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Abstract: The paper deals with an approximate method for calculating elastic–plastic stresses and
strains on the surface of notched samples. The method is based on the Abdel–Karim–Ohno cyclic
plasticity model. The plane stress condition is considered within the evaluation. The output of the
approximation on several multiaxial axial–torsion load paths is compared to our own experimen-
tal results. Experiments were carried out on samples of two notch types manufactured from the
2124-T851 aluminum alloy. Strain distribution in the notch area was measured by digital image
correlation. The comparison between computational solution and measured response shows that the
new method allows for obtaining reasonably good approximation, even for relatively complicated
multiaxial load cases.
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1. Introduction

Most initially isotropic engineering materials exhibit elastic–plastic behavior. However,
the finite-element calculation of plasticity is time-consuming and requires more input
data. Engineers dealing with fatigue life estimation, therefore, often use approaches that
consider only elastic behavior to assess the durability of structures. Such a simplification
is possible in the domain of high-cycle fatigue, but it is unacceptable if the low-cycle
regime is evaluated, where the scale of plasticity is much more substantial. In order to
assess the elastic–plastic stress state, approximate methods that take elastic–plastic material
behavior into consideration might be a good alternative to time–consuming finite-element
elastic–plastic analyses whenever a longer load history should be analyzed.

Many methods have already been suggested for the estimation of elastic–plastic
stresses and strains. The first group of methods contains those intended for monotonic
loading only [1–5]. The methods do not take cyclic hardening or cyclic softening into
account, and they do not describe the movement of the yield surface. Therefore, this group
of methods is not suitable for cyclic loading. The investigation of these methods can be
found in [6].

The second group of methods [7–16] deals with cycling loading and incorporates
plasticity models to describe cyclic hardening or softening and yield surface movement.
Unlike finite-element analyses (FEA), approximate methods do not deal with elastic–plastic
stiffness matrices to obtain a solution. Instead, they use an elastic solution that they convert
into an elastic–plastic solution by using a relation either between pseudomaterial and real
material or between linear–elastic and elastic–plastic strain energies.

Barkey introduced one of the first elastic–plastic stress–strain approximation methods
for cyclic loading [7]. Nominal stresses and plastic strains were related in his work in order
to retrieve the approximation. The kinematic work-hardening model of Mróz [17] was used
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to describe elastic–plastic behavior. Barkey reported good correlation between estimates
with the experiments and FEA.

Two approaches, pseudonotch stress and pseudonotch strain, were presented in [8].
Both approaches incorporated the Mróz model of plasticity. The essence of the methods
is in relating entities from a purely elastic solution to real elastic–plastic ones, e.g., the
equivalent pseudostress to real plastic equivalent strain, creating a pseudomaterial with it.
The behavior of the pseudomaterial is simultaneously characterized by stresses from the
elastic solution and by plastic strains from the real elastic–plastic material response.

In conjunction with Koettgen’s model, Langlais [9] used the infinite surface hardening
rule, which is a modification of Mróz’s model presented by Chu [18]. Instead of the flow
rule, Langlais used Drucker’s equation, which related plastic strain rate and generalized
plastic modulus. Langlais reported that the same level of precision was achieved as in [7,8].

Firat [10] used a pseudostress method similar to the method presented by Koettgen.
The approach was combined with the rate-independent plasticity model by Chaboche [19].
The author reported a high accuracy of the predicted values.

Ince et al. [11] combined the Prandtl–Reuss flow rule [20,21], an assumption about the
equivalence of increments of the total distortional strain energy density, and the Garud
multisurface plasticity model [22]. The authors reported nonconservative estimates, as
strain ranges were predicted to be 4–15% smaller than the experimental results that had
been used for comparison. Regarding energy approaches, an overview of the equivalent
strain energy density (ESED) approach development by Glinka and coworkers is described
in [23].

Ye et al. [12] proposed a new unified expression based on the thermodynamic analysis
of cyclic plastic deformation. The authors used this solution with the material constitutive
model proposed by Jiang and Sehitoglu [24] to estimate notch stresses and strains. The mean
relative errors were reported to be −3.5% for the axial strain component, and −3.9% for the
shear strain component. The authors indicated that the unified expression developed in the
paper had the range of applicability limited to chosen geometries and loading conditions,
and that further verifications of the proposed approximate method were needed.

One of the recent works on the topic of pseudocurve approaches was conducted by
Li et al. [13]. They combined the pseudostrain method with the Jiang–Sehitoglu plasticity
model. The authors reported reasonable results under multiaxial cyclic axial–torsion loading.

The approach in [14] used tangent moduli of pseudo and real curves to calculate
the real stress history. The Garud plasticity model was used to describe the behavior of
the material. Experimental notch strain data were presented for samples from the TC21
titanium alloy. To the authors’ knowledge, it is the first work in which notch stress–strain
correction method estimates were validated on other material than steel.

Similarly to [14], Li et al. [15] used tangent moduli for stress estimation, but their
method also took into account the influence of temperature. This was achieved by incor-
porating the Ramberg–Osgood equation in high-temperature form [25]. Estimates were
validated against FEA.

Kraft and Vormwald [16] combined the unified expression of [12] with the Ohno–
Wang plasticity model [26]. The integration algorithm used to calculate the elastic–plastic
variables was described in depth.

One drawback of some of the methods mentioned above, also noted by other au-
thors [13], is that the methods are not sufficiently described for replication by other research
teams. The second drawback of the current state of such methods is that experimental
verification was only carried out on a limited number of materials and test paths (Table 1).

Table 1 shows that most of the materials used for the validation of the methods
were steel types, and only four sources of experimental data were used. This proves that
a wider experimental investigation is necessary to explore the range of applicability of
such methods.
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Table 1. Materials used in other papers for the validation of the methods for calculating the elastic–
plastic stress and strain.

