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Abstract: This paper represents a multidisciplinary approach to biomechanics (medicine engineering
and mathematics) in the field of collum femoris fractures, i.e., of osteosyntheses with femoral/cancellous
screws with full or cannulated cross-sections. It presents our new numerical model of femoral screws
together with their stochastic (probabilistic, statistical) assessment. In the first part of this article, the
new simple numerical model is presented. The model, based on the theory of planar (2D) beams
on an elastic foundation and on 2nd-order theory, is characterized by rapid solution. Bending and
compression loadings were used for derivation of a set of three 4th-order differential equations.
Two examples (i.e., a stainless-steel cannulated femoral screw and full cross-section made of Ti6Al4V
material) are presented, explained, and evaluated. In the screws, the internal shearing forces, internal
normal forces, internal bending moments, displacement (deflections), slopes, and mechanical stresses
are calculated using deterministic and stochastic approaches. For the stochastic approach and a
“fully” probabilistic reliability assessment (which is a current trend in science), the simulation-based
reliability assessment method, namely, the application of the direct Monte Carlo Method, using
Anthill software, is applied. The probabilities of plastic deformations in femoral screws are calculated.
Future developments, which could be associated with different configurations of cancellous screws,
nonlinearities, experiments, and applications, are also proposed.

Keywords: biomechanics; collum femoris; cancellous screws; femoral neck fracture; strength analyses;
deflections; beams on elastic foundation; stochastic approach; probability; reliability; mechanical
stress assessment

1. Introduction

Femoral fractures rank among the most commonly observed fractures in traumatology
and orthopedics; see [1].

Proximal femoral neck fractures (PFN fractures, collum femoris fractures) are typical
intracapsular fractures representing a significant clinical problem; see Figure 1.

While the femur, i.e., os femoris, is the strongest bone in the human body, the collum
femoris is the weakest part of the femoral bone. PFN fractures disrupt the integrity of the
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hip joint, i.e., articulatio coxae, and are associated with increased risk of avascular necrosis
and other problems, with possibly relatively high patient morbidity and mortality. Elderly
people and, in particular, osteoporotic women are at the greatest risk of PFN fractures
caused by sudden falls, i.e., small-force injuries and low-energy trauma. Another significant
group of patients is represented by younger people injured as a result of motor vehicle
accidents, i.e., high-force injuries and high-energy trauma.
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Figure 1. (a) Articulatio coxae and its parts with collum femoris and collum femoris fracture. (b) Rtg. 
snapshot of the displaced subcapital femoral neck fracture. 
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open reduction and internal fixation (ORIF) or arthroplasty, usually depending on the age 

Figure 1. (a) Articulatio coxae and its parts with collum femoris and collum femoris fracture. (b) Rtg.
snapshot of the displaced subcapital femoral neck fracture.

According to the international standard Arbeitsgemeinschaft für Osteosynthesefragen
(AO) classification, the PFN fractures belong to Class 31. From an anatomical point of
view, there are three basic types of these fractures, i.e., subcapital, mediocervical (i.e.,
transcervical), and basicervical; see [2].

However, for descriptions of PFN fractures, Pauwel’s classification and Garden classi-
fication are also applied. Pauwel’s classification classifies PFN according to the orientation
and direction (i.e., type I, II, and III). Garden classification classifies PFN according to the
amount or degree of displacement (i.e., type I, II, III, and IV). For more information see [3,4].

Usually, a plain radiograph is a first-line examination in patients with suspected PFN
fractures. Hence, the diagnosis of PFN fractures is generally made radiographically with
orthogonal radiographs of the hip. Surgical treatment predominates, mostly with open
reduction and internal fixation (ORIF) or arthroplasty, usually depending on the age of the
patient. However, the medical point of view is not the main subject of this article, and for
more information on this perspective, please refer to medical literature [1–12].

