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ABSTRACT

Context. The diagnostics of stellar flaring coronal loops have been so far largely based on the analysis of the decay phase.
Aims. We derive new diagnostics from the analysis of the rise and peak phase of stellar flares.
Methods. We release the assumption of full equilibrium of the flaring loop at the flare peak, according to the frequently observed
delay between the temperature and the density maximum. From scaling laws and hydrodynamic simulations we derive diagnostic
formulas as a function of observable quantities and times.
Results. We obtain a diagnostic toolset related to the rise phase, including the loop length, density and aspect ratio. We discuss
the limitations of this approach and find that the assumption of loop equilibrium in the analysis of the decay leads to a moderate
overestimate of the loop length. A few relevant applications to previously analyzed stellar flares are shown.
Conclusions. The analysis of the flare rise and peak phase complements and completes the analysis of the decay phase.
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1. Introduction

Solar and stellar coronal flares are impulsive events well detected
in the soft X-ray band. They are typically explained as due to
the sudden increase of temperature and emission measure of the
plasma confined in single or groups of magnetic tubes (loops),
caused by strong heat pulses.

The flare light curves in the soft X-rays are typically char-
acterized by a fast rise phase followed by a slower decay (e.g.
Haisch et al. 1983). In the decay phase, the plasma cooling is
due to radiation emission and to thermal conduction to the chro-
mosphere. Since the cooling times for a confined plasma depend
on the characteristics of the confining structure, and in particular
on its length, the analysis of the decay phase has been exten-
sively used to diagnose the flaring loops, and in particular their
size (see Reale 2002, for an extensive review). This is impor-
tant not only because stellar flaring regions are unresolved, but
also because, more in general, this is one of the few tools to ob-
tain detailed information on the geometry of the stellar coronae
(e.g. Favata et al. 2000a), and of any other phenomena involving
plasma confined in magnetic structures.

To summarize, Serio et al. (1991) derived a thermodynamic
time scale for the pure cooling of flaring plasma confined in
single coronal loops:

τs = 3.7 × 10−4 L√
T0
= 120

L9√
T0,7

(1)

where L (L9) the loop half-length (in units of 109 cm), T0 (T0,7)
the loop maximum temperature (in units of 107 K). In princi-
ple, the loop length can be derived simply by inverting Eq. (1).
Jakimiec et al. (1992) and Sylwester et al. (1993) extensively

analyzed the decay of solar coronal flares and pointed out that
significant heating can be released even during the late phases
of a flare. This can be diagnosed through the analysis of the
path of the decay in a density-temperature diagram: sustained
heating slows down the plasma cooling but much less the den-
sity decrease. If this effect is not properly taken into account,
the loop length can be significantly overestimated. Reale et al.
(1997) use the scale time Eq. (1) to derive a formula for loop
length, corrected to include the effect of significant heating in
the decay (see the Appendix for a review). This approach has
been extensively applied to analyze observed stellar flares (see
Reale 2003, for a review), with the exception of flares where
the residual heating completely drives the flare decay over the
plasma cooling. These flares are more appropriately described
with models of two-ribbon flares (Kopp & Poletto 1984).

Equation (1) and all the subsequent derivations rely on the
assumption that the flare decay starts when the loop is at hy-
drostatic and energy equilibrium. Extensive modeling of solar
and stellar flares has shown that the heat pulses that trigger the
flare are impulsive, i.e. their duration is short with respect to the
overall flare duration. The flaring loop may not have had enough
time to reach equilibrium before the heat pulse is switched off,
and, if not, this might be important for the analysis of the decay.
Jakimiec et al. (1992) showed that temperature and density be-
gin to decrease simultaneously if the heating lasts long enough to
reach equilibrium. In many flares, it is instead observed that the
temperature peaks (and therefore begins to decrease) measurably
before the emission measure, both in solar flares (e.g. Sylwester
et al. 1993) and in stellar flares (van den Oord et al. 1988;
van den Oord et al. 1989; Favata et al. 1999; Favata et al. 2000b;
Stelzer et al. 2002). Cargill & Klimchuk (2004) pointed out that

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077223

http://www.edpsciences.org
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20077223


272 F. Reale: Diagnostics of stellar flares

in transiently heated loops the cooling is initially dominated by
thermal conduction and that the density begins to decay as soon
as the radiative and conduction cooling times become equal.

Most attention has been so far dedicated to the decay phase,
which is the longest-lasting part of flares and therefore typically
offers more opportunities for time-resolved data analysis and for
good photon statistics. Less attention has been devoted to the ini-
tial phase of the flares. Hawley et al. (1995) study the rise phase
jointly with the decay phase, including neither the heating in the
decay, nor the delay between the temperature and the density
peak.

Flare observations from recent missions such as Chandra and
XMM-Newton often detect flares in great detail and succeed in
resolving the rising phase (e.g. Güdel et al. 2004). On the other
hand, in long flares it happens that the observations ends early in
the decay phase, inhibiting the related analysis and making any
kind of information derivable from the rise phase important (e.g.
Giardino et al. 2004).

