
Received: 15 October 2021 Revised: 28 November 2021 Accepted: 3 December 2021

DOI: 10.1002/cpe.6802

S P E C I A L I S S U E P A P E R

COVID-19 detection with severity level analysis using the deep
features, and wrapper-based selection of ranked features
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Coşku Öksüz, Department of Electronics and

Automation, Bozkurt Vocational School of

Kastamonu University, Kastamonu 37680,

Turkey.

Email: coksuz@kastamonu.edu.tr,

coskuoksuz@gmail.com

Abstract

The SARS-COV-2 virus, which causes COVID-19 disease, continues to threaten the

whole world with its mutations. Many methods developed for COVID-19 detec-

tion are validated on the data sets generally including severe forms of the disease.

Since the severe forms of the disease have prominent signatures on X-ray images,

the performance to be achieved is high. To slow the spread of the disease, effective

computer-assisted screening tools with the ability to detect the mild and the moderate

forms of the disease that do not have prominent signatures are needed. In this work,

various pretrained networks, namely GoogLeNet, ResNet18, SqueezeNet, ShuffleNet,

EfficientNetB0, and Xception, are used as feature extractors for the COVID-19 detec-

tion with severity level analysis. The best feature extraction layer for each pre-trained

network is determined to optimize the performance. After that, features obtained by

the best layer are selected by following a wrapper-based feature selection strategy

using the features ranked based on Laplacian scores. The experimental results achieved

on two publicly available data sets including all the forms of COVID-19 disease reveal

that the method generalized well on unseen data. Moreover, 66.67%, 90.32%, and

100% sensitivity are obtained in the detection of mild, moderate, and severe cases,

respectively.
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1 INTRODUCTION

The COVID-19 disease has left a devastating impact all over the world. As of October 13, deaths worldwide reached 4.8 M.1 On the other hand,

there are about 238 M confirmed cases.1 The SARS-CoV-2 virus that causes the COVID-19 disease has become more contagious than ever with

various mutations such as Delta.2 In Reference 2, it is stated that a full vaccination is mandatory to suppress the SARS-CoV-2 delta variant muta-

tion frequency. Despite this, there are still many unvaccinated people around the world. Although vaccines have been developed to combat the

virus, people who have been vaccinated can also become infected and spread the disease. Currently, the RT-PCR test is the gold standard test to

identify the SARS-CoV-2 virus.3,4 Although the RT-PCR test is regarded as the gold standard for the detection of COVID-19 disease, it necessi-

tates taking specimens from the patients via nasopharyngeal or oropharyngeal swabs.5 Therefore, it requires health care professionals equipped

with personnel protective equipment to reduce the risk of transmission. More importantly, this test, which requires intervention to patients, has

low sensitivity as it produces many false-negative results.6 There is an urgent need to develop a computer-aided diagnostic system for COVID-19

detection during the pandemic that does not require human intervention and has high sensitivity. The development of such systems is important in
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order to control the spread of the disease and reduce deaths, especially in underdeveloped countries where there are not enough specialists and

equipment.

Many works have been done for diagnosing the COVID-19 disease during the pandemic using medical images such as chest radiograph (X-ray)

and computed tomography (CT). The methods proposed in many of the works are based on CT imaging as it gives detailed information about the

lungs.7–10 Although CT images give more detailed information about the lungs, the amount of exposed radiation doses is significantly higher than

X-ray imaging.11 In addition, X-ray is an inexpensive imaging technique available in almost every health institution. Therefore, the methods are pro-

posed based on X-ray images in many other works.12–15 It is aimed to develop a method based on X-ray images due to the factors mentioned above

in this study. One of the issues with the proposed X-ray-based methods is the reported performance scores. The data sets used in many published

studies consist of severe forms of the COVID-19 disease. Since the signatures of the severe forms of the disease can be captured more easily in

X-ray images, the performance of the proposed methods is presented as high. To avoid this misleading situation, it is a requirement to use a data set

containing all forms of COVID-19 disease. For this purpose, data sets including mild, moderate, and severe forms of COVID-19 disease are used in

the study.

