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ABSTRACT
We describe a timing technique that allows obtaining precise orbital parameters of an accreting

millisecond pulsar in those cases in which intrinsic variations of the phase delays (caused, for

example, by proper variation of the spin frequency) with characteristic time-scale longer than

the orbital period do not allow to fit the orbital parameters over a long observation (tens of days).

We show under which conditions this method can be applied along with the results obtained

applying this method to the 2003 outburst observed by RXTE of the accreting millisecond

pulsar XTE J1807−294 which shows in its phase delays a non-negligible erratic behaviour. We

refined the orbital parameters of XTE J1807−294 using all the 90 days in which the pulsation

is strongly detected and the method applicable. In this way, we obtain the orbital parameters of

the source with a precision more than one order of magnitude better than the previous available

orbital solution, a precision obtained to date, on accreting millisecond pulsars, only for SAX

J1808.4−3658 analysing several outbursts spanning over seven years and with much better

statistics.

Key words: stars: magnetic fields – stars: neutron – pulsars: general – pulsars: individual:

XTE J1807−294 – X-ray: binaries.

1 I N T RO D U C T I O N

Low-mass X-ray binaries (LMXB) are binary systems in which one of the two stars is a neutron star (NS) with low magnetic field (< 109 G)

which accretes matter from a low-mass (< 1 M�) companion star. According to the so-called recycling scenario (see for a review Bhattacharya

& van den Heuvel 1991), millisecond radio pulsars originate from LMXBs, where the accretion torques and the relatively weak magnetic

fields are able to spin-up the NSs up to millisecond periods. When the companion star stops transferring matter to the NS, the NS can switch

on as millisecond radio pulsar.

A striking confirmation of this scenario was the discovery in 1998 of millisecond X-ray pulsars in transient LMXBs. The first LMXB

observed to show coherent pulsations at a frequency of ∼400 Hz was the well-studied SAX J1808.4−3658 (Chakrabarty & Morgan 1998;

Wijnands & van der Klis 1998). Due to the weak magnetic field of these sources, the chance to see a pulsed emission from a LMXB is quite

low. However, to date eight LMXBs were discovered to be accreting millisecond pulsars (Wijnands 2006), and all of them are in transient

systems. They spend most of the time in a quiescent state, with very low luminosities (of the order of 1031–1032 erg s−1) and rarely we go into

an X-ray outburst with luminosities in the range 1036–1037 erg s−1. Indeed, of all these sources only SAX J1808.4−3658, which shows more

or less regular outbursts every two years, has been observed in outburst more than once with RXTE. All the other sources have shown just one

outburst in the RXTE era.

This fact makes the study of the timing properties of these sources even more difficult, given that the duration of the observations is not

a matter of choice, but is conditioned by the duration of the outbursts which, in turns, puts a constrain on the precision of the parameters

that we can derive. This is also the reason why we have to obtain all the information and the precision of the parameters we need just using
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the available data. In the case of accreting millisecond pulsars, among the parameters of interest there are, of course, the timing parameters

that are the orbital parameters and the spin parameters. The orbital parameters can give us important information on the binary system, on its

evolution and even on the nature (e.g. degenerate or not) of the companion star. Also, a precise orbital solution will be important for a precise

determination of the spin parameters, the spin period evolution and the accretion torques acting on to the NS.

As already mentioned above, the knowledge with the maximum possible precision of the orbital parameters is of fundamental importance

in itself and for a successive study of the spin and the spin variations. The study of the frequency Doppler shift due to orbital motion of

a millisecond pulsar in a binary system is the first step to obtain an estimate of the set of orbital parameters. To refine this estimate, the

next step is the study of the pulse phase shifts in order to obtain differential corrections to the orbital parameters and therefore a finer

orbital solution. However, in some cases, not all the data in which the coherent X-ray pulsations are visible can be easily used to obtain the

differential corrections. The pulse phase shifts are frequently affected by intrinsic long-term variations and/or fluctuations (probably caused

by the accretion torques) which are superimposed to the modulation due to the orbital motion of the source, making the fit of the residual

sinusoidal modulation much more complicated. Clear examples of these complex behaviours of the pulse phase shifts in accreting millisecond

pulsars can be found in Burderi et al. (2006), who analyse SAX J1808.4−3658 and find a big jump in the pulse phase shifts of the fundamental

harmonic of the pulse, and in Papitto et al. (2007), who analyse XTE J1814−338 finding a modulation of the pulse phase shifts, anticorrelated

to the X-ray flux, superposed on a general spin-down trend.

