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ABSTRACT 

A new approach is presented for the numerical solution of the complete 1D and 2D Saint-Venant 
equations. At each time step, the governing system of Partial Differential Equations (PDEs) is split, using 
a fractional time step methodology, into a convective prediction system and a diffusive correction system. 
Convective prediction system is further split into a convective prediction and a convective correction 
system, according to a specified approximated potential. If a scalar exact potential of the flow field exists, 
correction vanishes and the solution of the convective correction system is the same solution of the 
prediction system. A MArching in Space and Time (MAST) technique is used for the solution of the two 
systems. MAST solves a system of two Ordinary Differential Equations (ODEs) in each computational 
cell, using for the time discretization a self-adjusting fraction of the original time step. The computational 
cells are ordered and solved according to the decreasing value of the potential in the convective 
prediction step and to the increasing value of the same potential in the convective correction step. The 
diffusive correction system is solved using an implicit scheme, that leads to the solution of a large linear 
system, with the same order of the cell number, but sparse, symmetric and well conditioned. The 
numerical model shows unconditional stability with regard of the Courant number (CFL), requires no 
special treatment of the source terms and a computational effort almost proportional to the cell number. 
Several tests have been carried out using analytical solutions, as well as experimental data.  

1 INTRODUCTION  

Saint-Venant (SV) equations (or shallow water equations) are commonly applied for the simulation of 
unsteady shallow water flows (De Saint Venant, 1871). Both explicit and implicit numerical methods 
have been extensively used for the computation of their numerical solution. Even though implicit 
schemes are stable for CFL numbers greater than 1, they lead to the solution of large non linear algebraic 
systems, and the computational effort grows very quickly along with the number of elements. Implicit 
Preissman schemes show also other limitations, specially for simulations of transcritical flows (Meselhe  
et al., 1997). For these reasons, most of the algorithms recently proposed by the Authors fall in the class 
of explicit methods. 

Several Godunov-type schemes have been proposed for the “non viscous” form of the SV equations, 
where source term in the momentum equation is zero (Alcrudo and Garcìa-Navarro, 1993; Mingham and 
Causon, 1998). A fractional time step procedure (Toro, 1997) can be applied for the solution of the 
shallow water equations using Godunov-type schemes when source terms cannot be neglected. The 
corresponding non-homogeneous form of the governing equations is solved in two sequential steps. 
During the first step, the homogeneous problem (without the source term) is solved. In the second step, a 
set of ODEs systems including source terms are solved sequentially, one after the other. A similar 
approach is simple, but often produces poor solutions, especially in stationary or quasi-stationary cases 
(LeVeque, 1998). In fact, when the local time derivative of the flow variables is negligible, the spatial 
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derivative of the flux terms should exactly balance the source term. Fractional step approach in this case 
can fail, since the solution of the homogeneous problem may lead to large changes in the independent 
variables, which are difficult to correct by solving the ordinary differential equations during the second 
step.  

In the last decade many Authors have developed Godunov-type schemes for the solution of balance 
laws, including source terms. The main focus of these schemes is the balance between the numerical flux 
and the source term, when the same numerical discretization is applied. Bermudez and Vazquez-Cendon 
(1994), using a three-points upwind scheme with 1st spatial approximation order and upwind 
discretization of both flux and source terms, introduced the definition of “conservation property”. This 
property is the accuracy provided by a numerical scheme in the solution of the steady-state problem 
representing water at rest (constant total head and zero flow rate in all the domain). If the conservative 
property is not satisfied, exactly or approximately, the propagation of unphysical oscillation is detected 
also in non-stationary problems. In the paper of Bermudez and Vazquez-Cendon (1994) source term is 
given only by the bottom slope in hydrostatic condition. Vazquez-Cendon (1999) extended the definition 
of conservation property to the case of uniform flow in rectangular sections. Hubbard and Garcìa-
Navarro (2000) proved this conservation property for the 2nd order MUSCL scheme with flux limiter.  

Upwinding the source term is computationally expensive, because source term has to be projected on 
an eigenvectors basis. LeVeque (1998) developed an approach where the source term is embedded into 
the wave-propagation algorithm, avoiding the fractional step inconvenient mentioned before. The Author 
defined a Riemann problem inside the cell to balance the source term and the flux gradient; the method 
preserves steady and quasi-steady flow conditions.  

Starting from the work of Bermudez and Vazquez-Cendon (1994), Vukovic and Sopta (2002) and Zic 
et al. (2004) developed an early version of the higher order schemes (ENO and WENO), where numerical 
flux terms exactly balance the source terms. The main limitation of these numerical methods proposed for 
balance laws is that they have been developed for specific form of the source terms and miss generality.  

Zhou et al. (2001) introduced the surface gradient method (SGM) for the accurate treatment of the bed 
slope terms in the shallow waters equations. The Authors proposed a Godunov-type scheme where, in 
contrast to conventional data reconstruction methods based on the conservative variables, the water 
surface level is chosen as the basis for data reconstruction. The conservative variables are accurately 
reconstructed by a 2nd order scheme at cell interfaces and the numerical fluxes are computed by a 
Riemann solver. Integration in time is performed by means of a predictor and a corrector step. More 
recently, the SGM has been used by the same Authors (Zhou et al., 2002) to deal with bed topography 
with vertical steps. The method is referred to as the surface gradient method for steps (SGMS). Both 
SGM and SGMS produce accurate solution over structured meshes.  

All these methods have been proposed for structured meshes and are restricted in their ability to fit 
irregular and/or curvilinear boundaries. A popular approach for the treatment of irregular boundaries is 
the use of boundary-fitted grids which make the boundary contour a coordinate surface (Hauser et al., 
1985; Yang and Hsu, 1993). The flow equations are transformed from Cartesian to curvilinear coordinates 
and then approximated using finite differences. A grid can be generated iteratively by means of an elliptic 
solver (Thompson et al., 1974) or directly by an algebraic technique such as transfinite interpolation 
(Gordon et al., 1973). The complexity of flow and momentum equations written in the transformed 
coordinates increases and discretization of the metrics transformation derivatives could produce new 
approximation errors. 

Alternatively to the boundary-fitted grids, Causon et al. (2000) extended the Cartesian cut cell 
approach (Berger et al., 1995; De Zeeuw and Powell, 1993) to a Godunov-type scheme based on a 
MUSCL reconstruction and suitable approximate Riemann solver. In the Cartesian cut cell approach, 
boundary contours are cut out of a background Cartesian mesh and cells partially or completely cut are 
signed out for special treatment in the computation of the gradients and reconstruction of the flow data 
(Causon et al., 2000). Since a cut cell may turn out to be arbitrarily small, numerical stability 
requirements may force a very small time step. To overcome this problem, a cell merging technique is 
implemented (Chiang et al., 1992). The basic idea is to combine several neighbouring cells together so 
that interfaces between merged cells are ignored and waves travel in a new combined larger cell without 
reducing the global time step. The remainder of the flow cells are treated in a straightforward manner. 
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Successively, Zhou et al. (2004) applied the Cartesian cut cell approach to the SGM and SGMS methods.  
Triangular mesh is generally the simplest and most convenient method for covering a 2D domain. An 

advantage of using triangular meshes is their ability to generate grids on arbitrary geometries and to 
increase the number of cells in high-gradient regions or in regions of particular interest in the flow field. 
Recently, several numerical schemes have been proposed to solve the shallow water equations over 
unstructured meshes. Anastasiou and Chan (1997) developed a 2D depth integrated 2nd order Godunov-
type scheme, based on a cell-centred finite volume upwind formulation. The Roe’s flux function is used 
for the evaluation of the inviscid fluxes at cell interfaces, solving a Riemann problem in the direction 
normal to the cell interface. The viscous terms are computed using a 2nd order accurate finite volume 
formulation. Time integration is done according to a 2nd order trapezoidal implicit scheme. 

Hubbard (1999) proposed a 2nd order MUSCL scheme over unstructured meshes. The Author solves 
the homogeneous form of the shallow water equations and applies the Roe’s approximate Riemann solver 
at cell interfaces for the flux estimation. The Author uses a 2nd order Runge-Kutta time stepping for time 
integration. 

Jiwen and Ruxun (2001) applied a composite finite volume formulation for the solution of the 
homogeneous SV equations. The Authors combine a Lax-Wendroff and a Lax-Friedrich scheme into a 
multi-step composite scheme. The Lax-Wendroff scheme is highly dispersive and produces unphysical 
oscillations; on the opposite, the Lax-Friedrich scheme is characterized by numerical diffusion. The 
composite scheme combines these two methods in a step-by-step scheme to exploit their merits and 
remove their deficiencies.    

Yoon and Kang (2004) propose a 2nd order finite volume scheme over unstructured triangular mesh. 
The Authors apply the HLL approximate Riemann solver for flux estimation at the cell boundaries.  To 
circumvent numerical instabilities, the Authors split the source term in the friction and the bottom slope 
components applying an operator splitting technique. Time integration is made by a 3rd order TVD-
Runge-Kutta method (Shu and Osher, 1988).  

In these Godunov-type schemes time step size is limited by the Courant-Friedrichs-Levy (CFL) 
condition.  