Author Material Used Data

Barkey [7] 1070 steel [7]
Koettgen et al. [8] steel only FEA

Langlais [9] 1070 steel [7]
Firat [10] 1070 steel [7]

Ince et al. [11] 1070 steel [7]
Ye et al. [12] S460N steel [12]
Li et al. [13] 1070 steel, S460N steel [7,12]

Tao et al. [14] TC21 titanium alloy, 1070 steel [7,14]
Li et al. [15] GH4169 superalloy only FEA

Kraft [16] steel only FEA

The present paper introduces a new combination of the pseudostress method and the
Abdel–Karim–Ohno (AKO) plasticity model [27]. The article describes the pseudostress–
plastic strain approach. Validation was performed on the own new experimental data
measured on notched samples manufactured from the 2124-T851 aluminum alloy and
on available experimental data of 1070 steel [7] and TC21 titanium alloy [14]. The AKO
model has its advantages in an additional parameter that influences the ratcheting response.
It can be enhanced by a memory surface introduction [28] in a future application of the
pseudostress–plastic strain approach.

2. Materials and Methods
2.1. Approximate Method

Pseudomaterial approaches are based on material behavior that couples either elastic
stress with elastic–plastic strain or elastic strain with elastic–plastic stress. The behavior
of the material can be represented by a pseudocurve that is analogous to the static/cyclic
stress–strain curve (Figure 1). In the case of the pseudostress–real plastic strain curve,
which is used in this work, the pseudomaterial experiences stresses that correspond to the
stresses related to a purely elastic solution, while it plasticizes according to its real material
response at the same time.
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Figure 1. Pseudostress–real plastic strain curve and cyclic stress–strain curve; points represent
discrete versions of curves based on the Hollomon parameters.

There are two types of pseudostress approaches. In the first approach, pseudostress is
paired with the total strain [13]; in the second type, pseudostress is paired with the plastic
strain [8,10]. The main difference between the two approaches is in the strain component
that is obtained when a plasticity model is applied to pseudostress history, namely, if it is a
total strain tensor or a plastic strain tensor. In the present paper, the second type of solution
is used.
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2.1.1. Establishing Pseudostress Material Curve

A pseudocurve was established by combining elastic stress with plastic strain. The
plastic strain values were the same as the plastic strain values of the real cyclic stress–strain
(CSS) curve. The CSS curve could be obtained by the Ramberg–Osgood expression using
Hollomon parameters (Section 2.3). Because the number of selected plastic strain values
was finite, both curves were discrete.

Elastic stress was calculated on the basis of the modification of the Neuber rule:

σe =

√
σ
(

εp +
σ

E

)
E, (1)

where σ and εp are real stress and plastic strain described by the cyclic stress–strain curve,
respectively, and E is Young’s modulus.

When the curve was established, the parameters of plasticity model Ci and γi were
calculated. The number of intervals between discrete points i of pseudo or real curves
affected the number of backstresses used in the approximation because pairs of Ci and γi
parameters were calculated here for each discrete interval of either a pseudo or real curve,
and the number of pairs of Ci and γi gave the number of backstresses.

During the approximation process, curves were represented solely by the Ci and γi
parameters. They are not referenced in any other way.

2.1.2. Getting Real Strain and Real Stress

When parameters Ci and γi representing pseudo and real curves had been defined,
the plasticity model was applied to the elastic stress history. Elastic stress history can
be obtained, e.g., for a chosen loading path from an elastic FEA. Because of the way the
pseudocurve was built, this step provided a real plastic stress tensor and accumulated
plastic strain as its outputs. Detailed analyses of this property of pseudomaterial are
presented in Section 2.1.3.

Once the plastic strain tensor had been obtained, the plasticity model was applied
again, and the real stress and real total strain were estimated. However, this time, the
incremental algorithm to acquire the accumulated plastic strain was not involved because
it had been calculated in the previous step.

2.1.3. Equivalence of Pseudo and Real Plastic Strain Tensors

The key part in calculating the real response from the pseudovariables is the equiva-
lence of the accumulated plastic strain dp of the pseudocurve and of the real stress–strain
curve. This was ensured by the way the pseudocurve had been established (Section 2.1.1).

Unlike the case of accumulated plastic strain, the equivalence of the pseudoplastic
strain tensor and of the real plastic strain tensor was not explicitly stated in [8] or in [10],
where similar approaches were used. However, it was stated in [8] that applying the
plasticity model to the pseudostress history results in a real plastic strain tensor. This
statement supports the claim of plastic strain tensor equivalence.

Justification can be found when analyzing the widely used relationship between
accumulated plastic strain increment dp and plastic strain tensor increment dεp

dp =

√
2
3

dεp : dεp, (2)

and the flow rule:
dεp =

3
2

dp
s− a

σy
(3)

where s is the deviatoric part of the stress tensor, a is the deviatoric part of the backstress,
and σy is yield strength. dp and σy were identical for the real curve and the pseudocurve.

Due to the intrinsic difference between the elastic and elastic–plastic material behavior
of isotropic materials, the real stress was smaller than the pseudostress under the same
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load. Backstress α followed the stress while maintaining the radius of the yield sphere
during the kinematic hardening. Because of this, it was safe to assume that tensors s− a
for the real and the pseudomaterial similarly changed; more specifically, the corresponding
components of s− a changed in a similar manner for both materials. If one component
increased for the pseudomaterial, the corresponding component of the real material also
increased. In other words, the increments should have at least the same sign.

The increment of plastic strain was obtained by multiplying s− a. Therefore, the same
assumptions as for s− a tensor were valid for the increment of plastic strain. However,
then, if all the corresponding components of the real/pseudoplastic strain changed in a
similar manner by either increasing or decreasing, they could not provide the same dp in
Equation (2) unless they were equal. Hence, the components of pseudo and real plastic
strains had to be the same.

2.1.4. Approximation Method Step by Step

This section summarizes the approximation method described in Sections 2.1.1 and 2.1.2:

1. Pseudomaterial curve is established.
2. Pseudostress history is obtained either by elastic FEA or using stress concentration

factors [10].
3. The plasticity model is applied to the pseudostress history. In this step, plasticity

parameters Ci and γi obtained for the pseudomaterial are used. The plastic strain
tensor and the accumulated strain are calculated.

4. The plasticity model is applied to the plastic strain tensor obtained and to the accu-
mulated strain. In this step, the plasticity parameters Ci and γi for the real material
are used. Real stress and real backstress are calculated.

