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Quite recently quantum features exhibited by a mesoscopic field interacting with a single Rydberg atom in
a microwave cavity has been observed �A. Auffeves et al., Phys. Rev. Lett. 91, 230405 �2003��. In this paper
we theoretically analyze all the phases of this articulated experiment considering from the very beginning
cavity losses. Fully applying the theory of quantum open systems, our modelization succeeds in predicting fine
aspects of the measured quantity, reaching qualitative and quantitative good agreement with the experimental
results. This fact validates our theoretical approach based on the fundamental atom-cavity interaction model
and simple mathematical structure of dissipative superoperators.
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I. INTRODUCTION

One of the principal problems arisen with the early devel-
opment of quantum mechanics is that the linearity of the
Schrödinger equation allows for the existence of superposi-
tion of macroscopically distinguishable states. Such states
are never observed in common experience, which induces
the question of the real existence of these states.

A series of recent experiments performed with atoms
trapped in Paul-type traps �1–3� and with superconducting
microwave cavities �4,5� have shown that “Schrödinger cat”
states can indeed be created and observed. These experi-
ments are typically performed in an intermediate mesoscopic
domain between the microscopic and the macroscopic ones.
Some experiments have clearly shown decoherence of the
superposition of states due to the interaction of the system
with the environment �6�.

An important aspect of the experimental detection of non-
classical states is the adoption of an appropriate procedure to
“probe” the system. Since the experiment is performed on a
mesoscopic system the measurement act will necessarily al-
ter its state. It is therefore necessary to describe the dynamics
of the system by including the probing subsystem. Anyway it
is evident that, whatever probing procedure is adopted, the
exact relation between the effectively measured quantities
and the state of the system itself must be clear.

Recently, a very interesting experiment �7� has shown that
a Schrödinger cat state can be prepared and detected inside a
superconducting microwave cavity. The state of the field in-
side the cavity is measured through a homodyne detection
procedure, in which the field is indirectly measured by
means of a probing atom. In this experiment, the quantity
effectively measured is the probability Sg��� to find the
probing atom in its ground state. This probability is obtained
by varying the phase � of the homodyne signal coupled to
the cavity field.

In this paper we analyze from a theoretical point of view
the results of this experiment. The interest in such an inves-
tigation stems from the possibility of exactly treating the
dynamics of the system including from the very beginning
and as much as possible the influence of the environment.
The original paper reporting the experiment contains many
physical ingredients to understand the qualitative behavior of
the atom-field dynamics through the analysis of the mea-
sured probability Sg��� of finding the second atom in its
ground state. We have, however, been stimulated by the fact
that some aspects of the � dependence of such a probability
remain apparently unnoticed or at least not explained. What
we are talking about is, for example, the presence of second-
ary maxima and minima in the Sg��� diffraction line pattern.
The main contribution of this paper consists in an articulated
and flexible theoretical platform which, including dissipative
effects and assuming a Jaynes Cummings �JC� atom-field
interaction model, provides an exact prediction of Sg���
which satisfactorily meets the experimental results.

The paper is structured as follows. In Sec. II we give a
theoretical description of the experiment formulating in par-
ticular the Markovian quantum master equations ruling the
dynamics of the system. The detailed analytical solution of
the different phases of the time evolution of the system is
presented in Sec. III and the subsequent one is devoted to the
discussion of the probing procedure. The experiment is
deeply analyzed in Sec. V and our conclusions are drawn in
the last Sec. VI.

II. A THEORETICAL DESCRIPTION OF THE
EXPERIMENT

In this section we give a short description of the experi-
ment performed by Auffeves et al. �7� using the experimental
setup sketched in Fig. 1.

The cavity used for the experiment is an open Fabry-Perot
resonator made of two superconducting spherical niobium
mirrors facing each other. The cavity has a quality factor Q*Email address: messina@fisica.unipa.it
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�108 and sustains a Gaussian TEM900 mode at a frequency
of 51.1 GHz with a w=6−mm waist.

