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Abstract
This study proposes an optimization method called Global Best Algorithm for successful solution of constrained and 
unconstrained optimization problems. This propounded method uses the manipulation equations of Differential Evo-
lution, dexterously combines them with some of the perturbation schemes of Differential Search algorithm, and takes 
advantages of the global best solution obtained on the course of the iterations to benefit the productive and feasible 
in the search span through which the optimum solution can be easily achieved. A set of 16 optimization benchmark 
functions is then applied on the proposed algorithm as well as some of the cutting edge optimizers. Comparative study 
between these methods reveals that GBEST has the ability to achieve more competitive results when compared to other 
algorithms. Effects of algorithm parameters on optimization accuracy have been benchmarked with some high-dimen-
sional unimodal and multimodal optimization test functions. Five real world design problems accompanied with three 
challenging test functions have been solved and verified against the literature approaches. Optimal solution obtained 
for economic dispatch problem also proves the applicability of the proposed method on multidimensional constrained 
problems with having large solution spaces.

Keywords  Constrained optimization · Differential evolution · Differential search · Economic dispatch problem · 
Optimization

1  Introduction

Optimization plays a great role in real world problems as 
there are many industries and companies deals with find-
ing optimum design of their products. There are plenty of 
applications of optimization problems in the world rang-
ing from economics to engineering that should be solved 
in a reasonable amount of time within a plausible preci-
sion in order to reliably answer the needs of the society 
as well as to tackle the complexities that are inherent in 

any kind of real world design problem. Most of the real 
world problem involves binding and conflicting design 
constraints that are formed under the effect of material 
properties and nonlinearities not only associated with 
design variables but also some restrictions related with the 
type of optimization objective such as maximum stress, 
maximum deflection, geometrical characteristics, etc. 
[1]. In addition, increasing problem dimension hampers 
finding optimum solution of the problem which is caused 
by the increase in the number of search domain in the 
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solution space. However, classical optimization techniques 
fails to give suitable and rational results for these kind of 
problems due to their deficiency in coping with the local 
optimum points and indifferentiable paths of the search 
domain. Therefore, researchers have devoted themselves 
to search for other alternatives for successful solution. 
Under the category of the approximate based algorithms, 
metaheuristics can be said as a promising and favourable 
alternative for conventional methods.

Metaheuristic algorithms are literally divided into two 
different groups [2–4]: These are single solution and pop-
ulation based algorithms. In individual (single solution) 
based algorithms, a set of solution is generated randomly 
at the initial phase of the algorithm and candidate solu-
tions are iteratively adjusted throughout the optimization 
process. Tabu Search [5], Hill climbing [6], and Iterated 
Local Search [7] are good examples of the algorithms that 
can be grouped in individual based optimization meth-
ods. They are all local search based techniques developed 
with a strong aim to jump over local optimum points in 
the search domain. Multiple solution based (population 
based) algorithms have such advantages over single 
solution ones that they can jump over the local optimum 
points on the search domain and easily settle on the 
promising areas through the communication between 
neighboured candidate solutions [2]. Therefore, it can be 
concluded they have considerably high exploration ability 
with having a relatively satisfying convergence speed as 
compared to individual solution based algorithms, which 
are better at exploitation [2]. Particle Swarm Optimization 
(PSO) [8], Gravitational Search Algorithm (GSO) [9], Har-
mony Search Algorithm (HS) [10], and Ant Colony Optimi-
zation (ACO) [11] are the most popular and widely quoted 
population based algorithms, those of which have been 
applied on variety of optimization tasks. However, they 
inherit some serious operational drawbacks that it requires 
huge number of iterations to acquire the optimum result 
which increases the computation time as well as impos-
ing a considerable burden in terms of computational cost.

Differential Evolution (DE) [12] is a conventional popu-
lation based metaheuristic optimization algorithm which 
has favorable exploratory and exploratory capabilities. The 
proposed algorithm in this paper is based on the Differ-
ential Evolution algorithm and many variants of the Dif-
ferential Evolution algorithm is proposed in the literature. 
Li et al. [13] proposed modified versions of JADE and CoDE 
algorithms applied the algorithms on various unimodal 
and multimodal test functions. The authors compared the 
results of these modified algorithms with that of other 
non-DE algorithms and some other DE-variants. The results 
showed the superiority of the proposed modified algo-
rithms. Mohamed et al. [14] introduced an enhanced Dif-
ferential Evolution (EDDE) algorithm by slightly changing 

the mutation scheme of the algorithm. The authors 
applied the algorithm on twenty four test problems and 
five constrained engineering problems and compared the 
results with that of some other metaheuristic optimizers. 
The EDDE algorithm came up with more desirable results 
than the other optimizers. Mohamed and Mohamed [15] 
proposed an Enhanced Adaptive Guided Differential Evo-
lution (EAGDE) algorithm that reduces the population 
size over the iterations according to a non-linear func-
tion. Moreover, a new rule is added to determine the initial 
population size of the algorithm which is correlated with 
the dimension size of the problem. The authors evaluated 
the effectivity of the algorithm by applying on CEC2013 
benchmark problems and comparing the results with that 
of their non-DE optimizers. The results showed that the 
proposed algorithm outperformed other algorithms in 
terms of optimization performance. Polakova et al. [16] 
introduced a novel adaptive mechanism based on linear 
reduction of the population size and enables to increase 
or decrease the size during the search to the DE algorithm. 
The efficiency of this new method is assessed by compar-
ing the DE variants with and without the adaptive mecha-
nism on CEC2014 test suite. As a result of this paper, the 
proposed method proved its effectivity especially on more 
complex multimodal and hybrid problems. As can be seen, 
most recent papers in the literature either introduces a 
novel mutation scheme or adopts an adaptive population 
size changing strategy to increase the optimization capa-
bility of the Differential Evolution algorithm and the results 
proved the effectiveness of these approaches.

Swarm Intelligence (SI) based optimization algorithms 
are the most prevalent and prominent branch of popu-
lation based algorithms. These kind of algorithms are 
occasionally based on the flocking behaviour of fishes, 
birds and collective movements of some nature colonies. 
In addition to previously mentioned and renowned ACO, 
PSO, and GSA optimizers, recently new emerged intelli-
gent swarm based algorithms including Artificial Coopera-
tive Search (ACS) [17], Hunting Search (HUNT) [18] can be a 
good example of SI based optimizers. These methods take 
the advantages of utilizing the previous experiences of the 
populations and benefit the collectivity resulted from the 
historical knowledge of population evolution. They gen-
erally have fewer adjustable algorithm parameters than 
those of evolutionary algorithms by which probing capac-
ity of the algorithm is restricted to some extent [2].

Physics- based optimizers can also be categorized into 
metaheuristic algorithms. They usually simulate the nature 
inspired physical phenomenas to tackle the optimization 
task at hand. Galaxy based Search Algorithm (GBSA) [19], 
Charged System Search (CSS) [20], Big Bang–Big Crunch 
algorithm (BB–BC) [21], Ray optimization (RAY) [22], Col-
liding Bodies Optimization (CBO) [23] are some of the most 
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applied and popular ones available in the literature. For 
instance, GBSA is based on the movements of the spiral 
arms of spiral galaxies to explore their neighbourhoods 
with using chaotic numbers in order to avoid local opti-
mum points. CSS uses the fundamental equation of Cou-
lomb’s law and some preliminaries on Newtonian mechan-
ics in order to obtain optimum solution of the problem. 
BB-BC predicates its establishment on one of the theories 
which is related to evolution phases of the universe. RAY 
is constructed on the Snell’s law of refraction and manipu-
lates decision variables of any optimization problem by 
virtue of this physical law. CBO algorithm is mainly based 
on the collisions between two moving particles and their 
corresponding momentum and energy equations.