Deep learning is a recently emerging field that yields significant improvement in performance especially when the amount of train-

ing data is sufficient. The performance obtained with deep learning methods is superior to the methods adopting hand-crafted feature

engineering due to better capture of the patterns characterizing the data. Deep learning models have been trained with a large num-

ber of data and learned many important combinations of low- and high-level features. For this reason, distinctive features can also be

obtained by using networks as feature extractors. In this work, the lung regions segmented using the lung segmentation network (i.e.,

Ensemble-LungMaskNet model) proposed in our previous work is fed to the pretrained networks to extract only relevant features. The

best feature extraction layer of each pretrained network is found by cross-validation. Then, redundant features are eliminated using a

wrapper-based method that utilizes ranked features returned by a filter method. Finally, the SVM classification is done with the selected

features.

The contributions of this study can be summarized as follows:

1. Our previously proposed segmentation model namely the Ensemble-LungMaskNet16 is used to segment lung regions within the X-ray

images. Thus, only the region of interest (ROI) is taken into account by eliminating the irrelevant regions that are not important for

classification.

2. Instead of training a CNN from scratch, a pretrained network is used as a feature extractor by finding the optimal layer for feature extraction

that optimizes the classification performance.

3. Redundant features have been eliminated to both optimize performance and reduce dimensionality. Accordingly, a wrapper-based feature

selection strategy is followed that uses ranked features returned by a filter-based method.

4. The method is proposed based on a data set including all the forms of COVID-19 disease to obtain more realistic results.

The remaining part of the study is organized as follows. The proposed method is presented in Section 2. The experimental results are given in

Section 3. Section 4 is devoted to the discussion. Finally, Section 5 is devoted to the conclusion.

2 PROPOSED METHOD

The proposed method is shown in Figure 1. As seen from Figure 1, the method consists of consecutive stages including the segmen-

tation stage to obtain ROI, a pretrained network to extract features from ROI, a feature selection stage, and the SVM classification

stage.

2.1 Segmentation

In the scope of the study, we make use of our previously proposed model that is, Ensemble-LungMaskNet16 for lung segmentation. In this earlier

work, it is demonstrated that ensembling of the pretrained encoders in different depths as a single feature extraction backbone yields superior

lung segmentation performance. This explains why we preferred to use this model in this work. In the proposed framework, the regions includ-

ing lungs are first returned by the Ensemble-LungMaskNet16 which accepts a chest X-ray image as an input. Then, the lung mask obtained by the

network is element-wise multiplied with the input image to obtain only the pixels within the lungs. Finally, the ROI is fed to the feature extraction

stage.
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F I G U R E 1 The proposed method

2.2 Feature extraction, selection, and classification

Feature extraction aims to derive new features with reduced dimensions from the raw data while it still preserves the information within the origi-

nal data. Instead of using the raw data as features, extracting features from the raw data improves the efficiency with the features that have better

representative power. However, the manual feature exploring process is difficult. Feature extraction in a manual way generally depends on the pre-

defined parameters of an algorithm. For example, the parameter of cell size of both the HOG (histogram of oriented gradients)17 method and LBP

(local binary patterns)18 methods impact the performance significantly. On the other hand, using a pretrained network is an automated way of

feature extraction since manual feature exploring procedure is avoided. Moreover, because pretrained networks are trained with over one million

images, combinations of low- and high-level information have already been learned by the networks. Therefore, we have adopted to use of the pre-

trained network as a feature extractor. The best layer for feature extraction is determined by an experimental process. Then, the extracted features

are ranked based on the Laplacian scores19 which is a filter-based unsupervised feature selection method. Laplacian scores of each feature (Lr) are

computed as given in (1), where L, Dg , and xr are representing the Laplacian matrix, the degree matrix, and the rth feature with removed mean, respec-

tively. The degree matrix is a diagonal square matrix where each diagonal element of the matrix is the sum of each row of a similarity matrix (Si,j). The

similarity matrix is computed by transforming the pairwise distances between the features using the kernel function. The Laplacian matrix is com-

puted as the difference between the degree matrix, and the similarity matrix. The highest value of the Laplacian score indicates a more important

feature.