The application of femoral screws, i.e., of lag spongious/cancellous screws, is a
possible minimally invasive treatment method for the treatment of PFN fractures. In our
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case, cancellous screws produced by MEDIN a.s. were used for this work; see [13]. These
screws are made up of either stainless steel or Ti6Al4V materials; see [1] and Figure 2.
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Figure 2. (a) Osteosynthesis with two cannulated femoral (cancellous) screws; (b) femoral screws with
a cannulated cross-section (not-to-scale); (c) femoral screws with a full cross-section (not-to-scale).

This paper aims to perform deformation and strength analyses and assessments of
various femoral screws and, subsequently, to evaluate the results by (i) a deterministic
approach, see [1], and (ii) a probabilistic, i.e., stochastic, approach based on the simulation-
based reliability assessment (SBRA) method presented in this article. The SBRA method, a
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typical application of a direct Monte Carlo method and probabilistic reliability assessment,
is a modern and innovative approach applied to mechanical structures in engineering and
physics. Inputs and outputs are of stochastic quantities.

Other possible approaches, based on the finite element method etc., are reviewed in
our previous papers; see [1,14] and other papers [15–18]. However, those approaches are
not based on stochastic quantities.

The development of some relatively easily applicable biomechanical numerical so-
lutions presented in this article leads to possible improvements in the quality and safety
of PFN fracture treatment. For example, the results can lead to alterations of dimensions,
methods of insertion, or the number of cancellous screws used during the surgery. Appli-
cation of the stochastic solution and stochastic evaluation is a new trend in this field of
multidisciplinary science.

2. Limitations

Although this problem was previously tackled using the finite element method, i.e.,
3D model with deformation and stress analyses, see [1,10], the presented study focuses
on a planar (2D) model based on the screw, i.e., beam, resting on an elastic foundation,
i.e., on the collum femoris bone. This novel approach is simpler, and its solution is quicker,
enabling a better generation of random real inputs, such as the loading forces F, Fm, F1,
F2, material properties of screws E, length of screws L, L1, L2, cross-section A, principal
quadratic moment of cross-sectional area JZT, insertion angle of screws ∝, and the stiffness
characteristics k of the collum femoris–screw interaction.

The beam is a typical, and relatively easy to understand, engineering simplification
for long and narrow structures such as the cancellous screw in question.

Stiffness characteristics of the femur are substituted by the most popular Winkler’s
(bilateral elastic) foundation; see [19–22].

Hence, it is not a problem to conduct millions of random simulations (calculations) in
real time using the direct Monte Carlo method, i.e., stochastic/probabilistic simulation and
nature of reality. For more information, see [1,21,23–27].

In this article, the solved model presents the results for full or cannulated screws
inserted in parallel positions, i.e., the easiest mathematical/mechanical case. However, this
method is applicable for any position of the cancellous screw. Changes of angles ∝ and
length L, see Figure 3, enable us to simply change the screw positions in the model due to
patient anatomy, thus evaluating appropriate, less appropriate or inappropriate cancellous
screw positions for the surgery. For more information, see [1].

The influence of possible dynamic effects is reflected in the dynamic coefficient kdyn,
which is a typical engineering approach and easy application of the dynamics. In our case,
kdyn ∈ (1; 4), which means that the static force can be increased up to four times.

The materials of the cancellous screws are isotropic, homogeneous, and linear, represent-
ing another typical and widely accepted engineering approach in mechanics/biomechanics.

From the traumatology/orthopedics perspective, a relatively large amount of infor-
mation and statistical evaluations of treatment methods is available. From an engineer-
ing/biomechanical perspective, however, there is a relative absence of numerical models
which would enable us to evaluate the appropriateness of screw positions or the selection of
operating techniques from a biomechanical point of view. Hence, there is not enough infor-
mation about mechanical stresses, deformations, or reliability assessment of osteosyntheses
in PFN fractures; see [1].

The use of cancellous screws for PFN fracture treatment is limited by the quality
of bone and type of fracture. Cancellous screws are usually applied in the treatment of
subcapital and mediocervical fractures. In our case, three cancellous screws were applied.
In some patients, two screws can be also applied (usually with different dimensions and
“small” changes of elastic characteristics k).

