRO

= 1 − (1 + κ) ln(1 + κ)− κ

κ ln 2
 (17)

〈
G0

2iso

〉
ΩRO

=
〈
I0

2iso

〉
ΩRO

=
(1 + κ)2 ln(1 + κ)

4κ ln 2
− (1 − κ)2 ln(1 − κ) + 2κ

4κ ln 2
.

 (18)

The above functions are important since the classes of states LU3iso and LU0
2iso are extremal 

in the sense specified by the following proposition, which holds for all two-qubit states, as we 
shall see when we discuss non-MMMS.

Proposition 6. (i) For purity κ � 1, ρ3iso states attain the minimum of both 〈F〉ΩRO
 and 

〈G〉ΩRO
, while the maximum is attained by the class of ρ0

2iso states; (ii) For 1 � κ �
√

3, the 
minimum of both 〈F〉ΩRO

 and 〈G〉ΩRO
 is attained by ρ3iso, while the maxima are found at the 

intersection between the sphere of radius κ and the tetrahedron T .

The proof is given in appendix B. Proposition 6 identifies the classes of states, i.e. ρ3iso, 
which allow us to obtain, at fixed κ, the best performance both in terms of F  and the resources 
needed in RSP. From proposition 6, it follows that the ρ3iso states are those that give the best 
performance for a fixed amount of average relevant resources 〈G〉ΩRO

, i.e. the smallest 〈F〉ΩRO
. 

On the other hand, if one fixes the value of 〈F〉ΩRO
, the ρ3iso states are those that require the 

least amount of resources to obtain the same performance. The previous statements are exem-
plified in figure 2(a).

These results can be understood, since in the case of ρ3iso states the output state of the 
protocol r̂ = ETn̂E ∝ n̂, i.e. it is always orthogonal to the given β̂ and parallel to the desired 
output state n̂. Therefore, ΩRO ∼ S2 ≡ ΩMax, i.e. the manifold of relevant observables coin-
cides with the manifold of maximally correlated observables. For non-isotropic states this is 
no longer true except for a subset of states. For example, for ρε2iso this is true iff β̂ = ẑ, i.e. 
for the manifold S1 ∼ ΩMax ⊂ ΩRO of maximally correlated states, while for ρ0

2iso this is true 
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for a single pair of observables (m̂ = ẑ, n̂ = ẑ). Therefore, for non-isotropic states and for a 
 general desired output n̂ and r̂ ∦ n̂, in order to obtain the same value of |n̂E|—and thus the 
same F—non-isotropic states must have a higher value of κ: they must be purer and employ 
more resources—in terms of the correlations between the relevant observables—than the iso-
tropic ones.

Our results can be summarized in the following way: for a given state ρAB the actual resources 
used in RSP are, on the one hand, the purity, which determines the amount of correlations 
between the relevant observables as measured by 〈G〉ΩRO

, and on the other hand, the way (sym-
metry) in which the correlations are distributed. Figure 2(b) exemplifies the role of symmetry at 

a fixed purity by showing the relative differences δG =
(〈

G0
2iso

〉
ΩRO

− 〈G3iso〉ΩRO

)
/ 〈G3iso〉ΩRO

 

and δF =
(〈

F0
2iso

〉
ΩRO

− 〈F3iso〉ΩRO

)
/ 〈F3iso〉ΩRO

 as a function of κ; while the gains differ by 

at most 8%, the corresponding figures-of-merit differ by up to 25%. At fixed purity, the sym-
metry properties entail large differences in the figures-of-merit.

Our treatment of the RSP explains the results presented in the literature from quite a 
different point of view. For example, in [24], the average performance at a given axis β̂ is 

expressed in terms of 
〈
|En̂|2

〉
S(β̂), where S(β̂) is the circle on the Bloch sphere orthogo-

nal to β̂. If one minimizes this average performance with respect to the choice of β̂, one 

has that minβ̂
〈
|En̂|2

〉
S(β̂) = (c2

1 + c2
2)/2, where |c1|, |c2| are the minimal singular values 

of the correlation tensor E. Therefore, the worst case is given by the ρ0
2iso states for which 

minβ̂
〈
|En̂|2

〉
S(β̂) = 0. In our language, this simply follows from the symmetry properties of 

such states that imply the existence of a circle S(β̂) of relevant observables, which are in fact 
uncorrelated; therefore on this circle G = 0 and F  is maximal (worst).

3.3. States with non-maximally mixed marginals �a,�b �= �0

We now move on to analyze the states with non-maximally mixed marginals. In this case, the 

state prepared by the protocol is �r = ETm̂ +
(
�b − ETm̂

)
· β̂ β̂ . Since the state to be transferred 

is orthogonal to β̂, n̂ ·�r = n̂Em̂T  and therefore the performance is still given by equation (11) 
and A can maximize it (12) by performing a measurement defined by the same observable 
m̂ = n̂E = n̂E/|n̂E|. The protocol therefore relies on the correlations of the MMMS, which 
can be obtained by setting �a = �0,�b = �0 , i.e. ρAB(�a = �0,�b = �0). Therefore, the condition that 
leads to the choice of the optimal measurement m̂ = n̂E is equivalent to maximizing the cor-
relations between m̂  and n̂, which are present in ρAB(�a = �0,�b = �0) rather than in ρAB.

