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a b s t r a c t

This article introduces a version of the Self-Organizing Migrating Algorithm with a narrowing search
space strategy named iSOMA. Compared to the previous two versions, SOMA T3A and Pareto that
ranked 3rd and 5th respectively in the IEEE CEC (Congress on Evolutionary Computation) 2019 com-
petition, the iSOMA is equipped with more advanced features with notable improvements including
applying jumps in the order, immediate update, narrowing the search space instead of searching on the
intersecting edges of hyperplanes, and the partial replacement of individuals in the population when
the global best improved no further. Moreover, the proposed algorithm is organized into processes
named initialization, self-organizing, migrating, and replacement. We tested the performance of this
new version by using three benchmark test suites of IEEE CEC 2013, 2015, and 2017, which, together
contain a total of 73 functions. Not only is it superior in performance to other SOMAs, but iSOMA
also yields promising results against the representatives of well-known algorithmic families such as
Differential Evolution and Particle Swarm Optimization. Moreover, we demonstrate the application of
iSOMA for path planning of a drone, while avoiding static obstacles and catching the target.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the continuous development of science and technology,
any practical problems arise challenging and most of them
an be transformed into optimization problems [1]. The Swarm
ntelligence (SI) is one of the most effective and well-attended
ethods to find the global optimal solution to such problems,
uch as Differential Evolution (DE) [2,3], Artificial Bee Colony
ABC) [4,5], Particle Swarm Optimization (PSO) [6,7], and Self-
rganizing Migrating Algorithm (SOMA) [8,9] that is a subject of
he reported research here.

Proposed in the 2000s, SOMA,1 a representative of the SI, is
population-based optimization algorithm, which mimics the

ompetition–cooperation behavior among individuals in the pop-
lation of creatures to find the optimal solution. Over many
igration loops, the initial candidate solutions are optimized,
aking these solutions better and better over time. With a
on-gradient-based mechanism and flexibility property, i.e., solv-
ng complex functions without using complex math equations,
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1 http://somaalgorithm.com/.
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568-4946/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
SOMA demonstrates its outstanding performance and is applied
in many different fields such as the reliability–redundancy alloca-
tion problem [10], StarCraft: Brood War — computer games [11,
12], and drive robots to avoid dynamics obstacles [13,14].

On the one hand, real-world problems are emerging more and
more complex, requiring not only fast real-time computations but
also high accuracy of results and capable to escape from local
traps. The canonical versions of the SOMA algorithm have been
somewhat less performance against these issues.

On the other hand, it requires simplicity, ease of programming,
and ease of use for many different application areas. Besides, the
adaptation of the control parameters of the algorithm is required,
because not all application developers are experts in the field of
the optimization algorithm. Therefore, improving the algorithm
to satisfy these illustration requirements mentioned above is
essential.

Many improved versions have been proposed to boost up
the performance of the algorithm and overcome some limita-
tions arising during the application process, such as self-adapting
SOMA [15], C-SOMAQI [16], the version of the leader selection
in the SOMA [17], SOMA with non-binary perturbation [18], and
self-adaptive parameters to SOMA [19]. In particular, the two
latest versions, team to team adaptive — SOMA T3 A [20,21]
and Pareto-based SOMA [22,23], have made great strides, hold-
ing 3rd (the same ranking with HyDE-DF [24]) and 5th out of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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8 algorithms participating in the 100-Digit Challenge respec-
ively, which reported in [25] including results from the 2019
ongress on Evolutionary Computation (CEC 2019), the 2019
enetic and Evolutionary Computation Conference (GECCO 2019)
nd the 2019 Swarm, Evolutionary and Memetic Computing Con-
erence (SEMCCO 2019).

From SOMA 21 years history, it is visible that this algorithm
elongs (based on various comparative studies) to the most ef-
icient SI and is also highly applicable to various problems of
ndustrial practice as well as academic problems.

However, these are not the final versions of SOMA. They have
roven their effectiveness in the 100-Digit Challenge, which does
ot mean that those algorithms will be victorious at all different
est suites. Furthermore, many real-world applications increas-
ngly require algorithms to be more efficient, solve problems
aster, and more accurately. That prompted us to develop and
ropose the next generation of SOMA T3 A, named iSOMA.
And what about drones? How to apply iSOMA in drones?

hese questions will be answered in the next part of the article. It
an be revealed that one of the most important issues for drone
pplications is catching up with targets and avoiding multiple
bstacles.
The rest of the article is organized into the following sections.

ection 2 describes the principles of the SOMA algorithm as
ell as its strengths and weaknesses, which underlie the pro-
osed algorithm. Section 3 presents the improved version of the
elf-organizing migrating algorithm, iSOMA. Section 4 shows the
xperiment setup. Comparison results and discussion are pre-
ented in Section 5. Application of the iSOMA for path planning
f drones is presented in Section 6. Finally, the work is concluded
n Section 7.

. The canonical SOMA

.1. The principle

Self-Organizing Migrating Algorithm, a swarm-based intelli-
ence optimization algorithm, works based on the interaction
etween individuals in the population according to a given rule
o find an optimal solution to the given problem [8,9]. The mech-
nism constituting the SOMA lies in how to select individuals
s a leader and migrants, how migrants move to the leader,
s well as how to update better individuals into the popula-
ion and eliminate the bad one. These processes are performed
nder loops named migration loops. Then, through many migra-
ion loops, these solutions are becoming better and better than
nitial solutions. This section briefly describes the principle of
OMA, shaping the basis for the analysis of SOMA’s strengths and
eaknesses.
A population is generated at the beginning of the algorithm,

ontaining individuals as candidate solutions to a given problem,
ccording to Eq. (1). Each variable (dimension) of the problem has
ts boundary, which is also the search range of the algorithm. They
re then evaluated by the given fitness function and enter the first
igration loop.

= x(lo)j + rand(x(hi)j − x(lo)j ) (1)

where:

• P: the SOMA’s original population,
• x(lo)j : the lowest limit value,

• x(hi)j : the highest limit value,
• rand: a random number, from 0 to 1.

2

In each migration loop, the individual with the lowest fitness
value in the population is chosen as the leader, and the remaining
individuals are those who are traveling. They will jump by step
toward the leader using the Step parameter (specified the granu-
larity) before PathLength (a limit of distance) is reached. Instead
of jumping directly toward the leader, another parameter is used
to generate perturbation moves, named PRTVectorj, forcing the
individuals to move in the N − k subspace where each pair is
perpendicular to the original space, as shown in Eq. (2).

if randj < PRT ; PRTVectorj = 1; else, 0. (2)

The probability of each move is determined by the PRT pa-
rameter. A number is randomly generated and compared to this
threshold. If it is less than PRT , the jump in that dimension is
performed, and vice versa. This helps to maintain the diversity of
the population while creating better new individuals. The Eq. (3)
describes this moving process.

xML+1
n,j = xML

c,j + (xML
l,j − xML

c,j ) t PRTVectorj (3)

where:

• xML+1
n,j : position in the next migration loop,

• xML
c,j : the migrant position in the current migration loop,

• xML
l,j : the leader position in the current migration loop,

• t: moving step, from 0, by Step, to PathLength.

After each individual completes its moves, the best position
in the moving trajectory is chosen to compare with the initial
position. This one will be replaced by the better new position,
otherwise, the algorithm will skip the new position and continue
the process for the remaining individuals.

After all individuals have completed the jumping, a new mi-
gration loop is started, the new leader will be chosen again,
and the migration process will continue until SOMA satisfies the
specified termination condition. SOMA AllToOne (SOMA ATO) is
the name of that technique. Rather than all individuals moving
toward the leader, under another approach, all individuals move
toward each other, regardless of whether the individual is bet-
ter or worse. SOMA AllToAll (SOMA ATA) is the name of this
technique.

2.2. Weakness of SOMA

Stopping Criteria:
As described in the previous subsection, after each individual

has completed his movement, the best position in this path is
selected for comparison with the original. It is clear that to find
a better position, the SOMA needs to call the cost function many
times (known as function evaluations - FEs, each execution of the
cost function is considered one FE).

For example, with the standard setting of SOMA: Pathlength =

3.0 and Step = 0.11, each traveling individual has 27 different
positions on its jumping path, which means that the SOMA has
to spend 27FEs to evaluate these positions to find the better one.
Meanwhile, other algorithms only use one FE to improve their
candidate solutions such as DE, PSO, and ABC, or some algorithm-
specific parameter-less optimization techniques like Jaya [26–28]
and Rao algorithm [29]. This characteristic causes the algorithm
to soon face the stop condition of maximum function evaluations
(MaxFEs) and the premature convergence scenario before it can
fine-tune the solution in the exploitation phase at the end of the
optimization process.

Move on the Edge:
On the other side, in each variable of the optimization prob-
lem, PRTVectorj accepts only one of the two values of 0 and 1.
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Fig. 1. All possible positions in 2D space. Setting parameters: Step = 0.33 and
athLength = 3.0.

Fig. 2. All possible positions in 3D space. Setting parameters: Step = 0.33 and
athLength = 3.0.

herefore, this variable will be updated with a multiple of Step
f the value of PRTVectorj is 1 (and vice versa it will remain in
ts position). Geometrically, this means that traveling individuals
ill move on the intersection edges of hyperplanes created by
airs of sides of variables, as shown in Figs. 1 and 2.
It can be visualized as a line-search strategy. Moving only on

he edges of hyperplanes without moving into the inner space
ighly limits the searching ability of the SOMA and leads to the
isk of missing out on the potential search space.

Search for Nonsense:
Besides, one of the major weaknesses of SOMA is that non-

ense moves are taken from better individuals to the worse one,
s shown in Fig. 3. This leads to a waste of computational time
ecause the algorithm spends a lot of FEs on these nonsense

moves. It causes the algorithm to face the risk of being stopped
before finding the optimal solution to the given problem.

3. The proposed algorithm: iSOMA

The name ‘‘Self-Organizing Migrating Algorithm’’ covers the
algorithm’s entire operation. Consequently, we divide the algo-
rithmic framework of iSOMA into four processes and call them
the initialization process, self-organizing process, migrating pro-
cess, and replacement (update) process. They work in migration
loops. Individuals from the initial population will migrate to each
other in each migration loop to explore promising subspaces and
then exploit these spaces to find the global optimal solution. As
seen in Fig. 4, these procedures were repeated until the specified
stop conditions are met.

3.1. The initialization process

The iSOMA starts with the initialization process. Within the
control parameters established, an initial population of poten-
tial solutions is randomly generated using uniformly distributed
3

Fig. 3. The meaningless move from the migrant to the leader has a lower fitness
value. In this case, there is no position with better fitness value than the migrant
itself in the capability search space.

Fig. 4. The flowchart of the iSOMA.

random numbers to scatter initial individuals in the whole given
search space, by applying Eq. (1).

This population is then evaluated by the given fitness function.
The global best optimal solution (the individual with the small-
est fitness value) is recorded and the algorithm enters the first
migration loop, as described in the next subsection.

3.2. The self-organizing process

The self-organizing process in the proposed algorithm is the
process of determining which individuals will move toward their
targets (named as migrants) and which one will become the
target (named as leader). In the canonical version of ATO, all
individuals are migrants and the best individuals in the popula-
tion become the leader for each migration loop. This results in
limitations as analyzed in the previous section. On the other hand,
if all individuals move toward each other as the ATA version,
SOMA not only faces the stop condition of FEs due to the use of a
lot number of jumpings taken place between bad individuals but
also faces the premature convergence scenario.