There has been made plenty of numerical studies on 
developing hybrid metaheuristics in order to strengthen 
the robustness and accuracy of the whole hybrid algo-
rithm. Some of the proposed hybrid methods given in the 
literature are PSO-HS [24], PSO-ABC [25], ACO-PSO [26], 
GA-GSA [27], KH-BBO [28], GWO-DE [29], KH-AB [30], ABC-
DE [31]. Besides, researchers put forward different strate-
gies on the grounds of mathematical operators to improve 
the search performance of metaheurstic algorithms. 
Applying local search mechanisms on associated parts 
of the algorithm has been frequently utilized strategy for 
hybridization [32–35], through which search efficiency of 
the algorithm is greatly enhanced. Chaotic maps have also 
been widely used for improving the stochasticity of the 
perturbation schemes in metaheuristic algorithms [36–40] 
by means of the chaotic numbers taking advantage of the 
ergodic and unpredictible behaviour of the dynamically 
generated chaotic sequences. Additionally, literature 
encompass human-interaction bases optimizers including 
Teaching Learning Based Optimization(TLBO) [41], Human 
behaviour based optimization (HBBO) [42], League Cham-
pionship Algorithm [43], Passing Vehicle Search (PVS) [44], 
Social Based Algorithm (SBA) [45], Group Counseling Opti-
mization (GCO) [46] etc.

A good and practical metaheuristic algorithm has the 
ability of maintaining a compromising balance between 
exploration and exploitation [47, 48]. Exploration phase 
contains perturbation equations responsible for exploring 
throughly the unvisited regions of the search domain by 
virtue of the randomized movements made by stochastic 
operators. Following that, exploitation phase come into 
practice in which promising areas of the search space are 
detailly investigated and benefited in order to promote 
the local search capacity and avoid premature conver-
gence. In this study, we propose a new algorithm called 
Global Best Algorithm (GBEST) which make use of the 
global best solution obtained over the course of the itera-
tions to perform stochastic searches around these fruitful 
regions with a view to explore solution space efficiently. By 

this way, it is intended to eliminate the tedious exploration 
phase of the algorithm and focus on exploitation phase 
to obtain possible optimum solution. Different perturba-
tion schemes taken from Differential Evolution [12] and 
some equations inspired from Differential Search [49] algo-
rithms are successively utilized and candidate solutions 
are manipulated based on the current global best solu-
tion vector. In addition, the merits of Logistic map based 
chaotic sequences have been sucessfully used instead of 
random numbers produced by uniform distribution to sus-
tain stochastic nature of the proposed algorithm. Numeri-
cal results obtained from unconstrained and constrained 
real world optimization problems show that intensification 
(exploitation) based proposed GBEST can procure plau-
sible and reasonable outcomes with respect to solution 
accuracy and efficiency. It is also shown that GBEST can 
cope with the nonlinearities and complexities inherent 
in the benchmark functions within a small amount of run 
time. The paper is organised as follows: Sect. 2 gives the 
detailed description about GBEST algorithm along with its 
corresponding pseudo-code. Section 3 reports the optimi-
zation results of unconstrained benchmark problems and 
makes discussion plaftorm on how variations of algorithm 
parameters affect the optimization performance. Section 4 
gives the optimization results of the constrained real world 
design problems obtained from GBEST algorithm as well 
as literature optimizers. Finally, the paper is concluded 
with remarkable comments in Sect. 5.

2 � Global best algorithm

This study investigates the applicability and accuracy 
of the Global Best Algorithm over the widely accepted 
constrained and unconstrained optimization problems. 
Global Best Optimizer is firstly proposed by the authors 
in [50] with an aim to optimally design heat pipes and 
spiral heat exchangers. However, detailed description of 
the algorithm phases and numerical investigations over 
widely known constrained and unconstrained problems 
have not been throughly analyzed yet. In this study, it is 
aimed to assess the performance of the GBEST algorithm 
with plenty of unconstrained problems. Moreover, in addi-
tion to the previously solved real world single and multi-
objective optimization problems with binding constraints 
in [50], this study demonstrates the solution of a pack of 
constraint optimization problems those frequently utilized 
in testing the optimization performance of the literature 
optimizers. Contrary to the majority of the metaheuristic 
algorithm available in the literature, this method is based 
on the intensification of the global best solution reached 
through the iterations. Metaheuristic algorithms are gen-
erally based on two different perturbation phases in which 
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solution vectors are manipulated on the grounds of the 
current best solution based schemes (promising solu-
tions) or exploration of the unvisited paths of the solu-
tion space. These are called exploration (diversification) 
and exploitation (intensification) phases of the algorithm. 
Their successful interaction leads to more favourbale and 
promising results, however there is no clear explanation 
on how to successfully balance these two phenomenas. 
Exploration phase generally takes more time than that of 
the exploitation since more dedication is performed on 
diversification so as to discover the unexplored regions 
of the search domain. A naive approach of 50–50 balance 
between two search components would be a plausible 
initialization for the upcoming iterations. However, GBEST 
chooses to utilize local search strategies rather than global 
search schemes in order to increase the performance of 
the algorithm. Perturbation schemes inspired from Artifi-
cial Bee Colony [51], Differential Evolution [12], and Differ-
ential search [49] algorithms have been incorporated into 
the proposed method to further investigate the different 
paths of the search space and mostly to probe around the 
global best solution obtained so far. Another benefited 
term for the proposed optimization algorithm is cha-
otic random numbers. In order to maintain stochasticity 
throughout the iterations, algorithm takes advantages of 
chaotic sequences generated by Logistic map [52], which 
was proposed by the renowned biologist Robert May and 
demonstrates that how an ergodic chaotic behaviour can 
be constructed by simple dynamical equations, instead of 
the random numbers defined between 0 and 1 based on 
normal distribution. Through the Logistic map, very effec-
tive and distinctive number sequences can be produced. 
Sequential chaotic numbers are dynamically formulated 
by the following equation.

where z(0) ∉ {0.0, 0.25, 0.5, 0.75, 1.0} . Algorithm is initiai-
lized with formation of the D dimensional N elements, X 
and Xold, with the given procedure below,

where X and Xold are the N-sized D dimensional matrices 
in which solution vectors are manipulated by means of 
the perturbation scheme; lowj and upj are respectively 
lower and upper bounds of the jth decision variable; ϕ1 

(1)z(t + 1) = 4 × z(t) × (1 − z(t)), z(t) ∈ (0, 1)

and ϕ2 are chaotic random number defined between 0 
and 1 produced by the Logistic map. After the initializa-
tion process, all matrix elements of Xold are evaluated and 
best solution vector (Gbest) are determined. At the first part 
of the algorithm matrix components of Xold are adjusted 
by the manipulation scheme given below

where Vi,j are the perturbed matrix elements under the 
effect of global best solution so far (Gbest) and matrix com-
ponents of Xold,i,j. Then, boundary control mechanism is 
come into practice in order to restrict the Vi,j individuals 
into the prescribed boundaries based on the following 
method

where rand(0,1) is a uniform random number generated 
between 0 and 1. Xold solution matrix is updated by the 
following procedure,

After that, Global best solution is decided based on the 
new Xold,i,j matrix, and this updated Gbest vector is utilized in 
the second part of the first phase of the algorithm through 
the following scheme

where Xold2 is built up by the randperm() function by which 
row elements of Xold matrix are shuffled. Utilization of Xold2 
matrix comprised of shuffled components in Eq. (4) consid-
erably increases the solution diversity as it was previously 

(2)Vi,j = Gbest,j +
(
2.0 ×

(
�2 − 0.5

))
×
(
Gbest,j − Xold,i,j

)

(3)Xold2 = randperm(Xold)

(4)Vi,j = Gbest,j +
(
2.0 ×

(
�3 − 0.5

))
×
(
Xold,i,j − Xold2,i,j

)
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benefited in Differential Search algorithm which suffers 
from slow convergence and incurs highly computational 
burden to reach the optimum solution. After numerical 
experiments, it is seen that the integration of the differ-
ence between two matrices (Xold and Xold2) into Eq.  (4) 
enormously increases probing performance of the algo-
rithm around the global best solution. Following that, 
boundary check and Gbest solution update mechanisms 
are consecutively applied and first phase of the algorithm 
is completed.

