
Engineering Science and Technology, an International Journal 24 (2021) 71–82
Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch
Review
Linking software requirements and conceptual models: A systematic
literature review
https://doi.org/10.1016/j.jestch.2020.11.006
2215-0986/� 2020 Karabuk University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: fatma.bozyigit@bakircay.edu.tr (F. Bozyiğit), ozlem@cs.deu.edu.tr (Ö. Aktas�), deniz.kilinc@bakircay.edu.tr (D. Kılınç).

Peer review under responsibility of Karabuk University.
Fatma Bozyiğit a,⇑, Özlem Aktas� b, Deniz Kılınç a

a _Izmir Bakırçay University, Department of Computer Engineering, Menemen, _Izmir, Turkey
bDokuz Eylül University, Department of Computer Engineering, Tınaztepe, Buca, Turkey
a r t i c l e i n f o

Article history:
Received 20 January 2020
Revised 12 September 2020
Accepted 17 November 2020
Available online 6 January 2021

Keywords:
Software requirements
Concept identification
Conceptual model
Systematic literature review
a b s t r a c t

Identification of stakeholder needs and documentation of software requirements are the critical steps to
launch a software project. Natural language requirements serve as an agreement among the project
stakeholders and they must be transformed into easy-to-understand conceptual models to avoid commu-
nication problems. Although conceptual models are mostly created manually with human involvement
from the software team, it is seen in recent times that there is a significant increase in studies that auto-
matically generate conceptual models from software requirements. In this study, a Systematic Literature
Review (SLR) based on the search of forty-four primary studies (published between 1996 and 2020),
which automatically transform software requirements into conceptual models, is reported. These studies
are evaluated regarding their approaches, functionalities, dataset used, evaluation methods, generated
model types, and languages supported. Finally, several improvable points in the current approaches
are highlighted and suggestions are provided as further works.
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Contents
1. Problem definition . 72

1.1. Research questions . 72
1.2. Scope . 72
1.3. Research motivation . 72
1.4. Structure . 73
2. Research methodology . 73

2.1. Keywords and query terms. 73
2.2. Identification of selection criteria . 74
2.3. Performing and conducting the search . 74
3. Analysis and results . 74

3.1. RQ1 What languages are analyzed to transform software requirements into conceptual models? . 74
3.2. RQ2 what methods are used for transforming requirements into conceptual model? . 75
3.3. RQ3 what kind of conceptual models can be generated by the reviewed systems? . 77
3.4. RQ4 What are the details of the datasets used in the reviewed studies? . 78
3.5. RQ5 What are the evaluation methods used for accuracy assessment in the reviewed studies?. 78
4. Threats to validity . 80

4.1. Construct validity . 80
4.2. Internal validity . 80
4.3. External validity . 80

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2020.11.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2020.11.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fatma.bozyigit@bakircay.edu.tr
mailto:ozlem@cs.deu.edu.tr
mailto:deniz.kilinc@bakircay.edu.tr
https://doi.org/10.1016/j.jestch.2020.11.006
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
5. Conclusion . 80
Declaration of Competing Interest . 81
References . 81
1. Problem definition

Software requirements are the descriptions of the necessary
functions to be designed and developed in a given software system
[1]. If a requirement includes vague declarations, it cannot be
clearly comprehended by the stakeholders of a project, so commu-
nication problems may arise between customers and software
team [2]. These problems may also cause delays in the next phases
of Software Development Life Cycle (SDLC) and increase the cost of
a software project. Therefore, it is critical that these requirements
are needed to be transformed into easy to understand conceptual
models [3].

Generally, systems analysts manually design the conceptual
models of software systems after defining all user needs. They
make effort to extract entities with properties and relationships.
In recent years, existence of a significant increase in the number
of studies that automatically transform software requirements into
the conceptual models (e.g., [4–6] and so on). In this study, we sys-
tematically analyzed the technical aspects and limitations of the
automatic concept identification studies, following Systematic Lit-
erature Review (SLR) guidelines [7]. We evaluated the forty-four
selected studies considering the used methods, outputs, experi-
mented datasets, and evaluation methods. We specified the con-
straints and concerns in this domain regarding detailed
evaluation results. We also concluded the critical issues for design-
ing complete and consistent conceptual models.

1.1. Research questions

Specification of the research questions is the most important
phase in the SLR methodology, since research questions identify
the scope and the objective of a review study [8].

In our study, five research questions were determined to ana-
lyze and evaluate different approaches used in automatic concept
identification studies as follows:

� Research Question 1 (RQ1): What languages are analyzed to
transform software requirements into conceptual models?

� Research Question 2 (RQ2): What methods are used for trans-
forming requirements into a conceptual model?

� Research Question 3 (RQ3): What kind of conceptual models are
generated by the reviewed studies?

� Research Question 4 (RQ4): What are the details of the datasets
used in the reviewed studies?

� Research Question 5 (RQ5): What are the evaluation methods
used for accuracy assessment in the reviewed studies?

RQ1 investigates what languages (requirements written in) are
supported by the reviewed studies. RQ2 aims to identify the
approaches of the studies in the SLR. According to answers to this
question, proposed methods in the reviewed studies are observed.
RQ3 identifies the outputs of the studies. That is, types of extracted
conceptual models (UML diagrams, program code, etc.) by analyz-
ing requirements are determined. This question is divided into the
sub-questions as follows; What kinds of UML diagrams are created
in the studies, if they generate UML model? Is there any missing
design element in the generated conceptual model? For example,
is there any relationship between two classes uncovered? RQ4

investigates the datasets used in the reviewed studies. This ques-
tion is divided into the sub-questions as follows; Do reviewed
72
studies have a comprehensive dataset that includes many require-
ments documents? How many requirements are included in
employed dataset? Are there any publicly available datasets pre-
sented by the researchers of the reviewed studies? RQ5 gives infor-
mation about evaluation methods in the studies. It investigates
whether MCDM techniques are performed and view of experts
are included in the evaluation phase.
1.2. Scope

This paper reports a review of approaches transforming soft-
ware requirements into conceptual models. In this section, we
refined the scope of the SLR by defining fundamental concepts of
the related domain such as requirement document and conceptual
model. A requirement document is defined in [9] as ‘‘a statement
that identifies a necessary attribute, capability, characteristic, or
quality of a system’’. There are many ways to document require-
ments. One common way is to use textual descriptions only. Other
ways to document requirements include use cases, formal specifi-
cations, user stories, and customized document templates. In our
study, we limited our scope to requirements documented using
textual descriptions and use cases.

