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Abstract: Design and development of new materials and
their hybrids are key to addressing current energy issues.
Thanks to their tunable textural and physiochemical
properties, metal–organic frameworks (MOFs) show great
potential toward gas sorption, catalysis, sensing, and
electrochemical energy applications. Nevertheless, prac-
tical applications of MOFs have been hampered because
of their limited electrical conductivity, micropore size,
and poor stability. However, smart integration of zero-
dimensional quantum dots (QDs) into an MOF template,
where the host structure offers suitable interactions for
enhancing the stability and synergic properties, may be a
solution. The objective of this review is to summarize
recent advances in the field of QD@MOFs, highlighting
fresh approaches to synthesis strategies and progress

made in their application to optoelectronic devices, sen-
sing, biomedical, catalysis, and energy storage. The current
challenges and future directions of QDs@MOFs hybrids
toward advancing energy and environmental applications
are also addressed. We anticipate that this review will
inspire researchers to develop novel MOF hybrids for
energy, optoelectronics, and biomedical applications.

Keywords: metal–organic frameworks, quantum dots,
hybrids, catalysis, sensing, water purification, optoelec-
tronic device, supercapacitors

1 Introduction

Metal–organic frameworks (MOFs) have garnered tre-
mendous attention from the research community, fol-
lowing the pioneering effort of Yaghi et al. that opened
the floodgates to extending this field of research [1–8]. So
far, the resounding success of these high surface area
materials with tunable active sites has triggered infinite
motivation for seeking newly fashioned materials with more
unique properties that wouldmeet current challenges [9–18].
Comprehensive research into MOFs regarding their distinc-
tive behavior and their physical characteristics is frequently
published [19–25]. The development and fabrication of
MOFs into application-specific forms, such as nanostruc-
tures [26–34], reinforced membranes [35–44], and capsules
[45–53] have become a subject of interest for researchers.
MOF-based hybrid composites are also widely studied
through mixing MOFs with several other materials, such
as ceramics, natural polymers, nanomaterials, and pro-
teins, which result in the evolution of novel well-designed
products with improved functionalities [54–60].

Formally, zero-dimensional (0D) semiconductor nano-
crystal materials comprising groups II–VI, III–V, or IV ele-
ments with a diameter of 2–10 nm are denoted as quantum
dots (QDs) and have acquired considerable interest due to
their excellent size-dependent tunable electronic properties
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and budding applications in the areas of sensing, catalysis,
nano-medicine, and bio-imaging [61–67]. In most cases,
this 0D material consists of core (e.g., InP, TiO2, GaAs,
CdS)–shell (e.g., CdS ZnS, PbS, ZnO) structures encom-
passing a combination of a large number of atoms com-
prising mainly groups 12–16 (like ZnSe, ZnO, CdSe, etc.) or
13–15 (InP, InAs, etc.) [68–73]. Despite its several benefits,
this form of QDs has a cytotoxic effect on live cells and
tissues. To solve the shortcomings of traditional QDs, a
new generation of QDs was designed, such as Si QDs,
Ag2Se QDs, carbon dots (CDs), graphene QDs (GQDs), and
perovskite. Recently, perovskite QDs have gained popu-
larity in the field of electric and optoelectronics due to
their adjustable bandgap, high light-absorption effi-
ciency, high photoluminescence (PL) quantum yield,
etc. [74–77]. Furthermore, these 0D materials can be
simply modified by the surface modification method.
Importantly, most of QDs are sustainable in aqueous
systems and have coatings that comprise various func-
tional groups, such as alcohols, amines, thiols, and car-
boxylic acids. Interestingly, a wide range of covalently
conjugated molecules has been developed utilizing these
functional groups. Moreover, because of the enormous
surface area and quantum detention upshot, these mate-
rials have some advantages juxtaposed with traditional
chromophores, such as extensive absorption bands, low
photobleaching, thin and even emission bands, extended
lifetimes, and high quantum yields [78–82]. Although QDs
have excellent properties, the easy agglomeration of QDs
leads directly to fluorescence quenching, which restricts
their utilization in various fields [83–86]. Considerable
effort has been invested in overcoming this hurdle, for
example, passivation with an additional semiconductor
filmwith a suitable bandgap, embedment of QDswith a variety
of material (e.g., polymers or micelles), casing QDs with silica
shell to harvest QDs@SiO2 composites, etc. [87–95]. However,
all these methods are time-consuming and could lead to the
formation of unwanted products or undesired behavior in the
system. To provide QDs with multifunctional functionality,
attempts to encapsulate these semiconductor nanoparticles
and adjustable composite architectures must be investigated.
Surprisingly, MOFs with high porosity and specific surface
area provide an exciting platform, creating an ideal envir-
onment for loading QDs and preventing them from aggre-
gation. At the same time, QDs enhance the physicochemical
properties of MOFs. As a result, the amalgamation of QDs
and MOFs results in good dispersion and great stability. In
this context, MOF-derived QDs (QDs@MOF) have piqued
curiosity and opened up a new avenue for a variety of
applications [75,77,96–100]. These hybrid materials have
captivating properties, such as outstanding PL, excellent

biocompatibility, good mechanical/thermal stability, and
relative simplicity of functionalization [101–106]. As dis-
played in Figure 1a, the number of papers on QDs@MOF
has increased dramatically in recent years, particularly
since 2016. A large variety of QDs@MOF materials have
evolved, and their characteristics and intriguing applica-
tions have been studied ever since (Figure 1b). Although
the research on QDs@MOFs is increasing (Table 1), there
have been only a few review articles in this research field so
far. In view of this flourishing research area, we have sum-
marized the QDs@MOF fabrication strategy, its unique
properties, and the wide-ranging applications, and we
believe that this review will unfold the path toward newer
innovative research and diverse applications.

2 Fabrication strategy for
QDs@MOF

Various fabrication strategies have been adopted for the
synthesis of QDs@MOF over the last decade. Normally,
the strategies comprise two customized methods, “ship-
in-a-bottle” (ship–bottle) and “bottle-around-the-ship”
(bottle–ship), and the additional two approaches are
“photo deposition” and “direct surface functionaliza-
tion” (Figure 2), which are deliberated in the following
section.

2.1 Ship–bottle

The ship–bottle approach (Figure 2) involves the immo-
bilization of small molecules or QDs precursors in the
pore windows of MOFs followed by further treatment to
attain the desired structure. Various methodologies, such
as vapor deposition, solution infiltration, and solid-state
grinding, have been employed to introduce QD precursors
into MOFs, although precisely controlling the location,
content, structure, and morphology of the incorporated
guests is sometimes quite challenging. Based on the synth-
esis condition, the ship–bottle technique is further cate-
gorized into three types including “solution infiltration,”
“chemical vapor infiltration,” and “double solution
method.” In this context, Gao et al. [107] employed the
abovementioned strategies and developed CdS QDs encap-
sulated in NH2-MIL-125 through two steps, including the
addition of NH2-MIL-125 to TiO2 solution to acquire NH2-
MIL-125@TiO2 and further inclusion of CdS QDs solution
to as-synthesized solubilized NH2-MIL-125@TiO2 to form

1948  Lopamudra Giri et al.



CdS/NH2-MIL-125@TiO2 (Figure 3a). Similarly, Gao et al.
[108] prepared a SnO2@ZIF-8 composite by the immersion

of ZIF-8 into the SnO2 QD precursors followed by the addi-
tion of hydrogen peroxide. Furthermore, Zhang et al. [109]

Figure 1: (a) The number of journal articles published on QDs@MOF (source: ISI Web of Knowledge, 2010s to 2021); (b) the outline depicts
recent advances in the creation of several QDs@MOFs.
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Table 1: List of documented QDs@MOF, including the type of QDs and MOF, utilized their preparative methods and their potential
applications in various fields

Sr. no. MOF QDs Method Application Ref.