2.2. Abdel–Karim–Ohno Plasticity Model

The time-independent theory of plasticity was considered because the aluminum alloy
is not sensitive to the strain rate. It was assumed that the total strain tensor was composed
of elastic and plastic strain tensors εe, εp according to the additive rule:

ε = εe + εp. (4)

Stresses are computed using Hooke’s law:

σ = D:εe , (5)

where D is the elastic stiffness tensor of the fourth order. The yield surface is introduced in
the deviatoric space based on the von Mises condition:

f (σ) =

√
3
2
(s− a):(s− a) – σY = 0, (6)

where σY represents the radius of the yield surface (and yield strength). The flow rule and the
accumulated plastic strain were defined in Equations (2) and (3). According to Chaboche [29],
the backstress is constructed by superposing relevant parts of the backstresses:

a = ∑M
i=1 a(i). (7)

The kinematic hardening rule is introduced in accordance with Abdel–Karim and Ohno
theory ([27], AKO), i.e., the evolution of backstress is defined by the differential equation:

da(i) =
2
3

Cidεp − µiγia(i)dp− γi H( fi)〈dλi〉a(i), (8)



Materials 2022, 15, 1432 6 of 22

where

fi =
3
2

a(i):a(i) −
(

Ci
γi

)2
, (9)

dλi = dεp :
a(i)

Ci/(γi)
– µidp. (10)

In Equations (8)–(10), Ci, γi are basic material parameters, µi is the ratcheting param-
eter, the symbol 〈x〉 represents Macaulay brackets (〈x〉 = (x + |x|)/2) and H( fi) is the
Heaviside step function. Under uniaxial loading, the model gives plastic shakedown for
µi = 0 for all i. Then, more precisely, the multilinear model of Ohno and Wang [26] is
obtained. This option is called OWI hereafter (Ohno-Wang model I, see [26]). The maximal
ratcheting rate is given by µi = 1 for all i (Armstrong and the Frederick rule [30]), and the
corresponding option is marked as CHAB (Chaboche model [19]).

The same value of the ratcheting parameter is usually set for all backstress parts,
µi = µ for all i, and its value is usually small. Therefore, the AKO model is calibrated in
the same way as the OWI model [26]. The selected points of the cyclic stress–strain curve
directly define the values of the basic material parameters by relations

Ci =
σa(i) − σa(i−1)

εap(i) − εap(i−1)
−

σa(i+1) − σa(i)

εap(i+1) − εap(i)
for i 6= M, (11)

CM =
σa(M) − σa(M−1)

εap(M) − εap(M−1)
, (12)

γi =
1

εap(i)
for all i, (13)

where σa(i), εap(i) are the stress amplitude and the plastic strain amplitude of the given i-th
point, respectively. The resulting basic material parameters for the 2124-T851 aluminum
alloy are listed in Table 2.

Table 2. Material parameters of plasticity model obtained for 2124-T851 aluminum alloy.

Real Pseudo

Parameter Value Parameter Value

C1 (MPa) 16,401 C1 (MPa) 51,760
γ1 (-) 500 γ1 (-) 500

C2 (MPa) 4561 C2 (MPa) 7205
γ2 (-) 250 γ2 (-) 250

C3 (MPa) 1948 C3 (MPa) 3908
γ3 (-) 166.7 γ3 (-) 166.7

C4 (MPa) 1097 C4 (MPa) 2637
γ4 (-) 125 γ4 (-) 125

C5 (MPa) 4216 C5 (MPa) 27,589
γ5 (-) 100 γ5 (-) 100

2.3. Experimental Data

To verify the approximation method, fatigue experiments were carried out on two
types of notched samples (Figures 2 and 3) manufactured from aluminum alloy 2124-T851.
The Young’s modulus of the material was 73,100 MPa [31], Poisson number was 0.33, and
Hollomon parameters for the Ramberg–Osgood curve were K = 646 MPa and n = 0.089.
Cyclic yield strength σy of 330 MPa was used for the FEA simulation and for the approxi-
mation method.
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The aim of the experiments was to measure the notch tip strains, specifically the axial
and shear strain components. These components are commonly used to compare estimates
with experimental results [7–16].

Experiments were carried out under force and moment control. The first reason for
the load-controlled experiments is the possibility of recalculating the loading forces and
moments into the local elastic notch stress history using the stress concentration factors
as described in [10]. However, in this work, the elastic FEA was used to obtain the local
stress history. The second reason for using force control is that the strain control of notched
specimens would require complex real-time notch strain measurement and processing.

The stress ratio of nominal axial stress to shear stress was 1 for paths Square, NV
shape, X, and path 7 (see Figure 4). In the case of path Circle, results corresponding to stress
ratios 1 and 1.73 are presented. For stress ratio 1, maximal force was 65.8 kN, and maximal
moment was 329 Nm. For the 1.73 ratio, maximal force was 100.5 kN, and maximal moment
was 290 Nm. Experiments were carried out at room temperature.

Path Square was achieved by multiaxial loading by trapezoidal waveforms of force and
moment signals with a mutual phase shift of 90◦. The common load frequency for the entire
test was 0.0417 Hz. Other authors used a similar path to validate their estimates [7,9–16].

For the NV path, both channels had sinusoidal waveforms. The loading frequency
of the torsion channel was five times faster than that of the tension compression channel.
For the digital image correlation (DIC) measurement, which was carried out for the first
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49 cycles, frequencies were 0.004 Hz for the torque channel, and 0.02 Hz for the force chan-
nel. Other authors used this path to validate other approximation methods [7–9,11,14,15].
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Path Circle consisted of two sinusoidal waveforms of axial force and torque with a
phase shift of 90◦. The loading frequency was 0.1 Hz. In contrast to paths Square and NV,
which appeared in several publications by other authors, path Circle has so far only been
presented in [7,12,16].

Path 7 represents loading by a constant torque in one channel and a sinusoidal
waveform of tension–compression in the other. The loading frequency when measur-
ing the strains was 0.1 Hz. Path 7 was used for validation in [7,8] but only in the form of
FEA simulations.

Loading frequencies were set according to the ability of the testing machine used to
maintain the loading paths on each channel without distortions. The sampling frequency of
the DIC cameras was also taken into account, as the loading frequencies had to be 20 times
smaller than the sampling frequency of the used cameras to avoid aliasing.

