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Abstract: Limb asymmetry can, and often does, cause various health problems. Blount bone staples
(clips) are used to correct such uneven growth. This article analyzes the performance of a biome-
chanical staple during bone (tibia) growth arrest. The staples considered in this study were made of
1.4441 stainless steel, the model of tibia consisted of two materials representing corticalis and spongio-
sis. Hooke’s law was used for modeling materials’ behaviors for finite element analysis (FEA). The
maxima of stress and total staple displacement were evaluated using the finite element method and
verification of the results, along with the determination of the maximum loading (growing) force that
the staples are capable of withstanding, was performed experimentally. The presented method can be
used to determine the safety and usability of staples for bone growth arrest. According to our results,
the design of Blount staples considered in this paper is safe and suitable for orthopedic treatment.

Keywords: biomechanics; orthopedics; Blount staple; FEA; experiment; epiphysiodesis

1. Introduction

The growth deformities, one of which is Blount’s disease, are globally among the most
common conditions to present in pediatric orthopedic clinics [1,2]. These deformities can,
although rarely, be associated also with childhood obesity, i.e., high body mass index (BMI);
for further information, see [3].
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These growth deformities have been, for many years, treated surgically, utilizing the
manipulation of natural growth capabilities of the bone; see [1]. Epiphyseal stapling is
one of the most commonly and traditionally used methods for such correction, using inert
metal staples (clips) implanted into a specific part of a child’s long bone to temporarily
prevent its growth. Hence, epiphyseal stapling (also known as epiphysiodesis, Blount
epiphysiodesis, bone growth restriction, or bone growth surgery) involves placing such
staples in a way to bridge the growth plate to slow down the growth of the long bone;
see [1,4]. This short surgical procedure is performed under general anesthesia.

There are no comparable nonsurgical alternatives to epiphyseal stapling. Surgical
alternatives include leg shortening (i.e., a surgery during which a section of the bone is cut
out and fragments are joined together with a plate), percutaneous epiphysiodesis, see [5],
open epiphysiodesis, and, recently, tension band technique.

Epiphyseal stapling was introduced by Walter Blount in 1949, see [6], and since then,
it has become a common procedure of correcting, in particular, angular deformities of the
knee (genu varum or genu valgum) in children. The growth of the child’s or adolescent’s
bone is associated mainly with physis, i.e., a cartilage structure near joints; see [1,4]. Blount
staples are also used for pseudoarthrosis treatment [7].

Using staples, the physis (epiphyseal plate) can be relatively simply restrained ei-
ther on both sides when correcting limb length discrepancy (i.e., “epiphysiodesis”) or
only on one side when correcting angular deformities (i.e., “hemiepiphyseodesis”) (see
Figures 1 and 2). Unlike the irreversible method of permanent epiphysiodesis, see [8], epi-
physeal stapling does not destroy the epiphyseal plate and, therefore, allows resumption of
the growth once the optimal correction is achieved; see [4].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 16 
 

These growth deformities have been, for many years, treated surgically, utilizing the 

manipulation of natural growth capabilities of the bone; see [1]. Epiphyseal stapling is one 

of the most commonly and traditionally used methods for such correction, using inert 

metal staples (clips) implanted into a specific part of a child’s long bone to temporarily 

prevent its growth. Hence, epiphyseal stapling (also known as epiphysiodesis, Blount 

epiphysiodesis, bone growth restriction, or bone growth surgery) involves placing such 

staples in a way to bridge the growth plate to slow down the growth of the long bone; see 

[1,4]. This short surgical procedure is performed under general anesthesia. 

There are no comparable nonsurgical alternatives to epiphyseal stapling. Surgical al-

ternatives include leg shortening (i.e., a surgery during which a section of the bone is cut 

out and fragments are joined together with a plate), percutaneous epiphysiodesis, see [5], 

open epiphysiodesis, and, recently, tension band technique. 

Epiphyseal stapling was introduced by Walter Blount in 1949, see [6], and since then, 

it has become a common procedure of correcting, in particular, angular deformities of the 

knee (genu varum or genu valgum) in children. The growth of the child’s or adolescent’s 

bone is associated mainly with physis, i.e., a cartilage structure near joints; see [1,4]. Blount 

staples are also used for pseudoarthrosis treatment [7]. 