1 Eu-MOFs CDs Bottle–ship Cr(VI) detection Sensing [124]
2 MIL-125(Ti) Ag2S/CdS/CuS QDs Photochemical

deposition
Cr(VI) reduction [114]

3 MIL-53(Fe) CDs Ship–bottle Cr(VI) reduction [133]
4 ZIF-8 CDs/AuNCs Ship–bottle Hg(II) detection [134]
5 Eu-MOFs CDs Bottle–ship Hg(II) detection [135]
6 Eu-MOFs N-doped CDs Bottle–ship Ag+ detection [136]
7 ZIF-8 CDs Bottle–ship Cu2+ detection [137]
8 UiO-66-NH2 CDs Bottle–ship Cu2+ detection [138]
9 ZIF-67 Polyethylene glycol (PEG)-

capped ZnS QDs
Bottle–ship Cu2+ detection [139]

10 ZIF-8 CDs Ship–bottle Fe3+ detection [140]
11 ZIF-8 Nitrogen-doped graphene

QDs (N-GQDs)
Ship–bottle Fe3+ detection [141]

12 Zn-MOFs CDs Ship–bottle Cu2+ and Fe3+ detection [142]
13 UIO-66-NH2 CDs Ship–bottle Cu2+ and quinalphos detection [138]
14 MOF‑5 CH3NH3PbBr3 QDs Ship–bottle Heavy metal ion detection [143]
15 In-MOFs CDs Bottle–ship Moisture and water detection in

organics
[144]

16 ZIF-365 CdTe QDs Ship–bottle L-Histidine and Cu2+ detection [125]
17 ZIF-8 CDs Bottle–ship Dopamine detection [126]
18 ZIF-8 Mn:ZnS Sol–gel Chlorpyrifos detection [145]
19 UiO-66 Amine-functionalized

carbon QDs
Ship–bottle 4-Nitrophenol detection [128]

20 HKUST-1 CDs Bottle–ship Catechol detection [127]
21 IRMOF-3 Nitrogen-doped CDs Ship–bottle Trinitrotoluene detection [146]
22 MOF-76 CDs Ship–bottle 2,6-Pyridinedicarboxylic acid

detection
[147]

23 MIL-101(Cr) GQDs Ship–bottle Benzene and toluene detection [148]
24 Cu-MOFs Carbon nitride QDs Ship–bottle Isoniazid detection [149]
25 IRMOF-3 N-GQDs Bottle–ship Procalcitonin detection [150]
26 ZIF-8 B-CDs/P-CDs Ship–bottle Triticonazole detection [151]
27 MOF-5 CdS QDs Bottle–ship Cardiac troponin I detection [152]
28 Fe(III)-MIL-

88B-NH2

ZnSe QDs Bottle–ship Antigen detection [112]

29 MIL-100(Fe) BNQDs Ship–bottle Antibiotics removal [153]
30 MIL-101(Fe) CDs Ship–bottle 6-Mercaptopurine detection [154]
31 ZIF-8 CdTe QDs Bottle–ship Oxidase activities detection [155]
32 UiO-66-NH2 BPQDs Template-assisted

method
Uranium extraction [106]

33 Zn-MOFs Graphitic carbon nitrides QDs Ship–bottle Riboflavin detection [156]
34 Zr-MOF CdTe QDs Ship–bottle Ascorbic acid detection [157]
35 ZIF-8 CDs Ship–bottle Ascorbic acid and ascorbate

oxidase detection
[158]

36 Zr-MOFs GQDs Bottle–ship Aflatoxins detection [159]
37 MIL-101(Cr) CdSe QDs Ship–bottle Alpha-fetoprotein detection [160]
38 ZIF-8 CDs Ship–bottle Quercetin detection [161]
39 Fe-BDC N, S-GQDs Drop casting Histamine detection [162]
40 Tb-MOF

(MOF-76)
Boric acid-modified CDs Ship–bottle 2,6-Pyridinedicarboxylic acid

detection
[147]

41 MIL-53 CDs Ship–bottle Diaminotoluene detection [163]
42 MIL-101-SO3H Amino-CQDs Ship–bottle 2,4-Dinitrophenol detection [164]
43 ZIF-8 CdTe QDs Bottle–ship NO detection [165]
44 UiO-66-

(COOH)2
CDs Ship–bottle Temperature sensing [166]

(Continued)
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Table 1: Continued

Sr. no. MOF QDs Method Application Ref.

45 Eu-MOFs N,S-CDs Bottle–ship Detection of water in organic
solvents

[167]

46 UiO-66-NH2 CDs Ship–bottle Water treatment membranes [168]
47 ZIF-8 GQDs Ship–bottle Removal of malachite green [55]
48 Ru-MOFs CdS QDs Drop casting Electrochemiluminescence

sensor
[120]

49 MIL-100(Fe) CdS QDs In situ consecutive
chemical bath
deposition

Degradation of bisphenol [169]

50 MIL-53 Carboxymethylcellulose/
graphene QDs matrix

Bottle–ship Anticancer drug carrier Bio-medical [170]

51 MIL-68(In) Zn-Ag-In-S QDs Bottle–ship Screening of anticancer drug
activity

[171]

52 MIL-101-NH2 BPQDs Ship–bottle Photothermal therapy [131]
53 ZIF-8 GQDs Bottle–ship Chemo- and photothermal

therapy
[132]

54 ZIF-8 CDs Bottle–ship Drug delivery [129]
55 ZIF-8 DOX-MIPs Bottle–ship Drug delivery [130]
56 IRMOF-3 CDs Bottle–ship Drug delivery [172]
57 UiO-66-NH2 CDs Ship–bottle Bio-imaging [173]
58 ZIF-8 CdS QDs Bottle–ship Bio-imaging [174]
59 ZIF-8 CDs Ship–bottle Drug delivery [175]
60 UiO-66-NH2 CDs Bottle–ship Drug delivery [176]
61 ZIF-8 CDs Bottle–ship Photodynamic therapy [177]
62 ZIF-8 CDs Bottle–ship Monitoring of cell apoptosis [178]
63 [Zn(HCOO)3]

[C2H8N],
Nitrogen-doped CDs (N-CQDs) Physical fusion Antimicrobial activity [179]

64 Cu-ZIF-8 CDs Bottle–ship Peroxidase mimics for
assaying GSH

[99]

65 PCN-224(Ni) CdS QDs Ship–bottle Hydrogen evolution Catalysis [180]
66 UiO-66

(UiOS-Cu)
CdS/ZnS QDs Ship–bottle Hydrogen evolution [181]

67 PCN-222 and
PCN-221

Pt/C QDs Ship–bottle Hydrogen evolution [182]

68 UiO-66-(SH)2 CdS QDs Ship–bottle Hydrogen evolution [183]
69 MIL-101 CdS, CDs Ship–bottle Hydrogen evolution [110]
70 NU-1000 CdS QDs Photo deposition Hydrogen evolution [86]
71 UIO-66-NH2 MoS2 QDs Direct deposition Hydrogen evolution [184]
72 La-MOFs CdSe QDs Direct surface

functionalization
Hydrogen evolution [185]

73 MIL-100(Fe) GQDs Ship–bottle CO2 reduction [186]
74 Zn-Bim-His GQDs Ship–bottle CO2 reduction [187]
75 MIL-125(Ti) g-C3N4/CuO Ship–bottle CO2 reduction [188]
76 ZIF-8/ZIF-67 CsPbBr3 QDs Bottle–ship CO2 reduction [189]
77 UIO-66(NH2) CsPbBr3 QDs Ship–bottle CO2 reduction [74]
78 PCN-221(Fe) MAPbI3 QDs Ship–bottle CO2 reduction [190]
79 Ni-MOFs Ti3C2 QDs Bottle–ship Nitrogen reduction [191]
80 Zn/Co

bimetallic ZIF
Co QDs Pyrolysis Oxygen reduction reaction [192]

81 CoNi-
bimetallic
MOF

Ag QDs Ship–bottle Oxygen reduction reaction [97]

82 Ni-MOFs CDs Bottle–ship Oxygen evolution reaction [193]
83 Fe-MOFs Pt (1 1 1) Bottle–ship Electrocatalyst for water

splitting
[59]

(Continued)
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used a thermal injection to combine UiO-67 and CsPbX3

QDs precursors to generate CsPbX3@UiO-67 at high tem-
peratures (Figure 3b). A double-solvent technique has

been successfully devised to avoid QDs’ aggregation on
the exterior surface of MOFs. By using this technique,
QDs precursors, which have smaller sizes than MOF pores,

Table 1: Continued

Sr. no. MOF QDs Method Application Ref.