In this work, we specifically address the rise and peak phase
of flares, and investigate what diagnostics can be extracted from
its analysis. We will study the flare initial phases as a stand-
alone analysis, and compare and cross-check with the analysis
of the decay. We will also address possible additional diagnos-
tics, e.g. the density and the loop aspect ratio cross-section radius
over length – are flaring loops fat or slim or arcades of loops? –
which cannot be constrained just from the decay analysis. In our
derivation, we will maintain the assumption that the flare oc-
curs in a single loop. This assumption is more realistic in the
rise phase, when the impulsive heating typically involves a dom-
inant loop structure while later residual heating may be released
in other similar adjacent loops (e.g. Aschwanden & Alexander
2001). We will instead relax the assumption that the flaring loop
evolves to a condition of equilibrium, and therefore also ad-
dress the question of the effect of relaxing equilibrium condi-
tions on diagnostic formulae, i.e. if the decay starts before the
loop reaches equilibrium conditions, and what is the error from
assuming equilibrium conditions. We will derive the loop length
from the rise phase.

In Sect. 2, we analyse the flare evolution with a general out-
line, operative definitions and relevant results from modeling.
In Sect. 3, diagnostic tools for the analysis of the flare rise and
peak phase are derived. In Sect. 4, we discuss the results, the
limitations of the analysis, the applications, with some specific
examples and in Sect. 5 we draw our conclusions.

2. Flare analysis

2.1. General flare evolution

We consider a flare occurring in a single coronal loop. A flaring
coronal loop can be modelled as a magnetic flux tube where the
plasma is heated to flare temperatures by a transient heat pulse.
The plasma confined in the loop can be described as a compress-
ible fluid which moves and transports energy along the magnetic
field lines (e.g. Priest 1984).

We will suppose that: (i) the flare occurs in a semicircular
loop with half-length L, initially in equilibrium conditions at
much lower temperature and density than at flaring conditions;
(ii) the flare is triggered by a heat pulse uniformly distributed in
the loop; (iii) the heat pulse is a top-hat function in time; (iv)
there is no heating in the decay; (v) the flaring loop is much
smaller than the pressure scale height at the flare temperature.

The plasma cooling is governed by the thermal conduction
to the cool chromosphere and by radiation from optically thin

Fig. 1. Scheme of the evolution of temperature (T , thick solid line),
X-ray emission (LC, thinner solid line) and density (n, dashed line) dur-
ing a flare triggered in a coronal loop by a heat pulse. The flare evolution
is divided into four phases (I, II, III, IV, see text for further details).

I

T

n

II
III

IV

EQ

Fig. 2. Scheme of the flare evolution of Fig. 1 in a density-temperature
diagram (solid line). The four phases are labelled. The locus of the equi-
librium loops is shown (dashed-dotted line), as well as the flare path
with an extremely long heat pulse (dashed line). The corresponding
decay path (marked with EQ) is the one typically considered by flare
analysis based on the decay phase.

conditions. The evolution of the confined plasma is well-known
from observations and from modeling (e.g. Nagai 1980; Peres
et al. 1982; Cheng et al. 1983; Nagai & Emslie 1984; Fisher et al.
1985; MacNeice 1986; Betta et al. 2001) and in the following we
summarize it into four phases, sketched in Fig. 1, which map on
the path drawn in the density-temperature diagram of Fig. 2 (see
also Jakimiec et al. 1992).

Phase I: from the start of the heat pulse to the temperature peak
(heating). The heat pulse is triggered in the loop and the
heat is efficiently conducted down to the much cooler and
denser chromosphere. The temperature rapidly increases in
the whole loop, with a time scale given by the conduction
time in a low density plasma (see below).

Phase II: from the temperature peak to the end of the heat
pulse (evaporation). The temperature settles to the maximum
value (T0). The chromospheric plasma is strongly heated and
expands upwards, filling the loop with much denser plasma.
The evaporation is explosive at first, with a timescale given
by the isothermal sound crossing time:

τsd =
L√

2kBT0/m
≈ 25

L9√
T0,7

(2)
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where kB is the Boltzmann constant, m is the average particle
mass. After the evaporation front has reached the loop apex,
the loop continues to fill more gently. The time scale during
this more gradual evaporation is dictated by the time taken
by the cooling rate to balance the heat input rate (see Sect. 3).

Phase III: from the end of the heat pulse to the density peak
(conductive cooling). When the heat pulse stops, the plasma
immediately starts to cool due to the efficient thermal con-
duction (e.g. Cargill & Klimchuk 2004), with a time scale:

τc =
3nckBT0L2

2/7κT 7/2
0

=
10.5nckBL2

κT 5/2
0

≈ 50
nc,10L2

9

T 5/2
0,7

(3)

where nc (nc,10) is the particle density (1010 cm−3) at the end
of the heat pulse, κ = 9 × 10−7 (c.g.s. units) is the thermal
conductivity.
The heat stop time can then be generally traced as the time
at which the temperature begins to decrease significantly
and monotonically. While the conduction cooling dominates,
the plasma evaporation is still going on and the density in-
creases. The efficiency of radiation cooling increases as well.
On the other hand, the efficiency of conduction cooling de-
creases with the temperature.