Lr =
xT

r L xr

xT
r Dg xr

. (1)

After that, the ranked features are selected with a wrapper-based feature selection method. Finally, the SVM model is used with the selected features

because it processes high-dimensional data effectively and is relatively memory efficient.

In Figure 2, a flowchart summarizing all the stages of the proposed methodology is demonstrated.
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F I G U R E 2 The roadmap used in the paper

3 EXPERIMENTS AND RESULTS

3.1 Data sets

COVIDGR-1.0 Data set20 is used in the study. This data set is a perfectly balanced data set which consists of 852 images in total. There are

426 images labeled as COVID-19 positive, and 426 images labeled as COVID-19 negative. COVID-19 disease can have various forms, includ-

ing mild, moderate, and severe. However, many data sets released during the pandemic generally contain severe forms of the COVID-19

disease. Severe forms of the disease are easily caught by models compared to other forms. As a result, the models may yield high accu-

racy. Since the mild forms of the disease are not readily caught, the performance may significantly decrease when the data sets con-

tain mild forms of the disease. The COVIDGR-1.0 Data set contains 76 images in Normal PCR+, 100 images in mild, 171 images in mod-

erate, and 79 images in severe forms of the disease which makes the data set challenging. This explains why we use this data set in

the study.

COVID-19 Image Data Collection21 is used as a hold-out set in the study. In Reference 22, severity scores for each of 94 X-ray images from

the COVID-19 Image Data Collection21 are defined between 0 and 8 by three independent radiologists, each with at least 20 years of experi-

ence. Scoring in Reference 22 is done by the experts based on the scoring system introduced in Reference 23. According to the scoring system

in Reference 23, the radiological findings of chest radiographs of COVID-19 patients are evaluated in the range of 0–1 in asymptomatic cases

(or normal), 1–2 in mild cases, 3–5 in moderate cases, and 6–8 in severe cases. Based on this information, we have thresholded the consoli-

dation scores considering the ranges determined by the experts. In Table 1, it is given that how many samples fall into each severity level of

COVID-19 disease.

In Figure 3, the exemplary images from the data set used in the study are given. In the first row of Figure 3, the images are from the COVIDGR-1.0

data set, while the images given in the second row are from the COVID-19 Image Data Collection. The images given at each column, from left to right,

belong to patients with PCR+, mild, moderate, and severe forms, respectively.

3.2 Performance metrics

The performance metrics used in the study are accuracy (ACC), recall (TPR), precision (PPV), and specificity (SPC). ACC, TPR, PPV, and SPC scores

are computed as given in (2), (3), (4), and (5), respectively.

ACC = TP + TN
TP + TN + FP + FN

, (2)

TA B L E 1 The number of images found at each severity level

for the 94 X-ray images from the COVID-19 image data collection

Severity level Image count

Asymptomatic 15

Mild 30

Moderate 31

Severe 18



ÖKSÜZ ET AL. 5 of 13

TPR = TP
TP + FN

, (3)

PPV = TP
TP + FP

, (4)

SPC = TN
TN + FP

. (5)

3.3 Performance evaluation

The five-fold cross-validation (CV-5) is used for the performance evaluation of each method in the study. Accordingly, the entire data set is par-

titioned into five distinct subsets. Then, one of the subsets is used as the test set, while the remaining subsets are used in the training set.

Eventually, the loss values obtained on each test fold are averaged to compute the CV-5 loss. The performance evaluation process is demonstrated

in Figure 4.

