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We discuss a general strategy which produces an orthonormal set of vectors, stable
under the action of a given set of unitary operators Aj, j=1,2 , . . . ,n, starting from
a fixed normalized vector in H and from a set of unitary operators. We discuss
several examples of this procedure and, in particular, we show how a set of coher-
entlike vectors can be produced and in which condition over the lattice spacing this
can be done. © 2007 American Institute of Physics. �DOI: 10.1063/1.2711371�

I. INTRODUCTION

In the mathematical and physical literature many examples of complete sets of vectors in a
given Hilbert space H are constructed starting from a single normalized element f0�H, acting on
this vector several times with a given set of unitary operators. As a matter of fact, this is exactly
what happens for coherent states and for wavelets, just to cite maybe the most known examples.
In the first case one essentially acts several times on the vacuum of a bosonic oscillator with a
modulation and a translation. In the second example, to produce a complete set of wavelets one
acts on a mother wavelet with powers of a dilation and a translation operator. In this last situation
the result of this action can be an orthonormal �o.n.� set of vectors, and this is the main result of
the so-called multiresolution analysis,1 while this is forbidden for general reasons for coherent
states. Both these examples, as well as many others, can be considered as particular cases of a
general procedure in which a certain set of vectors is constructed acting on a fixed element of H,
f0, with a certain set of unitary operators, A1 , . . . ,AN: fk1,. . .,kN

ªA1
k1
¯AN

kNf0, kj �Z for all j
=1,2 , . . . ,n. These vectors may or may not be orthogonal: we consider here the problem of
orthonormalizing this set, i.e., the problem of producing a new set of vectors which shares with the
original one most of its features and, moreover, is also orthonormal.

The paper is organized as follows: in the next section we state the general problem, discuss the
method, and show some prototype examples. In Sec. III we discuss in detail the example concern-
ing the coherent states, and we find conditions for our orthonormalization procedure to work. In
particular, we show that, under certain conditions on a parameter which can be interpreted as a
two-dimensional lattice spacing, a set of vectors can be obtained which shares with the coherent
states a number of properties. To be explicit this new set satisfies indeed a closure condition in a
certain Hilbert space, is an o.n. set of vectors, and is stable under the action of the same unitary
operators which generate the set of coherent states. Moreover, each element of this new set is an
eigenstate of an annihilationlike operator and saturates the Heisenberg uncertainty relation. Sec-
tion IV contains our final considerations and plans for the future. The paper ends with an appendix
on a generalized version of the �k ,q� representation which is widely used in Sec. III.
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II. STATING THE PROBLEM AND FIRST RESULTS

Let H be a Hilbert space, f0�H a fixed element of the space, and A1 , . . . ,AN N given unitary
operators: Aj

−1=Aj
†, j=1,2 , . . . ,N. Let HN be the closure of the linear span of the set

NN = �fk1,. . .,kN
ª A1

k1
¯AN

kNf0, k1, . . . ,kN � Z� . �2.1�

Of course, in order for this situation to be of some interest, it is necessary to assume that the
vectors in NN, or part of them, are linearly independent: indeed, if this is not the case we may
likely get a Hilbert space HN which has finite dimension, and this is something not very interesting
for us. Therefore in the following we will assume that all the vectors fk1,. . .,kN

are independent and
it is clear, by the definition itself, that they are also complete in HN. In general there is no reason
why the vectors in NN should be mutually orthogonal. On the contrary, without a rather clever
choice of both f0 and A1 , . . . ,AN, it is very unlikely to obtain an o.n. set. Our aim is to discuss
some general technique which produces another vector ��HN such that the set

MN = ��k1,. . .,kN
ª A1

k1
¯AN

kN�,k1, . . . kN � Z� �2.2�

is made of orthogonal vectors. Moreover, we would like this set to share as much of the original
features of NN as possible. For instance, if the set NN is a set of coherent states, we would like the
new vectors �k1,. . .,kN

to be, for instance, eigenstates of an �sort of� annihilation operator, to give
rise to a resolution of the identity and to saturate the Heisenberg uncertainty relation.

We will analyze this problem step by step, starting with the simplest situation which is,
clearly, N=1. In this case the set N1 in Eq. �2.1� reduces to N1= �fkªAkf0 ,k�Z� with �fk , f l�
��k,l �otherwise we have already solved the problem�. Since N1 is complete in H1, any element
in H1 can be written in terms of the vectors of N1. Let �0�H1 be the following linear combi-
nation:

�0 = 	
k�Z

ckfk, �2.3�

and let us define more vectors of H1 as

�n = An�0 = 	
k�Z

ckfk+n = Xfn, �2.4�

where we have introduced the operator

X = 	
k�Z

ckA
k. �2.5�

The coefficients ck should be fixed by the following orthogonalization requirement: ��n ,�0�
=�n,0. It is worth remarking that all the expansions above are, for the moment, only formal. What
makes everything well defined is the asymptotic behavior of the coefficients of the expansion cn,
and we will discuss in the rest of the paper, and, in particular, in Sec. III, that there exist situations
in which the series for �n and X do converge and other situations in which they do not.

The first useful result is that if ��n ,�0�=�n,0 for all n�Z, then ��n ,�k�=�n,k , ∀n ,k�Z. This
follows directly from the definition of �n since

��n,�k� = �An�0,Ak�0� = �An−k�0,�0� = ��n−k,�0� = �n−k,0.

For this reason, in order to fix the coefficients cn, it is enough to require the orthogonality
condition ��n ,�0�=�n,0, which becomes

�n,0 = ��n,�0� = 	
k,l�Z

ckcl�fk+n, f l� = 	
k,l�Z

ckclak+n−l, �2.6�

where we have defined
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aj = �Ajf0, f0� . �2.7�

If we now multiply both sides of Eq. �2.6� for eipn and sum up on n�Z we get


C�p�
2��p� = 1 a.e. in �0,2�� , �2.8�

where we have introduced the following functions:

C�p� = 	
l�Z

cle
ipl, ��p� = 	

l�Z
ale

ipl. �2.9�

Again, these series are not necessarily convergent, so that they must be considered only as formal
objects at this stage.