Velocity selected 85Rb atoms coming from the oven O are
prepared, in zone B, in circular Rydberg states with principal
quantum number n=50 and n=51. These atoms cross one by
one the cavity C almost in perfect resonance with the transi-
tion between the two levels n=50 and n=51 hereafter de-
noted by �g� and �e�, respectively.

Figure 2 aims at giving an idea of the three timing phases
of the experiment. In phase 1 an atom A1, initially prepared
in �e� or �g�, is injected into the cavity C. Just before the
atom A1 enters the cavity, a microwave signal F1 prepares
the resonator in a coherent state. The atom A1 interacts with
the cavity for a time T1.

Phase 2 begins as soon as A1 exits the cavity. A new
microwave signal F2, having the same amplitude of F1 and
relative phase �+�, is then injected inside the cavity. The
phase � is chosen in the interval between 0 and 2� and the
experiment is performed many times with different values of
�.

In phase 3 a second atom, A2, prepared in the �g� level
crosses the cavity with the same speed of the first atom.
Then, immediately after A2 exits the resonator, its internal
state is detected in D by means of static electric fields.

During phase 1 of the experiment the interaction between
the atom and the cavity causes a splitting of the initial co-
herent state into two distinct coherent components locked
with the two different atomic states �7�. The duration of the
interaction T1 is chosen such that the two coherent compo-
nents are clearly separated. Such a separation is at the origin
of a complete damping of the Rabi oscillations of the atom.
Phase 1 leaves the cavity in a typical Schrödinger cat state.
Of course dissipation sources tend to destroy the quantum
coherence of this state within a time interval strictly related
to the quality factor of the cavity.

Phases 2 and 3 of the experiment are designed so that they
constitute an homodyne detection measurement.

To achieve a realistic description of the experiment we
must incorporate from the very beginning the influence of

the environment degrees of freedom on the system dynamics.
During the phase 1 of the experiment the cavity interacts
with a single Rydberg atom. The natural frequency of the
cavity, as previously mentioned, is finely tuned so that it is
nearly equal to the Bohr frequency of the atomic transition
between the two adjacent circular levels. Because the radia-
tive lifetime of the circular Rydberg atom is much longer
than the interaction time of the atom with the cavity, we can
describe the atom as a two level system and neglect the spon-
taneous decay toward the lower levels �8�.

Under these conditions the Hamiltonian of the atom-
cavity system coincides, within the “rotating wave approxi-
mation,” with the well-known JC model �9�

HAF = ��aSz + ��ca
†a + ���a†S− + aS+� , �1�

where � is the “vacuum Rabi frequency” and �a��c� is the
atomic transition �resonator� frequency. The operators
S+ ,S− ,Sz are the usual atomic operators for a two-level atom
whereas a and a† are the annihilation and creation operators
of the cavity mode.

We will take into account the dissipative effect of the
cavity adopting the Markovian quantum master equation
which describes the coupling of the cavity system with a
bath at zero temperature.

Summing up during the phase 1 the evolution of the sys-
tem may be described in term of the following master equa-
tion �10�:

d

dt
� = −

i

�
�HAF,�� + LF� �2�

where the superoperator LF is defined as

LF� = −
�

2
�a†a� + �a†a − 2a�a†� , �3�

� being the reciprocal of the decay time of the photons inside
the cavity.

During the phase 2 there are no atoms inside the cavity
and a coherent field, produced by the microwave source S, is
injected into C. We can describe this microwave signal, hav-
ing amplitude E and angular frequency �, as a classical one
which forces the mode of the cavity. This situation may be
represented by means of the following Hamiltonian not in-
volving any atomic degrees of freedom:

H2 = ��ca
†a + �Ee−i�ta† + E*ei�ta� . �4�

Also in this phase the cavity cannot be considered as iso-
lated so that its dynamics is described by the following mas-
ter equation:

d

dt
� = −

i

�
�H2,�� + LF� . �5�

Concerning the last phase 3 we may repeat the analogous
description previously used for the phase 1, namely Eq. �2�,
provided that the atomic degrees of freedom are now referred
to atom A2.

FIG. 1. Experimental apparatus.