In the present paper we further developed the recent MAST algorithm for the solution of the 1D and 
2D SV equations. MAST has been already developed for the solution of the simple convective transport 
problem (Bascià and Tucciarelli, 2004; Aricò and Tucciarelli, 2006), the 1D and 2D shallow water 
problem with irrotational flow field (Tucciarelli and Termini, 2000; Noto and Tucciarelli, 2007), as well 
as in the 1D shallow water problem with a mono-oriented flow (Tucciarelli, 2003). The methodology is 
not restricted by the CFL condition in the choice of the time step and, even if the solution of a large linear 
system is required for each time step, the corresponding computational cost is negligible and the total 
computational cost is almost proportional to the cell number.  

The governing equation system is split first in a convective component and in a diffusive component. 
The convective system is solved applying a MArching in Space and Time (MAST) procedure, where the 
convective fluxes are solved using an Eulerian approach and the computational cells are required to be 
ordered and solved according to a decreasing scalar potential value.  

The correction step computes the diffusive corrective fluxes by means of the solution of a large linear 
system, that has the order of the cell number, but is sparse, symmetric and well conditioned. The potential 
is defined as a scalar whose gradient is opposite to the flux direction. Because the flow field computed 
solving the SV equations has not a scalar potential, an approximated potential has to be used, along with a 
second correction step that is aimed to compute the rotational fluxes. This approximated potential is 
defined according to the flow direction inside each element at the beginning of each time step. In the 
following of the paper, the application of the numerical procedure to the 1D case will be shown first and 
then to the 2D case.   

2 THE MAST PROCEDURE IN THE CASE OF 1D MONO-ORIENTED FLOW 

The 1D SV equations in a channel with non-prismatic section can be written in the following form 
(figure 1) (see for example Abbott and Minns, 1992): 
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where x is the flow direction, t is the time, g is the gravitational acceleration, h is the water depth, σ is the 

flow cross section, q is the stream flow rate, S0 is the bottom bed slope (
x
zS
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elevation with respect to a reference level), R is the hydraulic radius and n is the Manning friction 
coefficient. Eq. (2) can also be written in the following form:  
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where H is the total water level, H = h + z. The unknown variables in Eqq. (1) and (3) are the water cross 
section σ(h) and the flow rate q. 
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Figure 1. Definition sketch  

Assume the following general system of balance equations: 
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where U is the unknowns vector, F(U) is the numerical flux-vector term and B(U) is the source term. 
Using a fractional time step strategy, we set:  
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where F
p
(U) and B

p
(U) are suitable numerical flux-vector and source terms, further defined.    

After integration in time, system (4) can be split in the two following systems: 
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where 
p

F and 
p

B are the mean values of the flux and the source terms as computed in the prediction 
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step. We call systems (6,a)-(6,b) respectively prediction and correction system. Uk+1/2 and Uk+1 are the 
unknown variables computed at the end of respectively the prediction and the correction step. Observe 
that, summing Eqq. (6,a) and (6,b) the integral of the original system (4) is formally obtained. The 
numerical corrected solution will be close to the solution of this one as far as the difference between the 
flux and the source terms is either small or time-independent. The advantage of using formulation (6) 
instead of (4) is that, with a suitable choice of the prediction terms Fp(U) and Bp(U), each of the two 
systems (6,a)-(6,b) can be much easier to solve than the original system (4).  

For the SV equations solution, we set: 
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where M is the momentum of the cross section with respect to its top width. The total head gradient in the 
p
2B  term is computed at time level k and is kept constant along the time step. For sake of simplicity, 

assume a mono-oriented positive velocity and a cell numeration increasing from 1 to N in the downstream 
direction (1, 2,…, N). The argument of the integral prediction system (6,a) is given by: 
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that differs from the original one only in the time level of the total head gradient included in the source 
term p

2B .  The argument of the integral correction system (6,b) is: 
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Observe that the difference between the flux gradient and the source term goes to zero, in system (9), 
along with the time distance with respect to the initial time level tk. This implies that both the unknown 
changes and the relative errors go to zero along with the time step size.  

In system (9) we assume the difference between the gradient of the momentum flux 
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negligible. 
According to this hypothesis, after simple manipulations, systems (8) and (9) can be written in quasi-

linear matrix form (Tucciarelli, 2003): 
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where the Jacobians of systems (10) are respectively: 
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Th σ= and T is the cross section top width. It is easy to show that A1 eigenvalues are λ1 = λ2 = ve, 
where ve is the vertically averaged flow velocity. Observe that the solution of system (8) is equivalent to 

the solution of a single non-linear convection equation, function of the head gradient at time level kt . A2 

eigenvalues are λ1 = hg , λ2 = hg−=− 1λ . This implies that in the correction system convective 
fluxes are missing. For these reasons we call the prediction and the correction systems respectively 
convective prediction system and diffusive correction system.  

Define Bp(Uj) the prediction source terms computed as function of the unknowns Uj = (σj, qj) in cell j 
and  Fp(Uj, Uj+1) the prediction flux between cell j and j+1.  

We adopt a first order spatial approximation of the unknown variables inside the cells. After 
integration in space and time, Eqq. (10) can be written as: 
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2) diffusive correction system: 
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where Mj,j+1is the cross section momentum at the interface between cells j and j+1. 

2.1 Solution of the convective prediction system 
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Convective prediction system is solved using a MArching in Space and Time (MAST) procedure. 
Because of the sign of the eigenvalues of the Jacobian A1, it is possible to solve each Eqq. (12) if a 
polynomial approximation of the volume and the momentum fluxes entering from the upstream cell is 
always known. This condition can be guaranteed if the flow direction has a constant orientation or, more 
generally, if a scalar potential exists. In this case, it is always possible to order and solve sequentially the 
cells one after the other. In the case of mono-oriented flow, assuming a cell index increasing in the 
downstream direction, Eqq. (12) can be solved as a standard ODEs system, integrated from time 0 to time 
∆t, that is: 
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In Eqq. (14), the terms φj-1,j(t) and ξj-1,j(t) are a polynomial (known) approximation of respectively the 
volume and the momentum flux entering cell j from cell j-1. To solve Eqq. (14) a Runge-Kutta method, 
with self-adapting time step, is applied (Nag Library Manual, 2005). After the ODEs in cell j are solved, 
polynomial approximations required in cell j+1 can be computed as approximation of the volume and the 
momentum fluxes leaving cell j along time step ∆t. The basic idea of the numerical technique is to 
compute the solution, within a given time step, by marching in space along the flux direction through all 
the computational domain. The mass and momentum fluxes entering the first cell are given by the 
upstream boundary conditions, as better specified in a following section.  

Observe that it is possible to solve sequentially the ODEs systems, without any restriction on the size 
of the time step, because the characteristic line of the problem (8) is oriented according to the velocity 
direction and the velocity sign has been assumed to be constant. This is equivalent, after solution of cell 1 
from time tk to time tk+1, to “translate” the boundary condition (thick segment in figure 2) at the interface 
between cell 1 and 2, to get the initial value of the characteristic curve carrying on the solution of cell 2 
and so on through all the computational domain. Because of this, the method can be classified, other than 
“marching in time”, also “marching in space”. 

tk 

tk+1 

 x  xi   x2  x1  x0 

t 

marching  
in time 

marching in space 

  cell 1   cell 2 

 

Figure 2. The core of the marching in space and time procedure 

2.1.1 Polynomial time approximation 

A 3rd order approximating in time polynomial has been chosen for the entering volume and 
momentum fluxes. The corresponding coefficients are obtained by setting the initial, the final and the 
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The average leaving volume flux 1, +jjf  is computed by applying the cell mass balance, that is: 

( )
t

x
ff

k
j

/k
j

j,jj,j ∆
−∆

−=
+

−+

σσ 21

11                                              (18). 

Due to the non-linearity of the momentum balance equation, the average value of the leaving 
momentum flux 1, +jjm is computed via numerical time integration of the values computed by Eq. (17). 
The solution at the Gauss points is obtained by a C1 interpolation of the solution values produced by the 
Runge-Kutta method used for the solution of the ODEs system.  

2.1.2 Total head gradient computation 

In the convective prediction system the total head gradient of cell j at the interface with cell j + 1 
downstream along the flow direction at the beginning of each time step is computed as: 
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In the last element, according to the hypothesis of constant spatial head gradient along the time step, it 
is assumed the head change to be equal to the upstream element one. From this assumption the following 
relationships hold:  
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where 2/1+k
Nf  is the downstream boundary flux predicted at the end of the time step. 

2.1.3 Small water depths computation 

The friction and the momentum flux terms estimation, in the momentum balance equation, is subject 
to large errors when water depth is close to zero. This uncertainty affects the result stability mainly in the 
decreasing part of the hydrograph, because the small water depth values tend to remain and further reduce 
for a large computational time. To deal with this well-known problem, the following procedure has been 
applied. 
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A minimum water depth value hm, negligible for practical applications, is first selected. Call σm the 
corresponding cross section. We assume the Manning relationship and the momentum flux definition to 
hold only for h > hm. In the other case, these two terms are replaced with the following fictitious ones (see 
also figure 3): 
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where P in Eq. (21) is the wetted perimeter and function f(σ) in Eqq. (21) and (22) is given respectively 
by: 
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When the local water depth drops below the minimum value, because of the reduction of the new 
resistance terms with respect to the real ones, the water depth drops quickly to the zero value at the t* 
time. At this point the ODEs system integration is left and the small water volume entering the cell during 
the remaining ∆t - t* time is stored in the same cell to maintain the mass balance.   
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Figure 3. Function approximation for small water depths 

2.2 Solution of the diffusive correction system 

Diffusive correction system (13) is further simplified and linearized, using a fully implicit finite 
difference discretization. The resulting system is: 

( )[ ] 021
1

211
1

1
211

21 =−−−+∆
∆
− +

−
++

−
+

++
+ /k

j
/k

j
k
j

k
j

/k
j

k
j/k

j qqqqx
t
HH

T ,        j=1,…, N      (25,a), 



10                                                                                                                                             Costanza Aricò 

 

02
12

1

34

21
2
12

1

34
12

211

=
∂

∂
−














−

∂
∂

+













+

∆
− +

+
+

+
+

+
++

x
H

g
R

gqqn
x

H
g

R
q

qgn
t
qq k

jk

j

k

/
jj

jj
k
jk

j

k

/
jj

jk
j

/k
j

k
j σ

σ
σ

σ
 

(25,b), 

where the cross section time derivative discretization has been replaced in Eq. (13,a) with a function of 
the total head time derivative discretization. Eq. (25,b) can be written in the following form: 

x
H

dispq
x

H
dispq

k
j

j
/k

j

k
j

j
k
j ∂

∂
++

∂
∂

−= +
+

+ 21
1

1                                        (26), 

where 






























+

∆

=
+

+

2/1

3/4
2

2/1

1
k

jj

j

k
j

j

R

q
gn

t

g
disp

σ

σ
. 