The testing machine used for the experiments was INOVA FU 250 (distributed by
Inova Praha s.r.o.), multiaxial tension–compression and torsion load frame with hydraulic
actuator for dynamic loading. The maximal value of the axial force channel of the machine
is 250 kN, and the maximal moment is 2000 Nm.

The Dantec Dynamics 3D Q-450 high-speed image correlation system was used for the
DIC measurement. The system consists of MKII-NanoSense cameras with a CCD sensor
with resolution of 1024× 1280 pixels and Istra 4-D software (version 4.4.3.414). The software
was used for calibration, measurement, displacement evaluation, and displacement export.

For calculating axial and shear strains on the basis of exported displacements from
Istra 4D, a program was written in MATLAB language. The reason for processing the data
outside the DIC system was the possibility of applying a higher level of automation and
more control over displacement smoothing.

3. Finite Element Analyses

FE analyses with purely elastic and elastic–plastic material data were carried out in
Abaqus v6.14-5. The elastic material model aimed to achieve notch tip stress histories to
use them as inputs for the approximations. Analyses with elastic–plastic material data were
performed to verify the correspondence of the material data and the experimental results.
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Specimens were modeled as axisymmetric. The same mesh was used for both elastic
and elastic–plastic analyses. The final mesh size of the quadratic axisymmetric stress ele-
ments CGAX8R (8-node biquadratic, reduced integration) was 0.1 mm (Figure 5). Attempts
to further decrease the element size did not affect the results by more than by 0.007%. All
elements passed the mesh quality check without errors and warnings.
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Figure 5. Axisymmetric model of U-notched specimen in Abaqus.

For elastic–plastic analyses, combined hardening behavior was chosen with the sta-
bilized data type. The number of backstresses was set to 5. The cyclic stress–strain curve
used in the model was calculated on the basis of the Hollomon parameters presented in
Section 2.3. Its values are shown in Table 3.

Table 3. Cyclic stress–strain curve used for elastic–plastic simulation.

Stress (MPa) Plastic Strain (-)

330 0.000
371.56 0.002
395.19 0.004
409.72 0.006
420.35 0.008
428.78 0.010
435.79 0.012
441.81 0.014
447.09 0.016
451.81 0.018

The coincidence of the responses from the experiments and from FEA (Figure 6) at
the initial loading and at the beginning of cyclic loading suggests that the elastic data were
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valid. There were small differences in cyclic regions that could have been caused by the
absence of a ratcheting parameter in the combined hardening model of plasticity in Abaqus.
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(a) 7 and (b) NV.

4. Implementation of Approximation Method

The approximation method itself was implemented in MATLAB. The only input for
the program was the stress history of the notch tip of the elastic FEA and the material
data presented in Section 2.3. The cyclic stress–strain material curve was defined using
Hollomon parameters for five sections of plastic strain with a step of 0.02 and the first value
corresponding to a cyclic yield strength of 330 MPa. The pseudocurve was established
according to the process described in Section 2.1.1.

Parameters of the plasticity model Ci and γi were calculated according to Equations (11)–(13).

5. Results and Discussion

First, all results depicted in Figures 7–9 are presented for the OWI model (µ = 0). The
experimental load path patterns shown in ochre correspond to the loading paths depicted in
Figure 4, but unlike the controlled forces and moment shown there, the strain counterparts
showed ratcheting and subsequent stabilization behavior.
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The estimate for Path 7 was the least precise output from the evaluated test cases. Con-
stant mean stress and ratcheting caused by the mean stress are the most probable explanations.

For path NV, the estimate followed the experimental results quite closely (Figure 7b)
if the complexity of the path is taken into account. Maximal strain components were
underestimated by approx. 0.1–0.2% of strain.

The estimates for path Circle in Figure 8 were slightly nonconservative. Precision
seemed to be roughly the same for both stress ratios of nominal to shear stresses.

Similarly to paths Circle and NV, the maximal experimental strain values were not
reached by the estimate in the case of path Square (Figure 9a). The approximate solution
resulted in greater differences between the elastic and elastic–plastic regions. This response
might be caused by the isotropic hardening rule missing in the plasticity model. Adjust-
ments to isotropic hardening parameters might improve the accuracy of the estimation.

However, in the case of path X (Figure 9b), the maximal experimental strain values
were exceeded in the first three quadrants. The visible stabilization in the experimental
data did not appear in the estimated results when the ratcheting parameter was set to 0.

The influence of the ratcheting parameter on the prediction for Path 7 is shown in
Figure 10. The value of µ = 1 (CHAB) resulted in an excessive accumulation of plastic
shear strain from the first cycle (Figure 10a). The value of µ = 0.1 (AKO) provided better
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prediction of the evolution of the shear strain in the first cycle, but prediction after saturation
of the response was worse than that of OWI (compare Figures 7a and 10b). Thus, the best
prediction of ratcheting is obtained for the limit value of the ratcheting parameter µ = 0,
which corresponds to the Ohno–Wang I model [26]. However, the ratcheting response
remained exaggerated for the 2124-T851 aluminum alloy. One of the possible solutions
is to implement the constitutive model of Chen and Jiao with a multiaxial ratcheting
parameter [32]. The mentioned model enables one to predict even plastic shakedown under
multiaxial stress state for the case with a nonzero mean stress component.
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Figure 10. Ratcheting prediction by special cases of the AKO model for Path 7: (a) µ = 1 (CHAB);
(b) µ = 0.1.

In order to validate the proposed approach on other materials, a numerical study
was performed. For paths NV and Square, estimates based on data in the literature [14]
corresponding to 1070 steel and the TC21 titanium alloy were compared with estimates
by Tao et al. [14]. These authors used the results of Barkey in the case of 1070 steel [7], but
tests on the TC21 titanium alloy were their own. They were carried out on hollow samples
with a perpendicularly drilled hole of 3 mm diameter. The strain records were obtained
from 3 strain gages placed into the immediate vicinity of the hole with length and width of
0.5 mm each. In the case of the TC21 titanium alloy, the comparison was also carried out
for a rotated V-shaped loading path, see Figure 11. Estimates by Tao et al. were chosen on
the basis of their reported quality and because the necessary input data for carrying out
own estimates were complete.
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Figure 11. Rotated V-shaped path used for validation of proposed approach on TC21 titanium
alloy [14].