As for the evaluation of the gain, for non-MMMS states, one is led to compare two dif-
ferent situations. In the first case, the procedure making use of the correlations is the same as 

the one described for MMMS, and we refer to it as PU
�b

; correspondingly the figure-of-merit 
in the optimal case is again (12). In the second case, in which correlations are not used, one 
can implement a procedure that is based on the polarization properties of ρB. This procedure, 

which we call PUN
�b

 for a reason that will shortly be clear, can be implemented as follows: if 
n̂ ·�b > 0 (n̂ ·�b < 0), A always sends the bit 0(1) so that B never (always) rotates its state, and 

the post measurement state is correspondingly �b
(
−�b

)
. With this procedure, the probability 

of measuring n̂ on �b  (−�b ) is p±(�b) = (1 ± |n̂ ·�b|)/2. Therefore, for PUN
�b

, the figure-of-merit 
FUN = FUN(n̂,�b) can be derived as in (11) and it reads

FUN = 1 − log2(1 + |n̂ ·�b|). (19)
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Introducing the procedure PUN
�b

 allows us to devise the following optimized protocol, Popt
�b

, 
which has a higher efficiency than the original RSP. Indeed, what A must now do for any 
given n̂ is to choose whether or not to use the correlations present in the state—i.e. whether 

to use the procedure PU
�b

 or PUN
�b

. To this end, A must compare the figures-of-merit of the 

two procedures: whenever FU(n̂) < FUN(n̂), i.e whenever |n̂E| > |n̂ ·�b|, A uses the state’s 

correlations; otherwise A does not use them and enacts PUN
�b

. Thus, depending on the desired 
output state, correlations can be useful or unuseful for optimizing the overall RSP perfor-
mance. This fact leads us to identify the resources needed for RSP as correlations that are 
both relevant and useful. Given κ and �b , the set of ‘relevant and useful observables’—i.e. 

that which provides the relevant and useful correlations—is ΩU
κ,b =

{
(n̂E, n̂)| |n̂E| > |n̂ ·�b|

}
. 

The set of relevant observables is therefore given by the disjoint union ΩRO = ΩU
κ,b

⋃
ΩUN

κ,b, 

where ΩUN
κ,b =

{
(n̂E, n̂)| |n̂E| < |n̂ ·�b|

}
 is a set of relevant but ‘unuseful’ observables, since 

(n̂E, n̂) ∈ ΩUN
κ,b , FU(n̂) > FUN(n̂). The overall figure-of-merit of our optimized protocol Popt

�b
 

can then be written as:

Fopt = FU(n̂)χΩU
κ,b

+ FUN(n̂)χΩUN
κ,b (20)

where χΩU
κ,b

(
χΩUN

κ,b

)
 is the indicator function that identifies the set of useful (unuseful) observ-

ables for a given κ,�b . We notice that Fopt  correctly takes into account the asymmetry of the 
RSP with respect to the exchange of the role of A and B and that is manifest for non-MMMS 
whenever �a �= �b. In order to better understand which of the relevant correlations are useful, 
one can simply note that the condition |n̂E| > |n̂ ·�b| is equivalent to requiring the post mea-
surement states �r+,�r− defined in (10) to satisfy

(n̂ ·�r+)(n̂ ·�r−) � 0. (21)

In other words, the components of the vectors �r+ and �r− along the direction defined by +n̂ 
should be opposite in verse. Indeed, suppose both components have the same verse of +n̂, for 
example if (n̂ ·�r+) > 0, (n̂ ·�r−) > 0; then Rπ

β�r− contributes to the final output state �r  (9) with 
a component parallel to −n̂, which is orthogonal to the desired output state +n̂. Therefore, the 
rotation of �r− around the β̂ axis required by the standard RSP protocol is detrimental to the 
performance. With our modified protocol, the latter is measured by 〈Fopt〉ΩRO

, which now has 

two contributions 
〈
FU(n̂)χΩU

κ,b

〉
ΩRO

, and 
〈
FUN(n̂)χΩUN

κ,b

〉
ΩRO

. As for the properties of Fopt  

and 〈Fopt〉ΩRO
 one has:

Proposition 7. (i) For a fixed �b , Fopt  and 〈Fopt〉ΩRO
 are decreasing functions of κ; (ii) for 

a given κ,�b , states that are obtained by the transformations that connect the unit vectors 
 belonging to a given class LU eq

ĉ  have the same value of 〈Fopt〉ΩRO
.