Of course, the presence of non-negligible long-term variations of the pulse phase shifts with time makes it very difficult to fit a long

data set with differential correction as reported in equation (2) in order to obtain a precise estimate of the orbital parameters using all the

available time-span. Using the classical technique, it is then necessary, in order to decouple the orbital modulation from the proper fluctuations

of the pulse phases, to take into account the latter in some way. This is often impossible to obtain by fitting with a simple model due to the

observed complex behaviours and/or our poor knowledge of the physics of the accretion torques. In such cases, we are forced to fit differential

corrections of the orbital parameters on restricted time intervals, in which the proper fluctuations or variations of the phase shifts can be safely

approximated with a simple model, e.g. a parabola. In these cases, therefore, the precision of the orbital solution is limited by the limited used

time-span or by our ability to model intrinsic phase variations.

In this paper, we describe a simple method which permits, under certain conditions, to remove from the pulse phase shifts all the effects

not due to differential orbital parameter corrections. We apply this method to the source XTE J1807−294, obtaining for the first time a

complete set of orbital parameters with a precision at least one order of magnitude higher with respect to the previously available orbital

solution.

2 O B S E RVAT I O N S

The millisecond X-ray pulsar XTE J1807−294 was spotted by RXTE on 2003 February 21 (Markwardt, Smith & Swank 2003b). The source

was observed with Proportional Counter Array (PCA) and High-Energy X-ray Timing Experiment (HEXTE), the principal instruments

onboard RXTE (Jahoda et al. 1996) from 2003 February 28 to June 22. XTE J1807−294 was also observed with other satellites such as

XMM–Newton (Campana et al. 2003; Kirsch et al. 2004; Falanga et al. 2005), Chandra (Markwardt, Juda & Swank 2003a) and Integral
(Campana et al. 2003). No optical or radio counterpart has been reported. Linares et al. (2005) have reported the presence of twin kHz

quasi-periodic oscillators (QPOs) analysing RXTE observation.

In literature, several attempts have been made in order to derive the orbital parameters of this source. Markwardt et al. (2003b) give

only source position and the orbital period. Kirsch & Kendziorra (2003), analysing an XMM–Newton observation during the outburst, give

an estimate of the semimayor axis. The first complete set of orbital parameters was reported by Campana et al. (2003), and successively by

Kirsch et al. (2004) and Falanga et al. (2005), analysing the same XMM–Newton observation. All these authors assumed as orbital period the

period reported by Markwardt et al. (2003b).

Here, we analyse all the archival RXTE observations of this source available to date. In particular, we use data from the PCA instrument

onboard of the satellite RXTE. We use data collected in GOODXENON packing mode, with maximum time and energy resolution (1 μ s and

256 energy channels, respectively). In order to improve the signal-to-noise ratio, we select photon events from PCUs top layer and in the

energy range 3–13 keV. Using the FAXBARY tool (DE-405 Solar system ephemeris), we corrected the photon arrival times for the motion of the

Earth-spacecraft system and reported them to barycentric dynamical times at the Solar system barycentre. We use the source position reported

by Markwardt et al. (2003a) using the Chandra observation of the same outburst.