84 UiO-66-NH2 GQDs Spray coating Photocatalyst [194]
85 UiO-66-NH2 GQDs Ship–bottle Photocatalyst [105]
86 ZIF-8 CDs Simple dispersion Photocatalyst [195]
87 ZIF-8 CdS QDs Ship–bottle Photocatalyst [196]
88 MIL-125-NH2 CdS QDs Ship–bottle Photocatalyst [107]
89 In-MIL-68 BiO QDs Ship–bottle Photocatalyst [197]
90 PCN-333(Fe) CsPbBr3 QDs Ship–bottle Photocatalyst [75]
91 NH2-UiO-66 Cs3Bi2I9 QDs Ship–bottle Photocatalyst [77]
92 UiO-66 S,N GQDs Ship–bottle Photocatalyst [198]
93 NH2-MIL-

125(Ti)
CDs Ship–bottle Photocatalyst [199]

94 MIL-101(Cr) SnO2 Ship–bottle Photocatalyst [200]
95 ZIF-

8@MIL-68(In)
ZnO QDs Calcination Photocatalyst [201]

96 Eu-MOFs CdTe QDs Direct surface
functionalization

Dye disintegration (Rh 6G) [202]

97 NTU-9 CdTe QDs Bottle–ship Dye disintegration (Rh 6G) [203]
98 UIO-66 CdSe QDs Ship–bottle Dye disintegration (RhB) [204]
99 MIL-125 CdSe QDs Physical fusion Dye disintegration (RhB) [119]
100 MIL-125- NH2 CDs Ship–bottle Dye disintegration (RhB) [205]
101 MIL-100(Fe) N-TiO2 QDs Physical fusion Dye disintegration (MB/RhB) [206]
102 Fe-MOFs CdSe QDs Bottle–ship Degradation of RhB [207]
103 ZIF-8 NDCQDs Ship–bottle Degradation of methylene blue [208]
104 Eu-MOFs CdTe QDs Bottle–ship Solar cell Energy

storage
[111]

105 Ni-MOFs Co9S8 QDs Intercalation Supercapacitor [118]
106 ZIF-8 ZnO QDs Co-electrospinning

followed by
carbonization

Supercapacitor [209]

107 ZIF-8 Nb2O5 QDs Carbonization
followed by
hydrothermal
treatment

Supercapacitor [210]

108 ZIF-8 GQDs Bottle–ship Lithium-ion battery [211]
109 ZIF-8 ZnO QDs Physical fusion Lithium-ion battery [212]
110 UiO-66 SnOx QDs Ship–bottle Lithium-ion battery [213]
112 MOF-5 Ag2S QDs Physical fusion Lithium-ion battery [214]
113 Mo-MOFs MoSe2-MoO3 QDs Thermal induction Sodium-ion battery [215]
114 ZIF-8 VN QDs Ship–bottle Li–S batteries [104]
115 ZIF-8 CDs Bottle–ship Light-emitting diodes Opto-

electronics
[216]

116 Zr-MOFs CDs Physical fusion with a
binding agent

Light-emitting diodes [123]

117 Cd-MOFs CdTe QDs Direct surface
functionalization

Light-emitting diodes [117]

118 ZIF-8 CdSexS1−x/ZnS QDs Ship–bottle Light-emitting diodes [217]
119 ZIF-8 CsPbX3 QDs Ship–bottle Light-emitting diodes [101]
120 EuW-MOFs CDs Bottle–ship Multiluminescent materials [218]
121 IRMOF-3 CdSe/CdS/ZnS QDs Physical fusion Photoluminescence [219]
122 Cu-MOFs Cu2SnS3 QDs Bi-sacrificial

templates
Nonlinear optics [220]
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passed into the hydrophilic cavities of MOFs via capillary
action and hydrophilic contact, thus reducing the amount
of QDs deposited on the exterior part of MOF. In this con-
text, Meng and colleagues [110] used a twofold solution
approach whereby a small amount of glucose (G) and CdS
QD precursor solution were co-infiltrated into the cavity of
MIL-101, which resulted in the formation of G/CdS@MIL-
101, further subjected to calcination at 200°C to obtain the
ultimate product carbon nanodots (CDs)/CdS@MIL-101.

It is worth noting that ship–bottle preparation proce-
dures frequently rely on very extreme reaction conditions,
such as elevated temperature and redox state, which might
result in local network deterioration. This could also reduce
the surface area of theMOFmatrix, thus having a significant
influence on applications that need porosity. However, the
most significant advantage of this technology is to enable
the creation of conformal MOF layers around QDs, which is
a unique and demanding operation.

2.2 Bottle–ship

The bottle–ship strategy (Figure 2) is commonly known
as the model synthesis methodology for QDs@MOF pre-
paration. Following this method, QDs are initially pro-
duced and spread in a solvent-based stabilizer, such as
a surfactant, to avoid agglomeration. Following that,
MOF precursors are added to the solvent, which initiates

MOF development around the QDs. During this process,
organic linkages form divalent connections with capping
moieties on the surface of the QDs. In this context, to
develop a CdTe/Eu-MOF composite, Kaur et al. [111]
employed CdTe QDs capped with cysteamine that were
introduced to the Eu-MOF precursor solution, resulting
in an ordered distribution of CdTe QDs in the Eu-MOF
environment due to the interaction between the –COOH
moieties of Eu-MOF and the –NH2 groups on the exterior
section of the CdTe QDs. Similarly, Mo et al. [112] followed
the same methodology and prepared Fe(III)-MIL-88B-
NH2@ZnSeQDs for antigen detection where the solution
of a MOF precursor and ZnSe QDs were heated at 100°C
(for 20 h) in a Teflon-lined reactor. The ultimate desired
compound was obtained by subsequent cooling followed
by centrifugation (Figure 3c). Furthermore, Wang et al.
[113] employed a capped polyvinyl pyrrolidone agent,
which not only maintained the firmness and distribution
of the particles but also stimulated the formation of ZIF-8
on the surface, thus establishing an intimate heteroge-
neous assembly between them. Importantly, this method
successfully lowers the quantity of the QDs accumulated
on the exterior part of the MOFs by avoiding the diffusion
impedance of the nanoparticles infiltrating into the environ-
ment of the MOFs. Furthermore, because nanoparticles may
be agglomerated prior to the assembly of frameworks, the
shape and dimension of QDs can be tailored for specific
applications.

Figure 2: Schematic representation of various approaches deployed for the preparation of QDs@MOF.
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Unlike the ship–bottle and bottle–ship techniques,
in which QDs were embedded in MOFs, the “photoche-
mical-deposition” technique (Figure 2) involves depos-
iting QDs on the exterior part of MOFs.