Still, the approaches and results presented in this paper can also be applied to other
types of screws, bones, and fractures, and even for other types of screw joints in engineering.
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3. Materials and Methods

As mentioned above, the beams on elastic foundations are frequently used in many
types of engineering applications. The linear or nonlinear elastic foundation can also be
applied if a physical object, such as an implant or bone, is supported or embedded in a
continuum. This leads to a suitable approximation/simplification of mechanical contacts;
see [1,19–22,25,28,29]. Therefore, from the biomechanical perspective, the cancellous screws
are, in this paper, described and solved as beams on an elastic foundation.

From the engineering/mechanical/biomechanical point of view, the new numerical
model is derived from and based on 2nd-order theory and on the theory of 2D beams
on an elastic bilateral (Winkler’s) foundation. This leads to a set of three 4th-order linear
differential equations:

EJZT
d4vi

dx4
i
− N

d2vi

dx2
i
+ kvi = 0 (1)

for calculated deflections (displacements) vi, i = 1, 2, and 3 in global coordinate systems
x1 ∈ (0; L1), x2 ∈ (L1; L2); x3 ∈ (L2; L3), see Figure 4, where the bone–screw interaction is
approximated by the elastic foundation via parameter k.
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According to [21] and general mathematical solution of linear equations, the general
solutions of differential Equation (1) are

vi = eωIxi [A1i cos(ωRxi) + A2i sin(ωRxi)] + e−ωIxi [A3i cos(ωRxi) + A4i sin(ωRxi)] (2)

where parameters

ωR =

√
ω2 +

|N|
4EJZT

, ωI =

√
ω2 − |N|

4EJZT
and ω = 4

√
k

4EJZT
(3)

Equation (2) contain twelve integral constants A1i, . . . , A4i.
Hence, the femoral screw is resting on an elastic foundation prescribed by elastic

stiffness k; see [1,21]. By changing the stiffness k, it is simply possible to consider a fracture
or a healthy bone or even to fit it to specific bones, such as healthy or osteoporotic bone.

Three screws of the length L were applied in parallel positions on the elastic foundation,
i.e., in the os femoris, and were loaded by the total quasi-dynamical force Fm acting on the
direction of the femoral screw angle ∝; see Figure 3.

However, the real variability of all inputs/outputs is taken into account by the proba-
bilistic/stochastic/statistical approach, i.e., the SBRA method.

The SBRA method (in our case, the application of Anthill sw), was developed to use
available personal computers for a qualitative new improvement of the reliability assess-
ment of structures. Its application allows desired transitioning from the deterministic to the
probabilistic concept of reliability assessment of the natural phenomena, i.e., transitioning
from deterministic reliability assessment to probabilistic assessment of structures or sys-
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tems. With the SBRA method, the calculated probability of failure is estimated according to
the theory of limit states [21,23–27,30,31].

Reference [32] also investigated femoral screws as beams without elastic foundations.
However, the solution in that paper is different, being performed for only one loading
force and neglecting the influence of axial forces; besides, the elastic foundation is only
mentioned but not used. The accuracy of this solution is, in our opinion, not sufficient.

Typical shapes and dimensions of the cancellous screws are presented in [13].
The corrosion-resistant, i.e., stainless, steels (for example DIN 1.4441–316 L medical,

AISI 316 L, ISO 5832-1, formerly standard ČSN 17 350 in the Czech Republic) used nowadays
to produce implants are primarily high-alloy austenitic steels with high Cr, Ni, and Mo
content and low carbon content; see [33].

Pure titanium and its alloys (for example Ti6Al4V, ISO 5832-3, see [33,34]) usually have
good mechanical properties and inertness, with a high degree of corrosion resistance—both
when exposed to air and in the chemically aggressive environment of the human body.

Titanium alloys are more suitable for traumatology/orthopedics implants than stain-
less steels because in terms of biocompatibility, they are more inert. Titanium alloys can be
surface-anodized (i.e., the titanium oxide can be electrolytically produced on the surface of
the implant), see [33].