In the second phase of the proposed algorithm, basic 
manipulation equations of the Differential Evolution [12] 
algorithm will be utilized to further exploit the advantages 
of the Global best solution. Moreover, advantages of the 
ensemble learning mechanism will be also benefited. This 
strategy was previously used in Particle Swarm Optimiza-
tion [53, 54] and the variants of Differential Evolution algo-
rithm [55–57]. Global best algorithm takes advantages of 
the variety of mutation schemes and control parameters of 
the Differential Evolution algorithm. Some mutation strat-
egies are useful and applicable in global search mecha-
nism [58] whereas some remaining others are effective in 
local search and prompt higher convergence capabilities 
[59]. Therefore, in order to prevent premature convergence 
and enhance the search capacity of algorithm, population 
individuals shall communicate with each other by means 
of the different mutation schemes of DE which are collec-
tively utilized through ensemble learning. In this study, the 
most frequently used mutation strategies of DE/best/1 [60] 
and DE/best/2 [60] are combined into a single perturbation 
scheme with an aim to avoid being trapped in the local 
optimum points of the search domain. Mentioned muta-
tion schemes can be formulated as

Indices those took place in above equations r1, r2, r3, r4 
are distinct integer numbers defined in the range between 
1 and N, which are also different from current population 
index i. F is the positive valued algorithm parameter used 
for scaling different mutated solution vector and occa-
sionally defined in [0.5,1.0] [60]. Many researchers have 
proposed different scaling factor values for different 
types of optimization problems. Initial value of F = 0.5 or 
0.6 would be a favourable choice as proposed in [12, 61] 
whereas [62] it was suggested that F = 0.9 is a promising 
initial value. Apart from that, selection of F > 1, for instance 
F = 1.2, increases the chance of escaping from local opti-
mum points however, a dramatic decrease is seen in con-
vergence speed of the algorithm since larger difference 

(5)DE∕best∕1 ∶ Vi = Gbest + F ×
(
Xr1 − Xr2

)

(6)
DE∕best∕2 ∶ Vi = Gbest + F1 ×

(
Xr1 − Xr2

)
+ F2 ×

(
Xr3 − Xr4

)

between two trial solutions elongates the run time of the 
algorithm [62]. It is typical to use F in the range of 0.4 and 
0.95 [62]. In this study, after numerical tests on variety of 
optimization problems which will be discussed in the fol-
lowing sections, F is defined as a uniform random number 
generated between 0 and 1, contrary to the proof in [63] 
about transforming F into Gaussian random number does 
not improve the solution accuracy of a basic DE. Classi-
cal DE uses target vector Xi = {xi,1, xi,2,…, xi,D} along with 
mutant vector Vi,j = {vi,1, vi,2,…, vi,D} to generate trial vector 
Ui = {ui,1, ui,2,…, ui,D} through the utilization of crossover 
operation. In literature, there are two different available 
crossover operators those are called binomial (uniform) 
and exponential operators (two point modulus) [64]. Most 
frequently used one is binomical operator, expressed by 
the following scheme

In above equation, CR represents crossover probability 
that decides the number of design variables to be copied 
from mutant vector to trail vector; jrand is an integer num-
ber defined in the range [1,D]. Algorithm condition (j = jrand) 
makes at least one design variable in trial vector Ui differ-
ent from the corresponding mutant vector Xi. Successful 
parameter tuning of CR is very crucial in manipulating the 
mutant vector. There is no clear compromise on assigning 
value of CR in literature. Generally, CR is set in the range [0,1]. 
Some researchers [12, 60, 61] asserted that higher value of 
CR increase the convergence ability while some others said 
that initial value of CR = 0.1 would be a plausible initial value. 
However, it was seen that diversity of the trial solutions con-
siderably reduces and therefore stagnation occurs when 
F = 1.0 used. This value will be decided by trial-and-error 
according to the statistical results of optimization bench-
mark functions benefited in this study.

As it was previously mentioned, optimization perfor-
mance of DE depends on a suitable mutation strategy and 
its corresponding mutation parameters. However, they are 
problem-specific and it requires different mutation strate-
gies along with associated algorithm parameters for differ-
ent kind of optimization problem. Moreover, many variants 
of DE are proposed in the literature to further improve the 
exploration and explotation capabilities of the algorithm 
[14–16, 64, 65].In the context of ensemble learning, the 
idea comes along that it would be beneficial to use dif-
ferent mutation strategies with different parameter set-
tings to solve optimization problem instead of utilizing 
a single perturbation scheme as it has been traditionally 
used in a basic DE. With such an ensemble strategy, it is 
aimed to obtain fruitful offspring population by using 
the advantages of different mutation schemes and their 

(7)

ui,j =

{
vi,j if (rand(0, 1) ≤ CR)||(j = jrand

)
, j = 1, 2,… ,D

xi,j otherwise
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related parameter settings those of which show different 
characteristics for any type of optimization problem. This 
behavior also leads to enhance the solution diversity of 
algorithm due to such integration shows distinctive per-
formance on the course of iterations, which is also essen-
tial for not to be stuck in local optimas. This promising 
idea has been previously practiced through combining 
the available mutation schemes in the literature into a 
single perturbation scheme by many researchers with a 
view to ease the selection of appropiate mutation strat-
egy for a specific optimization problem. For instance, Qin 
et al. [58] proposed Self-Adaptive Differential Evolution 
algorithm (SADE) in order to overcome the computational 
cost burden by employed trial-and-error strategy of select-
ing suitable mutation schemes accompanied with their 
related parameter settings. By using this strategy, algo-
rithm parameters are iteratively adjusted and self-adapted 
on the grounds of the past experiences of the generated 
solutions. Gong et al. [66] put forward two different per-
turbation schemes of Differential Evolution with adaptive 
strategy namely called Probability Matching and Adap-
tive Pursuit. These schemes adaptively choose the most 
suitable strategy for optimization problem in the light of 
the impact history retained throughout the optimization 
process. Jia et al. [67] proposed an improved version of 
(μ + λ)-constrained differential evolution ((μ + λ)-CDE) to 
solve constrained optimization problems with an ensem-
ble of mutation strategies comprising a novel archiving 
based adaptive tradeoff model and a new mutation strat-
egy called “current-to-rand/best/1”. When compared to 
these abovementioned optimizers, ensemble strategy 
proposed in GBEST algorithm seems to be simple, yet 
effective. This study assigns the mutation strategies to 
population members with the given procedure,

where N is the population size, DE/best/1 and DE/best/2 
are the mutation schemes as respectively formulated in 
Eqs. (5) and (6). During the iterations, crossover operator 
(CR) and scale factor (F) is adjusted by the self-adaptation 
scheme proposed in Brest et al. [68] with a little modifica-
tion in the usage of scale factor F. Throughout the optimi-
zation process, after exhaustive numerical investigations 

on literature benchmark problems, scale factor is defined 
as a uniformly distributed random number generated 
between 0 and 1. Initial value, produced in the range 
between 0 and 1, is given to CR and τ (which will be explic-
itly discussed in the following section). Then, a random 
number is generated between 0 and 1. If the produced 
value is smaller thanτ, then a new CR is reset in the range 
[0,1] else initialized value of CR remains same. Following 
this phase, boundary control and feasibility check mecha-
nisms will come into practice. Population individuals those 
exceeding prescribed boundaries are restricted with the 
evolutionary constraint handling scheme proposed by 
Gandomi and Yang [69]. The proposed constraint handling 
scheme also takes advantage of the global best solution 
and is formulated by the following procedure,

where Gbest represents the global best solution obtained 
on the course of iterations; ϕ1and ϕ2 are chaotic random 
numbers generated by Logistic map; and lowj and upj 
correspondingly denote lower and upper bounds of the 
search space. This scheme was previously utilized in hybrid 
Teaching Learning Differential algorithm in [70] and its 
usage in boundary control considerably improved the 
probing capacity of the whole method. Numerical inves-
tigations on benchmark problems show that utilization of 
this constraint handling scheme gives better results when 
it is used in the second phase of the algorithm rather than 
used in first phase.