2.3 Photochemical deposition

The in situ synthesis and admission of QD particles into
the exterior part of a MOF is aided by light in this
method; photo-reduction of metallic precursors with a
sufficient redox potential induces the production of QDs
on the MOF surface. Direct binding with an appropriate
linking group can be used to modify the surface area of

MOFs with QDs. Utilizing this approach, Wang’s group
[114] used UV light to create hybrid materials of MIL-
125(Ti) accumulated by CdS, CuS, and Ag2S QDs. The
mechanism of the photodeposition of MexSy on MIL-
125(Ti) is shown in Figure 3d. Similarly, Lin et al. [115]
prepared a three-component hybrid material denoted
as UiO-66/CdS/1% reduced graphene oxide, following
the above-described method, and acquired significant
results toward photocatalytic applications. The key draw-
backs of this technology include two critical procedures
to synthesize QD-MOF composites: first, it is the in situ
synthesis and distribution of QDs on the interface of
MOFs and, second, the adequate photoreduction potential
to convert QD precursors to QDs, which might be tough
at times.

Figure 3: (a) Graphical representation of the construction of CdS/NH2-MIL-125@TiO2 and corresponding SEM and TEM images [107]. (b)
Designed fabrication strategy for CsPbBr3@Uio-67 composite formulation and accompanying structural diagrams [109]. (c) Synthesis
scheme for CdS/NH2-MIL-125@TiO2 and antibody detection [112]. (d) Diagrammatic representation of the mechanism for photodeposition of
MexSy on MIL-125(Ti) [114]. (e) Illustrative representation of porphyrin-established MOFs with CdSe/ZnS core/shell QDs [116].
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2.4 Direct surface functionalization

Direct surface functionalization (Figure 2) is another
tactic to suspend QDs on the interface of MOFs. The sur-
face ligands of QDs are sequentially replaced with an
appropriate capping group, which can establish direct
interaction with MOF particles either by coordinative
interaction or by some nonspecific contacts. The primary
distinction between this strategy and the three preceding
ones is that both MOFs and QDs are pre-designed prior to
being assembled. Moreover, the key benefit of this type of
synthesis includes the easy regulation of the form and
size of QDs, as well as the construction of MOFs. To pre-
pare porphyrin-based MOFs, Jin et al. [116] followed the
abovementioned method and developed porphyrin-based
MOFs with CdSe/ZnS QDs where the amino-functionalized
QDs firmly adhered to the surface of the MOFs through
zinc metal (Figure 3e). Similarly, employing the same stra-
tegies, Mondal et al. [117] prepared an MOF-functionalized
cysteine-capped CdTe QDs, which functioned as a profi-
cient white light-emitting phosphor material for display
applications. In contrast to the previous three approaches,
in thismethod, MOFs and QDs are pre-formed before being
assembled. This approach has the advantage of enabling
to control the shape and size of QDs as well as the mor-
phology of MOFs.

2.5 Other synthesis methodologies

In addition, some other methods, such as intercalation
[118], physical fusion [74,119] drop casting [120], and elec-
trochemical depositions [121,122], have been developed for
the preparation of QDs@MOF composites. The “physical
mixing” approach is more simple and may be divided into
two categories. The first one involves the use of physical
force binding to combine QDs with MOFs, and the second
one employs ultrasonic fusion. Utilizing the above-cited
methods, Wang et al. [123] fabricated white light-emitting
phosphor materials using carbon dots (CDs) and a Zr(IV)-
MOF by physical fusion with a binding agent. Another
extensively used technique is electrochemical deposition,
which involves dispersing QDs in an electrolyte and depos-
iting them on the interface of MOFs using an electric current.
Recently, Chen et al. [106] adopted a slightly different tactic
for the synthesis of UiO-66-NH2/black phosphorus QDs
(MOF/BPQDs). The in situ synthesis of the composite was
carried out on the carboxyl cellulose nanofiber (CNF) sur-
face, which served as nucleation centers due to the presence
of abundant carboxyl groups. The CNF aerogel shows high

structural adaptability and little MOF erosion in BP@CNF-
MOF, which demonstrates the reciprocal physical contact
and involvement of CNFs, along with excellent binding affi-
nities among MOF crystals and the CNF aerogel. According
to the aforementioned methodologies, the techniques of
embedding QDs within MOF matrixes are more effective
than seeding MOF crystals with QDs. Not only does the
encapsulation of QDs inside MOFs prevent QDs from cov-
ering MOFs, but it also inhibits QDs from clustering. In addi-
tion, after being encapsulated by MOFs, the robustness of
QDs increases.

3 Application of QDs@MOFs

As a new functional hybrid material, QDs@MOFs hold
greater stability, robust adsorption capacity, and unique
intriguing properties, which make them ideal candidates
for numerous applications. The applicability of QDs@MOFs
in different fields (Figure 4), such as sensing, bio-imaging,
energy generation, and energy storage, is detailed in this
section and the applications of these new fields of interest
are presented in Table 1.

3.1 Sensing

Sensors can help to improve the quality of life by aiding
in medical diagnosis, increasing the efficiency of renew-
able resources, such as fuel cells and batteries, photovol-
taics, pollution management, enhanced health, welfare,
and security for people. Recently, QDs@MOFs have been
considered attractive materials for fabricating different
fluorescence sensors due to their high quantum yields,
extended lives, outstanding photo-stability, and size-
dependent emission wavelengths.

3.1.1 Metal ion detection

With the industrial growth, a large number of metal ions,
for example, Pb2+, Fe3+, Cr2+, Cu2+, and Hg2+, have been
discharged into water, destroying the water environment
and posing a threat to human safety. As a result, the
advancement of an effective metal ion detection tech-
nology is a precondition for heavy metal pollution pre-
vention and management. Because of its high level of
sensitivity, low detection limit, strong selectivity, broad
detection array, quick response, decent anti-jamming cap-
ability, and simplicity of maneuver, metal ion detection
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using fluorescence-based QD biological sensors has recently
drawn a lot of attention. For instance, Chen et al. [114]
employed UiO-66-NH2/black phosphorus QDs (MOF/BPQDs)
adorned on the CNF aerogel for uranium extraction from
seawater (Figure 5a). The creation of a heterojunction
between BPQDs and UiO-66-NH2 displays outstanding
photocatalytic activity (Figure 5b), which efficiently kills
marine bacteria by releasing a huge amount of reactive
oxygen species. Similarly, to design a ratiometric fluores-
cence device for the recognition of Cr, Wang et al. [124]
rationally developed CDs@Eu-MOFs (Figure 5c). Surpris-
ingly, the synthesized CDs@Eu-MOFs outperform Cr(VI) in
terms of excellent selectivity (Figure 5d(i)) in the presence
of a wide range of metal ions (Na+, K+, Zn2+, Pb2+, NH4

+,
Mn2+, Mg2+, Fe2+, Co2+, Ca2+, Cu2+, Fe3+, Hg2+, Al3+ Cr2O7

2−)
with potentiometric detection of Cr(VI) under optimal cir-
cumstances, with a linear range of 2–100 µM and a low
detection limit (LOD) of 0.21 µM (Figure 5d(ii)).

3.1.2 Detection of biomolecules

Direct identification of biological systems, for example,
an enzyme or an antigen, by means of a QDs@MOF probe

should bemore inventive for biological intuiting applications.
Several studies have been conducted so far usingQDs@MOFs
for the detection of biomolecules. For example, Wang et al.
[125] developed a CdTe QDs@ZIF-365 as a bi-functional
ratiometric probe for highly subtle recognition of L-histi-
dine and Cu2+ by adopting the post-synthesis strategy
(Figure 6a). The experimental findings revealed that the
CdTe QDs@ZIF-365 can be employed as an outstanding
photo-luminescent probe for L-histidine and Cu2+ with a
steep Ksv (6.0507 × 108 [M−1] and 2.7417 × 107 [M−1]) value
and low detection (Figure 6a). Similarly, Xie et al. [126]
recently implemented LMOFs (luminous metal–organic
frameworks) -CDs@ZIF-8 by incorporating blue-emitting
CDs into ZIF-8 and employed it as a fluorescent sensor
for highly sensitive and discerning recognition of dopa-
mine (DA) (Figure 6b). The sustained pores in ZIF-8 not
only provide free space for analytes but they may also
selectively collect and intensify DA molecules through
interactions between the analyte DA and the functional
site of the framework. Furthermore, CDs can be used as
signal probes to convert chemical signals from CD-analyte
interactions into fluorescent signals. When compared to
CDs, the CDs@ZIF-8 creates a novel sensing platform. As
a result, the CDs@ZIF-8-based recognition technique for

Figure 4: A schematic representation of QDs@MOF for various captivating applications.
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DA was shown to have a large concentration dynamic
(0.1–200M) and an LOD of 16.64 nM (Figure 6b and c).
According to the findings, the produced QDs@MOF might
be ideal probes for detecting cell biological properties and
could be utilized as cell strength monitors and bio-probes.