The proof of proposition 7 can be found in appendix D. The above considerations 

 demonstrate that our modified protocol Popt
�b

, which distinguishes between useful and unuse-

ful correlations, can in general give a better performance than the standard RSP.
We now turn to the definition of the gain function for non-MMMS states. The procedure is 

analogous to the one seen for MMMS, with two main differences. On the one hand, the two 
probability distributions we want to compare are now: p±(�ropt) = (1 ± |n̂E|)/2, i.e. the prob-
ability of measuring ±n̂ on �ropt, and p±(�b) = (1 ± |n̂ ·�b|)/2, i.e. the probability of measuring 
±n̂ on �r = �b(−�b)—the latter being the same probability used for the definition of FUN . On the 
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other hand, we want to restrict the evaluation of the gain to the set of useful observables ΩU
κ,b, 

i.e. for the part PU
�b

 of the protocol that effectively makes use of the correlations. We therefore 
have for 

(
n̂E, n̂

)
∈ ΩU

κ,b, and after some manipulations

D(�r opt,�b) =
∑
i=±

pi(�ropt) log2
pi(�ropt)

pi(�b)

= I(n̂E, n̂)(�a=�0,�b=�0) +
1
2
(1 + |n̂E|) log(1 + |n̂ ·�b|) + 1

2
(1 − |n̂E|) log(1 − |n̂ ·�b|

)
.

The gain GU ≡ D(�r opt,�b) explicitly depends on the correlations I(n̂E, n̂)(â=�0,b̂=�0) between the 
relevant observables for the corresponding MMMS ρAB(�a = �0,�b = �0). Therefore, the desired 
measure of correlations for the modified protocol is simply given by the mutual information 

I(n̂E, n̂)(â=�0,b̂=�0). This implies that the correlation properties of ρAB(�a = �0,�b = �0) rather than 
ρAB are those that matter for the protocol. This shift of attention from ρAB to ρAB(�a = �0,�b = �0) 
is a direct result of our approach. A simple study reveals that GU is a growing function of κ 
and a decreasing function of b = |�b|. These properties can be understood by first analyzing 
the case in which ΩU

κ,b = ΩRO, i.e. all relevant correlations are useful, and by considering 
the difference ∆F =

(
FUN −FU

)
. When κ grows FU  decreases and thus ∆F , i.e. the gap 

between the performance of the two protocols grows, and it becomes even more convenient to 
use the correlations in the protocol. On the other hand, if b grows the opposite happens: it is 
FUN  that decreases and thus ∆F  becomes smaller. The behavior of GU correctly reproduces 
these features with respect to the variations of κ and b. As for the average gain, one defines 
〈
GU

〉
=

〈
D(n̂E,�b)χΩU

κ,b

〉
ΩRO

. The average is taken over the whole set of relevant observables 

ΩRO ∼ S2 and the integrand is different from zero over the set χΩU
κ,b

 and zero otherwise. When 
b increases, 

〈
GU

〉
 decreases, not only due to its functional dependence on b, but also because 

of the restriction of the domain ΩU
κ,b over which it is evaluated. The proper average measure of 

correlations for the modified protocol is simply given by the average of the mutual information 

I(n̂E, n̂)(â=�0,b̂=�0) over the set of useful correlations, i.e. 
〈
IU

〉
=

〈
I(n̂E, n̂)(â=�0,b̂=�0)χΩU

κ,b

〉
ΩRO

.

We conclude this section by analyzing the properties of GU and Fopt  for some relevant 
classes of non-MMMS.

3.3.1. Example: pure states. Thanks to the Schmidt decomposition, the pure states can be 
written as λ|00〉+

√
1 − λ2|11〉 for some choice of local bases. Therefore, their correlation 

matrix can be expressed as E = diag(2λ
√

1 − λ2,−2λ
√

1 − λ2, 1) and their local Bloch vec-
tors as �a = �b = (0, 0, 2λ2 − 1), in terms of the single parameter λ. It is then easy to check that 
for pure states ΩU

κ,b = ΩRO, i.e. all relevant observables are useful. In figure 3(a) we plot 
〈
GU

〉
 

and 〈F〉ΩRO
; the latter are respectively maximal and minimal for the pure Bell states, i.e. given 

the fixed purity for states that are maximally isotropic.

3.3.2. Example: isotropic case. As for the isotropic case, one can first evaluate 
〈
GU

3iso

〉
 when 

κ and |�b| are such that ΩRO ≡ ΩU
κ,b, i.e. when κ/

√
3 > |�b · n̂|, ∀n̂ and all relevant correlations 

are useful. In this case the gain reads

〈
GU

3iso

〉
= 〈G3iso〉ΩRO

+

(
1 − f (1)− f (−1)

6b

)
/ ln 2 (22)
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where 〈G3iso〉ΩRO
= 〈I3iso〉ΩRO

 is given by (16), i.e. the result obtained for |�b| = 0, while the  

average of the part depending on �b  can be written in terms of f (±1) =

(1 ± b)
(

3 ± κ
√

3
)
ln (1 ± b) and the result depends on b = |�b| only. In this case, 〈

Fopt
3iso

〉
=

〈
FU

3iso

〉
ΩRO

 and it is given by (15). If now κ/
√

3 < |�b| and ΩU
κ,b ⊂ ΩRO one has to 

properly adjust the limits of the integrations in order to implement both for GU and Fopt , the 
χΩU