In order to test the goodness of the available orbital solution, we correct the photon arrival times with the formula

tem � tarr − A

{
sin[m(tarr) + ω] + ε

2
sin[2m(tarr) + ω] − 3ε

2
sin(ω)

}
, (1)

where tem is the photon emission time, tarr is the photon arrival time, A is the projected semimajor axis in light seconds, m(tarr) =
2π(tarr − T�)/Porb is the mean anomaly, Porb is the orbital period, T� is the time of ascending node passage, ω is the periastron angle

and ε is the eccentricity. We used the orbital parameters reported by Kirsch et al. (2004), adopting an eccentricity ε = 0 (see Table 1 for

details).

We divided the whole observation in time intervals of 1/6 Porb length each and epoch-folded each of these data intervals with respect to

the spin period we reported in Table 1. The pulse phase delays are obtained fitting each pulse profile with two sinusoidal components, since
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Table 1. Orbital parameters for XTE J1807−294.

Parameter Other works This work

Orbital period, Porb (s) 2404.45(3)a 2404.41665(40)

Projected semimajor axis, ax sin i (lt-ms) 4.8(1)b 4.819(4)

Ascending node passage, T�a (MJD) 52720.67415(16)b 52720.675603(6)

Eccentricity (e) – < 0.0036

Spin frequency, ν0 (Hz) 190.623508(15)b 190.62350694(8)c

Note. Errors are intended to be at 1σ c.l., upper limits are given at 95 per cent c.l.
aMarkwardt et al. (2003a). bKirsch et al. (2004). cRiggio et al. (2007).

Figure 1. The plot of the pulse phase delays obtained by epoch folding the events barycentred with respect the orbital parameters reported by Kirsch et al.

(2004) on time intervals of Porb/6. It is clearly a visible residual orbital modulation superimposed to the long-term, sometimes erratic, behaviour of the

phases.

higher-order harmonics were detectable in the folded light curve. We fixed the period of the sinusoids to 1 and 0.5 times the spin period,

respectively, and used the phase of the fundamental harmonic to infer the pulse phase shifts. In Fig. 1, we show the pulse phase delays obtained

in this way, where we have plotted only the pulse phase delays corresponding to the folded light curves for which the statistical significance

for the presence of the X-ray pulsation was > 3σ .

In Fig. 1, a residual orbital modulation is clearly visible, superimposed to an intrinsic long-term variation of the phases, possibly similar

to the erratic spin changes mentioned by Markwardt (2004). It can be seen that this behaviour has characteristic time-scales of the order of

several Porb. In the next section, we describe a method which is able to temporarily eliminate any long-term phase variations or fluctuations

in order to easily fit the residual modulations of the phases at the orbital period and to find a revised, more precise orbital solution.

3 D I F F E R E N T I A L C O R R E C T I O N S O F T H E O R B I TA L PA R A M E T E R S

We propose here a simple method of analysis which allows to (temporarily) eliminate, or at least strongly reduce, the long-term variation and

erratic behaviour of the pulse phase shifts in order to derive a precise orbital solution. The residuals in the phase delays due to a non-perfectly

corrected orbital parameters is given by the expression:

φorb(t) = P−1
spin

{[
sin(m(t) + ω) + ε

2
sin(2m(t) + ω) − 3ε

2
sin(ω)

]
dA − 2πA

Porb

[
cos(m(t) + ω) + ε cos(2m(t) + ω)

]
dT �

−m(t)A

Porb

[
cos(m(t) + ω) + ε cos(2m(t) + ω)

]
dPorb + A

[
1

2
sin(2m(t) + ω) − 3

2
sin(ω)

]
dε

+
[

A cos(m(t) + ω) + ε

2
cos(2m(t) + ω) − 3ε

2
cos(ω)

]
dω

}
,

(2)
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Figure 2. The plot of the gain of the filter that is the ratio between the amplitude of a sinusoidal input signal of period P and the amplitude of the output

sinusoidal signal when the time distance between two adjacent points is �t.

where Pspin is the spin period with respect to the light curves folded and dA, dT�, dPorb, dε and dω are the differential corrections to the orbital

parameters (the projected semimajor axis, the time of ascending node passage, the orbital period, the eccentricity and the periastron angle,

respectively).