3.1.3 Recognition of other entities

QDs@MOFs have been investigated for the recognition of
other materials. For example, Zhou et al. [127] developed
a robust ultra-sensitive electrochemiluminescence sensor

Figure 5: (a) Under light irradiation, uranium adsorption capacity and elution efficiency in six consecutive cycles. (b) A schematic repre-
sentation of the photocatalytic reduction of U(VI) utilizing MOF/BPQDs hybrid under solar-light irradiation [106]. (c) A schematic representation
of the photocatalytic reduction of U(VI) utilizing MOF/BPQDs hybrid under solar-light irradiation. (d) The CDs@Eu-MOFs fluorescence selec-
tivity spectra in the absence and presence of different metal ions [124].
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(CDs@HKUST-1) for the recognition of catechol. The
results revealed that the definite surface area of HKUST-1
on CDs might significantly increase the sensor’s sensi-
tivity. The as-synthesized sensor showed a varied linear
range of 5.0109–2.5105mol L−1 under ideal circumstances, with
an LOD of 3.8109mol L−1 (S/N = 3). Employing a post-synthetic
modification method, Yang et al. [128] discovered an amine-
CQDs@UiO-66 fluorescence probe by using amine-functiona-
lized carbonQDs (amine-CQDs) in combinationwithUiO-66. In

this investigation, UiO-66 was employed as an adsorbent to
selectively collect and augment the target compounds. Here,
the amine-CQDs were used as a template molecule to evaluate
the connection between UiO-66 and the target compounds in a
specific fashion and to subsequently convert these chemical
reactions into recognizable fluorescence signals. As a result,
QDs@MOFs provide a novel approach to creating hybrids
with synergistic characteristics, fluorescence, and excellent
durability for various sensing applications.

Figure 6: (a) The illustrative representation of fabrication of a CdTe QDs@ZIF-365 ratiometric fluorescence probe and its use for very delicate
recognition of L-histidine and Cu2+ [125]; (b) diagrammatic representation of detection of DA through a possible mechanism. (c) FL emission
bands of CDs@ZIF-8, with different DA concentrations [126].
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3.2 Biomedical

The unusual features (excellent biocompatibility, bioavail-
ability, and renewability) of QDs@MOFs have attracted a
lot of interest in the biomedical profession in recent years
because, among other applications, they can be used for
real-time tissue imaging (bioimaging), diagnostics, single-
molecule probes, and medication administration. Herein,
we have concentrated on two major biomedical applica-
tions: bioimaging and photothermal therapy.

3.2.1 Bioimaging

Bioimaging is a useful research strategy in contemporary
biology and medicine that may quickly and easily offer
clear and understandable biological information. Several
investigations have shown that QDs@MOFs have great
bioimaging capabilities due to their PL characteristics.
For the first time, He et al. [129] used a straightforward
two-step technique to create CDs and ZIF-8-based nano-
composites. The coordination contacts between Zn2+ ions
and functional groups (–COOH/–N) on the CDs were rein-
forced to encase the CDs on the ZIF-8. The resulting
CDs@ZIF-8 showed green fluorescence as well as being
an excellent pH-receptive anti-cancer drug carrier and cell
imaging (Figure 7a and b). According to in vitro cell stu-
dies, it has been corroborated that the nanocomposites

exhibited excellent cyto-compatibility and could be endo-
cytosed through cells for cell imaging and drug admin-
istration (Figure 7c). Furthermore, Qin and coworkers
[130] recently developed a biodegradable nano-platform
of molecularly imprinted polymer (MIP)-alleviated fluores-
cent ZIF-8 loaded with doxorubicin (DOX), (FZIF-8/DOX-
MIPs) for drug delivery and imaging in a glutathione
(GSH)/pH multi-stimulation system (Figure 7d and e). It
is worth mentioning that CDs generate bright red fluores-
cence, allowing more precise tumor cell imaging. With
time, the fluorescent gesture of FZIF-8/DOX-MIPs grew
in the tumor location of mice. Furthermore, in an acidic
tumor environment, the biological degradation of ZIF-8
and MIPs was favorable for drug release.

3.2.2 Photothermal therapy

Photothermal treatment (PTT) using near-infrared (NIR)
light for tumor hyperthermia ablation has been inten-
sively explored in recent years and has sparked a lot of
interest. PTT has fewer adverse effects than standard
tumor treatment techniques because local heat may be
properly regulated in temporal and spatial lobes. MOFs
and other two-dimensional (2D) materials have recently
been investigated as photodynamic agents (PTAs) for PTT
applications in vitro and in vivo. When three-dimensional
(3D) MOFs are converted into 2D sheets, the resulting

Figure 7: (a) The picture of differential interference contrast. (b) Adopted 5-FU-encumbered C-dots@ZIF-8 with spot-like green fluorescence.
(c) Cytotoxicity toward Hela cells in vitro [129]. (d) FZIF-8/DOX-MIP production and GSH/pH route of twofold stimulation and decay. (e)
Graphical representation of tailored imaging and GSH/pH-receptive drug transport of FZIF-8/DOX-MIPs [130].
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MOF sheets may absorb a huge quantity of guest mole-
cules via a noncovalent contact. Nevertheless, the poor
photothermal renovation efficacy (PTCE) of 2D materials,
as well as their considerable dimensional size, limits their
practical application in PTT. As a result, there is a sig-
nificant need for ultra-small PTAs with immense PTCE to
attain a remarkable competence in photothermal tumor
therapy. QDs@MOFmaterials, on the other hand, provide
a suitable space for loading QDs and avoiding QD aggre-
gation due to their large specific surface area and ordered
pores. Furthermore, QDs help MOFs to acquire better
physicochemical properties. The close heterojunction
or interfacial contact between QDs and MOFs speeds
up the transfer of electrons and efficiently prevents the
recombination of photo-generated charges. In addition,
the developed QDs@MOFsmight be suitable PTAs because
of their outstanding NIR adsorption and biocompatibility
characteristics. For example, Liu et al. [131] employed an
MOF hybridized with black phosphorus QDs (BPQDS) as a
tandem catalyst to improve the treatment of hypoxic tumor
cells (Figure 8a). The integrated MOF system was able
to alter H2O2 to O2 in the MOF-alleviated catalase super-
ficial layer, and then, O2 was introduced unswervingly into
the MOF-sensitized BQ central, resulting in an excellent

quantum yield of singlet oxygen. Remarkably, without cat-
alase, the MOF system’s photodynamic treatment efficacy
was 8.7 times higher after internalization, indicating an
improved therapeutic impact besides hypoxic tumor cells
(Figure 8b).