A conceptual model is a description of what a system is required
to do functionally and aims to be less ambiguous than textual
requirements. This model can be represented in various forms,
such as UML diagrams, Entity Relationship Models (ERM), and
Business Models (BM). In a typical object-oriented software devel-
opment process, the analysis model is generally represented as a
UML model containing various diagrams. In our study, we limited
our scope to conceptual model in the form of UML diagrams.
1.3. Research motivation

Considering the researches involved, it is seen that most of the
existing concept identification approaches are designed to analyze
documents written in English (e.g., [10–12], and so on). Due to
upsurge of World Wide Web usage and intercultural communica-
tion through technology, multilingualism is revealed as a raising
issue in digital platforms [8]. Therefore, concept identification
studies must support to analyze software requirements in different
languages beside English. Moreover, existing studies do not pro-
vide a scalable solution for generating conceptual models. For
example, transformation process is commonly utilized to create
UML class or use-case diagrams as the conceptual model. However,
there are fourteen different types of UML diagrams for modeling
software designs. The other considerable concern is that existing
approaches are unable to extract some design elements like rela-
tionships between the classes. In addition to these, nearly all data-
sets in the current studies (except [5]), are either not accessible or
do not contain necessary number of requirements. Although there
are substantial amounts of studies conducted on concept identifi-
cation process, there is a lack of a large-scale benchmark dataset
to be used in similar researches.

In this study, we highlighted required aspects which are not
provided by the reviewed studies. We believe that this SLR will
help in developing more efficient and user-friendly models trans-
forming software requirements (written in multiple languages)
into different kind of conceptual models.

Fig. 1. Search strategy in the literature.

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
1.4. Structure

The structure of this paper is organized as follows: Section 2
gives information about the research methodology and it explains
the study selection process in a detailed manner. Section 3 pre-
sents evaluation results of the reviewed studies regarding research
questions. Section 4 briefly describes threats to validity of research
findings. Section 5 concludes the paper and includes suggestions
for further studies.
2. Research methodology

SLR is a review that uses systematic approaches to identify,
determine, and evaluate relevant researches. It presents the analy-
sis of collected data from the current studies by addressing well-
defined research questions. Since SLR examines related studies in
a more detailed and systematic way, we developed a research
methodology in view of the SLR guidelines presented by Kitchen-
ham [7].

The general architecture and functional blocks of the systematic
review are shown in Fig. 1. First five research questions explained
in Section 1.1 are determined to build the framework of SLR. Sec-
ondly, a search strategy that includes paper selection procedures
(determining search terms based on research questions and creat-
ing search queries) is developed. In the study selection phase, we
used well-known digital databases (Science Direct, IEEE Explore,
ACM, and Springer) and Google Scholar academic search engine
to find high quality papers. The search process was completed on
the journal papers and the conference proceedings from 1996 to
2020. Then, the results of the search process were filtered based
on inclusion and exclusion criteria and the papers which do not
match these criteria are eliminated. Finally, four quality assess-
Table 1
Created search queries using search terms.

Search queries

(‘‘software requirements” OR requirements OR ‘‘user needs”) AND (analyze OR transf
(‘‘software requirements” OR requirements OR ‘‘user needs”) AND (analyze OR tra
‘‘sequence diagram” OR ‘‘activity diagram” OR ‘‘use-case diagrams” OR ‘‘object diagr
(generating OR extracting OR creating) AND (‘‘conceptual model” OR ‘‘UML diagra
Language Processing” OR NLP OR ‘‘rule-based model” OR ontology)

73
ment (QA) criteria were determined and then the researches to
be evaluated under the SLR were obtained.

2.1. Keywords and query terms

In the search process step, first the keywords related to the
research topic are determined. To create search queries, the search
terms are specified and categorized based on research questions
using the PICOC (Population, Intervention, Comparison, Outcome,
Context) proposed by Brereton et al. [8].

Population are the criteria that specify the domain of transform-
ing requirements into conceptual model such as ‘‘requirements
transformation”, ‘‘requirements analysis”, and ‘‘generating concep-
tual model”. Intervention are the keywords that indicate
approaches used for transforming requirements into conceptual
model such as ‘‘Natural Language Processing” (or ‘‘NLP”) and
‘‘rule-based model”. Comparison are the keywords about the posi-
tion of the studies analyzing requirements without using auto-
matic concept identification methods. Outcome are the keywords
about generated conceptual models from the software require-
ments such as ‘‘UML diagrams”, ‘‘ontology model”, and ‘‘source
code”. Context are the keywords about context in concept identifi-
cation studies.

We did not use comparison criteria to formulate search strings.
We used context criteria as exclusion criteria to eliminate the irrel-
evant papers (explained in Section 2.2.). The search strings were
derived from specified search terms including population, inter-
vention and outcome as shown in Table 1. The search strings were
adjusted to advanced methods of source searching in each digital
library selected. For example while we created a search string as
(TITLE-ABS-KEY((‘‘software requirements” or ‘‘requirements” or
‘‘user needs”) AND (analyze OR transformation or generation)
AND (‘‘conceptual model” or ‘‘analysis model”) AND LIMIT-TO
(PUBYEAR,1996))) for ScienceDirect, we enter the string as
ormation OR generation) AND (‘‘conceptual model” OR ‘‘analysis model”)
nsformation OR generation) AND (‘‘UML diagrams” OR ‘‘class diagrams” OR
am” OR ‘‘source code” OR ‘‘program code” OR ‘‘validation model” OR ‘‘ER model‘‘)
ms” OR ‘‘source code” OR ‘‘program code” OR ‘‘ER diagram”) AND (‘‘Natural

Fig. 2. Number of included articles during the study selection process.

Fig. 3. Illustration of the data in Table 3.

Table 2
Number of articles after implementation of quality assessment criteria.

Platform Number of papers
Conference Paper Article

IEEE Xplore 9 3
ScienceDirect 2 8
Springer 5 3
Google Scholar 4 10
Total 20 24

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
(‘‘software requirements” or ‘‘requirements” or ‘‘user needs”) AND
(analyze OR transformation or generation) AND (‘‘conceptual mod-
el” or ‘‘analysis model”) AND (year>=1996 AND year<=2020) for
same query.
Table 3
Example of common transformation rule.

Language Sentence

Turkish Her öğrenci kendine mahsus numaraya sahiptir.
(Each student has a unique ID.)
Nouns: öğrenci (student), numara (ID)

English Each student has a unique ID.
Nouns: student, ID.
2.2. Identification of selection criteria

Fig. 2 gives information about the number of included articles
during the study selection processes. By using our search queries,
a total of 2018 papers were determined as input for the selection
process. Selection of appropriate studies was completed by using
the specified inclusion and exclusion criteria. Accordingly, first,
2008 studies providing inclusion criteria were selected. Then,
1917 of the selected studies that include at least one of the exclu-
sion criteria were eliminated. Finally, 91 studies which are related
to our research scope were identified.