If we compute difference between the phase of two adjacent folded light curves, we obtain, for �φorb(ti), the expression

�φorb(ti ) = φorb(ti+1) − φorb(ti ) = P−1
spin

{
[2 cos(mi + ω + m�/2) sin(m�/2) + ε cos(2mi + ω + m�) sin(m�)]dA

+ 4πA

Porb

[( sin(mi + ω + m�/2) sin(m�/2) + ε sin(2mi + ω + m�) sin(m�)]dT �

+
{

2mi A

Porb

[sin(mi + ω + m�/2) sin(m�/2) + ε sin(2mi + ω + m�) sin(m�)]

− m� A

Porb

[cos(mi + m� + ω) + ε cos(2mi + 2m� + ω)]

}
dPorb

+ A cos(2mi + ω + m�) sin(m�)dε

−
[

2 sin(mi + ω + m�/2) sin(m�/2) + ε sin(2mi + ω + m�) sin(m�)

]
dω

}
,

(3)

where we pose for simplicity m(ti ) = mi and 2π�t/Porb = mi+1 − mi = m�.

In this way, that is calculating the phase differences between two consecutive intervals instead of the phases, we apply a linear filter to

the pulse phase delays, for which we illustrate the fundamental properties. We now use the term input to indicate the original signal, that is the

pulse phase delays versus time, and output to indicate the signal we obtain plotting the phase difference of each interval with the following

versus time. When the input signal is a sinusoid of period P, the output is another sinusoid with same period but with different phase and

amplitude. In Fig. 2, we report the gain G, that is the ratio of the amplitudes of the output to the input signal, for a sinusoidal signal of period

P. The analytical expression for G is G = 2sin (π�t/P). As can be seen in Fig. 2, G has the maximum for P = 2�t coincident with the Nyquist

frequency. For P � �t, we have G ∝ P−1. This filter is then a band-pass filter, limited at high frequencies by the Nyquist frequency, and at

low frequencies we can fix a limit at the period P � 12�t, at which the amplitude is reduced to half. For a period of P � 60�t, the amplitude

is reduced by a factor of 10.

In particular, for the case of XTE J1807−294, instead of plotting the obtained pulse phases as a function of time, we consider the phase

difference between each interval and the following one, �φ(ti ) = φ(ti+1) − φ(ti ), in the hypothesis that for each i we have ti+1 − ti = �t,
where �t is constant during all the observation. In this way, we obtain the phase shifts shown in Fig. 3 (the same as of Fig. 1 but plotting

the phase differences instead of the phases), where, as it is easy to see, the orbital modulation is still visible, but any long-term variation of

the pulse phases is completely smoothed out. To produce this figure, we divided each pulse profile in six time bins (in other words we chose

�t = Porb/6) in order to maximize the signal-to-noise ratio. In fact, in this case the effect of the filter does not change the amplitude of the

orbital modulation of the output with respect to the input (from Fig. 2 the Gain = 1 for Porb/�t = 6).
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Figure 3. The same as Fig. 1 but plotting the pulse phase delays differences (instead of the pulse phase delays, see text). As can be seen, the erratic behaviour

and long-term variations result strongly reduced. The linear decrease of the amplitude is a clear sign of an error on the Porb.

Figure 4. Top: detail of the pulse phase delays differences of Fig. 3 between the days 10 and 11 from the start of the observation. As can be seen, there is only

a sinusoidal modulation and there is no sign of the erratic behaviour. The dotted line is the best-fitting model described in equation (5). Bottom: post-fitting

residuals with respect to the best-fitting sinusoidal model.

Due to its linearity, the application of this filter to a signal which is the sum of several signals is equal to the sum of each filtered signal.