Table 4 shows nominal stresses and stress concentration factors used to identify
pseudonotch stress history. The components of the pseudonotch stress tensor were calcu-
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lated as σe
22 = Kt22S22, σe

23 = Kt23S23, σe
33 = Kt33S22. Remaining components were zeroes

due to the plain stress condition.

Table 4. Nominal stresses and stress concentration factors used for estimates on experiments concern-
ing 1070 steel and TC21 titanium alloy [14].

Material
Stress Concentration Factors

Loading Path
Nominal

Axial Stress S22
(MPa)

Nominal Shear
Stress S23

(MPa)Tension Kt22 Torsion Kt23 Transverse Kt33

1070 steel [7] 1.31 1.53 0.27 NV 258 168
square 296 193

TC21 titanium
alloy [14] 1.45 1.17 0.3 NV 299 173

rotated V 299 173

The material data are those presented in [14] and are shown in Table 5. Plasticity model
parameters Ci and γi were obtained on the basis of data with the function calc_C_gamma (Ap-
pendix A). The only difference from the source was the cyclic yield strength for 1070 steel,
which was calculated as

√
3 * cyclic yield strength in shear (165 MPa) presented for the

same material in [33], and resulted in 286 MPa. This value led to better results than those
of the initial yield strength of 242 MPa used for the Garud’s model of plasticity in [14]. The
original plots from [14] were recreated using an online tool [34].

Table 5. Material data on 1070 steel and TC21 titanium alloy used for estimates.

Material Young’s
Modulus

Poisson’s
Ratio

Ramberg–Osgood
Parameters

Cyclic Yield
Strength

Ratcheting
Parameter

(GPa) (-) K (MPa) n (-) (MPa) µi (-)

1070 steel [7] 210 0.3 1736 0.199 286 0.3
TC21 titanium alloy [14] 121 0.3 1558 0.093 400 0.1

Results of the estimation models are depicted in Figure 12. To quantify the difference
between the estimates and experimental results, Tao et al. used the relative errors of strain
ranges of individual components. Relative errors RE were calculated as follows:

RE =
(Calculated strain range−Measured strain range)

Measured strain range
. (14)

Results using this relative error can be found in Table 6. This metrics for comparing
the prediction quality could be discussed (see, e.g., the relative disproportions in the load
path shape in Figure 12d, which are not reflected so clearly in Table 6), and other metrics
could be proposed. However, its use here allows for us the quantified comparison to the
results achieved by Tao et al. in [14]. Figure 12a,c show results corresponding to 1070 steel
and TC21 titanium alloy for path NV. Comparing the estimates with the ones presented by
Tao et al. using the relative error of strain ranges, results were better for all components
(Table 6) except the shear strain in case of 1070 steel that, despite being larger in absolute
values, was conservative.

In the case of rotated V-path, the proposed method overestimated both axial and shear
strains. A slight nonproportional hardening of TC21 titanium alloy reported in [14] was
not taken into account in the calculation, which could have affected the results. We aim to
focus on the incorporation of a nonproportional parameter into constitutive equations in a
future work.

The estimate for path Square of proposed method provides lesser relative error in
strain ranges (Table 6) and more closely followed the experimental data (Figure 12d).
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Table 6. Relative errors between measured and calculated strain ranges.

Material Path Strain
Component

RE of Proposed Model
(%)

RE of Estimate
in [14] (%)

1070 steel NV Axial 4.26 −5.29
Shear 7.28 −2.85

Square Axial −4.74 −4.98
Shear −13.36 −14.71

TC21 titanium
alloy NV Axial 5.91 −6.76

Shear −0.35 −5.64

Rotated V Axial 13.53 −3.83
Shear 8.20 −3.32

6. Conclusions

In the present article, the new combination of the pseudostress approximate method
with the Abdel–Karim–Ohno plasticity model was introduced. The combination allows
for analysts to estimate elastic–plastic notch tip stresses and strains without performing
elastic–plastic FE analysis because only elastic stress history and material data are needed
as input. The prediction of ratcheting is not precise; however, it is possible to adjust the
amount of ratcheting for different materials by changing the ratcheting parameter µ.

The basic parameters for the approximation model can be obtained from standard
material data, i.e., from the cyclic stress–strain curve.
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The method was tested on previously unpublished experimental data obtained on
notched samples manufactured from the 2124-T851 aluminum alloy. Strain components at
the notch tip were measured by DIC. The data represent valuable acquisition because only
few experimental data suitable for the verification of notch strain components have been
presented. None such documented experiment has been carried out on an aluminum alloy.

The method was also tested on data from the literature [14], which included frequently
used data on 1070 steel and new experimental data on TC21 titanium alloy.

The estimates agreed well with all tested experimental results and provided competi-
tive quality compared with estimates by other authors.

The common problem of elastic–plastic stress–strain approximation methods is the in-
sufficient description of the methods. This work attempted to fill in the missing details and
clarify vague parts. The code of the approximation method in the MATLAB programming
language is provided in Appendix A.
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Appendix A Implementation of Approximate Method in MATLAB

%% %%%%%%%%%%%%%%%%%%%%%%% GLOBAL VARIABLES
global yieldStrength
%% %%%%%%%%%%%%%%%%%%%% MATERIAL DATA
E = 73100; ny = 0.33; G = E/2/(1 + ny); yieldStrength = 330;
K = 646; % MPa, Hollomon parameters for RO curve
nRO = 0.089;
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% MATERIAL CURVES
[ePlRC, sRC, ePlPC, sPC] = material_curves(E, K, nRO);
[KPC, nPC] = ramberg_osgood_coefficients(ePlPC, sPC);
%%%%%%%%%%%%%%% PLASTICITY MODEL PARAMETERS – C AND GAMMA
[gPC, cPC] = calc_C_gamma(ePlPC,sPC,KPC,nPC);
[gRC, cRC] = calc_C_gamma(ePlRC,sRC,K, nRO);
%% %%%%%%%%%%%%%%%%%%%%% LOADING PATH
path_name = ‘square’; %‘7’, ‘circle’, ‘NV’, ‘square’, ‘circle_1p73’, ‘X’
define_notch_stress_imputs;
increase_number_of_load_cycles;
%% %%%%%%%%%%%%%%%%%% READ EXPERIMENTAL DATA FOR COMPARISON
load(strcat(pwd,‘/experiments_for_comparison/’,test_spcm,‘_notch_strains_and_
info.mat’));
%% %%%%%%%%%%%%%%%%%% PREALOCATING VARIABLES
incPerPlR = 5; prealocate_variables; % incPerPlR per plastic range
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%% %%%%%%%%%%%%%%%%%%%%%%%%% THE ESTIMATION PROCEDURE
ii = 1; % index of estimation points, all matrices at 1 consist of zeros.
for i = 2:1:(length(sigYyFI))
% i . . . index through loading steps
SPsStart = SPs; % deviatoric pseudostress at the beginning of the step

alfaPsI = alfaPs; % I as initial
ii = ii+1;
%% find the start of the plasticization
sigPs = [0 0 0;
0 sigYyFI(i sigYzFI(i);
0 sigYzFI(i) sigZzFI(i);];