FIG. 2. Timing of the experiment.
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III. SOLUTIONS OF THE MASTER EQUATIONS

A. Phase 1

To solve the master equation �2� it is convenient to ex-
pand � into the basis of the dressed states of the atom-cavity
system,

��n
+� = cos 	n�n + 1,g� + sin 	n�n,e� ,

�6�
��n

−� = − sin 	n�n + 1,g� + cos 	n�n,e� ,

where 	n is given by

tan 2	n =
2�n



�7�

with

�n = ��n + 1 �8�

and 
=�c−�a.

Let us now consider the matrix element of the density
operator �,

�n�
�
 	 
�n

�����n+�

 � �9�

with �, 
=± and n ,��N. If we fix the values of n and � we
can dispose these matrix elements in a four-component
vector,

�n� =�
�n�

++

�n�
+−

�n�
−+

�n�
−−
� . �10�

As a consequence we can write Eq. �2� in the form

d

dt
�n� = Ln��n� + �n��n+1,�, �11�

where Ln� and �n� are, for each value of n and �, 4�4
matrices given by

Ln� = − i�� I − i�
��n − ��n+� 0 0 0

0 ��n + ��n+� 0 0

0 0 − ��n − ��n+� 0

0 0 0 − ��n + ��n+�

� −
�

2�
n + cn

2 0 − sncn 0

0 n + cn
2 0 − sncn

− sncn 0 n + sn
2 0

0 − sncn 0 n + sn
2
�

−
�

2�
Lc − sn+�cn+� 0 0

− sn+�cn+� Ls 0 0

0 0 Lc − sn+�cn+�

0 0 − sn+�cn+� Ls

� �12�

with

cn = cos 	n,

sn = sin 	n,

Lc = n + � + cn+�
2 , �13�

Ls = n + � + sn+�
2 ,

��n = ��n
2 + 
2/4,

and

�n� = ��
�n

+�n+�
+ �n

+�n+�
− �n

−�n+�
+ �n

−�n+�
−

�n
+�n+�

+ �n
+�n+�

− �n
−�n+�

+ �n
−�n+�

−

�n
+�n+�

+ �n
+�n+�

− �n
−�n+�

+ �n
−�n+�

−

�n
+�n+�

+ �n
+�n+�

− �n
−�n+�

+ �n
−�n+�

−
� , �14�

where

�n
+ = �n + 2cn+1cn + �n + 1sn+1sn,

�n
+ = − �n + 2cn+1sn + �n + 1sn+1cn,

�15�

�n
− = − �n + 2sn+1cn + �n + 1cn+1sn,

�n
− = �n + 2sn+1sn + �n + 1sn+1sn.

In order to obtain an analytical solution of Eq. �11� it is
necessary to make some approximations. If we examine the
expression of Ln� we note that whenever n�1 the matrix can
be considered approximatively diagonal. For �n� we note
instead that, if the detuning is sufficiently small so that the
relation 
���n+1 holds, we have sn�cn�1/�2 so that
�n� can be approximated by a diagonal matrix as well.

Thus if the detuning 
 is small enough and n�1 we can
decouple the matrix equation �11� in four separate equations
of the form
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d

dt
�n�

�
 = an�
�
�n�

�
 + bn�
�
�n+1,�

�
 , �16�

where the coefficients an�
�
 and bn�

�
 can be deduced, respec-
tively, from Ln� and �n�. Equation �16� is a tridiagonal linear
equation that can be easily treated by using an eigenvalues
approach as illustrated in Appendix A. It is important, how-
ever, to underline that the equation obtained in corrispon-
dence of �=0 should be treated separately by taking the sum
and the difference of �n,0

++ and �n,0
−− .

B. Phase 2

The system described by the master equation �5� is a
damped quantum harmonic oscillator forced by a sinusoidal
signal with angular frequency �. In the experiment the fre-
quency of the driving force is tuned with the natural fre-
quency �c of the cavity but in our analysis it is convenient
not to make a priori any particular assumption about � in
order to evidence possible detuning effects.

A well-known result in classical mechanics says that the
dynamics of a forced harmonic oscillator can be easily traced
back to that of a free harmonic oscillator. We will show that
in the case of a sinusoidal driving force this property holds
for a quantum harmonic oscillator too.