The mass of the human body resting on the hip joint m is the full patient mass without
one lower limb (i.e., 78–82% of the full patient mass; see Figure 3). This fact (probabilistic
value) is taken into consideration by the coefficient km.

The formula for the total force acting on the screws is

Fm = m kmkdyng (4)

including dynamical effects, i.e., the coefficient kdyn, and gravitational acceleration g.
Division of Fm into three screws (beams) is explained in [1].

In one beam, the force F, see Figure 4, is defined by the expressions

F = Fm/n, F1 = F cos(∝), F2 = F sin(∝), (5)

where n is the coefficient of inequality in the division of forces. Coefficient n ∈ (2; 3)
respects possible variations of maximal and minimal values of force Fm. Coefficient n
is partially connected with the quality of a bone and with the quality of possible screw
insertions. Force F1 is the tangential force and F2 is the axial force; see Figure 4. For more
information, see [1].

The typical diameter of the femoral screws is the shank diameter D, which is used
in the solutions below. However, the cannulated femoral screws also have their inner
diameter d; see Figure 2.

Let us solve one femoral screw of a given length L (i.e., a beam on an elastic foundation)
presented in Figures 3 and 4. The vertical displacement vi = v(xi), see Equation (2), must
be solved in three defined sections xi, see Figure 4. Hence, three differential equations must
be solved. This, in turn, requires the solution of twelve constants of integration A1i, . . . , A4i
via twelve boundary conditions at points x1 = 0 m, x1 = x2 = L1, x2 = x3 = L2, and
x3 = L. The boundary conditions, therefore, are

Mo1(x1 = 0) = 0 , T1(x1 = 0) = 0 , (6)

v1(x1 = L1)− v2(x2 = L1) = 0,
dv1
dx1

(x1 = L1)− dv2
dx2

(x2 = L1) = 0 ,
Mo1(x1 = L1)−Mo2(x2 = L1) = 0,

T1(x1 = L1)− T2(x2 = L1) = F1,

 (7)
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v2(x2 = L2)− v3(x3 = L2) = 0 ,
dv2
dx2

(x2 = L2)− dv3
dx3

(x3 = L2) = 0 ,
Mo2(x2 = L2)−Mo3(x3 = L2) = 0,
T2(x2 = L2)− T2(x3 = L2) = −F1,

 (8)

Mo3(x3 = L) = 0 , T3(x3 = L) = 0. (9)

Hence, based on Equations (6)–(9), it is possible to derive and solve a set of twelve
linear equations which can be expressed in matrix form as

{A} = [M]−1 × {B} (10)

The constants {A} = {A1i, . . . , A4i}T can be acquired by solving a set of linear
equations; see [1]. This presented analytical approach is easy to solve and evaluate.

Hence, shearing forces Ti, bending moments Moi, normal forces N, slopes dvi
dxi

, and
displacements vi can be evaluated over the whole length of the femoral screw (beam). The
definitions of mechanical stresses and their maximal values σMAX, σMAX1, σMAX2, and
τMAX , see Figure 5, are based on combined loadings, and are explained in [1].
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D is the pitch diameter.

The calculated maximal stress values σMAX are derived from the bending and com-
pression stress state and are found in the points of the expected maximum, i.e., in the areas
of mechanical contact between the cancellous screw and femoral bone. Thus,

σMAX1 =
N
A
− MoMAX

Wo
, σMAX2 =

N
A

+
MoMAX

Wo
and σMAX = max(|σMAX1|, |σMAX2|) (11)

The σMAX is present in a bottom line of the screw as shown in Figure 5.
Examples of the deterministic solutions and results are presented in [1]; additional ex-

amples of both deterministic and probabilistic approach are presented in the following text.
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4. Probabilistic Inputs

As mentioned above, our new probabilistic approach (SBRA method) offers simple
but fast and acceptable solutions to the presented problem.

