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ABSTRACT

Diabetes is one of the emerging threats to public health all over the world. According to projections by the World Health Orga-
nization, diabetes will be the seventh foremost cause of death in 2030 (WHO, Diabetes, 2020. https://www.afro.who.int/health-
topics/diabetes). Diabetic retinopathy (DR) results from long-lasting diabetes and is the fifth leading cause of visual impairment,
worldwide. Early diagnosis and treatment processes are critical to overcoming this disease. The diagnostic procedure is challeng-
ing, especially in low-resource settings, or time-consuming, depending on the ophthalmologist’s experience. Recently, automated
systems now address DR classification tasks. This study proposes an automated DR classification system based on preprocess-
ing, feature extraction, and classification steps using deep convolutional neural network (CNN) and machine learning methods.
Features are extracted from a pretrained model by the transfer learning approach. DR images are classified by several machine
learning methods. XGBoost outperforms other methods. Dimensionality reduction algorithms are applied to obtain a lower-
dimensional representation of extracted features. The proposed model is trained and evaluated on a publicly available dataset.
Grid search and calibration are used in the analysis. This study provides researchers with performance comparisons of different
machine learning methods. The proposed model offers a robust solution for detecting DR with a small number of images. We
used a transfer learning approach, which differs from other studies in the literature, during the feature extraction. It provides a

1. INTRODUCTION

Diabetic retinopathy (DR) is one of the most common retinal dis-
eases and is a leading cause of blindness among people aged 20
to 65, worldwide. The risk of blindness in DR patients is 25 times
higher than that of healthy people [1]. DR is the most common
microvascular complication in diabetes. The reported prevalence
of DR in people with diabetes is around 40%. It is more common
in Type-1 diabetes than in Type-2. DR is mainly microangiopathy,
in which small blood vessels are particularly vulnerable to damage
from high glucose levels. DR is a progressive process and has several
degrees: background DR, diabetic maculopathy, pre-proliferative
DR, proliferative DR, and advanced diabetic eye disease. This cate-
gorization is widely used in clinical practice. There are several indi-
cations of DR, including microaneurysms, retinal haemorrhages,
exudates, diabetic macular oedema, cotton wool spots, venous or
arterial changes, ischemic maculopathy. The duration of diabetes,
poor control, pregnancy, hypertension, obesity, smoking, cataract
surgery, and anemia are some of the risk factors [2].
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data-driven, cost-effective solution, which includes comprehensive preprocessing and fine-tuning processes.
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Parallel to an increase in the spread of diabetes, the number of DR
patients has also increased. In the current clinical diagnosis, oph-
thalmologists examine retinal images of patients and evaluate the
condition. It is a time-consuming process. Additionally, there is a
lack of medical resources (such as equipment and specialists) in
some countries and so DR cannot be diagnosed and treated in a
timely manner. Even if there were enough ophthalmologists in a
city, misdiagnosis often occurs because of a lack of experience. On
the other hand, developments in imaging technologies enable more
medical data production. Automatic screening and grading of DR
is necessary to overcome these problems and process large amounts
of data quickly and accurately.

Recently, automated systems (which are generally based on artificial
intelligence), have made remarkable achievements in many areas.
One of these areas is medicine. Deep neural networks, particularly
convolutional neural networks (CNNs), have outstanding perfor-
mance in computer vision tasks that learn representative and hier-
archical image features from a sufficient number of images. CNNs
have the capability to process and analyze fundus images automat-
ically and accurately [3-5].

Training deep learning models from scratch requires sufficient
resources, such as high processing or memory capacity, to process
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large amounts of data; this can be costly to collect and label. Medical
data is one of the most prominent types of such data. These prob-
lems can be addressed by transfer learning, which is a frequently
used technique in deep learning. The basic idea of transfer learn-
ing is that a model is developed for a task and is then re-used as a
starting point for another task model. Learning knowledge is trans-
ferred between tasks. Depending on the relevance of the tasks, there
are various uses for transfer learning. For example, a pretrained net-
work can be used in feature extraction from new samples, or to fine-
tune them.

Transfer learning is applied to many computer vision tasks. DR clas-
sification with limited amounts of data is one of these tasks. There
are many well-performing models trained on ImageNet data, which
presents a standard computer vision benchmark dataset. VGG109,
ResNet50, InceptionV3, MobilNet, and DenseNet121 are some of
these models. InceptionV3 is one of the most used models in DR
classification studies. The high performance of InceptionV3 may be
associated with the inception module, which was found to be very
useful in DR images [6].