To overcome the mentioned shortcomings, the self-organizing
process must both ensure the elimination of bad individuals and
maintain the diversity of the population by avoiding only focusing
on the global best one. Accordingly, the iSOMA selects the best
individuals in a group to move toward the best individual in
another group.

To implement this progress, in each migration loop, the iSOMA
first randomly selects m individuals in the current population as
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Fig. 5. The self-organizing process.

he subpopulation and then selects the best n out of m (n ⩽ m),
hich will become migrants. For each migrant, the algorithm ran-
omly selects the second subpopulation containing k individuals
n the current population (can be overlapped with individuals).
he individual with the best fitness value out of k becomes the
eader for that migrant. In case the migrant coincides with the
eader, the algorithm will choose the second-best individual in k
o be the leader. Fig. 5 describes this process.

For problems containing many local traps, the values of m, n,
nd k should be small. In this context, many moves are performed
etween random individuals, boosting the exploring ability of the
SOMA in the search space. On the contrary, for simpler problems,
he values of m, n, and k should be larger to force the iSOMA
o focus on better individuals, increasing the exploiting ability
n the promising searched space. These parameters highly im-
act the performance of the algorithm, besides the other control
arameters will be presented in the next subsection.

.3. The migrating process

The migrating process regulates how the migrant moves to-
ard the leader selected in the previous subsection. This move-
ent type, in the canonical version, is a straight-line-search strat-
gy with dotted-line positions as depicted in Figs. 1 and 2. To
nhance the algorithm’s search capabilities and restrict the men-
ioned weakness, we propose the following improvements for the
igrating way:
The order of jumps:
Instead of jumping gradually toward the leader as in the

anonical version, we propose a method of jumping in order, as
hown in Fig. 6. Accordingly, the first position of the migrant is to
ump ‘‘behind’’ the leader. After that, the migrant gradually moves
oward the leader specified by the given Step. In other words,
he migrant starts from the farthest step by step approaching its
nitial position.

Immediately update:
Another valuable improvement derives from terminating the

umping progress of the current migrant and immediately updat-
ng its position in the population if the new position is better
han the initial position. It is executed by the algorithm that will
valuate the new position found during the migrant’s migration
nd compare it to the initial. It will immediately replace the initial
nd stop its migration, going to the next migrant.
4

Fig. 6. The order of the jumps in the iSOMA. Setting parameters: Step = 0.3,
Njump = 10, and PathLength = 3.0.

Fig. 7. All possible positions of the offspring over migration loops. Setting
parameters: Step = 0.33, PathLength = 3.0, with adaptive PRTVector .

This improvement, incorporated with jumping in order, not
nly makes the algorithm spend fewer FEs to get a better posi-
ion, but also helps the population preserve diversity, avoiding
remature convergence scenarios.
Narrow the search space:
Fig. 7 depicts the narrowing of the search space. In the early

tages of the optimization progress, the algorithm should prefer
o explore promising subspaces rather than focus on exploiting
hem. Thus, individuals move on the edges of hyperplanes created
y pairs of sides of variables (specified by small PRT , resulting in

more PRTVectorj equals zero).
Toward the end of optimization progress, iSOMA is more in-

clined to exploit these promising subspaces. Therefore, the adap-
tive PRTVector parameter is proposed so that individuals can
move inside the space created by intersection hyperplanes, in-
stead of just moving on the edges like the canonical version.
Eq. (4) is used to enable this feature.

if randj < PRT ; PRTVectorj = 1; else, PRTVectorj =
FEs

MaxFEs
. (4)

where:

• FEs: the current function evaluation,
• MaxFEs: the maximum of function evaluations.

Besides, the adaptive PRT parameter is leveraged in the iSOMA,
hich was introduced in [20], given in Eq. (5). The PRT starts with
number close to 0 and ends with a number close to 1 to avoid
he meaningless comparison of randj < PRT in Eq. (4). In this
ersion, the Step parameter is fixed.

RT = 0.05 + 0.90
FEs

MaxFEs
(5)

3.4. The replacement process

The process is to replace some individuals in the current
population with new ones. This is a necessary progression to be
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aken when the algorithm cannot find a better global optimal
olution after a certain amount of searching time which can be
easured by the number of function evaluations.
Accordingly, after several FEs, if the algorithm does not dis-

over a better position than the global best, the iSOMA will
andomly replace a certain percentage (10% for example) of the
xisting individuals in the current population (excluding the
lobal best individual) by the same number of randomly gener-
ted individuals in the whole search space (according to Eq. (1)).
sing random individuals instead of recorded historical individ-
als found during the searching progress prevents the algorithm
rom falling into the current local traps.

The proposed iSOMA is described in Algorithm 1.
Algorithm 1 : iSOMA
1: Create and evaluate the initial population P
2: Store the best individual as the global best one
3: while stop condition not reached do
4: Select random m individuals from P
5: Pick the best n out of m individuals as migrants
6: for i = 1 to n migrants do
7: Select random k individuals from P
8: Picked out the best of k as the leader.
9: if the leader is the migrant then

10: Change the leader to the second-best one in k.
11: end if
12: while (njump ⩽ Njump) and (no better position) do
13: Update PRT values
14: The migrant moves to the leader
15: Checking boundary
16: Re-evaluate fitness function
17: Updated this migrant
18: Updated the global best position
19: end while
20: if the global best is not updated after t FEs then
21: Randomly replace x% of the population P
22: end if
23: end for
24: end while
25: return

Fig. 8 visually illustrates how the operating optimization pro-
ess of the three algorithms SOMA ATO, SHADE, and iSOMA,
mplemented on the Rotated Composition Function (F.26) of the
EC17. It clearly shows how the individuals of the classical SOMA
ove along the edges while SHADE’s movement is spread evenly

n the search space. The searching capability has been improved
n the iSOMA version by applying the above-mentioned processes
roviding iSOMA’s balanced power as evidenced by ‘‘spread-
ng’’ individuals throughout the search space and then ‘‘focusing’’
oward the best individual.

. Experimental setup

.1. Test functions

To thoroughly evaluate the iSOMA performance, three com-
on test suites of the IEEE Congress on Evolutionary Computation

IEEE CEC) were used, including a total of 73 functions as listed
n Tables 1, 2, and 3 and presented below:

• The first benchmark set is the IEEE CEC 2013 Special Session
on Real Parameter Single Objective Optimization, consisting
of 28 functions (CEC13, see detail at [30]);

• The second is the IEEE CEC 2015 Competition on Learning-
based Real Parameter Single Objective Optimization (CEC15,

see detail at [31]);

5

• And the last one is the IEEE CEC 2017 Special Session and
Competition on Single Objective Real Parameter Numerical
Optimization (CEC17, see detail at [32]).

These single objective benchmark problems were used for
evaluation because they are the basis of research on more com-
plex optimization problems such as multi-objective, dynamic,
niching composition, computationally expensive, and so on. They
are categorized into various types of functions including uni-
modal, basic multimodal, simple multimodal, hybrid, and com-
position, (non-)separable, shifted, and rotated functions that are
challenging enough to evaluate an algorithm. Definitions and
details can be found in [30–32].

4.2. Comparison algorithms

To demonstrate improvement over previous versions of the
iSOMA, the results were compared to the original and latest
versions of SOMA, as listed below.

On the SOMA family:

• Self-organizing migrating algorithm AllToOne and AllToAll
(SOMA ATO; SOMA ATA) [8,9];

• Pareto-based self-organizing migrating algorithm (SOMA
Pareto) [22];

• Self-organizing migrating algorithm team to team adaptive
(SOMA T3 A) [20].

To investigate the iSOMA level of performance and effec-
tiveness compared to some well-known existing algorithms, we
carry out experiments on the various types of algorithms such as
DE, PSO, and ABC shown below, including algorithms that have
participated in the corresponding years’ competitions. Compare
iSOMA with other SOMAs to figure out the impact of the improve-
ments we have proposed and compare with other algorithms
outside the SOMAs to ascertain the position of iSOMA on the
optimization algorithm map.

IEEE CEC 2013 (CEC13):

• Success-history based parameter adaptation for differential
evolution (SHADE) [33];

• Super-fit multicriteria adaptive differential evolution
(SMADE) [34];

• A CMA-ES super-fit scheme for the re-sampled inheritance
search (CMAES-RIS) [35];

• A particle swarm optimization and artificial bee colony hy-
brid algorithm (SPSOABC) [36];

• A genetic algorithm for solving the CEC’2013 competition
problems on real-parameter optimization (TPC-GA) [37].

IEEE CEC 2015 (CEC15):

• A differential evolution algorithm with success-based pa-
rameter adaptation for CEC2015 learning-based optimiza-
tion (DEsPA) [38];

• Tuning maturity model of ecogeography-based optimization
on CEC 2015 single-objective optimization test problems
(TEBO) [39];

• A Self-adaptive Dynamic Particle Swarm Optimizer
(SaDPSO) [40];

• An improved covariance matrix leaning and searching pref-
erence algorithm for solving CEC 2015 benchmark problems
(ICMLSP) [41];

• Dynamic search fireworks algorithm with covariance muta-
tion for solving the CEC 2015 learning based competition

problems (dynFWACM) [42].
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Fig. 8. The operation of three algorithms SOMA-ATO, SHADE, and iSOMA on the function 26th of CEC17 tested on 2D.
able 1
he list of the IEEE CEC 2013 special session on real parameter single objective optimization functions.
No. Functions F∗ No. Functions F∗

1 Sphere function −1400 15 Rotated Schwefel’s function 100
2 Rotated high conditioned elliptic function −1300 16 Rotated Katsuura function 200
3 Rotated Bent Cigar function −1200 17 Lunacek Bi-Rastrigin function 300
4 Rotated discus function −1100 18 Rotated Lunacek Bi-Rastrigin function 400
5 Different powers function −1000 19 Expanded Griewank’s plus Rosenbrock’s function 500
6 Rotated Rosenbrock’s function −900 20 Expanded Scaffer’s F6 function 600
7 Rotated Schaffers F7 function −800 21 Composition Function 1 (n = 5,Rotated) 700
8 Rotated Ackley’s function −700 22 Composition Function 2 (n = 3,Unrotated) 800
9 Rotated Weierstrass function −600 23 Composition Function 3 (n = 3,Rotated) 900
10 Rotated Griewank’s function −500 24 Composition Function 4 (n = 3,Rotated) 1000
11 Rastrigin’s function −400 25 Composition Function 5 (n = 3,Rotated) 1100
12 Rotated Rastrigin’s function −300 26 Composition Function 6 (n = 5,Rotated) 1200
13 Non-continuous rotated Rastrigin’s function −200 27 Composition Function 7 (n = 5,Rotated) 1300
14 Schwefel’s function −100 28 Composition Function 8 (n = 5,Rotated) 1400
IEEE CEC 2017 (CEC17):

• A differential evolution strategy (DES) [43];
6

• A version of IPOP-CMA-ES algorithm with midpoint for
CEC 2017 single objective bound constrained problems (RB-

IPOP-CMA-ES) [44];
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able 2
he list of the IEEE CEC 2015 competition on learning-based real parameter single objective optimization functions.
No. Functions F∗ No. Functions F∗

