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Abstract
This study proposes a hybrid metaheuristic algorithm to tackle both single and multi objective optimization problems 
that are subjected to hard constraints. Twenty-four single objective optimization benchmark problems comprising uni-
modal and multi modal test functions have been solved by the proposed hybrid algorithm (OPSSAJ) and numerical results 
have been compared with those acquired by some of the new emerged metaheuristic optimizers. The proposed OPSSAJ 
shows a significant accuracy and robustness in most of the cases and proves its efficiency in solving high dimensional 
problems. As a real-world case study, seventeen operational design parameters of an organic rankine cycle (ORC) oper-
ating with a binary mixture of R227EA and R600 refrigerants are optimized by the proposed hybrid OPSSAJ to obtain 
the optimum values of contradicting dual objectives of second law efficiency and Specific Investment Cost. A Pareto 
curve composed of non-dominated solutions is constructed through the weighted sum method and the final solution is 
chosen by the reputed TOPSIS decision-maker. The pareto curve and best-compromising result obtained by utilizing the 
OPPSAJ are compared with that of acquired by using nondominated sorting genetic algorithm II (NSGA-II) and multiple 
objective particle swarm optimization (MOPSO) algorithms. The multi-objective ORC design obtained with the OPSSAJ 
yields a significant improvement in thermal efficiency and cost values compared to designs found by the NSGA-II and 
MOPSO algorithms. Furthermore, a sensitivity analysis is performed to observe the influences of the selected design 
variables on problem objectives.

Keywords Jaya algorithm · Metaheuristic optimization · Organic Rankine Cycle · Salp Swarm algorithm · Zeotropic 
mixtures

List of symbols

Symbols
A  Total heat exchange surface  (m2)
Best  Position of the best salp
C  Cost ($)
C  Randomly-generated number
CEPCI  CEPCI coefficient
D  Dimension size
d  Tube diameter (m)

F  Position of the food source
h  Convective heat transfer coefficient (W/m2K)
I  Irreversibility (W)
iter  Current iteration
k  Thermal conductivity (W/m2K)
lb  Lower bound
ṁ  Mass flow rate (kg/s)
M  Center value, number of test functions 

considered
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MAX  Maximum value at each iteration
mean  Mean value:
MIN  Minimum value at each iteration
maxIter  Maximum number of iterations
N  Population size
Q̇  Heat flux (W)
p  Pressure (Pa)
R  Thermal resistance (W/K)
r  Randomly-generated number
S  Matrix consists of the randomly-generated 

solutions, Entropy (J/K)
t  Time (s)
T  Temperature (K)
U  Overall heat transfer coefficient (W/m2K)
ub  Upper bound
v  Velocity (m/s)
w  Position of the worst salp
Ẇ   Rate of work transfer (W)
X  Position of the swarm member
η  Efficiency

Sub‑ and superscripts
0  Initial, ambient
Best  Best value
cap  Capital
cond  Condenser
diff  Difference
evap  Evaporator
exp  Expansion device
fan  Fan
gen  Generated
HEX  Heat exchanger
in  Inside
max  Maximum value
min  Minimum value
out  Outside
pump  Pump
tot  Total
wf  Working fluid
worst  Worst value

1 Introduction

Optimization involves successive iterative processes aim-
ing to obtain the best decision variables among the set of 
candidate solutions for a particular problem. The quality 
of the solution is evaluated by the optimization objective 
function, which is to be maximized or minimized depend-
ing on the optimization purposes. The iterative search 
process is subjected to a predefined number of problem-
specific restrictions called constraints, which can be math-
ematically formulated in terms of equality or inequality 

expressions. There are several options for solving a typi-
cal optimization problem. Deterministic and stochastic 
optimization strategies are the most prominent methods 
between the available alternatives. Deterministic methods 
provide reliable tools for finding the global optimum point 
of the problem also claiming that the obtained solution is 
the global one. They strongly rely on the analytic informa-
tion of the problem to probe the search space efficiently. 
The optimum solution is converged within a lower number 
of function evaluations in comparison with the stochas-
tic solvers. These types of solvers are successful in solving 
the unimodal problems having linear search spaces. How-
ever, they experience difficulties in solving non-convex-
problems as local optimum entrapment is highly possible 
due to the singularities and non-differentiable points on 
the function space. One can conquer these characteristic 
drawbacks by modifying or hybridizing the algorithm [1].

Efficient design of an ORC becomes a hot spot research 
area for designers as well as researchers for many years. 
Many research studies have been devoted for thermody-
namical design and optimization of ORC systems [2–4]. 
Some other completed studies cover experimental and 
theoretical applications of ORC along with its viable uti-
lization in different type of hybrid power generation sys-
tems[5–7]. Besides, more and more studies about the ORC 
systems are finding their places in the literature every day 
[8–10]. Haghparast et al. [2] have investigated the impact 
of ejector geometry and power output capacity on cycle 
performance. A sensitivity study has been carried out by 
the researchers to find out the most significant param-
eters that have impact on cycle efficiency. The results of 
the parametric studies that have been conducted by the 
authors showed that the net power output increases as 
the ejector area ratio or secondary fluid mass flow rate 
rises; and decreases as the throat diameter, primary inlet 
pressure or primary inlet temperature increases. Further-
more, it has been concluded that area duct diameter is one 
of the most important geometrical parameter that effects 
the cycle performance. Chen et al. [3] have proposed a 
novel zeotropic ORC that the mixture composition can be 
adjusted based on the environmental temperature varia-
tion utilizing liquid-seperation condensation. The optimi-
zation model has been developed to optimize the mixture 
composition with respect to the changing environmental 
temperature. A parametric optimization study has been 
performed and the results showed that the proposed ORC 
system significantly improved the output power compared 
to the conventional ORC in terms of 100 °C heat source. 
Feng et al. [8] have investigated and optimized a waste-
heat regenerative ORC by utilizing classical and finite-time 
thermodynamics. The authors have accomplished to maxi-
mize the power output and thermal efficiency of the cycle 
by fixing total heat transfer area of all heat exchangers and 
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changing the superheat, mass flow rate of the working 
fluid and heat transfer area ratios of the heat exchangers. 
As a result of this study, the authors have found out that 
there exists an optimal ORC design with optimal super-
heat, working fluid mass flow rate and heat transfer area 
ratio values. Moreover, the power output and thermal effi-
ciency of the cycle are increased by 25.22% and 12.16% 
after the optimization process finished. Baldasso et al. [9] 
have proposed a model to optimize the design of an ORC 
for waste heat recovery in maritime applications. The find-
ings of the authors showed that the combination of mini-
mum exhaust gas velocity and maximum engine backpres-
sure acts as a constraint on the maximum amount of heat 
that can be drawn out from the waste heat recovery boiler. 
The authors have considered ten design variables and one 
objective function for the development of the optimiza-
tion problem. The results have shown that the overall sys-
tem fuel consumption can be lowered by 0.52–1.45 g/kWh 
by allowing higher backpressure levels on the engine. Liu 
et al. [10] have analyzed the performances of single—and 
dual-pressure ORCs with combined heat and compressed 
air energy storage modifications. The authors have devel-
oped thermodynamic models of the mentioned cycles 
and compared the performances of the cycles with each 
other. As a result of this study, the authors have come to 
the following conclusions. The dual-pressure ORC has pro-
duced more power compared to the single-pressure ORC. 
The optimum superheat temperature of the dual-pressure 
ORC with combined heat and compressed air energy stor-
age modifications is much smaller compared to its single-
pressure counterpart.

In this study, Salp Swarm Algorithm (SSA) [11] is hybrid-
ized with the Jaya algorithm (JAYA) [12] and a variant of 
opposition-based learning (OBL) [13] to improve the 
solution diversity and convergence rate. SSA is a swarm-
based metaheuristic simulating the intelligent foraging 
and navigating behaviors of a salp chain in the ocean. 
Some of the recent applications of SSA can be exempli-
fied as parameter extraction of PEM fuel cells [14], feature 
selection [15], and optimum allocation of power sources 
[16]. JAYA is a population-based algorithm with a very 
simple search mechanism and successfully applied to 
engineering design problems from various disciplines 
[17–19]. The optimization performance of the proposed 
hybrid is enhanced by utilizing a variant of OBL called 
quasi-opposition based learning (QOBL). OBL takes simul-
taneously advantage of a current estimate solution and 
its opposite point to improve the search capacity of the 
included algorithm. OBL concept has been incorporated 
into many metaheuristics such as Particle Swarm Optimi-
zation [20], Harmony Search [21] and Whale Optimization 
Algorithm [22]. SSA, JAYA and OBL methods have been 
coupled with each other in the literature before to solve 

various optimization problems [23, 24], however, to the 
best knowledge of the authors, these three techniques 
have never been incorporated before. Besides the above 
mentioned successful applications of these algorithms on 
various optimization problems, they lack some algorithm-
specific deficiencies similar to the other metaheuristics. For 
instance, SSA suffers from the slow convergence and local 
minima entrapment resulting from the redundant inten-
sification of the fertile areas on the search space, which 
is occurred by the salp chain movement of the followers. 
Apart from the favorable advantages of being a parame-
ter-free algorithm with an accelerated convergence rate, 
JAYA still has some tedious disadvantages such that the 
algorithm has only one manipulation scheme that may 
lead to obtaining candidate solutions with lower diver-
sity. JAYA performs such iterative calculations that per-
turbated population individuals get closer to the best 
solutions while moving away from the worst ones. This 
tendency may occur a premature convergence due to the 
extensive exploitation of the potential best solutions. The 
hybridization of metaheuristic algorithms with OBL greatly 
increases the solution accuracy along with convergence 
speed. Thanks to the enhanced diversification produced 
by using the mirror point rather than the randomly gen-
erated point, OBL has the capability of reaching unvisited 
regions of the solution space [25]. Literature applications 
of QOBL [26, 27] reveal that using quasi-opposition instead 
of an opposition point enables us to acquire sample solu-
tions much closer to the global optimum. Another strong 
point of QOBL has iteratively updated search regions that 
are dynamically shrunk throughout iterations. Updated 
extremum values of the search space pave the way for 
capitalizing on the historical knowledge of the previous 
generations and increase the possibility of finding better 
solution outcomes. This study hybridizes these three algo-
rithms to eliminate their inherent structural drawbacks and 
benefit from their intrinsic advantages on the optimization 
framework called OPSSAJ. Optimization efficiency of the 
proposed OPSSAJ is firstly assessed on twenty-four bench-
mark problems composed of unimodal and multimodal 
test functions. Numerical results are compared and evalu-
ated against those obtained from some recently emerged 
renowned metaheuristics. Comparative results show the 
superiority of the proposed algorithm over its constitu-
ent algorithms along with the challenging contenders. 
Then, OPSSAJ is applied to a highly complex real-world 
optimization problem of the multi-objective design of an 
organic ranking cycle (ORC). Finally, a sensitivity analysis 
is performed to observe the effects of seventeen design 
variables on the problem objectives.