Phase IV: from the density peak afterwards (radiative cooling).
As soon as the radiation cooling time becomes equal to the
conduction cooling time (Cargill & Klimchuk 2004), the
density reaches its maximum, and the loop depletion starts,
slowly at first and then progressively increasing. The pres-
sure begins to decrease inside the loop, and is no longer able
to sustain the plasma. In this phase, radiation becomes the
dominant cooling mechanism, with the following time scale:

τr =
3kBTM

nMP(T )
=

3kBTM

bTα
MnM

≈ 9 × 103
T 3/2

M,7

nM,10
(4)

where TM (TM,7) is the temperature at the time of the den-
sity maximum (107 K), nM (nM,10) the maximum density
(1010 cm−3), P(T ) the plasma emissivity per unit emission
measure, expressed as:

P(T ) = bTα

with b = 1.5 × 10−19 and α = −1/2, for consistency with
the parameters of the loop scaling laws (Rosner et al. 1978).
In this phase, the density and the temperature both decrease
monotonically. The presence of significant residual heating
could make the decay slower. This can be diagnosed from
the analysis of the slope of the decay path in the density-
temperature diagram (Sylwester et al. 1993; Reale et al.
1997, see the Appendix).

2.2. Heat pulse duration

The evolution outlined in Sect. 2.1 concerns a flare driven by a
transient heat pulse. The analysis of stellar flares based on the
decay phase typically assumes that the decay starts from equi-
librium conditions, i.e. departing from the the locus of the equi-
librium loops with a given length (hereafter QSS line, Jakimiec
et al. 1992) in Fig. 2. The link between this assumption and the
flare evolution outlined above is shown in Fig. 2: if the heat
pulse lasts long enough, Phase II extends to the right, and the
flaring loop asymptotically reaches equilibrium conditions, i.e.
the horizontal line approaches the QSS line. If the decay starts
from equilibrium conditions, Phase III is no longer present, and

Phase II links directly to Phase IV. Therefore, there is no delay
between the beginning of the temperature decay and the begin-
ning of the density decay: the temperature and the density start
to decrease simultaneously. Also, the decay will be dominated
by radiation cooling, except at the beginning (Serio et al. 1991).

The analysis of the rise and peak phase has to include the
presence of Phase III, and the delay between the temperature
peak and the density peak. This delay is often observed both in
solar flares (e.g. Sylwester et al. 1993) and in stellar flares (e.g.
van den Oord et al. 1988, 1989; Favata et al. 2000b; Maggio
et al. 2000; Stelzer et al. 2002). The presence of this delay is a
signature of a relatively short heat pulse, or, in other words, of a
decay starting from non-equilibrium conditions.

2.3. Hydrodynamic modeling

We now use hydrodynamic simulations to analyze more in detail
the evolution of the rise and peak phase of a flare (Phases I to III).
The Palermo-Harvard code solves the time-dependent hydrody-
namic equations for the plasma confined in a loop to describe the
evolution of the density, temperature and velocity of the plasma
along the loop (Peres et al. 1982; Betta et al. 1997).

As a representative example, we consider an initially quiet
coronal loop with half-length L = 2×109 cm and temperature of
about 3 MK. A transient heat pulse is injected in it at time t = 0.
The flare heat pulse lasts for a time theat, is uniformly distributed
in the loop, and is so intense (9 erg cm−3 s−1) as to bring the loop
to a temperature of ∼20 MK.

Figure 3 shows the evolution of the plasma temperature, den-
sity and pressure at the loop apex for three different durations
of the heat pulse (i.e. theat = 90 s ≈ 0.5τs, theat = 170 s ≈ τs
and theat = 500 s ≈ 3τs) and for continuous heating. As long
as the heat pulse is on, the simulation results overlap; they dif-
fer only for the decay phase, when the heating is off. The decay
of the simulations with longer-lasting heat pulses begins later.
As mentioned in Sect. 2.1, the temperature begins to decrease as
soon as the heat pulse stops. The density and the pressure, in-
stead, both continue to increase and they reach their maximum
later. We note that the shorter the heat pulse, the longer the de-
lay between the beginning of the temperature decay and the den-
sity maximum. For the longest-lasting heat pulse, the density and
pressure values are very close to the asymptotic equilibrium val-
ues, estimated from loop scaling laws (Rosner et al. 1978). We
have checked that the evolution is self-similar for a longer loop
L = 1010 cm at the same temperature, with the evolution times
scaling as τs.

In the density-temperature diagram (Fig. 4), the flare evolu-
tion for the different heat pulse durations is in good agreement
with that sketched in Fig. 2. For short-duration pulses, Phase IV
starts as soon as the path crosses the QSS curve. For theat ≈ 3τs,
Phase II ends and the decay (Phase IV) starts very close to the
QSS curve, while Phase III is practically absent (Jakimiec et al.
1992).