In particular, it is an easy exercise to check that, if the following quantities all exist, then
	l�Z
cl
2= �1/2���0

2�
C�p�
2dp= �1/2���0
2��dp /��p��. This result suggests that for particular

choices of f0 and A it might happen that the series for ��p� is not convergent or, even if it
converges to a 2� periodic and C� function, this function might have in �0,2�� a zero which
makes of ��p�−1 a nonintegrable function. If this is the case there is no reason to claim that the
sequence �cl� belongs to l2�Z�. On the contrary, any time that the function ��p� exists as a
continuous function, i.e., under suitable conditions on the al ’s which are satisfied in many relevant
situations, e.g., for coherent states, and if ��p� does not vanish in �0,2��, we can conclude that
�cl�� l2�Z�. But, in this case, we can do much better than this: since �cl�� l2�Z� then C�p�
�L2�0,2�� and, therefore,

cl =
1

2�
�

0

2�

C�p�e−ipldp =
1

2�
�

0

2� e−ipldp
��p�

, �2.10�

with a particular choice of phase for C�p�. Now, due to the regularity of the function 1/��p� and
to its 2� periodicity, it is a standard exercise in Fourier series theory to check that cl goes to zero
when l diverges faster than any inverse power of l. Therefore the series in Eq. �2.3�, �2.5�, and
�2.9� all converge, and we conclude that the set M1= ��n ,n�Z� is an orthonormal set in H1. A
natural question is now the following: is M1 complete in H1? To answer this question we give
here the following proposition, which gives a necessary and sufficient condition for M1 to be
complete in H1. In the proof of this proposition we will use the fact that, under the assumptions
of the statement, X is self-adjoint and maps H1 into itself. The proof of this claim is a simple
exercise and is left to the reader.

Proposition 1: Suppose that �aj�� l1�Z� and that ��p��0 for all p� �0,2��. Then M1 is
complete in H1 if and only if X admits a bounded inverse.

Proof: Let h�H1 be orthogonal to all the �n’s, n�Z. Then, because of Eq. �2.4�, we have
0= �h ,�n�= �h ,Xfn�= �Xh , fn� for all n�Z. But N1 is complete in H1 and Xh�H1 since h�H1

and X :H1→H1. Therefore Xh=0. Since X is invertible, then h=0 and, as a consequence, M1 is
complete.

Let us prove the converse statement. Since M1 is complete in H1 and since f0�H1 then we
can write

f0 = 	
l�Z

dl�l, �2.11�

and �dl� satisfies the sum rule 	l�Z
dl
2=1 because M1 is an o.n. complete set and f0 is normal-
ized. Moreover we have aj = �Ajf0 , f0�= �f j , f0�=	l,k�Zdldk��l+j ,�k�=	l�Zdldl+j which, introducing
the function D�p�=	l�Zdle

ipl�L2�0,2��, becomes 
D�p�
2=��p� a.e. in �0,2��. Therefore we get
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dn =
1

2�
�

0

2�

D�p�e−ipndp =
1

2�
�

0

2�

��p�e−ipndp , �2.12�

with a particular choice of phase for D�p�. Because of our assumption on aj it follows that the
series for ��p� converges uniformly and define a positive C� function which is also 2� periodic.
These features are also shared by ��p� and therefore dn decreases to zero faster than any inverse
power of n, as n→�.

Now, since fn=Anf0=An�	l�Zdl�l�= �	l�ZdlA
l��n, and since 	l�ZdlA

l surely converges uni-
formly, it is clear that this defines a new bounded operator which is exactly the inverse of X,
namely, X−1=	l�ZdlA

l. �

Remark: The requirement ��p��0 for all p� �0,2�� is used above to ensure that the opera-
tor X exists and is bounded, as it can be deduced from the asymptotic behavior of the coefficients
cl’s.

An interesting result relating the coefficients of the two expansions in Eq. �2.3� and �2.11�,
which may be considered as the inverse one of the other, is given by the following sum rule:

	
n�Z

cndn = 1. �2.13�

The proof makes use of the Poisson summation rule,1 	n�Zeixan= �2� / 
a 
 �	n�Z��x− �2� /a�n�,
a�0, and goes as follows:

	
n�Z

cndn = 	
n�Z

� 1

2�
�

0

2� eipn

��p�
dp�� 1

2�
�

0

2�

��q�e−iqndq�
=

1

�2��2�
0

2�

dp�
0

2�

dq��q�
��p� 	

n�Z
ein�p−q� =

1

2�
�

0

2�

dp�
0

2�

dq��q�
��p� 	

n�Z
��p − q − 2�n�

=
1

2�
�

0

2�

dp�
0

2�

dq��q�
��p�

��p − q� = 1,

because the only effective contribution arising here from 	n�Z��p−q−2�n� comes from n=0,
since p ,q� �0,2��.

A. Preliminary examples

Let f0�x�=��0,a��x� be the characteristic function in the interval �0,a�, with a�0, and let A be
the following translation operator: A=e−ip̂. We have

N1 = �fn�x� ª Anf0�x� = ��n,n+a��x�,n � Z� .

We want to see what our procedure produces starting with this set. For that, it is convenient to
consider separately the cases a�1, a=1, and a�1. Let us start with the easiest case, a=1. In this
case the set N1 is already made of o.n. functions, and therefore we expect that the set M1

coincides with N1. Indeed this is what happens, since aj = �f j , f0�=� j,0. Therefore ��p�=1, which
is obviously never zero, and cl=�l,0, see Eq. �2.10�. From Eq. �2.4� we deduce that �n�x�= fn�x� for
all integer n. It is clear that both X and X−1 exist, and they are both equal to the identity operator.

Just a little less trivial is the situation when a�1. In this case, in fact, the set N1 is still made
of orthogonal functions, since each fn�x�=��n,n+a��x� does not overlap with any other fk�x�
=��k,k+a��x�, if k�n. However, none of these functions is normalized so that we may expect that
our procedure simply cures this feature. Indeed, we have aj = �f j , f0�=a� j,0, so that ��p�=a, which
is again never zero, and cl= �1/a��l,0. Therefore �n�x�= �1/a�fn�x� for all integer n. Of course
these are now orthogonal functions with norm equal to 1. It is finally clear that both X and X−1

exist, and we find X= �1/a�1 and X−1=a1.
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Surely more interesting is the case a�1. We restrict ourselves, for the time being, to 1�a
�2. The overlap coefficients aj can be written as aj =a� j,0+ �a−1��� j,−1+� j,1�, so that ��p�=a
+2�a−1�cos�p�. This is a non-negative, real, and 2�-periodic function, as expected, and further-
more it is never zero in �0,2�� since it has a minimum in p=� and ����=2−a�0. If we fix, just
to be concrete, a=3/2, we can compute analytically 	l�Z
cl
2= �1/2���0

2��dp /��p��=2/5.
Therefore the sequence �cl� belongs to l2�Z�, as it was to be expected because of the absence of
zeroes of ��p�. As a matter of fact, it is quite easy to check also numerically that both cl and dl

decrease very fast for increasing l: already for 
l 
 	5 we find 
cl 
 �10−3 and 
dl 
 �2
10−4. It is
also easy to check that the sum rule in Eq. �2.13� is satisfied. This same analysis can be extended
to a	2. One can check that there are values of the parameter a for which, e.g., �cl� belongs to
l2�Z�, and other values of a, for which �cl�� l2�Z�.