This research study aims to provide an essential solu-
tion framework for optimum thermal design optimization 
for an Organic Rankine Cycle (ORC) working with a binary 
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mixture. This study also proposes a brand new variant of 
SSA in which basic mutation scheme of JAYA and rudi-
mentary manipulation equations of another variant OBL 
scheme called QOBL are successfully integrated. This kind 
of integration entails a plausible balance in the exploration 
and exploitation phases of the proposed hybrid method. 
Then, this proposed hybrid method is applied to main-
tain a design optimization of an ORC. The foremost novelty 
occurring in this paper is that this is the first research study 
deeply investigating the thermal behavior of an ORC sys-
tem taken into account of two conflicting but complemen-
tary designs of objectives of Specific Investment Cost and 
second law efficiency of the cycle. Several literature studies 
[28–30] have been accomplished up to now dealing with 
thermo-economic design optimization of ORCs running 
with binary mixtures. However, most of them consider a 
limited number of cycle parameters to be optimized and 
remaining parameters are taken constant during the itera-
tions. This study offers a comprehensive examination of 
the influences of cycle parameters on considered conflict-
ing design objectives. Moreover, limited research papers 
attempted to perform a comparative study between ORCs 
working with pure fluids and binary mixtures, which is 
detailly investigated in this work. Another significant 
contribution of this study is that this is the first considera-
tion of the refrigerant mass flow rate and mass fraction 
of refrigerants in the binary mixture as design variables. 
Pareto curves for different cycle configurations are con-
structed and final optimum solution among the non-dom-
inated solutions is chosen by the highly-reputed TOPSIS 
decision-maker [31]. Another novelty of this paper is that 
the improved solution accuracy and robustness which is 
resulted from the meticulously created synergy between 
JAYA and QOBL method. Proposed hybridization proce-
dure leads to a significant boost in the probing mechanism 
of ordinary SSA by enhancing the exploration and exploi-
tation capacities of the algorithm.

To achieve the main goals of the research study, the 
following contributions are proposed,

• Improved version of the SSA called OPSSAJ is pro-
posed to solve complex optimization problems in this 
research study.

• Hybridization of the JAYA with the QOBL is adapted into 
the leader phase of the SSA to diversify the swarm indi-
viduals, which has never been studied before in such 
utilization so far.

• The proposed method (OPSSAJ) is then applied to 
obtain the optimal design of an Organic Rankine Cycle 
working operating with a binary mixture of R227EA 
and R600. This is the first application of a metaheuristic 
algorithm on multi-objecive optimization of a thermal 
cycle running with a binary mixture.

• Influence of optimum design parameters of the ORC 
cycle on conflicting but complementary problem 
objectives has been comprehensively analyzed, much 
deeper than most of the literature studies dealing with 
an ORC design.

The rest of the paper is organized as follows: Sect. 2 pro-
vides brief instruction on Salp Swarm Algorithm, Opposi-
tion-based Learning, and Jaya Algorithm. The essentials of 
the proposed hybrid are expressed in Sect. 3. Numerical 
results of the hybrid method along with the related discus-
sions are provided in Sect. 4. Section 5 reports the single 
and multi-objective optimization results of ORC. Section 6 
concludes this research study with remarkable comments.

2  Related work

2.1  Salp Swarm algorithm

Salp Swarm Algorithm (SSA) is a new bio-inspired 
metaheuristic algorithm developed by Mirjalili et al. [11]. 
SSA mimics the swarming behavior of salps during navi-
gating in the deep sea. The movement of salps is modeled 
as salp chains that compose of two groups. The first group 
consists of the leader, and the second group is formed by 
the followers. The leader is located at the front of the chain 
and directs the whole chain. On the other hand, the fol-
lowers go after the leader and at the same time they fol-
low each other. The updated position of the leader in the 
n-dimensional search space is given as:

where x1,j represents the j-th position of the first salp 
(leader), Fj is the position of the food source, and lbj and 
ubj denote lower and upper bounds of the j-th dimension, 
respectively.

The coefficients c1, c2, c3 are random numbers. The coef-
ficients c1 is used to balance exploration and exploitation 
and defined as:

where iter and maxIter represent current iteration and the 
maximum number of iterations, respectively. The coeffi-
cients c2 and c3 are random numbers lying in the range 
[0,1].

The position update rule of the followers obeys New-
ton’s law of motion as:

(1)x1,j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
, c3 < 0.5

(2)c1 = 2e
−
(

4×iter

maxIter

)2
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where i ≥ 2 and xi,j shows the position of i-th follower salp 
in the j-th dimension, t  denotes the time, v0 is the initial 
speed, a = vfinal∕v0 and v =

(
x − x0

)/
t . Considering the 

discrepancy between iterations as equal to one and v0 = 0 , 
position update equation of the follower salps can be writ-
ten as:

where i ≥ 2 and xi,j shows the position of i-th follower 
salp in the j-th dimension. The pseudocode of the SSA is 
given in Algorithm 1 [11].

(3)xi,j =
1

2
at2 + v0t

(4)xi,j =
1

2

(
xi,j + xi−1,j

)

Extending this definition to higher dimensions, the 
opposite point can be defined as the following.

Definition (Opposite point) Let P
(
x1, x2,… , xn

)
 be a point 

in the n-dimensional space, where x1, x2,… , xn ∈ R and 
xi ∈

[
ai , bi

]
 ∀i ∈ {1, 2,… , n} . The opposite point is defined 

by its components as

where 
⌣

xi represents opposite-point.

Based on the opposite point definition, quasi-opposite 
point is defined as a uniform random point generated 
between the center point and the opposite point. In the 

(6)
⌣

xi = ai + bi − xi

2.2  Opposition based learning

There are seven widely used OBL approaches in the litera-
ture [32, 33]. These are, basic OBL [13], quasi-opposition 
[34], quasi-reflection [35], current optimum opposition 
[36], extended opposition [33], reflected extended oppo-
sition [33], and comprehensive opposition [33]. Among 
these seven variants of OBL, quasi OBL approach has 
enjoyed a visible position in the literature. It has been 
mathematically proved that the probability of the quasi-
opposite point being closer to the unknown optimal solu-
tion is higher than being closer to the basic opposite point 
[34, 37]. Therefore, the present study employs quasi-OBL 
approach. Before giving details, basic definitions are intro-
duced as follows.

Definition (Opposite Number) Let x ∈
[
a, b

]
 be a real num-

ber. The opposite number of ⌣x is defined by

(5)
⌣

x = a + b − x

quasi-OBL, the opposite of each variable and center point 
is updated in each iteration dynamically. Because the 
search space is shrunk over the course of iterations, going 
through the initial static boundaries of variables might 
result in boundary violations and poor search capability. 
Therefore, the minimum and maximum values of each 
variable in the current iteration 

([
MINt

j
,MAXt

j

])
 are used 

to calculate center point Mt
j
 , which denotes the mean 

value of minimum and maximum values, respectively. By 
updating the boundary intervals in each step, the knowl-
edge of previous generations is implicitly capitalized. The 
calculation of the quasi-opposite population is shown in 
Algorithm 2 [13].
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2.3  Jaya algorithm

Jaya algorithm is a recent population-based metaheuristic 
algorithm developed by Rao [12]. The main rationale under-
lying the Jaya algorithm is that individuals try to escape 
from the non-promising solutions and tend towards the 
best solution. Java algorithm has a very simple search mech-
anism that is computationally efficient and straightforward. 
Jaya algorithm does not require any parameters pertaining 
to its search mechanisms. It only requires the knowledge of 
population size and number of generations. Main steps of 
the Jaya algorithm can be given as follows:

Step 1 Population initialization: Initial positions of indi-
viduals are randomly generated within the range of 
boundaries.

where xi,j represents jth position value of the ith indi-
vidual in the population, rand(0, 1) denotes uniformly 
distributed random number lying between 0 and 1, 
x
min,j

 and x
max,j

are the lower and upper bounds of the 
jth dimension, respectively.Once the initial population 
is formed, the fitness value of each solution vector is 
calculated. Then, the best and worst individuals are 
identified. Afterwards, each individual is subjected to 
repeated cycles of the search processes, which is 
described below, until the predefined termination cri-
terion is met.
Step 2 Generating a new solution. The new solution vec-
tor is calculated as follows:

where r1,j and r2,j represent the jth dimension of the uni-
form random numbers, xbest,j and xworst,jare the jth 
dimension of the best and worst solutions, respectively. 

(7)xi,j = x
min,j

+ rand(0, 1)(x
max,j

− x
min,j

)

(8)x�
i,j
= xi,j + r1,j

(
xbest,j −

|||xi,j
|||
)
− r2,j

(
xworst,j −

|||xi,j
|||
)

In Eq. 2., the term 
(
xbest,j −

|||xi,j
|||
)

 serves as guiding the 

solution towards the best solution and 
(
xworst,j −

|||xi,j
|||
)

 

is used to ensure that the new solution gets away from 
the worst solution.
Step 3 Checking for the boundaries: In this step, each 
dimension of the solution vector is checked against the 
allowable regions.

Step 4 Giving solution acceptance decision: In this step, 
the fitness value of a new solution is compared with 
that of the current solution. If the new solution is bet-
ter than the current solution, than the new solution is 
accepted, and the current solution is replaced by the 
new solution. Otherwise, the current solution remains 
in the population and the new solution is discarded.

where Xi and X ′
i
 represent the current and new solu-

tions, respectively.

3  Proposed algorithm

This section gives the basics of the opposition-based Salp 
Swarm Algorithm with the Jaya (OPSSAJ). In particular, the 
OPSSAJ method hybridizes quasi-opposition-based learn-
ing with the SSA and Jaya algorithms. There are three main 
steps in the proposed algorithm, which are the generation 
of the initial population, the movement of the salp chain, 
and updating the best solutions.

(9)

x�
i,j
=

⎧
⎪⎨⎪⎩

x�
min,j

if x�
i,j
< x�

min,j

x�
max,j

if x�
i,j
> x�

max,j

x�
i,j

otherwise

, ∀i ∈ {1,… ,N}, j ∈ {1,… ,D}

(10)X �
i
=

{
X �
i
, if fitness

(
X �
i

)
≤ fitness

(
Xi
)

Xi , otherwise
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The procedural steps of the OPSSAJ method can be 
given as follows:

3.1  Generating initial population

The proposed algorithm starts with generating an ini-
tial population randomly. The initial population of salps 
is formed based on the predefined bounds, which 
are represented as xmin,j and xmax,j respectively. Math-
ematically speaking, the ith salp of the population 
X⃗i =

{
xi,1, xi,2,… , xi,D

}
 is generated based on Eq. 11.

where xi,j denotes the value at the jth position of the ith 
salp.

After generating the initial population of salps, the 
neighboring solutions are identified within the search 
space.

3.2  Movement of the salp chain

In the canonical SSA, the first salp is regarded as the leader 
salp, and the rest of the salps follow the leader. This mech-
anism has been improved by hybridizing the SSA with the 
oppositional based learning and Jaya algorithms. The use 
of multiple leaders avoids trapping into local optima and 
improves the exploration capability of the algorithm.