1 Rotated high conditioned elliptic function 100 9 Composition Function 1 (N = 3) 900
2 Rotated Cigar function 200 10 Composition Function 2 (N = 3) 1000
3 Shifted and rotated Ackley’s function 300 11 Composition Function 3 (N = 5) 1100
4 Shifted and rotated Rastrigin’s function 400 12 Composition Function 4 (N = 5) 1200
5 Shifted and rotated Schwefel’s function 500 13 Composition Function 5 (N = 5) 1300
6 Hybrid Function 1 (N = 3) 600 14 Composition Function 6 (N = 7) 1400
7 Hybrid Function 2 (N = 4) 700 15 Composition Function 7 (N = 10) 1500
8 Hybrid Function 3 (N = 5) 800 – – –
Table 3
The list of the IEEE CEC 2017 special session and competition on single objective real parameter numerical optimization functions.
No. Functions F∗ No. Functions F∗

1 Shifted and rotated Bent Cigar function 100 16 Hybrid Function 6 (N = 4) 1600
2 Shifted and rotated sum of different power function 200 17 Hybrid Function 6 (N = 5) 1700
3 Shifted and rotated Zakharov function 300 18 Hybrid Function 6 (N = 5) 1800
4 Shifted and rotated Rosenbrock’s function 400 19 Hybrid Function 6 (N = 5) 1900
5 Shifted and rotated Rastrigin’s function 500 20 Hybrid Function 6 (N = 6) 2000
6 Shifted and rotated expanded Scaffer’s F6 function 600 21 Composition Function 1 (N = 3) 2100
7 Shifted and rotated Lunacek Bi-Rastrigin function 700 22 Composition Function 2 (N = 3) 2200
8 Shifted and rotated non-continuous Rastrigin’s function 800 23 Composition Function 3 (N = 4) 2300
9 Shifted and rotated Levy function 900 24 Composition Function 4 (N = 4) 2400
10 Shifted and rotated Schwefel’s function 1000 25 Composition Function 5 (N = 5) 2500
11 Hybrid Function 1 (N = 3) 1100 26 Composition Function 6 (N = 5) 2600
12 Hybrid Function 2 (N = 3) 1200 27 Composition Function 7 (N = 6) 2700
13 Hybrid Function 3 (N = 3) 1300 28 Composition Function 8 (N = 6) 2800
14 Hybrid Function 4 (N = 4) 1400 29 Composition Function 9 (N = 3) 2900
15 Hybrid Function 5 (N = 4) 1500 30 Composition Function 10 (N = 3) 3000
o
l
b
t
a
t

5

s
t

h
5
1
r
s
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• Proactive particles in swarm optimization: A settings-free
algorithm for real-parameter single objective optimization
problems (PPSO) [45];

• Dynamic Yin–Yang pair optimization and its performance
on single objective real parameter problems of cec 2017
(DYYPO) [46];

• Teaching learning based optimization with focused learning
and its performance on CEC2017 functions (TLBO-FL) [47].

4.3. Parameter settings

Tests on 10D and 30D are carried out, with a search range of
[−100, 100]D for those testing problems. The MaxFEs was used at
10000 ∗ D (MaxFEs for 10D = 100000; for 30D = 300000). Error
value smaller than 10−8 will be taken as zero. Each algorithm
was independently run 51 times for each function, as the exper-
imental settings requested in [30–32]. To determine if the gaps
between the findings are meaningful, the Wilcoxon rank-sum test
(WRT) was used at the 5% significance [48,49].

The control parameter of iSOMA: PopSize = 100, Njump = 10,
n = 5, m = 10, k = 15, Step = 0.3, and PRT as in Eq. (5).
The control parameter values of the rest algorithms were used
just as they were in the original articles in the citations, with no
modifications.

The iSOMA is available at MathWorks site here.

5. Comparison results

The error values of 51 continuous runs are used as a basis
for comparing the performance of algorithms with dimensions
D = 10 and D = 30. It is obtained by the difference between the
best value found by the algorithm and the global optimal value
within the given search ranges of those functions (F (x) − F (x∗)).
Note that the error value is considered zero when smaller than
10−8 as mentioned in the contest rules of [30–32].

The results of comparisons between the iSOMA algorithm with
others were recorded in tables where each row represents the
values of the mean and standard deviation of 51 runs for each
7

Fig. 9. The summarized comparison results between the iSOMA and other
SOMAs tested on 73 benchmark functions.

testing function. The signs (+), (−), and (≈) show the comparison
utcome at 5% of the WRT where it is significantly better (iSOMA
oses), significantly worse (iSOMA wins), and not significantly
etter or worse (draw) compared to iSOMA [48,49]. Without sta-
istical checks, the best outcomes for each row in the participating
lgorithms were bold. The last three rows in each table show the
otal of (+), (−), and (≈).

.1. Outperform other SOMAs

Tables 4, 5, and 6 present the comparison results between
ome latest versions of the SOMA family, in turn, performed on
he CEC13, CEC15, and CEC17 test suites within only 30D.

In particular, compared to SOMA ATO and ATA versions, iSOMA
as significantly better results on 3 test suites with a total of
9 and 57 over 73 cases wins, while iSOMA only loses 9 and
0, draws 5 and 6, respectively, as summarized in Fig. 9. These
esults clearly show that the improvements of the iSOMA bring
uperior performance compared to the classical version as well
s the SOMA Pareto and T3 A.

https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
https://www.mathworks.com/matlabcentral/fileexchange/103950-the-isoma
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able 4
omparison of iSOMA with SOMA family on the CEC13 benchmark functions (30 dimensions, 51 runs).
F iSOMA SOMA ATO SOMA ATA SOMA Pareto SOMA T3A

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 9.80e+04 (4.13e+04) 1.70e+07 (4.03e+06)− 1.40e+07 (2.62e+06)− 8.79e+04 (3.68e+04)≈ 3.48e+05 (2.01e+05)−
F3 3.13e+06 (4.17e+06) 9.75e+07 (1.20e+08)− 1.89e+08 (1.60e+08)− 3.60e+07 (5.49e+07)− 2.06e+07 (3.02e+07)−
F4 3.23e+02 (1.65e+02) 2.49e+04 (5.35e+03)− 2.08e+04 (4.85e+03)− 7.43e+02 (1.12e+03)≈ 4.79e+02 (3.26e+02)−
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.95e+01 (1.70e+01) 3.24e+01 (2.34e+01)− 3.28e+01 (2.01e+01)− 1.71e+01 (1.95e+01)+ 3.13e+01 (2.46e+01)−
F7 1.37e+01 (4.39e+00) 8.21e+01 (1.24e+01)− 8.66e+01 (1.55e+01)− 3.74e+01 (7.86e+00)− 3.48e+01 (9.38e+00)−
F8 2.09e+01 (5.36e−02) 2.09e+01 (5.24e−02)≈ 2.10e+01 (4.79e−02)≈ 2.09e+01 (4.89e−02)≈ 2.09e+01 (4.62e−02)≈
F9 2.10e+01 (3.43e+00) 3.11e+01 (1.30e+00)− 2.82e+01 (2.60e+00)− 2.35e+01 (4.33e+00)− 2.85e+01 (2.33e+00)−
F10 1.91e−01 (7.57e−02) 3.88e−01 (2.44e−01)− 3.03e−01 (1.21e−01)− 3.00e−01 (1.48e−01)− 1.87e−01 (9.30e−02)≈
F11 7.33e+00 (2.10e+00) 7.02e−01 (8.74e−01)+ 2.93e−01 (5.73e−01)+ 1.55e+01 (4.86e+00)− 2.58e+00 (1.40e+00)+
F12 1.84e+01 (5.98e+00) 1.65e+02 (1.87e+01)− 1.22e+02 (2.02e+01)− 3.57e+01 (8.45e+00)− 3.91e+01 (1.16e+01)−
F13 4.42e+01 (1.61e+01) 1.80e+02 (1.41e+01)− 1.60e+02 (2.17e+01)− 8.06e+01 (2.32e+01)− 8.03e+01 (2.67e+01)−
F14 1.00e+03 (3.27e+02) 1.19e+01 (6.64e+00)+ 4.00e+00 (3.26e+00)+ 1.26e+03 (4.01e+02)− 1.56e+01 (8.22e+00)+
F15 2.84e+03 (6.80e+02) 5.51e+03 (3.16e+02)− 4.62e+03 (3.52e+02)− 3.34e+03 (6.66e+02)− 3.87e+03 (6.38e+02)−
F16 2.44e+00 (2.58e−01) 2.13e+00 (2.29e−01)+ 1.73e+00 (3.15e−01)+ 1.87e+00 (3.60e−01)+ 2.08e+00 (5.02e−01)+
F17 4.31e+01 (4.42e+00) 3.14e+01 (6.21e−01)+ 3.07e+01 (2.44e−01)+ 5.22e+01 (5.37e+00)− 3.36e+01 (1.19e+00)+
F18 5.01e+01 (8.52e+00) 2.12e+02 (1.43e+01)− 1.85e+02 (1.77e+01)− 5.25e+01 (8.29e+00)≈ 6.37e+01 (1.27e+01)−
F19 2.42e+00 (4.96e−01) 1.88e+00 (3.01e−01)+ 1.48e+00 (2.66e−01)+ 2.78e+00 (7.47e−01)− 1.97e+00 (3.23e−01)+
F20 9.18e+00 (6.49e−01) 1.33e+01 (5.48e−01)− 1.34e+01 (5.34e−01)− 9.86e+00 (6.76e−01)− 1.05e+01 (7.97e−01)−
F21 3.03e+02 (6.21e+01) 3.21e+02 (8.91e+01)− 2.73e+02 (5.81e+01)≈ 3.28e+02 (7.87e+01)− 3.16e+02 (8.90e+01)−
F22 6.51e+02 (2.49e+02) 1.42e+02 (5.39e+01)+ 5.33e+01 (3.75e+01)+ 1.30e+03 (4.06e+02)− 1.29e+02 (4.65e+01)+
F23 2.84e+03 (6.93e+02) 6.27e+03 (3.41e+02)− 5.39e+03 (3.87e+02)− 3.48e+03 (6.40e+02)− 4.61e+03 (8.02e+02)−
F24 2.21e+02 (5.18e+00) 2.76e+02 (9.04e+00)− 2.75e+02 (7.61e+00)− 2.27e+02 (4.44e+00)− 2.50e+02 (1.06e+01)−
F25 2.74e+02 (7.54e+00) 3.05e+02 (3.74e+00)− 2.97e+02 (4.48e+00)− 2.78e+02 (8.97e+00)− 2.95e+02 (6.61e+00)−
F26 2.00e+02 (3.09e−03) 2.01e+02 (3.01e−01)− 2.01e+02 (3.97e−01)− 2.00e+02 (2.11e−03)≈ 2.00e+02 (7.75e−03)−
F27 5.54e+02 (5.88e+01) 1.04e+03 (2.08e+02)− 9.13e+02 (2.70e+02)− 6.38e+02 (8.02e+01)− 1.01e+03 (9.22e+01)−
F28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)− 3.00e+02 (0.00e+00)− 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)−

+ 6 6 2 6
– 19 18 18 18
≈ 3 4 8 4
Table 5
Comparison of iSOMA with SOMA family on the CEC15 benchmark functions (30 dimensions, 51 runs).
F iSOMA SOMA ATO SOMA ATA SOMA Pareto SOMA T3A