κ,b
 and χΩUN

κ,b
. The integrations can be carried out analytically and the result is plotted for the 

whole set of parameters κ, b for which the state is positive in figure 3(b). In the figure we show 〈
GU

3iso

〉
 and 

〈
Fopt

3iso

〉
; they both attain their optimal value (1 and 0 respectively) for κ = 1. The 

benefit in using our modified protocol can be appreciated in figure 4 where we have plotted 

the difference between the average figure-of-merit pertaining to the usual RSP, given by equa-

tion (15) and 
〈
Fopt

3iso

〉
 for the optimized protocol Popt

�b
. When κ/

√
3 > |�b|, one has ΩRO = ΩU

κ,b, 

the two protocols coincide and they have the same efficiency such that ∆ 〈F〉ΩRO
= 0; when 

κ/
√

3 < |�b| the optimized protocol performs better, and ∆ 〈F〉ΩRO
> 0.

The results discussed in this section concern a simple yet paradigmatic example of the 
quantum communication protocol, RSP. They show how the approach introduced allows 
proper protocol-tailored measures of correlations for both MMMS and non-MMMS states to 
be defined. Furthermore, the new perspective allows, in general, the role of symmetry in the 
states’ correlation distribution (e.g. proposition 6) to be highlighted, and allows new optim-
ized protocols to be devised that may have better efficiencies. The role of symmetry is further 
analyzed in the following section.

4. RSP and symmetry

The main theme of our discussion is the interplay between the two main resources that charac-
terize the performance of a given quantum protocol: state purity and correlation symmetry. In 
particular, we have emphasized the importance of the way the relevant correlations are distrib-
uted in a given state, and how this property determines the performance of a given proto col. In 
this section we discuss, in a simplified situation, how the specific kind of symmetry of a given 
state ρAB determines the conditions for the implementation of the RSP. The original protocol 
is based on:

 • the set-up of a communication channel, which is realized when A sends part of her state 
to B;

 • the ability to realize local measurements along an arbitrary axis on the A side (which is 
equivalent to the ability of realizing an arbitrary SU(2) rotation and a measurement along 
a given fixed axis);

 • the ability to locally realize π rotations around an arbitrary axis β̂ on the B side.

The basic RSP first requires the communication channel to be set up, then, after the measure-
ment of the A side and the communication of the result to B, a π rotation around a given axis 
β̂. In the following, we analyze the protocol in terms of the resources needed, in terms of the 
symmetry of the state and in terms of the characteristic times of the protocol: tch, tβ̂ , tn̂ . We 
have that tch is the time in which the channel between A and B is set up; tβ̂ is the time in which 
the decision about the axis β̂ is taken by A and B, while tn̂ is the time when A gets to know 
what the state n̂ to be transferred is. The goal of our game is to obtain the same average value 
of F  (12) for states with different symmetries; this is in general possible but it requires the 
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basic protocol to be modified, and some constraints to be added to the relations among tch, tβ̂, 
and tn̂. The simplification we adopt is the following: A sends to B part of her state ρAB through 
a channel that does not change state (perfect channel). This is quite a strong restriction, indeed 
if the channel is perfect, A could choose to send the state |n̂〉 directly to B. But since we deal 
with the relation between the performance of the protocol and the correlations present in a 
state, the example allows us to discuss the relation between RSP and symmetry. We focus on 
MMMS belonging to different classes, and each state will have the maximum purity allowed 
by its class, i.e. κ = maxĉ∈LU eq kMax(ĉ).

Suppose now ρAB belongs to the class ρ3iso, then κ =
√

3 and ρAB is a pure Bell state. A and 
B can then proceed with the usual protocol, and they are free to choose three times such that 
tch < tβ̂ , tn̂, i.e. A can set up the channel before knowing β̂ and n̂. The figure-of-merit of the 
protocol and the gain are F3iso(n̂) = 0,G3iso = 1 for all n̂ and hence also on average.

Suppose now ρAB is such that ̂c = (1/
√

2, 1/
√

2, 0) and κ = 1/
√

2; the state belongs to the 
class ρε2iso, with ε = 1/

√
2, it is separable and its discord is different from zero. In this case, 

A can do the following: before setting up the channel and after she gets to know β̂, A rotates 
B’s qubit with a single rotation Uβ̂ that implements the rotation ẑ → β̂  on the corresponding 
Bloch sphere; then A sends the qubit to B. When she knows the desired n̂, by a proper rotation 
Uxy she rotates her measuring axes that will lie in the xy plane of her Bloch sphere. The rest of 

the protocol is the usual one. It turns out that F1/
√

2
2iso (n̂) = Fκ

3iso(n̂) > 0 and G0
2iso = Gκ

3iso < 1 
with κ =

√
3/2. Again, the resources used in terms of local rotations, i.e. Uβ̂ , Uxy ∼ SU(2) 

are the same as before, since in general Uβ̂ is determined by two real parameters and Uxy by 
a single real parameter (the angle on the xy circumference). However, in this case it must be 
tβ̂ < tch < tn̂. Once again by using the same resources and a mixed state one can obtain the 

same performance of an isotropic state, which for κ =
√

3/2 is purer than the state ρ1/
√

2
2iso , and 

is both entangled and discordant. However, symmetry in this case only allows A to set up the 
channel before knowing n̂, but after she gets to know β̂.