To this end we consider the following time-dependent
transformation of the density matrix of the system:

�̃�t� = D���T��t���t�T†��t�D†��� , �17�

where

D��� 	 e�a†−�*a �18�

is the Glauber displacement operator with ��C and

T��� = exp�i�a†a� �19�

is the unitary operator transforming a into a exp�i��.
Choosing

� = i
E/�

i�� − �� + �/2
�20�

the master equation �5� in terms of the transformed density
matrix �̃�t� becomes

d

dt
�̃ = − i���a†a, �̃� + LF�̃ , �21�

where ��=�c−�. We can note that this latter equation coin-
cides with that of a quantum free damped oscillator. Equa-
tion �21�, in turn, can be exactly solved with the method
illustrated in Appendix B.

Now we will introduce some further considerations about
the transformation given by Eq. �17�. To this purpose it is
convenient to introduce the following superoperators:

TP = �a†a,P� , �22�

D���P = �− i�a† + i�*a,P� , �23�

where P is an arbitrary operator acting on the oscillator Hil-
bert space. With the help of these superoperators the trans-
formation �17� can be cast in the form

�̃�t� = eiD���eiT�t��t� . �24�

Using definitions �22� and �23� we can write a formal
integral of Eq. �21�,

�̃�t�� = e�−i��T+LF��t�−t��̃�t� = e−i��T�t�−t�e−i��LF�t�−t��̃�t� ,

�25�

where the property �T ,LF�=0 has been used.
Transforming back from �̃ to �, the complete evolution

during phase 2 assumes the following form:

��t� = e−iT�te−iD���e−iT��teLFteiD�����0� , �26�

where we have assumed t=0 as the beginning time of phase
2.

This expression simplifies even more if we suppose that
the force has the same frequency of the cavity. Putting in-
deed �c=� we have

��t� = e−iT�te−iD���eLFteiD�����0� . �27�

Now we will show that we can further simplify the last
expression obtained for the time evolution during phase 2.

Let us start by considering the relation of commutation
between D��� and LF. We have

�D���,LF� = −
�

2
D���; �28�

by doing some nontrivial algebra we obtain the exact follow-
ing relation:

eiD���eLFte−iD��� = ei�1−e−�t/2�D���eLFt. �29�

Equation �29� is particularly useful in the case where the
force is very intense and acts for a very small time. In fact if
we suppose that

�E� → �, t → 0, and Et/� → � �30�

we obtain

eLFt � 1,
�31�

ei�1−e−�t/2�D��� � ei�t/2D��� = eiD�i��.

This latter equation says that the net effect of an intense
resonant driving field for a short time is equivalent to a small
displacement of the state of the system into its phase space
without any decoherence effect.

We can conclude by saying that the dynamics of the sys-
tem during phase 2 is given at resonance by expression �27�
where the action of exp�LFt� on a generic density matrix �
can be conveniently evaluated by using expression �B8� with
�0=0. On the other hand, the action of the displacement
operator is evaluated in the number state basis by means of
the following relation:
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n�eiD�����m� = 
n�D����D†����m�

= 

i=0

�


n�D����i�
i���j�
j�D����m� , �32�

where the matrix elements of the displacement operator are
given by �11�


m�D����n� =� n!

m!
�m−ne−���2/2Ln

�m−n�����2� �33�

with Ln
��� being the generalized Laguerre polynomial.

We can also make use of Eq. �29� to confine ourselves to
low excitations number when very intense driving fields act-
ing for a short period of time are in order.

IV. DISCUSSION OF THE PROBING PROCEDURE

In the last section we have developed the mathematical
tools which allow as to solve analytically the temporal evo-
lution of the system in the different phases. Now we want to
discuss from the physical point of view phases 2 and 3 of the
experiment. Equations �26� and �27� reported in Sec. III B
enable us to claim that, generally speaking, the effect of the
driving signal during phase 2 is twofold. On the one hand it
does cause a translation of the cavity state in its phase space
due to the presence of superoperators of the form exp D���.
On the other hand the presence of a superoperator like
exp�LFt� is at the origin of dissipation and decoherence ef-
fects.