Using staples, the physis (epiphyseal plate) can be relatively simply restrained either 

on both sides when correcting limb length discrepancy (i.e., “epiphysiodesis”) or only on 

one side when correcting angular deformities (i.e., “hemiepiphyseodesis”) (see Figures 1 

and 2). Unlike the irreversible method of permanent epiphysiodesis, see [8], epiphyseal 

stapling does not destroy the epiphyseal plate and, therefore, allows resumption of the 

growth once the optimal correction is achieved; see [4]. 

 

Figure 1. Parts of the growing bone (tibia). 

 

Figure 1. Parts of the growing bone (tibia).

Recently, the tension band technique, introduced by Stevens in 2007 [9], using non-
locking plates (similar to those used for osteosynthesis) and screws almost in the same
position as staples, has gradually become a preferable alternative to stapling. However,
Blount’s original method still remains an effective means for the treatment of lower limb
deformities in adolescents; see [1,4,10].

According to [1,4], besides accurate diagnosis confirmed by a radiogram of the whole
limb (see Figure 2), good timing of the treatment is also very important. The surgical
procedure involves a short longitudinal incision through soft tissues over the physis and
extraperiosteal implantation of the staple using a special instrument under radiography
control [11] (see Figure 3). The staple must bridge the physis but not penetrate it to prevent
its impairment (see Figure 4).

The staples should not be restricting the physis for longer than 2 years to prevent
permanent growth cessation [12]. Other complications during treatment, such as damaging
the physis by imprecise staple implantation, mechanical failure of the staple (bending, rarely
break), or staple migration can occur. The last one is also the most common complication
and disadvantage compared with the tension band technique; see [1,4].
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Figure 2. (a) Long radiogram of preoperative genu valgum and (b) consecutive correction with staples
in femur; see [4].
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There is a lack of information regarding the biomechanical aspect of Blount’s staples;
hence, one of the goals of our publishing is to fill the gap in this field.

There are two main methods for solving biomechanical problems:

• Numerical approach—(the main subject of this paper).
• Experimental approach (used and described only marginally here).

In this paper, the stress and deformation of staples during epiphysiodesis are eval-
uated by a numerical approach using finite element analysis (FEA). The finite element
method (FEM) is a recognized instrument of numerical analysis widely used in engineer-
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ing mechanics (see, e.g., [13]) and biomechanics. It has been previously used for various
biomechanical tasks [14–16], including Blount staple applications in epiphysiodesis [17].

To verify the results of the numerical solution, i.e., to assess the usability of staples
under the chosen loading (growing) force, and to find the maximum loading (growing)
force that the staples can withstand, a simple experimental approach was also used in this
paper. Experiments can be used in combination with FEA (as we do here or, e.g., in [18]), or
experiments can serve as a standalone tool for simulation of reality, see, e.g., [19].

Our approach can be further used for another types or modifications of Blount’s
staples, plates, and similar implantates.

2. Materials and Methods

The bone growth occurs in the epiphyseal plate, where a new bone mass is created.
Considering this fact, the simulation of the growing process turned out to be difficult.
For this reason, we came up with a solution where the artificial bone (tibia) is cut in
two at the position of the epiphyseal plate; furthermore, we assume that the bone grows
predominantly in the direction of the bone axis (i.e., only oppositional growth is considered),
which means that growth can be simulated by pulling the two bone segments away from
each other.

Models of the staples, both 3D CAD and physical, were provided by MEDIN, a.s.; see
Figure 5 and [20].
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Figure 5. Physical model and 3D CAD model with main dimensions (mm), supplied by MEDIN, a.s.

2.1. Finite Element Analysis

The numerical analysis is performed using the Ansys Workbench 2020 R2 sw; see [21].
Homogenous and isotropic material models are assumed to be good approximations of
reality. Staples are made of biocompatible stainless steel 1.4441 (AISI 316L), see [4], and
the artificial bone model consists of corticalis and spongiosis (i.e., the cortical and spongy
parts); mechanical properties were taken from [22], where Young’s modulus for spongiosis
was reported to range between 0.1 and 0.5 GPa and for corticalis between 12 and 18 GPa.
From this, values closer to the upper limit were chosen; this can, for example, illustrate
obesity (i.e., stronger bones to accommodate for higher body mass). Used material models
are presented in Table 1.