In order to balance exploration and exploitation dur-
ing the search, the leader salps randomly select either 
the oppositional-based learning or Jaya algorithm. In 
this study, quasi-opposition based learning has been 
employed, since the probability of the quasi-oppositional 
point being closer to the unknown optimal solution is 
higher than being closer to the opposite point [37]. To 
perform quasi-opposition-based learning, minimum, and 
the maximum values of each dimension are found based 
on the following equations:

The oppositional position vector is calculated as:

where xo
i,j

 represents the oppositional point of the jth posi-
tion of the ith salp. Once the minimum and maximum val-
ues are identified for each dimension, medium value is 
calculated as:

(11)xij = x
min,j

+ rand(0, 1)(x
max,j

− x
min,j

)

(12)minj = min
i∈{1,2,…,N∕2}

{
xi,j

}

(13)maxj = max
i∈{1,2,…,N∕2}

{
xi,j

}

(14)xo
i,j
= min

j
+max

j
−x

i,j

where medj denotes the mean value of the jth dimension.
Eventually, the quasi-oppositional position is calculated 

as follows:

where xqo
i,j

 is the value of the jth dimension of the ith quasi-
oppositional salp. On the other hand, if the leader salps 
perform movements based on Jaya algorithm, the indices 
of the best and worst solutions are calculated as:

where best and worst represent the indices of the best and 
worst salps, respectively. Let xbest and xworst denote the best 
and worst solution vectors among the first N∕2 individuals 
in the population, respectively. The movement of leader 
salps, according to Jaya algorithm, can be given as:

where xjaya
i,j

 is the value of the jth position of the ith salp as 
a result of Jaya move. The new position is accepted if the 
fitness of the new salp is better than the previous salp. 
Otherwise, the current salp is not replaced with the new 
salp. On the other hand, the follower salps move their posi-
tions following the salp chain movement, which is defined 
as:

where i  denotes the index of the followers and 
i ≥ (N∕2) + 1 . Once the movements of the salp chains are 
completed, the fitness value of each salp is calculated. 
Then, the population is sorted based on the fitness values, 
and the leader and follower salps are identified. The popu-
lation of salps is subjected to repeated cycles of the search 
processes until a termination criterion is met. The pseudo-
code of the proposed algorithm is given in Algorithm 3.

(15)medj =
(
minj +maxj

)/
2

(16)

x
qo

i,j
=

⎧
⎪⎨⎪⎩

medj +
�
xo
i,j
−medj

�
× rand(0, 1), if xi,j < medj

xo
i,j
+
�
medj − xo

i,j

�
× rand(0, 1), otherwise

(17)best = argmin
i∈{1,2,…,N∕2}

{
f
(
X⃗i

)}

(18)worst = argmax
i∈{1,2,…,N∕2}

{
f
(
X⃗i

)}

(19)x
jaya

i,j
= xi,j + r1,j

(
xbest,j −

|||xi,j
|||
)
− r2,j

(
xworst,j −

|||xi,j
|||
)

(20)xi,j =
1

2

(
xi,j + xi−1,j

)
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3.3  Implementation of the proposed OPSSAJ 
algorithm

The step-wise description for the execution of the pro-
posed OPSSAJ is given below.

Step 1 Initialize the set of algorithm parameters and 
define the objective function. Population size and 
dimension of the decision variables are respectively 
set to N and D. Objective function f() is set and upper 
and lower bounds (UB and LB) of the search space are 
defined.
Step 2 Initialize the population within the prescribed 
search boundaries. Randomly generated solutions 
S = [S]N×D can be described by the following matrix 
expression,

Subsequently, the solution quality of each member is 
evaluated by f = f

(
Si
)
, i = 1, ...,N . Selected the best 

and the worst quality member based on their solution 
fitness.
Step 3 Sort the population from best to worst and apply 
randomly Jaya and Quasi-oppositional based learning 
for the best half (N/2) of the population, which are the 
leader salps. The pseudocode of this step is given in 
Algorithm 4.

S1,...,N,1,...,D =

⎡⎢⎢⎢⎣

S11 S12 ... S1D
S21 S22 ... S2D
⋮ ⋮ ⋮

SN1 SN2 ... SND

⎤⎥⎥⎥⎦
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Step 4 For the worst half part of the population which 
are knowns as followers, apply the chain movement 
method given in Algorithm 5.
Step 5 Check the boundaries and restrict the violated 
solution into the predefined search ranges.
Step 6 Update the current solution.
Step 7 Repeat Step 3 to Step 6 until the termination cri-
terion is reached.
Step 8 Output the best solution.

4  Numerical investigations 
over unconstrained benchmark suite

In this study, 24 benchmark functions comprising of mul-
timodal and unimodal problems with 30 dimensions have 
been used to test the performance of the proposed algo-
rithm. The statistical results obtained from the OPSSAJ 
method are compared with the state-of-the-art algorithms 
including colliding bodies algorithm (CB) [38], cuckoo 
search algorithm (CS) [39], fruit fly algorithm (FF) [40], 
tree-seed algorithm (TS) [41], spotted hyena algorithm 
(SH) [42], emperor penguin algorithm (EPA) [43], vibrating 
particles system algorithm (VPS) [44], butterfly algorithm 
(BF) [45], jaya algorithm [12], crow search algorithm [46]. 
The above-mentioned algorithms have essential param-
eters that are tuned employing a trial-and-error approach. 
The selection of the best parameters is highly dependent 
on the problem characteristics. In general, finding the 
best parameter is a time-consuming and tedious task that 
incurs a considerable amount of computation time. Table 1 
reports the statistical results of the multimodal benchmark 
functions, which are collected after 50 independent rep-
lications. The termination criterion is set to 4000 function 
evaluations. The algorithms are developed in Java and 
computations are run on an Intel Core i5 computer with 

3.00 GHz CPU and 6 GB RAM. The best, worst, mean, and 
standard deviation values of the multi-modal test func-
tions are reported in Table 1. According to results, OPSSAJ 
method finds superior results than its counterparts in 
f1-Ackley, f4-Zakharov, f5-Alpine, f7-Csendes, f9-Salomon, 
f10-Inverted cosine, and f12-Pathological functions. On 
the other hand, BFA algorithm finds slightly better solu-
tions in f2-Griewank, f3-Rastrigin, f8-Schaffer, and f11-Wavy 
functions. BFA algorithm produces better results only in 
f6-Quintic function. Apart from the best solutions, OPSSAJ 
outperformed other optimizers in terms of robustness and 
solution accuracy. Analysis of the standard deviation val-
ues reveals that the OPSSAJ gives robust results with small 
standard deviations. On the other hand, the worst solu-
tions obtained by OPSSAJ are usually better than those 
found by the second-best optimizer in comparison. 

Figures 1, 2 depict the convergence charts of the com-
pared algorithms for each multimodal test function. The 
x-axis represents the number of function evaluations, and 
the y-axis shows the best objective function value in the 
logarithmic scale obtained during iterations. The con-
vergence performance of OPSSAJ is highly satisfactory 
in comparison with the remaining algorithms. The evo-
lution history of the OPSSAJ method clearly shows that 
the algorithm reaches its optimum point gradually and 
consistently, while other algorithms stagnate at the early 
phases of the search, which is due to the lack of explora-
tion capability. The OPSSAJ takes firm steps forward to the 
global optimum point as a result of a plausible balance 
between intensification and diversification. Table 2 gives 
the statistical results of unimodal test functions. OPSSAJ 
has found better solutions in f13-Sphere, f15-Schwefel 2.22, 
f16-Schwefel 2.23, f18-Brown, f20-Powell, f21-Sum of differ-
ent powers, f22-High conditioned elliptic, f23-Sum squares, 
and f24-Bent cigar functions. BFA algorithm has found bet-
ter solutions in f19-Streched V Sine Wave functions. Jaya 
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Table 1  Statistical results for 
multimodal optimization test 
functions

Best SD Mean Worst

f1-Ackley
OPSSAJ 1.2123E−13 1.6167E−10 6.0991E−11 1.2654E−09
SSA 1.3161E−01 1.6412E−01 5.1954E−01 1.0925E + 00
CB 7.0623E−01 5.8377E−01 2.0226E + 00 3.6066E + 00
CS 8.0625E−01 1.7801E−01 1.1003E + 00 1.6204E + 00
FF 2.4094E−03 7.1331E−06 2.4274E−03 2.4479E−03
TS 1.0242E−01 3.4091E−02 1.7184E−01 3.0227E−01
SH 2.0771E−06 1.1691E−04 1.1751E−04 5.3157E−04
EPA 4.7939E−03 5.0779E−01 2.6711E−01 2.7467E + 00
VPS 7.3117E−01 3.0934E−01 1.2979E + 00 2.1677E + 00
BFA 4.3076E−14 3.0767E−15 4.8405E−14 5.0182E−14
JAYA 3.0637E−01 1.2647E−01 6.4801E−01 9.6289E−01
CROW 3.0342E−01 1.3601E−01 5.2771E−01 8.0193E−01
f2-Griewank
OPSSAJ 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
SSA 2.1396E−02 6.3798E−02 1.2054E−01 3.0784E−01
CB 9.0104E−02 1.6965E−01 3.2266E−01 9.3721E−01
CS 1.4268E−01 1.1389E−01 3.2873E−01 6.5672E−01
FF 6.5072E−07 4.5682E−09 6.6387E−07 6.7349E−07
TS 1.0778E−03 1.6262E−02 7.1457E−03 1.3082E−01
SH 5.6212E−13 5.7263E−03 9.9875E−04 4.3321E−02
EPA 4.2177E−08 3.2763E−01 3.1394E−01 9.7193E−01
VPS 4.0810E−02 9.4332E−02 1.6761E−01 4.9993E−01
BFA 2.2204E−16 1.5666E−16 7.5615E−16 1.1102E−15
JAYA 2.3731E−02 1.8541E−01 1.5772E−01 6.7242E−01
CROW 1.2051E−02 1.8342E−02 4.1142E−02 1.0224E−01
f3-Rastrigin
OPSSAJ 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
SSA 2.6386E + 01 2.0964E + 01 7.4444E + 01 1.3947E + 02
CB 7.1732E + 01 2.5885E + 01 1.2041E + 02 1.9452E + 02
CS 1.9024E + 02 1.6324E + 01 2.3472E + 02 2.7539E + 02
FF 2.0167E−03 1.1412E−05 2.1974E−03 2.2384E−03
TS 1.4592E + 02 1.1842E + 01 2.0034E + 02 2.2174E + 02
SH 1.2719E−08 3.6302E + 01 3.3764E + 01 1.6179E + 02
EPA 1.8162E−01 1.3764E + 02 1.6972E + 02 4.9274E + 02
VPS 5.1973E + 01 4.2185E + 01 1.2348E + 02 2.3082E + 02
BFA 1.7082E−13 9.8924E−14 3.4482E−13 6.8264E−13
JAYA 1.9562E + 02 2.1028E + 01 2.3692E + 02 2.8969E + 02
CROW 6.5615E + 01 3.1696E + 01 1.6953E + 02 2.2863E + 02
f4-Zakharov
OPSSAJ 1.7283E−21 1.6716E−14 4.0997E−15 1.4852E−13
SSA 1.0893E + 01 1.0612E + 01 3.0145E + 01 6.3028E + 01
CB 1.7032E + 02 8.3073E + 01 2.9483E + 02 6.0242E + 02
CS 1.7331E + 02 1.7592E + 02 3.8592E + 02 9.5283E + 02
FF 1.6982E−02 1.0116E−04 1.7221E−02 1.7972E−02
TS 2.8714E + 01 8.4996E + 01 5.0592E + 01 7.2691E + 01
SH 7.2512E−02 2.1582E + 00 2.0362E + 00 1.3864E + 01
EPA 7.9958E + 01 2.9564E + 03 1.6294E + 03 1.6671E + 04
VPS 1.4294E + 01 1.0284E + 01 2.9567E + 02 5.6821E + 02
BFA 1.7482E−15 3.9275E + 00 6.8614E−01 2.9224E + 01
JAYA 4.0921E + 01 1.7622E + 01 8.8852E + 01 1.3283E + 02
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Table 1  (continued) Best SD Mean Worst

