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Abstract
This study proposes a novel and dexterous local search scheme for improving the exploitation phase of a generic 
metaheuristic algorithm. The proposed local search considers a twofold probing mechanism, which takes advantage of 
a chaotic number generated by the hybrid chaotic map composed of Logistic map and Kent map to move around the 
so-far-obtained global best solutions to reach feasible candidate solutions. Also, an iterative local search scheme inspired 
by a variant of the differential evolution algorithm is incorporated into the proposed manipulation scheme to enhance 
intensification on the promising regions. The proposed scheme is included in the well-reputed metaheuristics of dif-
ferential evolution, crow search, whale optimization, and sine–cosine algorithms to assess the resulting improvements 
made on the optimization accuracy. Forty optimization benchmark functions composed of unimodal and multimodal test 
problems have been solved by the local search improved and basic forms of these optimizers to identify the amelioration 
in terms of solution accuracy and robustness. Two different real-world constrained optimization problems have been 
solved by these algorithms to analyze the improvement in solution qualities maintained by the utilization of the proposed 
local search method. Furthermore, these mentioned optimization algorithms along with their improved forms have been 
applied to one-dimensional transient heat conduction problems to obtain accurate temperature distribution across the 
heat transfer medium. Optimization results reveal that utilizing local search enhanced metaheuristic algorithms can be 
considered a favorable alternative to conventional solution methods for solving transient heat conduction problems.
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1 Introduction

Optimization is an iterative process that explores a search 
domain to obtain the optimal solution of the problem 
under the predefined specific conditions. In the context of 
mathematics, optimization aims to find the set of optimal 
decision variables (x*) which minimizes or maximizes the 
respective objective function value f(x*) depending on the 
nature of the optimization problem. Optimization algo-
rithms are practical methods utilized in obtaining optimal 
values of the problems in many disciplines. Optimization 
methods can be divided into two major categories, which 

are namely deterministic and stochastic algorithms. Deter-
ministic methods can provide and guarantee the optimal 
solution by using the analytical domain information of the 
corresponding problem. Deterministic methods ensure 
the global answer within the prescribed error tolerances 
after exhaustive and tedious time-consuming algorithm 
runs. However, they may collapse in generating optimal 
results of black-box and noisy optimization problems. 
Besides, most of the deterministic methods require good 
initial estimates and derivative information of the problem 
domain which complicates the acquisition of reliable can-
didate solutions. Stochastic optimizers are more flexible 
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and efficient than deterministic methods in dealing with 
black-box optimization problems. They are generally more 
suitable to tackle problems where domain knowledge of 
the objective function is not priorly known. Albeit, the 
major drawback of these types of algorithms is that global 
optimum is not guaranteed as they may get stuck in local 
optima in the search space due to the inherent inefficien-
cies of search equations [1].

This study deals with the useful application of 
metaheuristic algorithms, which is one of the most 
prominent members of stochastic optimization methods. 
Metaheuristic optimizers can also be subdivided into sev-
eral branches based on their inspiration foundations such 
as evolutionary algorithms (EA), swarm intelligence algo-
rithms, physics-based algorithms, etc. Genetic algorithms 
are the most popular and prevalent members of EAs, 
which imitates the major biological evolution concepts 
of living beings such as crossover, mutation, and selec-
tion [2]. Gravitational search algorithm [3] is inspired by 
the gravitational laws and principle laws of motion. This 
algorithm can be exemplified as an eminent member of 
physics-based algorithms. Particle swarm optimization [4] 
is the one of most famous swarm intelligence methods in 
the literature, which emulates the flocking behaviors of 
birds to reach the optimal solution to the problem.

Literature also comprises plenty of methodical proce-
dures for improving the solution efficiency of the available 
metaheuristic algorithms. One frequently applied method 
is creating synergy between two or three algorithms by 
hybridization, which entails an improvement in the cumu-
lative performance of the hybridized methods. The main 
idea behind this hybridization is eliminating the charac-
teristic disadvantages of each optimizer through combin-
ing the salient features thereby, producing high-quality 
candidate solutions for upcoming iterations. Zhang et al. 
[5] proposed a novel hybridized algorithm called CS-DE 
for solving real-world constrained optimization problems. 
Cuckoo search (CS) has good abilities to perform global 
search thanks to unpredictable jumps on the search 
domain made by Levy flights. Differential evolution (DE) is 
known to be an efficient optimizer for finetuning the trial 
solution samples to obtain a globally optimum solution. 
Combining these optimizers conquers the characteristic 
algorithmic drawbacks of CS to some extent, which are 
premature convergence to local optimum points and lack 
of population diversity. Singh et al. [6] integrate the basic 
search equations of the Salp Swarm Algorithm with the 
perturbation scheme of the sine cosine algorithm for solv-
ing nonlinear high dimensional optimization problems. 
Hybridization occurs in such a way that each salp in the 
population updates its current position through the merits 
of sine and cosine functions. Numerical results on various 
types of benchmark functions divulge that incorporating 

these two algorithms entails an enhancement in explora-
tion and exploitation capabilities of the hybrid method, 
which is two main generic features of any metaheuristic 
algorithm characterizing its solution accuracy and robust-
ness. Another option to upgrade the solution accuracy is 
using the merits of deterministic randomness produced 
various types of chaotic maps, which can provide unpre-
dictable random number sequences [7]. According to the 
past studies regarding the integration of chaos theory 
into metaheuristic algorithms [8–10], it is understood 
that using chaotic numbers instead of uniformly distrib-
uted Gaussian random numbers significantly boosts the 
exploration and exploitation phases of the base algorithm. 
There are many applications of chaotic numbers on the 
available metaheuristics such as gravitational search algo-
rithm [11], artificial immune system [12] and dragonfly 
algorithm [13], etc.

Local search methods are another favorable alternative 
for optimization performance improvement. In different 
literature approaches, authors utilize and take advantage 
of varying types of local search procedures to polish the 
promising trial solutions obtained by the base algorithm. 
Moradi and Parsa [14] developed a genetic algorithm 
based evolutionary method for community detection. 
Trial solutions retained by the evolutionary algorithm is 
finetuned by a local search strategy to accelerate conver-
gence and improve the diversity in the population. Qu 
et al. [15] integrate a novel local search scheme into the 
basic manipulation equations of particle swarm optimiza-
tion to enhance the exploitation of the fertile regions on 
the search domain. Toksari [16] hybridized the ant colony 
optimization algorithm with Iterated local search method 
to acquire better solution outcomes for estimation of Tur-
key’s domestic electricity consumption. Xia et al. [17] com-
bined a three-stage novel search method composed of 
tabu detecting strategy, shrinking, and local learning strat-
egies with Particle Swarm Optimization to overcome the 
algorithm-specific deficiencies of premature convergence 
and local minima entrapment. Yildiz and Topal [18] pro-
posed a micro Differential Evolution Algorithm reinforced 
by the Directional local search mechanism for solving high 
dimensional optimization problems. Gao et al. [19] put for-
ward a Discrete Harmony Search algorithm amended with 
an ensemble of local search strategies for solving urban 
traffic light scheduling problems. This research study 
aims to provide two different novelties to the literature. 
A novel local search algorithm is proposed consisting of 
two manipulative phases to increase to probing mecha-
nism of the base metaheuristic algorithm. The proposed 
approach considers a two-phase local search procedure 
that merges some kind of iterated local search method 
ameliorated by a hybrid chaotic with a modified variant of 
differential evolution scheme perturbed by an iteratively 
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adjusted algorithm parameter. Developed ensemble local 
search method is separately integrated into the basic 
search equations of differential evolution (DE) [20], Crow 
search (CROW) [21], sine–cosine algorithm (SINECOS) 
[22], and Whale optimization algorithm (WHALE) [23] to 
ameliorate their search efficiencies. A test suite of forty 
optimization benchmark functions has been applied to 
these algorithms along with their local search improved 
versions to observe the improvement in terms of solution 
accuracy and robustness. Another novelty is that this is the 
first application of metaheuristic algorithms over solving 
transient heat conduction problems. The time-dependent 
temperature distribution of different heat transfer medi-
ums is obtained by the mentioned optimizers rather than 
tedious and exhaustive root finding methods. Correspond-
ing numerical results are compared and the superiority 
of the solutions found by local search improved optimiz-
ers are verified. The remaining parts of this research study 
are organized as follows: Sect. 2 describes the essential 
search mechanism behind the proposed local search 
scheme. Section 3 provides the numerical experiments 
dealing with the exhaustive comparative study between 
local search enhanced and base metaheuristic methods 
founded on multidimensional optimization benchmark 
functions. Section 4 reports the optimum results obtained 
by the local search extended metaheuristics for two differ-
ent real-world complex constrained engineering design 
problems. Section 5 explains the application of the pro-
posed local search enhanced methods on solving tran-
sient heat conduction problems and Sect. 6 concludes this 
study with remarkable comments.