SPs = sigPs - trace(sigPs)/3*eye(3); % pseudostress deviator
% find start of the plasticization
tol = 1; %(MPa), tolerance
beginAt = 0.01;
for i2 = beginAt:beginAt/10:1
SInt = SPsStart+(SPs-SPsStart) * i2;

sEq = calc_equiv_stress(SInt-alfaPsI);
if (sEq - yieldStrength) < tol && (sEq - yieldStrength) > 0
elastic_part_instep = 1; break;
elseif (sEq - yieldStrength) > 0

% no purely elastic loading during the step
elastic_part_instep = 0; break;
end
end
% check if elastic loading/unloading has occurred
if i2 ~= beginAt
%% PURELY ELASTIC region solution
dSigYPs =(sigYyFI(i)-sigYyFI(i-1))*i2;dSigZPs =(sigZzFI(i)-sigZzFI(i-1))*i2;
dSigYzPs = (sigYzFI(i)-sigYzFI(i-1))*i2;
elastic_region_solution; % >> function

epsXxPl(ii) = epsXxPl(ii-1);epsYyPl(ii) = epsYyPl(ii-1);
epsZzPl(ii) = epsZzPl(ii-1);epsYzPl(ii) = epsYzPl(ii-1);
else
% no purely elastic loading during the step
sigYPs( ii)=sigYyFI(i-1);sigZPs( ii)=sigZzFI(i-1); sigYzPs(ii)=sigYzFI(i-1);
ii= ii-1; % in order to not skip index when elastic variables weren’t calculated
end
%% plastic region solution (elastic+plastic stresses and strains)
if i2 < 1
% plasticization has occurred

% pseudonotch stresses increments till the end of current step
dSigYPs =(sigYyFI(i) - sigYPs( ii))/incPerPlR;
dSigZPs =(sigZzFI(i) - sigZPs( ii))/incPerPlR;
dSigYzPs = (sigYzFI(i) - sigYzPs(ii))/incPerPlR;
for j = 1:1:incPerPlR
%% cycle trough increments of plastic range

ii = ii + 1; % index of calculated variables – stresses and strains
sigYPs(ii) = sigYPs(ii-1)+dSigYPs;sigZPs(ii) = sigZPs(ii-1)+dSigZPs;
sigYzPs(ii) = sigYzPs(ii-1)+dSigYzPs;% pseudostress

sigPs = [0 0 0;
0 sigYPs(ii) sigYzPs(ii);
0 sigYzPs(ii) sigZPs(ii)];

SPs = sigPs- trace(sigPs)/3*eye(3);% deviator of pseudostress
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[dp,theta] = calc_dp_AKO(gPC,cPC,SPs,alfa_partPs);
[alfaPs, alfa_partPs, dEpsPlPs] = . . .
calc_alfa_and_dEpsPl(dp,gPC,cPC,alfa_partPs,SPs, theta);
dEpsPl = dEpsPlPs;
[alfa, alfa_part, SReal] = . . .
calc_alfa_and_Snp1(dp,gRC,cRC,alfa_part,dEpsPl);
%% non-deviatoric real stress components
sigRealH = -SReal(1,1);%% plain stress condition
sigReal = SReal + sigRealH*eye(3);

sigY(ii) = sigReal(2,2);sigZ(ii) = sigReal(3,3);sigYz(ii) = sigReal(2,3);
dSigY = sigY(ii) - sigY(ii-1);dSigZ = sigZ(ii) - sigZ(ii-1);

dSigYz = sigYz(ii) - sigYz(ii-1);
%% storing calculated strains
% plastic strain increments - tensorial shear strain form!

x(1) = dEpsPl(1,1); x(2) = dEpsPl(2,2); x(3) = dEpsPl(3,3); x(4) = dEpsPl(2,3);
% elastic strain
dEpsXxE = 1/E * (-ny) * (dSigY + dSigZ);
dEpsYyE = 1/E * (dSigY + (-ny) * dSigZ);
dEpsZzE = 1/E * (dSigZ + (-ny) * dSigY);dGammaYzE = 1/G* dSigYz;
dEpsYzE = dGammaYzE/ 2;