Table 1. Material models of bone and stainless steel.

Material Young’s
Modulus (GPa)

Poisson’s Ratio
(1)

Yield Strength
(MPa)

Ultimate
Strength (MPa)

1.4441 183 0.33 690 800

Corticalis 16.1 0.3

Spongiosis 0.4 0.3
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Research by Halo et al. [4] focused on a simpler bone material model, considering the
cortical part as the only material of the bone. In the current paper, however, we improved
the bone material model by dividing it into corticalis and spongiosis parts.

2.1.1. CAD and FEM Model

The used CAD model obtained from a 3D scan and the bone model used in the
experiment are not 100% identical; nevertheless, they are sufficiently similar to allow
experimental verification of the calculation results; see Figure 6. The model of the whole
bone is not necessary for our purposes and, for this reason, only the proximal part of the
tibia was used in this calculation. This proximal part was then “cut” in two at the site of
the epiphyseal plate. The staples were virtually placed in the bone in the way they usually
are during epiphysiodesis, i.e., in the general area bridging the physis.
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Figure 6. 3D CAD model of the bone and staples with main dimensions (mm).

The CAD model of staple provided by MEDIN a.s. contains notches, which are not
suitable for FEA. For this reason, sharp edges were rounded; see Figure 7. However, these
sharp edges are important for properly inserting the staple in a bone.
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The radius size of 0.25 mm, according to Figure 7, is quite small, because this part of
the staple is relatively thin, and using bigger radius size (e.g., 0.5 mm) would result in near
complete removal of this part.

In this paper, we used only the bone model and staples for FEA. The reason for this
acceptable simplification lies in the fact that the limb growth is primarily determined by
the bone (or, more accurately, epiphyseal plate). The bone is intact (i.e., without fracture);
therefore, the influence of the muscles, ligaments, menisci, and synovia on bone growth is
negligible compared to the load on the bone.

Muscles, ligaments, menisci, and synovia could play a small role in restricting the
staple migration, but this effect is not noticeable in our study and hence is considered
negligible. Thus, muscle and other tissues and fluids were omitted in this paper.

The influence of anatomical parts in cavitas articularis (i.e., mentioned muscles, lig-
aments, menisci, and synovia) might play significant role in ambulation of patients with
Blount staples, see [23].

The transformation of the CAD model into the FEM model is presented in Figure 8.
Considering the complexity of the bone shape, the tibia was discretized by tetrahedral
elements (SOLID187 in Ansys sw) with a global maximum size of 2.5 mm. The element size
in holes for staples was locally refined to mirror the element size of the staples. In addition,
a refinement to 0.5 mm was performed in a small circular area in the immediate vicinity
of holes for staples. The global element size is relatively large as we are focusing on and
evaluating only the staple response, not that of the bone. The corticalis and spongiosis FE
meshes are continuously connected by nodes and elements sharing faces (i.e., conformal
mesh achieved by shared topology function in Ansys SpaceClaim sw), see [21].
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Figure 8. FEM model of the bone and staples.

Staples were discretized by a hex-dominant mesh (SOLID186 + some SOLID187
elements) with a global maximum element size of 0.5 mm. The element size was locally
refined on radii and in the immediate vicinity of these areas; see Figure 9.

The presented mesh in its final form was used for the final calculation and result
evaluation. The sensitivity analysis started with a coarse mesh, and after each computation,
a new, refined, mesh with half the element size of the previous mesh was created. This
process was repeated until results for two different meshes were close (within a 1% margin
of error); in this way, the mesh sensitivity analysis was performed.

Additional information about FE mesh regarding the number of elements and nodes
is presented in Table 2.
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Figure 9. Refined FE mesh: (a) Detail of the mesh in/around the hole for the staple; (b) Mesh of the
staple; (c) Element size on staple (mm).