Inclusion criteria are listed as; studies in journals and confer-
ences in the field of computer science, software engineering, infor-
mation systems, and natural language processing were selected.
Journal articles and conference proceedings were filtered with
respect to publication dates between 1996 and 2020.

Exclusion criteria are listed as; patents, presentations, work-
shops papers, technical notes, informal papers, and tools not based
on scientific study were eliminated. Duplicate papers of same study
are neglected. Paper that does notmention conceptualmodel in title
and abstract content were not included in SLR content.
74
2.3. Performing and conducting the search

The quality assessment process is used for interpretation of
findings and determining the power of detailed investigations
[7]. After study selection process illustrated with Fig. 3, the quality
of each selected study was evaluated according to the four ques-
tions such as: Are the context of the study clearly presented? Are
the objectives of the study reasonably described? Are the applied
methods detailed explained? Is the output of study visualized by
a concept identification model?

All researchers in this SLR labeled the primary studies as
‘‘include’’, ‘‘exclude’’, or ‘‘uncertain’’ tags for each criterion. It was
decided on whether to include a study into the review considering
the number of tags. If the number of ‘‘include” tags was greater
than others, the study was determined to evaluate in the SLR
scope.

Initially, 2018 papers were extracted regarding the results of
search queries on digital databases and academic search engine.
Then, filtering was performed regarding inclusion and exclusion
criteria and so 91 papers are selected in this step. At the last step,
it was determined under specified quality assessment criteria
whether the selected studies are appropriate to be evaluated in this
work. Finally, forty-four papers were selected to be evaluated in
this study (see Table 2).
3. Analysis and results

3.1. RQ1 What languages are analyzed to transform software
requirements into conceptual models?

As the internet resources become more easily accessible, it is
necessary to design efficient approaches for information systems
across languages [13]. Providing a generic approach to multilin-
gualism in requirements analysis enables broad coverage and
accessibility.

According to review of literature, it is seen that most of the tools
analyze requirements in English since it is the one of the most
widely used languages in the world. Furthermore, simple morphol-

Fig. 4. General framework of approaches in the reviewed concept identification studies.

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
ogy of English compared to other languages makes it easier to
obtain more accurate analysis results. There are a few studies sup-
porting other languages such as [5], [14], [15], and [16]. [5] per-
forms on Turkish requirements, [14] analyses Spanish
requirements and [15] works on requirements written in German.
[16] examines in software requirements written in Thai.

Considering the language limitations in the current studies, we
recommend creating a common ruleset which supports the analy-
sis of requirements written in any language to promote multilin-
gual practices. In our study, it is stated that some transformation
rules can be applied independently of language in concept identi-
fication studies. For example,

� Each noun in the document is a candidate for class and attribute
design elements in an object-oriented based conceptual model.

Assume that we applied this rule for a sentence written in both
Turkish and English as in Table 3.

As it can be seen from the example given in Table 3 and Fig. 3,
the same design elements can be extracted when a general rule is
applied to different translations of a clause. Consequently, the idea
of creating a ruleset for analyzing the textual requirements inde-
Fig. 5. An example of executing transformation rules.

75
pendently of the language provides motivation for our future
works.
3.2. RQ2 what methods are used for transforming requirements into
conceptual model?

The approaches in the studies transforming requirements into
conceptual models are examined with this question. It is observed
that generally similar approaches are implemented in the concept
identification studies. These approaches consist of NLP analysis
models and rule-based model as illustrated in Fig. 4. Initially,
requirements are pre-processed with NLP analysis models to
obtain an intermediate data. Then, the intermediate data are given
as input to the rule-based transformation models, and finally con-
ceptual model is generated automatically. There are five NLP anal-
ysis models available to preprocess textual requirements: lexical
analysis, syntactic analysis, semantic analysis, discourse analysis,
and pragmatic analysis [17].

Lexical analysis identifies structure of words and phrases in
sentences. It includes many steps, such as tokenization, stem-
ming/lemmatization, part of speech (POS) tagging and so on. Tok-
enization facilitates extraction of information from text documents
by separating words, abbreviations, punctuations, and number
groups in the sentence. Stemming or lemmatization derives a base
form of a word by reducing all inflectional forms. POS tagging
enables identification of words in a sentence according to the lin-
guistic properties such as noun, verb, and adjective [18]. POS tags
are used for determining design elements of the conceptual model.
For instance, the verbs in requirement text are candidates for
methods in design model. Syntactic analysis determines whether
the structure of a sentence is correct according to the grammar.
Semantic analysis figures out the meaning of linguistic input. Dis-
course analysis is the process of specifying contextual information
in textual data. Pragmatic analysis facilitates normalization of tex-
tual data with detecting inconsistencies.

Rule-based models enable identification of classes, attributes,
methods, relationships, and other elements in design using struc-
tured data obtained with NLP analysis models. There are four types
of rule-based models used in the studies: standard transformation
model, enhanced transformation model, ontology-based transfor-
mation model and pattern-based transformation model. Standard
transformation model has many rules established from linguistic
patterns and grammatical structures [2]. For example, Fig. 5 illus-
trates a sentence which is processed using standard transformation

Table 4
Used methods and outputs of the reviewed studies (LexA: Lexical Analysis, SynA: Syntactic Analysis, SemA: Semantic Analysis, PrA: Pragmatic Analysis, DiscourseA: Discourse
Analysis, Enh: Enhanced, Ont: Ontology, Stan.: Standard, Pat.: Pattern).