For instance, if a=2 the overlap coefficients are the same as for a� �1,2�, aj =a� j,0+ �a−1�

�� j,−1+� j,1�=2� j,0+ �� j,−1+� j,1�, so that ��p�=2+2 cos�p�. This is zero for p=� and one can
check that 	l�Z
cl
2= +�. So the same example produces different behaviors depending on the
value of a. We will recover this same feature in the next section, in the construction of the
so-called orhogonal coherent states.

Another interesting and easy example is the following: let f0�x�=��0,1��x� and let A be the
following dilatation operator: �Ah��x�=2h�2x�, ∀h�x��L2�R�. Then the set N1 turns out to be

N1 = � fn�x� = 2n/2f�2nx� = 2n/2�1 if 0 � x � 2−n,

0 otherwise,
� n � Z� .

In this case all the overlap coefficients aj are different from zero. Indeed we get aj =2−
j
/2, for all
j�Z. Since 
e±ip /2
=1/2�1, it is easy to compute the analytic expression of ��p� and it turns
out that ��p�=1/ �3−23/2 cos�p��. The minimum of ��p� is found again for p=�, and ����
=1/ �3+23/2��0.1716, which is different from zero. Moreover we find that max���p��=��0�
=1/ �3−23/2��5.8284. The � . �2 norm of the sequence �cl� can be computed analytically and we
find 	l�Z
cl
2= �1/2���0

2�dp /��p�=3. Again, it is quite easy to find numerically the value of the
coefficients cl and dl, to check that they both converge to zero quite fast, and that Eq. �2.13� is
satisfied. Further, one can use these coefficients to define the new o.n. vectors using Eqs. �2.3� and
�2.4�.

III. COHERENT STATES

This section is devoted to a more interesting example involving coherent states,2 We will see
that the set of coherent states fits the general discussion of Sec. II, and we will show how and
when the orthonormalization procedure works.

Let q̂ and p̂ be the position and momentum operators on a Hilbert space H, �q̂ , p̂�= i1, and let
us now introduce the following unitary operators:

U�n� � = eia�n1q̂−n2p̂�, D�n� � = ezn�b†−z̄n�b, T1 ª eiaq̂, T2 ª e−iap̂. �3.1�

Here a is a real constant satisfying a2=2�L for some L�N, while zn� and b are related to n�
= �n1 ,n2� and q̂, p̂ via the following equalities:

zn� =
a
2

�n2 + in1�, b =
1
2

�q̂ + ip̂� . �3.2�

With these definitions it is clear that

U�n� � = D�n� � = �− 1�Ln1n2T1
n1T2

n2 = �− 1�Ln1n2T2
n2T1

n1, �3.3�

where we have also used the commutation rule �T1 ,T2�=0.
Let �0� be the vacuum of b, b�0� =0, and let us define the following coherent states:
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�n� ª T1
n1T2

n2�0� = T2
n2T1

n1�0� = �− 1�Ln1n2U�n� ��0� = �− 1�Ln1n2D�n� ��0� . �3.4�

It is very well known that the set of these vectors, C= ��n� ,n� �Z2�, satisfies, among the others, the
following properties:

1. C is invariant under the action of Tj
nj, j=1,2;

2. each �n� is an eigenstate of b: b�n� =zn��n�;
3. they satisfy the resolution of the identity 	n��Z2
�n����n� 
=1;
4. They saturate the Heisenberg uncertainty principle: let ��X�2= �X2�− �X�2 for X= q̂ , p̂, then

�q̂�p̂= 1
2 .

However, it is also well known that they are not mutually orthogonal. Indeed we have

In� ª ��n�,�0�� = �− 1�Ln1n2e−��/2�L�n1
2+n2

2�. �3.5�

Of course, for large L the set C can be considered as approximately orthogonal, since In� �0 for all
n� �0� . On the contrary, for small L, the overlap between nearest neighboring vectors is signifi-
cantly different from zero.

Our aim is to construct a family of vectors E which shares with C most of the above features
and which, moreover, is made of orthonormal vectors. We will show that this is possible, in
suitable Hilbert spaces, if L�1, while the procedure discussed in Sec. II fails for L=1.

We start our analysis with some consideration concerning the set C. For this we will make use
of the results on the generalized �k ,q� representation presented in the Appendix. Since most of our
results will depend on the value of L, i.e., on the value of a2, from now on we replace �n� with �n�

�L�,
and C with C�L�. However, it is important to stress that, due to its definition, �0� does not depend on
L, while all the vectors �n�

�L�=T1
n1T2

n2�0� do. Our first result is the following.
Proposition 2: The set C�L� is complete in H if and only if L=1.
Proof: The proof of this statement extends the analogous proof given in Ref. 3: let h�H be

a vector orthogonal to �n�
�L� for all n� �Z2: �h ,�n�

�L��=0∀n� �Z2. Using the functions k,q
�A,a��x� intro-

duced in Eq. �A3�, A�0 fixed and �k ,q����A�
ª �0,2� /A�
�0,a�, and their properties, we

deduce that

0 = �h,�n�
�L�� =� �

��A�
�h,k,q

�A,a���k,q
�A,a�,�n�

�L��dkdq

�see Eq. �A6��, and since

�k,q
�A,a�,�n�

�L�� = �k,q
�A,a�,T1

n1T2
n2�0�� = e−iqan1+ikAn2�k,q

�A,a�,�0��

�see Eq. �A4��, we find

0 = �
0

2�/A

dkeikAn2�
0

a

dqe−iqan1C�k,q� ,

for all n� �Z2. Here we have introduced the function C�k ,q�ª �h ,k,q
�A,a���k,q

�A,a� ,�0��. In this way
the problem of the completeness of the set C�L� has been replaced by the problem of completeness
of the set D�L�

ª �e−iqan1+ikAn2 ,n� �Z2� in L2���A��. It is now easy to prove that, if L�1, the
function s�k ,q�=eiqa/L belongs to L2���A��, is different from zero a.e. in ��A�, and it is orthogonal
to all the functions in D�L�. Therefore, if L�1, D�L� is not complete and as a consequence, C�L� is
not complete either.