We can then separately analyse the response to the filter of the Doppler shift due to the orbital motion without fear that the erratic behaviour

of the source can alter the result. We note that, in cases like the one considered in this paper, where the orbital period is much shorter than

long-term variations of the phases (probably caused by accretion torques on to the NS), the phase variations induced by the orbital modulation

can be studied independently of the phase variations induced by the spin evolution (see e.g. Burderi et al. 2007; Papitto et al. 2007). Therefore,

our analysis does not introduce any error or approximation in the determination of the orbital solution.
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Figure 5. Plot of the pulse phase differences between contiguous intervals using our orbital parameters. The sinusoidal modulation is no more visible and

there is no sign of the erratic behaviour and long-term variations. This implies that our technique perfectly smooths out the erratic behaviour and long-term

variations.

Figure 6. Pulse phase delays as a function of time of XTE J1807−294 obtained correcting the time series with our best-fitting orbital solution. The light curves

are folded on a time interval of length Porb. It is now apparent again the erratic behaviour of the phases on characteristic time-scales of at least several dozen

of Porb.

4 R E S U LT S A N D D I S C U S S I O N

We have applied the technique described above to the PCA data of XTE J1807−294. In particular, we have used the phase delays of Fig. 1

in order to calculate for each time interval the phase difference with respect to the following interval, and these are plotted versus time in

Fig. 3. We consider only phase differences between contiguous time intervals and exclude the phase differences between intervals separated

by gaps in time. The errors on the phase differences are propagated summing in quadrature the errors on the phases from which the difference

is calculated, that is σ 2
�φ(ti ) = σ 2

φ(ti+1) + σ 2
φ(ti ). From the figure, it is apparent that the long-term variation and the erratic behaviour of the phase

delays are now completely smoothed out. We can therefore proceed to fit with equation (3) these phase differences over the whole period in

which the coherent pulsation was detectable (about 90 d). In this way, we obtain a very good fit of the data. To show the goodness of the fit,

we plot in Fig. 4 (top panel) the phase differences between days 10 and 11 from the start of the outburst; the dashed line is the best-fitting
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sinusoidal modulation obtained from equation (3). In the bottom panel of the figure, we show the post-fitting residuals with respect to the

best-fitting sinusoidal modulation.

Equation (3) is essentially a sum of sinusoidal terms with period equal to Porb and Porb/2. The latter are due only to the eccentricity.

Then, to test if the orbit shows an eccentricity we epoch folded the light curves on a time interval �t = Porb/10; this reduces by about

40 per cent the gain of the filter but gives the possibility to have a sufficient number of points to sample each period in order to avoid aliasing

phenomena. In fact, if we use, as before, intervals of length �t = Porb/6, this means that we sample the modulation at Porb/2 (eventually due

to a non-negligible eccentricity) with only three points, and this can produce ambiguities in the results of the fit. Using instead time intervals

of length �t = Porb/10, we sample the modulation with period Porb with 10 points and the modulation with period Porb/2 with five points,

which is, as we have verified, a good compromise to get precise estimates of all the orbital parameters.

To check that the long-term trend visible in Fig. 1 has indeed been eliminated by the technique described above, we add to the best-fitting

sinusoid a parabolic function to describe possible residuals caused by the long-term phase variations. Hence, we fit the phase differences with

the expression:

�φ(t) = a + b t + c t2 + �φorb(t), (4)

where a, b and c are the coefficients of the parabola. These coefficients can be expressed in terms of �ν, ν̇ and ν̈, respectively, since

a � −�ν�t, b � −ν̇/2�t and c � −ν̈/3�t . There is no evidence of residuals due to the long-term behaviour, and in the fit the a, b and

c parameters result largely compatible with zero. This is due to two factors: the first is that both �ν and ν̇ are attenuated by a factor �t (�
5 × 10−3) s and the second is that the filter reduces the time dependence on these terms. Moreover, the orbit does not show an appreciable

eccentricity, ε, for which we find an upper limit (at 95 per cent confidence level) of 3.6 × 10−3. We also find that d T� and d ω result perfectly

correlated, as expected for a circular orbit.