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 5.61e+03 (5.25e+03) 2.00e+06 (7.21e+05)− 1.79e+06 (6.16e+05)− 1.11e+04 (8.30e+03)− 5.20e+04 (4.99e+04)−
F2 1.14e−01 (4.52e−01) 3.19e+03 (2.99e+03)− 9.12e+02 (1.21e+03)− 3.14e−01 (1.10e+00)− 1.93e−04 (9.21e−04)+
F3 2.10e+01 (4.44e−02) 2.03e+01 (3.12e−02)+ 2.03e+01 (3.82e−02)+ 2.08e+01 (9.95e−02)+ 2.04e+01 (1.06e−01)+
F4 1.47e+01 (3.76e+00) 6.80e+01 (7.81e+00)− 4.89e+01 (7.40e+00)− 2.95e+01 (6.53e+00)− 5.11e+01 (1.52e+01)−
F5 1.91e+03 (5.53e+02) 2.78e+03 (2.58e+02)− 2.17e+03 (2.44e+02)− 2.59e+03 (5.71e+02)− 2.16e+03 (4.96e+02)−
F6 2.43e+03 (1.61e+03) 1.19e+06 (6.92e+05)− 1.07e+06 (5.29e+05)− 5.47e+03 (5.55e+03)− 1.30e+04 (9.02e+03)−
F7 2.60e+00 (7.40e−01) 9.85e+00 (1.46e+00)− 8.46e+00 (1.80e+00)− 4.00e+00 (9.00e−01)− 3.79e+00 (1.05e+00)−
F8 1.88e+03 (2.41e+03) 2.70e+05 (1.28e+05)− 2.49e+05 (1.32e+05)− 5.71e+03 (5.02e+03)− 6.47e+03 (5.73e+03)−
F9 1.02e+02 (1.23e−01) 1.03e+02 (2.13e−01)− 1.04e+02 (3.29e−01)− 1.03e+02 (1.61e−01)− 1.03e+02 (1.55e−01)−
F10 2.45e+03 (1.71e+03) 3.89e+05 (2.05e+05)− 4.35e+05 (2.12e+05)− 4.55e+03 (4.50e+03)− 4.95e+03 (3.57e+03)−
F11 3.10e+02 (3.25e+01) 3.21e+02 (9.10e+00)− 3.35e+02 (5.25e+01)− 3.14e+02 (5.70e+01)− 3.03e+02 (1.99e+00)+
F12 1.04e+02 (4.28e−01) 1.07e+02 (5.68e−01)− 1.07e+02 (6.28e−01)− 1.04e+02 (4.13e−01)− 1.05e+02 (5.77e−01)−
F13 9.68e+01 (5.16e+00) 1.04e+02 (2.67e+00)− 1.01e+02 (3.53e+00)− 1.03e+02 (5.72e+00)− 1.07e+02 (4.87e+00)−
F14 3.26e+04 (5.55e+02) 3.19e+04 (6.16e+02)+ 3.23e+04 (5.69e+02)+ 3.27e+04 (4.54e+02)≈ 3.21e+04 (7.25e+02)+
F15 1.00e+02 (1.22e−13) 1.00e+02 (1.35e−13)− 1.00e+02 (1.09e−13)− 1.00e+02 (2.59e−13)− 1.00e+02 (5.50e−13)−

+ 2 2 1 4
– 13 13 13 11
≈ 0 0 1 0
5.2. Compete against other algorithms

For CEC13:
Tables 7 and 8 show the comparison results on 10D and 30D

with well-known DE versions of SHADE and SMADE, and other
well-attended algorithms such as PSO, GA and ABC listed in the
previous section and summarized in Fig. 10. For 10D problems,
iSOMA proved weaker than the two versions of DE, when losing
16 and 13 out of 28 functions, winning only 4 and 9 functions.
However, the situation changed for 30D problems when iSOMA
won 14 and lost 9 compared to SMADE. These results show
promising potential.

Compared to TPC-GA and CMAES-RIS, it is clear that iSOMA
is on par with them on 10D, and outperforms on 30D problems.
his shows that TPC-GA and CMAES-RIS are more effective on
8

unimodal functions compared to iSOMA, as well as fast conver-
gence but potentially be trapped in local optima of the complex
functions. In contrast, iSOMA has proven its synergy on basic
multimodal and composition functions.

For CEC15:
Tables 9 and 10, in turn, show the simulation results be-

tween iSOMA compared to DEsPA, TEBO, SaDPSO, ICMLSP and
dynFWACM, on both 10D and 30D and summarized in Fig. 11.
Confronted with another DE representative, iSOMA was a bit
weaker to lose 8 out of 15 cases on both 10D and 30D, winning
only 4 and 6 cases.

For TEBO, iSOMA has comparable optimization results on 30D
problems and is somewhat weaker on 10D. The results were mod-

erately better meanwhile antagonizing to SaDPSO, ICMLSP, and
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omparison of iSOMA with SOMA family on the CEC17 benchmark functions (30 dimensions, 51 runs).
F iSOMA SOMA ATO SOMA ATA SOMA Pareto SOMA T3A

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 6.63e−10 (3.55e−09) 1.48e+03 (2.41e+03)− 5.52e+02 (1.14e+03)− 2.49e−08 (1.48e−07)≈ 0.00e+00 (0.00e+00)≈
F2 3.92e−02 (2.80e−01) 3.61e+08 (2.47e+09)− 9.10e+04 (5.96e+05)− 1.67e+03 (9.51e+03)− 2.97e+09 (1.46e+10)−
F3 9.71e−04 (2.82e−03) 1.54e+04 (4.40e+03)− 9.89e+03 (3.34e+03)− 3.81e−05 (1.45e−04)+ 1.90e−02 (6.43e−02)−
F4 4.52e+01 (3.20e+01) 8.46e+01 (2.78e+01)− 8.54e+01 (2.19e+01)− 3.77e+00 (9.58e+00)+ 5.12e+01 (3.12e+01)≈
F5 1.41e+01 (4.02e+00) 6.81e+01 (6.19e+00)− 4.99e+01 (9.35e+00)− 3.00e+01 (7.20e+00)− 5.20e+01 (1.70e+01)−
F6 3.68e−06 (1.39e−05) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.41e−03 (1.83e−03)− 4.22e−04 (5.76e−04)−
F7 4.35e+01 (3.73e+00) 1.06e+02 (7.50e+00)− 8.27e+01 (8.37e+00)− 5.13e+01 (7.60e+00)− 7.77e+01 (1.48e+01)−
F8 1.56e+01 (4.00e+00) 7.07e+01 (6.25e+00)− 5.46e+01 (8.48e+00)− 2.85e+01 (7.89e+00)− 5.65e+01 (1.48e+01)−
F9 3.63e−01 (5.77e−01) 7.17e−01 (1.25e+00)− 3.05e+00 (4.67e+00)− 6.37e+00 (5.03e+00)− 4.14e+00 (4.32e+00)−
F10 2.13e+03 (4.94e+02) 3.08e+03 (2.21e+02)− 2.35e+03 (2.98e+02)− 2.84e+03 (5.85e+02)− 2.51e+03 (4.67e+02)−
F11 1.26e+01 (1.53e+01) 6.00e+01 (2.77e+01)− 1.75e+01 (1.32e+01)− 2.80e+01 (1.94e+01)− 2.35e+01 (2.15e+01)−
F12 7.00e+03 (4.23e+03) 3.96e+05 (2.70e+05)− 5.09e+05 (3.26e+05)− 1.13e+04 (5.68e+03)− 1.04e+04 (5.79e+03)−
F13 2.61e+01 (1.44e+01) 1.31e+04 (1.39e+04)− 8.30e+03 (7.59e+03)− 7.26e+01 (5.11e+01)− 1.63e+02 (2.24e+02)−
F14 4.35e+01 (1.64e+01) 4.28e+04 (3.36e+04)− 8.75e+04 (1.14e+05)− 1.21e+02 (3.14e+02)− 6.86e+01 (7.42e+01)≈
F15 1.79e+02 (6.81e+02) 7.45e+03 (7.70e+03)− 2.12e+03 (2.42e+03)− 1.49e+02 (3.22e+02)+ 2.52e+01 (1.77e+01)+
F16 3.54e+02 (2.09e+02) 7.83e+02 (1.27e+02)− 5.89e+02 (1.72e+02)− 6.93e+02 (2.43e+02)− 5.61e+02 (1.66e+02)−
F17 3.80e+01 (2.62e+01) 2.34e+02 (7.51e+01)− 1.45e+02 (8.89e+01)− 8.78e+01 (8.76e+01)− 9.63e+01 (7.21e+01)−
F18 9.13e+03 (6.75e+03) 2.09e+05 (1.09e+05)− 2.04e+05 (1.17e+05)− 1.15e+04 (6.72e+03)− 1.24e+04 (1.34e+04)≈
F19 1.46e+01 (6.05e+00) 7.99e+03 (8.78e+03)− 2.92e+03 (3.60e+03)− 4.29e+01 (4.28e+01)− 1.91e+01 (9.23e+00)−
F20 1.28e+02 (4.87e+01) 2.91e+02 (9.03e+01)− 1.85e+02 (8.71e+01)− 1.75e+02 (8.22e+01)− 1.57e+02 (8.33e+01)−
F21 2.17e+02 (4.66e+00) 2.79e+02 (8.92e+00)− 2.50e+02 (2.86e+01)− 2.28e+02 (8.31e+00)− 2.45e+02 (4.41e+01)−
F22 1.00e+02 (3.44e−01) 5.43e+02 (1.02e+03)− 6.45e+02 (1.08e+03)− 1.45e+02 (3.21e+02)− 3.85e+02 (8.73e+02)−
F23 3.65e+02 (8.16e+00) 4.26e+02 (9.35e+00)− 4.04e+02 (1.05e+01)− 3.82e+02 (8.72e+00)− 4.01e+02 (1.70e+01)−
F24 4.37e+02 (6.12e+00) 5.49e+02 (1.40e+01)− 5.12e+02 (4.29e+01)− 4.52e+02 (7.26e+00)− 4.74e+02 (1.79e+01)−
F25 3.87e+02 (3.12e−01) 3.87e+02 (1.09e+00)≈ 3.87e+02 (9.42e−01)≈ 3.88e+02 (3.32e+00)− 3.88e+02 (1.11e+00)−
F26 1.15e+03 (8.28e+01) 1.18e+03 (6.92e+02)≈ 1.00e+03 (5.68e+02)≈ 1.41e+03 (2.01e+02)− 6.61e+02 (5.68e+02)+
F27 5.17e+02 (5.00e+00) 5.20e+02 (6.22e+00)− 5.12e+02 (6.48e+00)+ 5.34e+02 (6.75e+00)− 5.12e+02 (6.49e+00)+
F28 3.17e+02 (4.13e+01) 4.04e+02 (1.14e+01)− 4.02e+02 (4.98e+00)− 3.04e+02 (2.05e+01)+ 3.23e+02 (4.25e+01)−
F29 4.61e+02 (3.84e+01) 6.67e+02 (7.73e+01)− 5.29e+02 (7.50e+01)− 5.20e+02 (9.75e+01)− 5.63e+02 (9.71e+01)−
F30 2.82e+03 (6.75e+02) 7.12e+03 (2.83e+03)− 4.60e+03 (9.44e+02)− 3.22e+03 (2.87e+02)− 4.34e+03 (2.00e+03)−

+ 1 2 4 3
– 27 26 25 23
≈ 2 2 1 4
Table 7
Comparison of iSOMA with well-known algorithms on the CEC13 benchmark functions (10 dimensions, 51 runs).
F iSOMA SHADE SMADE CMAES-RIS SPSOABC TPC-GA