2  The proposed ensemble local search 
scheme

In this section, a novel local search strategy is introduced 
which is an ensemble of a modified iterated local search 
scheme and a variant of the DE algorithm assisted with an 
iterative perturbation parameter. The main idea behind 
developing this kind of local search mechanism is to accel-
erate the convergence tendencies of the base algorithm 
by probing around and exploiting the extracted promising 
and fertile search spaces. As mentioned in the Introduction 
section, the proposed local search in the current research 
study employs concurrently performing two different muta-
tion mechanisms, those are also complementing each other 
regarding the required balance between diversification and 
intensification. The first phase of the local search benefits 
from an integrated chaotic map, which is a hybridization 
of Logistic and Kent maps. Literature studies dealing with 
this issue strongly emphasizes the importance of hybrid-
ized chaotic maps and their solution-based superiorities 

over single chaotic maps. Luo et al. [24] proposed a novel 
image encryption algorithm based on hybridized chaotic 
maps of Baker and Logistic map and obtained competitive 
results compared to the other state-of-art image encryption 
algorithms. Demir et al. [25] proposed a novel hybrid cha-
otic map by forming Gauss and Logistic maps and applied 
the sequence of chaotic numbers on the search equations 
of particle swam optimization to enhance the solution qual-
ity. Pan et al. [26] constructed a hybrid chaotic system built 
upon the nonlinear combination of Sine map, Tent map, and 
Logistic map and applied this hybrid map and deep neural 
network structure to develop an efficient image encryp-
tion algorithm. Demir et al. [27] also claimed the foregoing 
idea that hybrid chaotic maps provide better performance 
compared to traditional one-dimensional chaotic maps and 
their feasible application over metaheuristic algorithms is 
very rare. They proposed a hybrid mapping procedure 
formed by Logistic and Sine maps and developed an origi-
nal chaotic optimization algorithm benefiting the merits 
of the ergodic number sequences generated by the hybrid 
map. The proposed algorithm is tested on various types of 
benchmark problems along with a constrained engineering 
design problem and its performance is verified against the 
well-reputed optimizers.

As in most of the literature approaches, the utmost aim 
in constructing a hybrid chaotic map is to achieve a higher 
performance in generating random numbers relying on 
their unpredictable semi-random behavior. Chaotic maps 
provide plentiful advantages over metaheuristic algo-
rithms in terms of performance improvement. Chaotic 
numbers do not repeat themselves within the prescribed 
search range which increases the possibility of exploring 
the unvisited regions on the solution domain, thereby 
persistently maintaining local minima avoidance. In this 
study, a hybrid Logistic-Kent chaotic map is proposed for 
updating the current position of population members in a 
metaheuristic algorithm. Trial-and-error based procedure 
is followed during the hybridization process. Various kinds 
of chaotic maps available in the literature are tested and 
applied to this hybridization scheme however created syn-
ergy between these two chaotic maps provides the most 
satisfactory solution outcomes. Below given set of non-
linear mathematical equations describe the essentials of 
each chaotic map used in the hybridization process. Cha-
otic number production in Kent [28] chaotic map can be 
expressed by the following equation.

where � is a random number very close to 0.5. Chaotic 
number sequences through Logistic map are generated 
by the following equation

(1)Kent
(
𝜃, xt

)
→ xt+1 =

{
xt∕𝜃 if 0 < xt ≤ 𝜃
1−xt

1−𝜃
elseif 𝜃 < xt < 1
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where � is considered to be 4.0 in Eq. (2). The algorithmic 
procedure of the hybridized method is provided in the fol-
lowing structural form

The produced chaotic number zt will be used for 
updating the current position of the particle in the pro-
posed local search scheme which can be expressed in 
Algorithm 2

In Algorithm 2, N is the population size and D is the 
dimensionality of the problem to be optimized. Xi,j

new rep-
resents the updated position of the ith population mem-
ber at the jth dimension; Xj

best
 is the so-far-obtained best 

solution at the jth dimension, and z is the chaotic number 

(2)Logistic
(
� , yt

)
→ yt+1 = �yt

(
1 − yt

) generated by the hybrid mapping. Relying on the unpre-
dictable and ergodic behavior of the random numbers 
generated by the proposed hybrid scheme, search agents 
can effectively probe around the promising neighbor-
ing solutions and eliminate the pitfalls of local optimum 
points. Figure 1 visualizes the distribution of chaotic ran-
dom numbers generated by the Logistic map, Kent map, 
and the proposed hybrid Kent-Logistic map. Figure  2 
depicts the structural representation of the hybrid map-
ping procedure.

The second phase of the local search method is built 
upon a modified version of the DE variant called DE/best/1 
whose respective perturbation equation is given below

(3)Vi = Xbest + F
(
Xr1 − Xr2

)

Fig. 1  Sequence of random numbers produced by Kent, Logistic, and the proposed hybrid chaotic map

Fig. 2  Physical structure of the hybrid chaotic map



Vol.:(0123456789)

SN Applied Sciences (2021) 3:71 | https://doi.org/10.1007/s42452-020-04065-3 Research Article

where X stands for the current population; V  is the 
mutated ith population member; r1 and r2 are random inte-
ger indices defined in [1, N]; and F is the scale factor that 
adjusts the scalar difference between two random popu-
lation members Xr2 and Xr3. In this study, a constructive 
amelioration has been made on Eq. (3) by introducing an 
algorithm-specific iterative parameter pariter and onezero() 
function both of which are responsible for increasing the 
perturbation in the population. Equation (3) takes the 
below given final form defined Algorithm 3 by utilizing 
the mentioned functional amendments.

In Algorithm 3, iter is the current iteration whereas Max-
iter represents the maximum number of iteration defining 
the termination criteria. Algorithm parameter c is itera-
tively increased, which enables the current best solution 
(Xbest) to exploit the fertile regions occupying the neigh-
borhood. The function  unifrnd(-c,c) creates a random 
number between –c and +c represented by the iteration 
dependent  pariter parameter. This iterative parameter 
helps the algorithm to avoid local optimum points in the 
search space by refining the candidate solutions utilizing 
the promising areas nearby the current best solution. The 
perturbation function randperm() shuffles the row ele-
ments of the main population (X) to produce a clone pop-
ulation (X1). The function onezero() generates NxD sized 
matrix composed of 1.0 or 0.0 valued integers and assigns 
each produced number to a population member. � is a 
chaotic random number defined in [0,1] generated by Kent 
map as formulated in Eq. (1).

Figure 3 shows the variation of numerical values of the 
parameter pariter with an increasing number of iteration. 
As the respective formulation suggests, upper and lower 
bounds of the iterative values grow with the proceeding 
iterations which provides allowances for promising trial 
solutions to reach the unexplored spaces within the fer-
tile search region. This parameter also avoids too much 
intensification on the current best solution to some extent, 
which sometimes results in getting trapped on some of 
the local best solutions leading to premature conver-
gence. Based on the above-mentioned definitions and 

formulations, the ensemble local search scheme takes the 
final form as given in Algorithm 4

In Algorithm 4, rand1(0,1) and rand2(0,1) are uniformly 
distributed random numbers in [0,1] which are also dif-
ferent from each other;  X  is the current population 
whereas Xnew is the mutated population; Update() func-
tion compares the fitness quality of the updated and cur-
rent solution vectors and copies the fittest individuals 
of Xnew into the X current solution vector. The proposed 
algorithm inherits a generic structure which enables it to 
be implemented into various kind of available metaheuris-
tic algorithms. To assess its applicability over various types 
of metaheuristic algorithms each of which having differ-
ent structural characteristics, its successful implementa-
tion is considered into Crow search (CROW), Whale opti-
mization (WHALE), differential evolution (DE), and sine 
cosine (SINECOS) algorithms. Next section deals with the 
performance evaluation of the algorithms in terms of the 
improvements made by the application of the proposed 
local search scheme.