If L=1 the completeness of D�1� is a well known fact in the theory of the Fourier series.
Moreover, since �k,q

�A,a� ,�0���0 a.e. in ��A�,3 we conclude that h=0: C�1� is complete in H. �

Let us now define, for each L	1, the following set:
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hL ª linear span ��n�
�L�,n� � Z2��.�. �3.6�

It is clear that h1=H, while, for L�1, hL�H. It is further clear that hL is a Hilbert space for each
L, since it is a closed subspace of H. The resolution of the indentity of the set ��n�

�L�� stated above
must be understood, clearly, in hL. Furthermore, we can associate with hL two different Hilbert
spaces of functions, obtained by projecting the vectors of hL in the coordinate or in the �k ,q�
representation. We have, see also the Appendix,

lL
2�R� ª �f�x� � L2�R�: ∃ f � hL:f�x� = ��x, f�� ,

and

lL
2���A�� ª �f�k,q� � L2���A��: ∃ f � hL:f�k,q� = �k,q

�A,a�, f�� .

From what we have discussed above, it is clear that lL
2�R� and lL

2���A�� are closed subsets of LL
2�R�

and LL
2���A��, respectively, so that they are Hilbert spaces, too.

The problem we want to discuss here is the following: is it possible to produce, starting
from C�L�, a set of vectors which is still coherent (to a certain extent) and which is mutually ortho-
gonal? It is clear that this last requirement is not compatible with what one usually calls coherent
states.4 However, we will see that adopting here the procedure discussed in Sec. II a rather
nontrivial structure emerges.

We start extending formula �2.4� to the present settings:

�n�
�L�

ª 	
k��Z2

ck�
�L��k�+n�

�L� . �3.7�

Of course this means that �0�
�L�
ª	k��Z2ck�

�L��k�
�L� and, because of the commutativity of T1 and T2,

that

�n�
�L� = T1

n1T2
n2�0�

�L�. �3.8�

Therefore the new set constructed in this way, E�L�
ª ��n�

�L� ,n� �Z2�, is invariant under the action of
T1 and T2, exactly as the set C�L�, independently of the choice of the coefficients of the expansion
ck�

�L�. Useless to say, in order to have a converging expansion in Eq. �3.7�, the following inequality
must be satisfied:

	
k� ,s��Z2

�− 1�L�k1−s1��k2−s2�e−��/2�L��k1 − s1�2+�k2 − s2�2�ck�
�L�cs�

�L� � � , �3.9�

which is equivalent to require that ��n�
�L��= ��0�

�L����. It is clear then, because of the Schwarz
inequality, that if Eq. �3.9� holds then all the scalar products ��n�

�L� ,�s�
�L�� are well defined. Of

course the coefficients cs�
�L� must not be chosen freely: they are fixed by requiring that the vectors

in the set E�L� are orthonormal: ��n�
�L� ,�s�

�L��=�n� ,s�. This will fix �not uniquely� the value of the cs�
�L�’s,

with a procedure which extends what we have discussed in the previous section and which is also
close to the one used in Ref. 5 in a different context. We will also check that the set E�L� is
complete in hL.

In order to deduce the expression for cs�
�L� we start observing that in order to have orthogonality

among all the �n�
�L�, it is enough to require that ��n�

�L� ,�0�
�L��=�n� ,0� for all n� �Z2. Indeed, if this is

satisfied, then the invariance under translations of the set E�L� implies also that ��n�
�L� ,�s�

�L��=�n� ,s�

for all n� ,s� �Z2. Using expansion �3.7� we find that

��n�
�L�,�0�

�L�� = 	
k� ,s��Z2

cl�
�L�cs�

�L�Il�+n�−s� = �n� ,0� , �3.10�

which is equivalent to the following equation:
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FL�P� �
CL�P� �
2 = 1 a.e. in �0,2�� 
 �0,2�� , �3.11�

where

FL�P� � ª 	
k��Z2

Ik�e
iP� ·k� and CL�P� � ª 	

k��Z2

ck�
�L�eiP� ·k� . �3.12�

Here we are not explicitating the dependence of Ik� on L. It is clear now that the coefficients can be
recovered via the formula

ck�
�L� =

1

�2��2�
0

2� �
0

2� e−iP� ·k�

FL�P� �
dP� , �3.13�

which corresponds to a special choice of the phase of the function CL�P� �. We will show in a
moment that this integral does not need to exist in general and, even if it exists, there is no reason
a priori to ensure that the coefficients ck�

�L�’s satisfy condition �3.9�. This is a consequence of the
nonorthogonality of the set C�L� and of the procedure we are adopting. However, under simple
conditions, it is possible to analyze the asymptotic behavior of the ck�

�L�’s for k� diverging using more
or less standard techniques which relates this behavior to the analytic features of FL�P� �. First we
see that, since

FL�P� � = 	
m� �Z2

�− 1�Lm1m2e−�/2L�m1
2+m2

2�eiP� ·m� , �3.14�

FL can be rewritten in terms of the Jacobi �3 function as follows:

FL�P� � = �3�P1

2
,e−�/2L��3�P2,e−2�L� + eiP2−�/2L�3�P1 + �L

2
,e−�/2L��3�P2 + i�L,e−2�L� .

�3.15�

We have also found a different expression for FL�P� �, again in terms of �3, which we report
here just for completeness:

FL�P� � = ei�LD�3�P1

2
,e−�/2L��3�P2

2
,e−�/2L� , �3.16�

where D is the differential operator defined as D= �−i� /�P1��−i� /�P2�. A nice feature of formula
�3.16�, when compared to Eq. �3.15�, is that Eq. �3.16� is manifestly invariant under the exchange
P1↔P2, as the original expression in Eq. �3.14�, while the other is not.

The function FL�P1 , P2� is surely non-negative, since it has to satisfy Eq. �3.11�, and 2�
periodic: FL�P1+2� , P2+2��=FL�P1 , P2� a.e. It is also infinitely differentiable, for all L	1.
However, since F1�� ,��=0, there is no reason a priori for the integral in Eq. �3.13� to be
convergent if L=1 and, even if this happens, there is no reason for the related �ck�

�L�� to satisfy
condition �3.9�. For this reason it is more convenient to consider separately the two situations L
=1 and L�1.