3 � Results of the numerical tests 
for unconstrained optimization 
benchmark functions

Among different alternatives, 16 optimization test func-
tions have been selected comprised of unimodal and 
multimodal functions to assess the performance of the 
proposed Global best algorithm as it has been a com-
mon practice in algorithm design evaluation [13, 71, 
72]. Unimodal functions have only one optimum point 
and have the ability of evaluating the intensification 
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performance of the algorithm while multimodal func-
tions have more than one optimum points which are 
useful and applicable in testing both exploration and 
exploitation capacity of any metaheuristic method. If 
it is to give some examples of unimodal test function, 
Sphere and Schwefel 2.22 are the prominent ones used 
in asssesment. Ackley, Rastrigin, and Griewank functions 
are good representatives of multimodal functions. Gen-
erally, these aforementioned multimodal functions have 
one optimum point while having plenty of local optima. 
A successful metaheuristic should pass over these trap 
points and reach the global optimum with a tangible 
accuracy. Optimization capability of the propounded 
GBEST method have been benchmarked against some 
of the well known optimizers of Moth-Flame Algorithm 
(MOTH-FLAME) [73], Multi-Verse Optimization (MVO) [4], 
Bat Algorithm (BAT) [74], Hunting Search (HUNT) [18], 
Quantum behaved Particle Swarm Optimization (QPSO) 
[75], Differential Search [49], Bird Mating Optimizer 
(BMO) [76], Intelligent tuned Harmony Search (ITHS) [77], 
Big Bang- Big Crunch Optimization (BB-BC) [21], Particle 
Swarm Optimization (PSO) [8] and Differential Evolution 
[12].

Initialization of the respective control parameters for 
each optimization algorithm is given as follows:

	 1.	 Global best algorithm (GBEST) Population size = 500, 
Maximum number of iteration = 100, Crossover Rate 
(CR) = 0.9, τ = 0.5

	 2.	 Moth-flame algorithm (MOTH-FLAME) Population 
size = 20, Maximum number of iteration = 2500

	 3.	 Multi-verse optimizer (MVO) Populaton size = 20, Maxi-
mum number of iteration = 2500

	 4.	 Bat Algorithm (BAT) Population size = 10, Maximum 
number of iteration = 5000, Loudness(A) = 0.45, 
Pulse emission rate (r) = 0.5, Maximum frequency 
(Qmax) = 2.0, Minimum frequency (Qmin) = 0.0

	 5.	 Hunting search (HUNT) Hunting Group Size (HGS) = 20, 
Number of generation = 2500, Maximum movement 
toward the leader (MML) = 0.2, Iteration per epoch 
(IE) = 10, Maximum and minimum search radius of 
the hunter → Ramax = 1e-2 Ramin = 1e-7, Reorganiza-
tion parameters → α = -0.1 β = 1.0.

	 6.	 Quantum behaved Particle Swarm Optimization (QPSO) 
Population size = 10, Number of generation = 5000, 
Social and cognitive factors → c1 = 2.0 c2 = 2.0, Con-
traction-expansion coefficient (w) is initialized as 1.0 
and iteratively decreased to 0.5.

	 7.	 Differential Search (DS) Population size = 25, Number 
of generation = 2500

	 8.	 Bird Mating Optimizer (BMO) Population size = 200, 
Number of generation = 250

	 9.	 Intelligent tuned Harmony Search (ITHS) Harmony 
memory size = 20, Maximum number of itera-
tion = 2500, Harmony memory consideration rate 
(HMCR) = 0.95

	10.	 Big Bang–Big Crunch Algorithm (BB-BC) Population 
size = 25, Maximum number of iteration = 2000, Algo-
rithm parameters → α = 0.4 β = 0.8

	11.	 Differential Evolution (DE) Population size = 10, Maxi-
mum number of generation = 5000, Scale factor 
(F) = 0.9, Crossover Rate (CR) = 0.5

	12.	 Particle Swarm Optimization (PSO) Population 
size = 10, Maximum number of generation = 5000, 
Social and cognitive factors → c1 = 2.0 c2 = 2.0

For numerical experiment case in which 25,000 function 
evaluations have been considered and detailly discussed 
below, maximum number of iteration (generation) is taken 
as the half of the corresponding value given above and 
other parameters remain same.

Due to the stochastic and unpredictible characteristics 
of these optimizers, 30 algorithm runs along with sepa-
rately applied 25,000 and 50,000 function evaluations have 
been considered. Table 1 compares the statistical results 
of theses algorithms obtained after 25,000 function evalu-
ations. GBEST finds optimum solution of Schaffer, Patho-
logic, Sphere, Rastrigin, Griewank, Zakharov and Schwefel 
functions and outperforms the rest of the compared opti-
mization methods (except Rosenbrock function) in terms 
of statistical results. Moreover, the worst result obtained 
from GBEST is much better than that of other optimizers 
for most of cases. It is also worth to mention that BAT per-
forms the worst prediction performance over all optimiza-
tion functions. Rosenbrock function, consisting of huge 
narrow parabolic shaped valleys, is a challenging uni-
modal benchmark problem and its complexity consider-
ably increases with increasing dimensionality. GBEST fails 
to estimate the optimum solution of this function and is 
unable to exploit the promising and fruitful areas in the 
long valley in which optimum point is located. However, 
it is easy to see that optimization performance of GBEST is 
quite impressive in finding optimum solutions of unimo-
deal and multimodal problems. Even though algorithm is 
only based on exploitation, it can be said that it has both 
ability to escape from local entrapments and to explore 
the unvisited paths of the search domain. Table 2 depicts 
the Wilcoxon signed-rank test with a significance level of 
5%. If the results of GBEST are better than that of the com-
pared algorithm than the ‘+’ sign is used, however, if the 
results are worse than the ‘-’ sign is used. It can be seen 
from Table 2 that GBEST performs significanly better than 
the compared algorithms.
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Table 1   Numerical results of optimization problems after 25,000 function evaluations (ranked according to obtained mean solution perfor-
mances)

GBEST MOTH-FLAME MVO BAT HUNT PSO

Levy
Min 3.18948E − 09 4.08923E + 00 4.55891E − 01 1.90582E + 01 2.61181E + 01 8.95142E − 02
SD 2.40747E − 08 3.88619E + 00 3.98991E + 00 1.84446E + 01 8.79653E + 00 2.29033E + 00
Mean 2.17777E − 08 1.18124E + 01 4.67925E + 00 5.18735E + 01 3.97521E + 01 3.21198E + 00
Max 9.47202E − 06 1.80962E + 01 1.80937E + 01 1.58751E + 02 6.29806E + 01 1.00202E + 01
Rank 1 8 5 12 10 4

QPSO DS BMO ITHS BB-BC DE

Min 6.38762E − 01 3.37659E + 00 3.08217E + 00 3.11572E − 05 2.40921E + 01 4.12331E − 05
SD 3.08278E + 00 3.02487E + 00 1.39562E + 01 1.86232E − 01 9.48277E + 00 1.62279E − 01
Mean 6.09871E + 00 8.73962E + 00 1.76341E + 01 1.19836E − 01 4.19762E + 01 6.97447E − 02
Max 1.91822E + 01 1.56392E + 01 5.87520E + 01 8.74892E − 01 6.38251E + 01 4.54911E − 01
Rank 6 7 9 3 11 2