These findings imply that QDs@MOFs will usher in a
new era of tumor PTT. Tian et al. [132] employed a very
simple one-pot technique to formulate a versatile mani-
festo for a symbiotic chemo- and photothermal therapy.
They utilized ZIF-8 as drug nanocarriers where the
implanted GQDs functioned as indigenous photothermal
kernels (Figure 8c). When DOX was exploited, a prototy-
pical anticancer drug, the findings revealed that the mono-
disperse ZIF-8/GQDs (size 500–1,000 Å) were able to
capture DOX throughout the manufacturing phase and
activate DOX discharge under acidic circumstances. The
DOX-loaded ZIF-8/GQDs were able to readily transform
NIR illumination into heat and, therefore, raise the tem-
perature. When breast cancer 4T1 cells were used as
a prototype biological system, the findings confirmed
that combining chemo-thermal treatment and PTT with
DOX-ZIF-8/GQDs had a substantial harmonious impact,
leading to greater performance in killing cancer cells
than the photothermal therapy and chemotherapy alone

Figure 8: (a) Stepwise construction of BQ-hybridized MOF catalyst and action toward hypoxic tumor cell treatment. (b) After being
inoculated with BQ-MIL@cat-fMIL, time-dependent in vivo fluorescence images of a mouse carrying a subcutaneous HeLa tumor and after
injection of BQ-MIL@cat-fMIL or BQ-MIL@fMIL in vivo fluorescence imaging evaluated the treatment upshot on mice malignant cells [131].
(c) Schematic representation of the development of ZIF-8/GQDs with the recapitulation of DOX. (d) After 8 h of incubation, cell viability
study of 4T1 cells with and without free DOX, ZIF-8/GQD, and DOX-ZIF-8/GQD suspensions and deprived of 3 min NIR radiation [132].
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(Figure 8d). As a result, ZIF-8/GQDs might be useful as
adaptable nanosystems in cancer treatment. These inves-
tigations revealed that QDs@MOFs have an extensive
range of applications in biological and medical fields
that are both benign and proficient.

3.3 Catalysis

Recently, tremendous progress has been achieved in the
improvement of MOF-based QD materials as high compe-
tence catalysts/co-catalysts in catalysis systems, including
GQDs, CDs, Se QDs, and Mxene QDs. In this context,
QDs@MOFs are considered a promising catalyst/co-cata-
lyst due to their tenability nature and robustness.

3.3.1 Electrocatalysis

Electrocatalysis is a highly advanced oxidation process
(AOP) that has been extensively investigated in energy
and conservational applications, such as the hydrogen
reduction reaction, nitrogen reduction reaction (NRR),
hydrogen evolution reaction (HER), methanol oxidation
reaction, oxygen reduction reaction (ORR), and oxygen
evolution reaction (OER). Among renewable-energy tech-
nologies, electrocatalytic applications are becoming highly
indispensable. As a result of their outstanding characteris-
tics, QDs@MOFs might play a significant part in the
electrocatalytic processes. Despite the fact that many
investigations have focused so far on the use of QDs in
electrocatalysis, exploration of QDs@MOFs in electroca-
talysis has just freshly come to the forefront. Zhou et al.
[180] tested a unique MOF catalyst, CdS@PCN-224(Ni),
and utilized it for HER in an acidic environment. The findings
revealed a prodigious electrocatalytic performance with a
Tafel slope of ∼91mV dec−1, an overpotential of 120mV,
and a current density of 10mA cm−2, which is nearly identical
to the Pt/C (∼43mV dec−1). CdS@PCN-224(Ni) has a double-
layer capacitance (Cdl) of 9.75mF cm−2, which is significantly
higher than PCN-224 (2.33 mF cm−2) (Figure 9a and b). Simi-
larly, fuel cells have been actively investigated among var-
ious energy conversion technologies because of their lower
pollution levels, superior energy transformation proficiency,
and fuel diversity. The oxygen reduction process, however, is
significantly limiting the overall reaction efficiency of the fuel
cells due to their essentially slow kinetics. In this context, Ye
et al. [192] reported a new and simple approach for manu-
facturing ZIF-derived Co–N–C ORR catalysts by carefully reg-
ulating the rate of crystallization of ZIFs. The experimental

evidence showed that in an alkaline medium, the Co–N–C
catalyst has a high ORR activity (E1/2 of 0.9 V), which can
compete with commercial Pt/C (E1/2 of 0.83 V) (Figure 9c
and d). Similarly, a bifunctional electrocatalyst was pre-
pared by Ye et al. [59] using a simple hydrothermal tech-
nique. Such highly permeable cuboids of Pt QDs@Fe-MOF
material demonstrated excellent electrocatalytic activity
toward HER, OER, and overall water splitting. Interest-
ingly, in 1M KOH, the electrocatalyst with exceptionally
low Pt QD content (1.85 µg cm−2) only required an over-
potential of 191 and 33mV, respectively, to achieve a cur-
rent density of 100 and 10mA cm−2. Furthermore, the Pt
QDs@Fe-MOF/NF (Ni foam) electrodes had exceptional
potency, delivering a current density of 10mA cm−2 at
1.47 V during at least 100 h of water splitting. These find-
ings suggest that QDs@MOFs show promising potential in
the realm of electrocatalysis; however, additional studies
are warranted.

3.3.2 Photocatalysis

Another proficient AOP, photocatalysis, has been exten-
sively investigated and seems extremely promising for
dealing with global energy and environmental concerns.
In this context, QDs@MOFs are viewed as potential visible-
light catalysts for assorted systems, namely photocatalytic
CO2 reduction, H2 production, H2 reduction, pollutant
degradation, and other applications in this domain. As
an example, Liu et al. [186] illustrated the integration of
GQDs on MIL-101(Fe) to create GQD/MIL-101(Fe)(G/M101)
by employing a one-step solvothermal technique. With the
use of MIL-101(Fe) and GQD sensitization, the photocatalytic
reduction efficiency of CO2 to generate CO could be consid-
erably improved. Experimental evidence revealed that the
rate of CO generation over G/M101-5% (224.71 μmol h−1 g−1)
is five times greater in comparison with MIL-101(Fe)
(46.2 μmol h−1 g−1) (Figure 10a and b). Furthermore, photo-
catalytic nitrogen fixation is regarded as a potential
strategy for obtaining high NH3 production, which is cri-
tical for human growth and industrial advancement.
Nevertheless, because of the inert nature of nitrogen, it
is important to investigate superior competence catalysts
for nitrogen reduction. In this context, Qin et al. [191] used
MXene QDs (Ti3C2-QDs) and a 2D nickel metalorganic fra-
mework (Ni-MOF), following a self-assembly approach, to
increase the photocatalytic proficiency of the N2 reduction
process. The optimum Ti3C2-QDs/Ni-MOF heterostructure pro-
duced a significant amount of ammonia (88.79μmolgcat

1− h−1)
(Figure 10c). These findings provide space for further applica-
tions of QDs@MOF in photocatalysis.
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3.3.3 Photoelectrocatalysis (PEC)

PEC is a potent technology that combines heterogeneous
photocatalysis with electrochemical methods. Extensive
research has been conducted so far on the use of
QDs@MOFs in PEC for water splitting. As a result of their
unique characteristics, QDs@MOFs may have great appli-
cation potential in PEC. Shi et al. [221] suggested that MOF-
derived TiO2 can be used to boost the productivity of a
TiO2-QDs established PEC system for hydrogen evolution.
When compared to conventional TiO2 films, an MOF-
impregnated TiO2 film stimulated by core–shell CdSe@CdS
QDs demonstrated a +42.1% increase in the PEC device
stability and a +47.6% increase in the PEC performance.
The inclusion of mixed rutile/anatase phases enhances the
performance by creating a promising band energy arrange-
ment for the dissociation of photogenerated charges. Even

though there are only a few studies on PECwith QDs@MOF-
based materials, this approach is intriguing and should be
given greater attention. These findings pave the way for
QDs@MOFs being used in photocatalysis in the future.

3.4 Energy storage

In this twenty-first decade, increasing energy consump-
tion, the depletion of fossil fuels, and growing concerns
about industrial pollution have stimulated the improve-
ment of eco-friendly technologies to create new alterna-
tive and renewable energy resources. In this context,
QDs@MOFs are regarded as viable catalytic systems for
energy storage devices because of their unique chemical,
physical, and electrical features.