CROW 4.9555E + 01 1.3255E + 01 8.5729E + 01 1.1872E + 02
f5-Alpine
OPSSAJ 1.3823E−14 1.5769E−09 4.6598E−10 1.4038E−08
SSA 1.4997E + 00 1.4749E + 00 3.9391E + 00 7.6927E + 00
CB 5.3878E−01 1.2764E + 00 2.7113E + 00 6.3262E + 00
CS 9.6868E + 00 2.1223E + 00 1.5942E + 01 2.1064E + 01
FF 1.8229E−03 3.9183E−06 1.8324E−03 1.8432E−03
TS 4.9585E−02 4.7583E−01 4.9755E−01 3.6169E + 00
SH 6.2665E−07 3.1188E−01 4.6621E−02 2.9545E + 00
EPA 3.2464E−04 8.1311E + 00 6.5692E + 00 2.6852E + 01
VPS 5.7313E−01 1.2407E + 00 2.3157E + 00 5.9194E + 00
BFA 3.6408E−14 1.4098E−14 5.8321E−14 1.1118E−13
JAYA 1.6214E + 00 2.4525E + 00 5.2782E + 00 1.2567E + 01
CROW 1.9924E−01 1.3222E + 00 1.4412E + 00 6.8632E + 00
f6-Quintic
OPSSAJ 8.0992E + 01 4.1242E + 00 9.5172E + 01 1.0242E + 02
SSA 2.7794E + 01 1.5822E + 01 5.5298E + 01 1.1184E + 02
CB 1.7321E + 01 1.2973E + 01 1.4324E + 02 5.9642E + 02
CS 6.4742E + 01 1.0442E + 01 9.5321E + 01 1.2252E + 02
FF 1.1614E + 02 4.1455E−04 1.1672E + 02 1.1679E + 02
TS 5.0281E + 01 1.2762E + 01 8.2141E + 01 1.1242E + 02
SH 2.6499E + 01 1.4251E + 01 6.1742E + 01 1.1973E + 02
EPA 9.5918E + 01 3.8624E + 03 3.9074E + 03 1.3241E + 04
VPS 1.5512E + 01 1.7284E + 01 3.7312E + 01 1.3642E + 02
BFA 1.0142E + 02 1.4421E + 03 1.8331E + 03 4.2908E + 03
JAYA 7.3762E + 01 1.1552E + 01 1.0382E + 02 1.2694E + 02
CROW 1.6892E + 01 1.8778E + 01 4.9625E + 01 1.0152E + 02
f7-Csendes
OPSSAJ 3.9237E−91 4.1726E−71 4.3299E−72 4.0672E−70
SSA 3.4461E−03 1.1583E + 00 5.5892E−01 6.4602E + 00
CB 3.5671E + 01 1.5972E + 03 1.0762E + 03 1.3472E + 04
CS 4.3891E−01 4.5698E + 00 5.2018E + 00 2.4338E + 02
FF 1.5322E−17 7.9271E−17 5.7927E−17 5.9082E−16
TS 8.7621E−01 3.0242E + 00 3.8641E + 00 1.4197E + 01
SH 4.9623E−20 4.7752E−06 1.2764E−06 3.1017E−05
EPA 1.3319E−03 3.0162E + 04 2.8925E + 04 9.0962E + 04
VPS 1.1642E + 00 5.8251E + 01 5.3726E + 01 3.6973E + 02
BFA 4.6991E + 03 7.2381E + 03 2.3678E + 04 3.5079E + 04
JAYA 9.9421E−02 1.6271E + 01 5.6712E + 00 1.4082E + 02
CROW 1.6728E−01 1.8742E + 01 7.5529E + 00 1.7725E + 02
f8-Schaffer
OPSSAJ 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
SSA 7.7324E−03 4.2711E−03 1.8822E−02 2.9542E−02
CB 5.5655E−02 1.2142E−02 9.4927E−02 1.2845E−01
CS 3.4641E−02 1.5242E−02 7.4092E−02 1.1082E−01
FF 5.5958E−09 1.1024E−02 1.7244E−02 4.2841E−02
TS 1.0972E−02 2.7321E−02 1.7051E−02 2.3712E−02
SH 3.1219E−03 3.0452E−03 7.2115E−03 1.9642E−02
EPA 3.1971E−02 2.0042E−02 9.1241E−02 1.2881E−01
VPS 1.1263E−02 4.9261E−03 2.1852E−02 3.5018E−02
BFA 7.7714E−16 2.6898E−14 4.7218E−15 2.2026E−13
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Table 1  (continued) Best SD Mean Worst

JAYA 1.4792E−02 4.4492E−03 2.7782E−02 3.9193E−02
CROW 1.6743E−02 4.2472E−03 2.6879E−02 3.6521E−02
f9-Salomon
OPSSAJ 1.2707E−13 3.8526E−07 6.4998E−08 3.8762E−06
SSA 3.9982E−01 7.8912E−02 6.2861E−01 7.9921E−01
CB 9.9985E−01 1.2028E−01 1.3884E + 00 1.6209E + 00
CS 7.0041E−01 8.9261E−02 8.7556E−01 1.1008E + 00
FF 1.1102E−01 4.1726E−01 1.3568E + 00 1.9081E + 00
TS 2.9991E−01 4.9273E−02 4.3929E−01 5.0293E−01
SH 1.9982E−01 7.8852E−02 3.4063E−01 4.9972E−01
EPA 4.0001E−01 3.0893E−01 1.2282E + 00 1.7314E + 00
VPS 4.9976E−01 7.6821E−02 6.4893E−01 7.9982E−01
BFA 1.5653E−13 2.9273E−02 9.2164E−02 1.4083E−01
JAYA 4.0021E−01 7.2612E−02 6.0924E−01 7.9726E−01
CROW 4.3514E−01 5.8761E−02 5.7721E−01 7.0863E−01
f10-Inverted cosine
OPSSAJ 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
SSA 2.0231E + 00 1.1719E + 00 4.2981E + 00 8.3214E + 00
CB 2.9142E + 00 4.9012E + 00 1.1462E + 00 2.8042E + 00
CS 3.2647E + 00 9.0513E−01 5.4492E + 00 8.3752E + 00
FF 1.4582E−04 6.6652E−07 1.4762E−04 1.4874E−04
TS 6.3182E−01 4.2671E−01 1.6927E + 00 2.5402E + 00
SH 1.0117E−10 1.9072E−06 6.1263E−07 1.1721E−05
EPA 8.4752E−05 1.0371E + 01 2.4862E + 00 7.4186E + 01
VPS 4.6976E + 00 2.6469E + 00 9.4581E + 00 1.6452E + 01
BFA 3.5527E−15 1.3542E−15 5.4692E−15 9.7962E−15
JAYA 2.2525E + 00 7.2276E−01 3.9937E + 00 5.7532E + 00
CROW 1.5097E + 00 5.9721E−01 2.7682E + 00 4.2789E + 00
f11-Wavy
OPSSAJ 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
SSA 3.0496E−01 8.8862E−02 5.1726E−01 7.1973E−01
CB 5.9529E−01 5.4173E−02 7.7352E−01 8.4781E−01
CS 7.4682E−01 1.9831E−02 8.1421E−01 8.5072E−01
FF 1.8456E−05 8.6669E−05 1.8627E−05 1.8817E−05
TS 5.7792E−01 2.9962E−02 6.7971E−01 7.2386E−01
SH 8.8081E−08 1.6064E−01 1.6489E−01 6.1572E−01
EPA 1.1582E−01 2.1529E−01 5.3725E−01 8.4561E−01
VPS 6.5073E−01 3.1465E−02 7.3298E−01 7.9642E−01
BFA 7.7715E−16 1.9902E−16 1.1312E−15 1.8873E−15
JAYA 6.7511E−01 2.3862E−02 7.5628E−01 7.9997E−01
CROW 6.2298E−01 3.1345E−02 7.1826E−01 7.6152E−01
f12-Pathological
OPSSAJ 8.3627E−24 5.5539E−17 6.3478E−18 5.6862E−16
SSA 3.9654E + 01 2.1354E + 02 3.6431E + 02 1.0412E + 03
CB 1.1082E + 02 9.2462E + 02 1.2223E + 03 6.8124E + 03
CS 1.8243E + 02 1.2703E + 02 4.1572E + 02 7.2473E + 02
FF 2.8964E−03 1.8643E−05 2.9347E−03 2.9714E−03
TS 1.0845E + 00 1.1337E + 00 2.9265E + 00 6.9562E + 00
SH 7.9364E−10 1.2101E−05 3.7261E−06 8.8793E−05
EPA 7.7525E−05 2.5268E + 02 9.8651E + 01 1.4471E + 03
VPS 3.9771E + 01 2.8461E + 02 4.9575E + 02 1.6073E + 03
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algorithm has managed to outperform other algorithms 
in only f17-Schwefel 2.25 function. The Rosenbrock func-
tion is known to be one of the most challenging instances 
in which there are many long and carved valleys. OPSSAJ 
has found the solution of 2.7917E + 01 in the Rosenbrock 
function, which is much closer to the optimal solution in 
comparison with the results of other algorithms. The evo-
lution histories of the algorithms for unimodal benchmark 
instances are depicted in Figs. 3, 4. As can be seen from the 
figures, OPSSAJ quickly converges to its optimum solution. 
In many instances, compared algorithms fall behind the 
OPSSAJ results in terms of solution quality and speed of 
convergence towards the global optimum point.

5  Thermodynamic modeling 
and optimization of Organic Rankine 
Cycle

5.1  Mathematical modeling of a thermal ORC 
system

The following assumptions have been made not only to 
simplify the optimization process but also to eliminate the 
excessive amount of the computational burden resulted 
from the iterative calculations [47].