Table 2. Number of FE elements and nodes.

Part Number of FE
Elements

Number of FE
Nodes

Tibia
Epiphysis 66,083 102,706

Metaphysis-Diaphysis 80,183 126,033

Staple
Medial 132,292 438,008

Lateral 132,581 442,394

Total 411,139 1,109,141

2.1.2. Boundary Conditions

The global coordinate system was oriented so that the Z-axis is parallel to the bone
axis. As mentioned above, we assumed that the bone grows predominantly in the direction
of the bone axis (i.e., oppositional growth) and, therefore, the alignment of the axes allows
simple loading of the bone segments in the epiphyseal plate in the Z direction. We assumed
that for the growth to occur, the loading force Fz needs to match the weight of the person.
As the bone growth happens in the early stages of life (childhood, adolescence), we have
chosen our bone to come from an adolescent standing on one leg with a chosen 100 kg
body weight equivalent to Fz = 980.7 N. In [24], the growing force was determined to be
approximately 500 N, i.e., our force Fz was overestimated to err on the side of safety. The
force boundary condition is illustrated in Figure 10.

The distal end of the cut tibia is fully fixed (i.e., prescribed displacements are ux = uy
= uz = 0); in the proximal part; there is a partial fixation (i.e., prescribed displacements ux =
uy = 0) allowing for a movement in the Z direction. Deformation boundary conditions are
shown in Figure 11.

Apart from the force and deformation boundary conditions, frictional contacts between
the staples and the bone must be considered. The Coulomb friction coefficient between
stainless steel and bone ranges from approximately 0.25 to 0.7, according to [25]. The
friction coefficient is highly dependent, among other things, on the surface quality of both
bone and steel, hardness of bone, etc. In this analysis, the friction coefficient was set to 0.2
(estimated by an educated guess), giving the possibility for staples to migrate out of bone.
The friction coefficient used in this study is lower than in [25], taking into account the body
fluids and tissues reducing the friction. Nevertheless, even with the low friction coefficient
used in our study, the displacement in contact areas was very small, so friction does not
have a major effect on stress distribution.
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2.2. Experiment

The experiment was conducted to support the FEA and clinical applications, i.e., to
determine the maximum loading force Fz of the bone that the staples can withstand and to
partially confirm the findings of the numerical analysis. However, as the experiments are
not the main goal of this article (the main goal is FEA), they were performed only once on
an anatomical artificial bone [26] and once using certified bone foam blocks [27] and will
be only briefly described (see Section 4: Results of the Experiment).

One of the mentioned experiments was performed on artificial bones of the SAW-
BONES brand. The bones are made of composite material mimicking the properties of a
real human bone, i.e., they are suitable for experimental purposes. For the use of composite
bone models in experimental testing, see, e.g., [28,29].
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The experiment was based on the same principles and assumptions as those used in the
presented FEA. The full body of the artificial tibia was cut to obtain only the proximal part,
which was subsequently split into two segments at the site of the epiphyseal plate. Both
bone segments were mechanically adjusted to allow for the use of a jig. The jig consisted of
a screw with a washer and nut attached to the upper bone segment (epiphysis) and of a
self-tapping screw holding the lower bone segment (metaphysis-diaphysis). Staples were
inserted into the bone segments (in a similar location as in FEA), bridging the epiphyseal
plate. Bone segments were then pulled away from each other using the jig. Figure 12a
shows a schematic drawing of the experiment. Figure 12b shows the actual experiment.
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Figure 12. (a) A schematic drawing of the experiment (dimensions in mm); (b) Actual implementation
of the experiment.

In the schematic drawing, see Figure 11a, dimension “A” details the distance of the
epiphyseal plate from the top of the bone and the dimension “MAX. 90” is related to the
limits of the used testing machine.

The upper bone segment in Figure 11b was wrapped in duct tape to facilitate manipu-
lation before and during the experiment.

Used equipment:

• Model of tibia—SAWBONES, Tibia, 4th Gen., Composite, 17 PCF Solid Foam Core;
see [27].