GBEST MOTH-FLAME MVO BAT HUNT PSO

Step
Min 1.13858E − 12 8.61512E − 12 2.08638E − 04 1.04682E + 01 4.33956E − 10 1.22194E − 10
SD 2.41982E − 11 8.67212E − 04 1.18692E − 04 1.59171E + 01 4.99724E − 08 8.29552E − 03
Mean 2.27131E − 11 2.28209E − 04 4.45150E − 04 4.76492E + 01 4.03716E − 08 1.01160E − 03
Max 1.49792E − 10 4.08528E − 03 7.43180E − 04 7.38975E + 01 2.04827E − 07 6.99189E − 02
Rank 1 4 5 12 2 6

QPSO DS BMO ITHS BB-BC DE

Min 6.22621E − 02 1.33995E + 00 5.26571E − 02 2.65281E − 06 3.78754E − 04 1.12829E − 07
SD 2.56203E + 00 3.26602E + 00 1.58927E − 01 9.75921E − 02 5.78955E − 01 4.93800E − 06
Mean 1.81342E + 00 7.50937E + 00 2.39649E − 01 5.37927E − 02 1.53816E − 01 5.30992E − 06
Max 9.38905E + 00 1.54182E + 01 9.62891E − 01 4.89267E − 01 3.01076E + 00 2.86827E − 05
Rank 10 11 9 7 8 3

GBEST MOTH-FLAME MVO BAT HUNT PSO

Penalized1
Min 9.02038E − 11 9.04329E − 11 4.41484E − 06 4.35913E − 01 9.35827E − 10 9.36157E − 11
SD 4.60452E − 11 4.27551E − 02 7.50536E − 06 3.26829E − 01 6.08872E − 02 1.43048E − 06
Mean 4.38997E − 11 1.58102E − 02 1.40088E − 05 1.14504E + 00 6.04771E − 02 2.84062E − 07
Max 2.17224E − 10 2.07521E − 01 3.94412E − 05 1.63511E + 00 2.07628E − 01 8.60771E − 06
Rank 1 6 4 12 8 3

QPSO DS BMO ITHS BB-BC DE

Min 2.57119E − 06 5.32712E − 02 1.14823E − 03 1.03920E − 06 1.94826E − 01 1.35867E − 08
SD 6.99551E − 02 9.99028E − 02 9.48927E − 02 3.00242E − 03 4.59812E − 01 1.47037E − 07
Mean 4.31923E − 02 2.67916E − 01 6.97652E − 02 1.08962E − 03 8.08661E − 01 1.12233E − 07
Max 2.07661E − 01 4.98562E − 01 3.70753E − 02 2.14247E − 02 2.26924E + 00 9.33494E − 07
Rank 7 10 9 5 11 2

GBEST MOTH-FLAME MVO BAT HUNT PSO

Min 0.00000E + 00 5.62814E − 03 1.41024E − 03 5.72027E + 01 7.94621E − 08 1.62513E − 04
SD 9.23083E − 06 2.18926E + 00 1.29222E − 03 6.31184E + 06 2.62782E − 06 6.48869E − 01
Mean 2.18139E − 06 9.58261E − 01 3.68926E − 03 2.15442E + 06 2.61827E − 06 2.32730E − 01
Max 4.99000E − 05 9.60972E + 00 6.98639E − 03 3.30052E + 07 1.23882E − 05 2.61112E + 00
Rank 1 5 3 12 2 4
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Table 1   (continued)

QPSO DS BMO ITHS BB-BC DE

Min 6.15708E − 01 1.10532E + 01 1.60931E + 00 3.51972E − 03 4.48721E + 01 5.06852E + 00

SD 9.36990E + 00 1.13249E + 01 5.20496E + 00 3.19735E + 00 5.48726E + 01 7.66137E + 00
Mean 1.08972E + 01 3.33027E + 01 9.07215E + 00 1.95826E + 00 1.17829E + 02 1.83057E + 01
Max 6.28263E + 01 6.70862E + 01 2.57522E + 01 2.26365E + 01 3.15698E + 02 4.55251E + 01
Rank 8 10 7 6 11 9

GBEST MOTH-FLAME MVO BAT HUNT PSO

Ackley
Min 4.44089E − 16 6.82462E − 10 3.68927E − 02 1.66282E + 00 1.66613E − 05 2.68294E − 10
SD 1.02434E − 15 4.08921E − 03 9.16832E − 03 9.86241E − 01 1.38726E − 04 1.71220E − 04
Mean 6.98461E − 15 7.31342E − 04 5.51827E − 02 1.97972E + 01 1.42442E − 04 4.45187E − 05
Max 4.50826E − 14 2.42241E − 02 8.73921E − 02 2.09913E + 01 6.59821E − 04 1.10259E − 03
Rank 1 5 6 12 4 3

QPSO DS BMO ITHS BB-BC DE

Min 6.50281E − 02 5.94246E + 00 2.19271E − 01 1.87492E − 07 7.17929E − 02 1.20350E − 07
SD 6.80261E − 01 1.17551E + 00 3.39282E − 01 2.38361E − 01 9.69826E − 03 6.53952E − 07
Mean 6.80719E − 01 8.62031E + 00 6.37957E − 01 2.07691E − 01 8.79281E − 02 7.75991E − 07
Max 3.57927E + 00 1.13832E + 01 1.46703E + 00 1.00178E + 00 1.12682E − 01 2.64013E − 06
Rank 10 11 9 8 7 2

GBEST MOTH-FLAME MVO BAT HUNT PSO

Min 0.00000E + 00 2.66930E − 12 1.06421E − 04 1.03826E + 00 1.20104E − 10 1.41248E − 10
SD 1.04923E − 08 6.50721E − 02 7.68261E − 03 2.50692E − 02 8.31927E − 03 8.26684E − 03
Mean 5.81942E − 09 1.98264E − 02 8.43826E − 03 1.09759E + 00 7.69271E − 03 7.56599E − 03
Max 3.99548E − 08 3.49777E − 01 2.75281E − 02 1.14927E + 00 3.03892E − 02 4.92628E − 02
Rank 1 6 5 12 4 3

QPSO DS BMO ITHS BB-BC DE

Min 7.71592E − 03 4.12153E − 01 1.92242E − 02 2.34321E − 06 1.61489E − 04 4.51502E − 07
SD 5.69271E − 02 1.16002E − 01 3.33713E − 02 5.59271E − 02 3.30217E − 02 4.65397E − 03
Mean 7.11192E − 02 7.33304E − 01 7.33208E − 02 2.49995E − 02 3.02823E − 02 3.17156E − 03
Max 1.84927E − 01 9.10726E − 01 1.68263E − 01 2.98541E − 01 1.40671E − 01 1.48457E − 02
Rank 9 11 10 7 8 2

GBEST MOTH-FLAME MVO BAT HUNT PSO

Rastrigin
Min 0.00000E + 00 4.17892E + 01 4.48261E + 01 7.26432E + 01 8.67212E + 01 2.31306E + 01
SD 2.56755E − 05 1.94897E + 01 1.96382E + 01 4.12619E + 01 1.90281E + 01 9.72560E + 00
Mean 1.14846E − 05 7.97251E + 01 8.18262E + 01 1.99275E + 02 1.28736E + 02 4.47602E + 01
Max 1.04725E − 04 1.35927E + 02 1.23864E + 02 2.78201E + 02 1.62937E + 02 7.86057E + 01
Rank 1 5 6 11 8 2

QPSO DS BMO ITHS BB-BC DE

Min 2.42836E + 01 1.24826E + 02 8.12836E + 01 1.56792E + 00 1.34826E + 02 6.42917E + 01
SD 1.68263E + 01 1.38729E + 01 2.58361E + 01 2.69831E + 01 4.18261E + 01 2.11569E + 01
Mean 5.42262E + 01 1.56927E + 02 1.31836E + 02 6.68268E + 01 1.99825E + 02 1.12742E + 02
Max 9.49689E + 01 1.88982E + 02 1.90738E + 02 1.27937E + 02 2.82708E + 02 1.51792E + 02
Rank 3 10 9 4 12 7
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Table 1   (continued)