Merging Eq. (26) in Eq. (25,a) we get: 

( ) ( )21
1

21
1

1
1

1
1

211
21 /k

j,j
/k

j,j
k

j,j
k

j,j

/k
j

k
j/k

j dsdsdsdsx
t
HH

T +
−

+
+

+
−

+
+

++
+ −=−+∆

∆
−

,    j = 1, … , N       (27,a), 

x
H

dispds
k
j

j
k

j,j ∂
∂

−=
+

+
+

1
1

1 ,   
x

H
dispds

k
j

j
k

j,j ∂
∂

−=
+
−

−
+
−

1
1

1
1
1                                   (27,b). 

Using the total head gradient discretization given in Eq. (19), Eqq. (27) are changed into a system of 
linear equations, with a symmetric, positive defined and well-conditioned matrix. After system (27) is 
solved in the Hk+1 unknowns, the flow rates qk+1 can be computed by means of Eqq. (26). 

 

2.3 Boundary conditions 

Boundary conditions assumed in convective prediction and diffusive correction steps are reported in 
table 1. hn e hc are respectively the boundary (known) water depth and the critical water depth 
corresponding to the flow rate qb in the last cell of the domain. The Froude number of the downstream, 
leaving flux is computed using the domain flow rate and water depth values, the Froude number of the 
upstream flux is computed using the external flow rate and water depth values. In the convective 
prediction system both the incoming volume and momentum fluxes are assigned at the upstream cell. If 
the incoming flux is sub-critical, the momentum flux is computed as function of the water depth in the 
upstream cell computed at the end of the previous time step. In the case of supercritical downstream flow, 
solution of the diffusive problem (27) is obtained by setting zero diffusive flux to the downstream 
boundary (case n. 1, 5 and 6 of table 1). This is equivalent to set: 

2/11 ++ = k
b

k
b qq                                                            (28,a). 

In the cases 2 and 4 of table 1, a water depth corresponding to the known value is assigned: 
11 ++ = k

n
k
b hh                                                              (28,b). 

In the third case of table 1, a critical flow rate corresponding to the computed water depth is finally 
assigned: 
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211 /k
bb

k
b ghq ++ = σ                                                       (28,c). 

case n. Flux Fr. number hn/hc Boundary conditions 
1 leaving ≥ 1 ≤ 1 No bound. cond. 
2 leaving ≥ 1 ≥ 1 hn 
3 leaving < 1 < 1 Critical water depth 
4 leaving < 1 ≥ 1 hn 
5 incoming ≥ 1  qn e hn 
6 incoming < 1  qn 

Table 1. Boundary conditions 

3 EXTENSION OF THE MAST PROCEDURE TO THE COMPLETE 1D DYNAMIC SHALLOW WATER 
EQUATIONS 

In the most general case of 1D or 2D flow, the velocity direction and orientation is not known. If the 
flow field has a scalar potential, like in the case of diffusive models (Noto and Tucciarelli, 2001), the 
flow direction is, at time tk, opposite to the gradient of the potential computed at the same time and it is 
possible to order and solve the elements according to the their potential decreasing value. In the most 
general case, it is still possible to extend the MAST procedure adding a further convective correction step 
and using an auxiliary scalar function, called approximated potential, further defined.  

Call fj,b the flux between cell j and one of the two connected cells (b = j-1 or b = j+1), taken positive 
or negative if the flux is respectively leaving or entering cell j and bjve ,  the velocity of the corresponding 
particles, that is:  

( )jbqf jb,j −= , 
j

j
b,j h

q
ve = , if ( ) 0>− jbq j   and  ( ) ( )bjqjbq bj −>−               (29,a), 

( )bjqf bb,j −−= ,  
b

b
b,j h

qve =    otherwise                                     (29,b). 

Observe that, according to the previous rule, condition jbbj ff ,, −=  always holds. 

Assume that a scalar value k
jϕ , called approximated potential, is assigned to each computational cell j 

at the beginning of each time level tk.  The chosen volume and momentum flux computation rules can 
guarantee the existence of a potential function that is exact at the beginning of the time step. This 
approximated potential can be found by setting arbitrarily its value k

1ϕ  in the first cell and by assigning to 
the other cells the following values: 

11 +=+
k
j

k
j ϕϕ    if  01 <+

k
j,jf ,  11 −=+

k
j

k
j ϕϕ    if  01 ≥+

k
j,jf      for    j = 2,…,N            (30). 

Even if the flow rates are consistent with the potential gradient at the beginning of the time step, they 
can change sign along the solution of the convective prediction system (8). For this reason, the solution of 
a new convective correction system is now required. 

System (1)-(3) can be solved by means of the sequential solution of the following three PDEs 
systems:  
1) convective prediction system: 
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                     (31), 

2) convective correction system: 

( )( )

( )( ) 00

00

2

=







∂
∂−−

∂
∂

=
∂
∂−−

∂
∂

σ
ϕ

ϕσ

q
x

qgradsign,min
t
q

x
qqgradsign,min

t

k

k

                                         (32), 

3) diffusive correction system: 






















+

∂
∂=








+−+

∂
∂+

∂
∂

∂
∂=

∂
∂+

∂
∂

+

++

+

32

342

2
32

342

2

0
32

32

/k

/

k
/k

/
/k

/k

R
qqn

x
Hg

R
qqn

Sg
x
Mg

t
q

x
q

x
q

t

σ
σ

σ
σ

σ

           (33). 

In Eq. (33), as in the case of mono-oriented flow, we have assumed the difference between the 
gradient of the momentum flux and the gradient of the mean value of the same terms computed in the 
convective prediction and convective correction steps to be negligible. 

In Eqq. (31)-(32) the argument of the function sign(…)  is minus the product of the gradient times the 
flow rate and the function is equal to 1 or -1 if the argument sign is respectively positive or negative, k is 
the index of the known time level and variables with index k + ⅔ are assumed known in system (33) from 
the previous solution of systems (31)-(32).  

Observe that source terms are neglected in system (32), since the rotational components of the fluxes 
are assumed to be small with respect to the irrotational ones. Systems (31) is equal to system (8) if the 
value of function sign(…) is equal to 1. In the other case, system (31) degenerates in the ODEs system: 

00 34

2

=+
∂

∂+= /

k

R
qqgn

x
Hg

dt
dq,

dt
d

σ
σσ

                                          (34). 

If the value of function sign(…) is equal to 1 system (32) degenerates in the steady-state condition: 

00 ==
dt
dq,

dt
dσ

                                                           (35). 

After integration in space and time, systems (31)-(33) can be written as: 
1) convective prediction system: 

( ) 0
0

1
0

1
31 =++∆− ∫∫

∆

+

∆

−
+

t
p
j,j

t
p
j,j

k
j

/k
j dtfdtfxσσ                                     (36,a), 

( ) ( )∫∫∫
∆∆

++

∆

−−
+ =++∆−

t

j
pt

j,j
p
j,j

t

j,j
p
j,j

k
j

/k
j dtdtvefdtvefxqq

0 20 110 11
31 B U                      (36,b), 
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where    
( )
( ) k

b
k
jp,j

p
b,j

k
b

k
jp,j

p
b,j

,f,minf

,f,maxf

ϕϕ

ϕϕ

<=

≥=

  if  0

  if  0
                                           (36,c), 

2) convective correction system: 

( ) 0
0

1
0

1
3132 =++∆− ∫∫

∆

+

∆

−
++

t
c

j,j

t
c

j,j
/k

j
/k

j dtfdtfxσσ                                 (37,a), 

( ) 0
0 110 11

3132 =++∆− ∫∫
∆

++

∆

−−
++ t

j,j
c

j,j

t

j,j
c

j,j
/k

j
/k

j dtvefdtvefxqq                       (37,b), 

where    
( )
( ) k

b
k
jb,j

c
b,j

k
b

k
jb,j

c
b,j

,f,maxf

,f,minf

ϕϕ

ϕϕ

<=

≥=

  if  0

  if  0
                                            (37,c), 

3) diffusive correction system:   

( ) ( ) tffffdtfdtfx
c

j,j
c

j,j
p

j,j
p

j,j

t

j,j

t

j,j
/k

j
k
j ∆−++=++∆− +−+−

∆

+

∆

−
++ ∫∫ 1111

0
1

0
1

321 σσ        (38,a), 

( ) ( ) txdtx
R

qgn
SgdtMMgxqq

pt

/
jj

j
j

t

j,jj,j
/k

j
k
j ∆∆−∆









−=−+∆− ∫∫

∆∆

−+
++

2
0 34

22

00 11
321 B

σ
σ   (38,b), 

where
p

jjf 1, + , 
c

jjf 1, +  are the mean values of the volume flux between cells j and j+1, as computed in the 
convection prediction and correction steps.   