(A) (B) (C) (D)

F I G U R E 3 The exemplary images used in the study. The images in the first row are randomly selected from the COVIDGR-1.0 data set for each

level of severity, while the images in the second row are randomly selected from the COVID-19 Image Data Collection for each level of severity.
Images in columns (A), (B), (C), and (D) correspond to Normal PCR+, mild, moderate, and severe cases, respectively

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

The best model

Model#1

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Model#2

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Model#3

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Model#4

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Model#5

Hold-out set Hold-out score

Score#1

Score#2

Score#3

Score#4

Score#5

Avg. CV-5 Score

1/5

1/5

1/5

1/5

1/5

F I G U R E 4 The performance evaluation process
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3.4 Classification results

3.4.1 Classification with pretrained network features

Pretrained networks, namely ResNet18 (18-layers), SqueezeNet (18-layers), GoogLeNet (22-layers), ShuffleNet (50-layers), Xception (71-layers),

and EfficientNetB0 (82-layers), are used for feature extraction in the study as they have relatively low complexity. Finding the appropriate network

for feature extraction is an experimental process. Instead of directly using each model as a feature extractor, the most suitable layer of the network

for feature extraction should be determined. For this purpose, the basic layers that are important in the flow of information (especially concatenation

layers) for each network are taken into account. The CNN codes (feature vectors) can be directly obtained by a fully connected layer, but there is a

need to convert the feature maps obtained by a convolutional layer to CNN codes. The output form of any convolutional layer for an input image is

(A) ShuffleNet                                                              (B) ResNet-18 

(C) SqueezeNet                                                          (D) GoogLeNet 

(E)  Xception        (F)  EfficientNetB0 

0
0.1
0.2
0.3
0.4
0.5

CV-5 Loss

0
0.1
0.2
0.3
0.4
0.5

CV-5 Loss

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
CV-5 Loss

0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

CV-5 Loss

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

CV-5 Loss

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
CV-5 Loss

F I G U R E 5 Varying values of CV-5 loss depending on the feature extraction layers of the networks. (A) ShuffleNet, (B) ResNet-18, (C)
SqueezeNet, (D) GoogLeNet, (E) Xception, (F) EfficientNetB0
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W×H×C where W, H, and C are the width, the height of an image, and the number of channels in the layer, respectively. This indicates that there

are C maps in size W×H. As each channel corresponds to one feature, each map in size W×H is averaged to represent the map as a single value. As

a result, a feature vector in size 1×C is obtained for every single image.

In Figure 5, the variation of CV-5 error according to the layers of each network used in the study is given. The values given in parentheses show

the dimensionality in the vectors obtained from the relevant layer. As seen in almost all graphs given in Figure 5, CV-5 loss values decrease up to

a certain layer, and then loss increases in all networks. The best feature extraction layer of the models that is, ShuffleNet, ResNet-18, SqueezeNet,

GoogLeNet, Xception, and EfficientNetB0, are node_53, res5a_relu, fire3-concat, inception_3a-output, and blocks_8|MulLayer, respectively. On the

other hand, the models i.e. EfficientNetB0 and Xception perform well compared to other models.

In Table 2, the average CV-5 accuracy scores are given with the scores obtained on each test fold for each model. As seen in Table 2, the perfor-

mance improves as the network complexity increases. The best performance is achieved as 75.11% with the 728 features extracted from the add_4

layer of the Xception model.

3.4.2 Classification with hand-crafted features

The hand-crafted feature extraction methods, namely HOG,17 LBP,18 GLCM (gray-level co-occurrence matrix),24 MSER (maximally stable extremal

regions),25,26 SURF (speeded up robust features),27 Oriented Fast and Rotated BRIEF (binary robust independent elementary features)28 and are

used for comparison in the study as well. Some of these methods are highly dependent on some parameters of each algorithm as previously men-

tioned. For both HOG and LBP methods, cell size is one such parameter that significantly affects the classification performance. In Figure 6, varying

CV-5 loss values versus cell size are given. As seen in Figure 6, increasing the cell size improves the performance up to a certain point. However, the

performance decreases after a point. As seen in Figure 6A, this point is 40×40 for the HOG method where 576 features are extracted. On the other

hand, it is 24×24 for the LBP method where 4779 features are extracted as seen in Figure 6B.