3. Diagnostics of the rise and peak phase

We now derive simple diagnostic tools for the analysis of the
rise and decay phase of a flare, taking advantage of detailed nu-
merical modeling. We first observe that the maximum possible
duration of the rise phase is the time taken by the loop to reach
equilibrium conditions under the action of a constant (flare) heat-
ing. The simulation results in Fig. 3 show that the time taken by
the plasma to reach equilibrium conditions is much longer than
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Fig. 3. Evolution of the plasma temperature (top panel), density (mid-
dle) and pressure (bottom) at the loop apex, as computed from a hy-
drodynamic model of a 20 MK flare in a loop with half-length L =
2 × 109 cm, and with three different durations of the heat pulse (la-
belled in the top panel, in units of τs) and with continuous heating. The
asymptotic density and pressure values are also shown (dotted horizon-
tal lines). The time of the density maximum is marked (black spots).

the sound crossing time (Eq. (2)), which rules the very initial
plasma evaporation. This is also clear in Fig. 5, which shows the
evolution of the pressure at the loop apex in a linear scale: after
t = 50 s, the rate of pressure enhancement becomes slower. As
mentioned in Sect. 2.1, in this phase the dynamics become much
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Fig. 4. Evolution of the flare of Fig. 3 in the density-temperature di-
agram. The locus of the equilibrium loops derived from loop scaling
laws (QSS curve, dashed line) is also shown.
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Fig. 5. Pressure evolution of the flare of Fig. 3 in a linear scale to show
that most of the rise phase can be reasonably described with a linear
trend (dashed lines).

less important and the interplay between cooling and heating
processes becomes dominant. The relevant time scale is there-
fore that reported in Eq. (1).

After detailed analysis of extensive numerical modeling of
decaying flaring loops, we have checked that the decay time
from Eq. (1) should be computed with a correction factor:

τ′s = φτs (5)

where φ ≈ 1.3 to better fit the decay time measured from numer-
ical models.

Hydrodynamic simulations confirm that the time required to
reach full equilibrium scales as the loop cooling time (τs), and,
as shown for instance in Fig. 5 (see also Jakimiec et al. 1992),
the time to reach flare steady-state equilibrium is:

teq ≈ 3τs ≈ 2.3τ′s. (6)

We have verified that Eq. (6) holds for loops of different lengths.
Figure 6 shows the ratio of the time required to reach 97% of the
pressure equilibrium value to the time computed from Eq. (6) for
simulations of flaring loops with three different loop lengths and
three different heating rates appropriate to reach the temperature
of 10, 20 and 30 MK, respectively. The agreement is within 10%.
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Fig. 6. Time to reach pressure equilibrium obtained from hydrodynamic
simulations: the ratio of the time at which the pressure is 97% of the
equilibrium value to the time obtained from Eq. (6) vs. loop length.
The size of the data points is proportional to the heating rate (maximum
temperature of 10, 20 and 30 MK).

For t ≥ teq, the density asymptotically approaches the equi-
librium value:

n0 =
T 2

0

2a3kBL
= 1.3 × 106 T 2

0

L
(7)

where a = 1.4 × 103 (c.g.s. units), or

n0,10 = 13
T 2

0,7

L9

as obtained from the loop scaling laws (Rosner et al. 1978) and
the plasma equation of state.

If the heat pulse stops before the loop reaches equilibrium
conditions, the flare maximum density is lower than the value
at equilibrium. Figure 5 shows that, after the initial impulsive
evaporation on a time scale given by Eq. (2), the later progressive
pressure growth can be approximated with a linear trend. Since
the temperature is almost constant in this phase (Fig. 3), we can
estimate that the density increases linearly for most of the time.
We can then estimate the value of the maximum density at the
loop apex as:

nM ≈ n0
tM
teq

(8)

where tM is the time at which the density maximum occurs,
which can be measured directly from observations. Since it is
reasonable to assume that the volume of the flaring region does
not change much, at least on the relatively short time scale of the
rise phase, the time of the maximum emission measure is a good
proxy for tM.

Phase III ranges between the time at which the heat pulse
ends and the time of the density maximum. Figure 3 shows that
the start time of the temperature decay marks well the end of the
heat pulse. In many stellar flares, the temperature evolution is
not well resolved, and we may take the time of the temperature
maximum as indicative of the end of the heat pulse.

The time of the density maximum is also the time at which
the decay path crosses the locus of the equilibrium loops (QSS
curve). As reported in Sect. 2.1, Cargill & Klimchuk (2004) re-
marked that, at this time, the radiative cooling time is exactly
equal to the conductive cooling time. By equating the time scales
in Eqs. (4) and (3), we can then derive the temperature TM at
which the flare maximum density occurs:

TM = 9 × 10−4(nML)1/2 (9)

or

TM,7 = 0.28(nM,10L9)1/2.

If a value for L is already available and we are able to measure
TM, we can derive nM from Eq. (9), as an alternative to Eq. (8).

Since Phase III is dominated by conductive cooling, we de-
rive its duration, i.e. the time from the end of the heat pulse to
the density maximum, as

∆t0−M ≈ τc lnψ (10)

where

ψ =
T0

TM

and τc(Eq. (3)) is computed for an appropriate value of the
density nc. A good consistency with numerical simulations is
obtained for nc = (2/3)nM.

The collection of Eqs. (6)–(10) provides a set of diagnostic
tools for the analysis of the rise and peak phase of stellar flares.
Eqs. (6)–(8) are related to the rise phase, the others to the peak
phase, or, more precisely, Phase III as defined in Sect. 2.1. We
have checked that the equations provide values consistent with
those obtained from accurate numerical modeling within a few
percent.