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 1.67e+03 (1.92e+03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.47e+05 (1.65e+05)− 0.00e+00 (0.00e+00)+
F3 2.77e+05 (1.15e+06) 1.27e−01 (8.84e−01)+ 2.48e−01 (1.24e+00)+ 7.04e−01 (4.61e+00)+ 1.27e+05 (6.22e+05)+ 0.00e+00 (0.00e+00)+
F4 1.83e+01 (4.14e+01) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.37e+03 (1.46e+03)− 0.00e+00 (0.00e+00)+
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 4.04e+00 (4.88e+00) 7.89e+00 (3.93e+00)≈ 5.41e+00 (4.81e+00)− 1.10e+00 (2.88e+00)≈ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+
F7 2.30e+00 (2.66e+00) 3.26e−03 (4.54e−03)+ 2.27e+00 (4.50e+00)+ 5.33e+01 (4.68e+01)− 0.00e+00 (0.00e+00)+ 4.24e−02 (2.10e−01)+
F8 2.03e+01 (7.12e−02) 2.04e+01 (8.95e−02)≈ 2.03e+01 (1.04e−01)≈ 2.03e+01 (1.37e−01)≈ 0.00e+00 (0.00e+00)+ 2.04e+01 (8.44e−02)−
F9 2.73e+00 (8.60e−01) 3.39e+00 (7.35e−01)− 2.29e+00 (7.26e−01)+ 3.59e+00 (1.04e+00)− 0.00e+00 (0.00e+00)+ 3.39e+00 (2.88e+00)≈
F10 3.33e−01 (2.05e−01) 1.20e−02 (8.99e−03)+ 1.42e−02 (9.67e−03)+ 1.24e−02 (1.35e−02)+ 0.00e+00 (0.00e+00)+ 3.87e−02 (2.83e−02)+
F11 1.16e+00 (1.10e+00) 0.00e+00 (0.00e+00)+ 9.75e−02 (2.99e−01)+ 3.57e+00 (1.48e+00)− 0.00e+00 (0.00e+00)+ 2.73e−01 (4.91e−01)+
F12 4.97e+00 (2.24e+00) 3.14e+00 (9.73e−01)+ 7.80e+00 (4.14e+00)− 1.29e+01 (5.42e+00)− 0.00e+00 (0.00e+00)+ 6.03e+00 (2.18e+00)−
F13 7.73e+00 (5.20e+00) 3.77e+00 (1.85e+00)+ 1.21e+01 (6.47e+00)− 2.56e+01 (1.08e+01)− 0.00e+00 (0.00e+00)+ 9.87e+00 (6.24e+00)≈
F14 8.58e+01 (8.20e+01) 4.90e−03 (1.70e−02)+ 3.64e+00 (4.44e+00)+ 1.02e+02 (7.39e+01)≈ 0.00e+00 (0.00e+00)+ 2.45e+01 (2.47e+01)+
F15 5.13e+02 (2.99e+02) 4.21e+02 (1.14e+02)≈ 7.36e+02 (2.63e+02)− 6.17e+02 (1.74e+02)− 5.96e+02 (1.37e+02)− 7.34e+02 (2.44e+02)−
F16 1.16e+00 (2.08e−01) 7.08e−01 (2.12e−01)+ 4.04e−01 (3.17e−01)+ 1.64e−01 (7.56e−02)+ 2.00e+02 (1.25e−01)− 1.25e+00 (3.29e−01)−
F17 1.31e+01 (1.69e+00) 1.01e+01 (0.00e+00)+ 1.03e+01 (1.56e−01)+ 1.04e+01 (3.73e+00)+ 3.10e+02 (1.96e+00)− 1.12e+01 (7.76e−01)+
F18 2.02e+01 (5.81e+00) 1.69e+01 (1.54e+00)+ 2.46e+01 (4.73e+00)− 2.98e+01 (6.16e+00)− 4.17e+02 (1.95e+00)− 1.80e+01 (3.13e+00)≈
F19 7.05e−01 (2.21e−01) 3.44e−01 (4.90e−02)+ 3.95e−01 (1.26e−01)+ 8.14e−01 (2.74e−01)≈ 5.00e+02 (5.21e−02)− 5.01e−01 (1.21e−01)+
F20 2.02e+00 (5.98e−01) 2.16e+00 (3.52e−01)≈ 2.65e+00 (4.52e−01)− 4.16e+00 (3.99e−01)− 6.02e+02 (4.82e−01)− 3.17e+00 (4.81e−01)−
F21 3.98e+02 (1.25e+01) 4.00e+02 (0.00e+00)− 3.83e+02 (5.56e+01)+ 1.61e+02 (6.03e+01)+ 1.10e+03 (2.80e+01)− 2.90e+02 (5.00e+01)+
F22 9.20e+01 (8.29e+01) 4.84e+00 (6.20e+00)+ 4.93e+01 (5.38e+01)+ 2.44e+02 (1.09e+02)− 8.13e+02 (5.48e+00)− 9.07e+01 (6.14e+01)≈
F23 3.84e+02 (2.45e+02) 4.61e+02 (1.78e+02)≈ 5.78e+02 (3.20e+02)− 8.35e+02 (1.90e+02)− 1.50e+03 (1.81e+02)− 8.40e+02 (2.83e+02)−
F24 1.45e+02 (4.32e+01) 1.93e+02 (2.46e+01)− 2.02e+02 (1.78e+01)− 1.19e+02 (5.69e+00)≈ 1.20e+03 (2.33e+01)− 2.13e+02 (6.62e+00)−
F25 2.01e+02 (1.02e+01) 2.00e+02 (7.02e−01)+ 2.02e+02 (1.93e+00)≈ 1.93e+02 (3.42e+01)+ 1.30e+03 (2.16e+01)− 2.17e+02 (6.59e+00)−
F26 1.05e+02 (2.26e+00) 1.33e+02 (4.36e+01)− 1.26e+02 (3.73e+01)− 1.61e+02 (4.06e+01)− 1.33e+03 (3.99e+01)− 1.96e+02 (1.81e+01)−
F27 3.03e+02 (3.65e+00) 3.00e+02 (1.46e−08)+ 3.37e+02 (5.29e+01)≈ 3.13e+02 (2.30e+01)− 1.65e+03 (7.13e+01)− 4.24e+02 (6.83e+01)−
F28 2.92e+02 (3.92e+01) 3.00e+02 (0.00e+00)≈ 3.17e+02 (6.94e+01)≈ 2.06e+02 (1.07e+02)+ 1.69e+03 (7.01e+01)− 2.92e+02 (3.92e+01)≈

+ 16 13 9 10 11
– 4 9 12 16 10
≈ 8 6 7 2 7
9
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omparison of iSOMA with well-known algorithms on the CEC13 benchmark functions (30 dimensions, 51 runs).
F iSOMA SHADE SMADE CMAES-RIS SPSOABC TPC-GA

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 9.80e+04 (4.13e+04) 9.00e+03 (7.47e+03)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 8.77e+05 (1.69e+06)− 2.44e+05 (1.60e+05)−
F3 3.13e+06 (4.17e+06) 4.02e+01 (2.13e+02)+ 9.82e+03 (4.99e+04)+ 2.24e+03 (1.10e+04)+ 5.16e+07 (8.00e+07)− 3.80e+07 (7.22e+07)−
F4 3.23e+02 (1.65e+02) 1.92e−04 (3.01e−04)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 4.92e+03 (2.30e+03)− 1.38e+01 (2.17e+01)+
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.95e+01 (1.70e+01) 5.96e−01 (3.73e+00)+ 2.67e+00 (7.92e+00)+ 6.94e−04 (2.01e−03)+ 0.00e+00 (0.00e+00)+ 2.43e+01 (1.26e+01)−
F7 1.37e+01 (4.39e+00) 4.60e+00 (5.39e+00)+ 3.25e+01 (1.63e+01)− 4.48e+01 (2.96e+01)− 0.00e+00 (0.00e+00)+ 2.91e+01 (2.20e+01)−
F8 2.09e+01 (5.36e−02) 2.07e+01 (1.76e−01)+ 2.10e+01 (4.85e−02)≈ 2.09e+01 (8.19e−02)+ 0.00e+00 (0.00e+00)+ 2.10e+01 (5.44e−02)−
F9 2.10e+01 (3.43e+00) 2.75e+01 (1.77e+00)− 2.23e+01 (3.61e+00)≈ 2.37e+01 (1.95e+00)− 0.00e+00 (0.00e+00)+ 3.61e+01 (8.55e+00)−
F10 1.91e−01 (7.57e−02) 7.69e−02 (3.58e−02)+ 1.84e−02 (1.35e−02)+ 8.31e−03 (5.46e−03)+ 0.00e+00 (0.00e+00)+ 8.68e−02 (4.78e−02)+
F11 7.33e+00 (2.10e+00) 0.00e+00 (0.00e+00)+ 1.09e+01 (4.23e+00)− 2.54e+01 (6.36e+00)− 0.00e+00 (0.00e+00)+ 2.39e+01 (8.18e+00)−
F12 1.84e+01 (5.98e+00) 2.30e+01 (3.73e+00)− 5.72e+01 (1.72e+01)− 7.94e+01 (4.39e+01)− 0.00e+00 (0.00e+00)+ 4.14e+01 (8.94e+00)−
F13 4.42e+01 (1.61e+01) 5.03e+01 (1.34e+01)≈ 1.28e+02 (3.53e+01)− 1.56e+02 (5.42e+01)− 0.00e+00 (0.00e+00)+ 8.41e+01 (2.06e+01)−
F14 1.00e+03 (3.27e+02) 3.18e−02 (2.33e−02)+ 1.33e+02 (1.28e+02)+ 7.92e+02 (2.21e+02)+ 0.00e+00 (0.00e+00)+ 9.25e+02 (3.94e+02)≈
F15 2.84e+03 (6.80e+02) 3.22e+03 (2.64e+02)− 4.10e+03 (8.55e+02)− 3.13e+03 (4.57e+02)− 3.65e+03 (3.04e+02)− 3.97e+03 (6.25e+02)−
F16 2.44e+00 (2.58e−01) 9.13e−01 (1.85e−01)+ 1.31e−01 (7.65e−02)+ 1.07e−01 (6.78e−02)+ 2.01e+02 (2.01e−01)− 2.50e+00 (5.94e−01)−
F17 4.31e+01 (4.42e+00) 3.04e+01 (0.00e+00)+ 3.48e+01 (1.54e+00)+ 5.50e+01 (5.24e+00)− 3.31e+02 (1.23e−01)− 5.44e+01 (1.05e+01)−
F18 5.01e+01 (8.52e+00) 7.25e+01 (5.58e+00)− 8.33e+01 (2.08e+01)− 1.89e+02 (2.73e+01)− 4.90e+02 (8.95e+00)− 6.96e+01 (1.33e+01)−
F19 2.42e+00 (4.96e−01) 1.36e+00 (1.20e−01)+ 2.55e+00 (5.23e−01)≈ 2.80e+00 (6.42e−01)− 5.02e+02 (4.68e−01)− 3.28e+00 (1.29e+00)−
F20 9.18e+00 (6.49e−01) 1.05e+01 (6.04e−01)− 1.05e+01 (8.15e−01)− 1.43e+01 (5.75e−01)− 6.11e+02 (7.60e−01)− 1.37e+01 (4.54e−01)−
F21 3.03e+02 (6.21e+01) 3.09e+02 (5.65e+01)− 3.27e+02 (8.73e+01)− 1.86e+02 (4.01e+01)+ 1.02e+03 (7.53e+01)− 2.92e+02 (8.74e+01)+
F22 6.51e+02 (2.49e+02) 9.81e+01 (2.52e+01)+ 1.79e+02 (4.54e+01)+ 1.17e+03 (2.93e+02)− 8.84e+02 (3.90e+01)− 1.27e+03 (5.56e+02)−
F23 2.84e+03 (6.93e+02) 3.51e+03 (4.11e+02)− 4.22e+03 (8.83e+02)− 4.03e+03 (5.43e+02)− 5.08e+03 (5.62e+02)− 4.33e+03 (8.56e+02)−
F24 2.21e+02 (5.18e+00) 2.05e+02 (5.29e+00)+ 2.32e+02 (2.60e+01)− 2.59e+02 (1.76e+01)− 1.25e+03 (1.43e+01)− 2.74e+02 (1.68e+01)−
F25 2.74e+02 (7.54e+00) 2.59e+02 (1.96e+01)+ 2.78e+02 (1.00e+01)− 2.82e+02 (8.50e+00)− 1.38e+03 (9.76e+00)− 2.98e+02 (9.14e+00)−
F26 2.00e+02 (3.09e−03) 2.02e+02 (1.48e+01)− 2.15e+02 (5.30e+01)− 1.97e+02 (1.21e+01)≈ 1.46e+03 (7.62e+01)− 3.25e+02 (5.96e+01)−
F27 5.54e+02 (5.88e+01) 3.88e+02 (1.09e+02)+ 6.47e+02 (1.39e+02)− 7.49e+02 (1.87e+02)− 2.21e+03 (1.62e+02)− 1.03e+03 (1.92e+02)−
F28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)≈ 3.88e+02 (3.27e+02)− 5.39e+02 (1.33e+03)− 1.73e+03 (2.32e+02)− 3.00e+02 (0.00e+00)≈