A. What if L>1?

If L�1 it is possible to prove that the function FL�P� � has no zero at all. Indeed, if we write

FL�P� �=1+FL
o�P� �, FL

o�P� �=	m� �Z2\�0,0��−1�Lm1m2e−�/2L�m1
2+m2

2�eiP� ·m� , we deduce that


FL
o�P� �
 � 	

m� �Z2\�0,0�

e−��/2�L�m1
2+m2

2� = 	
m� �Z2

e−��/2�L�m1
2+m2

2� − 1 = ��3�0,e−��/2�L��2 − 1,

for all P� � �0,2��
�0,2��. The right-hand side can be easily computed for different values of L.
We get 
F1

o�P� �
�1.014 97, while 
F2
o�P� �
�0.180 341, 
F3

o�P� �
�0.036 256, and so on. As we can
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see, FL�P� � can only be zero for some P� if L=1, and this is exactly what happens for P� = �� ,��,
while for L	2 FL�P� � is strictly positive.

With this in mind we conclude that for L�1 the function CL�P� �=1/FL�P� � is always well
defined, belongs to C�, and is �2� ,2�� periodic together with all its derivatives. A standard
argument allows us to conclude therefore that the coefficients ck�

�L� in Eq. �3.13� go to zero faster
than any inverse power of �k� � =k1

2+k2
2. Let us now put, for N�N,�0� ,N

�L� =	�k���Nck�
�L��k�

�L�, and let
N�M. Then we have

��0� ,N
�L� − �0� ,M

�L� � � 	
M��k���N


ck�
�L�
��k�

�L�� = 	
M��k���N


ck�
�L�
 → 0,

when M ,N→�, due to the asymptotic behavior of ck�
�L�. Since hL is complete, the sequence ��0� ,N

�L� �
is convergent to an element of hL, which is clearly �0�

�L�. The same argument can be repeated to
check that �n�

�L� is well defined and belongs to hL. Alternatively, we can simply observe that since
�0�

�L� belongs to hL, and since hL is invariant under the action of T1 and T2, also �n�
�L�

=T1
n1T2

n2�0�
�L� belongs to hL.

Going back to Eq. �3.7�, if we introduce an operator XL as in Eq. �2.5�,

XL = 	
k��Z2

ck�
�L�T1

k1T2
k2, �3.17�

this can be rewritten as

�k�
�L� = XL�k�

�L� �3.18�

for all k� �Z2. This is exactly the analogous of Eq. �2.4�. The operator XL is, for L�1, bounded and
self-adjoint. Indeed we have

�XL� � 	
k��Z2


ck�
�L�
�T1

k1��T2
k2� = 	

k��Z2


ck�
�L�
 � �

again because of the asymptotic behavior of ck�
�L�. Moreover we have, since formula �3.13� implies

that ck�
�L�=c−k�

�L�,

XL
† = 	

k��Z2

ck�
�L�T1

k1†T2
k2† = 	

k��Z2

c−k�
�L�T1

−k1T2
−k2 = 	

n��Z2

cn�
�L�T1

n1T2
n2 = XL.

We will show in the last part of this subsection that XL admits a bounded inverse, as soon as
L�1. At this stage we simply assume that this is so: XL

−1 exists and belongs to B�hL�, the set of all
the bounded operators on hL. This assumption allows us to prove that the set E�L� is complete in hL,
just extending the same argument of the previous section. Indeed, let g�hL be such that
�g ,�n�

�L��=0 for all n� �Z2. Then we have, ∀n� �Z2, 0= �g ,XL�n�
�L��= �XLg ,�n�

�L��. Since the set C�L� is
complete in hL by construction, then we must have XLg=0 or, applying XL

−1, g=0.
Remark: of course it is necessary to check that XLg�hL for any g�hL, but this is a simple

exercise and is left to the reader. It is also easy to reverse this statement and to check that, under
additional conditions that remind those of Proposition 1, if E�L� is complete in hL then the operator
XL must admit a bounded inverse.

Once we have proven that the set E�L� is complete in hL we can expand each vector �n�
�L� in

terms of the �n�
�L� in a translationally invariant way:

�n�
�L� = 	

k��Z2

�k�
�L��n�+k�

�L� . �3.19�

As we have already seen in Sec. II, the analysis of these coefficients is, in a sense, much simpler
than that of the ck�

�L�, since we can here use the Parseval equality because of the orthonormality of
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the set E�L�. For instance, we have 1= ��n�
�L��2=	k��Z2
�k�

�L�
2, which proves that ��k�
�L�� belongs to

l2�Z2� for all L�1. Moreover, using Eqs. �3.19� and �3.5� �and replacing In� with In�
�L��, we find that

In�
�L�= ��n�

�L� ,�0�
�L��=	k� ,s��Z2�k�

�L��s�
�L���n�+k�

�L� ,�s�
�L��=	k��Z2�k�

�L��k�+n�
�L� . If we now multiply both sides of this

equality for eiP� ·n� and sum up on n� �Z2, we get

FL�P� � = 
GL�P� �
2, a.e. in �0,2�� 
 �0,2�� , �3.20�

where FL�P� � has been defined in Eq. �3.12�, while

GL�P� � = 	
k��Z2

�k�
�L�eiP� ·k� . �3.21�

Since ��k�
�L��� l2�Z2� for all L�1, and since �1/ �2��2��0

2�dP1�0
2�dP2
GL�P� �
2=	k��Z2
�k�

�L�
2, we see
that GL�P� ��L2��0,2��
�0,2���. For this reason there is no problem in recovering the coeffi-
cients �k�

�L� as usual:

�k�
�L� =

1

�2��2�
0

2�

dP1�
0

2�

dP2GL�P� �e−iP� ·k� =
1

�2��2�
0

2�

dP1�
0

2�

dP2
FL�P� �e−iP� ·k� ,

with a particular choice of phase. Of course we can repeat our analysis of the asymptotic behavior
of the �k�

�L�’s even now: what we get, using the same arguments, is that also the sequence ��k�
�L��

decreases to zero for �k�� diverging faster than any inverse power.
Moreover we can also check that the following sum rule is satisfied:

	
k��Z2

�k�
�L�ck�

�L� = 1, �3.22�

for any L�1. The proof of this equation makes use twice of the Poisson summation rule. We have

	
k��Z2

�k�
�L�ck�

�L� =
1

�2��4�
0

2�

dP1�
0

2�

dP2�
0

2�

dQ1�
0

2�

dQ2FL�P� �
FL�Q� � 	

k��Z2

ei�P� −Q� �·l�

=
1

�2��2�
0

2�

dP1�
0

2�

dP2�
0

2�

dQ1�
0

2pi

dQ2FL�P� �
FL�Q� �


 	
k��Z2

��P1 − Q1 − 2�l1���P2 − Q2 − 2�l2� .