Paper Requirements NLP Model Transformation Model Output

[2] Text (English) LexA, SynA, SemA Enh. rule-based Class
[4] Text (English) LexA Pat. rule-based Class
[5] Text (Turkish) LexA, SynA. Ont., Pat., Enh. rule-based Class
[6] Text (English) LexA, SynA, SemA Ont rule based Class
[10] Text (English) LexA, SynA Stan. rule-based Use-case
[11] Text (English) LexA, SynA Pat. rule-based Domain model
[12] Text (English) None Pat., Enh. rule-based Activity
[14] Use cases (Spanish) SynA, SemA Stan. rule-based Class
[15] Text (German) LexA Enh. rule-based Class, Use-case
[16] Text (Thai) LexA Stan. rule-based Class
[20] Text (English) LexA, SynA, SemA Stan. rule-based Object
[21] Text (English) LexA, SynA Stan. rule-based Class
[22] Text (English) None Pat. rule-based Class
[23] Text (English) None Pat. rule-based Object
[24] Use cases (English) None Pat. rule-based Class, Sequence, Java, C++, VB
[25] Text (English) SemA, DiscourseA Pat. rule-based Class, Sequence
[26] Text (English) LexA, SynA, SemA Ont. rule-based Class
[27] Use cases (English) LexA Enh. rule-based Class
[28] Text (English) LexA, SynA, SemA Enh. rule-based Activity
[29] Text (English) LexA, SemA Pat. rule-based Class, Sequence, Collaboration
[30] Text (English) LexA Enh. rule-based Class
[31] Text (English) LexA, SynA, SemA Ont., Pat. rule-based Class
[32] Text (English) LexA, SynA, SemA Enh. rule-based Class, Sequence, pseudo code
[33] Domain Ont. (English) LexA, SemA Ont. rule-based Class
[34] Use cases (English) SynA, SemA, DiscourseA Enh. rule-based Class
[35] Text (English) SemA Enh. rule-based Class
[36] Use cases (English) SynA Pat. rule-based Class
[37] Use cases (English) LexA, SemA Ont., Enh. rule-based Class
[38] Text (English) None Enh. rule-based Domain model, Use-case
[39] Text (English) LexA, SynA, SemA Enh. rule-based Object
[40] Text (English) LexA, SynA Enh. rule-based Class, Java, VB.
[41] Use cases (English) LexA Enh. rule-based Class
[42] Text (English) PrA Pat. rule-based Class, Java
[43] Text (English) LexA, SemA Enh. rule-based Class, Sequence, Java
[44] Text (English) LexA, SynA, SemA Ont. rule-based Class
[45] Text (English) LexA, SynA, SemA Pat. rule-based Class
[46] Text (English) LexA, SynA Ont. rule-based Class
[47] Text (English) LexA, SynA, SemA, PrA Stand. rule-based Class, Java
[48] Text (English) LexA, SemA Ont. rule-based Class, Activity
[49] Text (English) LexA, SynA Pat. rule-based Sequence, Activity
[50] Text (English) LexA, SemA Ont., Enh. rule-based Class
[51] Text (English) LexA Enh. rule-based Class, Java, C#
[52] Text (English) LexA, SynA Pat. rule-based Class
[53] Text (English) LexA, SynA Pat. rule-based Use-case

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
rules. First the lexical analysis is applied to the sentence in the
rounded rectangle to obtain a list of intermediate data including
POS tags (nouns, adjectives, and verbs). Next, the list of intermedi-
ate data is processed by applying the transformation rules pre-
sented in Bozyiğit’s research [5]:

� Nouns in sentences are candidates for class and attribute
names.

� Verbs in the sentences are included by the pool of methods’
names.

� If verbs such as ‘‘have”, ‘‘include”, and ‘‘contain” exist in a sen-
tence, the first name is labeled as a class.

� If verbs such as ‘‘have”, ‘‘include”, and ‘‘contain” exist in a sen-
tence, all the names except the name of the class are the attri-
butes of that class.

As it can be seen, the rules in the first and second bullet points
above implies that ‘‘faculty” and ‘‘department” may be included
class and attribute rules. The third and last points make certain
of class (faculty) and attribute (department) in the generated
diagram.

Enhanced transformation model has a rule set that includes
specific rules which are not used in previous studies. For instance,
76
one of these specific rules is ‘‘An adjective that qualifies a noun,
where the adjective cannot be classified combines with the noun
subject to generate compound words” [2]. This rule states whether
an adjective characterizes the underlying noun as an attribute or
not. Accordingly, an adjective qualifying a noun as quantity, shape,
size, color, etc. states an attribute. In case that it adds a meaning or
categorize the noun, it states a class. For example, the adjective in
the following statement, ‘‘exit door”, is tagged as class, since it
becomes a domain conceptual class. On the other hand, the adjec-
tive in the following statement, ‘‘grey door”, is tagged as attribute
(color). Ontology-based transformation model analyses the textual
requirements regarding the semantics of the application domain.
Pattern-based transformation model incorporates specific pattern
properties into a proposed model [19]. Although using this trans-
formation to extract specific design elements from the software
requirements can improve the accuracy of the proposed model,
building a set of linguistic patterns can be time consuming and
challenging task.

Table 4 gives information about the used methods of the studies
in the SLR. It is observed that out of total number of forty-four
studies, thirty-one benefit from lexical analysis which includes
common techniques in the NLP frame such as tokenization, stem-
ming, and POS tagging. Considering the answers of this question, it

Fig. 6. Distribution of the generated conceptual model.

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
is seen that only twenty-one of total researches implement seman-
tic analysis. Since semantic analysis is one of the most critical NLP
tasks to extract meaning from the statements, researchers who do
not utilize this analysis might have skipped necessary design ele-
ments in generated models. In fact, semantic analysis of English
text is not difficult, since there is the lexical database, WordNet
[54], provides the short definitions for the words. However, deter-
mining semantics of the text may be difficult for the other lan-
guages such as agglutinative ones (Turkish, Finnish, Hungarian,
Korean, etc.), because there is no comprehensive dictionary (like
WordNet) available for those languages to be used in NLP studies.
Thus, we recommend language independent approaches such as
word embedding which is widely used to get semantics from tex-
tual data. We foresee that performing semantic analysis using
word embedding model will increase accuracy of generated mod-
els. Also, there are two research [25,34] that benefit from the dis-
course analysis.

Another factor that appears in the evaluation results is that
eighteen out of forty-four studies create a specific set of rules
and only ten studies design ontology model in their proposed
approach. However, designing a knowledge structure regarding
the needs of planned system is sometimes necessary to increase
the performance. Considering this, we examined the selected
papers within using ontology model and linguistic patterns. We
anticipate that creating specific ruleset including detailed linguis-
tic patterns will improve the semantic analysis phase in concept
identification studies.

3.3. RQ3 what kind of conceptual models can be generated by the
reviewed systems?

A conceptual model is an alternative to describe software
design elements. It provides guidelines for the proposed model
under operation. This model may be in various forms, such as
UML diagrams, Entity Relationship Models (ERM), and Business
Model (BM). UML including fourteen diagram types is the most
used conceptual model for specifying the structure and the behav-
77
ior of software model. Therefore, we limit our scope to conceptual
model in the form of UML diagrams. Based on a detailed analysis of
reviewed studies, we observe that the conceptual models gener-
ated by the reviewed studies are generally in the form of a UML
class diagram. It is seen that twenty-eight out of forty-four studies
generate only class diagram (see Fig. 6) and seven studies
[15,24,25,29,32,38,43,48] generate other types of UML diagrams
beside class. Additionally, it is realized that of the studies generat-
ing UML diagrams, only seven of them [24,32,40,42,43,47,51] also
support code generation.