• Staples—provided by MEDIN, a.s.; see [20].
• Jig—M12 screw, M12 nut, washer (inner diameter 12 mm), ST12 self-tapping screw, all

provided by MEDIN, a.s.
• Universal testing machine—TESTOMETRIC M500-50CT; see [30].

The experiment was conducted using deformation-controlled loading with a constant
rate of jaw separation set to 10 mm/min.

3. Results of FEA

FEA was performed as described in Section 2: Materials and Methods. The distribu-
tion of equivalent stress (von Mises) in the staples was determined from the simulation
of the bone growth restriction. The maximum stress occurs in the staple radius, see
Figures 13 and 14.

The total displacement of staples is presented in Figure 15. In our case, the highest
total displacement is at the top end of the staples and the maximum displacement is higher
up in the medial staple than in the lateral one. Based on the detected deformation, we can
measure the distance between the bone segments from the epiphyseal plate to obtain a
rough estimation of how much the bone could grow with the staples applied. Figure 16
shows the average maximum possible growth distance between both bone segments.

The acquired FEA results are summarized in Table 3.



Appl. Sci. 2022, 12, 614 10 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 16 
 

Figure 12a shows a schematic drawing of the experiment. Figure 12b shows the actual 

experiment. 

 

Figure 12. (a) A schematic drawing of the experiment (dimensions in mm); (b) Actual implementa-

tion of the experiment. 

In the schematic drawing, see Figure 11a, dimension “A” details the distance of the 

epiphyseal plate from the top of the bone and the dimension “MAX. 90” is related to the 

limits of the used testing machine. 

The upper bone segment in Figure 11b was wrapped in duct tape to facilitate manip-

ulation before and during the experiment. 

Used equipment: 

• Model of tibia—SAWBONES, Tibia, 4th Gen., Composite, 17 PCF Solid Foam Core; 

see [27]. 

• Staples—provided by MEDIN, a.s.; see [20]. 

• Jig—M12 screw, M12 nut, washer (inner diameter 12 mm), ST12 self-tapping screw, 

all provided by MEDIN, a.s. 

• Universal testing machine—TESTOMETRIC M500-50CT; see [30]. 

The experiment was conducted using deformation-controlled loading with a con-

stant rate of jaw separation set to 10 mm/min. 

3. Results of FEA 

FEA was performed as described in Section 2: Materials and Methods. The distribu-

tion of equivalent stress (von Mises) in the staples was determined from the simulation of 

the bone growth restriction. The maximum stress occurs in the staple radius, see Figures 

13 and 14. 

 

Figure 13. The distribution of the equivalent stress (von Mises) in the staples (MPa).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

Figure 13. The distribution of the equivalent stress (von Mises) in the staples (MPa). 

 

Figure 14. Detail “A” (see Figure 13) of the location with the maximum equivalent stress (von Mises) 

in the medial staple and with marked values near the maximum (MPa). 

The total displacement of staples is presented in Figure 15. In our case, the highest 

total displacement is at the top end of the staples and the maximum displacement is higher 

up in the medial staple than in the lateral one. Based on the detected deformation, we can 

measure the distance between the bone segments from the epiphyseal plate to obtain a 

rough estimation of how much the bone could grow with the staples applied. Figure 16 

shows the average maximum possible growth distance between both bone segments. 

 

Figure 15. The total displacement of staples (mm), deformed + undeformed shape, deformation scale 

10:1. 

 

Figure 16. The average distance between the proximal and distal bone segment of the tibia (mm), 

deformation scale 10:1. 

Figure 14. Detail “A” (see Figure 13) of the location with the maximum equivalent stress (von Mises)
in the medial staple and with marked values near the maximum (MPa).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

Figure 13. The distribution of the equivalent stress (von Mises) in the staples (MPa). 

 

Figure 14. Detail “A” (see Figure 13) of the location with the maximum equivalent stress (von Mises) 

in the medial staple and with marked values near the maximum (MPa). 

The total displacement of staples is presented in Figure 15. In our case, the highest 

total displacement is at the top end of the staples and the maximum displacement is higher 

up in the medial staple than in the lateral one. Based on the detected deformation, we can 

measure the distance between the bone segments from the epiphyseal plate to obtain a 

rough estimation of how much the bone could grow with the staples applied. Figure 16 

shows the average maximum possible growth distance between both bone segments. 