Now, since Pj, Qj � �0,2��, the two delta functions reduce to ��Pj −Qj −2�lj�=��Pj −Qj��lj,0
, j

=1,2. Therefore we get

	
k��Z2

�k�
�L�ck�

�L� =
1

�2��2�
0

2�

dP1�
0

2�

dP2�
0

2�

dQ1�
0

2i

dQ2FL�P� �
FL�Q� �

��P1 − Q1���P2 − Q2� = 1,

as we had to prove.
Let us now continue the analysis of the consequences of our orthonormalization procedure

considering more in detail the special features of a set of coherent states: which properties of the
set C�L� can still be proven for E�L�?

The first obvious result is that both these sets produce a resolution of the identity:
	k��Z2
�k�

�L����k�
�L�
=	k��Z2
�k�

�L����k�
�L�
=1hL

, where 1hL
is the identity operator on hL.

Further, let us define the operator BLªXLbXL
−1. It is not hard to check that each �n�

�L� belongs
to the domain of BL. More than this, we can check that �n�

�L� is an eigenstate of BL with eigenvalue
zn�. Indeed we have
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BL�n�
�L� = �XLbXL

−1��XL�n�
�L�� = XLb�n�

�L� = zn�XL�n�
�L� = zn��n�

�L�. �3.23�

It is easy to compute the commutation rule between BL and its adjoint. We get �BL ,BL
†�

=XLbXL
−2b†XL−XL

−1b†XL
2bXL

−1, which shows that in general BL is not an annihilation operator. This
is not surprising and, actually, cannot be avoided since, if BL were a bosonic annihilation operator,
its eigenstates ��n�

�L�� should have surely been not mutually orthogonal.
It is a well known fact that coherent states saturate the Heisenberg uncertainty relation ��q̂�


��p̂�= 1
2 . Indeed we easily find �q̂=�p̂= 1

2
. We ask here if the same is true also for the vectors

�n�
�L�. The computation, say, of �q̂ is not very hard but surely requires some care and one can

check that ��q̂���p̂�= 1
2 does not hold. This is not surprising, since the position and momentum

operators do not play such a central role here as for the canonical coherent states. For this reason,
it is surely more interesting to introduce a new operator QL which mimics q̂ in the following sense:
since q̂= �b+b†� /2, and since b has been replaced by BL in Eq. �3.23�, then we put QL= �BL

+BL
†� /2. It is now a trivial computation to check that

��QL�2 = ��n�
�L�,QL

2�n�
�L�� − ��n�

�L�,QL�n�
�L��2 =

1

2
��BL

†�n�
�L��2 − 
zn� 
2� ,

which would give 1/2, as in the standard situation, if we had XL=1. In the same way, putting
PL= i�BL

† −BL� /2 in analogy to p̂= i�b†−b� /2, we find that

��PL�2 = ��n�
�L�,PL

2�n�
�L�� − ��n�

�L�,PL�n�
�L��2 =

1

2
��BL

†�n�
�L��2 − 
zn� 
2� .

Therefore ��QL���PL�= 1
2 ��BL

†�n�
�L��2− 
zn� 
2�, which is equal to 1/2 if XL=1 but not in general. This

is in agreement with the fact that �QL , PL�� i1. Moreover, it is not difficult to check that each �n�
�L�

saturates again the Heisenberg uncertainty relation in the sense that, using �QL , PL�= i�BL ,BL
†�, the

following equality holds: �QL ·�PL= 1
2 ��n�

�L� , �BL ,BL
†��n�

�L��.
It is now interesting to use our generalized �k ,q� representation to deduce, in analogy with

Ref. 3, how should a function look like in order to produce, together with its translated, an
orthonormal set. In other words, let �n�

�L� be our o.n. set: ��n�
�L� ,�0�

�L��=�n� ,0�. Then we have, inserting
the identity operator in Eq. �A6�, and in analogy with what has been done in Proposition 1,

�n� ,0� =� �
��A�

��n�
�L�,k,q

�A,a���k,q
�A,a�,�0�

�L��dkdq =� �
��A�

eiqan1−ikAn2
�k,q
�A,a�,�0�

�L��
2dkdq ,

which has L different solutions, i.e., all the functions


�k,q
�A,a�,�0�

�L��
2 = � AL

2�aj
a.e. for �k,q� � �0,

2�

A
� 
 �0,

aj

L
�1

1
� ,

0 otherwise in ��A�,
� �3.24�

where j=1,2 , . . . ,L. In particular, if L=1, then j=1 and if a=A=2� we recover the same result
as in Ref. 3: in this case �k,q

�A,a� ,�0�
�L�� must be a constant times a phase.

Of course, once we fix the form of �k,q
�A,a� ,�0�

�L��, we can recover the expression of �0�
�L� as a

vector in hL using the following reconstruction formula �0�
�L�=����A�dkdq�k,q

�A,a� ,�0�
�L��k,q

�A,a�. A
natural question would be to relate the above solutions of the ortogonality requirement as obtained
directly using the �k ,q� representation with the particular �0�

�L� we have constructed in Eq. �3.7�.
This will be done elsewhere.

We dedicate the last part of this subsection to some perturbative results concerning our
problem starting with an approximated expression for the coefficients cn�

�L� of the expansion �3.7�.
Since FL�P� �=1+FL

o�P� �, with FL
o�P� �=	m� �Z2\�0,0��−1�Lm1m2e−��/2�L�m1

2+m2
2�eiP� ·m� , Eq. �3.13� can be re-

written as follows:
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ck�
�L� =

1

�2��2�
0

2� �
0

2� e−iP� ·k�

1 + FL
o�P� �

dP� =
1

�2��2�
0

2� �
0

2�

e−iP� ·k��1 −
1

2
FL

o�P� � +
3

8
FL

o�P� �2 + ¯ �dP� .