Suppose now A is allowed to use the state σ = (|00〉 〈00|+ |11〉 〈11|) /2—the state 
belongs to the class ρ0

2iso, κ = 1 and it is called ‘classical’ in some parts of the literature 
[8]— in particular, σ has zero entanglement and zero discord. A can modify the protocol as 
follows: instead of using the SU(2) rotations for measuring along different axes, after A gets 

Figure 3. (a) The average figure-of-merit 〈F〉ΩRO
 and gain 

〈
GU

〉
 for pure states as a 

function of the Schmidt coefficient λ; (b) the 〈Fopt〉ΩRO
 and gain 

〈
GU

〉
 for isotropic 

states as a function of κ and b. The protocol only uses useful correlations to the left of 
the cuts in the plots. (The domain of the plot is given by the values of κ and b for which 
the state is defined.)
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to know both β̂, n̂, and before building the channel, she applies the rotation on the B part of 
the state such that ρ → ρn̂ = (|0n̂〉 〈0n̂|+ |1,−n̂〉 〈1,−n̂|) /2; A then sends the second qubit 
to B, implementing measurements along the ẑ axis on her qubit, and the protocol proceeds as 
usual. One has that F0

2iso(n̂) = F3iso(n̂) = 0, and G1iso = G3iso = 1 for all n̂ and on average. 
The resources used in this case are the same as in the previous ones (SU(2) rotations on the A 
side, Rπ(β̂) rotations on the B side). Therefore, by using the same resources and a so-called 
classical mixed state (zero discord and entanglement) one can obtain the same performance 
one gets with a pure Bell state. The main and relevant difference is that now tβ̂ , tn̂ < tch, i.e. 
A has to set up the channel after she gets to know both β̂ and n̂.

The bottom line of the above discussion is that in the described set-up (perfect channel), 
it is the way the correlations are distributed among the relevant observables that matters in 
defining: (i) which kind of freedom one has in realizing the different steps of the protocol, 
and (ii) in which way one has to use the same SU(2) rotations. The modified protocols for the 

states ρ1/
√

2
2iso , ρ0

2iso  do not change their correlation content; they make use of the same ability to 
perform SU(2) rotations as in the original protocol. The rotations are now used in a way that 
compensates for the lack of symmetry in the states, in order to reorient the correlation distribu-
tion among the different observables, such that the protocol—as dummy as it may appear—is 
as efficient as possible with the given purity. In particular, in the case of the state ρ0

2iso, the 
protocol is as efficient as the one that makes use of pure Bell states. The above results seem 
to depend on the different symmetries of the states, rather than their supposed ‘quantumness’ 
or ‘classicality’. Indeed, the freedom in the choice of tch is guaranteed by the symmetry of the 
distribution of correlations between the relevant observables (the ones that are perfectly cor-
related or anti-correlated). The states with isotropic correlations allow a total freedom for all 
values of purity, even in the absence of entanglement. These states are always discordant, but 
here the presence of discord simply records the presence of a sufficient amount of the ‘right 
symmetry’.

Figure 4. ∆ 〈F〉ΩRO
: the difference between the average figure-of-merit 〈F〉ΩRO

 
evaluated for the usual RSP, which always uses the relevant correlations (equation (15)), 
and our modified protocol based on useful correlations (

〈
Fopt

3iso

〉
 in the text, based on 

equation (20)); when κ/
√

3 > |�b| one has ΩRO ≡ ΩU
κ,b, the two protocols coincide and 

∆ 〈F〉ΩRO
= 0; when κ/

√
3 < |�b| the performance of the modified protocol is better, 

i.e. ∆ 〈F〉ΩRO
> 0 (the domain of the plot is given by the values of κ and b for which 

the state is defined).
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We finally note that, in principle, it depends on A’s will or needs (and on her specific 
experimental constraints) to decide when to set up the channel. Once the kind of channel to be 
used is fixed, the performance of the protocol only depends on the ability to create a state with 
the highest possible purity and to properly implement the rotations and measurements needed.

Having identified the relevant correlations and their symmetry as those that determine the 
performance of RSP, if one relaxes the hypothesis of a perfect channel, one may argue that the 
noisy channels that are optimal are not in general those that preserve entanglement or discord. 
On the contrary, they are those that preserve the amount of relevant correlations and the sym-
metry (isotropy) of the state.