GBEST MOTH-FLAME MVO BAT HUNT PSO

Rosenbrock
Min 2.63398E + 01 1.81534E + 01 2.35637E + 01 1.69172E + 01 1.69283E + 01 2.05962E + 01
SD 3.55412E − 01 2.40753E + 01 1.70542E + 00 3.01985E + 01 3.39278E + 00 1.82634E + 01
Mean 2.71827E + 01 4.27659E + 01 2.75581E + 01 6.02899E + 01 2.38751E + 01 3.32698E + 01
Max 2.76698E + 01 8.48261E + 01 2.98630E + 01 1.40271E + 02 2.92038E + 01 8.17595E + 01
Rank 3 6 4 8 1 5

QPSO DS BMO ITHS BB-BC DE

Min 3.19273E + 01 1.00273E + 02 3.04086E + 01 8.27903E + 00 2.64022E + 01 2.03280E + 01
SD 3.02769E + 01 3.67302E + 01 4.77262E + 01 4.92732E + 01 4.80271E + 01 2.50203E + 00
Mean 8.19964E + 01 1.66927E + 02 9.58398E + 01 5.93722E + 01 8.07728E + 01 2.64448E + 01
Max 1.57927E + 02 2.76945E + 02 2.56927E + 02 1.84998E + 02 2.22086E + 02 3.89021E + 01
Rank 10 11 12 7 9 2

GBEST MOTH-FLAME MVO BAT HUNT PSO

Sphere
Min 0.00000E + 00 2.07134E − 11 2.05613E − 04 1.40827E + 01 4.40672E − 10 1.65197E − 10
SD 5.86922E − 10 9.52902E − 04 1.39629E − 04 1.49485E + 01 8.33789E − 08 2.96927E − 03
Mean 2.53989E − 11 2.39828E − 04 4.84872E − 04 5.56046E + 01 5.47921E − 08 5.05793E − 04
Max 3.36978E − 09 5.31975E − 03 8.48028E − 04 8.38749E + 01 4.02975E − 07 2.19092E − 02
Rank 1 4 5 12 2 6

QPSO DS BMO ITHS BB-BC DE

Min 1.99262E − 02 3.57542E + 00 6.04821E − 02 1.09482E − 07 3.65172E − 04 1.19928E − 06
SD 5.48721E − 02 2.28231E + 00 2.05954E − 02 8.07658E − 02 1.27291E − 01 6.76450E − 06
Mean 4.38628E − 01 7.79008E + 00 2.80965E − 01 5.30281E − 02 2.65989E − 02 6.32970E − 06
Max 2.27885E + 01 1.47269E + 01 1.07335E + 00 5.98886E − 01 7.04372E − 01 4.09158E − 05
Rank 10 11 9 8 7 3

GBEST MOTH-FLAME MVO BAT HUNT PSO

Alpine
Min 1.72645E − 12 1.04454E − 07 9.40972E − 01 7.70886E + 00 1.20487E + 00 1.38255E − 04
SD 4.79083E − 05 1.16682E − 01 1.43798E + 00 6.45542E + 00 1.03770E + 00 1.94799E − 01
Mean 2.09326E − 05 3.35826E − 02 2.38965E + 00 2.28008E + 01 2.85975E + 00 7.33890E − 02
Max 2.43352E − 04 5.00068E − 01 6.86891E + 00 3.70954E + 01 5.91628E + 00 1.37372E + 00
Rank 1 2 7 12 8 3

QPSO DS BMO ITHS BB-BC DE

Min 1.46892E − 02 7.65322E + 00 2.10582E + 00 5.69921E − 05 1.92677E + 00 3.72118E − 02
SD 4.13889E − 01 1.89341E + 00 4.51989E + 00 1.56692E + 00 3.00284E + 00 3.73415E + 00
Mean 3.32997E − 01 1.26543E + 01 8.37854E + 00 7.43871E − 01 8.80635E + 00 4.68349E + 00
Max 2.04672E + 00 1.65799E + 01 2.39871E + 01 7.90338E + 00 1.44027E + 01 1.19891E + 01
Rank 5 4 10 6 11 9

GBEST MOTH-FLAME MVO BAT HUNT PSO

Salomon
Min 5.36421E − 11 6.99821E − 02 2.99982E − 01 8.99828E − 01 1.19987E + 00 3.99875E − 01
SD 4.32817E − 02 1.06725E − 01 5.69821E − 02 1.55123E − 01 9.49826E − 02 7.62623E − 02
Mean 2.49725E − 02 9.02628E − 01 3.57886E − 01 1.48921E + 00 1.41893E + 00 4.70704E − 01
Max 9.98261E − 02 1.19982E + 00 4.99871E − 01 1.79826E + 00 1.59826E + 00 6.99873E − 01
Rank 1 9 3 11 10 7
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Table 1   (continued)

QPSO DS BMO ITHS BB-BC DE

Min 3.99827E − 01 2.99817E − 01 2.07261E − 01 9.98827E − 02 1.09987E + 00 2.99873E − 01

Std.dev. 8.65292E − 02 4.97261E − 02 5.04821E − 02 1.49826E − 01 2.79271E − 01 5.32270E − 02
Mean 5.69291E − 01 3.79271E − 01 3.79762E − 01 2.82635E − 02 1.76954E + 00 3.99564E − 01
Max 7.99827E − 01 4.99817E − 01 4.99933E − 01 8.98827E − 01 2.49987E + 00 4.99948E − 01
Rank 8 4 5 2 12 6

GBEST MOTH-FLAME MVO BAT HUNT PSO

Pathologic
Min 0.00000E + 00 1.38235E − 01 1.99827E − 01 5.96261E − 01 3.14826E + 00 5.24951E − 02
SD 2.54398E − 04 2.13827E − 01 2.02281E − 01 2.68977E + 00 6.29271E − 01 3.96342E − 01
Mean 7.36792E − 05 4.39295E − 01 5.57829E − 01 3.34261E + 00 4.10282E + 00 5.39146E − 01
Max 9.54678E − 04 9.29984E − 01 1.00968E + 01 7.01082E + 00 5.17261E + 00 1.63070E + 00
Rank 1 2 4 11 12 3

QPSO DS BMO ITHS BB-BC DE

Min 5.70927E − 01 2.00158E + 00 3.14771E + 00 6.01622E − 01 6.29162E − 01 1.89982E + 00
SD 8.28971E − 01 4.12592E − 01 4.62811E − 01 3.89217E − 01 5.33896E − 01 1.87499E − 01
Mean 2.19864E + 00 3.00017E + 00 4.22370E + 00 1.50721E + 00 1.29989E + 00 2.23690E + 00
Max 3.75248E + 00 3.63827E + 00 5.04821E + 00 2.38825E + 00 2.76318E + 00 2.57867E + 00
Rank 7 9 10 6 5 8

GBEST MOTH-FLAME MVO BAT HUNT PSO

Mishra01
Min 2.59128E + 00 9.83975E + 00 3.94162E + 00 2.98166E + 00 4.58943E + 00 7.42999E + 00
SD 5.04145E − 01 6.80104E + 02 1.36152E + 01 2.21542E + 10 2.62891E + 08 4.44698E + 04
Mean 3.24188E + 00 2.82903E + 02 1.25359E + 01 4.47628E + 09 1.76013E + 08 2.84309E + 04
Max 6.05283E + 00 3.88415E + 03 1.07562E + 02 1.15245E + 11 2.88892E + 10 2.96207E + 05
Rank 1 6 5 12 11 7