Considering only the first two contributions of this expansion we easily get

ck�
�L� � �k� ,0� −

1

2
�1 − �k� ,0���− 1�Lk1k2e−��/2�L�k1

2+k2
2�. �3.25�

Of course, in order for this approximation to be meaningful, we further need to restrict ourselves
to those k� such that k� = �±1,0� , �0, ±1�. In fact, a contribution like k� = �±1, ±1� can only be
considered in the expansion above if we also keep into account those contributions arising from
3
8FL

o�P� �2, which contains terms of the same order. On the contrary, all these contributions will be
neglected here. Nevertheless we will see that this apparently rude approximation already produces
very good results. If we introduce the following subset of Z2, �ª ��1,0� , �−1,0� , �0,1� , �0,−1��,
then we get the following expression for �n�

�L�:

�n�
�L� � �n�

�L� −
1

2
e−�/2L 	

s���

�n�+s�
�L� . �3.26�

It is easy to check now that the set of the approximated vectors �n�
�L� obtained in this way are

mutually orthogonal and normalized with a very good approximation already for L=2. Indeed we
find, first of all,

��0�
�L��2 � 1 − 3e−�L = �0.994 40 if L = 2

0.999 76 if L = 3

0.999 99 if L = 4,
�

and so on. Of course, since �n�
�L�=T1

n1T2
n2�0�

�L�, the same norms are obtained for ��n�
�L��2, ∀n� �Z2.

Moreover, if we compute the overlap between two neighboring vectors, for instance, between �0�
�L�

and ��1,0�
�L� , we find that


��0�
�L�,��1,0�

�L� �
 � �0.000 16 if L = 2

0.000 001 if L = 3,
�

and so on. We see that the approximation considered here, which as we have already remarked
looks quite rude, allows to recover normalization and orthogonalization of the vectors with a
meaningless error already for L=2, i.e., for a2=4�. Therefore, we can safely claim that in this way
we get a rather good approximation.

As for the operators XL and XL
−1 we find that XL�1− 1

2e−�/2L	s���T1
s1T2

s2 and XL
−1�1

+ 1
2e−�/2L	s���T1

s1T2
s2 or, more explicitly,

XL � 1 −
1

2
e−�/2LKL,

�3.27�

XL
−1 � 1 +

1

2
e−�/2LKL,

where

KL = T1 + T1
−1 + T2 + T2

−1.

In order to check that XL
−1 above is a good approximation of the inverse of XL it is enough to

observe that
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�XLXL
−1 − 1� = �XL

−1XL − 1� � 4e−�L = �0.00747 if L = 2

0.00032 if L = 3,
�

and so on.
Remark: From the above estimates it is clear that the only dangerous case is L=1, which, in

fact, has not even be considered. Just as an example, if L=1 then we can only prove that
�X1X1

−1−1��0.172 85, which is surely not enough to claim that X1
−1 as given in Eq. �3.27� can

really be interpreted as the inverse of X1. We will go back on the situation for L=1 shortly.
Using the expansion �3.27� it is finally possible to derive an approximated version for BL,

which looks now as BL�b− 1
2e−�/2L�KL ,b�, so that we get

�BL,BL
†� � 1 −

1

2
e−�/2L���KL,b�,b†� + �b,�b†,KL��� ,

which converges toward the identity operator as L diverges, as expected.
Remark: These o.n. vectors can be used to define to define certain traces on the von Neumann

algebra ML=B�hL�. Let ML
+ be the positive part of ML. Then, if we put �L�X�

=	n��Z2��n�
�L� ,X�n�

�L��, for X�ML
+ and L�1, this is a faithful normal trace on ML

+.
To prove this claim we start noticing that �L is linear. Moreover, since �L�X� is a sum of only

non-negative terms, the summation and the supremum can be interchanged so that the normality of
�L follows from that of each ��n�

�L� ,�n�
�L��.

We now prove that �L�X*X�=�L�XX*�, X�ML
+. Indeed we have

�L�X*X� = 	
n��Z2

��n�
�L�,X*X�n�

�L�� = 	
n��Z2

�X�n�
�L��2 = 	

k��Z2
	

n��Z2


�X�n�
�L�,�k�

�L��


= 	
k��Z2

	
n��Z2


�X*�k�
�L�,�n�

�L��
 = 	
k��Z2

�X*�k�
�L��2 = 	

k��Z2

��k�
�L�,XX*�k�

�L�� = �L�XX*� .

Moreover, let us suppose that 0=�L�X�=	n��Z2�X1/2�n�
�L��2, X�ML

+. Therefore X=0, which
implies that �L is faithful.

It is finally clear that these considerations can be extended with no particular difficulty to the
general settings introduced in Sec. II, but this extension will not be repeated here.

B. The case L=1

We have already noticed that, if L=1, the perturbation results stated above are likely not to
work as we would like. This claim can be actually proven by the following reductio ad absurdum
argument. Suppose that the same procedure discussed previously also works for L=1, so that an
o.n. set ��n�

�1�� can be constructed in h1=H. Let S be the following operator: Sf

=	n��Z2��n�
�1� , f��n�

�1�. It is possible to check that S=	l�,s��Z2cl�
�1�cs�

�1�T1
l1−s1T2

l2−s2 =X1
2, see Eq. �3.17�.

Indeed using definition �3.7�, since S is bounded and therefore continuous we have, ∀f ,g�H,

�f ,Sg� = 	
n��Z2

�f ,�n�
�1����n�

�1�,g� = 	
n� ,l�,s��Z2

cl�
�1�cs�

�1��f ,�l�+n�
�1� ���s�+n�

�1� ,g�

= 	
n� ,l�,s��Z2

cl�
�1�cs�

�1��T1
−l1T2

−l2f ,�n�
�1����n�

�1�,T1
s1T2

s2g� = 	
l�,s��Z2

cl�
�1�cs�

�1��T1
−l1T2

−l2f ,T1
s1T2

s2g� ,

since ��n�
�1�� is complete in H. Therefore S=	l�,s��Z2cl�

�1�cs�
�1�T1

l1−s1T2
l2−s2 and, due to Eq. �3.17�, S

=X1
2. Now, since �n�

�1�=X1�n�
�1�, we have
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�n� ,0� = ��n�
�1�,�0�

�1�� = �X1�n�
�1�,X1�0�

�1�� = �S�n�
�1�,�0�

�1�� .

Of course, if the set E�1� were complete, then we should have S=1, which, as the above equality
shows, would also imply that ��n�

�1� ,�0�
�1��=�n� ,0�, which is false. Therefore the same procedure

developed for L�1 cannot work for L=1.