Observe that in Eqq. (36) strictly negative (entering) fluxes are always coming from cells with higher 
potential and strictly positive (leaving) fluxes are always moving to cells with lower potential and 
viceversa in the convective correction system (37). This allows to solve first the convective prediction 
step moving from cells with higher to cells with lower potential and the convective correction step 
moving from cells with lower to cells with higher potential.  

The sum of systems (36), (37) and (38) is an approximation of the integral of the original system (1)-
(2), and this approximation is as good as the difference between the fluxes and the source terms in the 
correction systems is either small or time-independent.  

3.1 Solution of the convective prediction and convective correction systems 

A 1st order spatial approximation of the unknown variables σ(h) and q is assumed inside each cell, as 
in the solution of the convective prediction problem shown in section 2. According to this approximation, 
as well as to the steady-state assumption of the spatial total head gradient, each system (36)-(37) can be 
viewed as an ODEs system. Convective prediction system (36) can be written as: 

( ) ( ) ( ) ( ) 011 1111 =−+−+++∆ +−+−
p

j,j
pp

j,j
pp

j,j
pp

j,j
pj tftfx

dt
d

φδφδδδ
σ

               (39,a), 

( ) ( ) ( ) ( ) ( ) ( ) ( )j
pp

j,j
p

j,j
p
j,j

pp
j,j

p
j,j

p
j,j

pj tvetftvetfx
dt

dq
U2111111 B11 =−++−++∆ +++−−− ξδδξδδ   

(39,b), 
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where  

( )pp fsign=δ                                                             (40). 

Convective correction system (37) can be written as: 

( ) ( ) ( ) ( ) 011 1111 =−+−+++∆ +−+−
c

j,j
cc

j,j
cc

j,j
cc

j,j
cj tftfx

dt
d

φδφδδδ
σ

                 (41,a), 

( ) ( ) ( ) ( ) ( ) ( ) 011 111111 =−++−++∆ +++−−−
c

j,j
c

j,j
c

j,j
cc

j,j
c

j,j
c

j,j
cj tvetftvetfx

dt
dq

ξδδξδδ     (41,b), 

where 

( )cc fsign=δ                                                               (42). 

Systems (39) can be solved sequentially in each computational cell, as previously seen for the case of 
mono-oriented flow, moving from the higher to the lower approximated potential. After solution of all 
systems (39), systems (41) can be solved sequentially moving viceversa from the lower to the higher 
approximated potentials. Of course if an exact scalar potential exists and it is known, the convective 
correction system reduces to the identity: 

( ) ( ) 3132 /k
j

/k
j hh ++ = σσ ,     3132 /k

j
/k

j qq ++ =                                           (43). 

In the convective prediction system, the piezometric gradient of cell j at the interface with cell b 
downstream along the flow direction at the beginning of each time step can be computed as in Eq. (19).  

The polynomial time approximation of the leaving volume and momentum fluxes are the entering 
values for the next element in both convective prediction and correction systems. These polynomials can 
be estimated as function of the σ(h) and q values computed during the running time step, as already seen 
for the case of mono-oriented flow.  

3.2 Solution of the diffusive correction system 

Diffusive correction system (33) is further simplified and linearized as previously explained for the 
case of mono-oriented flow, to get the following fully implicit discretization: 

032
1

32
1

1
1

1
1

321
32 =−−++∆
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j ffffx
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 (44,b); 

The error due to the linearization of Eqq. (33) goes to zero along with the size of the time step, as well 
as the difference between the predicted and the corrected fluxes and water levels. The mean value of the 
known water flux of Eq. (33,a), as well as of the source term of Eq. (33,b) have been approximated in 
Eqq. (44) at time level k + ⅔, that represents the best known time level estimation for the vector variables 
U.   

Eq. (44,b) can be written in the form: 
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Merging Eqq. (45) in Eqq. (29) and these ones in Eq. (44,a), we get: 
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1,
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1,3/2

1
1,

1
1,3/2
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x

t
HH

,    j = 1,…,N    
(46), 

where  

x
H

dispds j
jbj ∂

∂
−=,

  if  
0, ≥k

bjf
;    x

Hdispds b
bbj ∂

∂=,
  if  

0, <k
bjf

                      (47). 

After discretization of the total head gradient as given by Eq. (19), Eqq. (46) form a linear algebraic 
system, with a matrix that is symmetric, positive defined and very well conditioned. 

The flow rate unknowns, at time level k+1, can be computed by means of Eq. (45). 

3.3 Boundary conditions 

Boundary conditions are the same summarized in section 2.3. An approximated potential gradient 
consistent with the flux sign at time tk is assumed at the two boundaries of the domain; this implies that 
zero entering volume and momentum fluxes are assigned at both boundary cells for the solution of 
convective correction systems (37). 

Boundary conditions of the diffusive problem (40) can be obtained by Eqq. (28), changing Eqq. (28,a) 
and (28,c) respectively with:  

321 /k
b

k
b qq ++ = ,    

321 /k
bb

k
b ghq ++ = σ

                                          (48). 

4 1D NUMERICAL TESTS 

4.1 1 Dam-break with finite downstream water depth 

In this test the channel is frictionless, horizontal, infinitely large and 2000 m long. Bore is located at x 
= 1000 m, with a water depth equal to 100 m in the upstream part of the channel and a water depth equal 
to 1 m in the downstream one. Numerical results have been compared with the analytical ones obtained 
by Stoker (1957), in terms of water depths and flow velocities. Numerical solution is computed at time 
9.9 s, using a cell size ∆x = 10 m and a time step size ∆t = 0.1 s. The maximum value of the CFL number 
is approximately 0.5. A comparison of the results obtained using 11 different explicit numerical models 
can be found in Zoppou and Roberts (1999). The Authors compared the L1 norms of errors of water depth 
and flow velocity defined as:    
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where sub-indexes ex and nu indicate respectively the exact solution and the numerical results. The 
MAST model provides L1,h = 1.32 10-2 and L1,ve = 7.63 10-2, where the best norm provided by the 1st 
spatial approximation order methods is 1.431 10-2 for the water depths and 5.5 10-2 for the velocities. The 
worse ranking in the velocity estimation can be explained by the use of the flow rate instead of the flow 
velocity as unknown, as done in some of the other methods. In figure 4 the comparison between 
analytical and numerical results is shown, where “sp. step” stands for ∆x. 

If we assume the computational cost to be proportional to the number of elements times the time steps 
number, it is possible to maintain the same computational cost by halving the element size and doubling 
the time step size. In this case, even with a maximum CFL number equal to 3.13, a better performance is 
obtained for the norm of both the head and the velocity error (L1,h = 7.42 10-3 and L1,ve = 4.94 10-2). Also 
for this case, comparison with the analytical solution is shown in figure 4.  

Observe also that for both computational meshes no entropy glitches appear in the numerical 
solutions. These discontinuities plague several numerical solutions, also obtained with numerical methods 
with spatial approximation order greater than one  (Zoppou and Roberts, 2003).   
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Figure 4. Dam-break with finite downstream water depth. Water levels and flow velocities 

4.2 Steady flow over a bump with hydraulic jump 

A steady-state transcritical flow over a bump, with a smooth transition followed by a hydraulic jump 
is simulated. The channel is infinitely large, horizontal, frictionless, 25 m long. Boundary conditions are 
given by: 

( )
( ) m 33.0,0

s/m 18.0,0 3

=
=

th
tq

                                                       (50). 

Initial condition is given by a constant water level over the channel, equal to 0.33 m, and bed profile is 
given by: 

( ) ( )


 ≤≤−−=

otherwise  0
128  if  1005.02.0 2 xxxz                                       (51). 

The test has been carried on using ∆x = 0.125 m and ∆t = 0.1 s, with a maximum CFL number equal 
to 3.62. In figure 5 the computed water level and flow rates are compared with the corresponding 
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analytical solution after 1000 iterations (T = 100 s). Observe that the hydraulic jump is captured in few 
cells and that no oscillations occur in the water surface and, most important, in the flow rate profile along 
the bump. Increasing the computational time, flow rate value tends asymptotically to the stationary value 
q = 0.18 cm/s in all the domain. 

For the same test, we also provide in figure 6 a comparison of the convergence history of the proposed 
scheme with respect to the SGM method by Zhou et al. (2001) and to the well-balanced high order 
WENO scheme by Vukovic and Sopta (2002). The global relative error R is defined as (see Zhou et al., 
2001): 

∑
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n
i

n
i

n
i

f
ffR

1

21

                                                     (52), 

where n
if  is the water depth in the ith cell computed at time level nth and index n-1 indicates the 

corresponding water depth computed at the previous time level. Despite the spatial approximation order, 
MAST scheme converges much faster than the other two higher order schemes. 