Probabilistic inputs and outputs can be represented and evaluated by histograms, i.e.,
by graphs that display the distribution of our data. Histograms are good approximate
representations of the statistic distributions of numerical data and give us a rough sense of
the density of the underlying distribution of the data (see Figure 6 for an example).
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D = 0.005 m, d = 0.0018 m, E = 2.1 × 1011 Pa,
g = 9.807 ms−2, k = 2.2222 × 107 Pa, kdyn = 1.4,

km = 0.814, L = 0.09 m, L1 = 0.015 m, m = 120 kg,
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For the stochastic simulations (Anthill sw, cannulated screw, Ti6Al4V material), six
stochastic inputs and eight deterministic inputs were used; see Table 2.

Table 2. Input parameters for probabilistic calculations (cannulated screw, Ti6Al4V material).

Input
Variable Minimum Maximum Mean Median Standard

Deviation Bounded (Truncated) Histogram

∝/deg/
Cancellous
screw angle

5 80 45.94 46.71 16.45
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Other input parameters are constant, i.e., D = 5 mm, d = 1.8 mm, E = 1.138× 1011 Pa, k = 2.2222× 107 Pa,
L1 = 15 mm, L2 = 68 mm, L = 90 mm, g = 9.807 ms−2.

5. Probabilistic Solution and Probabilistic Reliability Assessment

Based on the parameters presented in Table 2, the probabilistic (stochastic) solution
was performed for 5× 106 random Monte Carlo simulations using the Anthill sw.

Some examples of calculated output histograms are presented in Figures 10 and 11.
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Figure 11. Histogram of the calculated maximal global compression stress
σMAX2 ∈ (−1129.21;−35.49) MPa acting on a cancellous screw (Anthill software, cannulated screw,
Ti6Al4V material).

Using the SBRA method (Anthill sw), the probabilistic reliability function RF can be
defined as

RF = Re − σMAX (12)

where maximal global stress

σMAX = |σMAX2| ∈ (35.49; 1129.21) MPa (13)

is defined in Figure 5 and in Equation (11). The histogram of RF is presented in Figure 12.
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If situations when RF ≤ 0 occur, the yield limit is reached in the cancellous screw (i.e.,
an undesirable or unsafe situation occurs), while as long as RF > 0, the situations are safe.

In physics, mechanics, biomechanics, and structural reliability assessment, the con-
cepts of limit states separating multidimensional domains of random (stochastic) variables
into “safe” and “unsafe” domains have been generally accepted. Therefore, the probability
of failure or of an undesirable situation (in other words, the probability that the yield limit
Re exceeds σMAX) is the probability of PRF≤0; see Figures 12 and 13 and [24].
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The presented results for a cannulated cancellous screw inserted in the collum femoris
imply the biomechanical probability of failure to be PRF≤0 = 2.51× 10−5 = 0.00251%. It
should be, however, noted that the calculated probability PRF≤0 is caused mainly by the
collum femoris overloading (i.e., it accounts for mechanical/biomechanical problems). Other
possible problems, such as the development of pathological problems during the treatment,
surgical mistakes, etc., are not taken into the account. Hence,

Punsuccess f ul ≥ PRF≤0 (14)

In other words, the total probability of unsuccessful treatment Punsuccess f ul of collum
femoris fractura is greater than our calculated PRF≤0. Calculation of the overall probability of
unsuccessful treatment encompassing all possible nonmechanical effects, i.e., Punsuccess f ul , is,
however, not the aim of this article. Such a value should be rather acquired through a long-
term statistical evaluation of medical cases than by an engineering calculation. Our PRF≤0
is only a partial parameter responsible only for a minor part of osteosynthesis failures.

6. Discussion

As mentioned above, treatment of PFN (collum femoris) fractures represents an ongoing
problem in traumatology, orthopedics, and in rehabilitation medicine. The application of
cancellous screws, i.e., femoral or lag spongious screws, made of titanium alloys or stainless
steels is a possible and popular method for the treatment of these fractures. The medical
perspectives of these fractures and their treatments are explained at the beginning of this
article and in [1,3].