Fig. 3  Variation of the algorithm parameter pariter with the increas-
ing number of iterations
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3  Numerical experiments

This section provides a comprehensive analysis of the 
influence of the proposed local search algorithm over the 
solution qualities of the metaheuristic algorithms. CROW 
algorithm is based on the pilfering behaviors of the intel-
ligent crows. The WHALE optimization method simulates 
the characteristic social behavior of humpback whales. 
SINECOS algorithm utilizes the merits of sine and cosine 
functions to manipulate the trial solutions. DE is an evo-
lutionary algorithm generating off-spring individuals by 
crossover, selection, and mutation operators. A test suite 
of forty optimization test functions composed of unimodal 
and multimodal benchmark problems are applied to these 
optimizers along with their local search improved ver-
sions. Unimodal test functions comprise only one global 
optimum point without involving any local optimum in 
the search domain. Therefore, they encourage the opti-
mization algorithm to intensify on the promising regions 
which also allows for benchmarking the convergence 
speed and exploitation capabilities. Whereas, multimodal 
benchmark functions involve many local optimum points 
on the solution domain which makes them available and 
suitable for testing the algorithm performance regarding 
local minima avoidance and efficient exploration of the 
solution domain. 50 consecutive algorithm runs along 
with 100 maximum number of iterations are considered 
for each algorithm due to their inherent stochastic nature. 
For each test function to be solved, 20 search agents are 
employed. Among 50 different obtained solutions, the 
best of 30 runs have been considered for statistical analysis 
which is a reliable and quantitative performance measure 
for comparing the solution accuracy and consistency of 
the metaheuristic algorithms. Two different performance 
metrics including mean and standard deviation are put 
into practice to analyze convergence qualities of the 
compared algorithms. In this context, lower standard and 
mean deviation values indicate more robust and accurate 
solutions that verify the local minima avoidance and effec-
tive diversification of the search space. Table 1 reports the 
parameter configuration of the compared metaheuristic 
algorithms. Tables 2 and 3 provide a statistical analysis of 
the multimodal test functions. “CL” prefix in this context 
explains the assistance of the ensemble local search to the 
base metaheuristic method. For f1-Levy test functions, it 
is seen that the embedded local search mechanism does 
not improve the quality of the solutions found by WHALE 
while other methods obtain slightly better solution 
thanks to the favorable contribution of the local search 
procedure. Local search boosted version of the compared 

metaheuristic algorithms acquire the global optimum 
results of f2-Ackley,  f3-Griewank,  f4-Rastrigin,  f10-Schaf-
fer, f11-Inverted cosine, f12-Wavy, f14-Pathologic, f17-Expo-
nential, and f22-Yang 4 for each algorithm run and proved 
its efficiency on multimodal test functions. As for the 
remaining test functions, the positive influence of the local 
search method on the respective solution accuracy and 
robustness is observed. Figures 4, 5, 6 and 7 visualize the 
convergence behaviors of the investigated metaheuristic 
algorithms. Berg and Engelbrecht [29] claim the idea that 
search agents should be effectively spread over a wide 
range of search domains at the initial phases of the itera-
tions by the manipulation equations of the metaheuristic 
algorithm which enables to maintain an effective explora-
tion and to obtain more diversified candidate solutions. 
As iterations proceed, extensive exploration is shifted into 
intensive exploitation which allows for intensification of 
the promising regions on the search space. Multimodal 
test functions are efficient testbeds for assessing the 
capabilities of the optimization algorithm regarding local 
minima avoidance. One can observe from Figs. 4 and 5 
that implementation of the proposed hybrid local search 
scheme on metaheuristic algorithm entails a plausible 
balance between exploration and exploitation phases as 
in most of the convergence figures rapid changes occur 
at the initial steps then followed by sharp declines in the 
evolution of objective function. This convergence behav-
ior explains that the search mechanism of the base algo-
rithm is well-assisted by the proposed ensemble local 
search procedure as plenty of local optimum points are 
avoided during the iterations and the algorithm even-
tually convergences to a point in the solution, which is 
also in line with the standpoint of the claim pioneered 
by Berg and Engelbrecht [29]. Tables 4 and 5 report the 
error deviation results of the compared metaheuristics 
for unimodal test functions. It is seen that incorporating 
the ensemble local search scheme into the base algorithm 

Table 1  Parameter configurations of the algorithms

Algorithm Parameters Value

CROW Flight length (fl)
Awareness probability (AP)

fl = 2.0
AP = 0.1

WHALE Iterative parameter (a) a = iteratively 
decreasing 
from 2.0 to 0.0

DE Scale factor (F)
Crossover rate (CR)

F = rand(0,1)
CR = 0.5

SINECOS No algorithm parameters involved –
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enormously improves the solution quality as the global 
optimum solution is obtained for each algorithm run in 
most of the test cases except for the CL-CROW optimizer. 
The global optimum solution of f24-Rosenbrock, f33-Dixon-
Price, and f39-Schwefel 2.25 test functions are not acquired 
by any of the algorithm reported in Tables 4 and 5. How-
ever, there is a significant gap between the optimal results 
found by the local search improved and base algorithms. 
Besides, amelioration in the solution quality through the 

utilization of the local search mechanism is observably 
evident for these test functions. Figures 8, 9 and 10 depict 
the evolution characteristics of the fitness functions of 
each optimization algorithm compared in Tables 4 and 
5. The quick and rapid convergence of the global opti-
mum point is observed from the figures almost for each 
benchmark function. Acceleration in convergence speed 
is obvious and observable particularly after half of the 
iterations which emphasizes the fact the hybrid algorithm 

Table 2  Statistical results of the multimodal test functions from f1-Levy to f16-Ackley N4

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related problem

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f1-Levy f2-Ackley f3-Griewank f4-Rastrigin
CROW 2.93E+00 ± 1.00E+00 1.69E+00 ± 2.56E−01 3.01E−01 ± 1.11E−01 2.21E+02 ± 2.17E+01
CL-CROW 4.58E−01 ± 1.52E−01 4.44E−16 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
WHALE 1.37E+00 ± 2.87E−01 9.71E−07 ± 1.26E−06 3.78E−03 ± 2.05E−02 5.99E+00 ± 2.71E+01
CL-WHALE 1.41E+00 ± 3.51E−01 4.44E−16 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
SINECOS 2.21E+00 ± 2.79E−01 9.26E−02 ± 6.99E−02 2.22E−02 ± 8.93E−02 1.09E+02 ± 5.05E+01
CL-SINECOS 2.03E+00 ± 3.14E−01 4.44E−16 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DE 2.01E+00 ± 4.81E−01 1.41E+00 ± 1.67E−01 2.95E−01 ± 1.25E−01 2.02E+02 ± 1.32E+01
CL-DE 1.33E+00 ± 2.87E−01 4.44E−16 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f5-Zakharov f6-Alpine f7-Penalized1 f8-Quintic
CROW 1.01E+02 ± 1.67E+01 6.73E+00 ± 1.91E+00 9.55E−02 ± 4.79E−02 7.54E+02 ± 5.17E+02
CL-CROW 9.66E−57 ± 6.19E−56 5.38E−41 ± 1.73E−40 5.11E−03 ± 2.84E−03 1.19E+01 ± 5.09E+00
WHALE 9.13E+01 ± 3.15E+01 4.44E−02 ± 3.44E−01 6.57E−02 ± 3.64E−02 3.91E+01 ± 1.02E+01
CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 4.06E−02 ± 2.45E−02 2.97E+01 ± 8.78E+01
SINECOS 5.43E+01 ± 1.52E+01 1.14E−01 ± 2.11E−01 3.21E−01 ± 6.38E−02 1.27E+02 ± 6.61E+01
CL-SINECOS 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 1.88E−01 ± 1.32E−01 5.29E+01 ± 9.30E+00
DE 1.19E+02 ± 1.82E+01 9.12E+00 ± 1.82E+00 2.24E−01 ± 1.00E−02 2.96E+02 ± 1.58E+02
CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 4.00E−01 ± 2.22E−01 4.95E+01 ± 1.32E+01

f9-Csendes f10-Schaffer f11-Inverted cosine f12-Wavy
CROW 9.01E+03 ± 7.65E+03 9.09E−02 ± 1.21E−02 2.72E+01 ± 8.62E+00 8.05E−01 ± 2.49E−02
CL-CROW 8.85E−228 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
WHALE 4.19E−13 ± 2.79E−12 6.67E−03 ± 5.96E−03 2.96E−10 ± 7.52E−10 8.26E−02 ± 1.87E−01
CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
SINECOS 6.91E+02 ± 2.51E+03 4.83E−02 ± 1.34E−02 5.97E−01 ± 5.84E−01 5.81E−01 ± 1.21E−01
CL-SINECOS 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DE 4.43E+03 ± 2.94E+03 1.16E−01 ± 1.25E−02 1.97E+01 ± 4.46E+00 7.37E−01 ± 2.39E−02
CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f13-Hyperellipsoid f14-Pathologic f15-Salomon f16-AckleyN4
CROW 2.56E+03 ± 8.63E+02 4.89E+00 ± 3.49E−01 1.23E+00 ± 1.13E−01 − 4.98E−02 ± 1.47E+01
CL-CROW 6.17E−77 ± 2.54E−76 0.00E+00 ± 0.00E+00 2.15E−37 ± 1.95E−36 − 6.42E+01 ± 9.75E+00
WHALE 2.62E−08 ± 1.35E−07 3.89E+00 ± 8.26E−01 1.81E−01 ± 1.14E−01 − 2.18E+01 ± 2.01E+01
CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 − 5.43E+01 ± 1.10E+01
SINECOS 1.20E+01 ± 2.32E+01 4.79E+00 ± 3.35E−01 6.56E−01 ± 1.78E−01 3.80E+00 ± 1.00E+01
CL-SINECOS 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 − 3.36E+01 ± 1.12E+01
DE 1.98E+03 ± 6.09E+02 3.96E+00 ± 3.17E−01 1.40E+00 ± 1.06E−01 − 3.10E−01 ± 9.15E+00
CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 − 4.92E+01 ± 1.13E+01
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implements the exploitation phase polishing the so-far-
obtained best solutions by moving around the fertile and 
promising regions. It can be deduced from these conclu-
sive findings and discussions that avoiding local optima 

in the search space and quick convergence to the global 
optimum solution are two prominent advantages pro-
vided by the integration of the generic local search algo-
rithm into sample metaheuristic algorithms.