 

Figure 15. The total displacement of staples (mm), deformed + undeformed shape, deformation scale 

10:1. 

 

Figure 16. The average distance between the proximal and distal bone segment of the tibia (mm), 

deformation scale 10:1. 

Figure 15. The total displacement of staples (mm), deformed + undeformed shape, deformation
scale 10:1.



Appl. Sci. 2022, 12, 614 11 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

Figure 13. The distribution of the equivalent stress (von Mises) in the staples (MPa). 

 

Figure 14. Detail “A” (see Figure 13) of the location with the maximum equivalent stress (von Mises) 

in the medial staple and with marked values near the maximum (MPa). 

The total displacement of staples is presented in Figure 15. In our case, the highest 

total displacement is at the top end of the staples and the maximum displacement is higher 

up in the medial staple than in the lateral one. Based on the detected deformation, we can 

measure the distance between the bone segments from the epiphyseal plate to obtain a 

rough estimation of how much the bone could grow with the staples applied. Figure 16 

shows the average maximum possible growth distance between both bone segments. 

 

Figure 15. The total displacement of staples (mm), deformed + undeformed shape, deformation scale 

10:1. 

 

Figure 16. The average distance between the proximal and distal bone segment of the tibia (mm), 

deformation scale 10:1. 
Figure 16. The average distance between the proximal and distal bone segment of the tibia (mm),
deformation scale 10:1.

Table 3. FEA results.

Value Place

Maximal Equivalent von
Mises Stress 682.39 MPa Radius of medial staple, outside of

tibia; see Figures 13 and 14

Maximal Displacement 0.2 mm Apex of medial staple, inside of
tibia; see Figure 15

Average distance between the
proximal and distal bone

segment of the tibia
0.3 mm Epiphysis, inside of tibia,

see Figure 16

4. Results of the Experiment

The obtained load–displacement diagram is shown in Figure 17, with the highest
loading force peaking at 1612.2 N. However, during the experiment, the lower bone segment
failed at the site of placement of one of the staples (lateral staple). This means that the
staples are capable of withstanding even higher load than measured. The failure of the
lower bone segment was also likely caused by the fragility of the artificial bone (i.e., the
mechanical difference between the real and the artificial bone). The bone failure occurred
at the maximum loading force.
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Figure 17. Experiment—Tensile force Fz (N) vs. separation of jaws (mm).

Figure 18 shows the artificial model bone after the experiment, along with the detail
of the failure of the lower bone segment at the lateral staple site.
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Figure 18. The model at the end of the experiment.

Apart from this experiment simulating a real-world application of Blount staples,
additional experiments were performed using solid foam blocks with bone-like properties
procured from SAWBONES; see [27]. The block was cut into smaller pieces to fit into our
testing machine. Two pieces of the foam block were connected by a Blount staple and, as
such, they were inserted into the testing machine using screws from the abovementioned
jig and pulled apart. This experiment yielded similar results—the foam block always failed
in the place of staple insertion, leaving the staples’ structural integrity intact (similarly to
the experiment on the model of the tibia); see Figure 19.
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Because it was the bone blocks and not the staples that failed every time, presenting
measured data for these blocks would not provide any valuable information. However,
evaluation of experiments with the bone blocks (including nonlocking and locking plates,
not only Blount staples) will be presented in our future work.

5. Discussion

A common problem regarding Blount staples observed in medical practice is not their
failure (this can happen, but is very rare), but rather staple loosening or migration out
of tibia [31]. To eliminate the shortcomings of staples, the tension band plate technique
was invented. This technique utilizes tension band plates (i.e., two-plate, eight-plate)
and screws. This newer growth arrest method eliminates problems with loosening or
migration but introduces more frequent implant failure [32]. Thus, the biomechanical
analysis of Blount staples can be used to better understand how the staples act under bone
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growth restrictions, or, e.g., for comparison with and/or to help modify tension band plates
and screws.