Biomechanical research is highly desirable for improving the quality and reliability
of fracture treatment. To model the placement of the screw in the femoral neck, a planar
(2D) model of a beam on the elastic foundation (femoral bone) according to Winkler was
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used. This model, i.e., derivation and solution of a set of differential equations using
a deterministic approach based on the static theory of the 2nd order, was presented in
this article.

Our long-standing cooperation with medical experts led to the development of the
presented innovative probability-based stochastic, i.e., statistical, approach (SBRA method,
direct Monte Carlo method, Anthill sw) that was used as a significant improvement of the
results of our previously published research. In this approach, real random inputs, typical
for nature and the patients, are taken into account using bounded histograms.

One of the principal results is, therefore, the determination of the probability of oc-
currence of an undesirable situation from the perspective of mechanics/biomechanics, i.e.,
calculation of the probability of exceeding the screw yield strength. This “biomechani-
cal“ probability, calculated to be PRF≤0 = 2.51× 10−5, is acceptable and can be further
evaluated and developed in association with unsuccessful treatment results, i.e., with patho-
logical changes during osteosynthesis healing, surgical mistakes, noncompliance with the
treatment algorithms, associated diseases, etc. Hospitals are continuously statistically evalu-
ating their successful or unsuccessful treatments, and the data could be associated with our
biomechanical results. For example, for future extension, the bone-healing model presented
in [35] could be applied for mechanobiological rules in the ossification of femoral fractures
under differing biomechanical conditions and varying anatomy and fracture types.

Our models presented in this article and [1] can also be used for calculating/assessing
general, inappropriate, or unacceptable positions of cancellous screws. Changes can be
made to the length L, angle ∝, number of screws, parallel or nonparallel positions of screws,
type of fractures, screws that can or cannot be in contact with the femoral neck cortex, etc.
Our model can be further extended and applied in the mechanics of joints in engineering
(for example, in wooden structures, etc.).

In this article, the two solutions, i.e., example of one deterministic calculation and one
stochastic solution, are performed for cancellous screws with cannulated cross-sections
made of stainless steel or Ti6Al4V material. Additional specific deterministic solutions are
presented in [1,14].

The presented approach represents a rapid solution to a stochastic “real-world” mod-
eling of a biomechanical task and represents a valid alternative to computationally and
temporally more demanding and more complicated calculations using the finite element
method; see Figure 14 for an example. A comparison of the results acquired by the finite
element method and the method presented in this paper demonstrates the accuracy of
our simple 2D model; see [1,14]. Figure 14 shows stress distribution in three cancellous
screws for static loading in a large 3D model of the femur with applications of mechanical
contacts. The maximum stresses are in good agreement with our 2D stochastic beam model
presented in this article. Thus, the maximum stress of 153.28 MPa acquired via the finite
element method (see Figure 14) lies in the maximum stress interval of Equation (13).

More detailed calculations on the topic of femoral neck fracture osteosynthesis using
the finite element method and/or experimental solution will be presented in the next
continuation of our research.

If needed, our model can be expanded to include nonlinear tasks, i.e., respecting
the nonlinear behavior of the elastic/nonelastic substrate, geometry, and material. More
information can be found in the work of the principal author [19–21] and references [28,29].

There are other opportunities for the future development of screws for osteosyntheses
in surgery, traumatology, and orthopedics. These include experimental work and nu-
merical simulations to improve the quality and reliability assessment of screw placement
within the bone. Our present, as well as future, research of osteosynthetic screws in the
internal and external fixation (see Figure 15) is based on our previous work (for example,
see [1,11,23,33,36–38]). Figure 15 shows an angularly stable plate with locking bone screws
removed from the human wrist. This plate is covered by body liquids, such as haema, exu-
date, and pieces of tissues. Subsequent biochemical, biomechanical, and material laboratory
testing of the extracted screws revealed information important for designing new screws;
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see [33]. The long-term goal is to improve, in cooperation with medical staff, the quality
and safety of osteosynthesis where the screws play the main part.
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7. Conclusions

This paper, as well as our previous one [1], discusses and solves basic medical per-
spectives on collum femoris fractures with the focus on their treatment via cancellous, i.e.,
femoral, screws, in particular of subcapital, mediocervical fractures.