Table 3  Statistical results 
for multimodal benchmark 
functions from f17-Exponential 
to f22-Yang 4

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related 
problem

Mean ± SD Mean ± SD Mean ± SD

f17-Exponential f18-Trid 6 f19-Styblinski-Tang
CROW − 3.00E−04 ± 9.87E−04 3.13E+05 ± 1.13E+05 − 6.86E+02 ± 6.90E+01
CL-CROW − 1.00E+00 ± 0.00E+00 − 2.18E+02 ± 3.60E+01 − 9.61E+02 ± 4.94E+01
WHALE 9.99E−01 ± 1.21E−10 − 1.51E+02 ± 1.27E+02 − 6.81E+02 ± 9.77E+01
CL-WHALE − 1.00E+00 ± 0.00E+00 − 2.69E+02 ± 6.28E+01 − 8.54E+02 ± 7.98E+01
SINECOS − 9.17E−01 ± 1.27E−01 − 1.81E+01 ± 1.51E+01 − 4.69E+02 ± 4.01E+01
CL-SINECOS − 1.00E+00 ± 0.00E+00 − 6.90E+01 ± 3.67E+01 − 7.36E+02 ± 7.25E+02
DE − 1.61E−03 ± 4.97E−03 − 3.65E+02 ± 1.87E+01 − 6.67E+02 ± 3.21E+01
CL-DE − 1.00E+00 ± 0.00E+00 − 3.56E+02 ± 3.98E+01 − 7.53E+02 ± 6.38E+01

f20-Yang1 f21-Yang2 f22-Yang4
CROW 1.20E+08 ± 3.47E+08 2.26E−05 ± 2.12E−05 1.31E−11 ± 7.70E−12
CL-CROW 1.34E−63 ± 5.91E−63 8.73E−07 ± 1.31E−06 − 1.00E+00 ± 0.00E+00
WHALE 3.38E+12 ± 3.18E+13 9.95E−06 ± 2.86E−05 1.73E−11 ± 1.05E−11
CL-WHALE 0.00E+00 ± 0.00E+00 3.90E−06 ± 1.17E−05 − 1.00E+00 ± 0.00E+00
SINECOS 2.86E+05 ± 2.32E+06 1.30E−05 ± 1.49E−05 1.08E−10 ± 5.50E−11
CL-SINECOS 0.00E+00 ± 0.00E+00 4.57E−10 ± 6.18E−10 − 1.00E+00 ± 0.00E+00
DE 5.74E+07 ± 2.94E+08 1.40E−06 ± 1.31E−06 1.01E−11 ± 3.62E−12
CL-DE 0.00E+00 ± 0.00E+00 3.78E−08 ± 5.78E−08 − 1.00E+00 ± 0.00E+00

Fig. 4  Evolution histories of the compared algorithms for benchmark functions from f1-Levy to f6-Alpine
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Fig. 5  Convergence characteristics of the metaheuristic algorithms for test functions from f7-Penalized1 to f12-Wavy test functions

Fig. 6  Convergence histories of the compared algorithms for test functions from f13-Hyperellipsoid to f16-Ackley N4
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4  Application of the local search improved 
algorithms on engineering design 
problems

Despite the significant success shown in unconstrained 
multidimensional benchmark problems, an exhaustive 
analysis of their efficiency will be assessed on real-world 
constrained optimization problems with having challeng-
ing constraints. To integrate the imposed design constraints 
on the objective function, a very simple yet effective death 
penalty method is taken into account whose mathemati-
cal formulation will be expressed below. By using the 
static penalty method, a constrained design problem is 
converted into an unconstrained optimization problem 
by penalizing the solutions violating the prescribed con-
straints. Eliminating an unfeasible solution on the search 
space can be maintained by the following equation

where f
(
x⃗
)
 is the penalized objective function and fobj

(
x⃗
)
 

is the pure objective function of the optimization prob-
lem. Functions g

(
x⃗
)
 and h

(
x⃗
)
 respectively symbolize the 

inequality and equality constraints defined for the specific 
optimization problem. M and N respectively represent 

(4)f
(
x⃗
)
= fobj

(
x⃗
)
±

[
M∑

i=1

penal1,i ⋅max
(
0, gi

(
x⃗
))𝜎

+

N∑

j=1

penal2,j ⋅
|||
hj
(
x⃗
)|||

𝜌

]

the number of inequality and equality constraints over 
the solution domain. Parameters penal1 and penal2 are 
high-valued numbers that correspondingly penalize the 
unfeasible solutions violating the equality and inequality 
constraint functions. Parameters � and � are respectively 
considered to be 1.0 and 2.0. Two challenging real-world 
optimization cases with binding constraints including opti-
mal design of a refrigeration system and optimal design of 
a heat exchanger network problems will be solved by the 
above-mentioned metaheuristic algorithms. For each algo-
rithm, 20 search agents with a maximum number of 10,000 
iterations are considered. Due to the inherent stochastic 
nature of the metaheuristic algorithms, the best 30 out of 
50 solutions obtained by the compared methods from the 
consecutive runs are compiled for the statistical analysis.

4.1  Optimal design of a refrigeration system

The mathematical model defined in Pant et al. [30] for 
optimizing the system efficiency can be expressed by the 
following set of equations

Fig. 7  Evolution characteristics of the metaheuristic algorithms for test functions from f17-Exponential to f22-Yang 4
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Table 4  Deviation results for unimodal test function from f23-Sphere to f34-Yang 3

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related problem

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f23-Sphere f24-Rosenbrock f25-Brown f26-Streched sine wave

CROW 2.29E+02 ± 6.16E+00 2.58E+04 ± 1.40E+E+04 6.29E+11 ± 5.47E+12 4.41E+01 ± 3.98E+00

CL-CROW 2.04E−78 ± 8.94E−78 2.83E+01 ± 2.65E−01 9.75E−77 ± 8.15E−76 5.81E−20 ± 6.54E−20

WHALE 3.72E−11 ± 9.54E−11 2.88E+01 ± 7.85E−01 3.15E−12 ± 7.30E−12 3.10E−03 ± 1.21E−02

CL-WHALE 0.00E+00 ± 0.00E+00 2.87E+01 ± 1.74E−01 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
SINECOS 1.53E−01 ± 3.37E−01 4.95E+02 ± 1.06E+03 1.16E+00 ± 2.54E+00 8.37E+00 ± 3.28E+00

CL-SINECOS 9.28E−31 ± 4.25E−30 2.86E+01 ± 1.97E−01 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DE 1.69E+01 ± 4.11E+00 1.46E+04 ± 6.54E+03 2.06E+20 ± 1.93E+21 4.63E+01 ± 3.61E+00

CL-DE 0.00E+00 ± 0.00E+00 2.84E+01 ± 2.25E−01 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f27-Powell singular f28-Sum of different powers f29-Sum of squares f30-Bent cigar

CROW 8.26E+03 ± 1.54E+04 7.70E+07 ± 3.41E+08 2.75E+02 ± 7.44E+01 2.24E+07 ± 8.93E+06

CL-CROW 9.74E−76 ± 6.21E−75 1.53E−51 ± 1.18E−50 4.23E−77 ± 1.32E−76 5.18E−72 ± 2.69E−71

WHALE 2.46E−09 ± 6.74E−09 8.83E−03 ± 6.32E−02 7.61E−10 ± 2.19E−09 2.10E−05 ± 5.57E−05

CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
SINECOS 1.35E+02 ± 2.62E+02 8.69E+04 ± 6.48E+05 1.29E+00 ± 1.77E+00 9.40E+04 ± 1.36E+05

CL-SINECOS 0.00E+00 ± 0.00E+00 2.22E−33 ± 1.84E−32 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DE 2.31E+04 ± 6.81E+03 5.25E+06 ± 1.34E+07 1.96E+01 ± 4.59E+01 1.42E+07 ± 3.95E+06

CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f31-Discus f32-Different powers f33-Dixon-Price f34-Yang 3

CROW 3.18E+01 ± 7.86E+00 9.51E+00 ± 2.13E+00 9.90E+11 ± 5.79E+11 8.91E−01 ± 8.71E−03

CL-CROW 7.56E−78 ± 3.26E−77 5.77E−49 ± 1.86E−48 6.91E−01 ± 7.04E−02 − 1.00E+00 ± 0.00E+00
WHALE 3.72E−10 ± 1.41E−09 2.01E−06 ± 7.64E−06 9.81E−01 ± 4.83E−02 8.86E−01 ± 1.49E−02

CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 6.81E−01 ± 6.11E−01 − 1.00E+00 ± 0.00E+00
SINECOS 1.78E−01 ± 2.57E−01 7.21E−01 ± 8.75E − 01 8.57E+09 ± 2.66E+10 9.03E−01 ± 7.72E−03

CL-SINECOS 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 7.15E−01 ± 8.85E−02 − 9.99E−01 ± 1.09E−06

DE 3.14E+01 ± 6.97E+00 8.14E+00 ± 1.72E+00 4.89E+11 ± 2.26E+11 8.31E−01 ± 9.65E−03

CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 6.66E−01 ± 8.39E−01 − 1.00E+00 ± 0.00E+00

Table 5  Error analysis for 
unimodal benchmark 
functions from f35-Schwefel 
2.20 to f40-Dropwave

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related 
problem

Mean ± SD Mean ± SD Mean ± SD

f35-Schwefel 2.20 f36-Schwefel 2.21 f37-Schwefel 2.22
CROW 1.51E+01 ± 2.76E+00 3.32E−18 ± 1.21E−17 1.59E+01 ± 3.08E+00
CL-CROW 6.39E−40 ± 1.36E−39 4.53E−52 ± 3.27E−52 1.95E−39 ± 4.61E−39
WHALE 1.02E−07 ± 2.53E−07 1.08E−36 ± 5.27E−36 5.40E−08 ± 1.25E−07
CL-WHALE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
SINECOS 1.19E−01 ± 9.81E−02 7.97E−29 ± 4.43E−28 1.26E−01 ± 9.70E−02
CL-SINECOS 9.42E−19 ± 5.37E−18 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DE 1.32E+01 ± 2.13E+00 3.45E−12 ± 6.47E−12 1.50E+01 ± 2.43E+00
CL-DE 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f38-Schwefel 2.23 f39-Schwefel 2.25 f40-Dropwave
CROW 1.28E+06 ± 1.21E+06 3.92E+02 ± 1.31E+02 − 3.29E−02 ± 8.56E−03
CL-CROW 0.00E+00 ± 0.00E+00 3.98E+00 ± 1.03E+00 − 9.36E−01 ± 1.90E−05
WHALE 5.48E−09 ± 4.42E−08 1.32E+01 ± 3.21E+00 − 8.61E−01 ± 1.14E−01
CL-WHALE 0.00E+00 ± 0.00E+00 7.89E+00 ± 2.58E+00 − 1.00E+00 ± 0.00E+00
SINECOS 2.54E+05 ± 6.91E+05 6.06E+01 ± 8.39E+01 − 2.55E−01 ± 1.44E−01
CL-SINECOS 0.00E+00 ± 0.00E+00 1.69E+01 ± 1.67E+00 − 1.00E+00 ± 0.00E+00
DE 5.34E+05 ± 5.57E+05 4.47E+02 ± 1.73E+02 − 2.54E−02 ± 4.98E−03
CL-DE 0.00E+00 ± 0.00E+00 1.34E+01 ± 2.27E+00 − 1.00E+00 ± 0.00E+00
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Fig. 8  Evolution characteristics of the compared algorithms for unimodal test functions from f23-Sphere to f28 – Sum of different functions

Fig. 9  Convergence analysis of the unimodal test functions from f29-Sum of squares to f34-Yang
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With subjected to below-defined constraints:
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Fig. 10  Convergence characteristics of the compared algorithm for unimodal test functions from f35-Schwefel 2.20 to f40-Dropwave

Table 6 reports the optimal results along with their 
corresponding constraint function values obtained for 
the refrigeration system design problem. The known 
best optimal solution for this problem is reported 
x⃗ = {0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1.524, 1.524,

5.000, 2.000, 0.001, 0.001, 0.0072934, 0.087558}  f
(
x⃗
)
=

0.32213 in Andrei [31]. It is seen that CL-DE slightly 
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outperforms standard DE and in terms of minimum objec-
tive function value of 0.03228, however, the solution 
robustness of DE is better than CL-DE. Improvement made 

by the local search method in the quality of solutions for 
the WHALE algorithm is more significant compared to 
that of the DE method. Besides, it is interesting to see that 

Table 6  Optimal results for the 
industrial refrigeration system 
design problem

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related 
problem

CL-DE DE CL-WHALE WHALE CL-CROW CL-SINECOS

x1 0.00100 0.00100 0.00100 0.00100 0.00100 0.00107
x2 0.00100 0.00101 0.00100 0.00100 0.00100 0.00130
x3 0.00100 0.00102 0.00100 0.00100 0.00100 0.00196
x4 0.00100 0.00146 0.00100 0.00100 0.00100 0.00353
x5 0.00100 0.00104 0.00100 0.00100 0.00100 0.00154
x6 0.00100 0.00100 0.00100 0.00100 0.00100 0.00189
x7 1.52413 1.52402 1.52400 1.52400 1.52400 1.73915
x8 1.52404 1.52402 1.52400 1.52400 1.52400 1.58190
x9 4.99999 4.99999 4.99999 4.99999 4.99842 4.60145
x10 2.00000 2.00016 2.00000 2.32757 2.00558 2.74751
x11 0.00100 0.00189 0.00100 0.01398 0.00159 0.00819
x12 0.00100 0.00172 0.00100 0.01398 0.00157 0.00721
x13 0.00727 0.00940 0.00729 0.02686 0.00896 0.01914
x14 0.08729 0.11284 0.08760 0.32252 0.10762 0.21974
g1(x) − 9.02E−5 − 1.46E−5 − 8.65E−8 − 6.8E−11 − 1.33E−7 − 0.12371
g2(x) − 3.07E−5 − 4.28E−5 − 6.87E−7 − 3.1E−10 − 7.75E−5 − 0.03660
g3(x) − 7.56100 − 7.56149 − 7.56159 − 7.56160 − 7.55952 − 6.29152
g4(x) − 0.97879 − 0.98385 − 0.97886 − 0.99332 − 0.98276 − 0.98939
g5(x) − 5.01206 − 3.01E−4 − 3.20E−6 − 4.7E−10 − 2.94E−6 − 0.04394
g6(x) − 0.00619 − 0.00616 − 8.61E−7 − 2.51E−9 − 0.01596 − 0.20187
g7(x) − 0.98019 − 0.97612 − 0.98019 − 0.94313 − 0.97066 − 0.94261
g8(x) − 0.93892 − 0.92525 − 0.93891 − 0.85945 − 0.92922 − 0.85975
g9(x) − 0.99009 − 0.99035 − 0.99010 − 0.99010 − 0.99009 − 0.99461
g10(x) − 0.98070 − 0.98658 − 0.98071 − 0.98070 − 0.98106 − 0.99285
g11(x) − 0.97019 − 0.97160 − 0.97020 − 0.97020 − 0.97066 − 0.97936
g12(x) − 0.94400 − 0.94318 − 0.94399 − 0.94400 − 0.94616 − 0.96122
g13(x) − 0.59999 − 0.59999 − 0.59999 − 0.59999 − 0.59987 − 0.56535
g14(x) − 1.27E−5 − 8.42E−5 − 1.71E−6 − 0.14073 − 0.00207 − 0.27206
g15(x) − 3.17E−5 − 0.08907 − 6.73E−5 − 5.60E−9 − 0.01557 − 0.11971
Min 0.03228 0.03329 0.03229 0.04503 0.03288 0.07607
Mean 0.04818 0.03656 0.03240 0.05465 0.04751 0.10001
SD 0.00885 0.00323 1.18E−4 0.00707 0.01066 0.01849
Worst 0.07443 0.04694 0.03262 0.07201 0.07365 0.15515

Fig. 11  Schematic representa-
tion of the heat exchanger 
network design problem
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standard CROW and SINECOS optimizers fail to find a fea-
sible solution in any algorithm run, therefore these meth-
ods do not take place in Table 6. However, CL-CROW is the 
second-best performing optimizer after CL-DE. Among 
the compared methods, CL-SINECOS provides the worst 
predictive performance.

