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Abstract

In this paper the global agricultural land use model KLUM is coupled to an extended
version of the computable general equilibrium model (CGE) GTAP in order to consistently
assess the integrated impacts of climate change on global cropland allocation and its impli-
cation for economic development. The methodology is innovative as it introduces dynamic
economic land-use decisions based also on the biophysical aspects of land into a state-of-
the-art CGE; it further allows the projection of resulting changes in cropland patterns on a
spatially more explicit level. A convergence test and illustrative future simulations underpin
the robustness and potentials of the coupled system. Reference simulations with the uncou-
pled models emphasize the impact and relevance of the coupling; the results of coupled and
uncoupled simulations can differ by several hundred percent.
Keywords: Land-use change, computable general equilibrium modeling, integrated assessment, cli-
mate change, C68, R14, Q17, Q24

1 Introduction

Land use is one of the most important links of economy and biosphere, representing a direct
projection of human action on the natural environment. Large parts of the terrestrial land sur-
face are used for agriculture, forestry, settlements and infrastructure. Among these, agricultural
production is still the dominant land use accounting for 34% of today’s land surface (Leff et al.
, 2004), compared to forestry covering 29% (FAO, 2003) and urban area which is taking less
than 1% of the land surface (Grübler, 1994). On the one hand, agricultural management prac-
tices and cropping patterns have a vast effect on biogeochemical cycles, freshwater availability
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and soil quality; on the other hand, the same factors govern the suitability and productivity
of land for agricultural production. Changes in agricultural production directly determine the
development of the world food situation. Thus, to consistently investigate the future pathway of
economic and natural environment, a realistic representation of agricultural land-use dynamics
on the global perspective is essential.

Traditionally, land-use decisions are modeled either from an economic or geographical per-
spective. Geographical models focus on the development of spatial patterns of land-use types
by analyzing land suitability and spatial interaction. Allocation of land use is based either on
empirical-statistical evidence or formulated as decision rules, based on case studies and ”common
sense”. They add information about fundamental constraints on the supply side, but they lack
the potential to treat the interplay between supply, demand and trade endogenously. Economic
models focus on drivers of land-use change on the side of food production and consumption.
Starting out from certain preferences, motivations, market and population structures, they aim
to explain changes in land-intensive sectors. The biophysical aspects of land as well as the spa-
tial explicitness of land-use decisions are commonly not captured in such models. A new branch
of integrated models seek to combine the strengths of both approaches in order to make up for
their intrinsic deficits. This is commonly done by coupling existing models, which describe the
economy to a biosphere model, or by improving the representation of land in economic trade
models. For a more detailed discussion of different approaches to large scale land-use modeling,
see Heistermann et. al. (2006).

We present here the coupled system KLUM@GTAP of the global agricultural land-use model
KLUM (Kleines Land Use Model, (Ronneberger et al. , 2005)) with GTAP-EFL model, which
is an extended version of the Global Trade Analysis Project model GTAP (Hertel, 1997). The
main aim of the coupled framework is to improve the representation of the biophysical aspects
of land-use decisions in the computable general equilibrium model (CGE). This is the first
step towards an integrated assessment of climate change impacts on economic development and
future crop patterns.

A similar approach was realized in the EURURALIS project (Klijn et al. , 2005), where the
Integrated Model to Assess the Global Environment IMAGE (Alcamo et al. , 1994; Zuidema
et al. , 1994; RIVM, 2001) has been coupled to a version of GTAP with extended land use sector
(van Meijl et al. , 2006, in press). In this coupling, the change in crop and feed production,
determined by GTAP, is used to update the regional demand for crops and pasture land in
IMAGE. Then IMAGE allocates the land such as to satisfy the given demand, using land
productivities, which are updated by management induced yield changes as determined by
GTAP. The deviation of the different changes in crop production determined by the two models
is interpreted as yield changes resulting from climatic change and from changes in the extent
of used land1. These yield changes together with an endogenous feed conversion factor are fed
back to GTAP. The land allocation is modeled on grid level by means of specific allocation rules
based on factors such as distance to other agricultural land and water bodies.

Our approach differs in several ways. In our coupling, the land allocation is exogenous
in GTAP-EFL and replaced by KLUM. The land-use decisions are limited to crops, excluding
livestock. Instead of crop production changes, we directly use the crop price changes determined
in GTAP-EFL. Our allocation decisions are not based on allocation rules aiming to satisfy a
defined demand, but are modeled by a dynamic allocation algorithm, which is driven by profit
maximization under the assumption of risk aversion and decreasing return to scales. This
ensures a strong economic background of the land allocation in KLUM.

Another approach to introduce biophysical aspects of land into economic model is the so
called Agro-Ecological Zones (AEZ) methodology (Darwin et al. , 1995; Fischer et al. , 2002).

1A change in the extent implies a change in the yield structure of the used land
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According to the dominant climatic and biophysical characteristics, land is subdivided into dif-
ferent classes, reflecting the suitability for and productivity of different uses. GTAP is currently
extending its databases and models to include such an improved representation of land, known
as GTAP-AEZ (Lee et al. , 2005). From this our approach differs in three crucial ways. The
standard version of GTAP has one type of land, whereas the land use version has 18 types of
land. The 18 land types are characterized by different productivities. Each GTAP region has a
certain amount of land per land type, and uses part of that. The first difference is that we have
a more geographically explicit representation of land. Like GTAP-AEZ, KLUM@GTAP has ag-
gregate land use; but unlike GTAP-AEZ, KLUM@GTAP has spatially disaggregated land use as
well. The allocation algorithm of KLUM is scale-independent. In the present coupling, KLUM
is calibrated to country-level data, but Ronneberger et al. (2006) use KLUM on a 0.5 × 0.5
degree grid (for Europe only). The second difference is that KLUM@GTAP does not have land
classified by different productivity, but that productivities vary continuously over space, again
allowing the direct coupling to large scale crop growth models (Ronneberger et al. , 2006) to
simulate implications of environmental changes. In GTAP-AEZ, a change in e.g. climate or soil
quality requires an elaborate reconstruction of the land database. A third difference is that
KLUM@GTAP has consistent land transitions. In GTAP and GTAP-AEZ, a shift of land from
crop A to crop B implies a (physically impossible) change in area; this drawback is the result
from calibrating GTAP to value data (KLUM@GTAP uses area) and from normalizing prices
to unity and using arbitrary units for quantities.

In the next section we outline the basics of GTAP-EFL and KLUM and describe the coupling
procedure. The greatest challenge of the coupling is to guarantee the convergence of the two
models to a common equilibrium. In section 3 we discuss the convergence conditions and present
the results of a convergence testing with the coupled system. The system is used to simulate the
impact of climate change; the influence of a baseline scenario and the coupling on the results
are highlighted by reference situations. Section 4 outlines the different simulation setups. The
results of these simulations are presented in section 5. Section 6 summarizes and concludes.

2 The models

2.1 GTAP-EFL

In order to assess the systemic general equilibrium effects of climate change on agriculture and
land use, we use a multi-region world CGE model called GTAP-EFL, which is a refinement of
the GTAP model2 (Hertel, 1997) in the GTAP-E version, modified by Burniaux and Truong
(2002)3. Basically, in the GTAP-EFL model finer industrial and regional aggregation levels
are considered (17 sectors and 16 regions, reported in Table A1 and A2). Furthermore, in
GTAP-EFL a different land allocation structure has been modeled for the coupled procedure.