• It is assumed that ORC operates under steady-state 
conditions and running fluid at the outlet of the con-
denser and evaporator is presumed to be saturated

• Leakages from the pipes and heat losses to the sur-
roundings are neglected

• Shell and tube heat exchangers are considered for con-
denser and evaporator

Table 1  (continued) Best SD Mean Worst

BFA 6.4418E + 03 5.4812E + 03 1.9388E + 04 2.8692E + 04
JAYA 4.2733E + 01 3.6971E + 01 9.6812E + 01 2.4799E + 02
CROW 1.8774E + 01 2.9574E + 01 5.6810E + 01 2.1782E + 02

Bold values represent the best solution obtained by the optimization algorithm for corresponding 
problem

Fig. 1  Evolution characteristics of the algorithms for the test functions f1-f6
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• Thermal analysis of the cycle disregards the effects of 
kinetic and potential energy changes

• Heat transfer calculations are made based on fully 
developed flow conditions

There are also some precautionary system design con-
straints taken such that evaporator pressure should not 
exceed 90% of the critical pressure of the running cycle 
fluid. All design constraints considered in the optimization 
problem are modeled as hard inequality constraints. Obey-
ing the above-given assumptions, mathematical modeling 
ORC is constructed in step-by-step formulations. Mass and 
energy balance equations along with irreversibility gener-
ation formulations govern the basics of thermal modeling 
of ORC. Heat and mass balance equations are related to 
the first law of thermodynamics while irreversibility equa-
tions are concerned with the second law of thermodynam-
ics. Mass balance is expressed by,

Energy balance in each cycle component is maintained 
by using the merits of first law and equated by

The irreversibility equation reflects the effects of 
entropy generation. If a substance changes its state from 

(21)
∑

ṁ = 0

(22)
∑

Q̇ +
∑

Ẇ +
∑

(ṁ ⋅ h) = 0

a to b, irreversibility generation of the system is formulated 
by the following equation

The above equation can be applied to determine the 
current irreversibility rate of the working fluid flowing 
through the related cycle component. Based on the for-
mulations given in the Electronic Supplementary Material, 
second law efficiency of the cycle, which is also one of the 
design objectives considered in this study, is calculated by 
the following expression

where İtot is the total irreversibility of the cycle.
Mathematical modeling of condenser and evaporator 

takes a great role in determining the overall efficiency and 
cost of the thermal cycle. It is known that the investment 
cost of the heat exchanger is directly related to the total 
heat exchange area, which is a function of the overall heat 
transfer coefficient of the system. Therefore, the utmost 
concern should be given to the proper use of the correct 
heat transfer correlation. Although there are plenty of cor-
relations available in the literature for modeling two-phase 
flow heat transfer occurring in condenser and evaporator, 
they are correlated with their experimental conditions. For 

(23)

Ia→b = T0 ⋅

(
Sb − Sa −

Q̇0

T0
−

Q̇source(sink)

Tsource(sink)

)
= T0 ⋅ ΔSgen ≥ 0

(24)𝜂II = Wnet∕
(
Wnet + İtot

)

Fig. 2  Evolution characteristics of the algorithms for the test functions f7-f12



Vol.:(0123456789)

SN Applied Sciences (2021) 3:224 | https://doi.org/10.1007/s42452-020-04014-0 Research Article

Table 2  Statistical results for 
unimodal optimization test 
functions

Best SD Mean Worst

f13–Sphere
OPSSAJ 2.6796E–26 3.8134E–19 4.4885E–20 4.1191E–18
SSA 9.0285E–02 3.5214E–01 5.4261E–01 1.8145E + 00
CB 1.7762E + 00 4.8759E + 00 8.0954E + 00 2.4794E + 01
CS 7.9651E–01 8.6287E–01 2.4763E–01 5.8002E + 00
FF 1.0925E–05 5.3121E–08 1.1021E–05 1.1248E–05
TS 2.0212E–02 2.5691E–02 5.7483E–02 1.5619E–01
SH 1.8492E–10 2.1974E–07 9.6491E–08 1.5382E–06
EPA 5.2636E–06 3.8261E + 00 1.3487E + 00 1.8142E + 01
VPS 4.4741E–01 1.7729E + 00 3.2543E + 00 8.7501E + 00
BFA 2.2124E–16 2.2671E–16 5.1792E–16 1.3762E–15
JAYA 3.4867E–01 3.6054E–01 8.3764E–01 2.3964E + 00
CROW 1.5964E–01 4.2462E–01 7.0352E–01 2.2991E + 00
f14–Rosenbrock
OPSSAJ 2.7917E + 01 1.3947E–01 2.8894E + 01 2.9941E + 01
SSA 7.0183E + 01 1.2694E + 02 2.5512E + 02 1.0382E + 03
CB 4.7576E + 02 4.1482E + 03 4.7781E + 03 2.5448E + 04
CS 2.1973E + 02 1.8163E + 02 5.7792E + 02 1.2724E + 03
FF 2.8661E + 01 7.6695E–03 2.8654E + 01 2.8701E + 01
TS 1.5893E + 02 9.3814E + 01 2.9374E + 02 6.6983E + 02
SH 2.8234E + 01 1.3087E + 00 2.8486E + 01 3.6917E + 01
EPA 3.0162E + 01 8.1472E + 04 5.1867E + 04 3.0271E + 05
VPS 2.9371E + 02 6.1374E + 02 1.1212E + 03 3.7592E + 03
BFA 6.7262E + 04 2.0211E + 04 1.0887E + 05 1.4918E + 05
JAYA 9.5231E + 01 7.9182E + 01 2.3249E + 02 4.7927E + 02
CROW 1.3289E + 02 1.2064E + 02 3.3376E + 02 9.5982E + 02
f15–Schwefel 2.22
OPSSAJ 7.3617E–14 1.8451E–10 5.4337E–11 1.7274E–09
SSA 3.0689E + 00 1.7412E + 00 6.6802E + 00 1.1754E + 01
CB 1.2204E + 00 3.5982E + 00 6.8264E + 00 2.4182E + 01
CS 9.1020E + 00 4.2764E + 00 1.5134E + 01 2.9246E + 01
FF 1.8017E–02 4.1372E–05 1.8193E–01 1.8279E–02
TS 1.1974E–01 3.6342E–02 1.7348E–01 3.1194E–01
SH 9.4401E–08 6.4862E–06 2.8394E–06 5.5079E–05
EPA 1.8698E–04 3.6882E–02 2.4072E–02 1.8572E–01
VPS 1.2071E + 00 1.5659E + 00 4.2582E + 00 8.2587E + 00
BFA 7.7881E–14 4.3681E–14 1.5398E–13 2.7641E–13
JAYA 1.5789E + 00 6.2974E–01 2.7974E + 00 4.3428E + 00
CROW 1.0224E + 00 3.3561E–01 1.5397E + 00 2.4292E + 00
f16–Schwefel 2.23
OPSSAJ 1.0763E–127 1.8413E–85 1.6403E–86 2.0832E–84
SSA 8.9113E–05 3.8681E + 00 1.5192E + 00 3.1182E + 01
CB 2.5724E + 02 2.4824E + 05 1.1986E + 05 2.0314E + 06
CS 3.3642E–01 1.5682E + 01 1.0471E + 01 9.1797E + 01
FF 2.0282E–31 5.8756E–33 2.1409E–31 2.2989E–31
TS 5.8601E–01 4.7072E + 01 4.1372E + 01 2.5592E + 02
SH 3.3619E–27 1.6052E–06 2.7617E–07 1.2462E–05
EPA 9.8838E–04 5.9418E + 06 7.1457E + 06 1.9470E + 07
VPS 6.2033E + 00 1.0842E + 03 4.7521E + 02 6.0523E + 03
BFA 5.7554E + 05 6.9241E + 05 1.9652E + 06 3.8054E + 06
JAYA 4.4721E–02 8.0411E + 01 1.8772E + 01 7.5522E + 02
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Table 2  (continued) Best SD Mean Worst

CROW 3.5398E–02 8.1122E + 01 3.6254E + 01 5.4215E + 02
f17–Schwefel 2.25
OPSSAJ 2.3394E + 01 7.8214E–01 2.6174E + 01 2.7652E + 01
SSA 3.2745E + 00 7.1462E + 00 1.7012E + 01 4.2769E + 01
CB 1.5639E + 01 6.7521E + 01 1.2021E + 02 3.4988E + 02
CS 2.2194E + 01 1.0973E + 01 3.7651E + 01 8.4408E + 01
FF 1.8672E + 01 6.4442E–01 2.0331E + 01 2.1671E + 01
TS 6.4578E + 00 7.7621E + 00 1.8261E + 01 5.2769E + 01
SH 1.2863E + 01 1.7347E + 00 1.7711E + 01 2.2114E + 01
EPA 2.5361E + 01 7.3081E + 02 9.2868E + 02 2.8313E + 03
VPS 1.6782E + 01 3.5092E + 01 6.9072E + 01 1.7257E + 02
BFA 2.5814E + 01 3.4571E + 02 2.2198E + 02 1.1158E + 03
JAYA 1.3222E + 00 2.8033E + 00 4.4453E + 00 1.6114E + 01
CROW 6.0483E + 00 1.2031E + 01 1.9762E + 01 5.7543E + 01
f18–Brown
OPSSAJ 3.7291E–26 9.9143E–19 1.3124E–19 9.2393E–18
SSA 2.8873E–01 9.2515E + 00 6.3834E + 00 5.4208E + 01
CB 1.0254E + 01 3.40767 + 11 3.1995E + 10 3.6862E + 12
CS 1.2149E + 01 5.5341E + 03 1.6238E + 03 5.2148E + 04
FF 2.1124E–05 1.0532E–07 2.1347E–05 2.1595E–05
TS 2.1452E–01 2.4023E–01 6.1393E–01 1.3729E + 00
SH 7.4872E–10 1.8800E–06 5.7534E–07 1.2971E–05
EPA 7.3868E–06 7.0024E + 24 8.1402E + 23 6.1052E + 25
VPS 1.6182E + 00 9.1409E + 00 1.2542E + 01 6.4198E + 01
BFA 1.4206E–16 1.4962E + 10 3.4989E + 09 9.7736E + 10
JAYA 1.3138E + 00 3.2282E + 00 5.4321E + 00 1.9851E + 01
CROW 1.0675E + 00 1.1834E + 00 2.6983E + 00 7.3983E + 00
f19–Streched V Sine Wave
OPSSAJ 2.5641E–07 5.6535E–06 4.5714E–06 3.0631E–05
SSA 2.5471E + 01 3.5829E + 00 3.4781E + 01 4.3018E + 01
CB 1.8062E + 01 4.8289E + 00 3.1824E + 01 4.4172E + 01
CS 3.0997E + 01 3.1972E + 00 3.9532E + 01 4.7264E + 01
FF 6.6092E + 00 1.3594E + 00 8.0307E + 00 1.0852E + 01
TS 1.2974E + 01 1.4624E + 01 1.6984E + 01 1.9642E + 01
SH 9.0642E–03 6.7521E–01 6.9972E–01 3.6521E + 00
EPA 2.6821E–01 9.2164E + 00 5.8164E + 00 4.6864E + 01
VPS 2.3012E + 01 2.8364E + 00 3.0624E + 01 3.7521E + 01
BFA 5.8242E–11 3.2917E–11 1.0682E–10 1.8572E–10
JAYA 2.2671E + 01 3.4042E + 00 3.0097E + 01 3.8669E + 01
CROW 1.3993E + 01 2.5381E + 00 2.0188E + 01 2.4722E + 01
f20–Powell
OPSSAJ 3.8087E–25 6.3463E–18 1.3432E–18 5.9178E–17
SSA 4.9691E + 00 9.7162E + 01 1.1124E + 02 6.3589E + 02
CB 3.2197E + 02 2.1472E + 03 3.2016E + 03 1.1939E + 04
CS 1.6792E + 02 2.4994E + 02 5.3972E + 02 1.3836E + 03
FF 1.1734E–03 5.4358E–06 1.1984E–03 1.2082E–03
TS 8.9601E + 00 1.3826E + 01 2.5681E + 01 7.5824E + 01
SH 2.8149E–08 1.5454E–04 6.4518E–05 8.4415E–04
EPA 5.5012E–02 3.6503E + 04 1.9776E + 04 1.4824E + 05
VPS 2.0271E + 02 6.3874E + 02 8.5326E + 02 3.4372E + 03
BFA 2.8555E + 04 1.3539E + 04 5.9986E + 04 8.9220E + 04
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Table 2  (continued) Best SD Mean Worst