4.2  Optimal design of a heat exchanger network

A cold stream at 100 F is subjected to be heated to 500 
F employing three hot streams having different inlet 
temperatures as illustrated in Fig. 11. Relying on the fact 
that temperatures of hot streams along with their corre-
sponding thermophysical characteristics flowing through 
the series of heat exchangers are known and given in the 
below set of equations, it is aimed to obtain the optimal 
outlet temperatures of each stream which provides the 
minimum total heat exchange surface. That is, the opti-
mization goal, in this case, is to find the set of optimal 
design variables resulting in a minimum total area of heat 
exchangers [31]. The mathematical formulation of this 
design problem can be expressed by the following set of 
equations

Subjected to below-given design constraints

(6)

argmin f
(
x⃗
)

x⃗ =
{
A1,A2,A3, TC1, TC2, TH1,out , TH2,out , TH3,out

}

f
(
x⃗
)
= A1 + A2 + A3

where A1, A2, and A3 are the respective heat transfer areas 
of the first, second, and third heat exchangers lined up 
in series. Outlet temperatures of the cold streams circu-
lating through the first and second heat exchangers are 
respectively symbolized by TC1 and TC2. Outlet tempera-
tures of the hot streams are respectively represented by 
the symbols of TH1,out, TH2,out, and TH3,out. It is also worth 
mentioning that inlet and outlet stream temperatures are 
defined in the Fahrenheit scale. The best optimum known 
solution for this problem is provided in Andrei [31] given 
a s  x⃗ = {1026.948, 1000.0, 5485.282, 265.060, 280.589,

g1
(
x⃗
)
= TC1 + TH1,out − TC ,in − TH1,in ≤ 0

g2
(
x⃗
)
= −TC1 + TC2 + TH2,out − TH1,in ≤ 0

g3
(
x⃗
)
= TH3,out − TC2 − TH3,in + TC ,out ≤ 0

g4
(
x⃗
)
= A1 − A1TH1,out +

FCp

U1

TC1 −
FCp

U1

TC ,in ≤ 0

g5
(
x⃗
)
= A2TC1 − A2TH2,out −

FCp

U2

TC1 +
FCp

U2

TC2 ≤ 0

g6
(
x⃗
)
= A3TC2 − A3TH3,out −

FCp

U3

TC2 +
FCp

U3

TC ,out ≤ 0

100 ≤ A1 ≤ 10, 000, 1000 ≤ A2,A3 ≤ 10, 000,

10 ≤ TC1 ≤ 1000, 10 ≤ TC2 ≤ 1000, 10 ≤ TH1,out ≤ 1000,

10 ≤ TH2,out ≤ 1000, 10 ≤ TH3,out ≤ 1000,

FCp = 105 and U = [120, 80, 40].

Table 7  Optimal results for the heat exchanger network design problem

Bold values are the best solutions obtained by the corresponding optimization algorithm for the related problem

CL-DE DE CL-CROW CROW CL-WHALE WHALE CL-SINECOS SINECOS

x1 1073.9493 138.8717 1050.4774 1045.6817 104.6838 908.4932 781.3191 593.4413
x2 1000.0000 3933.3608 1000.0039 1000.0670 1000.0002 1000.0042 1035.0089 1302.346
x3 5439.4390 6597.0548 5571.2750 6279.5585 7443.4502 7628.1219 6437.4597 6634.997
x4 268.3603 99.5445 264.5470 255.1644 130.6153 231.8829 240.2524 210.764
x5 282.4224 240.9296 277.3403 250.1843 202.3045 195.1698 265.3606 252.179
x6 131.6396 122.9564 131.5335 124.6549 252.2818 125.4751 151.5722 174.504
x7 285.9379 146.4110 281.7915 302.7145 224.4625 260.3007 274.7753 254.503
x8 382.4224 339.2508 377.2544 349.8019 302.2948 295.0732 361.0858 345.699
g1(x) 0.0000 − 177.4990 − 3.91941 − 20.1806 − 17.1027 − 42.6418 − 8.1752 − 14.7310
g2(x) 0.0000 − 12.2038 − 5.41509 − 2.2656 − 3.8481 − 76.4124 − 0.1165 − 4.0817
g3(x) 0.0000 − 1.6787 − 0.08587 − 0.3823 − 0.0097 − 0.09658 − 4.2747 − 6.4802
g4(x) 0.0000 − 17315.88 − 8.17E−9 − 4.0E−6 − 792.3699 − 3182.384 − 767.9452 − 10660.5
g5(x) 0.0000 − 7611.516 − 1252.93 − 53778.49 − 4235.717 − 74309.32 − 4346.223 − 5193.93
g6(x) 0.0000 − 954.7732 − 4.43E−5 − 1015.61 − 33.713 − 4.270E−4 − 29628.80 − 952.632
Min 7513.3883 10,669.287 7621.7565 8325.307 8548.1344 9536.619 8253.7878 8530.785
Mean 329.2731 2637.601 614.2513 2470.965 289.6435 1398.656 286.3433 361.496
SD 7933.2837 14,689.216 8653.1931 12,239.723 9052.0461 11,650.818 8770.0161 9428.840
Worst 9803.6892 21,104.501 10,001.951 18,471.314 9781.1586 14,480.662 9141.7638 10,256.548
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134.940, 284.471, 380.589} at f
(
x⃗
)
= 7512.230 . Table  7 

reports the optimal results by the compared metaheuristic 
algorithms. CL-DE obtains the minimum objective function 
value f

(
x⃗
)
= 7513.3883 without violating any imposed 

design constraints. CL-CROW becomes the second-best 
performing optimizer with the corresponding fitness func-
tion value of f

(
x⃗
)
= 7621.7565 . It is also seen that using 

the proposed hybrid local search scheme as a performance 
booster for the mentioned metaheuristic algorithms works 
well for this optimization problem, which is deduced by 
the improved solution quality and robustness maintained 
by the local search procedure.

5  Solving transient heat conduction 
problems

In this section, a one-dimensional transient heat con-
duction problem will be solved by the abovementioned 
metaheuristic algorithms along with their local search 
boosted versions. Temperature distribution as a function 
of time and space T(x,t) in the medium is convention-
ally computed by applying various types of root-finding 
methods. In the context of this research study, root find-
ing equation that represents the solution of the problem 
is converted into an optimization problem and solved by 
the above-mentioned optimization algorithms, which can 
be conceptualized as an alternative solution strategy elimi-
nating the tedious and time-consuming location of good 
initial estimates within the respective root-finding region. 
Any erroneous or deceptive estimation of these first values 
leads to unexpected solution outcomes that may be far 
away from the exact roots of the problem. Utilizing optimi-
zation algorithms in this concept automates detecting the 
candidate roots within the defined search region which 
are, in essence, optimal solutions of the transformed opti-
mization problem.

In the most general form, the three-dimensional heat 
diffusion in a medium is expressed by the following equa-
tion defined in Cartesian coordinates

where k is the thermal conductivity; q̇ is the rate of heat 
generated in the medium; � and Cp are respectively density 
and specific heat of the medium in which the available 
heat is diffused. This equation is referred to the heat equa-
tion and provides a basic application to obtain a spatial 
temperature distribution T(x,y,z) as a function of time (t) in 
any kind of heat exchange medium. However, some modi-
fications can be made on Eq. (7) to eliminate unnecessary 
quantities. Suppose that heat transfer is one-dimensional 

(7)
𝜕

𝜕x

(
k
𝜕T

𝜕x

)
+

𝜕

𝜕y

(

k
𝜕T

𝜕y

)

+
𝜕

𝜕z

(
k
𝜕T

𝜕z

)
+ q̇ = 𝜌Cp

𝜕T

𝜕t

and no heat generation occurs within the medium. Then, 
the modified heat equation without taking into account 
these terms becomes

where � =
k

�Cp
 is the thermal diffusivity. This differential 

equation can be solved if the initial conditions and bound-
ary conditions of the heat transfer medium is specified. 
The initial conditions of the transient heat conduction 
problem can be expressed by

and the corresponding boundary conditions are

and

Where h is the convective heat transfer coefficient, L is the 
length of the medium and T∞ is the ambient temperature. 
Equation (9) explains the uniform temperature distribution 
along with the medium at initial time t = 0. Equation (10) 
reflects the zero heat flux to the medium at x = 0 and 
Eq. (11) describes the rate of heat convection at x = L when 
t > 0. From Eq. (9) to Eq. (11), one can easily comprehend 
that one-dimensional temperature distribution across the 
medium heavily depends on time (t) and space (x) along 
with the functional physical parameters given below

This problem can be either solved analytically or numer-
ically. Non-dimensionalizing the governing equations 
eases the path of solution steps of these types of prob-
lems. For instance, take the dependent variable tempera-
ture T as a function of time and space. The temperature 
difference � = T − T∞ is divided by the maximum tem-
perature difference �i = Ti − T∞ to obtain a dimension-
less dependent temperature variable which is equated by

And the dimensionless form of the spatial coordinate 
can be alternatively expressed by the following

where L is the half-thickness of the heat transfer medium. 
The dimensionless form of the elapsed time can be 

(8)
�2T

�x2
=

1

�

�T

�t

(9)T (x, 0) = Ti

(10)
�T

�x

|
|
|
|x=0

= 0

(11)−k
�T

�x

|||
|x=L

= h
[
T (L, t) − T∞

]

(12)T = T (x, t, k, h, �, L, Ti , T∞)

(13)�∗ =
�

�i

=
T − T∞

Ti − T∞

(14)x∗ =
x

L
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reformed in terms of Fourier number and can be formu-
lated by

where � is the thermal diffusivity in  m2/s and t is the 
elapsed time in seconds. Equation (9) to Eq. (11) can be 
reformulated using dimensionless numbers defined in 
Eq. (13) to Eq. (15). Thereby, the one-dimensional heat 
dissipation equation becomes

and the corresponding initial and boundary conditions 
take the final form of

where Bi = h ⋅ L∕k is the dimensionless Biot number. The 
functional dependence of Eq. (12) can be re-expressed in 
nondimensionalized form by the following equation

A significant advantage is gained by casting the prob-
lem into a dimensionless form as reformulated in Eq. (20). 
With such reformulation, universal representation of tem-
perature distribution in any type of geometry in dimen-
sionless form only depends on x∗ , Fo , and Bi . Therefore, 
the dimensionless solution will not be dependent on a 
particular value of h, � , k, L, T∞ , Ti . Nondimensionalization 

(15)Fo =
� ⋅ t

L2
= t∗

(16)
�2�∗

�x∗2
=

��∗

�Fo

(17)�∗(x∗, 0) = 1

(18)
��∗

�x∗

|||
|x∗=0

= 0

(19)
��∗

�x∗

|||
|x∗=1

= −Bi ⋅ �∗(1, t∗)

(20)�∗ = f (x∗, Fo, Bi)

in that form will greatly simplify the analytic solution pro-
cedure prescribed for solving transient heat conduction 
problems.