As in all CGE frameworks, the standard GTAP model makes use of the Walrasian perfect
competition paradigm to simulate adjustment processes. Industries are modeled through a
representative firm, which maximizes profits in perfectly competitive markets. The production
functions are specified via a series of nested Constant Elasticity of Substitution (CES) functions

2The GTAP model is a standard CGE static model distributed with the GTAP database of the world economy
(www.gtap.org). For detailed information see Hertel (1997) and the technical references and papers available on
the GTAP website.

3The GTAP variant developed by Burniaux and Truong (2002) is best suited for the analysis of energy markets
and environmental policies. There are two main changes in the basic structure. First, energy factors are separated
from the set of intermediate inputs and inserted in a nested level of substitution with capital. This allows for
more substitution possibilities. Second, database and model are extended to account for CO2 emissions related
to energy consumption.
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(Figure A1). Domestic and foreign inputs are not perfect substitutes, according to the so-called
Armington assumption, which accounts for product heterogeneity. A representative consumer
in each region receives income, defined as the service value of national primary factors (natural
resources, land, labor and capital). Capital and labor are perfectly mobile domestically, but
immobile internationally. Land (imperfectly mobile) and natural resources are industry-specific.
The national income is allocated between aggregate household consumption, public consumption
and savings (Figure A2). The expenditure shares are generally fixed, which amounts to saying
that the top level utility function has a Cobb-Douglas specification. Private consumption is
split in a series of alternative composite Armington aggregates. The functional specification
used at this level is the Constant Difference in Elasticities (CDE) form: a non-homothetic
function, which is used to account for possible differences in income elasticities for the various
consumption goods. A money metric measure of economic welfare, the equivalent variation, can
be computed from the model output.

In the standard GTAP model land input is exogenously fixed at the regional level; it is
imperfectly substitutable among different crops or land uses. Indeed a transformation function
distributes land among 5 sectors (rice, wheat, other cereals, vegetables & fruits and animals) in
response to changes in relative rental rates. Substitutability is equal among all land-use types.
Only for the coupled procedure, in the GTAP-EFL model sectoral land allocation becomes
exogenous and consequently the total land supply change becomes endogenous. The latter is
defined as the sum of the land allocation change per sector weighted by the share of the value
of purchases of land by firms in sector j on the value of land in region r, all evaluated at market
prices.

2.2 KLUM

The global agricultural land-use model KLUM is designed to link economy and vegetation
by reproducing the key-dynamics of global crop allocation (see Ronneberger et al. (2005)
for a detailed description of the model and its evaluation). For this, the maximization of
achievable profit under risk aversion is assumed to be the driving motivation underlying the
simulated land-use decisions. In each spatial unit, the expected profit per hectare, corrected
for risk, is calculated and maximized separately to determine the most profitable allocation of
different crops on a given amount of total agricultural area (see the Appendix for a mathematical
formulation). Additionally, decreasing returns to scale is assumed. Mathematically the sum of
these local optima is equivalent to the global optimum, assuring an overall optimal allocation.

Profitability of a crop is determined by its price and yield, which are the driving input
parameters to the model. Furthermore, a cost parameter per crop and a risk aversion factor for
each spatial unit are calibrated according to observed data. Risk is quantified by the variance
of profits.

For the coupling, we calibrate KLUM to 4 crop aggregates: wheat, rice, other cereal crops
and vegetables & fruits so as to match the crop aggregation of GTAP-EFL. For the calibration we
use data of the FAOSTAT (2004) and World Bank (2003). Yields are specified for each country,
prices instead are defined for the 16 different regions equivalent to the regional resolution of
GTAP-EFL. Missing data points are adopted from adjacent and/or similar countries of the same
region, where similar is defined according to the yield structure of the respective countries. Costs
are adjusted for the total amount of agricultural area to guarantee the consistency of results on
different scales (see Appendix B for further details). For all countries the cost parameters as
well as the risk aversion factor are determined in the calibration and are hold constant during
all simulations.
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2.3 The coupling procedure

The coupling of the two models is established by exchanging crop prices and management
induced yield changes, as determined by GTAP-EFL, with land allocation changes, as calculated
by KLUM. In the coupled framework the crop allocation in KLUM is determined on country
level. Aggregated to the regional resolution the percentage change of allocated area shares is
fed into GTAP-EFL. Based on this the resulting price and management induced yield changes
are calculated by GTAP-EFL and used to update prices and yields in KLUM.

In GTAP-EFL management changes are modeled as the substitution among primary and
among intermediate inputs. By using, for instance, more labor than capital or more machines
than fertilizer, the per-hectare productivity of the land is changed. We determine the manage-
ment induced changes in yield ∂αi by adjusting the change qoi of the total production of crop
i by the change in its harvested area qoesi, according to:

∂αi =
qoi − qoesi

1 + qoesi
(1)

The coupling can be divided into 3 methodologically different procedures: a convergence
test, a baseline simulation transferring both model to the future and the simulation of the
impact of climate change (see Figure 1).

– insert Figure 1 around here –

Convergence test The convergence test aims to investigate the convergence of the coupled
system and, in case a divergence is detected, to adjust accordingly the key parameters in
order to reach convergence. The productivity of land for all crops in all regions in GTAP-
EFL is shocked with an uniform increase of 2%4. Resulting price and yield changes
including the original land productivity changes are applied to KLUM. The land alloca-
tion changes as calculated by KLUM are appended to the original productivity changes
and reimposed on GTAP-EFL. This loop is repeated for ten iterations. This procedure is
run with different elasticities of substitution for primary factors in GTAP-EFL. The de-
termined elasticity for which the coupled model converges is then used in the succeeding
simulations (see section 3 for further details).

Baseline simulation The baseline simulation transfers both models to a consistent benchmark
of the future. The values of key economic variables shaping the 1997 equilibrium in GTAP
are updated according to likely future changes. This step is done with the GTAP model
with endogenous land allocation. The resulting changes thus also imply land allocation
changes with respect to 1997. Crop price and land productivity changes are imposed onto
KLUM, which also determines land allocation changes relative to 1997. It should be noted
that only the deviations from the mean change in land productivity are applied to KLUM;
the general mean change implies an increase in costs and riskiness common to all crops and
is thus effectless for the simulation results. The differences of land allocation changes in
KLUM relative to GTAP-EFL are applied to GTAP-EFL with exogenous land allocation
on top of the new benchmark; the land allocation in the benchmark is thus adjusted to
that in KLUM. The results of this simulation mark the final benchmark of the future
situation. Corresponding price and yield changes are used to adjust prices and yields in
KLUM to the final situation consistent with the benchmark. To test the consistency a

4The chosen quantity of change is arbitrary. Indeed any perturbation to the initial GTAP equilibrium would
have originated a set of changes in crops prices that could have been used as the first input in KLUM to start
the convergence test.
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similar loop as in the convergence testing is started. The allocation changes of KLUM
relative to the primarily calculated future allocation is fed back to GTAP-EFL in the final
benchmark. The resulting price and yield changes are again imposed on KLUM in its
final benchmark. Consistency is assured if prices, yields and allocation changes eventually
converge to zero.

Climate change simulation To simulate the relative impact of climate change we impose a
climate change scenario over an afore established benchmark. We start by applying to
KLUM climate-induced yield changes on country level. Resulting allocation changes and
the regionally aggregated yield changes are applied to GTAP-EFL and exchanged with
crop price and management changes for ten iterations. It should be noted that we correct
the management changes of GTAP-EFL (equation 1) for the before imposed climate-
induced yield changes. The mean value of the last four iterations is fed back to both
models to reach the final results. The convergence path is audited in order to guarantee
the consistency of the modeling framework.