Observe, in figure 6, the relative flow errors obtained in the same test by the MAST algorithm. In this 
case n

if  in Eq. (52) is the flow rate computed in the cell i.  
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Figure 5. Water surface and flow rate profiles over the bump for transcritical flow after 100 s 
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Figure 6. Global relative error of water depths and flow rates for test 4.2 

4.3 LeVeque’s test problem (1998) 

In the LeVeque test problem (LeVeque, 1998) a non-stationary flow provided by two dam-breaks 
propagates in opposite directions; while the upstream moving front passes over a horizontal river bed, the 
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downstream moving front propagates over a bump. Bed profile is given by: 

( ) ( )( )( )


 ≤≤+−

=
otherwise  0

6.14.1  if  15.010cos25.0 xx
xz

π
                                (53). 

Channel is assumed frictionless and infinitely wide. The initial conditions are: 

( ) m/s 00, =xve , 
( ) ( )

( )


−
≤≤−∆+= otherwise  1

2111  if  10 xz
.x.xzh,xh

                           (54), 

where ∆h is the height of the pulse equal to 0.2 m.  
In figure 7 computed water levels and flow rates are shown at time t = 0.2 s, using ∆x = 0.001 m and 

∆t = 0.0001 s. The maximum CFL number is 0.355. Observe the discontinuities in both water level and 
flow rate profiles and also the corresponding errors with respect to the reference solution, computed using 
a value of the CFL number equal to 3.58 and a number of elements 10 times higher. The error depends on 
the partial reflection, due to the bump, of the downstream travelling wave in the upstream direction and 
on the corresponding rapid inversion of the flow direction. The flow inversion is not followed, in the 
momentum equation of the convective prediction step, by the total head gradient inversion. This error is 
well corrected by the diffusive correction step, unless the diffusive correction step does not reduce the 
local change of the unknown variables. This is avoided if the convective change can cross several 
elements, due to a CFL number much larger than one. Observe, in facts, that refining the mesh using a 
number of elements 10 times higher oscillations disappear. Similar discontinuities in the numerical 
solutions have been observed also by LeVeque (1998) and by other Authors (Vukovic S. and Sopta, 2002; 
Zic et al., 2004). 
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Figure 7. Water level and flow rate for LeVeque’s test problem at t = 0.2 s 

4.4 Experimental dam-break in a prismatic channel 

Some experimental works carried out by the U. S. Army Corps of Engineers (USACE, 1960) have 
been used to compare the model results with experimental data. The experiments have been performed in 
a 122 m long, 1.22 wide rectangular channel lined with plastic-coated plywood. The bottom slope is 0.5 
%, the dam has been placed in the middle of the channel (x = 61 m), and the water depth immediately 
before the dam is equal to 0.305 m. Two series of experiments have been carried out using both smooth 
and rough surfaces, with n Manning friction coefficient equal to 0.009 s/m1/3 and 0.05 s/m1/3 respectively. 
Initial conditions are given by: 

( ) m/s 0   ,
m 61  if  0

m 610  if  0050
=





>
≤≤

= xve
x

xx.
h                                    (55), 
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and are shown in figure 8. At the downstream end of the channel zero water depth is assumed as 
boundary condition. In the model run ∆x = 0.7625 m and ∆t = 0.25 s parameters have been used. In 
figures 9,a-10,b the water depths at abscissas x = 30.5 m, x = 61 m and x = 85.4 m are plotted versus time 
against the corresponding measured values. Numerical results given by a 2nd order MUSCL scheme 
(Zhang et al., 2003) are also shown. The maximum CFL number is approximately 0.874 for n = 0.009 
s/m1/3 and 0.82 for n = 0.05 s/m1/3. In figure 11 the measured and computed water levels at time t = 10 s 
for the n Manning coefficient equal to 0.009 s/m1/3 are shown. Comparison with experimental data is 
good and the matching is similar to the one obtained by the 2nd order approximation scheme.  

 

x = 0 m x = 61 m x = 122 m 

h
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Figure 8. Initial condition for the experimental dam break test 
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Figure 9,a. Water depths at x = 30.5 m, n = 0.05 s/m1/3               Figure 9,b. Water depths at x = 61 m, n = 0.05 s/m1/3 
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Figure 10,a. Water depths at x = 30.5 m, n = 0.009 s/m1/3    Figure 10,b. Water depths at x = 85.4 m, n = 0.009 s/m1/3 
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Figure 11. Water level at t = 10 s, n = 0.009 s/m1/3 

5 THE MAST APPROACH IN THE 2D CASE 

5.1 Integral form of the SV equations 

The 2D SV equations can be written as: 
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where x and y are the spatial coordinates, u and v are the x and y velocity components, t is the time, g is 
the gravitational acceleration, h is the water depth, z is the ground level and n is the Manning friction 
coefficient.  The unknowns in system (56)-(58) are the water depth h and the two flow rates components 
per unit width uh and vh. 

Assume a triangular mesh and a first order approximation of the variables h, uh and vh inside each 
element. Integration in space of Eqq. (56), (57) and (58), as well as application of the Green’s theorem 
provides: 
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where σe is the element area, jeF ,  is the volume flux through the jth side of element e, x
jeM , and y

jeM , are 
the x and y components of the momentum fluxes along the jth side of element e and  the source terms 

y
e

x
e RR ,  are defined as: 

( ) ( ) ( )












 +
+

∂
∂= 37

222

/
e

eeee
ee

x
e h

vhuhuhn
x

HhgR σ                                      (62),  

         
( ) ( ) ( )













 +
+

∂
∂= 37

222

/
e

eeee
ee

y
e h

vhuhvhn
y

HhgR σ                                      (63), 

where He and he are respectively the element water level and water depth.  

5.2 Fractional time step decomposition 

Assume a scalar value k
eφ , called approximated potential and further specified, to be known at the 

beginning of each time step in each computational element. The volume and momentum fluxes through 
each side are defined as function of the flux of the specific flow rate components of both the elements e 
and ep sharing the given side. The volume flux through the jth side of element e is equal to: 

( ) ( ) ( ) ( )e
j

e
jpe

e
j

e
jpej,e xxvhyyuhFL −−−=                                            (64), 

where jp is the node of element e following node j in counter-clock wise direction.   
The volume flux is defined as:                                      

j,ej,e FLF =
   if    

0>j,eFL
  and  mepje FLFL ,, >

                            (65,a), 

m,epj,e FLF −=
   otherwise                                                (65,b), 
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epj,e
x

j,e uFM =
 ,  epje

y
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   otherwise                                          (66,b), 

where ep is the index of the element sharing its mth side with the jth side of element e. Observe that 
condition mepje FF ,, −=  holds for all the internal sides. If jeF , is the positive (leaving) flux of a boundary 

side, the condition jeje FLF ,, = holds.  
After integration in time, prediction step of system (59)-(62) is defined as: 
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where: 
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and 
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The first correction system is defined as: 
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The second correction system is defined as: 
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where 
p

jeF , , 
c

jeF , ,
px
eR ,

py
eR  are the mean (in time) flux and source term values, as computed in the 

prediction and in the first correction step. In Eqq. (77)-(78) we neglect the difference between the mean 
(in time) convective inertia terms and the same mean values computed from the solution of the prediction 
plus the first correction systems. This is equivalent to assume, in the second correction system: 

∑∑∑ ∫
=== ∆

+≈
∆ 313131

1
,j

cx
j,e

,j

px
j,e

,j t

x
j,e MMdtM

t
                                       (79,a), 

∑∑∑ ∫
=== ∆

+≈
∆ 313131

1
,j

cy
j,e

,j

py
j,e

,j t

y
j,e MMdtM

t
                                         (79,b). 

This implies that convective fluxes are missing in Eqq (86)-(88) and we call the prediction system 
convective prediction system and the first and the second correction systems respectively convective and 
diffusive correction systems.  

Initial conditions of the convective correction system are the final values of the convective prediction 
system and initial values of the diffusive correction system are the final values of the convective 
correction system. Spatial piezometric gradient xH k ∂∂  is assumed constant in time in all the systems. 
Observe that summing all the terms of Eqq. (67)-(88) the integrals of Eqq. (59)-(61) are formally found 
again.  

5.3 Solution of the convective prediction and the convective correction systems  

A first order spatial approximation is applied to the unknown variables h, uh and vh. Observe that, 
according to the flux definitions given in Eqq. (71) and (75), the flux integrals from element e to element 
ep in the convective prediction step are only function of  the element e unknowns if k

ep
k
e φφ ≥  and are 

only function of the element ep unknowns if k
ep

k
e φφ < . In the convective correction step the opposite 

holds. This allows to solve each system as a sequence of small ODEs systems, one for each 
computational cell, after ordering the cells according to the their scalar potential. The priority is given to 
the cells with higher potential in the convective prediction step and to the cells with lower potential in the 
convective correction step.  

In the prediction case, the ODEs system is: 
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Call out (in) the index of any side shared with any element ep such that k
ep

k
e φφ ≥  in the convective 

prediction step ( k
ep

k
e φφ <  in the convective correction step). After the single system of element e is 

solved along the time step, the mean values of the fluxes leaving through each side out have to be 
estimated.  

The mean value of the leaving volume flux 
p

outeF ,  can be estimated by partitioning the total mean 
leaving flux, obtained from the mass balance in the element and equal to: 
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Observe that the mean values of the entering fluxes 
p

ineF ,  are known from the solution of the elements 
with higher scalar potential. Partition can be done adopting for each element side a weight equal the 
arithmetic mean between the initial and the final flux values, that is: 
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where j is also the index of any side shared with an element with lower potential.   
Given the initial, the mean and the final values, a parabolic volume flux time approximation in each 

side j is finally computed and used to estimate the entering fluxes in the connected elements with lower 
approximated potential. Conservation of the mean values can be easily proved to guarantee the local and 
global mass conservation. 