By combining Eq. (10) and Eq. (8) we obtain:

∆t0−M

tM
≈ 1.2 lnψ (11)

which ranges between 0.2 and 0.8 for typical values of ψ (1.2–2).
By combining Eqs. (7), (8) and (9), we derive a new expres-

sion for the loop half length:

L9 ≈ 3 ψ2T 1/2
0,7 tM,3 (12)

where tM,3 is tM in units of 103 s. For typical values of ψ and
T0, we obtain L9 ∼ 5−25tM,3 and L9 ∼ 10tM,3 may be taken
for rough estimates. Therefore, we expect that flares occurring
in loops with a length of the order of 1010 cm show the peak of
the emission measure about 1 ks after the beginning.

By including Eqs. (11) into Eq. (12), we derive another
expression for the loop half length:

L9 ≈ 2.5
ψ2

lnψ
T 1/2

0,7 ∆t0−M,3 (13)

where ∆t0−M,3 is ∆t0−M in units of 103 s. For typical values of ψ
and T0, we obtain L9 ∼ 20−100∆t0−M,3 and L9 ∼ 50∆t0−M,3 may
be taken as rough estimates.

The loop length derived from application of Eqs. (12)
and (13) to the model simulations is correct within 10%.
Equations (12) and (13) allow us to estimate the length of the
flaring loop from measuring characteristic time intervals of the
flare rise phase and related temperatures.

4. Discussion: implications and applications

4.1. Consistency and limitations

The aim of this work is to investigate the diagnostics of the
rise and peak phase of coronal flares, to complement the well-
established diagnostics of the decay phase (e.g. Reale et al.
1997). Having derived the relevant diagnostic expressions, we
check whether there are effects on the analysis of the decay. In
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Fig. 7. Time of the density maximum (tM, solid line), delay of the be-
ginning of the density decay from that of the temperature decay (∆t0−M,
dashed line), and loop decay time (τd, dotted line) vs. the duration of the
heat pulse theat. All times are in units of the equilibrium decay time τ′s.

particular, we wonder whether assuming that the decay starts
from loop equilibrium conditions – therefore ignoring the de-
tails of the “previous history” – leads to significant systematic
errors or not. In the decay analysis, one important parameter is
the temperature at the start of the decay. At equilibrium condi-
tions, the decay starts at the temperature maximum. In Sect. 2.1,
we have pointed out that, in an impulsive flare event in which the
loop does not reach equilibrium conditions, the density begins to
decay later than the temperature. The proper decay phase begins
at the density peak (i.e. the later time), and one should then use
the temperature at the density peak, lower than the maximum
temperature. The proper loop decay time then becomes:

τd =

√
T0

TM
τ′s. (14)

If we use the maximum temperature T0 to estimate the loop
length with expressions derived from Eq. (1) (Reale et al. 1997),
instead of TM, we then overestimate the loop length. However,
since the dependence on the temperature is rather weak in Eq. (1)
and the temperatures not very different, we expect not a too large
effect on previous results. The error can be easily estimated from
the square root of the ratio of the maximum temperature to the
temperature at the density maximum. Since this ratio is typically
of about 1.2–1.5 (see Sect. 4.5), the amount of overestimate is no
more than 15–20%. Furthermore, if we know this ratio we can
correct for this effect.

Figure 7 shows how the decay time varies with the dura-
tion of the heat pulse. As expected, the decay time is invariably
larger than the equilibrium decay time: the shorter the heat pulse,
the longer the decay time, with a maximum of about 1.7 τ′s.
However, in most of the range, the decay time is larger by no
more than 20% than the equilibrium decay time, and therefore
the loop length is overestimated by the same amount.

In all the above analysis we have neglected the effect of
the star gravity. This is reasonable both because the gravity has
very little influence on the strong initial flare dynamics, and be-
cause, at the high temperatures of stellar flares, the pressure scale
height:

hp ∼ 5000
T

g∗/g�
= 50

T7

g∗/g�

is larger than the height of the flaring loops (assuming they
stand vertically on the stellar surface). For very long loops, com-
parable to the stellar radius, the pressure scale height is even
longer because the gravity decreases significantly at long dis-
tances from the surface, so that the effect of gravity is expected
to be even smaller.

Finally, throughout our analysis we have assumed a simple
heating function: a top-hat in time with uniform distribution in
space. Different heating functions may have some effects on the
results (somewhat discussed in Sect. 4.5), but except for very
extreme cases, most of them should be smoothed out by the very
efficient thermal conduction.

4.2. Loop length from the rise phase

Stellar flare observations do not always cover the whole flare du-
ration; sometimes the rise phase is missing, sometimes most of
the decay is not observed. The latter possibility can occur quite
frequently, because the decay is the longest part of the flare and,
for long flares, the observation may end too early in the decay.
One result of the present work is to provide a set of useful for-
mulae for events with missing observed decay. This could be ob-
tained ultimately because most of the rise phase is ruled by the
same processes that rule the decay phase, i.e. the energy losses.
Equation (12) yields the loop length, from the time of the maxi-
mum density tM (the emission measure can be used as a proxy),
the maximum temperature T0 and the temperature at the density
maximum TM.