Figure 9: (a) Overpotential of PCN-224, PCN-224(Ni), CdS@PCN-224, CdS@PCN-224(Ni), and Pt/C electrodes at the current density of
10 mA cm−3. (b) Tafel plots of PCN-224, PCN-224(Ni), CdS@PCN-224, CdS@PCN-224(Ni) and Pt/C [180]. (c) Illustrative representation
of the imitation process of UF Co–N–C. (d) ORR efficiency in O2-saturated environment 0.1 M KOH electrolyte [192].
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3.4.1 Batteries

With the advancement of science and technology, a great
deal of focus has been placed on creating next-generation
electrochemical energy storage technologies (a few exam-
ples are batteries, supercapacitors, solar cells, etc.). Because
of their environmental friendliness and great energy den-
sity, batteries are the most frequently investigated electro-
chemical energy storage devices.

QDs@MOF-basedmaterials have shown considerable
promise for battery applications in recent years due to
their better theoretical Li storage capacity, advantageous
electrical conductivity, truncated functional voltage range,
low dispersal fences for Li mobility, and outstanding
mechanical characteristics. For instance, Saroha et al.
[104] recently prepared multilayer porous N-doped C nano-
fibers encompassing vanadium nitride QDs and MOF-based
hollow N-doped C nanocages for improved lithium–sulfur
batteries as functional interlayers. The experimental find-
ings revealed that because of the high sulfur concentration
(80wt%) and loading (ca. 4mg cm−2) in the sulfur elec-
trodes, the Li–S cell utilizing the novel nanostructured
self-supporting interlayer displayed better rate proficiency
and steady cycling recital (decay rate of 0.02%/cycle at
0.5 C). Interestingly, after 100 cycles of charging and dis-
charging at 0.05 C, the Li–S cell provided a steady areal

capacity of 5.0mAh cm−2 despite an ultra-high sulfur
loading of 11.0mg cm−2 (Figure 11a–c). Zhang et al. [222]
prepared ZIF-8/graphene oxide hybrids as anodematerials
for sodium-ion batteries. The capacity of the synthesized
material was quite stable at 539mA h g−1 at 100mA g−1,
512 mA h g−1 at 200mA g−1, and 456mA h g−1 at 500mA g−1

after 100 cycles. After 300 cycles, upon raising the current
density to 1 A g−1, the capacity still attained 362mA g−1

(Figure 11d). This investigation revealed that QDs@MOF-
based materials have the potential for developing high-
performance electrode material in batteries.

3.4.2 Supercapacitors

A supercapacitor, like batteries, is an imperative energy
storage equipment that has the potential to be used in
electric vehicles and other portable devices because of its
extraordinary power density, firm charging/discharging
capabilities, and extended life cycle. Due to their struc-
tural flexibility, excellent electrical conductivity, hydro-
philic surface, and high surface area, QDs@MOFs have
been extensively researched. These intriguing features
may result in ultra-high volumetric capacitance as they
provide quick electron transfer pathways and a huge elec-
trochemically energetic surface for a quick and reversible

Figure 10: (a) Schematic representation for visible light-assisted reduction of CO2 over G/M101 nanocomposite. (b) Photocatalytic CO
production by GQDs/MIL-101(Fe) [186]. (c) Diagrammatic representation of energy band positions, localized charge separation, and
movement through the photocatalytic N2 reduction over Ti3C2-QDs/Ni-MOF [191].
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faradaic reaction. Yang et al. [118] reported in situ forma-
tions of Co9S8 QDs in the interlayer of MOF-derived layered
double hydroxide (LDH) nanoarrays for supercharged
amalgamated supercapacitors. Remarkably, the selec-
tively produced Co9S8-QDs displayed numerous active
sites that enhanced the electrochemical characteristics,
such as cyclic stability, capacitive performance, and
electrical conductivity. Because of the mutually benefi-
cial partnership, the composite material distributed an
extremely high electrochemical capacity of 350.6mA h g−1

(2,504 F g−1) at 1 A g−1. Moreover, blended supercapacitors
produced with CF@NiCoZn-LDH/Co9S8-QDs and carbon
nanosheets, enhanced by single-walled carbon nanotubes,
had a remarkable energy density of 56.4Wh kg−1 at a power
density of 875Wkg−1, with a capacity retention of 95.3%
after 8,000 charging and discharging cycles. (Figure 12a and b).
Similarly, Liu et al. [210] prepared a hybrid material, NQD-
NC, made up of Nb2O5 QDs implemented on nitrogen-
doped porous carbon imitative from ZIF-8 dodecahedrons,
which showed excellent electrochemical enactment including
ultrahigh energy and power density (76.9W h kg−1 and
11,250W kg−1, respectively) and longer cyclic firmness
after 4,500 cycles with the retaining capacity of ∼85% at

5 A g−1 in a voltage range of 0.5–3.0 V (Figure 12c and d). In
this investigation, QDs@MOFs were shown to be potential
options for developing extraordinary recital supercapa-
citor devices.

3.5 Optoelectronic devices

The core and most fundamental component of optoelec-
tronic technology is optoelectronic devices, and as the
technology advances, a wide range of optoelectronics,
such as optical switches, white light-emitting diodes
(W-LEDs), solar cells, and lasers, are developed. In the
limited range of visible light, MOFs are recognized as
excellent luminous materials, whereas QDs are considered
a suitable candidate for the preparation of white light-emitting
devices due to their broad absorption range, high extinction
coefficient, andhigh quantumyield.ManyMOF-imitativeQDs,
such as GQDs, CQDs, perovskite QDs, and Mxene QDs, have
recently been demonstrated to have exceptional electron
donors and acceptors in their photoexcited states, making
them interesting for deployment in optoelectronics. For
example, Wang et al. [123] developed, by combining CDs

Figure 11: (a) Schematic illustration for the construction mechanism of N-CNF@VN/HNC. (b) Charge–discharge voltage profiles of
(N-CNF@VN/HNC) at 0.05 C. (c) Rate capability analysis of (N-CNF@VN/HNC) at different C-rates [104]. (d) Galvanostatic charge/discharge
profile (current density of 100mA g−1) [222].
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with Zr(IV)-MOFs, a novel rare-earth free material that emits
white light when excited at 365 nm, with a PL quantum
yield of 37% in the solid state (Figure 13a). A CIE chroma-
ticity coordinate of (0.31, 0.34) (Figure 13b and c), a lumi-
nous efficiency of 1.7 lm W−1, and a high color-rendering
index (CRI) of 82 were achieved by dropping the CDs/Zr-
MOF on a marketable UV LED chip.

Ren et al. [76] employed a novel technique for solving
the stability issues of CsPbX3 perovskite QDs by implanting
CsPbX3 perovskite QDs into mesoporous MOF-5 crystals
(Figure 13d). It has been observed that the CsPbX3/MOF
composites have enhanced stability while keeping their
excellent optical characteristics intact. The experimental
findings revealed that, under 200mA, CsPbX3/MOF-5 W-
LED produced hot white light and the PL maximum was
in agreement with the PL bands of the corresponding
CsPbX3/MOF-5 (Figure 13e). From the CRI value (83) and
luminous efficiency (21.6 lm W−1), it has demonstrated the
excellent efficacy of CsPbX3/MOF-5 W-LED whereas the
CIE color coordinate triangle of the CsPbX3/MOF5 W-LED

comprehends 124% of the National Television System
Committee standard (Figure 13f).