The mean leaving momentum fluxes 
py

je
px

je MM ,, ,  can also be estimated in a similar way. After 
integration, they can be computed as: 
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                                        (85). 

Due to the non-linearity of the momentum balance equations, the mean value of the total leaving 
momentum flux at the r.h.s. of Eq. (85) has to be numerically estimated from the single time values.  In 
the coded algorithm, the leaving momentum fluxes in three Gauss points, selected in the time interval 0 – 
∆t  have been computed using a C1 interpolation of the solution values produced by the Runge-Kutta 
method adopted for the solution of the ODEs system. A parabolic momentum flux estimation is finally 
carried out for each element side using the initial, the final and the mean value. A similar procedure is 
carried out for the solution of the convective correction system, written as: 
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Observe that the source terms have been totally allocated in the convective prediction step. This 
simplifies the solution of the problem and is computationally ineffective due to the small size of the 
corrective fluxes, sought after with a good choice of the approximated potential function. 

5.4 The approximated scalar potential 

Fractional step methodology provides accurate results only if the solution of the convective  
prediction step is close to the corrected one; otherwise, the computation of the spatial gradients at 
different time levels can strongly affect the solution. In our case, to minimize the variable change in the 
convective correction step, it is important to choose an approximated potential with a gradient flux 
opposite in sign, as much as possible, to the water flux along the element sides. If an exact potential exists 
and this condition is always attained, convective correction system vanishes in the following identities: 
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We seek to minimize, at the known time level tk, the following functional: 
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where j is again the index of any side shared by an element ep such that: 
k
ep

k
e φφ ≥                                                                   (91). 

The best set of scalar potentials, that minimizes function (90) subject to constraints (91), is the 
solution of a global minimum search, computationally very expensive. Excellent results can also be found 
more easily by performing a local search, if a good starting point is chosen. This point is the potential set 
corresponding to numerically estimated gradients as opposite as possible to the velocity gradients times 
the water depth. In a 3D space, it can be viewed as the set of potentials that are as close as possible to the 
planes matching the potential value at the triangle centre, with a gradient opposite to the velocity gradient 
times the water depth (see figure 12). The functional component corresponding to the side j of each 
element is weighted with the absolute value of the flux and to all the element components a penalty term 
related to the change with respect to the previous value is added, to finally get: 
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(92), 

where xe, ye are the coordinates of the centre of element e, and α is a small positive number.  
The proposed functional is convex and the minimum can be found by setting to zero the partial 

derivatives with respect to all the element approximated potential. The resulting linear system is sparse, 
symmetric, positive definite and well conditioned. The penalty term in the square brackets is aimed to 
avoid in the linear system zero diagonal terms when the specific flow rate components at time tk are equal 
to zero. Increasing the penalty term, a potential distribution more similar to the previous one computed at 
time tk+1 is obtained. To obtain a compromise between computational efficiency and the approximated 
potential quality, the coefficient α of the penalty term can be normalized with respect to the diagonal term 
of the corresponding original equation, with a lower boundary given by the machine precision.   

After the minimum of F’ is found, the approximated potentials can be further refined with a local 
search, iteratively adjusting the element potential values until a local minimum of the functional F is 
found.   
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Figure 12. Linear approximation of the approximated potential around a central value 

5.5 Computation of the gradients for the convective systems 

 
Water level gradient is usually estimated, in the case of triangular mesh and first order approximation, 

by applying Green’s theorem at the 2D integral of the water level over the element (see for example 
Anastasiou and Chan, 1997; Putti et al., 1990). This estimation is accurate only if regular meshes are 
used. In the case of unstructured, automatically generated meshes, it is affected by large errors and 
heterogeneous gradients are obtained also in the case of a linear variation of the water level inside the 
domain. A most robust technique has been developed, similar to the algorithm proposed by Hubbard 
(1999).     

The gradient is computed as a weighted average between one or two vectors, each one corresponding 
to a vertex j of the triangle. Each jth vector Hej∇  is computed assuming a linear variation of the water 
level inside a new triangle, defined by the centre of element e and the centres of the two surrounding 
elements sharing the jth node. Zero weight is given to the jth vector corresponding to a negative scalar 
products between the element velocity and the direction of the line connecting the centre of element e 
with its jth vertex.  Each vector is the gradient of the linear function matching the water levels in the 
centre of element e and in the centre of elements ep, em sharing vertex j with triangle e (see figure 13). 
The final gradient is given by: 
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where nej nuv is the scalar product between the centre-vertex and the velocity directions. 
If element e has an edge on the impervious boundary, its velocity is parallel to the boundary and one 

of the three conditions required to compute the gradient corresponding to the downstream vertex is 
missing. This condition is replaced by the equality of the expected total piezometric gradient direction 
and the impervious edge direction.    
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Figure 13. Computation of the spatial water level gradient 

5.6 Boundary conditions for the convective prediction system 

At the beginning of each time steps, elements with one boundary side j are selected. The Froude 
number fre,j of the flux per unit length is computed as: 
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(94), 

where Le,j is the length of the jth side of element e. Boundary conditions of the prediction problem (67)-
(69) depend on the flux sign and on the Froude number fre,j. One of the following cases can be selected: 
1) Flux through the boundary side is entering the domain. In this case the following equalities hold: 
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where b
eh , b

eu  and b
ev are the assigned boundary water depths and velocity components; 

2) Flux through the boundary side is leaving the domain. In this case water depth gradient is not known 
and convective prediction system is replaced, for element e, with the hypothesis of neglecting the flow 
rate and momentum local changes in the same elements. This is equivalent to say that the leaving volume 
and momentum fluxes are equal to the entering ones. From the previous hypothesis, we obtain: 
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with the same meanings specified for Eqq. (65)-(66). 
3) Flux through the boundary side is zero (impervious boundary). In this case the following conditions 
hold: 

0=p
j,eF ,   0=⋅∇ j,ee nH                                                    (99), 

where eH∇ is the water level gradient and je,n is the unit vector normal to the impervious side. 
We assume the scalar potential immediately outside the boundary sides to be consistent with the flux 

sign. This implies the volume and momentum fluxes to be zero in the convective correction step, that is: 

             000 === cy
j,e

cx
j,e

c
j,e M,M,F                                                (100). 

5.7 Solution of the convective steps with small water depth 

Instabilities occur in the solution of the convective steps when initial water depth values are negative, 
and convergence is very slow when positive, but very small values are computed in the tail of the 
propagating wave. Small negative water depths can be computed by the diffusive system in the preceding 
time step, when the result of the convective steps is a very small positive value. 

The following procedure is followed in order to avoid these inconveniences and to maintain the local 
mass conservation property. A very small minimum water depth hmin is chosen (10-4-10-5 m) and both the 
momentum flux and the friction terms are computed, for h < hmin, as the first order expansion around hmin, 
that is: 
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This change allows a fast solution of the problem for small, but positive water depth values. When a 
tail occurs, solution converges anyway to negative values. To avoid this, a control is set in the ODEs 
solver in order to return the time value corresponding to a zero water depth value. When the solver stops 
before the end of the time step, the remaining water volume entering the cell is left in the same cell 
assuming zero leaving flux after the return time. When the initial water depth k

eh  (or 3/1+k
eh in the 

convective correction step) is negative, two possibilities occur. Call Vol the volume corresponding to the 

cell area and to the opposite of the negative initial water depth. If the entering volume tFV
in

p
inein ∆−= ∑ ,  

is smaller than Vol, increase k
eh , assume a zero leaving flux, and move to the next cell. If Vin is greater 

then Vol, set k
eh  = 0, reduce the mean entering volume and momentum fluxes according to the Vol /∆t 
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value and solve the ODEs system. 

5.8 Solution of the diffusive correction system 

Diffusive correction system (76)-(78) is simplified by changing the integral mean values with the fully 
implicit time discretization and linearizing the source terms. This provides a diffusive effect, that goes to 
zero along with the size of the source terms and the diffusive fluxes. This size is proportional to the time 
step, as can be observed in Eqq. (77)-(78). According to these hypotheses, diffusive correction system 
(76)-(78) is equivalent to the following fully implicit time discretization:  
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that is: 
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where the variables with index k + ⅔ are known from the solution of the convective correction system. 
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Merging Eqq. (106)-(108) in Eq. (103), the following relationship is obtained: 
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where diffusive fluxes are discretized as: 
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e
jpj,δ = 1 if the jth and jpth nodes of element e are shared by the elements e and ep (internal side), e

jpj,δ = 0 

if not (boundary side). After computation of the new water levels 1+k
eH , the flow rates per unit width can 

be computed with Eqq. (106)-(108) using the new convective gradients (
y

H
x

H k
e

k
e

∂
∂

∂
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, ) computed as 

explained in section 5.5. 

5.9 Boundary conditions of the diffusive correction system 

If fre,j > 1, zero diffusive flux is assigned, that is 01
, =+k
jeF . If fre,j ≤ 1 two possibilities exist. If the 

assigned boundary water depth is smaller than the critical depth corresponding to the specific flow rate, 
that is: 
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 +≤                                                      (112), 

a total flux corresponding to the critical depth is assigned to the element boundary side, that is: 

( ) 3223321 /k
j,ej,e

//k
e

k
j,e FLhgF +++ −=                                              (113). 

If inequality (112) does not hold, boundary water depth is assigned to element e, along with the 
corresponding Dirichlet condition and diffusive flux is computed a posteriori by means of Eq. (109). 