In Table 3, the classification performance achieved on each test fold is given in detail. Another parameter that can have an impact on the per-

formance of the LBP is the radius (R) as well as the cell size. The effect of the R on the performance of LBP is examined between 1 and 3. The best

TA B L E 2 The scores achieved on each test fold by each model trained with the feature set extracted from the optimal layer for
feature extraction (the best CV-5 accuracy is marked in bold and italic)

Network Layer Features Size Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg.

GoogLeNet inception_4a-output 512 224 ×224 64.70 61.98 63.15 61.76 70.00 64.31

SqueezeNet fire3-concat 128 227 ×227 71.17 70.76 66.08 67.64 62.35 67.60

ResNet-18 res5a_relu 512 224 ×224 72.94 73.10 76.02 74.12 73.53 73.94

ShuffleNet node_53 136 224 ×224 74.70 70.17 78.36 74.11 72.94 74.05

EfficientNetB0 blocks_8|MulLayer 480 224 ×224 74.11 69.59 77.77 74.11 76.47 74.41

Xception add_4 728 299 ×299 72.94 74.85 72.51 78.23 77.05 75.11

(A) HOG features-based classification            (B) LBP features-based classification 

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
CV-5 Loss

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

CV-5 Loss

F I G U R E 6 Varying values of CV-5 loss depend on the cell size of the HOG and the LBP methods
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TA B L E 3 The accuracy scores achieved on each test fold by each feature extraction method (the best scores obtained with the parameters
of each method are marked in bold and italics)

Method Parameter settings Features Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg.

HOG Cell size: 40×40 576 67.65 71.35 65.50 68.82 71.18 68.90

LBP Cell size: 24×24 R = 1 4779 66.47 73.68 66.08 67.65 68.82 68.54

R = 2 72.94 71.35 65.50 68.82 66.47 69.01

R = 3 69.41 70.76 64.91 68.24 64.12 67.48

GLCM • Symmetrical matrix is

computed using four

directions

• Features extracted from

the GLCM: energy, cor-

relation, homogeneity,

contrast

D = 1 N = 8 4 59.41 65.50 52.63 60.00 55.29 58.57

D = 2 N = 8 60.00 64.33 52.05 61.18 56.47 58.80

N = 9 60.00 64.33 52.63 62.35 57.65 59.39

N = 10 60.00 64.33 52.63 64.12 56.47 59.51

N = 11 60.00 63.74 52.05 62.94 57.06 59.16

D = 3 N = 8 59.41 65.50 52.63 64.12 57.65 59.86

N = 9 60.59 64.91 52.63 63.53 56.47 59.63

N = 10 60.00 64.33 52.63 62.35 56.47 59.16

N = 11 61.18 64.91 52.63 62.35 55.88 59.39

D = 4 N = 8 58.82 65.50 52.63 60.59 56.47 58.80

MSER - 64 64.71 49.12 56.73 58.24 54.12 56.58

128 64.71 50.29 50.88 67.06 54.12 57.41

BRIEF Number of keypoints 7 7 45.29 47.95 48.54 56.47 52.35 50.12

8 8 50.59 54.97 46.78 55.88 53.53 52.35

9 9 55.29 55.56 53.80 60.00 57.65 56.46

10 10 54.12 55.56 49.71 60.59 57.65 55.52

11 11 54.71 51.46 49.71 58.82 57.65 54.47

SURF - 64 52.35 56.14 47.95 53.53 55.29 53.05

128 49.41 58.48 49.12 54.12 53.53 52.93

performance is obtained when the R is set as 2. Beyond the HOG and the LBP, one of the other well-known methods for examining the textures of

the image is GLCM that measures the spatial relationship between the pixel pairs. Features such as contrast, homogeneity, energy, and correlation are

extracted from GLCM in the given order and a four-dimensional feature vector is created. The important parameters for the GLCM method that