To understand the physical mechanism by which the sec-
ond atom detects the state of the cavity after phase 2 let us
analyze a simple case ignoring for the moment the presence
of the cavity losses. If the cavity is in a coherent state ���
with ��1 the atom is subjected to Rabi oscillations with an
angular frequency of about ����. These oscillations then get
damped after a time of the order of 1 /� and the probability
to find the atom in its ground state settles down to the value
of 1 /2. On the other hand, for ��1 the cavity is approxi-
mately in its vacuum state and, because the atom is prepared
in its ground state, the system does not perform any oscilla-
tion. Thus when ��1 the probability of finding the atom in
the ground state is roughly 1.

If after phase 1 the system were in a coherent state ���
then the net effect of the driving field would be a translation,

� → � + �ei�, �34�

with � being a complex parameter depending on the ampli-
tude and the duration of the signal. If amplitude and duration
are appropriately calibrated then Eq. �34� says that a particu-
lar value �0 of the phase � will bring the cavity into its
vacuum state. In this case Sg��� assumes a value near to the
unity. Other values of � would lead to coherent state ����
with ���1. As a consequence the atom would be subjected
to the Rabi oscillations which will subsequently get damped
so that the probability Sg��� would assume the value of 1 /2.

Summing up, if the cavity is in a coherent state after
phase 1 then the probing performed in phases 2 and 3 with
the help of the atom A2 will produce a pattern of Sg��� char-

acterized by a maximum for a particular value �0 of � and a
constant value of 0.5 elsewhere. This situation is qualita-
tively illustrated in Fig. 3.

If the state of the cavity after the injection of the micro-
wave signal F2 is ��� then Sg will be given by the following
expression:

Sg��� =
1

2
− 
Sz� = e−���2


n=0

� ���2n

n!
cos2���nt� . �35�

In Fig. 4 we have reported a plot of Sg in function of ���
for different values of �t.

We can see that when �=0, Sg=1, and, for �→�, the
value of Sg settles down around the value of 1 /2 with the
exception of the graph for �t=� /2. This exception happens
because the time t is short and the Rabi oscillations does not
have the time to completely disappear. In fact we know that
the Rabi oscillations disappears in a time of the order of 1 /�
independently from �. So we can say that for small values of
t we have an oscillating behavior of Sg���. We also note from
Fig. 4 that for particular values of the interaction time and �
we obtain a probability to find the atom in its ground state
Sg�1/2. This in turn implies that the curve of Sg���, Fig. 3,
can have also some secondary minima besides of the main
peak.

FIG. 3. Qualitative behavior of Sg��� when the cavity is left in
a coherent state ��� after phase 1.

FIG. 4. Sg against ��� for different values of �t.
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In the experiment �7� the actual interaction time between
the atom and the cavity gives for �t the values 4.96 rad and
8.215 rad. Observing Fig. 4 we note that the plots for �t
=4.96, 8.215 rad does not have an oscillatory behavior but
they have a minimum value below 1/2 before approaching
the asymptotic limit.

Suppose now that the intensity and the duration of the
driving field F2 is such that after phase 2 the cavity is left in
the state

��1� = c��0� + ���� , �36�

c being a normalization constant and where ��� is a coherent
state with ����1. During phase 3 the state ��1� of the cavity
is probed by the atom A2.

As a consequence of the interaction of A2 and the cavity
the quantity Sg is the sum of three terms,

Sg = �c�2�1

2
+ 1� + �interference terms� , �37�

one of which is directly related to the interference between
the two coherent components of ��1�. In the limit ����1 this
interference term can be neglected being 
0����0 and in
addition c2� 1

2 . Thus Sg�0.75 when ����1. If on the other
hand the state of the cavity is

��2� = c������ + ����� �38�

with both �����1 and �����1 the correspondent value of Sg
after phase 3 will be �0.5. We thus may claim that there
exist two appropriate values of the phase � of F2 such that
Sg��� presents two maxima when after phase 1 the cavity is
left in a superposition of two coherent states like that ex-
pressed by Eq. �38�. Such a qualitative behavior of Sg��� is
reported in Fig. 5.