3 Convergence

To assure the consistency of the coupled system the convergence of the exchanged values to
stable and defined quantities needs to be guaranteed. Running the coupled models with their
original parameterization shows that the two systems diverge. Not only land quantities and
prices diverge, but also, after the 4th iteration, the GTAP-EFL model is unable to find a
meaningful economic equilibrium: some variables decrease by more than 100%. This is the
consequence of two main problems. The first results from the different initial land allocations
assumed in the two models; the second is due to the general constraint imposed by the structure
of the CGE model itself.

The problem of the different initial situations seems like a minor challenge from the con-
ceptual side; however, in combination with the ”rigid structure” of the CGE model it poses a
great practical problem. The difficulty originates from the fact that all equilibrium equations
in GTAP are formulated in terms of value, instead of quantities (Hertel, 1997). During the
solving procedure the changes are distinguished into changes in quantity and changes in price,
so that the imposition of quantity changes, as calculated in KLUM, is conceptually consistent.
But since prices are set to unity in the benchmark, implicitly the the quantity of land is equaled
to the value of land. In the absence of data on the price of land, this makes land quantity data
incomparable between GTAP and FAOSTAT (2004), to which KLUM is calibrated.

– insert Table 1 around here –

The different initial situation of harvested area in 1997 of GTAP-EFL and KLUM are
presented in Table 1. Since the units used in the GTAP model are not specified, we present the
allocation as shares of the total crop area of the respective region in the respective model. The
global totals per region and crop are given as share of total global cropland in the respective
model (stated in the lower right corner of the Table). Obviously, regional and crop specific values
as well as the global totals of regions and crops differ tremendously. The global share of land used
for wheat production in GATP-EFL is only half of the share used in KLUM. Contrary, vegetables
& fruits use twice as much global cropland in GTAP-EFL than in KLUM. Considering that the
quantities in GTAP-EFL originally represent the monetary value of cropland this distortion is
understandable. But for the coupled framework this means that e.g. small absolute changes in
the area share of vegetables & fruits of KLUM translate into large absolute changes in GTAP-
EFL. Also the shares of total area used in the different regions differ notably. Whereas in
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GTAP-EFL large shares of total global cropland are situated in Western Europe, South Asia
and the USA, only the largest areas of cropland in KLUM is also harvested in South Asia; other
major shares can be found in China, Subsaharan Africa and the Former Soviet Union. These
differences are of less importance in the KLUM model where each spatial unit is optimized
independently. In GTAP-EFL, however, e.g. the trade structure is impacted by the regional
distribution of resources. Thus, relatively small changes of aggregated absolute allocation in
e.g. Western Europe can cause large shocks in GTAP-EFL.

In principle the optimal solution would be to recalibrate the GTAP-EFL model according
to the observed land allocation consistent with KLUM. However, this would entail a complete
recalibration of all model parameters in order to re-establish a new initial stable equilibrium
consistent with the entire observed situation of 1997. This would be a major task due to the
”rigid structure” of the model, and it would be arbitrary without land price data.

The ”structural rigidity” of CGE models follows from their theoretical structure. Economic
development is simulated by equating all markets over space and time, assuming that a general
economic equilibrium is the best guess possible to describe economic patterns and to project
their development for different scenarios. All markets are assumed to clear, and the equilibrium
is assumed to be unique and globally stable. Guaranteeing these assumptions while assuring
applicability to a wide range of economies and policy simulation implies that a number of reg-
ularity conditions and functional specifications need to be imposed. Accordingly, such models
generally may find difficulties in producing sound economic results in the presence of huge
perturbations in the calibration parameters or even in the values of exogenous variables char-
acterizing their initial equilibrium. We replace GTAP endogenous land allocation mechanism
with exogenous information provided by the land use model. This new allocation is not driven
by optimal behavior consistent with the GTAP framework and can thus distort the system in
such a way that convergence can no longer be guaranteed. This is also the reason why we use
GTAP with endogenous land allocation to establish the first instance of the baseline bench-
mark. Combining the large shocks of the baseline scenario with the exogenous land allocation
mechanism determined by KLUM would overstrain the solving algorithm of GTAP-EFL

To assure convergence, the land-use model would need to be formulated as a consistent part
of the CGE - assuring all markets to be in equilibrium. This, however, would be difficult to
combine with the intention of replacing the purely economic allocation decisions by a more
flexible model, which takes into account the biophysical aspects of land-use decisions on a finer
spatial resolution. Thus, for the moment – to lower the influence of the initial situation on the
one hand, and to promote convergence on the other hand – we simply decrease the responsiveness
of GTAP-EFL to changes in land allocation. The key parameter governing this is the sectoral
elasticity of substitution among primary factors ESBV . This parameter describes the ease
with which the primary factors (land, labor and capital) can be replaced by one another for the
production of the value-added (see e.g. (Hertel, 1997) for more details). We conduct convergence
loops with ten iterations each for the original and appropriately increased elasticities ESBV .

Results of the convergence test

A first set of simulations (not presented here) revealed that price, yield and area-share-changes
for the region Rest of the world diverged quickly and distorted the performance of the com-
plete system, preventing the existence of a common equilibrium. This region encompasses the
”remaining” countries not included in any of the other regions. The composition slightly dif-
fers between the two models on the one hand and this region is of minor importance on the
other hand. Thus we completely exclude this region from the coupling experiment. No data is
exchanged between KLUM and GTAP-EFL for this region in any of the presented simulations.
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– insert Figure 2 around here –

Figure 2 depicts the iteration process for doubled and tripled elasticity for North Africa and
South Asia. We chose these regions as representatives, because they best show all the dominant
behavior observed also in the other regions. For doubled elasticity a strong divergence of the
iterating values can be observed in both regions for all crops. Only the results for wheat in
North Africa reveals converging behavior, as can be seen from the markers tightly clustered
around the mean value. This corresponds to the initial differences in land allocation: in both
regions for nearly all crops the initial area shares for the different crops differ considerably
between the two models (Table 1); only wheat in North Africa shows similar shares in both
models. Generally, the divergence is much stronger in South Asia than in North Africa. This
indicates that the influence of trade emphasizes the observed changes: according to GTAP-EFL
South Asia holds about a sixth of total global cropland, making it one of the potentially largest
crop producers. North Africa instead is one of the smallest producers in term of harvested area
(compare Table 1). Of course the described trends cannot be mapped linearly to all regions and
crops. But the general tendency is visible throughout the results.

Convergence is clearly improved with tripled elasticity. Whereas the spread of exchanged
values for the double-elasticity simulations is increasing with increasing iteration number, the
data points of the tripled-elasticity simulations are tightly clustered, approaching the marked
mean (the empty red marker) with proceeding iteration step. Yet, it should be noted, that the
absolute values of exchanged quantities are generally smaller for tripled elasticity due to the
lowered responsiveness of GTAP-EFL. Thus, identical relative changes of the exchanged values
appear larger in Figure 2 for the doubled-elasticity case than for the tripled-elasticity one. Still,
an investigation of the relative changes (not shown here) underpins the impression given in the
presented graphs. With tripled elasticity the standard deviation of the last four iterations is
less than 5% of the respective mean value for 85% of all exchanged quantities, confirming the
observed convergence.

4 Experimental design

KLUM@GTAP was developed to assess the impact of climate change on agricultural production
and the implications for economic development. We first apply an economic baseline scenario,
which describes a possible projection of the world in 2050 without climate change; this simulation
is referred to as baseline in the following. On top of that we impose estimates of climate change
impacts so as to portray the situation in 2050 with climate change, the respective simulation is
called cc 2050.