The numerical analysis has shown that under the chosen loading conditions of
Fz = 980.7 N (i.e., a load equivalent to the human mass of 100 kg), the staples are safe
for use. The maximum evaluated equivalent stress (von Mises) reached σe = 682.39 MPa.
This stress does not exceed the yield strength. During the analysis, no noticeable migration
of the staples from the bone was observed, which, however, can happen in real-world
applications. A probable reason for this may lie in the precise placement of the staples in
the bone segments under laboratory conditions, which is typically not achievable in real
life, where the staples are simply hammered into the bone. The average distance between
the proximal and distal bone segments of the tibia (i.e., the maximum possible change of the
epiphyseal plate thickness), which is approximately 0.3 mm, is another interesting result as
it tells us how much the bone can grow after epiphysiodesis (the loading in the epiphyseal
plate causes slight deformations of the bone segments so the real growth could be even
smaller). This possible growth is negligible, making the procedure successful from the
perspective of bone growth arrest, which correlates with our initial analysis in [4], where a
simpler bone material model was used.

The results presented in this paper are valid only for the particular configuration of
the bone and staples and for the abovementioned material models. Other configurations
using similar staples will likely yield different results, possibly moving from the elastic
stress state to the elastoplastic one; this is, however, still likely to remain far from reaching
the ultimate strength, making it still safe to use.

The experiment was performed in accordance with the numerical analysis to facilitate
the comparison. However, during the experiment, one of the bone segments failed at the
site of the bone staple insertion, and after that, only one staple held the two parts of the
bone in place. This means that the obtained results are obscured and without the failure,
the maximum withstandable force would be higher. Yet, the measured maximum force of
Fz = 1612.2 N greatly exceeded our assumption of the loading (growing) force (980.7 N).
In the relevant section of Figure 17, the force Fz corresponds to our FEA results very well.
In other experiments using certified bone foam blocks, a similar result was observed; the
foam block failed, leaving the staple intact.

Unlike the numerical analysis, the experiment was burdened by real conditions in-
troduced by the artificial bone disruption by the staples, i.e., by the bone failure at the
site of staple insertion, meaning that the experiment did not fully validate the numerical
model. Nevertheless, as this occurred at loading far exceeding the expected real-life loading
(growing) force, both FEA and the experiment confirmed the safety of the use of staples.
Still, a more ductile material (e.g., wood; see our work [33,34]) might be used instead of
the model bone to avoid bone failure in future experiments. Such obtained results would
probably be negligibly different from using bone.

Concerning FEA, the epiphyseal plate was modeled by virtually cutting the bone into
two parts, and growth was simulated by loading the bone in this plane. For a more realistic
approach, the epiphyseal plate could be modeled as a 3D object bridging the epiphysis and
metaphysis-diaphysis (see Figure 6), and the growth could be simulated by prescribing
displacements to relevant nodes, which is still a simplification of reality, or a more complex
mathematical model could be used to consider, e.g., rate of growth, as is presented in [17].
Nevertheless, this method would not be simply verifiable by an experimental approach as
we cannot easily simulate the real growth. The growth simulation remains a challenge for
future scientific research.

Muscles and other soft tissues were omitted in our analysis. They might be helpful
in keeping the staples from migrating from bone; however, the staple migration was not
observed during our bone growth simulations. The soft tissues’ effect on growth of bone is
considered negligible. For similar biomechanical analyses performed without soft tissues,
see, e.g., [17,23].
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The paper relates to more detailed research on surgical implants, see [35–38], and on
loading of the human body [39,40].

6. Conclusions

Results obtained by FEA and the experiment are in accordance with years of surgical
experience with Blount staples.

The results show and concur that the Blount bone staples of our, or similar, designs
are safe to use for clinical applications as a fracture of the staple is highly unlikely to occur.

There is a lack of information about the numerical and experimental analysis of Blount
staples. Therefore, our original work fills the gap in this branch of biomechanics.

Future Development

For future studies, more extensive experiments could be performed measuring not
only the tensile force, but also the stress inside the staples.

This paper analyzed only one type of bone staples; in the future, the focus could
change to different types of staples or to pediatric plates, which eliminates the problem of
staple migration.
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