A complete analysis model should describe both the structural
and behavioral aspects of the planned software model. Structural
diagrams (e.g., class, object, component, deployment) represent
the static design elements such as class/objects, attributes, meth-
ods, and relationships. Behavioral diagrams (e.g., sequence, state
machine, activity) synthesize the design elements that conduct
the system’s dynamic concepts. As a result, partitioning a full
design view into separate diagrams makes the overall design easier
to understand and possess the integrity of the modules. According
to our view, future studies can extend their study to generate more
UML diagrams by using extracted design elements in the analysis
phase. To make it clear, we illustrated class and object diagrams
for the same software requirements (ATM model [55]) as seen in
Fig. 7. As it can be seen in the figure, nearly all design elements
in both class and object diagrams are the same.

The main objective of the studies that generate UML diagram is
to specify classes, attributes, methods, and relationships in object-
oriented design. When evaluating the studies generating UML dia-
grams, it is seen that all of them are successful in determining the
classes and their respective elements (attributes and methods).
However, the major point to be considered in UML diagrams is to
determine the relationships between classes (generalization,
aggregation, composition, association, etc.). When the related stud-
ies are examined, it is concluded that most of them have limita-
tions in the specification of relationship types. It is realized that
only twenty of the reviewed studies discover relationships
between the classes. In addition, only nine out of these twenty

Fig. 7. Class and Object diagrams for ATM problem statement [55].

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
studies [5,6,23,25,27,30,38,43,44] detect many to many relation-
ship determinations. Table 5 gives information about the studies
that can determine relationships.

3.4. RQ4 What are the details of the datasets used in the reviewed
studies?

Dataset is the most important input to evaluate proposed
approaches in scientific works. Answers given to RQ4 demonstrate
that dataset of current studies have some limitations which are
explained as follows: 1) The experimental datasets in the current
studies include a few numbers of software requirements. 2) The
requirements in the datasets include simple and short sentences.

From the evaluation results, it is seen that the study having the
largest dataset is [11] and it includes fifty software requirements.
The other study having comprehensive dataset is [5]. The research-
ers in [5] present a dataset including twenty software require-
ments (both in Turkish and English). According to our point of
view, the experimental results will be more consistent and realistic
when performed on more data. Thus, the provided dataset should
78
be extended with more software scenarios and gold annotations so
that it could be useful for further studies.

The other issue addressed in this SLR is that datasets in the
reviewed studies are not publicly shared. Across the forty-four pri-
mary studies, it is seen that two out of total ([5] and [11]) publicly
share used dataset. Public sharing of datasets provides researchers
working on the same domain opportunity to evaluate their pro-
posed approaches in a more objective manner. Consequently, we
hope that the results of our SLR contribute to the dataset sharing
initiatives.

3.5. RQ5 What are the evaluation methods used for accuracy
assessment in the reviewed studies?

The results of theRQ5 give anoverviewof the evaluationmethods
used in the papers selected.We categorized the evaluationmethods
utilized in the reviewed papers as case study and experimental
study. Twenty-one out of the total studies do not report any evalua-
tion results to illustrate the accuracy of their approaches. Sixteen of
the total studies validate their approach by performing case studies.

Table 5
Supported relationship types in generated models.

Paper Relationship type Many to Many

Abstraction Aggregation Association Composition Generalization Specialization

[2] no yes yes yes yes no no
[4] no yes no no yes yes no
[5] no yes yes yes yes yes yes
[6] no no yes no no no yes
[10] no no yes no no no no
[12] no no yes no yes yes no
[14] no yes yes yes no no no
[21] no yes yes no yes no no
[23] no no yes no yes no yes
[25] no no yes no yes no yes
[26] no no no no no yes no
[27] no yes no no yes no yes
[30] no yes yes no no no yes
[31] no no yes no yes no no
[39] no no yes no no no yes
[40] no yes yes no no no no
[41] no no yes no no no no
[42] no yes yes yes yes no yes
[43] no no yes no yes no yes
[44] no yes yes no no no no
[46] no yes yes no yes no no
[47] no no yes no no no no
[50] no no yes yes no no no
[51] no yes yes yes yes no no
[52] no yes yes yes yes no yes

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
It is alsoworth noting that there are only five studies [5,16,47,48,52]
that conducted experimental studies tomeasure the effectiveness of
concept identification approach.
Table 6
Details of experimental studies in the reviewed works.

Paper Case Scenario E

P

[2] ATM problem statement [55] 9
[4] Immediate payment service [57] n
[5] Restaurant [5] 9
[6] No detailed information provided 8

(r
[10] ATM problem statement [55] 9

8
[11] User manual of customer relationship management (CRM) software

system of Roche Diagnostics GmbH company
n

[12] Login use case of Amazon web service n
[15] ATM problem statement [55] n
[16] Thirteen different case studies in a published object-oriented analysis and

design book
0
a

[23] Air traffic control system n
[27] Withdraw cash n
[30] Video rental store n
[32] An industrial case study n
[36] Voter tracking system n
[38] Invoicing order system n
[39] Elevator n
[41] Air traffic control system 8
[47] ATM problem statement [55] 1

Modal window n
Musical store n
Circe n

[48] Monitoring pressure n
Steam boiler n
ABC video rental n
WHOIS protocol n
Timbered house n

[50] Library system n
[51] ATM problem Statement [55] 1
[53] E-store project [53]

Inventory
Philips
MHCPMS

9
5
7
6

79
When the studies in the SLR scope were examined, it is seen
that commonly used measurements such as precision, recall and
F-measure were used for the evaluation process. Precision is the
valuation Results

recision Recall F-
measure

1.67 91.67 91.67
o no no
2.00 91.00 91.00
7.20 (entities), 62.51
elationship)

84.46 (entities), 64.03
(relationship)

no

8.00 (actors), 87.00 (use case),
7.00 (relationship)

98.00 (actors), 85.00 (use case),
85.00 (relationship)

no

o no 92.00

o no no
o no 92.25
.85 (for classes) 0.77 (for
ttributes)

0.90 (for classes)
0.78 (for attributes)

no
no

o no no
o no no
o no no
o no no
o no no
o no no
o no no
2.00 58.00 no
00.00 93.00 no
o no no
o no no
o no no
o 45.83 no
o no no
o 62.17 no
o no no
o no no
o no no
00.00 93.50 93.00
0.00
0.00
3.00
7.00

88.00
71.00
70.00
50.00

no
no
no
no

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
ratio of the number of the correctly selected design elements to the
number of all design elements in the conceptual model. Recall is
calculated by the ratio of number of the correctly selected design
elements to the number of expected correct elements. F-measure
is measured through harmonic mean of the precision and recall.
Using these measurements demonstrated whether a produced
model is a reasonable representation of the actual system or not.
However, the evaluation criteria (classes, attributes, methods, rela-
tionship type, etc.) are assumed to be equal in calculation of these
metrics and this assumption may cause errors in experiments
because priorities of these criteria vary depending on views of
users. Therefore, using objective evaluation criteria including
human judgements to measure completeness of the generated
model is an important issue that must be considered. In responses
to RQ5, [5] is the single study that uses Analytical Hierarchy Pro-
cess (AHP) [56] to involve evaluation criteria and experts’ opinions
into evaluation phase. Table 6 shows details of the evaluation
methods used in the reviewed studies.