Due to these results, we can safely make two assumptions: (i) the orbit is circular and (ii) we can safely describe the residuals simply

with a constant. We therefore epoch folded the light curves on a time interval �t = Porb/6 in order to have better statistics, and fitted the phase

differences with the simpler formula:

�φ(t) = a + �φorb(t), (5)

where we fixed dε = dω = 0. We iterate this process until no residual are observed. In this way, we find a good fit, corresponding to a χ2/d.o.f.

of 864.2/790; the best-fitting parameters are reported in Table 1. In Fig. 5, we show the phase differences obtained correcting the time series

with our best-fitting orbital solution. No orbital modulation is visible in this plot, and the amplitude of the oscillation is now much reduced

with respect to that visible in Fig. 3 corresponding to the orbital solution given by Kirsch et al. (2004).

To verify that our orbital solution is indeed better than the orbital solution given by Kirsch et al. (2004) even during the times of the XMM
observation, we performed the following check. We looked in the RXTE observations for a time interval close in time to the time of the XMM
observation; unfortunately, there is not a complete superposition between the RXTE and the XMM observation (that starts at 52720.57 MJD

and stops at 52720.68, for an exposure time of about 9.3 ks). We therefore took two RXTE observations (80145 − 01 − 04 − 08 and 80145 −
01 − 05 − 01, the closest continuous observations to the XMM observation, which cover the time interval from 52718.94 to 52719.11 MJD),

corrected them alternatively with the Kirsch solution and our solution, respectively, and then performed a folding search around the expected

value of the spin period. While the Kirsch solution gives a peak in the χ2 curve of about 150–200, our solution gives a peak in the χ2 curve

of about 1000, demonstrating that the periodic signal revealed on the time series corrected with our orbital solution is much stronger even in

a time interval as close as possible to the XMM observation.

The method described above that we used to determine a precise orbital solution for XTE J1807−294 does not allow any study of

the spin frequency and its derivative, since the long-term phase variations, which indeed give information on possible variations of the spin

frequency during the outburst, are eliminated when we calculate the phase differences. Therefore, in order to perform a timing study of the

spin frequency, we have to correct the entire time series of the RXTE observations with our best-fitting orbital solution, and re-calculate the

phase delays, which are shown in Fig. 6. As can be seen from the figure, the strong sinusoidal modulation visible in Fig. 1 is no more present.

Moreover, our more precise orbital solution allows us to clearly detect the coherent pulsations up to 104 d since the start of the observation

(June 12) with a detection confidence level of 3.6σ , while between May 26 and June 10, although the source is still detectable, the pulsations

are no more significantly detected. Long-term variations (a parabolic trend on which erratic fluctuations are superimposed) of the phases are

again visible in this figure and are probably determined by the presence of a spin frequency derivative and/or an error in the spin frequency

used to obtain the folded pulse profile, as well as by fluctuations of the phases on shorter time-scales possibly related to phase shifts in the

NS surface caused by variations of the X-ray flux. The discussion of these effects is beyond the scope of this paper and will be presented

elsewhere (Riggio et al. 2007).

5 C O N C L U S I O N S

We have described a simple technique that permits to drastically reduce the presence of erratic behaviour and long-term intrinsic variations of

the pulse phase delays of the source, thus allowing to fit the residual orbital modulation of these phase delays, caused by errors in the previously

reported orbital parameters, on a very long time-span and to obtain a much more precise measure of the orbital parameters. We applied this

technique to the source XTE J1807−294, which shows the longest X-ray outburst observed by RXTE from an accreting millisecond pulsar.

In this way, we can fit the residual modulation of the phase differences over the whole time-span in which the coherent pulsations were
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significantly detected (about 100 days from the start of the outburst), obtaining a set of orbital parameters with a precision that is at least one

order of magnitude better than the previously published orbital solutions for this source.

Once a good orbital parameter set is known, a detailed discussion of the spin period and its derivative is possible. However, this source

also shows erratic fluctuations of the phases that are anticorrelated to variations in the X-ray flux, in a way that is similar to what is found by

Papitto et al. (2007) for the source XTE J1814−338. A detailed discussion of these effects and a determination of the spin frequency and its

derivative in XTE J1807−294 will be presented elsewhere (Riggio et al. 2007).
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