may impact the performance significantly are the distance between the pixels pairs (D), and the number of gray levels (N). As seen in Table 3, while

increasing D to 3 increases the classification performance, performance decreases after this point. The classification performance is also analyzed

for D=2 and 3 points where the performance increase is achieved. For this purpose, N is examined between 8 and 11. As seen in Table 3, classification

performance increases as N increases up to 10 when D equals 2, but performance decreases as N increases up to 10 when D equals 3. Accordingly,

the best performance with the GLCM is achieved when the parameters are set as D=3 and N=8. On the other hand, the classification performance

obtained by methods such as MSER, BRIEF, and SURF lags behind even GLCM.

3.4.3 Classification after feature selection

In this section, redundant features are eliminated following a wrapper-based method. First, the features extracted by each method are ranked based

on the Laplacian scores (the importance scores). Then, it is revealed that how many ranked features are required to optimize the performance

with the SVM classification. Accordingly, the SVM model is trained for the first ranked feature, the first two ranked features, the first three ranked

features, and so on. The obtained results are given in Figure 7. In Figure 7, while the red curves demonstrate the training loss, the blue curves demon-

strate the CV-5 loss. All diagnostic curves seen in Figure 7 show indicators of overfitting after a certain amount of ranked features are used. As a
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(A) GoogLeNet features (B) SqueezeNet features (C) ShuffleNet features

(D) ResNet18 features (E) EfficientNetB0 features (F) Xception features

(G) HoG features (H) LBP features (I) GLCM features

(J) MSER features (K) BRIEF features (L) SURF features

F I G U R E 7 The effect of wrapper-based feature selection based on the ranked features on classification performance

result of the feature selection process, the first 10, 53, 4, 3, 476, 4718, 40, 24, 123, 197, 381, and 605 features are selected from the SURF, MSER,

BRIEF, GLCM, HOG, LBP, GoogLeNet, SqueezeNet, ShuffleNet, ResNet-18, EfficientNetB0, and Xception feature sets, respectively.

In Table 4, the performance achieved with each method is given after feature selection. As seen in Table 4, feature selection leads to an improve-

ment for all the methods. The feature selection increases the classification performance by 1.29%, 0.82%, 1.88%, 0.24%, 0.58%, 0.36%, 7.17%,

2.82%, 0.6%, 0.36%, 0.94%, and 0.95% with the features of SURF, MSER, BRIEF, GLCM, HoG, LBP, GoogLeNet, SqueezeNet, ShuffleNet, ResNet-18,

EfficientNet-B0, and Xception, respectively. Accordingly, the average increase in the classification performance is 1.50%. The best performance is

achieved with the Xception features as 76.06%.

In Table 5, the classification results before and after feature selection for Xception network features are given comparatively over the con-

fusion matrix. As seen in Table 5, wrapper-based selection of ranked features increases true positives and true negatives and reduces the total

misclassification cost to 204 from 212.

4 DISCUSSION

Many hand-crafted feature extraction methods were developed in the literature to identify textural patterns within the images. In this work,

we have considered well-known methods that is, GLCM, HOG, LBP, MSER, SURF, and BRIEF to catch the patterns related to the COVID-19
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TA B L E 4 The accuracy scores obtained on each test fold after feature selection (the best CV-5 accuracy is marked in bold and italic)

Feature set Dimensionality Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg.

Hand-crafted SURF features 10 51.18 59.06 49.12 54.12 58.24 54.34

MSER features 53 64.71 50.29 54.97 67.65 53.53 58.23

BRIEF features 4 63.53 52.63 54.39 60.59 60.59 58.34

GLCM features 3 60.59 66.08 52.63 63.53 57.65 60.10

HOG features 476 66.47 73.10 66.67 70.59 70.59 69.48

LBP features 4718 72.94 72.51 65.50 68.82 67.06 69.37

Deep features GoogLeNet 40 69.41 70.76 69.01 74.12 74.12 71.48

SqueezeNet 24 68.82 72.51 70.76 71.76 68.24 70.42

ShuffleNet 123 75.88 71.35 78.95 74.71 72.35 74.65

ResNet-18 297 74.12 73.68 74.85 75.88 72.94 74.30

EfficientNetB0 381 75.29 73.20 78.36 72.94 77.06 75.35

Xception 605 72.94 75.44 75.44 78.24 78.24 76.06

TA B L E 5 The confusion matrix represents the classification results before and after feature
selection