5. Conclusions

In this paper we have introduced a new measure of correlations based on the average classical 
mutual information 〈I〉 between the local von Neumann observables. We have illustrated our 
measure focusing on the case of two-qubit systems. To analyze its properties we have defined 
classes of maximally mixed marginal two-qubit states (MMMS) with different continuous 
symmetries. At fixed purity, the states belonging to each class have the same value of 〈I〉, and 
their distributions of I(n̂, m̂) among the various observables are isomorphic. At fixed purity, 
the states that give the minimum value of 〈I〉 are isotropic states, while those that attain the 
maximum are those with a single non-zero singular value in their correlation tensor (the so-
called ‘classical states’). Any pair of local observables (n̂, m̂) defines a product basis B(n̂,m̂), 
and we showed for MMMS that the higher the I(n̂, m̂), the lower the coherence CohB(̂n,m̂)

 of the 
corresponding basis. In other words, the (average) correlations of MMMS and their (average) 
coherence are complementary resources: protocols that require the maximization of I(n̂, m̂), 
correspondingly require a minimization of CohB(̂n,m̂)

. We conjecture that such a distinction may 
have a general character and that correlations and coherence may play a complementary role 
in the quantum information protocols, in the sense that some of them (or some parts of them) 
should be based on the maximal amount of correlations between the relevant observables, and 
they correspondingly require the least amount of coherence, while in contrast others should be 
based on the coherence properties of the relevant observables.

In the rest of the paper, we introduced a general standard scheme for identifying the proper 
measures of correlations for protocols whose figure-of-merit F(n̂, m̂) explicitly depends on a 
given set ΩRO of pairs of observables (n̂, m̂), i.e. the set of observables relevant for the proto-
col. The measure of correlations is obtained by defining a gain function G  that expresses the 
benefit in using the correlations present in the state ρAB employed in the protocol versus not 
using them. This perspective has a series of consequences. Indeed, on the one hand the meas-
ure of correlations becomes protocol-dependent; on the other hand the described procedure 
allows one to derive ‘proper’ measures of correlations in a standard way for each protocol. 
Ultimately, the condition of being ‘proper’ stems from the explicit connection one is able to 
make between the measure of correlations and the figure-of-merit F . Furthermore, we notice 
that when a state is sent through a noisy channel the overall properties of the state are, in gen-
eral, corrupted, while depending on the specific kind of noise, the relevant correlations may 
well be preserved.

We illustrated our scheme by specializing it to an example of a quantum communication 
task—remote state preparation (RSP)—for which neither discord nor entanglement are able 
to capture the relevant features that allow the performance to be maximized. In the case of 
MMMS, we introduced a specific figure-of-merit F(n̂, m̂), defined the set ΩRO and showed 
that G = I(n̂, m̂) for (n̂, m̂) ∈ ΩRO; therefore the measure of correlations pertaining to the 
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protocol is just 〈G〉ΩRO
= 〈I(n̂, m̂)〉ΩRO

, i.e. the average mutual information between the rel-
evant observables. The resources involved in the process are the purity of the state and the 
symmetry of the correlations. We found that the extremal states are the isotropic ones: at fixed 
purity they allow the optimal value of 〈F〉ΩRO

 to be obtained with the least amount of 〈G〉ΩRO
, 

i.e. with the least amount of resources (correlations) used. We then extended our scheme to 
general (non-MMMS) two-qubit states. The definition of 〈F〉ΩRO

, 〈G〉ΩRO
 parallels that for 

MMMS, and it shows that the relevant observables and correlations are those pertaining to 
the state ρAB(�a = �b = �0), i.e. the MMMS obtained from ρAB by setting the local vectors �a,�b  

to zero. One has that 〈G〉ΩRO
 is a function of 〈I(n̂, m̂)〉�a=�b=�0

ΩRO
, i.e. the average mutual corre-

lation between the relevant observables evaluated for the state ρAB(�a = �b = �0). Therefore, 

〈I(n̂, m̂)〉�a=�b=�0
ΩRO

 is the desired measure of correlations. Furthermore, for non-MMMS the study 

of F  allows one to identify among the relevant observables the set of those that are indeed 
useful ΩU ⊂ ΩRO, and correspondingly to define the 〈F〉ΩU

, 〈G〉ΩU
. We have shown how to 

use our approach to devise an optimized protocol that attains better values of F  on average 
in a given range of parameters defining the state ρAB. Our treatment of RSP allows a proper 
measure of correlations that applies to all states to be found, identifying classes of states that 
have the same performance and discriminating those classes that allow the best performance 
to be obtained at fixed purity. The optimality of isotropic states has a general character: the 
average performance 〈F〉ΩU

 of the protocol is determined by the purity of the state and by the 
way (symmetry) in which the useful correlations are distributed.