Alternatively, we may derive the loop length from Eq. (13)
even if we miss the flare start but we are able to measure the time
interval between the temperature maximum and the density (or
emission measure) maximum. If both times are available to us,
we may choose the less uncertain one as the more reliable, and
we may use both of them to check for consistency and to derive a
more accurate length value from a weighted average. We should
in fact consider that the determination of the relevant flare times
can be affected by significant uncertainties. The time of the den-
sity maximum is typically determined within a time bin where
the spectral fitting is performed. This time bin can be quite large.
Moreover, it is reckoned from the time of the flare start, which
can in turn be not well-determined. Analogously, the uncertainty
in the interval ∆t0−M comes from the width of both the time bins
including the temperature maximum and the density maximum.
The strong dependence on the ratio ψ = T0/TM can also add to
further uncertainties.

Equations (12) and (13) provide the loop length even if only
the rise and peak phase of the flare are observed. These expres-
sions are alternative and independent of the expressions based
on the flare decay and therefore of the presence of any signifi-
cant heating during the decay. They can therefore provide a fur-
ther check on the loop length estimation, if both loop length val-
ues are available. There is a chance to obtain inconsistent results
from the two approaches if the flare decay progressively involves
other different coronal loops, or else if the heat pulse triggering
the flare is not a top-hat function, but is instead, for instance,
slowly rising.

If no time-resolved spectral information is available, e.g. be-
cause of low photon statistics, the time of the light curve maxi-
mum may be used as a proxy of the time of the emission measure
maximum. Since the former occurs slightly earlier than the lat-
ter, the loop length estimated from the former will be slightly
underestimated.
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4.3. Loop cross-section

A typical output of the analysis of X-ray spectra with moderate
resolution, such as those from CCD detectors (e.g. EPIC/XMM-
Newton, ACIS/Chandra), is the emission measure associated
with a thermal fitting component. Time-resolved spectra during
the flare can then provide us with the flare maximum emission
measure. If we also know the maximum density, we can derive
the loop volume, and, knowing the loop length, also the loop
cross-section area and radius. From Eq. (8) and/or Eq. (13) we
can evaluate the maximum density at the loop top. Since the
emission measure is integrated over most of the loop (the part
emitting in the instrument band), for consistency, the volume
should be computed using the density average of the emitting
part of the loop. In realistic conditions of pressure equilibrium,
this average density is higher than the density at the loop apex,
because the temperature decreases downwards from the loop
apex. A reasonable estimate of this average density can be de-
rived from the expressions linking the loop apex temperature to
the temperature obtained from spectrum fitting (e.g. Favata et al.
2000b), under the reasonable assumption that the fit temperature
is an average loop temperature:

TM = ξ T η
avg. (15)

where the parameters ξ and η depend on the observation instru-
ment (e.g. ξ = 0.130 and 0.233 and η = 1.16 and 1.099 for
EPIC/XMM-Newton, and MECS/BeppoSAX, respectively, see
also the Appendix, Eq. (A.2)). Then the average density is:

navg = nM
TM

Tavg
· (16)

Typically navg/nM ∼ 1.5−2. The loop volume V , cross-section
area A and radius R are then:

V ≈ EM

n2
avg

(17)

A ≈ V
2 L

(18)

r ≈
√

A
π
· (19)

The final results of such formulae should be taken with care,
because they are highly indirect and therefore strongly affected
by the error propagation.

4.4. Single loop versus multi-loop
It has been pointed out that large and long stellar flares likely in-
volve entire coronal regions including multiple loop structures.
How can one reconcile this remark with the single loop approach
followed in this work? Of course, since telescopes are not pow-
erful enough to resolve the flaring structures, we cannot give
conclusive answers. However, a few arguments can support our
single loop approach.

If multiple loop structures are involved in the flare, this fre-
quently occurs in the late phases of a flare. The initial phases of
an X-ray flare are instead quite localized and one can reasonably
assume the presence of a single dominant loop, at least in the rise
phase. This is observed in solar X-ray flares (e.g. Aschwanden
& Alexander 2001) and supported by the accurate modeling of
a well-observed stellar flare at least in the rise, peak and early
decay (Reale et al. 2004). The clear evidence of a delay between
the temperature and the density peak in many flares is consistent

with a single loop model. Even in the later flare phases, a decay
with no significant heating, i.e. with a steep path in the density-
temperature diagram as sometimes observed even in very large
flares (e.g. Favata et al. 2005) suggests strong plasma cooling
confined in single loops. Arcades and two-ribbon flares are in-
stead characterized by strong heating which completely domi-
nates the flare decay (e.g. Kopp & Poletto 1984) and/or by irreg-
ular light curves (Aschwanden & Alexander 2001; Reale et al.
2004)1. Recently, multi-thread models have been used to study
solar flare evolution (Warren & Doschek 2005; Warren 2006). In
this case, the hydrodynamics of the threads will be described by
the results presented here.

4.5. Sample applications
As sample applications of the analysis described above, we have
revisited three stellar flares already studied in the literature: a
flare on Algol observed with BeppoSAX on 30 August 1997
(Schmitt & Favata 1999; Favata & Schmitt 1999), a flare on
AB Doradus observed with BeppoSAX on 29 November 1997
(Maggio et al. 2000) and a flare on Proxima Centauri observed
with XMM-Newton on 12 August 2001 (Güdel et al. 2004; Reale
et al. 2004). The first flare is quite long (∼1 day) and shows an
eclipse in the late decay phase. The first two flares are also hot
(above 100 MK) and quite large, involving an emission mea-
sure above 1054 cm−3. The last flare is cooler and on a smaller
scale, but is observed in great detail, thanks to the short distance
of Proxima Centauri. It has been modelled accurately with de-
tailed time-dependent hydrodynamic simulations (Reale et al.
2004), obtaining constraints even on the time and space distri-
bution of the heating. These flares have been selected because
for all of them the parameters related to the present analysis are
all available with the associated uncertainties, and the uncertain-
ties themselves are not excessively large.