As mentioned above, there are two necessary steps to evaluate
conceptual models in a more objective way; 1) determining criteria
which affects the system performance, 2) weighting of these crite-
ria. The weights/priorities of evaluation criteria can be determined
by using MCDM methods techniques (e.g., TOPSIS, PROMETHEE,
ELECTRE.) which are widely used in various decision-making prob-
lems. We foresee that MCDM methods based on expert opinions
provide more objective and consistent evaluation results in con-
cept identification studies.
4. Threats to validity

The validity assessment is an essential part of systematic review
studies. This section addresses the threats to validity that might
have affected the SLR scope using the classification of Wohlin
et al. [58].
4.1. Construct validity

Construct validity refers to operational measures for the con-
cepts being researched [58]. The threats in this category are related
to components of search process such as digital databases and
search queries. As the first step in this direction, we selected four
digital libraries (IEEEXplore, ACM, Science Direct, and Springer-
Link) and Google Scholar search engine which contain an extensive
set of publications in the Software Engineering discipline. The
search string is crucial to finding relevant primary studies, and if
it is not correctly formed, the review is likely to miss important
studies. To eliminate this threat, the search strings were created
using different combinations of terms extracted from papers con-
cerning Software Engineering, Requirement Engineering, and
design modeling techniques. We improve the search strings sev-
eral times to reach the maximum number of papers related to
the SLR. We also consider stems of search terms in the queries.
The first difficulty we encountered is that it is not possible to use
the same search strings (given in Section 2.2) for all digital data-
bases. For example, while ScienceDirect provides logical combina-
tion of search terms and allows the search string to be used exactly
as determined, Google Scholar presents few sorting options to cre-
ate a query. Thus, we practiced patterns for search terms and mod-
ify the search string to each digital library selected. This makes the
reproducibility of the automatic search for results possible. We
assigned the tasks to ensure that each research was checked by
three researchers independently to decrease the potential impact
of any bias. The conflicts on study selection processes were solved
in team meetings during the review process.
80
4.2. Internal validity

Internal validity refers to operational measures for data extrac-
tion and synthesis. It provides to obtain valuable outcomes and
evidence to substantiate the claim.

In data extraction phase, one of the most critical threats is that
non-English papers might have prevented the necessary research
findings. Since we typed the search terms in English, the papers
written in other languages might have been skipped. The other
threat is publication bias. It is the problem that positive results
are more likely to be published than negative consequences [59].
We attempted to eliminate this problem by observing relevant
conference proceedings and well-regarded journals. We did not
include patents, technical reports, workshop papers, and thesis
into SLR scope. We tried to collect all the search results that are
representative of the research questions. Each researcher in this
SLR put effort to restrain the threats that cause inconsistencies in
data extraction by analyzing the papers.
4.3. External validity

External validity refers to how well the findings of a study can
be expected to apply to other researches. Three researches of our
study double checked all evaluation results (in Table 4, Table 5,
and Table 6) before concluding and determining of research
findings.
5. Conclusion

Transforming requirements into conceptual model is a signifi-
cant but challenging task in SDLC. Although there exist many
approaches to automate this process in the literature, it seems that
there is not a practical and feasible automated solution yet. In this
systematic review, we analyze forty-four previous studies obtained
after a carefully designed procedures for selecting papers in digital
databases. These studies were evaluated with regard to their
approaches, functionalities, dataset used, evaluation methods, gen-
erated model types, and languages supported.

The SLR evaluation results guide us to propose some concerns
that should be addressed by a concept identification study which
links software requirements and conceptual model. First a clear
majority of the reviewed studies deal with English requirements
to generate conceptual model. The increase in the number of inno-
vative works analyzing the documents in English language pro-
vides important contributions to Software Engineering domain.
However, working on the other languages beside English enables
such systems to reach more users. Accordingly, we conclude that
providing a generic approach to multilingualism in requirements
analysis ensures broad coverage and accessibility for concept iden-
tification researches.

The other considerable limitation is that current studies gener-
ally focus on generating only UML class diagrams. However, there
are fourteen UML diagram types that represent the different
aspects and characteristics of a planned software. Accordingly,
describing a full design using separate diagrams makes the overall
design easier to understand and maintains the integrity of modular
components. Additionally, relationship identification between
components of generated models is not completed properly,
although relationship identification is the most critical task to
build complete and consistent conceptual models. Being unable
to determine relationships may limit the traceability between
design and implementation phases. To overcome these deficien-
cies, we recommend to establish a well-designed algorithm includ-
ing more specific transformation rules.

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
The dataset is the most important input to test the performance
of a proposed model and it must be publicly available to be used in
other studies on the same domain. It is seen that nearly all
reviewed studies have a dataset that includes a few numbers of
requirements and there is no publicly shared dataset on the online
repositories except [4] and [50]. This is definitely a research gap
which must be considered in the future works.

The performance analysis of a concept identification study is a
difficult task, as there is no exact definition for an accurate concep-
tual model. It is possible that people interpret the same require-
ments differently because the priorities of evaluation criteria
may differ according to users’ perspective. Current researches con-
sider that the evaluation criteria have the same priorities and this
assumption may lead to inconsistent performance evaluation. This
approach can lead to inconsistent results in the evaluation. For this
reason, we suggest using statistical MCDM methods that enable
the determination of common weights of evaluation criteria
according to expert opinions.

As a further study, we propose to design a novel system, which
extends the previous studies, by the following functionalities:

� Determining all types of relationships completely,
� Generating more diagram types beside class diagrams,
� Generating source code for more than one programming
language,

� Creating a large-scale dataset which includes various software
problems to test study,

� Experimenting with different MCDM methods that include
expert opinions in the performance evaluation.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] Pressman, R. S.; Maxim, B. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Education, 2014.

[2] V.B. Sagar, S. Abirami, Conceptual modeling of natural language functional
requirements, J. Syst. Softw. 88 (2014) 25–41.

[3] J. Johnson, A. Henderson, Conceptual models: begin by designing what to
design, Interactions 9 (1) (2002) 25–32.