QPSO DS BMO ITHS BB-BC DE

Min 2.96341E + 00 3.19342E + 04 6.72612E + 02 3.65876E + 00 1.62428E + 03 4.17927E + 00
SD 2.68746E + 00 4.59555E + 07 7.99953E + 05 3.33278E + 00 8.43620E + 08 1.29725E + 00
Mean 4.05179E + 00 1.66040E + 07 8.59265E + 06 8.26900E + 00 1.25871E + 08 5.89581E + 00
Max 1.19207E + 01 3.61471E + 08 1.29064E + 08 2.04722E + 01 6.90001E + 09 3.49462E + 01
Rank 2 9 8 4 10 3

GBEST MOTH-FLAME MVO BAT HUNT PSO

Schfewel 04
Min 6.86901E − 08 1.07226E − 02 7.88692E − 02 3.55914E + 03 8.56520E − 04 2.98377E + 00
SD 2.23139E − 02 1.31832E − 01 4.45835E − 02 4.39962E + 03 3.37864E − 01 3.78135E + 01
Mean 2.10863E − 02 1.04468E − 01 1.35726E − 01 1.00262E + 04 1.57534E − 01 3.63861E + 01
Max 1.16792E − 01 7.32916E − 01 2.62512E − 01 3.61497E + 04 1.25408E + 00 2.17791E + 02
Rank 1 2 3 12 4 6

QPSO DS BMO ITHS BB-BC DE

Min 2.12543E + 01 3.02317E + 03 3.30156E + 00 4.73496E + 00 7.70132E + 01 1.79261E + 01
SD 1.11032E + 02 6.47307E + 02 2.67352E + 01 1.25854E + 01 8.93631E + 02 1.22965E + 02
Mean 1.14747E + 02 4.19862E + 03 4.16729E + 01 2.27765E + 01 1.31332E + 03 1.45430E + 02
Max 6.80196E + 02 5.61173E + 03 1.00892E + 02 5.54726E + 01 4.25911E + 03 8.85479E + 02
Rank 8 11 7 5 10 9
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4 � Numerical benchmark on constrained 
optimization problems

In this section, minimization (maximization) performance 
of the proposed Global Best Algorithm will be tested on 
harshly constrained optimization problems. In order to 
validate and assess the performance of the proposed opti-
mization method, five real world engineering design prob-
lems along with three strictly constrained widely known 
test functions will be solved by GBEST and optimization 
results will be compared with literature studies in terms 
of statistical analysis. Exact mathematical formulations of 
these design problems, which are not given in here due to 
the space restrictions, can be found in [78, 79]. Due to the 
stochastic nature of the proposed optimizer, 50 algorithms 
runs along with 100,000 function evaluations are made 
for each test function. Maximization problems are directly 
converted into minimization problems by −f(x). All equal-
ity constraints are transformed into inequality constraints 
with mathematical representation of |h(x) − �| ≤ 0 using 
the degree of violation δ = 1.0E − 10. Constrained handling 
is maintained by the basic penalty function which converts 
constrained optimization problem into unconstrained one. 
In order to account for the equality (φ) and inequality (ψ) 
constraints taking place in the constrained test problems, 
following mathematical expression is utilized

where 1 ≤ β and 0 ≤ α. The terms α and β are penalty coef-
ficients which penalize unfeasible solutions obtained on 
the course of iterations.

(8)F(�, � , x) = f (x) +

M∑
i=1

�i�
2

i
(x) +

N∑
j=1

�j�
2

j
(x)

4.1 � Constrained problem 9: multidimensional 
economic dispatch

Economic Load Dispatch (ELD) problem is not only the one 
of the most applied optimization benchmark case in mul-
tidimensional optimization, but also an important issue 
in power system control engineering. The problem itself 
deals with obtaining optimum power generation rates in 
order to acquire possible minimum total cost whilst satisfy-
ing a bunch of system related equality and inequality con-
straints. Taking into account of the canonical mathematical 
formulation of the basic economical load dispatch prob-
lem, generation costs of power units can be represented 
by quadratic functions those of which can be characteris-
tically solved by traditional optimization techniques such 
as gradient based method [80] and the lambda iteration 
method [81]. In spite of being a simple form in mathemati-
cal aspects, real world applications of these kind of prob-
lems inherits modelling of non-smooth and non convex 
curves those are occured due the valve point effects and 
some discontinuities caused by the prohibited operating 
zones [82]. These complications make successful solving of 
economic dispatch problem harder than ever for the gradi-
ent based and mathematical programming methods since 
these methods were constructed for smooth and continu-
ous type optimization objectives. Among the majority of 
the solution options for these problems, metaheuristc 
algorithms comes one step forward due to their success 
in dealing with the complexities and difficulties which are 
posed by the non-convex, non-differentiable, and non-
continuos form of the objective function of ELD problem. 
Plenty of metaheuristic algorithms, considerable amount 
of which are recently emerged optimizer including Bat 

Table 2   Wilcoxon signed 
ranked test based on mean 
objective function error values 
for 25,000 function evaluations 
with a significance level of 
α = 0.05

Problem Pairwise comparison with GBEST algorithm

MOTH-
FLAME

MVO BAT HUNT PSO QPSO DS BMO ITHS BB-BC DE

f1 Levy + + + + + + + + + + +
f2 Step + + + + + + + + + + +
f3 Penalized1 + + + + + + + + + + +
f4 Zakharov + + + + + + + + + + +
f5 Ackley + + + + + + + + + + +
f6 Griewank + + + + + + + + + + +
f7 Rastrigin + + + + + + + + + + +
f8 Rosenbrock + + + – + + + + + + –
f9 Sphere + + + + + + + + + + +
f10 Alpine + + + + + + + + + + +
f11 Salomon + + + + + + + + + + +
f12 Pathologic + + + + + + + + + + +
f13 Mishra01 + + + + + + + + + + +
f14 Schwefel04 + + + + + + + + + + +
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algorithm [83], Firefly algorithm [84], Differential Search 
[85], Social Spider Algorithm [86] have been applied on 
ELD problems and it is seen that these kind of algorithms 
can successfully cope with the extreme non linearities 
occured by the abovementioned restrictions. Here in this 
study, the proposed Global Best Algorithm is utilized to 
retain the optimum scheduling of power generation units, 
and this method is meticilously benchmarked against 
some of the literature optimizers which were previously 
tested on ELD problems. Mathematical formulation of the 
problem, expressed on the grounds of a quadratic approx-
imation of the output power obtained from generating 
units, is represented by the following equation [87]

where F is the total generation cost in MW; Pi is the output 
power of ith generation unit in MW; N is the total num-
ber of generation units to be optimally scheduled; and ai, 
bi, and ci are the coefficients related to the cost function. 
Ripple like effect occured in the valve opening process of 
multivalve steam turbines generates highly nonlinear heat 
rate curve. This complexity can be refined through the uti-
lization of the periodic sine function. That is to say, valve 
point effects are included in total quadratic cost function 
by means of the sinusoidal terms which are formulated by 
the equation given below.

where ei and fi are the coefficients concerning the valve 
point loading effect. Problem at hand is restricted by some 
of the system imposed constraints which will be described 
in the following sections.