Table 1 shows the results obtained from Eqs. (8)–(19) for
these three flares. The data in the first ten rows are derived from
the original analysis of the references cited in the table. The first
four are characteristic times, the light curve decay time (τLC),
the time of the temperature maximum (t0), and of the density
maximum (tM) measured since the beginning of the flare, and
the delay between the temperature and the density maximum
(δt0−M). There are then the flare maximum temperature (Tobs)
and emission measure (EM) as derived from one-temperature
fitting, and the ratio of the maximum temperature to the temper-
ature at the density maximum. The loop maximum temperature
(T0), the half-length (L) and the thermodynamic cooling time
(τs) are derived more indirectly according to empirical formulae
(e.g. Reale et al. 1997, see the Appendix).

The last ten rows show results obtained with the analysis
presented in this work. The first four are densities: the loop
equilibrium density (n0) pertaining to the derived maximum tem-
perature (T0), the actual maximum density (nM) derived in two
different ways, and the maximum density averaged over the
whole loop (navg), derived from the first maximum density. Then
follow the loop volume (V), cross-section area (A), and radius
(r). Finally, we show another three values of the loop length:
the first one is a refinement of the original length derivation, us-
ing the temperature at the density maximum (TM) instead of the
maximum temperature (T0). Since TM ≤ T0, the new length is
invariably smaller than the original, but not by large factors, as
discussed in Sect. 4.2 (within 20%), thus mostly confirming the
results of the previous analyses. The other two length values are

1 Reale et al. (2004) showed that even arcades of equal loops can be
described as single loops.
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Table 1. Analysis of three stellar flaring loops. The parameters in the upper section are derived from the analysis in the references; those in the
lower section from the equations presented in this work.

Parameter Equationa Units Algol/BeppoSAX AB Dor/BeppoSAX Prox Cen/XMM
(Favata & Schmitt 1999) (Maggio et al. 2000) (Reale et al. 2004)

τLC (A.1) 103 s 50 ± 5 3.4 ± 0.1 4.3 ± 0.1
tb
0 103 s 13.5 ± 4 0.72 ± 18 0.6 ± 0.1

tM (8) 103 s 34.5 ± 4 1.12 ± 0.09 0.8 ± 0.1
∆t0−M (10) 103 s 21 ± 6 0.40 ± 0.18 0.19 ± 0.09
Tobs (A.2) 107 K 14 ± 2 10 ± 2 2.6 ± 0.1
EM (17) 1054 cm−3 13 5 0.002
T0/TM (9) 1.4 ± 0.2 1.5 ± 0.3 1.18 ± 0.07
T0 (A.2) 107 K 20 ± 3 14 ± 3 4.0 ± 0.2
Lc (A.1) 109 cm 800 ± 300 49 ± 18 13 ± 4
τd

s (1) 103 s 21 ± 8 1.5 ± 0.6 0.8 ± 0.2
n0 (7) 1010 cm−3 6.5 ± 3 50 ± 20 16 ± 5
nM (8) 1010 cm−3 3.6 ± 2 12 ± 6 5 ± 2
nM (9) 1010 cm−3 3.1 ± 1.2 23 ± 12 7 ± 2
navg (16) 1010 cm−3 4.4 ± 1.8 20 ± 9 9 ± 2
V (17) 1030 cm3 7000 ± 5000 330 ± 20 0.25 ± 0.1
A (18) 1020 cm2 44 ± 30 34 ± 24 0.10 ± 0.05
r (19) 109 cm 37 ± 13 33 ± 13 1.8 ± 0.5
Le (A.1,9) 109 cm 670 ± 250 40 ± 18 12 ± 4
L (12) 109 cm 940 ± 300 27 ± 13 7 ± 5
L (13) 109 cm 1300 ± 700 21 ± 14 8 ± 5

a Where the parameter is used or evaluated; b Time of the temperature maximum (or when the temperature begins to decrease); c The maximum
temperature is used; d Using the original expression in Serio et al. (1991); e The temperature at the density maximum is used;

obtained from the analysis of the rise and peak phase, presented
here (Eqs. (12) and (13)).

The first two flares show a significant delay of the time of
the density maximum from that of the temperature maximum
– an indication that the heat pulse is relatively short as com-
pared to the loop characteristic cooling time. Coherently, the ra-
tio of the maximum temperature to the temperature at the density
maximum is relatively large (e.g. Fig. 3). The flare on Proxima
Centauri shows instead a relatively smaller delay and a coher-
ently smaller temperature ratio. The loop length and the decay
time are very large for the first flare (∼1012 cm and 21 ks, re-
spectively) and much smaller for the other two.