6 2D NUMERICAL TESTS  

In the following, results of the MAST model are compared with experimental data of two laboratory 
tests and with results obtained for the simulation of the same experiments by other authors. In all the 
simulations, the computational mesh is unstructured and automatically designed by the ARGUS ONE 
mesh generator (Argus Holdings). The water depth and velocity components in a given point with x, y 
coordinates have been assumed equal to the he, ue and ve values of the element containing the given point, 
without any further interpolation.  
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6.1 2D dam-break experiment by Fraccarollo and Toro (1995)  

The experimental flume, shown in figure 14, is a rectangular bottom plane partially occupied by a 
reservoir. The whole bottom plane may rotate around a hinge. This allows to select any constant value of 
the bottom slope. The experimental flume is 2 m wide and 3 m long, with a vertical wall at 1/3 of its 
length. The downstream part of the plane bottom is initially dry. Both the walls and the bottom are 
covered with the same material, corresponding to a Manning coefficient of 0.0095 s/m1/3. The width of 
the movable gate, symmetrically centred, is 0.40 wide m. The flood-plain boundaries are all open.  

The Authors measured the pressure at the bottom of the channel by using pressure gauges, the water 
depths by means of wave height meters and the velocity components by means of an electromagnetic 
velocity meter. Measure points are reported in figure 14 and their spatial coordinates are reported in table 
1. 

Two sets of runs have been carried out: the first one assuming zero bottom slope in x and y directions, 
the second one assuming zero bottom slope in y direction and 7 per cent in x direction.  

Numerical results have been compared with the experimental data, with the results of Fraccarollo and 
Toro (1995) and with the results of by Gottardi and Venutelli (2004).  

Fraccarollo and Toro (1995) applied a WAF (Weighted Averaged Flux) scheme (Toro, 1989), a 2nd 
order conservative, shock-capturing Godunov-type scheme. The Authors discretized the domain by 
means of a regular mesh of 150 × 50 points along x and y directions respectively, with a corresponding 
element area equal to 8.0 10-4 m2.  

Gottardi and Venutelli (2004) applied an explicit 2nd order central scheme, initially proposed by 
Kurganov and Tadmor (2000); integration in time has been performed by means of a 3rd order TVD-
Runge-Kutta scheme. They discretized the domain with regular quadrilateral elements spacing ∆x = ∆y = 
0.02 m. For MAST simulations, spatial domain is discretized using an unstructured triangular mesh (see 
figure 15). The total number of elements is 8650, with a mean area approximately equal to 7.0 10-4 m2.  

In the first experiment with zero bottom slope, an initial water depth of 0.6 m in the reservoir has been 
assigned. In figure 16 the contour plot of the water depths obtained with the MAST (right) and with the 
Gottardi and Venutelli (K-T) models (left) at the simulation time T = 0.5 s are shown. The maximum CFL 
number obtained with the K-T model is 0.5; in the MAST model a time step 0.01 s has bees used, with a 
corresponding maximum CFL number approximately equal to 3.62.  

The asymmetry of the MAST, more evident for the smaller water depths, is due to the mesh 
asymmetry. In a previous preliminary work (Aricò et al., 2006), where a regular equilateral triangular 
mesh has been used, perfectly symmetric results can be observed.  

In figures 17,a-17,d computed water depths at points “O”, “U1”, “U2” and “D” are compared up to 
the simulation time 10 s with the corresponding measured values. In figures 17,a-17,c the numerical 
results by Fraccarollo and Toro (1995) are shown for the points “O”, “U1”, “U2”. The MAST results 
show some diffusive effect missing in the WAF results, because of the higher approximation order with 
respect to proposed one. 

MAST and WAF results are in good agreement with the experimental ones at points “U1”, “U2” and 
“D”. Observe the difference between measured and numerical results for small times at point “O”, where 
the shallow water hypothesis does not hold. After the sudden opening of the gate a strong rarefaction 
wave starts moving in upstream direction. As in the 1D case, water depth at the gate location (point “O” 
in the specific case) drops to a local minimum value (about 4/9 of the initial depth) after the opening of 
the gate. This is analogous to the 1D solution by Ritter (1992) in a horizontal and frictionless channel. 
After the minimum is reached, a rising stage follows, due to the fluxes coming from the wall boundaries 
and to 2D effects.  

The delay between measured and computed data at point “O” is likely due to the small time required 
for the real opening of the gate (about 0.1 s).  

Inside the reservoir, Fraccarollo and Toro (1995) measured also the static pressure values at the 
bottom. Pressure measures are reported in meters of water column. For measurement points “U1” and 
“U2” pressures and water levels values are very close to each other and only water levels are reported in 
figures 17,b and 17,c; at point “O”, as expected, measured levels and hydrostatic pressures do not match 
because of the vertical velocity components.    
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In the second experiment a 7 per cent slope along x direction has been assigned to the bottom plane 
and the initial water depth value, measured at the wall foundation, is 0.64 m.  

In figure 18 the contour plot of the water depths are shown for the proposed model (right) and for the 
K-T model (left) at the simulation time T = 0.5 s. Maximum CFL number obtained in the run of the K-T 
model is again 0.5. In the MAST computation ∆t =0.01 s has been used, with a corresponding maximum 
CFL number almost equal to 4.22. Observe also in this case the asymmetry of the MAST results, similar 
to the asymmetry obtained in the case of zero bottom slope.  

In figures 19,a-19,b computed water depths at points “O” and “U1” are compared with the 
corresponding measured values, as well as with the results of Fraccarollo and Toro (1995) up to the 
simulation time T = 10 s. Observations similar to the previous ones, drawn for the zero bottom slope 
experiment, can be done. 
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Figure 14. Experimental flume of Fraccarollo and Toro [30] 

Point x [m] y [m]

U1 0.18 1 

U2 0.48 0.4 

O 1 1 

D 1.802 1.45
 

Table 1. Spatial coordinates of the experimental points for test 3.1 
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Figure 15. Mesh used for MAST numerical simulation of test 6.1 
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Figure 16. Contour plot of the water depths after 0.5 s by Gottardi and Venutelli [31] and by MAST scheme (0 

bottom slope) 
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Figure 17,a. Water depths at point “U1” (0 bot. slope)         Figure 17,b. Water depths at point “U2” (0 bot. slope) 
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Figure 17,c. Water depths at point “O” (0 bot. slope)            Figure 17,d. Water depths at point “D” (0 bot. slope) 
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Figure 18. Contour plot of the water depths after 0.5 s by Gottardi and Venutelli [31] and by MAST scheme (0.07 

bottom slope) 
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Figure 19.a. Water depths at point “U1” (0.07 bot. slope)    Figure 19,b. Water depths at point “O” (0.07 bot. slope) 

6.2 2D dam-break experiment in a L-shaped channel (1999) 

Two sets of experiments have been carried out in the Civil Engineering Laboratory of the Catholic 
University of Louvain (Belgium) (Soares Frazão et al., 1999) in a channel with a L-shaped form and 
rectangular cross section (see figure 20). Bottom slope is zero in both x and y directions.  

The upstream reservoir is a tank with rectangular 2.44 m × 2.39 m planar section, closed with a 
vertically sliding gate. The bottom level of the channel is 0.33 m higher than the reservoir bottom level, 
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with a vertical step at the channel inlet (see figure 20). In the experiment, the gate is pulled up very 
quickly  and the closure failure is assumed as instantaneous. The channel is equipped with a set of 
measurement devices; their location is shown in table 2. The walls of the channel are made of glass and 
the bed is made of steel; the n Manning friction coefficient has been assumed equal to 0.0095 s/m1/3 and 
the wall friction effect has been neglected.  

The initial water level in the upstream reservoir is 0.2 m above the channel bed level and the 
corresponding water depth is equal to 0.53 m. The downstream channel is dry in a first set of 
measurements and wet with a water depth 0.01 m in a second one.  

When the gate is opened, the water flows rapidly into the channel and reaches the bend after 
approximately 3 s. There, the water reflects against the wall, a bore forms and begins to travel in the 
upstream direction, back to the reservoir. For the water flowing downstream after the bend, multiple 
reflections on the walls can be observed.  

The number of elements of the mesh used by the MAST algorithm is 10919 and the mean value of the 
element area is 8.4 E-04 sm; time step ∆t is 0.01 s.  

In figures 21,a and 21,b the contour plot of the water depths is shown for the simulation times 3 s and 
6 s for the first set of experiments (dry bed). Multiple reflections are evident in the channel downstream 
the bend. Observe also that no numerical oscillations of the water level occur in the transition reservoir-
channel, even though the shallow water hypothesis does not hold at the vertical step.  

In figures 22,a-22,f and 23,a-23,f the comparison between measured and computed water depths at 
measure points is shown for the two sets of experiments. The maximum CFL numbers are respectively 
1.71 and 2.26. 

In the figures, results computed in both dry and wet bed conditions by Zhou et al. (2002) using the 
SGMS algorithm and, in dry bed conditions only, by Gottardi and Venutelli (2004) are shown. Zhou et al. 
(2002) used a regular quadrilateral mesh with ∆x = 0.05017 m and ∆y = 0.495 m. Gottardi and Venutelli 
(2004) discretized the domain using a regular quadrilateral mesh with side ∆x = ∆y = 0.01 m.  

At gauge G1 inside the reservoir, in both wet and dry conditions, all the numerical schemes produce 
very similar results and for simplicity only the ones provided by the MAST scheme are reported against 
the experimental data.  