The convergence of the system is highly influenced by the ”starting point”. Thus to clarify
the impacts of the baseline on our climate change assessment and to confirm the stability of the
coupled system we perform also a reference simulation: the climate change scenario is directly
applied onto the 1997 benchmark; this simulation is referred to as cc 1997 .

The effect of the coupling on the results is highlighted, by estimating the climate change
impacts also with the uncoupled models (referred to as the uncoupled simulations). In both
models we use the benchmark equilibrium 2050 of the baseline simulation as the starting point
and apply the climate change scenario. The GTAP-EFL model is used with endogenous land
allocation. Country-level allocation shares of the KLUM benchmark 2050 are used to aggregate
the yield changes of the climate change scenario to the regional level. KLUM standalone is driven
by the climate change scenario and exogenous price and management changes according to the
uncoupled GTAP-EFL. Like this the KLUM model describes a partial equilibrium situation.
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The different scenarios are summarized in Table 2. More detail on the explicit assumptions
and used data are given in Appendix C.

– insert Table 2 around here –

5 Results

The simulation results can be divided into general changes of the economy and those directly
affecting the coupled crop sector. As general economic changes we study changes in GDP,
welfare, CO2 emissions and trade.Changes in the crop sector are described by changes in crop
prices and production and in the allocation of cropland.

Baseline scenario

The changes according to the baseline scenario in CO2 emissions and GDP (Table 3) and crop
production (Table 4) are positive in the order of several hundred percent for all regions. For
emissions, GDP and crop production the growth is up to 1.5-4 times stronger in currently
developing regions, such as Subsaharan Africa and China, than in developed regions, such as
the USA and Western Europe. These results directly reflect the scenario assumptions of a long-
term convergence of developing to developed regions. Between 1997 and 2050 the trade balance
changes only slightly (Table 3). Negative changes appear in Africa, the Middle East, South
America, the Former Soviet Union and Europe. They are largest for Western Europe. The
reason may be found in the fact that in Western Europe the land productivity increases much
less than in the other countries; in fact, it is nearly one order of magnitude smaller than in the
other regions. Crop prices generally decrease by around 20-60% for all regions and crops (Table
5). This is a result of the assumed increase of the productivity of land and labor, leading to
lower production costs, which more than offset the increased demand due to population growth.
Accordingly, also these trends are greater for the developing than the developed regions, but
less pronounced than for the parameters discussed above.

– insert Table 3, 4 and 5 around here –

Impact on the cropland allocation are pictured in Figure 3. The plots suggest that vegetables
& fruits are largely replaced by wheat and other cereals. Only in South Asia and some countries
of Central America and North Africa the area share for vegetables & fruits is increased. Also
rice cropland is strongly reduced in most countries. Only in the Former Soviet Union, South
East Asia and a number of Subsaharan countries an increase in area for rice is visible. Wheat
and other cereals show an increase in harvested area for nearly all the countries. Only in the
Eastern part of the Asian continent wheat is planted less, the area for cereals is decreased in
North America; Argentinia decreases its area share for both crops.

– insert Figure 3 around here –

Climate change in 2050 (cc 2050 )

The climate impacts are several orders of magnitude smaller than the baseline changes. This is
the result of the comparably small climate-induced yield changes (see Appendix C). We thus
concentrate on the trends and intercomparison of changes, rather than on the absolute extent.

– insert Figure 4 around here –
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The impact of a changing climate on land allocation and the crop sector, according to
KLUM@GTAP are shown in Figure 4 and Table 4 and 5. We observe increases in the area
share and price for rice production in nearly all countries and regions; production instead is
decreasing. Obviously the losses in yield are counteracted by an increase of the area share,
increasing the prices. Also for several other regions and crops, such as other cereals in China
and USA or wheat in South America, yield losses are compensated by area gains and prices
rise. Only for vegetables & fruits this pattern is not observable; as the yields are unaffected in
our climate change scenario, this is not surprising. In general, for the majority of regions the
production of rice and vegetables & fruits is decreasing, whereas for wheat and other cereals
more regions increase the production (Table 4); price changes show an opposite pattern. The
cropland changes of wheat and other cereals reveal an interesting scheme: they are of opposed
signs in nearly all countries. As we do not observe the same pattern in the imposed yield changes,
this can be interpreted as direct competition of these crops. The similar price, allocation and
yield structure of wheat and other cereals makes their relative allocation changes sensitive to
small perturbations: according to minor price and yield changes either one or the other is
preferred in production.

– insert Figure 5 around here –

The crop production changes by and large explain the pattern of losses and gains observed for
GDP and welfare (Figure 5, red bars). Losses in GDP and welfare are present in most, but not
all the regions. We observe strong gains in Central America and South Asia and smaller gains
in Subsaharan Africa, Canada and Western Europe: all regions where also for crop production
the increases prevail. Generally CO2 emissions change in accordance with GDP. Only the USA,
the Former Soviet Union, and Eastern Europe are notable exceptions. In these regions, the
”composition” effect dominates the ”size” effect; that is, in terms of emissions the change in the
production mix to more carbon intensive goods dominates the total loss in production. Also
the trade balance reveals a clear connection to GDP and welfare changes: for nearly all regions
gains in GDP and welfare are accompanied by losses in the trade balance and vice versa. In
terms of trade, WEU shows the highest losses.

The effect of the baseline on the climate change simulation (cc 1997 )

We assess the effect of the baseline scenario on the estimations of climate impacts by comparing
results of scenario cc 1997 (where the climate scenarios is imposed on the current situation)
to those of scenario cc 2050 (where the climate change scenario is applied to the baseline
benchmark of 2050). Figure 6 shows that excluding the baseline generally leads to an increase
in allocation changes. Contrary, crop prices and production changes exceed the climate impacts
with the baseline in the order of some ten percent (Table 4 and 5). This reflects the way land
is treated in the CGE. In the baseline scenario the productivity of land increases, causing an
increase of land value. In the climate simulations starting from the baseline thus due to the unity
prices in the benchmark the land quantities increase as well. An introduced percentage change
in land hence translates to a much larger absolute change in the 2050 benchmark situation than
in the 1997 benchmark situation. Principally, however, the pattern of changes in crop prices,
productions and land allocation is conserved, indicating the stability of the coupled system.

– insert Figure 6 around here –

The same is true for the economic changes of the cc 1997 simulation (green bars in Figure
5). For almost all regions and indicators the sign as well as the relative extent of the changes
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are similar to those projected relative to the baseline (red bars). The trade balance in Eastern
Europe and the USA are the only exceptions; in Eastern Europe, the impact on the trade balance
is very small in each case; in the baseline scenario, the USA loses its competitive advantage
in agriculture to other regions, which explains the reversal in sign. Evidently, the changes in
welfare are much smaller, if no baseline is applied. This, however, only reflects the initial welfare
difference of the 1997 and the 2050 benchmark as welfare changes are expressed in US dollar
equivalents rather the percentages. Qualitatively, the welfare impacts are very similar.

The effect of the coupling on the climate change simulation (uncoupled)

Also for the coupling we assess the effect on the results by studying differences of uncoupled
to coupled simulation. GTAP-EFL standalone is driven only by the regionally aggregated
climate-induced yield changes; land allocation is endogenous. KLUM standalone is driven by
the climate change scenario and crop prices and management-induced yield changes of GTAP-
EFL standalone; feedbacks, though, are excluded.