+ 16 9 9 9 3
– 8 14 16 17 21
≈ 4 5 3 2 4
Table 9
Comparison of iSOMA with well-known algorithms on the CEC15 benchmark functions (10 dimensions, 51 runs).
F iSOMA DEsPA TEBO SaDPSO ICMLSP dynFWACM

Mean (Std Dev ) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 4.69e+00 (1.85e+01) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 3.61e+01 (1.40e+02)− 0.00e+00 (0.00e+00)+ 1.11e+05 (9.88e+04)−
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.36e+02 (3.19e+02)− 0.00e+00 (0.00e+00)≈ 8.86e+03 (8.90e+03)−
F3 1.83e+01 (6.10e+00) 1.67e+01 (7.24e+00)+ 1.73e+01 (6.95e+00)+ 2.00e+01 (1.32e−02)− 2.00e+01 (5.30e−05)− 2.00e+01 (2.33e−04)−
F4 3.49e+00 (1.89e+00) 3.56e+00 (1.30e+00)≈ 5.07e+00 (2.36e+00)− 4.49e+00 (1.84e+00)− 3.87e+01 (1.89e+01)− 1.67e+01 (6.65e+00)−
F5 1.78e+02 (1.26e+02) 5.19e+01 (6.01e+01)+ 9.82e+01 (1.24e+02)+ 1.31e+02 (8.54e+01)≈ 1.03e+03 (3.10e+02)− 5.18e+02 (2.40e+02)−
F6 1.37e+01 (3.22e+01) 1.59e+00 (1.21e+00)+ 1.88e+01 (3.97e+01)≈ 3.00e+02 (2.23e+02)− 5.24e+02 (2.63e+02)− 1.74e+03 (1.97e+03)−
F7 2.31e−01 (3.40e−01) 3.42e−01 (2.85e−01)− 1.40e−01 (2.67e−01)+ 6.63e−01 (3.75e−01)− 2.90e+00 (1.09e+00)− 1.45e+00 (2.31e−01)−
F8 1.24e+01 (1.42e+01) 1.95e−01 (2.22e−01)+ 5.68e+00 (1.44e+01)+ 5.61e+01 (6.03e+01)− 3.44e+02 (1.89e+02)− 1.96e+03 (2.13e+03)−
F9 1.00e+02 (3.22e−02) 1.06e+02 (1.35e+01)− 1.00e+02 (3.05e−01)− 1.00e+02 (3.72e−02)− 1.02e+02 (1.46e+00)− 1.00e+02 (4.59e−01)−
F10 2.87e+02 (8.92e+01) 7.56e+00 (3.96e−01)+ 1.61e+02 (3.89e+01)+ 3.80e+02 (1.68e+02)− 5.25e+04 (2.60e+05)− 5.47e+02 (2.37e+02)−
F11 6.28e+01 (1.19e+02) 9.46e+01 (1.00e+02)≈ 1.42e+02 (1.50e+02)≈ 1.54e+02 (1.48e+02)− 3.59e+02 (1.83e+02)− 1.85e+02 (1.47e+02)−
F12 1.01e+02 (2.00e−01) 1.01e+02 (2.84e−01)− 1.01e+02 (3.16e−01)− 6.17e+01 (5.00e+01)≈ 1.19e+02 (1.71e+01)− 1.13e+02 (1.52e+00)−
F13 3.04e+01 (2.95e+00) 1.77e+01 (2.88e+00)+ 2.86e+01 (2.98e+00)+ 2.79e+01 (5.97e+00)+ 2.26e−01 (1.51e−01)+ 1.21e−01 (1.66e−02)+
F14 3.57e+03 (1.59e+03) 3.09e+02 (6.95e+02)+ 2.92e+03 (2.18e+03)≈ 9.01e+02 (1.13e+03)+ 7.23e+03 (1.25e+03)− 6.30e+03 (2.12e+03)−
F15 1.00e+02 (1.42e−13) 2.05e+02 (1.35e−03)− 1.00e+02 (0.00e+00)+ 1.00e+02 (1.46e−13)≈ 1.00e+02 (0.00e+00)+ 1.00e+02 (0.00e+00)+

+ 8 8 2 3 2
– 4 3 10 11 13
≈ 3 4 3 1 0
dynFWACM when iSOMA had won more than half the number of
winning cases compared to the number of losing cases.

For CEC17:
Compared to DES and RB-IPOP-CMA-ES, iSOMA prevailed on

0D problems, winning 17 and 13 cases over 30 functions, los-
ng 9 and 10 cases, respectively. However, the situation was
eversed when iSOMA lost its position on 30D. DES then asserts
he balance control over all three unimodal, basic multimodal,
nd composition function classes.
As for the PPSO, DYYPO, and TLBO-FL algorithms, iSOMA com-

letely dominated and almost absolutely won over them on 10
nd 30 dimensions, as shown in Tables 11 and 12 and summa-
ized in Fig. 12.

These results clearly show that iSOMA has good performance

gainst some representatives of the GA and PSO algorithms, but

10
is a little inferior to well-known DE versions due to SOMA and DE
belonging to two different algorithm classes.

It is worth noting that the algorithms involved in the compar-
ison have been carefully refined to participate in the correspond-
ing years of CEC competitions. To be fair, iSOMA should use its
own set of control parameters for each CEC test suite. That will
greatly increase the comparison results, which is more beneficial
for iSOMA. However, we use the same setting parameters for all
CEC competitions. This gives iSOMA users a broad view of the
iSOMA performance level.

6. Application to drones

In this subsection, the application of iSOMA for drones to

hit the target and avoid the detected obstacles on its path is
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omparison of iSOMA with well-known algorithms on the CEC15 benchmark functions (30 dimensions, 51 runs).
F iSOMA DEsPA TEBO SaDPSO ICMLSP dynFWACM

Mean (Std Dev ) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 5.61e+03 (5.25e+03) 0.00e+00 (0.00e+00)+ 3.69e+02 (7.71e+02)+ 1.93e−02 (8.42e−02)+ 0.00e+00 (0.00e+00)+ 6.17e+05 (2.49e+05)−
F2 1.14e−01 (4.52e−01) 0.00e+00 (0.00e+00)+ 4.54e−07 (3.02e−06)+ 2.88e+02 (1.09e+03)− 4.05e−05 (1.44e−04)+ 3.31e+03 (3.59e+03)−
F3 2.10e+01 (4.44e−02) 2.01e+01 (4.36e−02)+ 2.00e+01 (6.32e−02)+ 2.00e+01 (4.15e−05)+ 2.00e+01 (7.57e−03)+ 2.00e+01 (5.75e−06)+
F4 1.47e+01 (3.76e+00) 8.64e+01 (2.87e−14)− 4.41e+01 (1.06e+01)− 4.25e+01 (9.31e+00)− 2.31e+02 (5.66e+01)− 1.30e+02 (3.80e+01)−
F5 1.91e+03 (5.53e+02) 1.85e+03 (3.97e+02)≈ 1.96e+03 (6.32e+02)≈ 2.52e+03 (3.58e+02)− 4.03e+03 (6.56e+02)− 3.38e+03 (6.98e+02)−
F6 2.43e+03 (1.61e+03) 1.61e+02 (8.00e+01)+ 6.98e+02 (6.52e+02)+ 1.38e+03 (6.04e+02)+ 1.47e+03 (4.08e+02)+ 2.69e+04 (1.90e+04)−
F7 2.60e+00 (7.40e−01) 3.09e+00 (7.41e−01)− 4.42e+00 (1.41e+00)− 9.52e+00 (1.93e+00)− 2.07e+01 (1.45e+01)− 1.46e+01 (2.57e+00)−
F8 1.88e+03 (2.41e+03) 2.55e+01 (2.29e+01)+ 1.21e+02 (1.48e+02)+ 1.62e+03 (1.35e+03)≈ 9.42e+02 (2.50e+02)≈ 2.40e+04 (1.32e+04)−
F9 1.02e+02 (1.23e−01) 1.80e+02 (3.60e+01)− 1.08e+02 (1.22e+00)− 1.03e+02 (1.86e−01)− 1.63e+02 (1.32e+02)− 1.08e+02 (9.01e−01)−
F10 2.45e+03 (1.71e+03) 1.71e+02 (7.08e+01)+ 6.21e+02 (9.31e+01)+ 6.52e+03 (4.66e+03)− 1.43e+03 (3.36e+02)+ 3.15e+04 (2.01e+04)−
F11 3.10e+02 (3.25e+01) 3.11e+02 (5.52e+01)− 4.81e+02 (1.95e+02)− 3.20e+02 (8.88e+00)− 1.12e+03 (2.72e+02)− 6.72e+02 (1.54e+02)−
F12 1.04e+02 (4.28e−01) 1.08e+02 (3.19e−01)− 1.06e+02 (1.04e+00)− 1.05e+02 (4.90e−01)− 1.61e+02 (4.11e+01)− 1.17e+02 (1.23e+01)−
F13 9.68e+01 (5.16e+00) 8.13e+01 (5.60e+00)+ 9.87e+01 (5.46e+00)≈ 1.01e+02 (4.06e+00)− 8.53e−02 (1.26e−01)+ 2.62e−02 (7.46e−03)+
F14 3.26e+04 (5.55e+02) 2.81e+04 (1.71e+03)+ 3.45e+04 (4.04e+03)− 1.87e+04 (5.27e+03)+ 4.21e+04 (4.67e+03)− 4.49e+04 (1.02e+03)−
F15 1.00e+02 (1.22e−13) 2.73e+02 (1.50e−01)− 1.00e+02 (0.00e+00)+ 1.00e+02 (1.19e−13)− 1.27e+02 (1.62e+01)− 1.00e+02 (0.00e+00)+

+ 8 7 4 6 3
– 6 6 10 8 12
≈ 1 2 1 1 0
Table 11
Comparison of iSOMA with well-known algorithms on the CEC17 benchmark functions (10 dimensions, 51 runs).
F iSOMA DES RB-IPOP-CMA-ES PPSO DYYPO TLBO-FL