JAYA 3.6492E + 01 8.9075E + 01 1.4655E + 02 6.2074E + 02
CROW 4.1927E + 01 9.4228E + 01 1.6615E + 02 4.5072E + 02
f21–Sum of different powers
OPSSAJ 1.6203E–40 1.6231E–15 2.3266E–16 1.8482E–14
SSA 7.0942E–02 3.0942E + 02 5.6985E + 01 3.8089E + 03
CB 4.0067E + 03 1.8081E + 10 4.0824E + 09 1.6193E + 11
CS 6.2974E + 01 1.6428E + 04 1.1234E + 04 7.3691E + 04
FF 3.9512E–04 2.5906E–06 4.0008E–04 4.0824E–04
TS 6.3511E–01 8.9142E + 00 7.1269E + 00 5.1411E + 01
SH 9.7366E–27 4.4982E–03 5.5766E–04 3.6826E–02
EPA 9.3712E–04 1.5928E + 13 3.8351E + 12 1.1149E + 14
VPS 3.5571E–01 1.9025E + 04 8.2056E + 03 1.2367E + 05
BFA 8.7194E–15 1.6933E + 06 3.6079E + 05 1.17334E + 07
JAYA 1.9833E + 01 8.8667E + 01 1.6202E + 02 5.6442E + 02
CROW 6.8341E–02 7.6182E + 01 1.6268E + 01 5.8053E + 02
af22–High conditioned elliptic
OPSSAJ 1.5861E–23 5.8762E–14 6.5481E–15 6.9576E–13
SSA 6.6464E + 03 3.2309E + 04 6.4013E + 04 1.8981E + 05
CB 4.7193E + 03 6.1451E + 04 4.0810E + 04 6.0491E + 05
CS 1.4586E + 04 1.1024E + 04 3.4762E + 04 7.5878E + 04
FF 7.0048E–01 5.9065E–03 7.1192E–01 7.2574E–01
TS 6.7429E + 00 3.9221E + 00 1.2559E + 01 2.6552E + 01
SH 1.5745E–09 7.2741E–06 2.7596E–06 4.3961E–05
EPA 1.9382E–02 1.0042E + 03 3.9174E + 02 5.8172E + 03
VPS 1.1612E + 03 4.7716E + 03 6.1875E + 03 2.9999E + 04
BFA 1.0866E + 06 5.6129E + 05 2.1957E + 06 3.3192E + 06
JAYA 3.4983E + 02 4.2683E + 02 9.7821E + 02 2.6543E + 03
CROW 1.4558E + 02 2.1342E + 02 3.6792E + 02 1.1785E + 03
f23–Sum squares
OPSSAJ 2.0264E–26 1.0793E–18 2.0694E–19 1.0472E–17
SSA 3.4958E + 00 1.1274E + 01 2.0275E + 01 6.2471E + 01
CB 1.0463E + 01 7.7115E + 01 1.1873E + 02 5.5892E + 02
CS 1.1235E + 01 8.7369E + 00 3.2278E + 01 6.1609E + 01
FF 1.6437E–04 9.0975E–07 1.6649E–04 1.6844E–04
TS 2.6449E–01 2.2794E–01 6.2984E–01 1.2272E + 00
SH 8.2987E–10 1.2020E–06 5.0778E–07 7.7481E–06
EPA 1.4451E–03 1.7834E + 02 2.3234E + 01 1.8684E + 03
VPS 1.5552E + 01 2.7618E + 01 4.4867E + 01 1.3395E + 02
BFA 3.9801E–16 8.9991E–16 1.4802E–15 4.5692E–15
JAYA 2.9649E + 00 5.4581E + 00 1.0889E + 01 3.5371E + 01
CROW 1.0448E + 00 4.0940E + 00 7.3582E + 00 2.0663E + 01
f24–Bent cigar
OPSSAJ 4.8071E–22 3.6386E–13 4.2562E–14 4.4102E–12
SSA 5.6684E + 04 2.7439E + 05 4.1723E + 05 1.8112E + 06
CB 1.1688E + 06 4.2751E + 06 7.3259E + 06 2.2087E + 07
CS 9.3472E + 05 5.7403E + 05 2.0281E + 06 3.6546E + 06
FF 1.0507E + 01 5.8265E–02 1.0642E + 01 1.0804E + 01
TS 9.1742E + 03 1.6772E + 04 3.5448E + 04 1.1715E + 05
SH 7.4047E–06 7.1615E–02 3.7451E–02 4.4021E–01
EPA 2.4883E + 01 2.6622E + 06 6.9538E + 05 1.8231E + 07
VPS 8.7924E + 05 2.2994E + 06 3.4812E + 06 1.2380E + 07
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this reason, it is a huge task for a designer to use the cor-
rect heat transfer correlation for the governing operational 
conditions.

Gnielinski [48] correlation, which is a highly reputed 
equation for modeling single-phase flow, is used to evalu-
late the heat transfer mechanism taking place in the evap-
orator and condenser. Correlation developed by Thome 
[49] is a modified form of Gungor-Winterton [50] correla-
tion which takes into account the contribution of binary 
mixtures on flow boiling mechanism and used for esti-
mating the evaporative heat transfer coefficient. Florides 
et al. [51] correlation is used to calculate the total amount 
of heat transfer in the annulus flow, which takes place 
between outer and inner tube regions. Shah [52] correla-
tion is very effective in predicting the in-flow condensation 
heat transfer rates and so is used in this study for thermal 
modeling of the condenser. Therminol VP-1 is used as a 
secondary fluid that conveys the available low grade heat 
to the working fluid of the system. Cooling water absorbs 
the rejected heat in the condenser and considered as a 

secondary fluid for this process. Shell and tube type heat 
exchanger is used for condenser and evaporator and heat 
exchange area of each cycle component is calculated by 
the below given generic formulation

where A is the total heat exchange surface, Q is the 
imposed heat load on the heat exchanger, ΔTLMTD is the 
logarithmic mean temperature difference between two 
streams, and U is the overall heat transfer coefficient com-
puted by the following equation

Applying reliable capital cost correlations to cycle 
components is also very crucial in obtaining the best pos-
sible thermoeconomic design outcomes. However, this 

(25)A =
Q̇

U ⋅ ΔTLMTD

(26)

U =
1((

1

hout

)
+ Rout +

(
dout

2k

)
ln
(

dout

din

)
+ Rin +

(
dout

din

)(
1

hin

))

Table 2  (continued) Best SD Mean Worst

BFA 7.4658E + 07 1.0575E + 07 1.1431E + 08 1.3505E + 08
JAYA 1.5501E + 05 3.1942E + 05 6.6452E + 05 1.6251E + 06
CROW 1.6395E + 05 2.9961E + 05 5.3021E + 05 2.2501E + 06

Bold values represent the best solution obtained by the optimization algorithm for corresponding 
problem

Fig. 3  Evolution characteristics of the algorithms for the test functions f13-f18
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important issue has not been carefully analyzed in most 
of the literature studies regarding ORC design. This is 
because most of the available cost model is correlated for 
a very specific experimental region of temperatures and 
pressures. Economic information of cycle components is 
generally not conveyed by the component manufacturers, 
however affordable data from different sources is sufficient 
enough to develop reliable cost correlations. Among the 
various type of cost correlations available in the literature, 
the most reputed alternative is the chemical engineering 
plant cost ındex (CEPCI) whose updated model parameters 
have been reported in Chemical Engineering publication 
since 1963 [53]. Most of the published studies in the litera-
ture use the correlations developed by Turton et al. [54] to 
estimate the equipment investment cost of ORC compo-
nents and apply the CEPCI index to each component to 
obtain their updated and current cost values.

Based on the proposed economic model, specific 
ınvestment cost (SIC) rate is the ratio between total ORC 
system cost and net power output which is expressed by 
the following equation [55]

where Ccap is the capital cost accounting for the invest-
ment cost of the ORC elements of the evaporator, con-
denser, expander, fans, pump and working fluid.

(27)SIC =
Ccap ⋅ CRC + Cmi

Wnet ⋅ h

wherein  CEPCI 2019 =  619,  CEPCI 2011 =  582,  and 
CEPCI1996 = 382 [56]. In Eq. (29), CRC  represents the capital 
recovery cost which is calculated by

where i symbolizes the interest rate which is considered to 
be 8% in this case; LTplant is the plant life time and assumed 
to be 15  years of operation; h stands for the working 
hours of the ORC system per annual year and presumed 
to 8000 h. Insurance and management cost of the system 
is expressed by Cmi and estimated by [57]

Cost correlations for expanders are expressed as

Investment cost correlations for the pump are formu-
lated by

(28)

Ccap =
(
Cevap,bm + Cexp,bm + Cpump,bm + Ccond,bm

)
CEPCI2019

CEPCI1996
+ Cfan,bm

(
CEPCI2019

CEPCI2011

)
+ Cwf ,bm

(29)CRC =
i(1 + i)LTplant(

(1 + i)LTplant − 1
)

(30)Cmi = 0.165 ⋅ Ccap

(31)
log Cexp = K1,exp + K2,exp log

(
WExp

)
+ K3,exp

(
log

(
WExp

))2

(32)Cexp,bm = Cexp ⋅ FExp,bm

Fig. 4  Evolution characteristics of the algorithms for the test functions f19-f24
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For calculation of heat exchanger (HEX) cost in the cycle 
(valid for both condenser and evaporator)

For the investment cost of the fan,

(33)
log Cpump = K1,pump + K2,pump log

(
Wpump

)
+ K3,pump log

(
Wpump

)2

(34)pdiff = pevap − pcond

(35)
log Fpump,p = C1,pump + C2,pump log

(
pdiff

)
+ C3,pump log

(
pdiff

)2

(36)Fpump,bm = B1,pump + B2,pump ⋅ Fm,pump ⋅ Fpump,p

(37)Cpump,bm = Cpump ⋅ Fpump,bm

(38)
log FHEX ,p = C1 + C2 log

(
pHEX − p0

)
+ C3 log

(
pHEX − p0

)2

(39)FHEX ,bm = B1,HEX + B2,HEX ⋅ Fm,HEX ⋅ FHEX ,p

(40)
log CHEX = K1,HEX + K2,HEX log

(
AHEX

)
+ K3,HEX log

(
AHEX

)2

(41)CHEX ,bm = CHEX ⋅ FHEX ,bm

(42)log Ffan,p = C1,fan + C2,fan log pfan + C3,fan
(
log pfan

)2

For working fluid cost

where cwf is the unit price of the working fluid in $/kg and 
mfw is the mass of the working fluid circulating through 
the cycle in kg.