GTAP-EFL - standalone

The resulting land allocation changes of GTAP-EFL standalone differ from the results of the
coupled system simulation by several hundred up to thousand percent (shown in Table 6); in
some cases even the signs differ. We see the highest differences for other cereals and rice,
indicating that greater yield changes emphasize the gap between coupled and uncoupled simu-
lation. Also crop prices and productions differ notably between the coupled and the uncoupled
simulation: differences are in the order of some ten up to several hundred percent. For rice
GTAP-EFL standalone underestimates most of the changes in prices and productions, whereas
for vegetables & fruits overestimations prevail. Some few estimates even change sign due to
the coupling. Whereas for the coupled simulation e.g. prices of cereal crops increase in Western
Europe and fall in the Former Soviet Union, they show the opposite behavior in the uncoupled
scenario. The largest differences between the simulations can be seen for vegetables & fruits.
Note that vegetables and fruits are assumed not be affected by climate change directly; these
changes result from the indirect impacts on allocation. Even though the region Rest of the
world was excluded from the coupling, we reveal large differences between the coupled and the
uncoupled simulation for the price changes in this regions. These are purely indirect effects.

– insert Table 6 around here –

The economic changes in GTAP-EFL standalone (Figure 5, yellow bars) differ from those
in KLUM@GTAP in extent but not in sign. The differences are generally low, only for China
they reach up to several hundred percent; again the effect is strongest on the trade balance.
The low differences reflect the general low responsiveness of these indicators in GTAP-EFL to
land allocation changes, which is even damped in our simulations by the increased elasticity.

KLUM - standalone

The percentage differences of land allocation changes in KLUM standalone to KLUM@GTAP
are in the range of ±10 − 100%, reaching up to several hundred percent (Figure 7). We see
even a change of sign in some countries, especially for the case of vegetables & fruits; generally
the differences for vegetables & fruits are largest and mainly positive. Again, these changes
are solely triggered by price and management changes or indirect allocation effects. Obviously,
these factors are strongly impacted by the coupling procedure: in the general equilibrium setting
of the coupled simulation these factors are dampened by inter sectoral effects and trade. We
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see that KLUM standalone tends to overestimate decreases and underestimate increases of area
changes in rice production; the total area share of rice is thus underestimated. The pattern of
deviations for wheat and other cereals are rather similar but with generally stronger deviations
for other cereals. This underpins the observation that the coupling effect grows stronger with
larger scenario changes.

– insert Figure 7 around here –

6 Summary and Conclusion

We present in this paper the coupling of a global computable general equilibrium model with
a global agricultural land-use model in order to consistently assess the integrated impacts of
climate change on global cropland allocation and the implication for economic development. The
linking of the models is established, by exogenizing the land allocation mechanism of GTAP-EFL
and by replacing it with the dynamic allocation module KLUM. Price and management changes,
according to GTAP-EFL and country specific yield values drive KLUM; regionally aggregated
area changes determined by KLUM are used to update the cropland shares in GTAP-EFL. This
intimate link allows a direct and spatially more explicit projection of biophysical aspects of
land-use decisions onto economic crop production; the effects of economic trade and production
decisions are projected back onto country specific crop patterns. By this the framework provides
a consistent picture of the economy and of agricultural land cover.

In the first part of the paper we investigated the convergence behavior of the coupled system.
We identified as key problem of an ensured convergence the initial situation of land allocation
in GTAP-EFL combined with the ”rigid structure” of the model. The initial cropland shares
in GTAP-EFL are given in ”value added of production”. But due to the assumptions of unity
prices in the benchmark, the same numbers are treated as quantity values during the simulations
and are updated by the changes determined by KLUM. KLUM on the other hand calculates
allocation changes based on observed area shares of FAOSTAT (2004), which differ tremendously
from the values used in GTAP. This difference causes a distortion of the introduced changes
and can lead to divergence. As a workaround we lowered the responsiveness of the CGE to
the introduced cropland share changes by increasing the sectoral elasticity of substitution for
primary factors. By means of a convergence test with the coupled framework we were able to
show a clear improvement of the convergence behavior due to this tactic. Moreover the test
confirmed the connection of the discriminative initial situations and the convergence behavior.
With a tripled elasticity convergence was reached in all regions for all crops. The change
in results caused by the new elasticity are acceptable considering the general uncertainties
underlying the values of elasticities (Hertel, 1997). Moreover the initial elasticity was rather
low (Hertel, 2006, personal communication). The tripled elasticity was used in the succeeding
simulations and convergence was audited for the performed experiments.

However, a general guarantee of convergence for the coupled system cannot be established
by means of the convergence test. The complex system of the CGE is distorted by the inclusion
of the land-use model that is not formulated consistently with the general equilibrium frame-
work. Above this, the offset caused by setting land values to quantities in the benchmark is
even enhanced when land becomes scarce and thus more valuable, as in our baseline scenario.
One way to solve the convergence problem is to use constant elasticity of substitution (CES)
production functions in KLUM, and to take intermediate inputs to agriculture from GTAP-EFL
as well. This would tighten the interaction between GTAP-EFL and KLUM. Yet, it would also
imply that KLUM can no longer be run as a standalone model, hampering model validation
and the coupling to biophysical models at a finer geographical resolution.
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In the second part of the paper we illustrate that plausible estimations of climate change
impacts are still feasible under the afore mentioned uncertainties. Crop production changes
according to the pattern of induced yield changes. Yield losses are often compensated by area
increases, causing prices to rise. A negative impact of climate change for nearly all regions in
terms of GDP and welfare was revealed. Only Central America and South Asia show strong
gains and some smaller gains are revealed in Subsaharan Africa, Canada and Western Europe.
This also reflects the pattern of induced yield changes. The remaining economic indicators
follow the pattern of GDP and welfare. Emission and crop production changes are in line with
GDP and welfare changes; trade balance and crop price changes are of opposite sign.

The convergence of the system is highly influenced by the starting point. The effect of the
baseline scenario on the results as well as the stability of the coupled system was thus studied
by a reference scenario in which the climate impacts were directly introduced to the current
situation. The baseline assumptions influence the extent but not the general pattern of the
results, reflecting the robustness of the model. Crop prices and production changes are enhanced
by the baseline scenario; crop allocation changes instead are dampened in nearly all countries.
This demonstrates the above said: the increased value of land in the baseline scenario (due to
productivity improvements) rises the responsiveness of GTAP to the land allocation changes.

The effect of the coupling on the results of the climate change simulation was studied by
reference simulations with the uncoupled models. With both models the climate impacts relative
to the afore established benchmark of 2050 were estimated. A clear impact of the coupling
can be revealed for both models. The results of standalone simulations generally differ from
those of the coupled simulation by some ten up to several hundred percent and show opposite
signs for some cases. The differences are lower for the general economic indicators, reflecting
the damped responsiveness to land-use changes of the GTAP-EFL due to the tripled elasticity.
Land allocation changes in GTAP-EFL standalone and KLUM@GTAP differ by several hundred
up to thousand percent. This clearly demonstrates the relevance of the improved allocation
mechanism. Moreover the differences are larger for greater yield changes - indicating that the
effect of the coupling will be even more pronounced for extreme scenarios.

All this strongly supports the hypothesis that a purely economic, partial equilibrium analysis
of land use is biased; general equilibrium analysis is needed, taking into account spatial explicit
details of biophysical aspects.