Many types of analytical solution techniques have been 
proposed for solving transient heat conduction problems 
for different simplified geometries having various kinds 
of boundary conditions. One of the most common math-
ematical models is the separation of variables method 
which is a convenient solution strategy to attain dimen-
sionless temperature distribution across the heat transfer 
medium in the mathematical form of infinite series. Sup-
pose that one-dimensional temperature distribution is 
expected to be obtained for a plane wall of thickness 2L 
as depicted in Fig. 12a. If the thickness of the wall is negli-
gible to its respective length, it is reasonable to presume 
that heat conduction occurs only in x-direction. Assuming 
that the uniform initial temperature of the wall at t = 0 is 
Ti, that is T(x,0) = Ti and the wall is suddenly immersed in 
a heat transfer environment at a uniform temperature of 
T∞ where Ti ≠ T∞ corresponding temperature distribution 
across the one-dimensional wall can be obtained by solv-
ing the differential equation defined in Eq. (16) subjected 
to the series of boundary conditions in the dimensionless 
form as given in Eq. (17) to Eq. (19). Since the boundary 
conditions for two symmetric surfaces x∗ = ±1 are the 
same, temperature distribution along the x-direction at 
any time instant should be symmetric to the midplane 
(x*= 0). Based on the imposed boundary conditions, the 
exact analytic solution to this problem can be expressed 
as [32] 

Where Fo is the Fourier number expressed in Eq. (15) and 
An the coefficient is defined as a function of �n by the 
below given transcendental equation

(21)�∗ =

∞∑

n=1

An exp
(
−�2

n
Fo
)
cos

(
�nx

∗
)

Fig. 12  Schematic view of a 
infinite wall and b sphere as a 
heat transfer medium
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Eigenvalues �n of Eq. (22) are the positive roots of the 
following transcendental equation

(22)An =
4 sin

(
�n
)

2�n + sin
(
2�n

)

(23)�n tan
(
�n
)
= Bi

Where Bi is the Biot number defined in the above para-
graphs. From Eq. (21) to Eq. (23), it can be concluded that 
once the eigenvalues �n are calculated from the transcen-
dental equation Eq. (23), series of An coefficients become 
known quantities and dimensionless temperature distribu-
tion �∗ will be easily obtained by Eq. (21). However, prob-
lems may arise in retaining accurate solutions of the tran-
scendental equation, which necessitates the application of 
the appropriate algorithmic procedure. There are several 

Fig. 13  Normalized � eigenvalues obtained by different optimization algorithms

Fig. 14  Temperature distribution across the infinite wall obtained by the Secant root finding method
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solution strategies available in the literature for solving 
Eq. (23) including graphical methods and different types 
of root-finding algorithms. Albeit, each different method 
has intrinsic drawbacks, complicating to obtain the accu-
rate solution of the problem. Roots of the transcenden-
tal equations can be located by the graphical methods, 
however, it may not be feasible to successfully obtain the 
accurate position of each root utilizing graphical repre-
sentation. Correct values of the roots of transcendental 
equations can be alternatively computed by root-finding 
algorithms such as the Bisection method, a derivative-
based method of Newton–Raphson, Secant methods, etc. 

However, these analytical root-finding methods require 
the correct location of the region where the related root 
lies. This can be possible in either of two ways. One option 
is to utilize graphical methods to locate the region of the 
root. Another option is to make good and plausible initial 
estimates for the iterative algorithmic procedure. Making 
promising estimates for each transcendental root may not 
be realized as it is some kind of a black-box process. To 
eliminate these difficulties in finding the correct numerical 
values of the transcendental roots, associated eigenvalues 
can be obtained by an optimization algorithm rather than 
a root-finding method. Equation (23) can be reformulated 
into an optimization problem with the below-defined 
error function

The fitness function of the optimization problem is for-
mulated in terms of root mean square error (RMSE)

as expressed in the below-defined equation

Where N is the number of transcendental roots for solv-
ing Eq. (25), which also represents the dimensionality of 
the optimization problem and is considered as 30 for this 
study. Now consider an infinite wall whose initial uniform 

(24)f
(
�n
)
= �n tan

(
�n
)
− Bi

(25)argmin fRMSE

(
�n
)
=

√√√
√ 1

N

N∑

n=1

f
(
�n
)2

Fig. 15  Estimated temperature distribution through the compared metaheuristic algorithms

Table 8  Statistical results in terms of RMSE values to obtain tem-
perature distribution across the infinite wall

Bold values are the best solutions obtained by the corresponding 
optimization algorithm for the related problem

Best SD Mean Worst

CROW 7.10E+00 4.97E+01 5.48E+01 2.10E+02
CL-CROW 3.52E−06 2.23E−01 7.24E−02 1.93E+00
WHALE 1.98E+02 9.35E+01 3.72E+02 5.27E+02
CL-WHALE 1.18E−03 2.46E−01 9.00E−02 1.30E+00
SINECOS 6.38E+02 6.13E+01 7.95E+02 9.02E+02
CL-SINECOS 4.34E−03 4.63E−01 2.78E−01 1.72E+00
DE 1.01E+01 2.01E+01 3.29E+01 5.64E+01
CL-DE 7.39E−06 2.31E−01 9.03E−02 1.30E+00
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temperature is Ti = 300 Kelvin (K), length in x-direction 
is L = 0.04  m; thermal conductivity is k = 63.9  W/m2K, 
and thermal diffusivity is � = 18.8E−6 m2/s. Sudden heat 
exchange occurs at t = 0 between the infinite wall and 
ambient whose convective heat transfer coefficient 
h = 200 W/m2K at T∞ = 400 K. Time-dependent tempera-
ture distribution along the one-dimensional infinite wall 
based on the above defined thermophysical properties 
can be obtained by using Eq. (18) to Eq. (20). Figure 13 
visualizes the sequence of �n eigenvalues obtained by the 
metaheuristic algorithms whose corresponding numerical 
values are normalized with exact solutions obtained by the 
Secant root finding method. It is seen that deviations are 
higher at the initial steps then error rates are decreased 
to some extent for CROW, DE, WHALE, and SINECOS algo-
rithms. Set of eigenvalues �n found by the local search 
improved algorithms thoroughly agree well with the exact 
solutions. Figure 14 depicts the exact temperature distri-
bution across the infinite wall for different elapsed times 
retained by the Secant root finding method. Figure 15 
compares the accuracy of temperature distribution values 
obtained by the metaheuristic algorithms and their local 
search enhanced versions. It is observed that local search 
embedded metaheuristics have the capability to predict 
the temperature distribution in the wall much more accu-
rately than those estimated by the remaining algorithms 
shown in Fig. 15. Table 8 reports the deviation results for 
the infinite wall problem. CL-CROW performs the best 
predictive performance with the minimum objective func-
tion value of 3.52E−6 among the compared algorithms 

followed by the CL-DE algorithm having the best result of 
7.39E−06 obtained after competitive algorithm runs. The 
worst estimations between the local search enhanced 
methods are performed by CL-SINECOS with the best 
solution of 4.34E−03. Base algorithms of CROW, WHALE, 
SINECOS, and DE methods are not capable to retain any 
feasible results, even in a single algorithm run. However, 
CROW makes the best estimations between them with a 
minimum objective function value of 7.10E+00. Figure 16 
illustrates the convergence histories of the compared 
algorithms for this case. After a settled stagnation period 
within the early phases of iterations, the rapid and quick 
decline is observed on convergence rates for local search 
improved algorithms. This tendency in convergence 
behavior of the improved algorithms also proves the main-
tained balance between the exploration and exploitation 
as mentioned in the algorithm development section.