4.1.1 � Power generation constraints

This system constraint considers the total power load 
demand as well as the losses occured through the 
network transmission process. In order to compute 
the transmission network losses, B coefficient method 
[88], widely known and highly appreciated by the 
power industry, is applied. Power balance constraint is 
expressed as:

where PDemand stands for total power demand and PLoss 
represents transmisson losses calculated by the aforemen-
tioned B coefficient method as formulated below

(9)F =

N∑
i=1

aiP
2

i
+ biPi + ci

(10)fi
(
Pi
)
= aiP

2

i
+ biPi + ci +

||||ei sin
(
fi

(
Pmin
i

− Pi

))||||

(11)
N∑
i=1

Pi = PDemand + PLoss

In addition, it should be emphasized that power gen-
eration rates shall be restricted within predetermined 
limits such as:

Ramp rate limits are taken into consideration not 
to exceed prescribed output charges, determined and 
restricted by the physical characteristics of the genera-
tion units. Power generation rates may be varied accord-
ing to the ramp rate limits. That is, if power generation 
rates are inclined to increase, then it becomes

Else if power generation rates are in tendency to fall, 
it becomes

where the term Pprev
i

 symbolizes previous power charge of 
ith unit and PURi and PLRi are respectively ramp up and ramp 
down limits. The contribution of these terms modifies the 
constraint handling process of generation units presented 
in Eq. (12) to the expression that is given below

Prohibited operating zones (POZ) constraints consider 
some restrictions brought about by the physical limita-
tions of the system components including steam valves 
and shaft bearings [82]. As a result of these restrictions, 
some discontinuities emerge on the cost curves which 
result in prohibited operating zones. Therefore, it is a 
must to avoid these operational areas in order to pro-
duce economical outputs. All in all, feasible operation 
range of unit i can be formulated by the following terms

where m represents the total number of the prohibited 
zones of unit i; Plow

j,k
 and Pup

j,k
 are correspondingly the upper 

and lower output limits of the kth prohibited zone of the 
ith generator.

In this study, to test the convergence ability and the 
solution accuracy of the proposed GBEST algorithm, 
two different case studies with having highly correlated 

(12)PLoss =

N∑
i=1

N∑
j=1

PiBijPj +

N∑
i=1

B0iPi + B00

(13)Pmin
i

≤ Pi ≤ Pmax
i

(14)Pi − P
prev

i
≤ PURi

(15)P
prev

i
− Pi ≤ PDRi

(16)

max

(
Pmin
i

, P
prev

i
− PDRi

)
≤ Pi ≤ min

(
Pmax
i

, P
prev

i
+ PURi

)

(17)

Pi ∈

⎧
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Pmin
i

≤ Pi ≤ Plow
i,1

P
up

i,k−1
≤ Pi ≤ Plow

i,k
k = 2, 3, ..,m, i = 1, 2,… ,N

P
up

i,m
≤ Pi ≤ Pmax

i
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equations have been solved. Results obtained from the 
GBEST have been benchmarked against the outcomes 
of the literature optimizers. Due to the stochastic nature 
and unpredictible search characteristics of the Global 
Best Algorithm, 50 consecutive algorithm runs have 
been performed along with varying function evalua-
tions which depends on the multidimensionality of the 
test case. Algorithm has been run on Java on a personal 
computer having 3.0 GHz processor with 4.0 GB RAM. 
In the light of the past experience on the assessment 
of the solution accuracy of any metahuristic method, 
economic load dispatch problem with having 38 and 
40 generation units have been selected as a benchmark 
case and algorithm performance have been evaluated 
through the statistical results obtained after sequential 
algorithm runs.

4.1.2 � Case 1: 38 generation units

A system with 38 generation unit with 6000 MW total 
power demand is selected as a test case for this study. 
Cost curve characteristics and data input are taken from 
Sinha et al. [89]. On the grounds od the complex solu-
tion space, this case can evaluate the solution accuracy 
and the corresponding robustness of the algorithm. 
Table 3 compares the statistical results of the litera-
ture algorithms accompanied with the outcomes of 
the GBEST methods and abovementioned algırithms 
in terms of minimum, maximum, and average costs. 
GBEST algorithm is so consistent that it finds the same 
results on the course of 50 algorithm runs with an opti-
mum cost of 9,417,209.004 ($/h). Figure 1 depicts the 
convergence behaviour the GBEST algorithm for 38 

units test case concerning the best, worst and mean 
solution. It can be clearly observed that after a steep 
decrease at the initial phase of the iterations, algorithm 
converges to its optimum solution after 99,823 function 
evaluations.

4.1.3 � Case 2: 40 generation units

The economic dispatch problem with forty generation 
units is selected as another benchmark case for this stıdy. 
Problem itself involves the effect of valve point loading 
which increase the total number of local optimum points 
in the solution space. Total power load demand for this 
case 10,500 MW. System input data are obtained from 
Sinha et al. [89]. Table 4 compares the robustness of the 
GBEST algorithm with the state-of-art optimization algo-
rithms. It is seen that the consistency and the accuracy 
of the GBEST is much better than those of the compared 
algorithms as it attains the same optimum result through 
50 algorithm evaluations. Figure 2 show the evolution his-
tory of the GBEST algorithm for 40 unit system. Followed 
by the sharp decrease at the early phase of the iterations, 
algorithm reaches the optimum solution after 20,000 func-
tion evaluations which is very efficient and effective when 
compared to the evolution characteristics of the literature 
optimizers.

5 � Conclusion

This study proposes Global Best Algorithm (GBEST) for 
solving constrained and unconstrained optimization prob-
lems. GBEST uses the merits of the perturbation schemes 
of the Differential Evolution algorithm, blends these equa-
tions with some of the search equations inspired by Dif-
ferential Search algorithm, and benefits the so far obtained 
global best solution in order to exploit the productive and 
fertile areas in the search span. Influences of algorithm 
parameters on the optimization performance have been 
successfully benchmarked against some of the widely 
known and applied optimization test functions. Based 
on the results, suitable parameter ranges have been sug-
gested. A set of 16 test functions have been applied on 
GBEST as well as relatively new emerged literature opti-
mizers. Results reveal that optimization outcomes of the 
proposed GBEST are those of the compared state-of-art 
algorithms. In order to get a further information on the 
constrained cases, five real world design problems along 
with three binding constrained problems have been 
solved. GBEST is very competitive and much superior 
over the literature optimizers. Finally, GBEST is applied 
on multidimensional economic dispatch problem with 

Table 3   Statistical results for 38 generation systems

N/A not available

Minimum cost
($/h)

Maximum cost
($/h)

Average cost
($/h)

SPSO [90] 9,543,984.77 N/A N/A
PSO-Crazy [90] 9,520,024.60 N/A N/A
NPSO [90] 9,516,448.31 N/A N/A
PSO-TVAC [90] 9,500,448.30 N/A N/A
DE-BBO [91] 9,417,235.78 N/A N/A
BB-BC 9,596,038.65 9,954,873.50 9,735,223.85
DS 9,709,432.88 10,077,919.06 9,861,247.70
ITHS 9,492,756.85 9,860,606.40 9,721,820.17
QPSO 9,450,725.34 9,984,268.57 9,668,388,89
MVO 9,449,770.68 9,504,343.70 9,477,619.56
MOTH-FLAME 9,547,870.37 9,922,020.33 9,654,828.85
GBEST 9,417,209.00 9,417,209.00 9,417,209.00
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38- and 40 generation units. For future works, utilization 
of GBEST method will be verified on multi-objective opti-
mization problems. In addition, extraction of the unknown 

parameters of the solar cell models by GBEST algorithm 
is currently an active issue and will be discussed in an 
upcoming paper.

Fig. 1   Evolution of the objec-
tive function for 38 units 
system

Table 4   Comparison of the 
literature studies in terms 
of statistical results for 
40-generator system

Minimum cost ($/h) Avarage cost ($/h) Maximum cost ($/h)

TDE [92] 121,552.3516 121,708,0739 122,056.6991
SOH_PSO [93] 121,501.140 121,853.570 122,446.300
TSARGA [94] 121,463.070 122,928.310 124,296.540
IDE [95] 121,442.2682 121,448.8196 121,457.2746
IA_EDP [96] 121,436.9729 121,492.7018 121,648.4401
BBO [97] 121,426.9530 121,508.0325 121,688.6674
RCGA [98] 121,418.7224 121,685.9971 121,921.6589
CSOMA [99] 121,414.6978 121,415.0479 121,417.8045
DEPSO [100] 121,412.56 121,419.31 121,468.25
GBEST 121,412.5354 121,412.5354 121,412.5354

Fig. 2   Convergence character-
istics of the objective function 
for 40 units system
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