IV. MORE DIFFICULTIES AND OUTCOME

It is very easy to imagine how to extend the procedure described so far to NN for N�2, at
least if the different unitary operators commute as for coherent states. More difficult and still under
consideration is the situation when the various Aj’s do not commute. In this case, which is a
relevant case, there is still work to do. We want to close the paper with a couple of such examples
and the difficulties which arise in this case.

The first example we want to mention generalizes that of coherent states in the following way:
the two unitary operators T1=eiaq̂ and T2=e−iap̂ in Eq. �3.1� are now supposed to satisfy a2

�2�L, for any L�Z, so that �T1 ,T2��0. However, the two operators can be commuted paying
the price of adding a phase: T1T2=T2T1eia2

, and therefore T1
n1T2

n2 =T2
n2T1

n1eia2n1n2 for all integers n1

and n2. We can think of repeating the same procedure, so that we put fn��x�=T1
n1T2

n2f0��x�, for a fixed
function f0��x� in L2�R�, and then, if �fn� , fk����n� ,k�, we define a new function �0��x� as the usual
linear combination of the fn��x�: �0��x�=	k��Z2ck� fk��x�. We try to fix the expression of the coeffi-
cients cn� by the usual orthonormalization requirement: ��n� ,�0��=�n� ,0�, where �n� =T1

n1T2
n2�0�. The

difficulty now arises: Eq. �3.10� must now be replaced by the following equation:

��n�,�0�� = 	
k� ,l��Z2

ck�cl�In�+k�−l�e
ia2��n1−l1�l2−�n2−l2�k1� = �n� ,0� .

This is a system of equations, one for each value of n� �Z2, which cannot be solved with the same
strategy adopted to solve Eq. �3.10� because of the presence of the phase eia2�¯� which makes it
impossible to separate the contributions arising from the cn� from those arising from In�.

The same difficulties also arise in a different context, i.e., when applying this procedure to a
family of nonorthogonal wavelets. More in detail, let T and D be the usual translation and dilation
operators acting on a general function f�x��L2�R� as follows: �Tf��x�= f�x−1�, �Df��x�
=2f�2x�. This means, first of all, that TD=DT2. Let now f0��x� be a fixed function normalized in
L2�R� and suppose that the various functions f l��x�=Dl1Tl2f0��x� are not mutually orthogonal. We
can define a new square integrable function �0��x�=	k�Zck� fk��x� and, from this, �n��x�
=Dn1Tn2�0��x�, n� �Z2. The main idea is the usual one: we try to fix the coefficients of the expan-
sion, cn�, by requiring that ��n� ,�0��=�n� ,0�. Again, this procedure does not seem to work properly
since, even if we can find an infinite number of equations involving the cn�’s, again we are not able
to solve easily this system.

The conclusion of this short analysis suggests that our procedure, which works very well
when the unitary operators in Eq. �2.1� commute, should be properly generalized when these
operators do not commute. This is exactly our future task and we hope to be able to solve this
problem shortly.

ACKNOWLEDGMENT

This work has been financially supported by Ministero dell’Università e della Ricerca.

APPENDIX: GENERALIZED kq REPRESENTATION

The relevance of the kq representation in many-body physics has been established since its
first appearances.6 What was originally a physical tool has became, during the years, also a
mathematical interesting object, widely analyzed in the literature, see Refs. 7 and 8 for instance.
We give here only few definitions and refer to Refs. 6, 8, 9, and 3 for further reading and for
applications.
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The origin of the kq representation consists in the well known possibility of a simultaneous
diagonalization of two commuting operators. In Ref. 9 it is shown that the following distributions

�kq�x� =2�

a
	
n�Z

eikna��x − q − na�, k � �0�,a��, q � �0,
2�

a
�1

1
� �A1�

are �generalized� eigenstates of both T�a�=eipa and ��2� /a�=eix2�/a. Here a is a positive real
number which plays the role of a lattice spacing.

As discussed in Ref. 9, these �kq�x� are Bloch-like functions corresponding to infinitely
localized Wannier functions. They also satisfy orthogonality and closure properties. This implies
that, roughly speaking, they can be used to define a new representation of the wave functions by
means of the integral transform Z :L2�R�→L2���, where �= �0,a�
 �0,2� /a�, defined as fol-
lows:

h�k,q� ª �ZH��k,q� ª �
R

d��kq���H��� , �A2�

for all functions H����L2�R�. The result is a function h�k ,q��L2���.
To be more rigorous, Z should be defined first on the functions of Co

��R� and then extended to
L2�R� using its continuity,8 In this way it is possible to give a rigorous meaning to formula �A2�
above. In most applications,10 the lattice spacing a is chosen as a2=2�. Here we are interested in
a more general situation: we need to consider a different lattice with rectangular lattice cells with
surface 2�L, L=1,2 ,3 , . . ..

Let therefore T�a�=eip̂a and ��b�=eiq̂b, with ab=2�L, for some natural L. It is clear that for all
possible L�N the two operators still commute: �T�a� ,��b��=0. For each given A�0 let us define
the set of �generalized� functions,

k,q
�A,a��x� = A

2�
	
l�Z

eiklA��x − q − la� , �A3�

where �k ,q����A�
ª �0,2� /A�
 �0,a�. If �x is the generalized eigenvector of the position opera-

tor q̂, q̂�x=x�x, we write k,q
�A,a��x� as k,q

�A,a��x�= ��x ,k,q
�A,a��.

It is not hard to prove the following statements:

T�a�k,q
�A,a��x� = eikAk,q

�A,a��x�, ��b�k,q
�A,a��x� = eiqbk,q

�A,a��x� , �A4�

� �
��A�

k,q
�A,a��x�k,q

�A,a��x��dkdq = ��x − x�� , �A5�

� �
��A�


k,q
�A,a���k,q

�A,a�
 = 1 , �A6�

where the usual Dirac bra-ket notation has been adopted;

�
R

k,q
�A,a��x�k�,q�

�A,a��x�dx = ��k − k����q − q�� . �A7�

The proof of these statements does not differ significantly from the standard one, and will be

omitted here. We just want to remark that, for general a and a�, we find that T�a�k,q
�A,a��

�eikAk,q
�A,a���x�. In other words, in general k,q

�A,a���x� is not an eigenstate of T�a� if a�a�.
Also, it should be noticed that the value of the parameter b entering in the definition of ��b�

is fixed by requiring that T and � commute but play no role in the definition of the lattice cell ��A�,
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which on the other way is defined by an extra positive parameter, A, which needs not to be related
to b itself. However, quite often in applications A coincides with a and with b.
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