The idea of analyzing and classifying correlations in terms of classical mutual informa-
tion, its average over observables and its symmetries does not depend on the structure of the 
set of two-qubit states or observables. As such, one could extend it to the cases of two-qudit 
systems or to the case in which POVMs [36, 37] are considered, with the aim of providing 
insights into the general structure of quantum correlations [34]. As for the task of applying 
our scheme to derive protocol-dependent measures of correlations, in general one should first 
try to pick out the relevant observables involved in the protocol, and to relate the presence 
(absence) of a given symmetry in the used initial state to the presence (absence) of the relevant 
correlations. The extension to other protocols may prove difficult in general, and in this case 
one may also need to enlarge the set of measurements allowed for general POVMs (general-
ized observables) [35]. Possible ways to achieve such generalizations could, in principle, take 
advantage of the representation of the states involved in terms of their generalized Bloch vec-
tors [38]. Moreover, one could resort to classifications of the symmetries of the states, such 
as those given by the local unitary stabilizer formalism [29], and start to apply our scheme to 
simple classes of states with continuous symmetries. We leave such generalizations for future 
research.
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Appendix A

Given each of the directions d̂ ∈ LU eq
ĉ , there is always a unique transformation that maps 

ĉ into d̂ . These transformations can be seen as orthogonal transformations in the R3 space 
of the correlation vectors. They thus form a discrete subgroup of O(3) that is isomorphic to 
G ∼ S3 ⊗ E8, where S3 is the symmetric group of order three, corresponding to the permuta-
tions of three indices, and E8 is the elementary Abelian group of order eight that realizes the 
changes of signs si in equation (2). This group can also be written as G ∼ S4 ⊗ Z2, where S4 is 
the symmetric group of order four and Z2 is the cyclic group of order two. The role of the two 
tensor factors S4 and Z2 is best explained by considering the action of G in the Hilbert space. In 
the Hilbert space representation, the transformations of G can be implemented by a combina-
tion of local unitary rotations and local spin-flips acting on the two-qubit state. In par ticular, 
we have OA = SAÕA and OB = SBÕB, where ÕA, ÕB ∈ SO(3) and SA, SB ∈ {I3,−I3}. The 
local change of coordinates corresponding to ÕA, ÕB can always be implemented by means 
of the local unitary operations UA ⊗ UB acting on the state. Indeed, it is well known [15] 
that for any unitary transformation U ∈ SU(2) there exists a (unique) rotation Õ ∈ SO(3) 
such that Un̂ · �σU† = (Õn̂) · �σ . Transformations corresponding to ÕA, ÕB cannot change 
det(E) = c1c2c3; therefore, acting on diag(c1, c2, c3) they result in permutations of the c′is and 
changes of signs of either zero or two si. These transformations form the subgroup S4 of G, that 
can also be interpreted as the symmetry group of the tetrahedron T , i.e. the group of permuta-
tions of the vertices of T . The other tensor factor group can be realized as Z2 = {I3,−I3}, 
where the element −I3 realizes the inversion ̂c → −ĉ. The operation represented by the matrix 
−I3 realizes a reflection of one of the two Bloch spheres of the qubit around the origin, i.e. a 
local spin-flip of one of the qubits. The spin-flip cannot be implemented with a unitary opera-
tion: in fact, it is an anti-unitary operation [28]. If for a given κ the vector �c = κĉ is admissible 
(i.e. together with �a,�b  it yields a positive state, then all transformations in S4, which can be 
realized as local unitaries, yield the admissible vectors �d = κd̂. However, the spin-flip −I is 
a positive-but-not-completely-positive operation, and as such it can map entangled states into 
non-positive states. Thus, it may map an admissible �c  into a non-admissible �d . As proved in 
[15], the spin-flip is a positive only state such that �c ∈ T ∩ −T .

Appendix B

Proof of proposition 1. Since we do not have a general analytical formula for 〈I〉(n̂,m̂) (ĉ), 

we analyze 
〈
∂α 〈I〉n̂ (m̂)

〉
 and 

〈
∂̂β 〈I〉n̂ (m̂)

〉
 with ∂̂β = ∂β/ sinα, i.e. we analyze the gradi-

ent of 〈I〉n̂ (m̂) in spherical coordinates, where ĉ = (sinα cosβ, sinα sinβ, cosβ). One has 
that

∂̂β 〈I〉n̂ (m̂) = κ2 (m2
2 − m2

1

)
sinα sinβ∂R 〈I〉n̂ (m̂)

and that ∂R 〈I〉n̂ (m̂) is a positive ∀R. Therefore, the critical values for 〈I〉(n̂,m̂) (ĉ) are those 
given by ∂αR = ∂βR/ sinα = 0 in the first place. It turns out that for ĉ ∈ {±x̂,±ŷ,±ẑ}, i.e. 
the ρ0