5.2  Discussion on the optimization results

Numerical modeling of the thermal system and the pro-
posed OPSSAJ algorithm are both developed in Java envi-
ronment. Due to the intrinsic random behavior of the 
hybrid metaheuristic OPSSAJ optimizer, simulations are 
run for 50 times for each optimization objective and the 
best results are collected and evaluated in terms of statisti-
cal analysis. The developed program is run at quad-core 
Intel i5-4460 @ 3.20 GHz with 16.0 GB RAM on a desktop 
computer. Table 3 reports the single objective optimiza-
tion results of the ORC system running with different sin-
gle working fluids obtained by OPSSAJ. For the cycle oper-
ating with R227EA refrigerant, it is seen that minimum 
obtained SIC value is 7529.457 ($/W) while the maximum 
second law efficiency of the cycle 0.431 when these 

(43)log Cfan = K1,fan + K2,fan log V̇ + K3,fan
(
log V̇

)2

(44)Cfan,bm = Cfan ⋅ Ffan,p ⋅ Ffan,bm

(45)Cwf ,bm = cwf ⋅mwf

Table 3  Single objective optimization results of the ORC system obtained with OPSSAJ

Designvariables R227EA R600 R227EA/R600

SIC min Sec. eff. max SIC min Sec. eff. max SIC min Sec. eff. max

Condenser outlet temperature (K) 303.150 303.150 303.202 303.263 303.153 303.150
Evaporation pressure or temperature (MPaorK) 2.289 2.289 1.479 2.100 373.117 373.149
Superheat temperature (K) 29.998 17.168 6.379 19.921 0.002 15.000
Evaporator pinch temperature (K) 19.999 8.000 14.216 8.014 19.498 8.000
Condenser pinch temperature (K) 14.995 5.000 14.965 5.091 14.999 5.000
Condenser outertube diameter (m) 0.015 0.015 0.015 0.015 0.015 0.015
Condenser shell diameter (m) 0.250 0.499 0.276 0.496 0.281 0.499
Condenser baffles spacing (m) 0.217 0.497 0.182 0.489 0.457 0.499
Condenser number of tube passes 4 1 6 1 4 2
Condenser tube arrangement Triangular Triangular Triangular Triangular Square Square
Evaporator outertube diameter (m) 0.015 0.015 0.015 0.017 0.015 0.015
Evaporator shell diameter (m) 0.250 0.311 0.251 0.486 0.250 0.499
Evaporator baffle spacing (m) 0.150 0.499 0.157 0.485 0.150 0.499
Evaporator number of tube passes 8 1 8 1 8 2
Evaporator tube arrangement Triangular Square Triangular Square Triangular Square
Refrigerant mass flow rate(kg/s) 0.799 0.400 0.298 0.111 0.323 0.250
Mass fraction (R227EA/R600) – – – – 0.200 0.590
Second law efficiency 0.316 0.431 0.363 0.496 0.358 0.473
Specific investment cost ($/W) 7529.457 54,137.679 5351.095 19,378.383 5295.332 24,905.764
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conflicting objectives are separately optimized. Design 
variables of superheat temperature and evaporator pinch 
temperature hit the maximum allowable limits when SIC 
is minimized. Temperature mismatch between the heat 
source and evaporator increases with increasing superheat 
and pinch-point temperatures. This increase leads to a 
decline in the heat exchange area of the evaporator which 
entails a decrease in SIC rates. Similar tendencies can be 
observed for the condenser and heat sink temperature 
relationship. Outer tube diameters of the condenser and 
evaporator hit the prescribed lower bound which is 
0.015  m. This is because when tube diameter values 
decrease, convective heat transfer coefficient of the run-
ning cycle fluid increases. This increase consequently gives 
rise in the net power output of the cycle, resulting in a 
decrease in SIC values. Triangular tube arrangement is 
observed for evaporator and condenser when SIC is mini-
mized. Condenser and evaporator shell diameters reach 
the minimum allowable bounds. As shell diameters 
decrease, the cross-sectional area of the normal to second-
ary fluid flow decreases. This decrease results in an increase 
in secondary fluid flow velocity and consequently gives 
rise to overall heat transfer coefficient rates. Enhancement 
in heat transfer rates resulted from the increased convec-
tive heat transfer coefficient values increases the net 
power generation rates and decreases SIC of the cycle. 
Optimum refrigerant (R227EA) mass flow rate obtained by 
OPSSAJ is at its higher limit, which is 0.799 kg/s. One can 
easily see the relationship between the refrigerant mass 
flow rate and single and multi-phase convective heat 
transfer correlations reported in the Electronic Supple-
mentary Material. It is observed from the correlations that 
convective heat transfer coefficient of the running fluid is 
directly influenced by the increasing flow rates, which 
eventually enhances the power generation of the ORC sys-
tem. It is also observed that baffle spacing in the con-
denser and evaporator is closer to minimum allowable 
bound rather than its maximum. When ORC system run-
ning with R227EA is optimized to obtain maximum second 
law efficiency of the cycle, evaporator and condenser 
pinch point temperatures reach their minimum value. A 
thermodynamic system with minimum entropy genera-
tion is the system having higher exergetic (second law) 
efficiency. It is a thermodynamic principle that entropy of 
a system increases with the increasing temperature differ-
ences between the surroundings. Therefore, it is logical to 
obtain the minimum allowable value of these design vari-
ables, which reduces the temperature mismatch between 
two mediums and thereby increasing the exergetic effi-
ciency of the cycle. Superheat temperature in the evapora-
tor is obtained 17.168 K. Baffle spacing in the condenser 
and evaporator reaches its upper limits of 0.499 m. Trian-
gular and square pitch arrangements are respectively 

obtained for the condenser and evaporator. The optimum 
number of tube passes in the evaporator and condenser 
is found to be 1. Single optimization results of the ORC 
running with R600 working fluid indicates that minimum 
SIC and maximum second law efficiency values are corre-
spondingly 5351.095 ($/W) and 0.496. These objective 
function values are respectively 28.9% lower and 15.1% 
higher than those found by the cycle running with R227EA. 
Enhancement in the numerical value of these cycle perfor-
mance indexes results from the intrinsic thermophysical 
characteristics of R600 refrigerant. The inclination of the 
design variables of ORC operating with R600 is in accord-
ance with that of running with R227EA, except one case 
which is the superheat temperature in the evaporator 
when SIC is minimized. 6.379 K superheat is obtained 
which is closer to its lower limit contrary to the evaporator 
superheat of 29.998 K obtained by the cycle running with 
R227EA. It is also interesting to see that the design variable 
of condenser temperature reaches its minimum value for 
both cycles running with R227EA and R600. The net power 
output of the cycle is the direct function of the mass flow 
rate of the running refrigerant stream while it has no sig-
nificant influence on second law efficiency rates as it is 
understood from Eq. (24). Regarding single objective opti-
mization results obtained by the proposed hybrid algo-
rithm reported in Table 3, Specific Investment Cost rate of 
the cycle gets its minimum value when mass flow rates hit 
the maximum value between the allowable value for ORC 
operated with R227EA refrigerant. A moderate mass flow 
rate of 0.363 kg/s, which is close to the minimum value 
between the defined search span, is obtained in the case 
of SIC minimization of ORC with R600 refrigerant. As 
respective Specific Investment Cost and second law effi-
ciency rates acquired for R227EA and R600 refrigerants are 
comparatively evaluated, it is seen that ORC running with 
R600 is much more favorable to that of operated with 
R227EA because of its compatible thermal characteristics. 
In most of the related literature studies concerning with 
thermal design of ORC working with a binary mixture, the 
fluid composition is taken constant value and generally is 
not considered as a design variable. Parametric optimiza-
tion is applied to observe the variational effects of mixture 
composition on the problem objectives. However, this 
type of optimization procedure has several shortcomings 
[28]. A significant drawback is that singularities can be 
observed in calculating the objective function values 
when the mixture composition is varied within the defined 
interval. This deficiency in calculation reduces the credibil-
ity and reliability of the obtained optimization results. For 
this important reason, mixture composition is considered 
as an accompanying decision variable along with remain-
ing cycle design parameters. ORC with mixture fluid shows 
much better thermoeconomic performance in comparison 
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with the cycle operating with pure fluids of R227EA and 
R600. The maximum exergetic efficiency of the ORC with 
mixture fluid is correspondingly 4.6% lower and 9.7% 
higher than that of the cycle operating with R600 and 
R227EA. Minimum SIC acquired by R227EA/R600 mixture 

is respectively 29.6% and 1.1% lower than that of the 
R227EA and R600 pure fluids. In this sense, working with 
mixture fluid leads to lower capital cost rates entailing a 
smaller physical scale of ORC plant compared to pure flu-
ids. Evaporator pinch point and superheat temperatures 

Table 4  Single objective optimization results of the ORC system obtained with NSGA-II

Designvariables R227EA R600 R227EA/R600

SIC min Sec. eff. max SIC min Sec. eff. max SIC min Sec. eff. max

Superheat temperature (K) 27.156 17.823 7.355 19.412 0.218 13.527
Evaporator pinch temperature (K) 19.999 8.000 14.204 8.214 19.481 8.000
Condenser pinch temperature (K) 14.995 5.000 14.911 5.147 14.999 5.000
Condenser outertube diameter (m) 0.015 0.015 0.015 0.015 0.015 0.015
Condenser shell diameter (m) 0.250 0.499 0.282 0.491 0.295 0.497
Condenser baffles spacing (m) 0.287 0.412 0.141 0.420 0.418 0.496
Condenser number of tube passes 2 1 6 1 2 2
Condenser tube arrangement Triangular Triangular Triangular Triangular Square Triangular
Evaporator outertube diameter (m) 0.015 0.015 0.015 0.016 0.015 0.015
Evaporator shell diameter (m) 0.250 0.372 0.273 0.488 0.250 0.421
Evaporator baffle spacing (m) 0.150 0.499 0.163 0.488 0.150 0.418
Evaporator number of tube passes 4 2 6 1 8 4
Evaporator tube arrangement Triangular Triangular Square Square Triangular Square
Refrigerant mass flowrate(kg/s) 0.712 0.425 0.305 0.095 0.312 0.309
Mass fraction (R227EA/R600) – – – – 0.217 0.483
Second law efficiency 0.317 0.417 0.362 0.494 0.357 0.459
Specific Investment Cost ($/W) 10,129.215 54,139.581 5763.108 19,380.506 6472.029 24,920.106

Table 5  Single objective optimization results of the ORC system obtained with MOPSO

Designvariables R227EA R600 R227EA/R600

SIC min Sec. eff. max SIC min Sec. eff. max SIC min Sec. eff. max

Condenser outlet temperature (K) 303.482 303.623 303.479 303.508 303.496 303.602
Evaporation pressure or temperature(MPaorK) 2.418 2.317 1.512 2.125 373.125 373.147
Superheat temperature (K) 29.942 18.106 3.342 17.513 0.285 13.057
Evaporator pinch temperature (K) 19.296 9.147 14.308 8.519 14.269 9.157
Condenser pinch temperature (K) 14.257 5.563 14.951 5.287 14.572 6.107
Condenser outertube diameter (m) 0.015 0.015 0.015 0.015 0.015 0.015
Condenser shell diameter (m) 0.263 0.427 0.258 0.419 0.272 0.499
Condenser baffles spacing (m) 0.287 0.352 0.175 0.448 0.468 0.499
Condenser number of tube passes 4 2 4 2 2 1
Condenser tube arrangement Square Square Square Triangular Square Square
Evaporator outertube diameter (m) 0.015 0.015 0.015 0.017 0.015 0.015
Evaporator shell diameter (m) 0.258 0.308 0.258 0.474 0.250 0.499
Evaporator baffle spacing (m) 0.163 0.457 0.163 0.457 0.150 0.499
Evaporator number of tube passes 6 2 6 2 6 2
Evaporator tube arrangement Triangular Square Triangular Square Square Square
Refrigerant mass flow rate (kg/s) 0.682 0.328 0.291 0.099 0.328 0.255
Mass fraction (R227EA/R600) – – – – 0.259 0.574
Second law efficiency 0.315 0.431 0.362 0.493 0.357 0.464
specific investment cost  ($/W) 8146.109 54,137.679 5546.107 19,379.587 5439.057 24,912.062
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are correspondingly 8.0 and 15.0 K when second law effi-
ciency is maximized. Besides, the optimum condenser 
temperature of the mixture fluid is obtained 303.150 K, 
which is its minimum allowable value, in this optimization 
case. Based on the Carnot principle of thermodynamics 
higher temperature difference between evaporator and 
condenser yields better exergy efficiency. Increasing evap-
orator temperatures results in an increased enthalpy dif-
ference in the expander. This increase causes a reduction 
in mass flow rates of the mixture fluid. The effect of varia-
tions in enthalpy difference and mass flow rate entails an 
increase in the net power output of the cycle. It is noted 
that the mass fraction of R227EA in the mixture is found 
respectively 0.590 when exergetic efficiency is maximized 
and 0.20 when SIC is minimized. Tables  4 and 5 

respectively report the single-objective optimization 
results of the ORC system for the NSGA-II and MOPSO algo-
rithms. By looking at the results, it is realized that OPSSAJ 
outperformed the other two competing algorithms for the 
single-objective optimization task.