Concluding, the presented approach is a step in the right direction to reach an integrated
modeling framework for the estimation of the mutual impacts of economic and environmental
changes such as climate change. It establishes a dynamic and close link between the two models,
bearing the potential of consistently integrating the biophysical aspects of land-use decisions into
the economic model. The flexible spatial resolution of KLUM additionally facilitates the use of
a spatial resolution needed for a meaningful biophysical analysis of the environmental aspects.
Yet, to really establish a satisfactory modeling framework that allows reliable projections of
the integrated changes of the natural and economic system a long way is still ahead. Most
pressingly, the presented convergence problems and inconsistency in the interpretation of land
quantity need to be resolved. This requires an elaborative revision of some mechanisms in the
general equilibrium model and - in all likelihood - a recalibration of the model. A dynamic
formulation of GTAP-EFL would help to simulate future pathways with the coupled framework
without relying on a baseline scenario with heavy shocks. This would further improve the
conditions for convergence. Apart from that, the allocation algorithm of KLUM needs to be
extended to include other agricultural sectors such as animal production and finally also forestry
and industrial land. The coupling of the land use model to a dynamic vegetation model is already
performed for the European level (Ronneberger et al. , 2006). To reach full integration both
couplings need to be consolidated on the global level. Besides competition for land, the model
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should be extended to include competition for water resources.
All in all the presented work should be seen as a feasibility study pointing out the direction

of further work to be done.
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Figure A1. Industrial Production: Nested tree structure for industrial production processes in
GTAP-EFL

Table A1. Regional aggregation of the coupled model

USA USA
CAN Canada
WEU Western Europe
JPK Japan and South Korea
ANZ Australia and New Zealand
EEU Central and Eastern Europe
FSU Former Soviet Union
MDE Middle East
CAM Central America
SAM South America
SAS South Asia
SEA Southeast Asia
CHI China, North Korea & Mongolia
NAF North Africa
SSA Subsaharan Africa
ROW Rest of the World
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Figure A2. Final demand: Nested tree structure for final demand in GTAP-EFL

Table A2. Sectoral aggregation of GTAP-EFL

Rice Rice
Wheat Wheat
CerCrops Other cereals and crops
VegFruits Vegetable, Fruits
Animals Animals
Forestry Forestry
Fishing Fishing
Coal Coal Mining
Oil Oil
Gas Natural Gas Extraction
Oil Pcts Refined Oil Products
Electricity Electricity
Water Water collection, purification and distribution services
En Int ind Energy Intensive Industries
Oth ind Other industry and services
MServ Market Services
NMServ Non-Market Services
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B Mathematical formulation of the KLUM model

The total achievable profit π per hectare of one spatial unit is assumed to be:

π =
n∑

k=1

(
pkαk − c̃kL̄lk

)
lk − γVar

[
n∑

k=1

(pkαk − c̃kL̄lk)lk

]
(B1)

The first part of the equation describes the expected profit, where pk is the price per product
unit, αk is the productivity per area and lk denotes the share of total land L̄ allocated to crop
k ∈ {1 . . . n} of n crops. c̃k is the cost parameter for crop k. Total costs are assumed to increase
in land according to C =

∑n
k=1 c̃kL

2
k where Lk = lkL̄ denotes the total area allocated to crop k.

The second term of the equation represents the risk aversion of the representative land-
owner. Risk perception is quantified by the variance of the expected profit, weighted by a risk
aversion factor 0 < γ ≤ 1.

Maximizing π under the constraint that all land shares need to add up to a total not greater
than one: 1 ≤

∑
k lk, an explicit expression for each land-share li allocated to crop i ∈ {1 . . . n}

can be derived:

li =
1
2

∑
k

βi−βk

ck+γσ2
k

+ 1∑
k

ci+γσ2
i

ck+γσ2
k

(B2)

where for simplicity βk displaces the profitability of crop k, σ2
k displaces the respective

variance and ck = L̄c̃k. The temporal variability of total costs is assumed to be negligible
compared to the variability of prices and productivities (see Ronneberger et al (2005) for a
detailed description of model development and evaluation).

Adjustment of the cost parameters in KLUM

The assumption of decreasing returns to scale underlying the cost structure of KLUM has
consequences for the interpretation and transferability of the calibrated cost parameters. We
interpret the increasing cost with increasing area share such that the most suitable land is used
first and with further use more and more unsuitable land is applied. This implies that the
calibrated cost parameters are depending on the total amount of agricultural area assumed in
the calibration and on its relative distribution of quality concerning crop productivity. Thus,
the cost parameters calibrated for one country cannot simply be adopted in other countries.
Instead these values need to be adjusted according to the differences in total agricultural area.
Assuming that the relative quality distribution does not change, a doubling of the total area
would imply an bisection of the cost, since the double amount of suitable area would be available.
So, the cost parameter ca of country a is adjusted for country b by scaling it according to:

ca = cb
Lb

La
(B3)

where Lb and La represent the total agricultural area of country b and of the original country
a, respectively. This procedure assures that under identical conditions, the size of a country (or
rather the amount of agricultural area) does not impact the result.

C Scenario assumptions

The economic baseline scenario describes the essential changes of key economic variables for 2050
without climate change (see Table C1). Instead of relying on current calibration data, we base
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our exercise on a benchmark forecast of the world economy structure. To this end, we derive
hypothetical data-sets for 2050 using the methodology described in Dixon and Rimmer (2002).
This entails imposing forecasted values for some economic variables on the model calibration
data to identify a hypothetical general equilibrium state in the future.

Since we are working on the medium to long term, we focus primarily on the supply side:
forecasted changes in the national endowments of labor, capital and population as well as
variations in factor-specific and multi-factor productivities. Most of these variables are naturally
exogenous in CGE models. For example, the national labor force is usually taken as given. In
the baseline scenario, we shock the exogenous variable labor stock, changing its level from that of
the initial calibration year (1997) to 2050. In the model, simulated changes in primary resources
and productivity induce variations in relative prices and a structural adjustment for the entire
world economic system. The model output describes the hypothetical structure of the world
economy, which is implied by the selected assumptions of growth in primary factors.

We obtain estimates of the regional labor and capital stocks by running the G-Cubed model
(McKibbin & Wilcoxen, 1998). This is a rather sophisticated dynamic CGE model of the
world economy, which could have been used - in principle - to directly conduct our simulation
experiments. However, we prefer to use this model as a data generator for GTAP, because the
latter turned out to be much easier to adapt for our purposes, in terms of disaggregation scale
and changes in the model equations.

We get estimates of agricultural land productivity from the IMAGE model version 2.2 (IM-
AGE, 2001). IMAGE is an integrated assessment model, with a particular focus on land use,
reporting information about seven crop yields in 13 world regions, from 1970 to 2100. We
run this model by adopting the most conservative scenario about climate change (IPCC B1),
implying minimal temperature variations.

In our climate change scenario we reduce the effect of a changing climate to its impact on
crop yields. The scenario is based on yields presented in Tan & Shibasaki (2003), who provide
estimates of changes in yield due to climate change of the major crops for several countries
around the world. They utilize climate change data from the first version of the Canadian
Global Coupled Model (CGCM1)5 to quantify monthly minimum and maximum temperature
and precipitation. Adaptation is taken into account by means of changing planting dates. The
assumed yield changes are relatively small in extent, but similar in sign when compared to
estimates of as e.g. Rosenzweig et al. (1993) and FAO (2002). We chose the presented source
as it offers estimates for a larger amount of countries than the other sources.

Based on these estimates for 2050 we determine potential yields under climate change of
wheat, rice and other cereals (see Figure C1). We use the predictions of yield changes in
maize to adjust potential production of other cereals, even though this is an aggregate of many
different cereal crops weighted differently in different countries. However, in around half of the
simulated countries maize production makes more than half of the total production of cereal
crops and only for around 20% of all countries this share is below 30%. Thus, we conclude
that the applied simplification is accepTable. Potential productions of the vegetables & fruits
aggregates are assumed to stay on the level of 1997.