V. RESULTS AND DISCUSSION OF THE EXPERIMENT

To start with phase 1, the cavity is prepared in a coherent
state so that its density matrix is given by

�F�0� = e−���2

n=0

�



m=0

�
�n�*m

�n ! m!
�n�
m� . �39�

If we suppose that the atom A1 is initially prepared in its
upper circular Rydberg state, the density matrix of atom-
cavity system at the beginning of phase 1 may be represented
as

��0� = �F�0� � �e�
e� . �40�

The evolution of the system during this phase is investi-
gated with the help of Eq. �11�. In the experiment described
in Ref. �7� two different values for the interaction time T1
between the atom and the cavity, i.e., T1=32 
s and T1
=53 
s, were chosen.

Since no measurement is performed on atom A1, the ini-
tial state of the cavity in phase 2, that is, just before injecting
the signal F2, may be obtained tracing the atom A1-cavity
density matrix, at the end of phase 1, with respect to the
atomic degrees of freedom.

During phase 2 the cavity is driven by a microwave field
F2 whose phase and strength are described by the complex
amplitude E. In accordance with Ref. �7� such a driving field
acts upon the cavity for a time T2=23 
s. Three physical
parameters characterize this part of the experiment, namely
the strength �E� and the phase � of the driving field as well as
the duration T2 of the injected signal.

The impulse F2 injected into the cavity has the same am-
plitude of F1 which determines the initial coherent state cre-
ated inside the cavity. The evolution of the cavity when sub-
jected to a driving external field is given by Eq. �27�. Since
we are at resonance, in view of Eq. �20� the parameter � has
the following expression:

� = i
E/�

�/2
. �41�

By looking at Eq. �29� we moreover infer that the displace-
ment of the Wigner function induced by the same driving
field is

� = �1 − e−�t/2�� . �42�

Hence we conclude that, if the cavity starts in its vacuum
state before the injection of F1, we obtain a coherent state of
complex amplitude,

� = i
E/�

�/2
�1 − e−�t/2� . �43�

Of course, taking into account that �−1=850 
s �7�, the
knowledge of the initial coherent state allows us to trace
back to the amplitude of both F1 and F2. We have succeeded
in exactly solving the sequence of all the equations of motion
directly related to the experiment reported in Ref. �7� incor-
porating cavity damping effects. The mathematical expres-
sion of ��t� after phase 3, that is, when the probing atom A2

exits the cavity, it is not reported here because it is too in-
volved to be of help in proceeding with the comparison be-
tween our analysis and the experimental results. Instead we
concentrate on the observed quantity Sg��� which may be
evaluated in correspondence to the particular experimental
situation considered in Ref. �7�.

In Fig. 6 we plot the probability Sg��� of finding the atom
A2 in its ground state in correspondence to atom-cavity in-
teraction time T1=32 
s. The atom A1 is initially prepared in
the excited state and the cavity is exactly at resonance with
n̄=18. Sg��� shows two maxima in correspondence to the
particular values of the phases possessed by the two coherent

FIG. 5. Qualitative behavior of Sg��� when the system is left in
a superposition of two coherent states at the beginning of phase 2.
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components of the cavity field after interaction with atom A1.
The plot shows some secondary maxima and minima in
agreement with the previous discussion.

In Fig. 7 the same quantity Sg��� is reported in correspon-
dence with an off-resonance term comparable with the
vacuum Rabi frequency of the system.

We are now ready to compare our theoretical analysis
with the experimental results reported in Ref. �7�. We can see
that the distance between the two peaks of Fig. 6 is the same
of the experimental data as deducible from Fig. 2 of Ref. �7�.
We also note that taking into account the presence of detun-
ing �c−�a=
�0 leads in Fig. 7 to an asymmetrization and
an enlargement of the two peaks. This is qualitatively in
agreement with the experimental results reported in Ref. �7�
where the asymmetry of the two peaks is quite evident. It is
in addition clear that the width of the peaks obtained by the
experimental data are greater than the width predicted for the
ideal case 
=0 and shown in Fig. 6. We draw the conclusion
that in the experiment reported in Ref. �7� there might be an
off-resonance between the cavity and the atomic transition of
the order of magnitude of the vacuum Rabi frequency.