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 1.20e−07 (3.04e−08)− 2.93e−10 (2.09e−09)≈ 2.39e+02 (2.01e+02)− 2.86e+03 (3.27e+03)− 2.02e+03 (2.46e+03)−
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.96e−02 (1.40e−01)≈
F3 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.17e−05 (4.30e−05)− 1.11e−04 (7.84e−04)−
F4 2.80e−05 (1.68e−04) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.20e+00 (9.36e−01)− 2.07e+00 (8.25e+00)− 3.03e+00 (1.17e+00)−
F5 3.51e+00 (1.61e+00) 1.54e+00 (9.40e−01)+ 1.58e+00 (1.96e+00)+ 1.81e+01 (5.10e+00)− 1.12e+01 (4.23e+00)− 8.75e+00 (5.57e+00)−
F6 0.00e+00 (0.00e+00) 1.17e−01 (3.48e−01)− 2.01e−07 (6.21e−07)− 2.26e−01 (3.08e−01)− 6.36e−05 (6.02e−05)− 8.39e−08 (4.43e−07)≈
F7 1.41e+01 (1.91e+00) 1.19e+01 (7.04e−01)+ 1.01e+01 (2.69e+00)+ 1.69e+01 (2.21e+00)− 2.18e+01 (6.02e+00)− 2.76e+01 (3.97e+00)−
F8 3.59e+00 (1.58e+00) 1.56e+00 (1.04e+00)+ 1.97e+00 (2.32e+00)+ 9.95e+00 (2.37e+00)− 1.32e+01 (4.50e+00)− 1.23e+01 (4.40e+00)−
F9 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.96e−02 (9.82e−02)− 8.91e−03 (6.36e−02)≈
F10 1.88e+02 (1.78e+02) 5.66e+00 (1.71e+01)+ 4.35e+02 (1.90e+02)− 5.03e+02 (1.55e+02)− 3.67e+02 (1.69e+02)− 9.55e+02 (2.14e+02)−
F11 1.32e+00 (1.46e+00) 1.17e−01 (3.24e−01)+ 1.71e−01 (4.10e−01)+ 1.69e+01 (5.31e+00)− 9.28e+00 (4.79e+00)− 4.12e+00 (1.46e+00)−
F12 8.35e+01 (6.28e+01) 4.41e+02 (1.94e+02)− 1.10e+02 (9.37e+01)− 4.55e+03 (2.51e+03)− 1.35e+04 (1.20e+04)− 6.56e+04 (5.49e+04)−
F13 5.28e+00 (3.25e+00) 3.31e+00 (3.00e+00)+ 4.17e+00 (3.61e+00)+ 1.39e+03 (1.33e+03)− 5.08e+03 (5.64e+03)− 2.45e+03 (2.16e+03)−
F14 1.41e+00 (9.69e−01) 1.23e+01 (1.02e+01)− 1.59e+01 (1.25e+01)− 3.73e+01 (1.17e+01)− 2.07e+01 (2.20e+01)− 6.73e+01 (1.83e+01)−
F15 9.23e−01 (7.73e−01) 3.25e+00 (4.09e+00)− 4.91e−01 (4.76e−01)+ 5.33e+01 (2.27e+01)− 4.36e+01 (1.11e+02)− 1.26e+02 (4.34e+01)−
F16 6.14e−01 (1.61e−01) 6.09e+00 (2.34e+01)− 9.71e+01 (1.03e+02)− 8.30e+01 (7.25e+01)− 4.38e+01 (5.79e+01)− 8.91e+00 (2.19e+01)−
F17 5.06e+00 (6.60e+00) 2.10e+01 (1.03e+01)− 5.25e+01 (3.36e+01)− 2.46e+01 (7.43e+00)− 1.41e+01 (1.39e+01)− 3.83e+01 (7.83e+00)−
F18 9.30e−01 (6.57e−01) 2.91e+01 (2.46e+01)− 1.97e+01 (2.35e+01)− 8.78e+02 (7.14e+02)− 8.76e+03 (6.42e+03)− 6.15e+03 (5.63e+03)−
F19 3.09e−01 (4.74e−01) 2.52e+00 (2.34e+00)− 1.82e+00 (3.30e+00)− 2.25e+01 (1.56e+01)− 9.27e+01 (2.94e+02)− 6.06e+01 (3.18e+01)−
F20 1.38e+00 (3.24e+00) 1.22e+01 (9.86e+00)− 1.06e+02 (6.95e+01)− 2.78e+01 (8.96e+00)− 8.01e+00 (9.07e+00)− 1.46e+01 (9.45e+00)−
F21 1.09e+02 (2.87e+01) 2.02e+02 (4.62e+00)− 1.37e+02 (4.92e+01)− 1.04e+02 (2.15e+01)+ 1.00e+02 (9.03e−01)+ 1.42e+02 (5.17e+01)−
F22 8.52e+01 (3.16e+01) 1.00e+02 (1.50e−08)≈ 9.93e+01 (5.57e+00)≈ 9.67e+01 (1.68e+01)− 9.75e+01 (1.99e+01)− 9.33e+01 (2.27e+01)≈
F23 2.99e+02 (3.86e+01) 3.01e+02 (1.98e+00)− 2.75e+02 (7.06e+01)+ 3.42e+02 (1.05e+01)− 3.09e+02 (4.46e+01)− 3.07e+02 (3.84e+00)−
F24 1.71e+02 (1.07e+02) 3.03e+02 (6.11e+01)− 1.98e+02 (1.02e+02)− 2.27e+02 (1.35e+02)− 1.17e+02 (4.97e+01)+ 3.10e+02 (6.90e+01)−
F25 4.29e+02 (2.20e+01) 4.08e+02 (1.89e+01)+ 4.02e+02 (6.54e+01)+ 4.04e+02 (1.45e+01)+ 4.23e+02 (2.33e+01)≈ 4.26e+02 (2.25e+01)+
F26 2.88e+02 (5.86e+01) 2.96e+02 (1.96e+01)− 2.73e+02 (1.51e+02)+ 2.67e+02 (7.66e+01)+ 3.03e+02 (3.14e+01)− 3.01e+02 (4.63e+01)≈
F27 3.94e+02 (2.67e+00) 3.96e+02 (2.33e+00)− 3.95e+02 (1.09e+00)≈ 4.27e+02 (1.35e+01)− 3.96e+02 (3.76e+00)− 3.93e+02 (3.28e+00)+
F28 3.00e+02 (2.99e−13) 5.26e+02 (1.23e+02)− 4.02e+02 (1.64e+02)− 2.94e+02 (4.20e+01)+ 3.01e+02 (5.11e+01)− 4.47e+02 (1.58e+02)−
F29 2.50e+02 (7.72e+00) 2.36e+02 (7.67e+00)+ 2.66e+02 (4.53e+01)≈ 2.78e+02 (1.35e+01)− 2.60e+02 (1.89e+01)− 2.74e+02 (1.38e+01)−
F30 5.01e+02 (8.96e+01) 1.54e+05 (3.69e+05)− 2.05e+03 (1.04e+04)− 2.99e+03 (8.99e+02)− 6.70e+03 (6.52e+03)− 2.79e+05 (4.92e+05)−

+ 9 10 4 2 2
– 17 13 23 26 23
≈ 4 7 3 2 5
proposed. Specifically, how to turn the path planning problem
into an optimization problem will be presented, based on the
principle that the closer the target, the lower the fitness value,
and the closer the obstacle, the higher the fitness value. The
iSOMA task in this problem is to point out optimal solutions in
real-time for that built function, as shown in Fig. 13 and depicted
in [50]. The following subsections will clarify the problem.

6.1. Problem formulation

Fig. 14 depicts the working model within a space consisting of
drones with 3 respective targets and 4 static obstacles. The main
urpose of drones is to move toward their targets and avoid any
11
detected obstacles on the way. To handle the task, the following
necessary assumptions are proposed:

• Drone: In the framework of this study, drones are assumed
to be able to fly smoothly from a given point to another
nearby without any problems, named rstep. They are different
depending on each drone, and it should be noted that the
iSOMA performance is not affected by this parameter. More-
over, drones are assumed to be equipped with a detecting
obstacles sensor system with a working range of rdetector .

• Obstacles: Obstacles are assumed that their entire physical
size is surrounded by spheres with radius r . These
obstacles
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omparison of iSOMA with well-known algorithms on the CEC17 benchmark functions (30 dimensions, 51 runs).
F iSOMA DES RB-IPOP-CMA-ES PPSO DYYPO TLBO-FL