In all simulations the variances σ2 (compare equation B2), reflecting the riskiness of a
certain crop in KLUM, are set to the temporal average of past variances and held constant.
Throughout all simulations we exclude the region Rest of the World from the coupling and
assume the elasticity of substitution for primary factors to be ESBV ≈ 0.711, which is the
triple of the original value.

5Provided by the Intergovernmental Panel on Climate Change (IPCC)
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Table C1. Baseline scenario: Exogenous changes in key macroeconomic variables applied in the
2050 baseline. Values are expressed as percentage changes relative to 1997 quantities. With LUS
we refer to the land-using sectors Rice, Wheat, CerCrops, VegFruits and Animals; Energy com-
prise the energy sectors Coal, Oil, Gas and Oil Pcts. Labor refers to ”effective labor”, that is:
number of workers times the average productivity per worker.

% change in stocks % change labor productivity % change
population capital labor LUS,

Forestry,
Fishing,
En Int ind

Energy Electricity Water,
Oth ind,
MServ,
NMServ

land pro-
ductivity
LUS

USA 30.4 253.7 249.6 120.1 0.0 69.5 100.0 114.0
CAN 15.6 186.3 263.7 134.1 6.1 80.1 157.6 225.5
WEU -3.7 164.0 266.6 140.8 9.4 85.3 177.2 52.8
JPK -11.6 177.5 214.5 133.6 0.0 79.8 163.1 162.5
ANZ 18.7 184.8 263.7 133.0 6.1 79.4 156.3 225.5
EEU -2.7 260.1 257.0 221.9 47.5 148.3 267.1 267.3
FSU -2.7 275.5 257.0 235.0 50.3 157.1 282.9 267.3
MDE 107.7 373.7 324.2 227.3 48.7 151.9 276.2 379.9
CAM 54.9 375.4 352.4 287.8 72.8 197.1 353.2 379.9
SAM 51.0 411.4 352.4 315.4 79.7 216.0 207.0 379.9
SAS 72.6 500.8 254.4 346.3 75.0 237.1 330.0 339.5
SEA 68.9 336.7 352.4 258.2 65.3 176.8 316.8 379.9
CHI 29.4 463.4 254.4 251.2 63.5 172.0 306.7 339.5
NAF 127.0 235.1 352.4 180.2 45.6 123.4 221.2 379.9
SSA 135.8 375.9 352.4 288.2 72.9 197.4 353.7 379.9
ROW 49.1 419.9 352.4 321.9 81.4 220.4 332.6 379.9
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Figure C1. Climate change scenario: Yield changes assumed in the climate change scenarios.
Values are adopted from (Tan & Shibasaki, 2003).
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Tables and Figures

Table 1. Initial shares of harvested areas in GTAP and KLUM. The emphasized totals are
relative to total global cropland (as quoted in the lower right corner, KLUM’s quantity is given
in 1000 ha). The region specific crop shares relate to total cropland in the respective region.

Crop Rice Wheat Cereal Crops Vegies & Fruits Total
Region GTAP KLUM GTAP KLUM GTAP KLUM GTAP KLUM GTAP KLUM
USA 0.011 0.017 0.172 0.336 0.546 0.495 0.271 0.153 0.147 0.078
CAN 0.000 0.000 0.336 0.447 0.244 0.305 0.419 0.249 0.007 0.026
WEU 0.003 0.007 0.323 0.302 0.345 0.374 0.329 0.317 0.196 0.060
JPK 0.369 0.573 0.005 0.030 0.146 0.057 0.480 0.340 0.066 0.005
ANZ 0.016 0.008 0.210 0.533 0.293 0.353 0.480 0.106 0.006 0.020
EEU 0.004 0.001 0.121 0.273 0.295 0.480 0.580 0.246 0.016 0.030
FSU 0.182 0.005 0.068 0.420 0.106 0.370 0.644 0.206 0.011 0.113
MDE 0.030 0.018 0.116 0.477 0.134 0.269 0.720 0.236 0.012 0.042
CAM 0.025 0.023 0.038 0.047 0.466 0.703 0.470 0.227 0.040 0.017
SAM 0.042 0.086 0.074 0.145 0.230 0.392 0.654 0.377 0.075 0.060
SAS 0.243 0.324 0.085 0.208 0.166 0.213 0.506 0.255 0.156 0.187
SEA 0.350 0.564 0.000 0.000 0.148 0.227 0.502 0.209 0.108 0.075
CHI 0.166 0.225 0.058 0.209 0.121 0.239 0.655 0.326 0.096 0.151
NAF 0.001 0.047 0.357 0.379 0.184 0.306 0.458 0.268 0.008 0.015
SSA 0.171 0.064 0.023 0.019 0.427 0.587 0.379 0.330 0.016 0.115
ROW 0.127 0.083 0.082 0.000 0.246 0.163 0.545 0.754 0.039 0.004
Total 0.133 0.157 0.129 0.231 0.276 0.346 0.462 0.266 965573 268948

Table 2. Overview over the different simulations: benchmark denotes the initial situation of
the model; starting point is the model on which the initial change, described in column imposed
changes is imposed.

model benchmark imposed changes starting point
baseline KLUM@GTAP 1997 baseline scenario (see Table C1) GTAP-EFL
cc 2050 KLUM@GTAP 2050 climate change scenario (see Fig-

ure C1)
KLUM

cc 1997 KLUM@GTAP 1997 climate change scenario (see Fig-
ure C1)

KLUM

uncoupled GTAP 2050 climate change scenario aggre-
gated to the regional level

GTAP-EFL

KLUM 2050 climate change scenario (see fig-
ure C1) + price and management
induced yield changes of uncou-
pled GTAP-EFL simulation

KLUM



Table 3. Changes in the economy until 2050: Percentage changes in economic key indicators in
the baseline scenario according to KLUM@GTAP.

Region CO2 emissions GDP trade balance
NAF 448.1 659.2 -55079
EEU 429.2 621.6 -177502
ANZ 269.1 444.3 10644
ROW 576.3 865.9 -40101
CAN 304.1 489.6 30906
CAM 511.2 689.9 9703
SSA 618.4 950.2 -95355
SAS 641.1 733.2 96738
FSU 381.9 706.5 -112725
MDE 495.5 698.0 -176199
SEA 468.7 740.8 338141
CHI 656.4 783.7 347770
SAM 539.5 732.9 -17941
JPK 283.0 436.1 263582
USA 304.6 444.2 22448
WEU 273.9 466.9 -445029
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Table 4. Impacts on crop production For the baseline and the cc 2050 scenario the percentage changes according to KLUM@GTAP are given.
Column cc 1997 and uncoupled state the effect on the climate impacts of the baseline assumption and the coupling, respectively. In both cases the
differences are given in percent of cc 2050.

crop scenario USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA ROW

Rice baseline 269.8 199.5 180.2 346.6 343.4 370.8 472.1 481.4 448.1 504.9 294.5 604.2 674.5 230.0 729.0 486.8

cc 1997 4.95 41.72 -65.80 -51.43 -33.93 -69.51 -15.15 -64.29 26.17 0.00 -21.05 -27.59 0.00 -31.58 60.00 -66.67

cc 2050 -0.202 0.163 -0.193 -0.035 -0.056 -0.082 -0.033 0.014 0.149 -0.011 0.038 -0.058 -0.002 0.133 -0.005 0.003

uncoupled 0.50 -0.61 -15.54 -5.71 -3.57 21.95 -21.21 -7.14 -18.79 -9.09 -13.16 -18.97 50.00 -12.03 -20.00 0.00