In all flares, the plasma does not reach equilibrium condi-
tions, and the maximum density is well below the equilibrium
density. Although different, Eqs. (8) and (9) yield consistent den-
sity values – within the (quite large) uncertainties – for all flares,
between a few 1010 cm−3 and a few 1011 cm−3. The loop volume
and cross-section parameters are affected by even larger uncer-
tainties; they are derived from the combination of several quanti-
ties and suffer from the error propagation. The large loop aspect
ratio for the AB Dor flare is nevertheless confirmed; the aspect
ratio for the other flares is instead closer to typical solar coronal
loops.

The loop length values derived from Eqs. (12) and (13) (re-
ported in the last two rows) are generally consistent within the
uncertainties with those derived from the analysis of the flare
decay. They coherently yield smaller – although still marginally
consistent – values for the AB Dor flare. We may take this as
indication that this flare involved progressively larger structures,
coherent with the evidence of significant heating in the decay.
We may also speculate that the opposite occurred in the Algol
flare, i.e. an initial larger structure, and later other smaller struc-
tures, consistent both with the significant heating in the decay
and with the relatively smaller size obtained from the analysis of
the eclipse.

For the flare on Proxima Centauri, we obtain density values
smaller than those reported in Reale et al. (2004), which are,
however, derived assuming quite a different heating deposition,
i.e. concentrated at the loop footpoints. The loop aspect derived
here is larger than that reported for loop A in Reale et al. (2004),
but if we consider the errors the results are compatible. All the
loop lengths obtained for this flare are consistent with that con-
strained in Reale et al. (2004).

In order to obtain consistent results, it is essential to take
into careful account the uncertainties related to each step of the
analysis. Table 1 shows that the analysis of the rise and peak
phase of stellar flares provides valuable results and can therefore
be usefully and extensively applied.

5. Conclusions
In this work, we derive useful diagnostic formulae for the anal-
ysis of the rise and peak phase of stellar X-ray flares. The ba-
sic starting point is the realization that a flare is generally trig-
gered by a short-lasting heat pulse, that the shorter the heat pulse
the larger is the delay between the temperature maximum and
the density maximum, and that the characteristic time scales in
the rise phase also scale as the cooling times. We have then
been able to derive useful expressions for the flaring loop den-
sity and length that can be applied if we can measure the flare
rise times and a few significant temperatures. These expressions
are generally independent of the analysis of the decay phase.
Therefore, they can be used to complement and enrich the in-
formation coming from the analysis of the decay phase, i.e. to
check for consistency, to obtain constraints on the loop geome-
try and even on the evolution of the flare morphology. Of course,
they are particularly useful whenever the analysis of the decay
phase cannot be performed, and we can equally derive an estima-
tion of the loop length. Our analysis provides useful diagnostics
even when the data in the rise phase are limited. The informa-
tion on the loop aspect represents a higher level of diagnostics
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Table A.1. Parameters for the determination of the flare loop length
from the decay phase.

Instrument ca ζa qa ζmin ζmax ξ η
ASCA/SIS 61 0.035 0.59 0.4 1.7 0.077 1.19
BeppoSAX/MECS 0.68 0.3 0.7 0.4 1.7 0.233 1.099
Chandra/ACIS 0.63 0.32 1.41 0.32 1.5 0.068 1.20
EXOSAT/ME 1.3 0.4 0.8 0.4 1.8 0.195 1.117
ROSAT/PSPC 3.67 0.3 1.61 0.3 1.8 0.173 1.163
XMM/EPIC 0.51 0.35 1.36 0.35 1.6 0.130 1.16
GOES9 1.02 0.37 0.36 0.37 1.7 0.097 1.163
Yohkoh/SXT 5.4 0.25 0.52 0.3 1.7 * *

* Yohkoh/SXT is supposed to resolve the flaring loop and to measure
the temperature at the loop apex.

than that available only from the decay phase, and can there-
fore improve our knowledge of stellar flares and related coronal
structures. If a complete set of data is available, the complete
analysis provides redundant information, and the opportunity
for a cross-check; inconsistent results would not invalidate the
present analysis, rather they would show that the related events
are challenging because they cannot be well-described with our
single-loop/simple-heat-pulse model. We look forward extensive
application of this analysis to large samples of stellar flares. The
results presented here have applications beyond flare loop evo-
lution, such as the dynamical behavior in active region loops.
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Appendix A: Review of the loop length
from the flare decay

From the basic work of Serio et al. (1991), and including the
information of the density-temperature diagram (Jakimiec et al.
1992; Sylwester et al. 1993) to diagnose residual heating, Reale
et al. (1997) devise a general expression of the loop length as a
function of the observed decay time. The formula is essentially
an inversion of Eq. (1) with a factor (F(ζ) > 1) which corrects
for the presence of the heating:

L9 =
τLC
√

T7

120F(ζ)
ζmin < ζ ≤ ζmax (A.1)

where ζ is the slope of the decay in the log(n− T ) (or equivalent√
EM − T ) diagram and τLC is the e-folding time of the light

curve decay and

T7 = ξ
T η

obs
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(A.2)

and Tobs the maximum best-fit temperature derived from spectral
fitting of the data.

The correction factor is:

F(ζ) =
ca

ζ − ζa
+ qa (A.3)

where ca, ζa, qa are parameters to be tuned for the instrument
which observes the flare.

Table A.1 shows the values of the parameters for some rel-
evant solar and stellar instruments with moderate spectral capa-
bilities.
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