For the sake of a full comparison between our analysis
and experimental results of Ref. �7� we wish to conclude this
section plotting in Fig. 8 Sg��� when the atom A1 is initially
prepared in its “dipole state”:

��a
+� =

1
�2

��e� + �g�� . �44�

It is worth noting that, keeping the values of all the other
experimental conditions of Fig. 6, in this case Sg��� is

peaked around a single value of � only in accordance with
Fig. 3 of Ref. �7�.

VI. CONCLUSIONS

The theoretical investigation presented in this paper has
been spurred by a recent experiment aimed at producing and
observing the phase entanglement between a mesoscopic
cavity field and the atomic dipole of a single Rydberg atom.
Our analysis of both the preparation phase of the entangled
state and its probing is based on an approach incorporating,
from the very beginning, effects stemming from cavity
losses. Our treatment, in accordance with the experiment,
makes explicitly use of the not too low mesoscopic intensity
of the initial coherent field injected into the cavity. This cir-
cumstance enables us to analytically solve the dynamical
evolution of the system leading to the generation of the en-
tangled state. The probing phase is followed in detail once
again taking into due account the cavity losses by consider-
ing the appropriate master equation predicting the temporal
evolution of the field.

The results of our theoretical investigation are in good
qualitative and quantitative agreement with those achieved in
laboratory. We have in particular succeeded in establishing a
link between experimental found, but not commented, asym-
metry of the two peaks exhibited by Sg��� and a slight de-
tuning between atomic and mode natural frequency.

In addition, to suppose the existence of such a small de-
tuning modifies the widths of the two peaks improving in
this way, as a matter of fact, the quantitative agreement be-
tween our results and the experimental ones.

Another aspect of our treatment is the prediction of sec-
ondary minima and maxima in the � dependence of Sg���,
which appear even when no detuning is invoked, that is at
exact resonance.

It is worth noting that the numerical estimation of our
results have been based, when available, on values of the
parameters extracted from Ref. �7�. In conclusion we feel
that the good degree of agreement between our analysis and
the experimental results enforces and further validates a the-
oretical approach based on fundamental atom-cavity interac-
tion model and simple mathematical structure of dissipative
superoperators.

APPENDIX A: SOLUTION OF A CLASS OF TRIDIAGONAL
LINEAR EQUATIONS

In this appendix we will illustrate the solution of a par-
ticular class of tridiagonal linear differential equations. Let

FIG. 6. Predicted curve for Sg��� against � with 
=0 when the
atom A1 is initially prepared in its excited state.

FIG. 7. Predicted curve for Sg��� against � with 
 /�=1.0 when
the atom A1 is initially prepared in its excited state.

FIG. 8. Predicted curve for Sg in function of � when the atom
A1 is initially in a dipole state.
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us consider a set of N variable pn with n=1,2 ,… ,N whose
time dynamics is described by equations of the form

d

dt
pn = �npn + �npn+1, �A1�

where �n and �n are given coefficients. If we now dispose
the terms pn in a column vector P we can write the differen-
tial equations in matrix form

d

dt
P = M · P , �A2�

where M is a N�N matrix given by

M =�
�1 �1 0 … 0

0 �2 �2 … 0

… …
0 0 0 … �N

� . �A3�

To the purpose of integrating the differential equation
�A2� it is useful to diagonalize the matrix M. In fact we can
write

M = S−1M�S , �A4�

where M� is the eigenvalues’ matrix

M� =�
�1 0 0 … 0

0 �2 0 … 0

… …
0 0 0 … �N

� . �A5�

The explicit components of matrices S and S−1 are given by
the following expressions:

Snk = �
j=n+1

k
� j−1

�n − � j
,

�S−1�nk = �
j=n

k−1
� j

�k − � j
. �A6�

Once we have diagonalized the matrix M we can immediatly
integrate Eq. �A2�. We have

P�t� = eMtP�0� = eS−1M�StP�0� = S−1eM�tSP�0� , �A7�

where the matrix exp�M�t� can be trivially calculated.
Equation �A7� enable us to solve, either analytically or

numerically, every equation of the form �A1�.