epsXxE(ii) = epsXxE(ii-1) + dEpsXxE; epsYyE(ii) = epsYyE(ii-1) + dEpsYyE;
epsZzE(ii) = epsZzE(ii-1) + dEpsZzE;epsYzE(ii) = epsYzE(ii-1) + dEpsYzE;
% plastic strain
epsXxPl(ii) = epsXxPl(ii-1) + x(1); epsYyPl(ii) = epsYyPl(ii-1) + x(2);
epsZzPl(ii) = epsZzPl(ii-1) + x(3);epsYzPl(ii) = epsYzPl(ii-1) + x(4);
% total strain (elastic total new + plastic total)
epsXx(ii) = epsXxE(ii) + epsXxPl(ii); epsYy(ii) = epsYyE(ii) + epsYyPl(ii);
epsZz(ii) = epsZzE(ii) + epsZzPl(ii);epsYz(ii) = epsYzE(ii) + epsYzPl(ii);
end %j = 1:1:(incPerPlR)
end
end
graphs; % function for plotting results
%% %%%%%%%%%%%%%%%%%% FUNCTIONS: %% %%%%%%%%%%%%%%%
function [ePlRC, sRC, ePlPC, sPC] = material_curves(E, K, nRO)
% RC . . . real curve (cyclic stress strain curve); Pl . . . plastic
% PC . . . pseudocurve;e . . . epsilon, s . . . sigma
%% REAL CURVE
% 4 intervals for gamma and C and 1 corresponding to the yield
% strength - added later -> 5 intervals == 5 backstress parts
ePlRC = [0.002 0.004 0.006 0.008 0.01]′;
n = size(ePlRC,1); %number of discrete points on the curve
for i = 1:n
sRC(i,1) = K*ePlRC(i)ˆnRO;
end
%% PSEUDOCURVE
ePlPC= ePlRC;
for i = 1:n
%sig_e = sig *eps_tot*E
sPC(i,1) = sqrt( sRC(i)* (ePlRC(i)+sRC(i)/E) *E );
end
end%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
function [K, n] = ramberg_osgood_coefficients(eps, sig)
f = fit(eps,sig,‘power1’);
regCs = coeffvalues(f);
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K = regCs(1); %RO with Hollomon parameters: eps = sig/E + (sig/K)ˆ(1/n)
n = regCs(2);
end%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
function [gamma, cMatrix] = calc_C_gamma(epsPl,stress,K,n)
global yieldStrength
slope = zeros(size(epsPl,1),1);gamma = zeros(size(epsPl,1)-1,1);
cMatrix = zeros(size(epsPl,1)-1,1);epsPlAtYS = (yieldStrength/K)ˆ(1/n); nn = size(epsPl,1);
for i = 1:nn
if i == 1
slope(1) = (stress(1)-yieldStrength)/(epsPl(i)-epsPlAtYS);
else
slope(i) = (stress(i)-stress(i-1))/(epsPl(i)-epsPl(i-1));
end
end
slope(nn+1) = 0;
for i = 1:nn
gamma(i) = 1/epsPl(i);
cMatrix(i) = slope(i) - slope(i+1);
end
end%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
%% %%%%%%%%%%%%% PROCEDURE define_notch_stress_imputs.m
if strcmp(path_name,‘square’)
% Path Square,F = 66 kN, M = 329.133 Nm, D 26 mm
test_spcm = ‘u3’;
num_cycles_text = ‘1st 100 cycles’;
sigYyFI = [0112 109 109 -3-116-120-120-7 112 ];
sigZzFI = [0427 428 428 0 -429-427-4271427];
sigYzFI = [0-291 1 292 292 292 1 -291-291 -291];
elseif strcmp(path_name,‘NV’)
% Path NV;F = 66 kN, M = 329.133 Nm, D 26 mm
test_spcm = ‘u4’;
num_cycles_text = ‘1st 49 cycles’;
% coarse input - multilinear
sigYyFI = [0366591105 112 104 906333-4-37 -71 -95 . . .
-113 -117-114-96 -73 -41 -8];
sigZzFI = [0132 252 346 407 428 408 346 253 133 1 -131-250 . . .
-345 -405-427-405-345-249-1303];
sigYzFI = [0-2920 292 0 -2920 292 0 -2920 . . .
2910 -2910 291 0 -2910 291 0];
elseif strcmp(path_name,‘circle’)
% Path Circle;F = 66 kN, M = 329.133 Nm, D 26 mm
test_spcm = ‘u73’;
num_cycles_text = ‘1st 100 cycles’;
sigYyFI = [0112 106 9167361 -34 -66 -91 -108-114 . . .
-108 -92 -67 -35 0 356590105 110];
sigZzFI = [0427 406 345 251 131 -1-133-253-347-408 . . .
-429 -408-347-253-133-1131 251 345 406 427];
sigYzFI = [00 90172 236 277 292 277 236 171 900 -90 -171 . . .
-236 -277-291-277-236-171-90 0];
elseif strcmp(path_name,‘circle_1p73’)

% F = 101 kN, M = 290 Nm, D 26 mm
sigYyFI = [0170 170 162 138 101 531 -53 -101-140-165-174-165-140-102-53 0 53100 137

161 169];
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sigZzFI = [0651 651 619 527 382 200 -2-204-386-531-624-656-624-531-386-204-2200 382
526 619 651];