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 6.63e−10 (3.55e−09) 5.37e−07 (7.42e−08)− 3.15e−08 (2.75e−08)− 7.48e+02 (6.06e+02)− 3.71e+03 (5.04e+03)− 3.51e+03 (3.61e+03)−
F2 3.92e−02 (2.80e−01) 5.88e−02 (2.38e−01)≈ 0.00e+00 (0.00e+00)≈ 5.32e+01 (6.91e+01)− 3.18e+09 (2.27e+10)− 8.52e+16 (5.81e+17)−
F3 9.71e−04 (2.82e−03) 2.02e−09 (4.44e−09)+ 0.00e+00 (0.00e+00)+ 1.13e+00 (4.83e−01)− 5.27e+02 (3.76e+03)≈ 2.99e+03 (1.08e+03)−
F4 4.52e+01 (3.20e+01) 5.69e+01 (1.17e+01)≈ 5.53e+01 (1.65e+01)≈ 4.39e+01 (3.19e+01)≈ 9.12e+01 (2.49e+01)− 9.01e+01 (2.37e+01)−
F5 1.41e+01 (4.02e+00) 4.64e+00 (1.42e+00)+ 1.65e+00 (1.37e+00)+ 1.12e+02 (1.33e+01)− 9.09e+01 (2.43e+01)− 3.95e+01 (2.07e+01)−
F6 3.68e−06 (1.39e−05) 4.50e−07 (1.05e−07)+ 1.21e−07 (3.97e−08)≈ 2.03e+01 (4.15e+00)− 8.59e−01 (7.17e−01)− 4.87e−01 (4.24e−01)−
F7 4.35e+01 (3.73e+00) 3.57e+01 (1.32e+00)+ 3.43e+01 (1.28e+00)+ 1.35e+02 (1.63e+01)− 1.44e+02 (3.08e+01)− 1.39e+02 (4.75e+01)−
F8 1.56e+01 (4.00e+00) 4.55e+00 (1.66e+00)+ 1.76e+00 (1.65e+00)+ 8.10e+01 (1.04e+01)− 9.63e+01 (2.45e+01)− 3.67e+01 (1.84e+01)−
F9 3.63e−01 (5.77e−01) 2.28e−09 (4.69e−09)+ 0.00e+00 (0.00e+00)+ 1.36e+03 (2.82e+02)− 6.54e+02 (7.73e+02)− 3.45e+01 (2.71e+01)−
F10 2.13e+03 (4.94e+02) 1.39e+02 (1.10e+02)+ 1.44e+03 (5.83e+02)+ 3.13e+03 (3.46e+02)− 2.84e+03 (6.02e+02)− 6.69e+03 (2.77e+02)−
F11 1.26e+01 (1.53e+01) 2.73e+01 (2.89e+01)≈ 4.11e+01 (4.76e+01)≈ 8.43e+01 (1.84e+01)− 1.16e+02 (4.11e+01)− 8.16e+01 (4.14e+01)−
F12 7.00e+03 (4.23e+03) 1.21e+03 (3.72e+02)+ 1.09e+03 (2.81e+02)+ 2.77e+04 (8.55e+03)− 1.50e+06 (1.19e+06)− 5.75e+04 (8.99e+04)−
F13 2.61e+01 (1.44e+01) 4.87e+01 (3.15e+01)− 1.19e+02 (4.00e+02)≈ 3.21e+03 (2.88e+03)− 9.58e+03 (1.28e+04)− 2.02e+04 (1.79e+04)−
F14 4.35e+01 (1.64e+01) 2.66e+01 (4.24e+00)+ 9.08e+01 (5.62e+01)− 2.32e+03 (1.52e+03)− 2.11e+03 (2.28e+03)− 7.10e+03 (5.85e+03)−
F15 1.79e+02 (6.81e+02) 3.24e+01 (1.97e+01)+ 2.18e+02 (1.84e+02)− 2.13e+03 (1.63e+03)− 1.06e+04 (9.40e+03)− 2.16e+04 (2.27e+04)−
F16 3.54e+02 (2.09e+02) 7.64e+01 (9.51e+01)+ 5.02e+02 (2.54e+02)− 8.46e+02 (1.53e+02)− 6.66e+02 (2.26e+02)− 4.92e+02 (3.53e+02)≈
F17 3.80e+01 (2.62e+01) 5.54e+01 (4.00e+01)≈ 1.32e+02 (9.54e+01)− 3.31e+02 (1.13e+02)− 2.55e+02 (1.55e+02)− 1.41e+02 (6.59e+01)−
F18 9.13e+03 (6.75e+03) 3.51e+01 (1.43e+01)+ 1.60e+02 (1.14e+02)+ 6.99e+04 (3.06e+04)− 1.25e+05 (1.01e+05)− 3.67e+05 (1.67e+05)−
F19 1.46e+01 (6.05e+00) 1.63e+01 (7.38e+00)≈ 1.15e+02 (6.59e+01)− 1.71e+03 (1.69e+03)− 1.37e+04 (1.56e+04)− 1.07e+04 (1.10e+04)−
F20 1.28e+02 (4.87e+01) 7.06e+01 (5.32e+01)+ 2.97e+02 (1.19e+02)− 3.48e+02 (9.16e+01)− 2.55e+02 (1.47e+02)− 2.21e+02 (1.25e+02)−
F21 2.17e+02 (4.66e+00) 2.07e+02 (4.27e+00)+ 2.09e+02 (1.67e+01)+ 3.05e+02 (3.30e+01)− 2.98e+02 (2.31e+01)− 2.34e+02 (1.16e+01)−
F22 1.00e+02 (3.44e−01) 1.00e+02 (1.10e−07)+ 6.72e+02 (7.63e+02)− 1.00e+02 (5.05e−07)+ 1.00e+02 (9.87e−01)− 1.01e+02 (1.94e+00)−
F23 3.65e+02 (8.16e+00) 3.50e+02 (7.57e+00)+ 3.39e+02 (4.93e+01)+ 6.81e+02 (3.79e+01)− 4.53e+02 (3.19e+01)− 3.96e+02 (1.62e+01)−
F24 4.37e+02 (6.12e+00) 4.18e+02 (4.73e+00)+ 4.19e+02 (3.06e+00)+ 7.39e+02 (4.57e+01)− 5.65e+02 (5.05e+01)− 4.69e+02 (1.62e+01)−
F25 3.87e+02 (3.12e−01) 3.87e+02 (7.55e−03)+ 3.87e+02 (1.47e−02)+ 3.85e+02 (1.77e+00)+ 3.86e+02 (1.41e+00)+ 4.02e+02 (1.76e+01)−
F26 1.15e+03 (8.28e+01) 5.74e+02 (2.72e+02)+ 3.94e+02 (2.17e+02)+ 2.04e+03 (1.73e+03)≈ 2.17e+03 (7.28e+02)− 1.42e+03 (4.69e+02)−
F27 5.17e+02 (5.00e+00) 5.10e+02 (7.85e+00)+ 5.12e+02 (1.13e+01)+ 7.08e+02 (5.42e+01)− 5.39e+02 (1.62e+01)− 5.32e+02 (2.07e+01)−
F28 3.17e+02 (4.13e+01) 3.18e+02 (4.21e+01)− 3.09e+02 (2.96e+01)+ 3.27e+02 (3.17e+01)− 3.87e+02 (4.33e+01)− 4.30e+02 (2.67e+01)−
F29 4.61e+02 (3.84e+01) 4.43e+02 (4.55e+01)+ 4.93e+02 (1.04e+02)≈ 7.80e+02 (1.21e+02)− 7.48e+02 (1.96e+02)− 6.15e+02 (9.09e+01)−
F30 2.82e+03 (6.75e+02) 2.16e+03 (1.65e+02)+ 2.84e+03 (1.94e+03)− 3.32e+03 (3.89e+02)− 3.31e+04 (3.13e+04)− 2.57e+04 (2.78e+04)−

+ 22 15 2 1 0
– 3 9 26 28 29
≈ 5 6 2 1 1
Fig. 10. The summarized comparison results between the iSOMA and other
lgorithms tested on the CEC13 (for both 10D and 30D).

Fig. 11. The summarized comparison results between the iSOMA and other
lgorithms tested on the CEC15 (for both 10D and 30D).
12
Fig. 12. The summarized comparison results between the iSOMA and other
algorithms tested on the CEC17 (for both 10D and 30D).

obstacles are static and will be detected by the drone sensor
system.

To deal with the path planning problem of drones as an opti-
mization problem, the first thing to do is build a fitness function.
This function was proposed in our previous publication in [50]
and given in Eq. (6). Accordingly, the mission of the iSOMA is
to create all consecutive positions from the starting position,
forming a discrete point set that the drone must pass through
in real-time.

fvalue = a1 ∗ ea2∗dis
a3
tar +

nobs∑
n=0

b1 ∗ eb2∗dis
b3
obs (6)

where:

• f : the cost value of the drone problem,
value
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Fig. 14. The working space of drones and obstacles.

able 13
bstacles position and their radius (in meter).
Obstaclei 1 2 3 4

xi −3.5 1.5 4.5 −2.5
yi −5 9.5 −5.5 −13.5
zi 10 −1 −7 0
ri 3.5 3 4.5 2

Table 14
Intentional placement of drones and their targets (in meter).
The object Drone 1 Drone 2 Drone 3 Target 1 Target 2 Target 3

xi 11 6 −1 −5 −10 −9
yi −14 −5 10 14 −12 −4
zi −13 13 6 9 −10 −4

• nobs : amount of obstacles found,
• distar : distance between the drone and the target, in Eq. (7),
• disobs : distance between the drone and the found obstacle,

in Eq. (8),
• ax, bx : equilibrium coefficients (x = 1, 2, 3.).

distar =

√
(xtarget − xdrone)2 + (ytarget − ydrone)2 + (ztarget − zdrone)2

(7)

disobs =

√
(xobs − xdrone)2 + (yobs − ydrone)2 + (zobs − zdrone)2 (8)

The drones’ problem of catching the target and avoiding ob-
stacles has now evolved into an optimization problem.

6.2. Experimental setup

The obstacle positions are given in Table 13. They are inten-
tionally arranged to prevent the direct movement of the drones
to the targets. Table 14 presents the drones starting position and
respective targets.

In this simulation, we have assumed that the drones can move
within a radius rmovingstep = 0.3 m without any problems. Sensors
on drones are capable of detecting obstacles within a radius of
13
2 m. The drones are provided with the location of the target as
indicated above.

6.3. Results and discussions

Three-dimensional trajectories of the drone are shown in
Fig. 15. The defined obstacles are illustrative by the four spheres,
whose positions and radius are given in Table 13. The first,
second, and third drones are characterized by blue, red, and
green, respectively. The trajectories are plotted in dotted lines
with respective colors. The obstacles and targets in this study are
stationary objects as stated, and the drone’s goal is to reach its
target without hitting any detected obstacles as well as without
hitting each other. To explain the movement, the 25th, 66th, 131st
and 168th steps were chosen. The move is continuous, despite it
being viewed as discrete steps.

Step 25th in Fig. 15 reveals that all drones have progressed 25
teps. The iSOMA algorithm serves as a reference point creator for
rones at each step, providing the next stop they would move to
ased on the current data, such as target position and detected
bstacles. It is worth noting that drones are also obstacles to each
ther. However, further analysis of dynamic obstacles as well as
oving targets for drone problems is not within the scope of this

esearch and will be covered in our upcoming publications.
Return to the first step, there is no obstacle in the sensor

ystem’s detection region when the movement begins due to
he intentional arrangement. Thus, there is only the first part in
q. (6) pulling the drone toward the target. As a result, the drone
ill fly directly to the target. However, the second component
f the cost function appears in the following stages, when the
rone’s sensors detect obstacles. Due to the cost value being
nversely proportional to the distance to the drone, if the next
tep of the drone is still moving forward, approaching the ob-
tacles, the value will increase. On the other hand, if the drone
oves backward, away from obstacles, the distance between the
rone and the target increases accordingly, and thus the cost
alue increases as well. A suitable position will be calculated and
roposed by the iSOMA algorithm to obtain the minimum cost
alue. This process will be repeated continuously until the drone
its the target at step 168th as shown in Fig. 15.
Figs. 16, 17, and 18 show various views of the trajectories

for a thorough observation of the movement process. They are
captured in two-dimensional space at the same time as in Fig. 15.
Since the distances from the starting points to the targets are
different, their travel times differ as well. The third drone has the
shortest distance, so it catches the target firstly, at step 94th. It is
followed by the second drone at step 154th and the first drone at
step 168th.

7. Conclusion

In this article, the iSOMA is proposed, with the algorithm
divided into four processes: the initialization, self-organizing,
migrating, and replacement process. The spotlight of the self-
organizing and migrating process is to pick migrants and leaders
and propose the jumps in order. It guarantees the algorithm’s
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Fig. 15. The operation of the drones in three-dimensional space, captured at four representative steps.
Fig. 16. Drone trajectory simulation in X-Y view.
14
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Fig. 17. Drone trajectory simulation in X-Z view.
Fig. 18. Drone trajectory simulation in Y-Z view.
peed as well as the equilibrium between the two phases of
xploration and exploitation. Furthermore, the application of im-
ediate updates, as well as the narrowing of the search space
nd the replacement of individuals when the global best is not
pdated, make iSOMA have superior performance than previous
ersions.
On three IEEE CEC benchmark suites, including CEC13, CEC15,

nd CEC17, the iSOMA has been proved and outperformed other
ariants of optimization algorithms. These comparative outcomes
how the usefulness of the proposed algorithm. Consequently,
15
it validates efficiency, competitiveness, and promise against tra-
ditional and well-known algorithms such as ABC, PSO, GA, and
DE.

Furthermore, this study solved the real-time navigation prob-
lem for drones using swarm intelligence, of which the iSOMA
algorithm is representative. In particular, how to consider the
drone-movement problem as an optimization problem was spec-
ified. In which the optimal function was proposed based on the
simple but effective principle of being close to the target, far
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rom the obstacle. The trajectory of the drone is a set of real-
ime continuous points generated by the iSOMA for each drone
ember, independent of any central controller. However, mul-

iple dynamic obstacles and even moving targets have not been
nvestigated in this study. What if the number of obstacles and
rones is relatively large? Will it lead to the drones being trapped
nd unable to move or collide with each other? The solutions to
uch issues will be addressed in our subsequent studies.
With outstanding performance, real-world applications that

se the iSOMA algorithm will promise to deliver superior power,
atching up with the ever-increasing demands of technical devel-
pment.
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