Wheat baseline 307.9 363.9 347.1 364.6 433.6 423.1 426.3 502.5 610.2 595.6 260.9 733.5 568.5 343.0 835.4 567.3

cc 1997 -15.22 -18.35 -22.22 -8.81 -14.33 45.45 7.69 63.64 -32.53 -11.48 -29.89 -42.99 -71.43 -53.13 -43.24 -18.18

cc 2050 -0.184 0.632 0.045 -0.159 -0.656 -0.022 0.013 -0.022 -0.083 -0.061 0.087 0.107 0.014 0.032 0.074 0.011

uncoupled 2.72 0.16 -11.11 4.40 -4.73 -27.27 -69.23 -45.45 1.20 -9.84 -6.90 14.95 -7.14 6.25 0.00 0.00

Cereals baseline 271.9 289.3 233.9 232.1 306.8 406.7 329.6 530.6 539.1 552.7 510.3 542.8 728.7 337.3 587.3 567.1

cc 1997 -26.15 6.44 0.96 -5.45 -6.92 -393.33 208.33 -1.42 -22.98 10.10 -46.24 -43.18 -20.25 -70.00 -12.83 -8.93

cc 2050 -0.325 0.807 0.104 -0.110 -0.289 0.015 0.012 0.212 1.075 -0.307 0.372 -0.044 -0.242 0.010 0.187 0.056

uncoupled -2.46 -10.90 -19.23 13.64 -15.57 53.33 -358.33 -14.15 -2.33 -13.03 -10.48 15.91 -21.49 -40.00 -25.13 -8.93

Veg.& baseline 233.0 298.3 193.4 165.4 278.9 322.7 384.8 454.9 410.1 457.4 444.9 475.2 619.0 467.0 605.2 486.6

Fruits cc 1997 -100.00 -29.17 -42.86 -33.33 33.33 87.50 100.00 -60.00 -44.44 0.00 100.00 -12.50 28.57 300.00 300.00 -50.00

cc 2050 -0.002 0.024 0.007 -0.027 -0.006 -0.008 0.002 0.005 0.009 -0.001 0.010 -0.040 -0.007 -0.001 -0.001 0.002

uncoupled 1900.0 212.5 128.6 114.8 33.3 0.0 -1000.0 180.0 144.4 0.0 20.0 50.0 -71.4 -300.0 -1600.0 150.0
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Table 5. Impacts on crop prices. For the baseline and the cc 2050 scenario the percentage changes according to KLUM@GTAP are given. Column
cc 1997 and uncoupled state the effect on the climate impacts of the baseline assumption and the coupling, respectively. In both cases the differ-
ences are given in percent of cc 2050.n.a. marks cases where the prices only change in the reference simulations.

crop scenario USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA ROW

Rice baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.63 -47.81

cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 -33.33

cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 0.039 0.009

uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 111.11

Wheat baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 -45.76

cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 -12.50 -50.75 3.70 -200.00 -18.75

cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 0.151 -0.087 0.088 -0.067 0.027 -0.013 0.016

uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 104.76 -15.31 0.71 -8.61 -12.64 -11.36 22.39 -22.22 7.69 25.00

Cereals baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21 -34.75 -45.35 -54.12 -48.83 -59.25 -48.35 -48.89 -41.11 -51.41 -46.43

cc 1997 -30.32 -19.06 150.00 -15.61 -11.80 120.31 -31.82 -5.26 30.22 -4.71 34.53 -23.05 -26.48 6.58 -314.29 -22.58

cc 2050 0.663 -0.278 0.004 0.506 0.695 0.064 -0.022 0.019 -0.321 0.446 -0.278 0.308 0.759 0.152 0.007 0.062

uncoupled -11.31 -6.12 -150.00 -11.46 -19.86 -51.56 -127.27 -57.89 9.03 -16.82 -4.32 -17.21 -22.27 -15.79 14.29 -50.00

Veg & baseline -25.49 -33.24 -32.90 -35.75 -33.43 -35.18 -34.57 -43.03 -42.44 -40.23 -30.31 -40.57 -38.64 -36.75 -45.86 -46.90

Fruits cc 1997 -33.33 -16.67 0.00 -34.04 -5.26 30.00 n.a. 0.00 -16.67 -200.00 -25.00 5.13 -12.50 0.00 9.09 -25.00

cc 2050 0.015 0.012 0.004 0.047 0.019 0.020 0.000 0.003 0.024 0.002 0.012 0.039 0.016 0.003 0.011 0.008

uncoupled 406.7 91.7 250.0 163.8 189.5 70.0 n.a. 166.7 91.7 1050.0 33.3 184.6 -12.5 133.3 63.6 150.0



Table 6. Effect of the coupling on climate change impacts on cropland allocation The re-
sults of the GTAP-EFL standalone (uncoupled) and the KLUM@GTAP simulation (cc 2050) are
compared; differences are expressed in percent of the latter. n.a. marks cases where the alloca-
tion changes only in GTAP-EFL standalone. n.a. marks cases where the allocation changes only
in GTAP-EFL standalone.

% Rice Wheat CerCrops VegFruits
USA -7.52 6.30 137.23 457.89
CAN 7.69 172.73 1500.00 -1500.00
WEU 301.10 -123.53 -105.26 -97.22
JPK 138.82 17.05 -860.00 177.39
ANZ 40.79 -105.56 768.00 4233.33
EEU 10.55 107.69 -140.00 -10.00
FSU n.a. n.a. 16800.00 n.a.
MDE 125.00 2316.67 -728.57 -1700.00
CAM -3100.00 -27.66 -372.73 -218.75
SAM 422.22 -376.47 1826.67 220.00
SAS -559.09 194.44 205.71 -4.55
SEA 283.05 -81.05 -74.07 40.63
CHI 260.00 -15.49 245.10 -14.71
NAF 405.08 -146.43 1040.91 640.00
SSA 127.27 1.37 -500.00 -260.00
ROW n.a. n.a. n.a. n.a.
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Figure 1. The coupling scheme of KLUM@GTAP:The coupling can be divided into 3 different
procedures. For further details see the description in the text.
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Figure 2. Results of the convergence test for North Africa and South Asia: The plots de-
pict the space spanned by the percentage changes in price, yield and area-share. Round markers:
results under doubled elasticity; Square markers: results under tripled elasticity. With proceed-
ing iteration size and darkness of the markers gradually increase. The empty red marker marks
the mean value of the last four iterations; the length of the axes crossing at this point mark the
total spread of all iteration states. The perspective of the coordinate system differs among plots
to allow an optimal view on the respective data.
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Figure 3. Cropland allocation changes until 2050: Percentage changes in cropland allocation
in the baseline simulation according to KLUM@GTAP. In gray countries the crop is either not
planted or no data is present.
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Figure 4. Climate change impacts on cropland allocation: Percentage changes in cropland
allocation in the climate change scenario relative to 2050 (cc 2050) according to KLUM@GTAP.
In gray countries the crop is either not planted or no data is present.
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Figure 5. Climate change impacts on the economy: Changes in economic indicators according
to the different climate change simulations. The cc 2050 and cc 1997 simulations are performed
with the coupled system. The uncoupled simulation is performed with GTAP-EFL standalone.
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Figure 6. Effect of the baseline scenario on simulated climate impacts: Climate impacts
relative to the current situation (cc 1997) are compared to those estimated relative to the base-
line (cc 2050). The differences are expressed in percentage of the latter. In gray countries the
crop is either not planted or no data is present.
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Figure 7. Effect of the coupling on simulated climate impacts: Climate impacts according to
KLUM standalone (uncoupled) are compared to those of KLUM@GTAP (cc 2050). The differ-
ences are expressed in percentage of the latter. In gray countries the crop is either not planted
or no data is present.
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