sigYzFI = [00 0 80151 208 245 257 244 208 151 790 -79 -151-208-244-257-245-208-151-80
0];
elseif strcmp(path_name,‘7’)
% Path “7”; F = 66 kN, M = 329.133 Nm, D 26 mm
test_spcm = ‘f9’;
num_cycles_text = ‘1st 100 cycles’;
sigYyFI = [080.8 -78.280.7];% tangential direction
sigZzFI = [0373.3-371.7 372.9]; % axial direction,
sigYzFI = [0 -271.4-270.5-271.5]; % FI as for incrementation
elseif strcmp(path_name,‘X’)
% F = 66 kN, M = 329.133 Nm, D 26 mm
sigYyFI = [0112-4109-7-120-10-123-14];
sigZzFI = [0427 04281-428 1 -428 1];
sigYzFI = [0 -292 12920 292 1 -291 0];
end
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROCEDURE
%% %%%%%%%%%%%%% PROCEDURE prealocate_variables.m
n = size(gPC,1);% number of backstress parts
alfa = zeros(3,3);% total backstress
alfa_part = zeros(3,3,n); % backstress parts
alfaPs = zeros(3,3);% total pseudobackstress
alfa_partPs = zeros(3,3,n); % parts of the pseudobackstress
alfa_partPsI = zeros(3,3,n); % parts of the pseudobackstress at the beginning of the step
theta = ones(1,n);
SPs = zeros(3,3);SPsStart = zeros(3,3);SReal = zeros(3,3);
dEpsPl = zeros(3,3);dEpsPlPs = zeros(3,3); dp = 0;
if sigYyFI(length(sigYyFI)) == 0
% m = number of points in elastic range + number of points in plastic
%range + one initial zero state
m = length(sigYyFI)-1 + incPerPlR*(length(sigYyFI)-2) + 1;
else
m = length(sigYyFI)-1 + incPerPlR*(length(sigYyFI)-1) + 1;
end
epsXx(1) = 0; epsYy(1) = 0; epsZz(1) = 0; epsYz(1) = 0;
epsXxE(1) = 0;epsYyE(1) = 0;epsZzE(1) = 0;epsYzE(1) = 0;
epsXxPl(1) = 0; epsYyPl(1) = 0; epsZzPl(1) = 0; epsYzPl(1) = 0;
sigY = zeros(m, 1); sigZ = zeros(m, 1); sigYz = zeros(m, 1);
sigYPs(1) = 0; sigYPs(2) = 0; sigZPs = zeros(m, 1); sigYzPs = zeros(m, 1);
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROCEDURE
function equivalent_stress = calc_equiv_stress(A)
aMatrix = A.*A;
equivalent_stress = sqrt(3/2* sum(aMatrix(:)) );
end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
%% %%%%%%%%%%%%% PROCEDURE elastic_region_solution.m
sigYPs(ii)= sigYPs(ii-1) + dSigYPs;sigZPs(ii)= sigZPs(ii-1) + dSigZPs;
sigYzPs(ii) = sigYzPs(ii-1)+ dSigYzPs;sigY(ii)= sigY(ii-1) + dSigYPs;
% in elastic regime increments of real and pseudostresses are the same
sigZ(ii)= sigZ(ii-1) + dSigZPs;sigYz(ii) = sigYz(ii-1)+ dSigYzPs;
sigReal = [0 0 0;
0 sigY(ii)sigYz(ii);
0 sigYz(ii) sigZ(ii)];
SReal = sigReal - trace(sigReal)/3*eye(3);
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dEpsXxE = 1/E * (-ny) * (dSigYPs + dSigZPs);dEpsYyE = 1/E * (dSigYPs + (-ny) * dSigZPs);
dEpsZzE = 1/E * (dSigZPs + (-ny) * dSigYPs);dGammaYzE = 1/G *dSigYzPs;
dEpsYzE = dGammaYzE/ 2;
epsXxE(ii) = epsXxE(ii-1) + dEpsXxE;epsYyE(ii) = epsYyE(ii-1) + dEpsYyE;
epsZzE(ii) = epsZzE(ii-1) + dEpsZzE;epsYzE(ii) = epsYzE(ii-1) + dEpsYzE;
epsXx(ii) = epsXx(ii-1) + dEpsXxE;epsYy(ii) = epsYy(ii-1) + dEpsYyE;
epsZz(ii) = epsZz(ii-1) + dEpsZzE;epsYz(ii) = epsYz(ii-1) + dEpsYzE;
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROCEDURE
function [dp,theta] = calc_dp_AKO(gamma,cMatrix,S,alfa_part)
global yieldStrength
n = size(gamma,1);theta = ones(1,n);% vectors prealocation
mu1 = 0; % ratcheting parameter; 0 . . . OWI; 0.1 . . . AKO; 1 . . . CHAB
dpkm1 = 0;dpkm2 = 0;% variables to check convergence
for k =1:100
aMatrix = zeros(3,3); % a supportive variable for the calculation
aNum = 0;
for i2 = 1:n
aMatrix = aMatrix + theta(i2)*alfa_part(:,:,i2);
aNum = aNum + cMatrix(i2)*theta(i2);
end
aNum2 = calc_equiv_stress(S-aMatrix);
dp = (aNum2 - yieldStrength)/aNum; % dp from the first iteration
% The Aitken’s deltaˆ2 process to shorten the convergence —–
if mod(k,3) == 0
con = dp-(dp-dpkm1)*(dp-dpkm1)/(dp-2*dpkm1+dpkm2);
if con > 0
dp = con;
end
end % ———————————————————
SminusA = yieldStrength/(yieldStrength+aNum*dp)*(S-aMatrix);
dEpsPl = 3/2*dp*SminusA/yieldStrength;
if abs(1-dpkm1/dp) < 10ˆ(-4)
break; % solution found
end
for i2 = 1:n
aMatrix = zeros(3,3);alnp1_st(:,:,i2) = alfa_part(:,:,i2)+2/3*cMatrix(i2)*dEpsPl;
alnp1_dash(i2) = calc_equiv_stress(alnp1_st(:,:,i2));

mu(i2) = mu1;c(i2) = 1/(1+mu(i2)*gamma(i2)*dp);
alnp1_hash(:,:,i2) = c(i2)*(alnp1_st(:,:,i2));
fnp1_hash = calc_equiv_stress(alnp1_hash(:,:,i2))ˆ2-(cMatrix(i2)/gamma(i2))ˆ2;

theta(i2)=c(i2)+heaviside(fnp1_hash)* . . .
(cMatrix(i2)/gamma(i2)/alnp1_dash(i2)-c(i2));

end
dpkm2 = dpkm1;dpkm1 = dp;
if k == 100
error(‘Error: number of iterations has exceeded the allowed value’);
k
end
end
end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
function [alfa, alfa_part, dEpsPl] = . . .
calc_alfa_and_dEpsPl(dp,gamma,cMatrix,alfa_part,S,theta)
global yieldStrength
m2 = size(gamma,1); % number of backstress parts
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aMatrix = zeros(3,3);alfa = zeros(3,3);aNum = 0;
for i = 1:m2
aMatrix =aMatrix + theta(i)*alfa_part(:,:,i);aNum = aNum + cMatrix(i)*theta(i);
end
% plastic strain tensor
SminusA = yieldStrength/(yieldStrength+aNum*dp)*(S-aMatrix);
dEpsPl = 3/2*dp*SminusA/yieldStrength;% calculate backstress parts (for the next itera-
tion)
for i = 1:m2
alfa_part(:,:,i) = (alfa_part(:,:,i)+2/3*cMatrix(i)*dEpsPl)*theta(i);
alfa = alfa + alfa_part(:,:,i);
end
end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
function [alfa, alfa_part, Snp1] = . . .
calc_alfa_and_Snp1(dp,gamma,cMatrix,alfa_part,dEpsPl)
global yieldStrength
m2 = size(gamma,1); % number of backstress parts
alfa = zeros(3,3);
% calculate backstress parts
for i = 1:m2
alfa_part(:,:,i) = (alfa_part(:,:,i)+2/3*cMatrix(i)*dEpsPl)/(1+gamma(i)*dp);
alfa = alfa + alfa_part(:,:,i);
end
Snp1 = dEpsPl*yieldStrength*2/3/dp + alfa;
end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF FUNCTION
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