APPENDIX B: TIME EVOLUTION OF A DAMPED
HARMONIC OSCILLATOR

Let us consider a damped harmonic oscillator whose dy-
namics is described by the equation

d

dt
� = − i�0�a†a,�� + L� , �B1�

where L is the superoperator which describes the dissipative
effect, defined by the relation

LP = −
�

2
�a†aP + Pa†a − 2aPa†� . �B2�

To obtain a solution of Eq. �B1� we take the matrix ele-
ment of both sides in the Fock number states basis getting

d

dt
�nm = − i��n − m��nm −

�

2
��n + m��nm

− 2��n + 1��m + 1��n+1,m+1� . �B3�

If we now replace the index m with n+�, where � is an
integer, we note that the equations only couple terms with the
same � and different value of n. So for each value of � we
have a chain of differential equations of the form �A1�.

Then we can solve Eq. �B3� by using the method illus-
trated in Appendix A. In fact the coefficients �n and �n for
Eq. �B3� �for each value of �� are given by

��n = i�� −
�

2
�2n + �� ,

�n = ��n + 1�n + � + 1.
� �B4�

From the explicit expressions of coefficients �n and �n we
obtain for the matrix S the following expression:

Snk =��k

n
��k + �

n + �
� �B5�

and for the inverse matrix

�S−1�nk = �− 1�k−n��k

n
��k + �

n + �
� . �B6�

Then by using Eq. �A7� we obtain for the coefficient pn�t� of
Eq. �A1� the following expression:

pn�t� = ei��t−��t/2

j=n

� �� j

n
�� j + �

n + �
�e−�nt�1 − e−�t� j−npj�0� .

�B7�

Exchanging pn�t� with �n,n+��t� in Eq. �B7� yields the fol-
lowing explicit solution for Eq. �B3�:

�n,n+��t� = ei��te−��n+�/2�t,
�B8�



m=n

�

�m,m+��0���m

n
��m + �

n + �
��1 − e−�t�m−n.

Equation �B8� gives the state of the system at time t for any
initial state ��0�.

Incidentally we note that, if we pose �=0, we can con-
sider the expression obtained as a means to evaluate the op-
erator exp�LFt�. In fact, Eq. �B8� �with �=0� gives the so-
lution of the equation

d

dt
� = LF�

for any given initial condition ��0�. Thus Eq. �B8� gives an
explicit expression for the evaluation of operator exp�LFt�.

Now let us consider an initial density operator of the form
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��0� = P�0� = ���
�� �B9�

whose Fock basis matrix elements are

Pn,n+��0� =
�n�*�n+��

�n ! �n + ��!
exp�− ���2/2 − ���2/2� �B10�

if ��� and ��� are coherent states. Using Eq. �B8� after some
algebra we get

Pn,n+��t� = ei��te−��n+�/2�t �n�*�n+��

�n ! �n + ��!
exp�− ���2/2 − ���2/2

+ ��*�1 − e−�t�� . �B11�

The density matrix P�t� can be thus expressed as follows:

P�t� = ��e−i�t−�t/2�
�e−i�t−�t/2�

�exp��−
1

2
�� − ��2 + i���,����1 − e−�t�� .

�B12�

Equation �B12� is the main element which enables us to
write the evolution of an arbitary initial state in the coherent
basis. In fact if we develop the initial state ��0� using the
completeness of the coherent states basis

��0� =
1

�2 � d2�� d2� W��,�����
�� �B13�

we can write the state of the system at time t in the form

��t� =
1

�2 � d2�� d2� W��,����e−i�t−�t/2�

�
�e−i�t−�t/2� · exp��−
1

2
�� − ��2 + i���,���

��1 − e−�t�� .

This latter equation expresses the time evolution of a
damped harmonic oscillator described by Eq. �B1� in the
coherent basis.
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