Figure 5 shows the Pareto solutions found by the NSGA-
II [58], MOPSO [59] and OPSSAJ algorithms for the base 
ORC system running with R600 working fluid. Each sample 
solution on the Pareto curve represents a trade-off and no 
solution is superior to the other on the frontier. It is seen 
that the final solution selected by TOPSIS from the alterna-
tive sample points on the curve is much closer to minimum 
SIC rather than maximum second law efficiency. Moreover, 
the pareto curve generated by the OPSSAJ algorithm has 
more desirable desirable solutions compared to that of 

Fig. 5  Non dominated solu-
tions obtained by the OPSSAJ, 
MOPSO and NSGA-II for ORC 
running with R600 refrigerant

Fig. 6  Pareto optimal solutions 
obtained by OPPSAJ, MOPSO 
and NSGA-II for ORC operating 
with R227EA working fluid
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NSGA-II and MOPSO optimizers. Referring to the final opti-
mum solution on the Pareto curve constructed by OPSSAJ 
and obtained by TOPSIS, optimal values of exergetic 
efficiency and Specific Investment Cost are respectively 
0.3758 and 5499.612 ($/W). Optimal solutions attained by 
TOPSIS for SIC and exergetic efficiency are correspondingly 
2.7% higher and 24.2% lower compared to the optimum 
ORC system running with single R600 refrigerant when 
design objectives are seperately optimized. Figure  6 
depicts the distribution of the non-dominated solutions 
on the Pareto curve for ORC running with R227EA. TOPSIS 

results of ORC for OPSSAJ with R227EA for second law effi-
ciency and SIC are respectively 0.3228 and 7636.917 ($/W). 
The optimization results indicate that SIC and exergetic 
efficiency rates are correspondingly increased by 1.4% and 
2.1% compared to that of the optimum solutions obtained 
from single-objective optimization. Furhermore, it is seen 
that the Pareto curve constructed by OPSSAJ has better 
solutions compared to that of NSGA-II and MOPSO algo-
rithms. Figure 7 shows the non-dominated solutions of the 
conflicting objectives residing on the Pareto curve for the 
ORC system with the R227EA/R600 mixture refrigerant. 

Fig. 7  Pareto solutions for the 
ORC cycle employing R227EA/
R600 refrigerant mixture

Table 6  Optimal values 
of cycle parameters and 
conflicting design objectives 
obtained with the OPSSAJ 
algorithm

Designvariables R227EA R600 R227EA/R600

Condenser temperature (K) 303.151 303.150 303.150
Evaporation pressure or temperature (MPaorK) 2.289 (MPa) 1.673 (MPa) 373.149 (K)
Superheat temperature (K) 29.999 0.0608 0.0002
Evaporator pinch temperature (K) 19.993 14.856 8.000
Condenser pinch temperature (K) 13.341 14.989 5.000
Condenser outer tube diameter (m) 0.015 0.015 0.015
Condenser shell diameter(m) 0.250 0.281 0.270
Condenser baffles spacing (m) 0.237 0.168 0.499
Condenser number of tube passes 4 6 4
Condenser tube arrangement Triangular Triangular Square
Evaporator outer tube diameter (m) 0.015 0.015 0.015
Evaporator shell diameter (m) 0.250 0.250 0.250
Evaporator baffle spacing (m) 0.015 0.150 0.150
Evaporator number of tube passes 8 8 8
Evaporator tube arrangement Triangular Triangular Triangular
Refrigerant mass flow rate(kg/s) 0.799 0.282 0.250
Mass fraction (R227EA/R600) – – 0.212
Second law efficiency 0.3228 0.3758 0.4491
Specific investment cost ($/W) 7636.917 5499.612 7025.801
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TOPSIS results of OPSSAJ for the ORC cycle employing 
the refrigerant mixture are 0.4534 for exergetic efficiency 
and 7031.801 ($/W) which are respectively 32.7% higher 
and 4.1% lower than those of the solutions obtained for 
the case of single-objective optimization. It is also real-
ized that the OPSSAJ Pareto curve consists of more desir-
able solutions compared to that of NSGA-II and MOPSO 

algorithms. Table 6 reports the TOPSIS results of OPSSAJ 
along with their corresponding design variables for the 
ORC system operating with different refrigerants. Tables 7 
and 8 respectively report the TOPSIS results of NSGA-II and 
MOPSO algorithms for the ORC system. The results show 
that TOPSIS solution of OPSSAJ is more desirable than that 
of the NSGA-II and MOPSO algorithms.     

Table 7  Optimal values 
of cycle parameters and 
conflicting design objectives 
obtained with the NSGA-II 
algorithm

Designvariables R227EA R600 R227EA/R600

Condense rtemperature (K) 303.184 303.182 303.183
Evaporation pressure or temperature (MPaorK) 2.429 (MPa) 1.757 (MPa) 373.147 (K)
Superheat temperature (K) 25.179 0.2786 0.0018
Evaporator pinch temperature (K) 17.460 14.752 8.000
Condenser pinch temperature (K) 15.863 14.416 5.000
Condenser outer tube diameter (m) 0.015 0.015 0.015
Condenser shell diameter (m) 0.250 0.296 0.250
Condenser baffles spacing (m) 0.289 0.170 0.499
Condenser number of tube passes 6 8 6
Condenser tube arrangement Triangular Triangular Square
Evaporator outer tube diameter (m) 0.015 0.015 0.015
Evaporator shell diameter(m) 0.250 0.250 0.250
Evaporator baffle spacing (m) 0.015 0.150 0.150
Evaporator number of tube passes 4 4 4
Evaporator tube arrangement Square Triangular Square
Refrigerant mass flow rate(kg/s) 0.772 0.296 0.250
Mass fraction (R227EA/R600) – – 0.247
Second law efficiency 0.3347 0.3872 0.4578
Specific investment cost ($/W) 10,131.258 5764.107 9947.876

Table 8  Optimal values 
of cycle parameters and 
conflicting design objectives 
obtained with the MOPSO 
algorithm

Designvariables R227EA R600 R227EA/R600

Condenser temperature (K) 303.279 303.596 303.542
Evaporation pressure or temperature (MPaorK) 2.345 (MPa) 1.756 (MPa) 373.137 (K)
Superheat temperature (K) 27.056 0.2569 0.0015
Evaporator pinch temperature (K) 17.462 14.108 8.000
Condenser pinch temperature (K) 15.429 14.587 5.000
Condenser outer tube diameter (m) 0.015 0.015 0.015
Condenser shell diameter (m) 0.250 0.252 0.286
Condenser baffle sspacing (m) 0.285 0.176 0.499
Condenser number of tube passes 6 8 8
Condenser tube arrangement Triangular Triangular Square
Evaporator outer tube diameter (m) 0.015 0.015 0.015
Evaporator shell diameter (m) 0.250 0.250 0.250
Evaporator baffle spacing (m) 0.015 0.150 0.150
Evaporator number of tube passes 6 6 6
Evaporator tube arrangement Triangular Square Triangular
Refrigerant mass flow rate (kg/s) 0.771 0.283 0.229
Mass fraction (R227EA/R600) – – 0.235
Second law efficiency 0.3446 0.3972 0.4672
Specific ınvestment cost ($/W) 8149.547 5551.028 9646.097
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6  Conclusion

This study proposed a hybrid Oppositional Salp Swarm—
Jaya optimization (OPSSAJ) algorithm for solving multi 
objective design optimization of an Organic Rankine Cycle 
operating with a binary mixture composed of R227EA/
R600. The proposed hybridization procedure focuses on 
enhancing the diversity of the population and manintain-
ing a plausible balance between the diversification and 
intensification whih are two important phases of any opti-
mization algorithm. SSA is a powerful optimizer having 
plenty of applications in the literature. However, major 
drawback of SSA is too much exploitation caused by the 
chain movement of the salps on the fertile areas. This defi-
ciency is conquered by using opposite point of the current 
solution which can diversify the search space and enables 
to reach unknown paths of the solution domain. Jaya 
algorithm is an effective metaheuristic optimizer having 
a superior capability in local minima avoidance thanks to 
its dexterious manipulation schemes. It is aimed to com-
pansate for the algorithm-specific disadvantages of SSA by 
hyridizing it with Jaya and Oppositonal-based algorithms, 
both of which having an exceptional exploration capabil-
ity. The proposed hybrid OPSSAJ is applied to a suite of 
twenty-four test functions comprised of unimodal and 
multimodal problems in order to benchmark its opti-
mization efficiency on multidimensional test problems. 
Statistical analysis have been performed and numerical 
results obtained from OPSSAJ have been compared with 
those acquired by some of recently developed metaheuris-
tic optimizers. The proposed algorithm outperforms the 
contender algorithms with regards to the solution accuracy 
and robustness in most of the cases. Integrating the basic 
mutation scheme of JAYA with QOBL method significantly 
boosts the optimization performance of the hybrid method 
such that the proposed algorithm obtains the best opti-
mum results ins 20 out of 24 test functions and hows the 
best predictive accuracy when ranking-point based assess-
ment is performed. As a real-world case application, OPP-
SAJ is evaluated on solving a multi objective design of and 
Organic Rankine Cycle. Optimum cycle design parameters 
have been acquired by the proposed algorithm consider-
ing single and multi objective optimization cases. Multi-
objective optimization of ORC system results shows that 
using a binary mixture instead of a single refrigerant greatly 
enhances the second law efficiency of the cycle. However, 
using binary mixture increases the SIC of the system com-
pared to the system running with R600 refrigerant, based 
on the numerical outcomes of the TOPSIS decision-maker. 
During sensitivity analysis, it is also interesting to see that the 
second law efficiency of the thermal cycle is increased then 
enters a declining zone as the mass fraction of R227EA in the 

refrigerant mixture increases. This behavior can be attributed 
to the intrinsic thermal characteristic of R227EA refrigerant. 
Furthermore, a sensitivity analysis have been performed 
based on the non-dominated solution of the Pareto curve 
chosen by TOPSIS to observe the influences of the varying 
cycle parameters on the problem objectives.
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