Observe the time delay of the shock of the reflected wave in both MAST and Gottardi and Venutelli’ s 
results with respect to the measured data at gauges G2, G3 and G4. For MAST scheme this delay at gauge 
G4 is approximately 1.8 s in dry bed conditions and 1.55 s for wet bed conditions. The delay reduces 
progressively travelling from gauge G4 to gauge G2. In dry bed conditions this delay is about 1.2 s, while 
in wet bed conditions the effect of the reflected wave in the numerical results arrives early (about 0.2 s) 
with respect to the measured data. Results by Zhou et al. (2002) are in good agreement with measured 
data at gauge G3, while the effect of the reflected wave shows a little delay (about 1 s) at gauge G4 and 
arrives early at gauge G2 (about 1.7 s and 1.45 s in dry and wet bed conditions). At gauge G2 both MAST 
and SGMS overestimate water depth before the arrival of the reflected wave and results are very similar. 
On the opposite, Gottardi and Venutelli (2004) underestimate water depth approximately up to 10 s.  

At gauges G3 and G4, the three schemes provide similar result before and after the arrival of the 
reflected wave. After the arrival of the reflected wave, the three numerical schemes produce similar 
results also at the gauge G2.  

Differently from Zhou et al. (2002), experimental data at point G5 are properly simulated by the 
MAST scheme in both wet and dry conditions. At gauge G6 all the numerical results are similar to the 
measured data.   
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Figure 20. Plane view and profile of the entrance of the L-shaped channel 

Point x [m] y [m]
G1 1.19 1.2
G2 2.74 0.69
G3 4.24 0.69
G4 5.74 0.69
G5 6.56 1.51
G6 6.56 3.01  

Table 2. Spatial coordinates of the experimental points for test 3.2 
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Figure 21,a. Contour plot of the water depths after 3 s (dry bed) 
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Figure 21,b. Contour plot of the water depths after 6 s (dry bed) 
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Figure 22,a. Water depths at the experimental points G1 (dry bed) 



38                                                                                                                                             Costanza Aricò 

 

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

0 5 10 15 20 25 30 35 40
t  [s]

h
 [m

]

MAST

SGMS

K-T

measured

 

Figure 22,b. Water depths at the experimental points G2 (dry bed) 
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Figure 22,c. Water depths at the experimental points G3 (dry bed) 
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Figure 22,d. Water depths at the experimental points G4 (dry bed) 
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Figure 22,e. Water depths at the experimental points G5 (dry bed) 
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Figure 22,f. Water depths at the experimental points G6 (dry bed) 
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Figure 23,a. Water depths at the experimental points G1 (wet bed) 
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Figure 23,b. Water depths at the experimental points G2 (wet bed) 
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Figure 23,c. Water depths at the experimental points G3 (wet bed) 
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Figure 23,d. Water depths at the experimental points G4 (wet bed) 

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

0 5 10 15 20 25 30 35 40
t  [s]

h
 [m

]

MAST
SGMS
measured

 

Figure 23,e. Water depths at the experimental points G5 (wet bed) 
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Figure 23,f. Water depths at the experimental points G6 (wet bed) 

6.3 CPU times investigation 

 
CPU mean time values for the computation of the convective and diffusive steps, as well as for the 

computation of the approximated potential scalar function for each element are reported in table 3 for all 
the numerical tests. For the computations, a Pentium 4, CPU 2GHz processor has been used. In table 3 
CPU times are in seconds.  

Observe that in this case the computation of the convective prediction and correction steps is the most 
demanding one; the CPU time required for the computation of the diffusive step is approximately 1 
magnitude order less that the convective steps time. The CPU time for the computation of the 
approximated scalar function is about half  the convective steps time.  

The growth of the computational time per element and per time step versus the number of elements 
has been investigated, in order to assess the relative cost of the diffusive correction step and of the 
approximated potentials calculation. These steps require the solution of a large linear system and are the 
non ‘explicit’ component of the algorithm. The initial and boundary conditions of the experimental test of 
Fraccarollo and Toro [30] with zero bottom slope have been used. A quite coarse irregular mesh has been 
generated and used as the basis for further refinements. At each refinement level i + 1, each triangle of the 
previous ith mesh is subdivided in four equal triangles (see figure 24). In figure 25 the 1st-level mesh with 
372 elements is shown. ∆t is 0.04 s for the 1st-level mesh; for the next level meshes time step size has 
been halved, in order to limit the growth of the maximum CFL number. 

For each mesh density, the αn normalized parameter, weighting the penalty function in the functional 
F’ of Eq. (93) and defined as 

∑
=

j

k
j,e

n FL2
αα

                                                           (114), 

has been changed from 0 to the maximum value affecting for no more than 1 per cent the computed water 
depths. This maximum value has been empirically found to be 0.01. 

Results are shown in figures 26,a-26,c. Observe that, at least up to the maximum number of elements 
tested in the experiments, the CPU components relative to the convective and diffusive steps can be 
considered almost independent from the elements number. The small decrement of the average CPU time 
of the convective component can be related to the increasing CFL numbers obtained by partitioning and 
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to the best aptitude of the algorithm to work with CFL numbers greater than one [27].  
The choice of the αn coefficient is very important for the computational cost. The structural difference 

between the linear system associated to the diffusive problem and the system associated to the 
approximated potential estimation is that the extra diagonal term is given in the first one by the local time 
derivative and in the second one by the penalty term. This implies that the condition number of the 
second one increases along with the size of the αn coefficient. On the other hand, an excessive value can 
ruin the potential quality.  

Test potential convective steps diffusive step 

3.1 - 0 slope 4.982E-05 8.800E-05 1.428E-05 

3.1 - 0.07 slope 5.045E-05 9.060E-05 1.472E-05 

3.2 - dry bed 5.741E-05 8.126E-05 1.499E-05 

3.2 - wet bed 5.591E-05 8.042E-05 1.512E-05 
 

Table 3. CPU time values 

                        0 1 m 3 m0 1 m 3 m  

Figure 24. Mesh refinement                                          Figure 25. The 1st-level mesh for the CPU time investigation 
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Figure 26,a. Effect of the element number on the CPU time; αn  = 1.E-02 
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Figure 26,b. Effect of the element number on the CPU time; αn  = 1.E-03 
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Figure 26,c. Effect of the element number on the CPU time; αn  = 1.E-04 

The sensitivity of the numerical solution with respect to the CFL number has been investigated by 
changing the size of the time step. The test carried out by Fraccarollo and Toro [30] with zero bottom 
slope has been chosen again for this study. The computational mesh shown in figure 15 has been used. In 
figure 27 the contour plot of the water level after 0.5 s are shown; these numerical simulations have been 
carried out using ∆t = 0.005 s and ∆t = 0.025 s. The maximum CFL numbers are respectively 1.11 and 
5.35. These results have to be compared also with similar ones shown in figure 16 (right) and computed 
with a maximum CFL number about 3.62. The test shows the result sensitivity with respect to the CFL 
number to be very small.   
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Figure 27. Contour plots of the water level after 0.5 s – test 3.1, CFL 1.11(left) and 5.35 (right) 

CONCLUSIONS 

A new algorithm for the solution of the complete 1D and 2D Saint-Venant equations has been 
presented. The original PDEs system is split in three different ones. Each of the first two resulting 
systems is equivalent to a scalar convective problem and is solved using a MAST technique. This 
technique solves the convective problem with a sequential solution of small ODEs system, with order 
equal to the number of the time-dependent variables per computational cell. A self-adjusting step size 
algorithm is used for the solution of each ODEs system from the known time level to the next one. 
Results show no restriction on the size of the original time step and of the source terms. The third PDEs 
system is similar to the original one, but the volume and momentum fluxes, along with the computed 
dependent variables changes, are quite small. This allows a linearization of the problem, that is solved 
using a finite difference fully implicit discretization, leading to the solution of a very well conditioned 
linear system with order equal to the cell number.  

According to the tests carried out in this paper, the algorithm can be classified as ‘explicit’, because 
the main computational effort is required by the solution of the convective problems, and is almost 
proportional to the number of elements. The algorithm components that have a computational cost more 
than linearly increasing with the number of elements are 1) the solution of the linear system in the 
diffusive correction step and 2) the ordering of the elements required for the application of the MAST 
technique. In the proposed 1D tests, the average ratio between the CPU time required by these parts of the 
algorithm an the total CPU time is about 0.05.  

In the 2D problem, the computational time of the third problem has been always the smaller one in all 
the performed simulations. The larger CPU time is actually dedicated, for larger elements number, to the 
computation of the approximated potential; even with a negligible weight of the penalty term the 
increment of the CPU specific time, per element and per time step, is much less than linear. A normalized 
value of this term equal to 0.01 seems to provide almost constant specific CPU time without a meaningful 
loss of accuracy.  

Model results are in good agreement with analytical solutions and lab experiments. Even if a first 
order spatial approximation has been used for the dependent variables, the achieved accuracy is similar to 
the accuracy obtained by higher order approximation schemes, using the same mesh density and time step 
size. MAST performance is even better if the time step and the corresponding maximum CFL number is 
increased beyond the limit of one required by the other explicit schemes, with a corresponding reduction 
of the CPU time. The optimal CFL number, for the MAST algorithm, is usually between one and five, 
and a strong stability of the results can be observed changing the time step size. Good results are also 
obtained in terms of flow rates, especially where strongly variable source terms occur, like in the test 4.2 
(steady flow over a bump).  
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