Now think of a sphere as a heat transfer medium with 
a radius length ro as depicted in Fig. 12b. This sphere at 
uniform initial temperature experiences a convective 
heat exchange between the surrounding ambient whose 
corresponding mathematical model describing the heat 
transfer mechanism is similar to that is developed for the 
infinite wall. Infinite series solution of one-dimensional 
radial temperature distribution along the sphere can be 
expressed in a nondimensionalized temperature differ-
ence form by the below-given equation [32] 

Fig. 16  Evolution behaviors of the compared algorithms for infinite wall problem
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where the dimensionless radius is r∗ = r∕ro , Fourier num-
ber is Fo = � ⋅ t∕r2

o
 , and An parameter can be expressed by

(26)�∗ =

∞∑

n=1

An exp
(
−�2

n
Fo
) sin

(
�nr

∗
)

�nr
∗

where �n is the different positive roots of the below 
defined transcendental equation

(27)An =
4
[
sin

(
�n
)
− �n cos

(
�n
)]

2�n − sin
(
2�n

)

Fig. 17  Normalized � eigenvalues acquired by the compared algorithms

Fig. 18  Temperature distribution along the radius of the sphere heat transfer medium
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where Bi is the dimensionless Biot number defined as 
Bi = h ⋅ ro∕k . Equation (28) can be transformed into an 
unconstrained optimization problem by the following 
equation in the form of an error function

The above error function is embedded in Eq. (25) to 
formulate the objective function of this parameter esti-
mation problem. Assume a sample sphere as a case study 
whose radius length (r0) is 0.08 m, thermal conductivity 
(k) is 15.0 W/m K, and thermal diffusivity (α) is 5.0E−6 m2/s 
at an initial temperature (Ti) of 300 K, which experiences 

(28)1 − �n cot
(
�n
)
= Bi

(29)f
(
�n
)
= 1 − �n cot

(
�n
)
− Bi

a thermal interaction between the surrounding ambient 
( T∞ ) at initially 400 K having a convective heat transfer 
coefficient (h) of 200.0 W/m2 K. It is aimed to obtain the 
time-dependent heat conduction along the radial axis of 
the sample sphere by the compared algorithms for these 
defined thermal conditions. Figure 17 shows the normal-
ized predicted parameters of eigenvalues obtained by 
the metaheuristic algorithms. Predictive results found by 
the local search enhanced methods fully agree well with 
the exact solutions retained by the Bisection root-finding 
method for this case. Estimated values are erroneous at 
the initial steps then deviations rates are decreased as pro-
ceeding to the final steps for the remaining metaheuristic 
algorithms. Figure 18 visualizes the estimated temperature 
distribution along the sphere radius for each algorithm. It 
is observed that local search improved methods can cap-
ture the time-dependent temperature trend obtained by 
the Bisection root finding method as shown in Fig. 19. 
Table 9 reports the statistical deviation results obtained 
by the compared algorithms for this case. The accuracy 
of the optimal solutions is much better than those com-
pared to the infinite-wall problem. Local search improved 
metaheuristics significantly outperform the remaining 
algorithms in terms of solution accuracy and persistence. 
Among the improved algorithms, CL-DE slightly surpasses 
CL-CROW in terms of the best fitness value of 4.40E−12 
and becomes the best performing improved algorithm 
for this parameter identification problem. CL-CROW is the 
second-best method with a minimum objective function 
value of 4.53E−12, which is followed by the CL-SINECOS 
method having the best prediction rate of 9.15E−10. 

Fig. 19  Time-dependent temperature distribution along the radial axis of a sphere

Table 9  Deviation results in terms of RMSE values to attain the tem-
perature distribution along the sphere radius

Bold values are the best solutions obtained by the corresponding 
optimization algorithm for the related problem

Best SD Mean Worst

CROW 1.24E+02 3.37E+01 1.78E+02 2.86E+02
CL-CROW 4.53E−12 4.05E−12 6.77E−12 2.91E−12
WHALE 6.23E+01 2.34E+01 9.65E+01 1.49E+02
CL-WHALE 4.01E−09 7.78E−07 4.12E−07 3.56E−06
SINECOS 6.22E+02 5.41E+01 7.66E+02 8.84E+02
CL-SINECOS 9.15E−10 4.28E−05 7.69E−06 2.82E−04
DE 6.23E+01 2.58E+01 1.08E+02 1.51E+02
CL-DE 4.40E−12 4.86E−12 4.42E−12 4.64E−12
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CL-WHALE retains the worst estimations between them 
having the best predictive value of 4.01E−09. Statistical 
results obtained for the baseline algorithms of CROW, 
WHAL, SINECOS, and DE are far away from the opti-
mal solution found by local search enhanced optimiz-
ers regarding solution quality and robustness. Both DE 
and WHALE acquire the best optimum RMSE values of 
6.23E+01 while SINECOS yielding the worst predictive 
results for this case. Convergence curves obtained by the 
compared metaheuristic algorithms are shown in Fig. 20. 
After small gradual decreases in the early phases, sharp 
declines are seen for local search enhanced algorithms at 
the final stages of the consecutive iterations which are also 
in line with the inclinations of convergence characteristics 
observed for the infinite wall problem.

It can be concluded from the comprehensive analysis 
on different kinds of optimization problems solved in this 
research study that proposed local search scheme boosted 
by the hybrid chaotic map allow algorithm for maintain-
ing a plausible and reliable balance between the explora-
tion and exploitation phases, which enables accurate and 
quick convergence to the optimal solution thanks to the 
unpredictable nature of the chaotic random numbers. 
Another favorable characteristic of the proposed local 
search scheme is its easy and convenient implementation 
of any type of metaheuristic algorithm. After an exhaustive 
trial-and-error procedure, while constructing the hybrid 
chaotic map, it is also interesting to see why some chaotic 
maps perform well on the specific type of optimization 
cases while others fail to obtain feasible results. Compre-
hensive future work should be dedicated to this issue for 

a better understanding of the true nature of the working 
mechanisms of the chaotic algorithms. Numerical experi-
ments also indicate that local search methods imposing 
too much intensification on the promising regions of the 
search region jeopardize the process of finding an optimal 
solution and generally get stuck into the local optimum 
points. Upcoming research studies related to developing 
local search methods should give a bit more emphasis on 
the balance between intensification and diversification 
phases of the algorithm. Furthermore, the developed 
local search procedure in this study can be applied to the 
multi-objective real-world design problems to assess its 
efficiency in complex constrained optimization cases.

6  Conclusion

This research study proposes an ensemble local search 
procedure composed of a hybrid Logistic-Kent chaotic 
map and a modified version of the Differential Evolution 
variant. A generic local search procedure is implemented 
on the famous metaheuristics of Crow Search, Differential 
Evolution, Whale Optimization, and Sine Cosine optimi-
zation algorithms to evaluate the improvement in solu-
tion qualities over metaheuristic algorithms with differ-
ent characteristics. Mentioned algorithms along with their 
local search enhanced versions have been applied to forty 
optimization benchmark algorithms involving multimodal 
and unimodal test problems. Optimal comparative results 
obtained by the metaheuristic algorithms reveal that ame-
lioration in solution efficiencies is evident and significant 

Fig. 20  Evolution histories of the best fitness values of the compared algorithms
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for the local search enhanced algorithms for most of the 
cases. It is also seen that can reach the optimal solutions 
of the benchmark function can be reached within few 
iterations thanks to the balanced exploration and exploi-
tation capabilities maintained by embedding the local 
search enhanced method into the pilot metaheuristic 
algorithms. To assess the prediction accuracy of the pro-
posed local search scheme, two real-world constrained 
optimization problems with challenging constraints have 
been solved and corresponding results acquired by the 
local search improved methods are compared. Remark-
able quality improvement in the quantitative results are 
also observed for these constraint problems by the local 
search boosted algorithms. Furthermore, the application 
of the compared metaheuristics algorithms over solving 
one-dimensional transient heat conduction problems 
is evaluated. It is comprehended that particularly local 
search enhanced metaheuristic methods can success-
fully predict the accurate one-dimensional temperature 
distribution across the considered heat transfer mediums 
of infinite wall and sphere and prove their applicability in 
solving multidimensional nonlinear unconstrained prob-
lems. For planned future work, favorable merits of the 
proposed local search scheme can be utilized on different 
kinds of metaheuristic algorithms for solving real-world 
optimization problems with having challenging imposed 
constraints. Furthermore, utilization of the proposed local 
search on a metaheuristic optimizer can be useful and 
practical in application areas such as artificial neural net-
works and deep learning systems where the global opti-
mum solution should be attained in a fewer number of 
iterations. Real-time control problems are another branch 
of the feasible applications of the proposed local search 
enhanced algorithms where minimum calculation time is 
highly needed to reduce the computation gap between 
the current and next time steps which is very crucial and 
important for stabilizing the projected real-time system.
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