2iso state, both derivatives are zero and such is their average over m̂ . Furthermore, if 
one evaluates the derivatives in correspondence with the isotropic states, i.e. ρ3iso, one has 

that ∂R 〈I〉n̂ (m̂) is constant with m̂  and 〈∂αR〉 =
〈
−
√

2κ2(m2
1 + m2

2 − 2m2
3)/3

〉
= 0 and 〈

∂̂βR
〉
=

〈
κ2(m2

2 − m2
1)
〉
= 0. The evaluation of the average of the Hessian matrix shows that 
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isotropic states attain a minimum, and states with single ci �= 0 a maximum. The ρ0
2iso and ρ3iso 

states constitute the only extremal point for 〈I〉(n̂,m̂) (ĉ) and therefore they constitute global 
maxima and minima. Indeed, the only other critical points are given by the two equal states ci 
and the remaining cj  =  0, i.e. the class of states ρε2iso with ε = 1/

√
2. In order to show that these 

are the only other critical points we focus on the states with α = π/2,β = π/4 + jπ, j ∈ Z, 
since the symmetry allows the results to be extended to the other elements of the class ρε2iso. 
For the proof, it is first sufficient to show that when ĉ /∈ {±x̂,±ŷ,±ẑ} and for non-isotropic 

states ∂̂β 〈I〉n̂ (m̂) has a constant sign for all m̂ , and therefore 
〈
∂̂β 〈I〉n̂ (m̂)

〉
 cannot be zero, 

except for the ρ1/
√

2
2iso  states. To this end we express m̂ = (sin θ cosφ, sin θ sinφ, cos θ); at fixed 

ĉ, one has that

sin θ∂̂β 〈I〉n̂ (m̂)dθdφ ∝ − sin3 θ cos (2φ) ∂R 〈I〉n̂ (m̂)dθdφ

and therefore the integrand has a constant sign in the integration over θ. Furthermore, both 
cos (2φ) and ∂R 〈I〉n̂ (m̂)

.
= IR(φ) has period π as a function of φ. The integration for φ ∈ [0,π] 

can be replaced by twice the integration for φ ∈ [−π/4, 3π/4] and one can show that
∫ 3π/4

−π/4
cos (2φ) IR(φ) =

∫ π/4

−π/4
cos (2φ)

(
IR(φ)− IR(φ− π/2)

)
.

Since for φ ∈ [−π/4,π/4] the difference IR(φ)− IR(φ− π/2) has a constant sign (that 
depends on the sign of c2

1 − c2
2. Therefore, ∂̂β 〈I〉n̂ (m̂) has a constant sign on the domain 

of the integration and 
〈
∂̂β 〈I〉n̂ (m̂)

〉
�= 0. The only points at which 

〈
∂̂β 〈I〉n̂ (m̂)

〉
= 0 is 

when c2
1 − c2

2 = 0, i.e. β = π/4. Upon evaluating 
〈
∂α 〈I〉n̂ (m̂)

〉
 one finds that it is zero, iff 

α = π/2. By studying the relative average of the Hessian, one sees that these points are saddle 
points. By permutation of the coordinate axes and symmetry arguments, one can extend the 

result to the whole set of states ρ1/
√

2
2iso . Since the above arguments are independent on κ, there-

fore, when κ > 1 the domain of ĉ shrinks, since some of the directions define a non-positive 
state, and while the minima of 〈I〉(n̂,m̂) (ĉ) remains in correspondence with the ρ3iso states, the 
maxima are found at the borders of the domain, i.e. at the intersection between the sphere of 
radius κ and the tetrahedron T . □

Appendix C

Proof of proposition 6. In order to prove the extremality of ρ0
2iso and ρ3iso for both 

〈F〉ΩRO
 and 〈G〉ΩRO

 we use the same arguments used in appendix B to prove proposition 
1. Indeed, one can see that since both F  and G  are monotonically dependent on |En̂|, (i) 
they are monotonically dependent on κ, and (ii) since we do not have an analytical form-
ula for general ĉ, we find the critical points by analyzing 〈∂α(R)〉 = 〈∂β(R)/ sinα〉 = 0 , 
now with R = |En̂|2 = (c2

1n2
1 + c2

2n2
2 + c2

3n2
3). Just as in appendix B, we find that both ∂RF  

and ∂RG  are monotonic functions of R, and therefore the proof goes along the same line as 
 appendix B. □
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Appendix D

Proof.  Property (i) immediately follows from the following facts: if κ < κ′ and 
ΩU

κ,b ⊂ ΩU
κ′,b, FU  for (n̂, n̂E) ∈ ΩU

κ,b ∩ ΩU
κ′,b decreases; FU < FUN  for (n̂, n̂E) ∈ ΩU

κ′,b\ΩU
κ,b. 

Property (ii) follows from the following facts: for all transformations OA, OB that map ĉ → d̂  
with ĉ, d̂ ∈ LU eq

ĉ , the sets ΩU
κ,b,ΩUN

κ,b  are mapped into the sets ΩU
κ,b′ ,Ω

UN
κ,b′, where �b′ = OB�b ;  

the result follows from the fact that such transformations leave the Haar measure invariant.
 □
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