Predictions

N = 852 COVID-19(+) COVID-19(−)

Actuals COVID-19(+) 331/335 95/91

COVID-19(−) 117/113 309/313

disease. The different textural patterns are caught by each hand-crafted based method with their different assumptions to encode the spatial

information. As seen in Table 3, the maximum performance with the GLCM is achieved when the parameters that are, distance between the pix-

els, and the number of gray levels, are set to three, and eight, respectively. Asides from the GLCM, the other methods namely the HOG and the

LBP are histogram-based methods which are aiming to divide the input image into nonoverlapping local regions to encode local spatial infor-

mation. Decreasing the cell size parameter leads to extracting more detailed features as there will be more local regions. However, it increases

the dimensionality at the same time which causes to redundant features come into play. On the other hand, increasing the cell size results

in extracting the global features and reduces the dimensionality as the number of local regions is diminished. As seen in Figure 6A, increas-

ing the cell size parameter up to 40×40 for the HOG method reduces the loss value which is again raised after this point. Similarly, as seen

in Figure 6B, increasing the cell size parameter up to 24×24 for the LBP method reduces the loss value which is again raised after this point.

Accordingly, extracting more or less detail reduces the performance which indicates that there is always a trade-off. These are also demon-

strating the parameter dependence of the hand-crafted-based methods. Another thing to mention is that only the spatial relationship between

the pixel pairs is taken into account with the GLCM method. Therefore, the achieved performance by the GLCM is poor compared to the LBP,

and the HOG. As seen in Table 6, this results in over 9% better performance of the HOG and LBP methods than GLCM. Performance with

MSER, BRIEF, and SURF, other hand-based feature extraction methods where intensity-based changes are taken into account, is slightly better

than random guessing (especially the SURF method). This suggests that these feature sets are not important enough for the classification task

at hand.

Beyond the hand-crafted based feature extraction methods, using a pretrained network as a feature extractor offers an automatic way to fea-

ture extraction without requiring any parameter setting. Moreover, spatial information can be better encoded by pretrained networks as many

hidden patterns have been already learned. Thus, as seen in Table 6, the classification performance using the features extracted by all the pre-

trained networks is superior compared to hand-crafted features-based classification performance. As can be seen in Table 6, better performance

is achieved with deeper networks such as ShuffleNet, EfficientNetB0, and Xception. This shows that the features obtained from these networks

are more distinctive. The best performance is achieved with 76.06% accuracy when Xception network features are used. On the other hand, mod-

erate, and severe forms of the COVID-19 disease are easily captured by each method as shown in Table 6. However, mild forms of the disease are
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TA B L E 6 Comparing each method with the literature using COVIDGR-1.0 data set (the best scores are marked in bold and italic)

Method TPRPCR+% TPRMild% TPRmoderate% TPRsevere% TPRCOVID19+% PPVCOVID19+% SPCCOVID19−% Avg ACC%