[4] O. Dawood, A. Sahraoui, Toward requirements and design traceability using
Natural Language Processing, Eur. J. Eng. Res. Sci. 3 (7) (2018) 42–49.

[5] F. Bozyiğit, Ö. Aktas�, D. Kılınç, Automatic concept identification of software
requirements in Turkish, Turk. J. Electr. Eng. Comput. Sci. 27 (1) (2019) 453–
470.

[6] M. Omar, G. Baryannis, Semi-automated development of conceptual models
from natural language text, Data Knowl. Eng. (2020).

[7] Kitchenham, B. Guidelines for performing Systematic Literature Reviews in
software engineering. Version 2.3, EBSE Technical Report EBSE-2007-01, 2007.

[8] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, J. Syst. Softw. 80 (4) (2007) 571–583.

[9] G. Koelsch, Requirements writing for system engineering, Apress, Berkeley,
2016.

[10] M. Elallaoui, K. Nafil, R. Touahni, Automatic transformation of user stories into
UML use case diagrams using NLP techniques, Proc. Comput. Sci. 130 (2018)
42–49.

[11] T. Quirchmayr, B. Paech, R. Kohl, H. Karey, G. Kasdepke, Semi-automatic rule-
based domain terminology and software feature-relevant information
extraction from natural language user manuals, Empirical Software Eng. 23
(6) (2018) 3630–3683.

[12] C.R.M. Reddy, D.E. Geetha, R.R. Rao, T.S. Kumar, Transformation of user
interface to activity models and assessing performance of WA/WS, J. Software
Eng. Appl. 12 (05) (2019) 101–127.

[13] Sadat, F.; Yoshikawa, M.; Uemura, S. Cross-language information retrieval
using multiple resources and combinations for query expansion. In: Advances
in Information Systems, 2002, pp. 114-122.
81
[14] Montes, A.; Pacheco, H.; Estrada, H.; Pastor, O. Conceptual model generation
from requirements model: A Natural language processing approach. In Natural
Language and Information Systems, 2008, pp. 325–326.

[15] Liu, D.; Subramaniam, K.; Eberlein, A.; Far, B. H. Natural language
requirements analysis and class model generation using UCDA. In:
Innovations in Applied Artificial Intelligence, 2004, pp. 295–304.

[16] M. Jaiwai, U. Sammapun, Extracting UML class diagrams from software
requirements in Thai using NLP, in: 14th International Joint Conference on
Computer Science and Software Engineering (JCSSE), 2017, pp. 1–5.

[17] Heine, B., & Narrog, H. (Eds.). The Oxford handbook of linguistic analysis.
Oxford Handbooks in Linguistic, 2015.

[18] Tayal, M. A.; Raghuwanshi, M. M.; Malik L. Syntax parsing: Implementation
using grammar-rules for English language. In: 2014 International Conference
on Electronic Systems, Signal Processing and Computing Technologies, 2014,
pp. 376–381.

[19] D.K. Kim, L. Lu, B. Lee, Design pattern-based model transformation supported
by QVT, J. Syst. Softw. 125 (Supplement C) (2017) 289–308.

[20] L. Mich, NL-OOPS: from natural language to object oriented requirements
using the natural language processing system LOLITA, Natural Language Eng. 2
(2) (1996) 161–187.

[21] S.P. Overmyer, L. Benoit, R. Owen, Conceptual modeling through linguistic
analysis using LIDA, in: Proceedings of the 23rd International Conference on
Software Engineering, 2001, pp. 401–410.

[22] A.M. Capuchino, N. Juristo, R.P. Van de Riet, Formal justification in object-
oriented modelling: a linguistic approach, Data Knowl. Eng. 33 (1) (2000) 25–
47.

[23] R.S. Wahono, B.H. Far, A framework for object identification and refinement
process in object-oriented analysis and design, Proc. First IEEE Int. Conf. Cogn.
Inform. (2002) 351–360.

[24] E. Insfrán, O. Pastor, R. Wieringa, Requirements engineering-based conceptual
modelling, Requirements Eng. 7 (2) (2002) 61–72.

[25] Perez-Gonzalez, H. G.; Kalita, J. K. GOOAL: A graphic object-oriented analysis
laboratory. In Companion of the 17th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, 2002,
pp. 38–39.

[26] H.M. Harmain, R. Gaizauskas, CM-Builder: a natural language-based case tool
for object-oriented analysis, Automated Software Eng. 10 (2) (2003) 157–181.

[27] T. Yue, L.C. Briand, Y. Labiche, An automated approach to transform use cases
into activity diagrams, Modelling Foundations Appl. (2010) 337–353.

[28] A. Salbrechter, H. Mayr, C. Kop, Mapping pre-designed business process
models to UML, in: Proceedings of the Eight IASTED International Conference
on Software Engineering and Applications, 2004, pp. 400–405.

[29] L.M. Cysneiros, J.C.S. Leite, Nonfunctional requirements: from elicitation to
conceptual models, IEEE Trans. Software Eng. 30 (5) (2004) 328–350.

[30] Song, I. Y.; Yano, K.; Trujillo, J.; Luján-Mora, S. A taxonomic class modeling
methodology for object-oriented analysis. Information Modeling Methods and
Methodologies, IGI GLOBAL. 2007, pp. 216-240.

[31] X. Zhou, N. Zhou, Auto-generation of class diagram from free-text functional
specifications and domain ontology, Artif. Intell. (2004).

[32] V. Ambriola, V. Gervasi, On the systematic analysis of natural language
requirements with CIRCE, J. Automated Software Eng. 3 (2006) 107–167.

[33] H. El-Ghalayini, M. Odeh, R. McClatchey, Engineering conceptual data models
from domain ontologies: a critical evaluation, Int. J. Inform. Technol. Web Eng.
(IJITWE) 2 (1) (2007) 57–70.

[34] H. Christiansen, C.T. Have, K. Tveitane, From use cases to UML class diagrams
using logic grammars and constraints, Proc. Recent Adv. Natural Lang. Process.
(2007) 128–132.

[35] Gelhausen, T.; Tichy, W. F. Thematic role based generation of UML models
from real world requirements. In International Conference on Semantic
Computing (ICSC 2007), 2007, pp. 282–289.

[36] A. Fatwanto, C. Boughton, Analysis, specification and modeling of non-
functional requirements for translative model-driven development, in: 2008
International Conference on Computational Intelligence and Security, 2008,
pp. 405–410.

[37] Giganto, R.; Smith, T. Derivation of classes from use cases automatically
generated by a three-level sentence Processing Algorithm. In Third
International Conference on Systems (icons 2008), 2008, pp. 75–80.