3.6 Other applications

In addition to the aforementioned uses, QDs@MOFs have
shown high potential for other promising applications
thanks to their exceptional characteristics. Biodegradable
drug delivery transporters with long-term drug release
properties are useful in cancer therapy because they help
to reduce some of the adverse effects. In this context,
Pooresmaeil et al. [170] developed a simple technique for
fabricating MOFs inside a carboxymethylcellulose (CMC)/
GQD matrix, which is utilized for anticancer drugs. The
findings revealed that the MIL-53@CMC/GQDs may be
offered as a viable drug delivery vehicle. Furthermore, it
was observed that MIL-53@CMC/GQDs have greater DOX-
loading capacity than MIL-53, as demonstrated by the

Figure 12: (a) Galvanostatic charge–discharge curves of NixCo3–xZn-LDH and CF@NiCoZn-LDH/Co9S8-QDs (current density of 5 A g−1).
(b) The specific capacity and capacity retention rate of CF@NiCoZn-LDH/Co9S8-QDs (current densities of 1–20 A g−1) [118]. (c) AC/NQDs-NC
HSC charge–discharge profiles (potential range of 0.5–3.0 V) at various current densities (0.2–5 A g−1. (d) Cycle performance of NQDs-NC
HSC for around 4,500 cycles (current density of 5 A g−1) [210].
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Figure 13: (a) Schematic representation of the construction of CDs/Zr-MOF. (b) Down-conversion WLED emission spectrum based on CDs/Zr-
MOF coated on a 365 nm InGaN LED chip. (c) CIE chromaticity coordinates of (0.20, 0.22), (0.46, 0.47), and (0.31, 0.34) for the CDs LEDs, Zr-
MOFs LEDs, and CDs/Zr-MOF WLEDs, respectively [123]. (d) Synthesis scheme of CsPbX3/MOF-5 composites. (e) PL spectrum of CsPbX3/
MOF-5 WLED. (f) The CIE color coordinate triangle of CsPbBr3/MOF-5 (green), CsPbBr0.6I2.4/MOF-5 (red), and InGaN (blue) correlated with
the National Television System Committee standard (white line) [76].
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pH-dependent DOX release behavior in drug release tests,
showing meticulous release actions in vitro, which is in
good agreement with the first-order kinetic model and
the non-Fickian mechanism. The cytocompatibility of
MIL-53@CMC/GQDs against the human cancerous cell
lines was confirmed using a cytotoxic test (MDA-MB
231). Furthermore, by following a step-by-step bisacrifi-
cial template scheme, Zhu et al. [220] were the first to
report a bimetallic sulfide QDs, Cu2SnS3 (CTS)-involved
MOF nanosheets, CuBDC (BDC = 1,4-benzenedicarboxy-
late). According to a Z-scan investigation conducted under
the illumination of a 532 nm laser, the CTS@CuBDC film
exhibited significant optical limiting (OL) performance and
precise truncated OL thresholds (0.92 J cm2), along with
high third-order nonlinear susceptibility (1.9 × 10−6 esu).
This research shows that the new methodical approach
(bisacrificial templates) to producing metal sulfide QD-dis-
tributed MOF hybrid composites is interesting and prac-
tical and might be a good option for nonlinear optical
applications.

4 Conclusions and prospects

In this article, we have presented a comprehensive over-
view of advancements in QDs@MOF hybrids, covering
synthetic techniques, structures, and applications. The
produced QDs@MOF hybrid demonstrated improved sta-
bility as well as novel characteristics and application
potential. Recently, QDs@MOFs have gained popularity
because of their remarkable physicochemical and optical–
electrical characteristics and are therefore considered
a cutting-edge branch of materials. Various methodolo-
gies have been adopted by which QDs@MOFs endowed
with a diversity of exclusive properties, such as excep-
tional PL characteristics, high selectivity to target analytes,
or biocompatibility, can now be prepared. Furthermore,
QDs@MOFs may be employed in a broader range of appli-
cations, including catalysis, sensing, bioimaging, optoe-
lectronics, and batteries. Despite these amazing results, a

number of obstacles illustrated in Figure 14 must be
addressed to encourage further progress in this field.
1) The most straightforward way to adjust the character-

istics of QDs@MOFs to specific applications is using
the appropriate synthesis process. Many investigations
have revealed that QDs@MOFs can be synthesized via a
variety of methods. The ship–bottle/bottle–ship techni-
ques are the most frequent in QDs@MOF synthesis,
whereas photochemical decomposition/direct sur-
face functionalization has received less attention. As
a result, it is worthwhile to put more effort into
QDs@MOF synthesis.

2) Controlling the morphology and surface properties of
QDs@MOFs remains a daunting task. As a result,
various experimental parameters, such as tempera-
ture, reaction duration, solvent impact, and reaction
device, should be used more thoroughly to identify
the growth mode. This can result in an MOF-based
hybrid QD material with better morphologies and
surface functionalization.

3) This field is still in its infancy and may not be appro-
priate for industrial manufacturing on a large scale.
As a result, novel synthetic methodologies must be
developed that will be not only cost-effective in terms
of laboratory research but also suitable for massive
commercial applications.

4) Many studies have shown that QDs@MOFs exhibit
outstanding fluorescence behavior, photonic, photo-
thermal transformation, and photoelectronic char-
acteristics in tests. Even though these features of
QDs@MOFs have been already demonstrated, there
are still challenges to address. Right away, attention
should be focused more on improving their current
qualities and expanding these properties to other
study domains. In this context, the combination of
theoretical models and actual experiments will lead
to successfully investigating novel QDs@MOFs with
new and better properties.

5) Based on the categories of QDs@MOFs, it has been
observed that most works were conducted employing
CdS, CdSe, CdTe, GQDs, etc., meaning that other QD
materials should be paid greater attention to. MXene
QDs, for example, have attractive features and have
shown to be useful in energy production, catalysis,
and sensing owing to extremely sensitive surface ter-
minations. As a result, MXene QDs@MOF advance-
ment is extremely desirable.

6) The majority of MOF hybrid QD materials addressed
thus far were made of MOFs and single-QD materials.
As a result, numerous different materials or MOFs

Figure 14: QDs@MOF: challenges and opportunities.
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coupled with some other MOFs deserve further
investigation.

7) Although a great deal of research has been done on
QDs@MOF materials due to their versatile nature,
their application is still a long way off. Solar cells,
for example, are an important part of the solution
to the worldwide energy crisis. Up to date, many
resources have been investigated in the field of solar
cells; nonetheless, certain drawbacks, such as short
service life, low energy efficiency, or higher cost,
have severely hampered their practical applicability.
In the meantime, numerous studies have shown that
QD-based materials are promising prospects for solar
cell applications. Therefore, it is worth putting extra
effort into investigating the use of QDs@MOFs in solar
cells.

8) Furthermore, diverse hybridized QDs@MOFs enable
a wide range of electrochemical applications, whereas
studies related to NRR are rarely conducted.

9) Importantly, more research into the applicability of
QDs@MOF-based immunosensing is required. Since
there has been some research on bio(sensing)-based
QDs@MOFs, more methodologies and unique proto-
cols for the identification of cell cultures and cancer
biomarkers should be developed.

10) The relevance of hybrid materials for applications
requiring NLO characteristics, upconversion, and lasing
has already been emphasized by the available results.
Nevertheless, this is still a relatively new and devel-
oping field of study, and factors impacting, e.g., the
higher-order nonlinear optical features of QDs@MOF
materials should be analyzed in an unswerving manner.

11) Currently, the preparation of perovskite-based MOF
hybrid materials is a hot topic due to their various
intriguing applications [223,224], but the eco-toxicity
of heavy metal ions is a key problem for lead perovs-
kites. As a result, additional effort must be invested in
the future in investigating and developing novel non-
toxic and environmentally acceptable materials for
the perovskite@MOF composite.

In general, we have presented some of the most
recent research findings of QDs@MOF. This study aims
to provide in-depth knowledge about the variety of synth-
esis, characteristics, and uses of QDs@MOF, alongside sti-
mulating future research into these new and fascinating
domains. Despite the significant accomplishments, there
are still some basic and technological gaps and obstacles
in this area and, therefore, considerable effort should be put
into the exploration of novel preparation techniques, phy-
sicochemical characteristics, and prospective applications.

The abovementioned concerns must be addressed to sti-
mulate continued progress in the synthesis and imple-
mentation of new QDs@MOF hybrids, which will have a
substantial influence on chemistry, material science,
and a broad range of applications.
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