Tabik et al.29 - 46.00 85.38 97.22 72.59 78.67 79.76 76.18

Lin et al.30 60.00 73.68 91.43 100.0 86.05 83.10 91.30 93.02

MSER features 49.20 56.91 65.23 61.78 57.30 58.40 59.20 58.23

BRIEF features 54.07 53.10 55.84 51.22 63.10 57.60 53.50 58.34

GLCM features 43.53 52.30 66.25 68.08 61.30 59.90 58.90 60.10

HOG features 47.41 64.57 77.39 89.03 68.10 70.00 70.90 69.48

LBP features 45.74 59.78 73.14 92.59 70.20 69.10 68.50 69.37

SqueezeNet features 42.30 62.66 82.27 92.10 68.80 71.10 72.10 70.42

GoogLeNet features 52.23 57.53 78.29 92.02 71.60 71.40 71.40 71.48

ResNet-18 features 35.47 58.16 81.33 95.03 78.90 72.30 69.70 74.30

ShuffleNet features 41.68 61.39 81.85 98.67 76.50 73.80 72.80 74.65

EfficientNetB0 features 31.17 60.14 82.97 96.50 80.00 73.20 70.70 75.35

Xception features 36.92 60.51 85.95 96.36 78.60 74.80 73.50 76.06

TA B L E 7 Evaluation of the proposed method on the hold-out set

Method TPRPCR+ 15-images TPRmild 30-images TPRmoderate 31-images TPRsevere 18-images TPRcovid19(+) 94-images

Xception features (before

feature selection)

33.33% 63.33% 93.55% 100% 75.53%

Xception features (after

feature selection)

40.00% 66.67% 90.32% 100% 76.60%

not easily detected. The detection of mild cases is extremely important to prevent the spread of the disease. The COVID-SDNet method proposed

by Tabik et al.29 reaches 46% sensitivity in detecting mild cases. Our proposed method with Xception network features yields 60.51% sensitivity

which is quite better than random guessing. The cases labeled as PCR+ by the experts indicate that there are no visual signs of the disease on X-ray

images. These are also known as asymptomatic. In Table 6, the results achieved by each method confirm this by excepting the work of Lin et al.30

Lin et al.30 proposed an adaptive attention-based framework for COVID-19 detection which consists of 311.04 M parameters. The data set used

is combined with a pneumonia data set. Combining different data sets is dangerous, as patient demographics may differ. Another issue is that the

reported performance scores on the COVIDGR-1.0 data set are not based on cross-validation which may lead to over-optimistic results. All these can

cause bias in learning. In Reference 30, reported 60% of sensitivity obtained in Normal PCR+ cases that have no signature on X-ray images reveals

this bias.

In Table 7, the proposed method with Xception features is evaluated on the hold-out set. In Table 7, the results achieved with Xception features

before feature selection are also given to compare. As seen in Table 7, COVID-19 detection sensitivity is increased by 1.07% after feature selection

on the hold-out set. At the same time, the detection sensitivity of PCR+ and mild cases increased by 6.67% and 3.34%, respectively. Accordingly, the

method generalizes well on unseen data.

5 CONCLUSION

In this work, a ROI-based classification scheme is proposed for the detection of COVID-19 disease from X-ray images. The proposed method con-

sists of a segmentation network to suppress the regions outside the lungs, a pretrained network as the feature extractor, a wrapper-based feature

selection stage using the rankings returned by a filter-based unsupervised method, and the SVM classification. Many works regarding the COVID-19

disease published during the pandemic reported the accuracies of over 90%. The most likely reason for this is that the vast majority of cases in the

data sets used in these studies are easily identifiable severe forms of the disease. In this study, our proposed method is cross-validated on a chal-

lenging data set containing all the forms of COVID-19 disease. The experimental results on a hold-out set demonstrate that classification with the
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selected Xception network features yields good generalization ability. Moreover, the mild cases which are crucial for controlling the spread of the

SARS-CoV-2 virus can be identified with the proposed method. One of the weaknesses of our proposed method is that it has a modular form in

which some parts (i.e., feature extraction and selection) are individually optimized and then combined. This requires manually feeding the output of

one module to the input of another module. By designing an end-to-end trainable deep learning model that will combine the segmentation, feature

extraction, and classification tasks, the task at hand can be optimized all at once. Even so, the proposed method in this work offers a simple solution

against the many complex methods developed in the literature for COVID-19 detection. Therefore, it may be an assistive tool to triage patients. In

future work, we aim to develop a multitask framework that will combine segmentation and classification tasks.
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