[38] Seresht, S. M.; Ormandjieva, O.; Sabra, S. Automatic conceptual analysis of user
requirements with the requirements engineering assistance diagnostic (READ)
tool. In 2008 Sixth International Conference on Software Engineering Research,
Management and Applications, 2008, pp. 133–142.

[39] Popescu, D.; Rugaber, S.; Medvidovic, N.; Berry D. M. Reducing ambiguities in
requirements specifications via automatically created object-oriented models.
In Innovations for Requirement Analysis, Monterey Workshop; 2007, pp. 103–
124.

[40] I.S. Bajwa, A. Samad, S. Mumtaz, Object oriented software modelling using NLP
based knowledge extraction, Eur. J. Scientific Res. 35 (2009) 22–33.

[41] M. Elbendak, P. Vickers, N. Rossiter, Parsed use case descriptions as a basis for
object-oriented class model generation, J. Syst. Softw. 84 (7) (2011) 1209–1223.

[42] M. Brambilla, From requirements to implementation of ad-hoc social web
applications: an empirical pattern-based approach, IET Software 6 (2) (2012)
114–126.

[43] S.K. Shinde, V. Bhojane, P. Mahajan, NLP based object oriented analysis and
design from requirement specification, Int. J. Computer Appl.. 47 (2012) 30–
34.

http://refhub.elsevier.com/S2215-0986(20)34258-0/h0010
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0010
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0015
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0015
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0020
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0020
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0025
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0030
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0030
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0040
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0040
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0040
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0045
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0045
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0045
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0050
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0050
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0050
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0055
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0055
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0055
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0055
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0060
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0060
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0060
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0080
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0080
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0080
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0080
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0095
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0095
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0100
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0100
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0100
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0105
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0105
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0105
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0105
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0110
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0110
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0110
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0115
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0115
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0115
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0120
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0120
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0130
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0130
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0135
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0135
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0140
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0140
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0140
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0140
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0145
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0145
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0155
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0155
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0160
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0160
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0165
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0165
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0165
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0170
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0170
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0170
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0180
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0180
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0180
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0180
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0180
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0200
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0200
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0205
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0205
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0210
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0210
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0210
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0215
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0215
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0215

F. Bozyiğit, Ö. Aktas� and D. Kılınç Engineering Science and Technology, an International Journal 24 (2021) 71–82
[44] P. More, R. Phalnikar, Generating UML diagrams from natural language
specifications, Int. J. Appl. Inform. Syst. (2012).

[45] S.D. Joshi, D. Deshpande, Textual requirement analysis for UML diagram
extraction by using NLP, Int. J. Computer Appl. 50 (8) (2012).

[46] Herchi H, Ben Abdessalem W. From user requirements to UML class diagram.
In International Conference on Computer Related Knowledge (ICCRK 2012),
2012.

[47] Tripathy A, Agrawal A, Rath S. Requirement analysis using Natural Language
Processing. In Fifth International Conference on Advances in Computer
Engineering (ACE 2014), 2014.

[48] M. Landhäußer, S.J. Körner, W.F. Tichy, From requirements to UML models and
back: how automatic processing of text can support requirements engineering,
Software Qual J. 22 (1) (2014) 121–149.

[49] R. Sharma, S. Gulia, K.K. Biswas, Automated generation of activity and
sequence diagrams from natural language requirements, in: 2014 9th
International Conference on Evaluation of Novel Approaches to Software
Engineering, 2014, pp. 1–9.

[50] M. Ibrahim, R. Ahmad, Class diagram extraction from textual requirements
using Natural Language Processing (NLP) Techniques, in: 2010 Second
International Conference on Computer Research and Development, 2010, pp.
200–204.

[51] F. Bozyiğit, Ö. Aktas�, D. Kılınç, AutoClass: automatic text to OOP concept
identification model, Int. J. Comp. Appl. 150 (10) (2016) 29–34.
82
[52] Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., Dey, N., S. Ashour, A., and
Ben Ghazala, H. Automatic builder of class diagram (ABCD): an application of
UML generation from functional requirements. Software: Practice and
Experience, 2016, 46.11: 1443-1458.

[53] Hamza, Z.A. and Hammad, M. Generating UML use case models from software
requirements using natural language processing. In 2019 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO),
Manama, Bahrain, 2019, pp. 1-6.

[54] G.A. Miller, WordNet: A lexical database for English, Commun. ACM 38 (11)
(1995) 39–41.

[55] J.R. Rumbaugh, M.R. Blaha, W. Lorensen, F. Eddy, W. Premerlani, Object-
oriented modelling and design, 1st ed., Prentice-Hall, Englewood Cliffs, NJ,
USA, 1990.

[56] T.L. Saaty, Decision making with the Analytic Hierarchy Process, Int. J. Serv. Sci.
1 (2008) 83–98.

[57] G. Lucassen, F. Dalpiaz, J.M.E. Werf, S. Brinkkemper, in: The use and
effectiveness of user stories in practice, Springer, Cham, 2016, pp. 205–222.

[58] C. Wohlin, M. Host, P. Runeson, M. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, 2000.

[59] A. Mlinarić, M. Horvat, V. Šupak Smolčić, Dealing with the positive publication
bias: why you should really publish your negative results, Biochemia medica
27 (3) (2017) 447–452.

http://refhub.elsevier.com/S2215-0986(20)34258-0/h0220
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0220
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0225
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0225
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0240
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0240
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0240
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0245
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0245
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0245
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0245
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0245
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0250
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0250
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0250
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0250
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0250
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0255
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0255
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0255
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0255
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0255
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0270
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0270
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0275
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0275
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0275
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0275
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0280
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0280
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0285
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0285
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0285
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0290
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0290
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0290
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0290
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0295
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0295
http://refhub.elsevier.com/S2215-0986(20)34258-0/h0295

	Linking software requirements and conceptual models: A systematic literature review
	1 Problem definition
	1.1 Research questions
	1.2 Scope
	1.3 Research motivation
	1.4 Structure

	2 Research methodology
	2.1 Keywords and query terms
	2.2 Identification of selection criteria
	2.3 Performing and conducting the search

	3 Analysis and results
	3.1 RQ1 What languages are analyzed to transform software requirements into conceptual models?
	3.2 RQ2 what methods are used for transforming requirements into conceptual model?
	3.3 RQ3 what kind of conceptual models can be generated by the reviewed systems?
	3.4 RQ4 What are the details of the datasets used in the reviewed studies?
	3.5 RQ5 What are the evaluation methods used for accuracy assessment in the reviewed studies?

	4 Threats to validity
	4.1 Construct validity
	4.2 Internal validity
	4.3 External validity

	5 Conclusion
	Declaration of Competing Interest
	References