The new, simple, deterministic, and stochastic (probabilistic) 2D model of a cancellous
screw in the femur as a beam on an elastic bilateral Winkler foundation, along with the 2nd-
order theory of small deformations, i.e., bending and compression loading, were applied in
the beams.

Materials, dimensions, loading, differential equations and their solutions, evaluations,
etc., are described.

Important biomechanical stochastic evaluations, i.e., evaluations of normal forces,
shearing forces, bending moments, deflections, slopes, stresses, probabilistic reliability
assessment, and the probability of failure were carried out.

Compared to the finite element method, our computational model as a whole is
characterized by a quick and easy solution and high variability of possible screw insertion
positions.

One example of probabilistic reliability assessment of the undesirable situation (i.e.,
probability of plastic deformations) with results PRF≤0 = 2.51 × 10−5 was presented and
discussed in this paper.

According to the results, from the biomechanical point of view, the cancellous screws
are safe enough and are recommended as a suitable and safe osteosynthetic tool for
fracture treatment.

Other possibilities for future research and developments, such as material nonlineari-
ties, and experiments are discussed.

Hence, together with our former work, this article has presented new ideas and
methods and has demonstrated their practical applications in biomechanical engineer-
ing, centered around a new simple approach to the solution of cancellous screws with
applications in the field of traumatology and orthopedics.

Applications of stochastic mechanics, together with probabilistic reliability assessment
in biomechanics, are still rare but are in accordance with modern and innovative trends
of science.

According to our presented simple model, the relatively complicated problems of
geometry, dimensions, configurations, way of insertion, reliability assessment, etc., for
cancellous screws can be solved.
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List of Symbols

A1i, . . . , A4i, {A}
Integral constants and vector of integral constants (m). They are
related to boundary conditions.

{B} Vector of the left side (1)

D, d
Outer (shank) and inner (cannulation) diameter of cancellous
screw (m) (input variables)

E Elastic modulus of cancellous screw material (Pa) (input variable)
F Quasi-dynamic force acting on one cancellous screw (N)
Fm Total loading quasi-dynamic force acting in caput femoris (N)
F1, F2 Tangential and axial force acting in one cancellous screw (N)
g Gravitational acceleration (ms−2) (input variable)
i = 1, 2 and 3 Index of a section of the cancellous screw

JZT
Principal quadratic moment of the cross-sectional area of
cancellous screw (m4)

k
Elastic foundation stiffness, i.e., femoral bone stiffness
(Nm−2) (input variable)

kdyn, km Dynamic force and mass reduction coefficients (1) (input variables)
L, L1, L2 Total length and local lengths of cancellous screws (m) (input variables)
[M] Matrix of equations (1)

Moi, MoMAX
Internal bending moments in sections of the screw and the absolute
value (Nm) of the maximal bending moment in the screw

m Patient mass (kg) (input variable)
N Internal normal (axial) force in the cancellous screw (N)
n Coefficient of inequality in the division of force (F) (1) (input variable)
PRF≤0 Probability of biomechanical failure
Punsuccessful Probability of unsuccessful treatment
PFN Proximal femoral neck
Re Yield stress of the material of cancellous screws (MPa) (input variable)
RF Probabilistic (stochastic) reliability function (MPa)

Ti, TMAX
Internal shearing forces in sections of the cancellous screw and absolute
value (N) of the maximal shearing force

vi, vMAX
Deflections (i.e., vertical displacements) in sections of the cancellous
screw and their maximum (m)

dvi
dxi

Slope of the cancellous screw (rad)
x1, x2, x3, xi Cartesian coordinates in sections (m)
∝ Cancellous screw angle (deg)(input variable)

σMAX, σMAX1, σMAX2
Global maximal and maximal normal mechanical stresses in the
cancellous screw (MPa)

τMAX Maximal shear mechanical stress in the cancellous screw (MPa)
ω, ωR, ωI Parameters of the numerical solutions (m−1)
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