This study proposes an automated DR classification system based
on the preprocessing of images, feature extraction, and classifi-
cation steps. Features are extracted from the InceptionV3 model
using the transfer learning approach and this differs from other
studies in the literature. The extracted features are classified by
several machine learning methods, namely XGBoost, Bagged Deci-
sion Trees, Random Forest, Extra Trees, Support Vector Machines,
Logistic Regression, and multilayer perceptron. We show that,
when extracting generic descriptors from one of the initial layers
of InceptionV3, competitive classification accuracy can be acquired
with machine learning methods without layer-wise tuning. More-
over, our approach offers satisfactory results when considering the
number of pre-processing methods used, the model’s complexity,
the number of parameters to be trained, and the computation and
memory capacity needed. This study provides researchers with a
performance comparison of different machine learning methods.

The rest of the paper is organized as follows. Section 2 outlines
the related work in the literature. Section 3 outlines the materials
and methods used in this study. Experimental results and discus-
sions are given in Section 4. Lastly, the conclusions are presented in
Section 5.

2. RELATED WORK

In the literature, some studies classify DR by detecting lesions such
as exudates, hemorrhages, microaneurysms, etc., or by segment-
ing blood vessels with various techniques. During the identifica-
tion and segmentation of DR signs or calculating some numerical
indexes from DR images, manual, and automatic feature extrac-
tion methods are applied. Many studies apply manual methods (in
which variables are measured manually), or hand engineering fea-
tures are extracted using various image processing techniques or
separate algorithms, such as HOG and SIFT. Manual efforts bring
extra complexity and instability [7-10].

Early studies on DR classification are mainly based on extracting
features of retinal images with hand engineering methods and clas-
sifying them with machine learning methods. Kasurde and Ran-
dive [11] proposed a proliferative DR detection model. This type
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of DR can be detected by tracking the growth of abnormal ves-
sels. The proposed model is based on vessel segmentation, straight
vessel detection using morphological operations and structuring
elements, removing straight vessels, and then obtaining abnormal
vessels. Lastly, the images are classified according to vessel pixel
statistics.

Dhanasesekaran et al. [12] preprocessed retinal images and then
segmented them using the Fuzzy C-means segmentation technique.
The authors extracted features using the Gabor Filter and Gaussian
Mixture Model and then used them in classification. Omar et al.
[13] classified DR images by detecting DR features, namely hem-
orrhages, exudates, and blood vessels. The process stages were pre-
processing, vessel and hemorrhage detection, optic disc removal,
and exudate detection. The authors used morphological operations
in detection. Classification is made by taking into consideration the
lesion locations or some statistical measures. Similarly, Punitha-
vathi and Kumar [14] used morphological operations to extract the
number of microaneurysms and texture features. These features are
then classified by the Extreme Learning Machine classifier.

Sayed et al. [15] classified DR images with support vector machines
and probabilistic neural network algorithms. The authors extracted
features using grayscale conversion, discrete wavelet transform,
adaptive histogram equalization, matched filter, and fuzzy C-means
segmentation. Sisodia et al. [16] preprocessed retinal images by
applying green channel extraction, histogram equalization, image
enhancement, and resizing techniques. The authors obtained four-
teen features for quantitative analysis. Classification was performed
by examining the mean value and standard deviation of extracted
features. Sreng et al. [17] segmented possible lesions of DR using a
combination of pre- and postprocessing steps. The authors obtained
eight feature sets, such as morphological features, color features,
pattern features, and first-order statistical features. The optimal fea-
ture set was selected by applying the hybrid simulated annealing
method. An ensemble bagging classifier was used in the binary clas-
sification task. Reddy et al. [18] applied an ensemble-based machine
learning model including logistic regression, decision tree, ran-
dom forest, adaboost, and k-nearest neighbor Classifiers on the DR
dataset from the UCI machine learning repository. The model was
trained on normalized datasets and the proposed ensemble-based
model performed better than the individual machine learning algo-
rithms.

Recently, deep learning methods have become popular in DR
classification studies. These methods can learn features directly
from images. Vo and Verma [19] proposed two deep, CNNs,
namely VGGNet with extra kernel (VNXK) and combined ker-
nels with multiple losses network (CKML Net). The authors also
introduced a hybrid colour space. They conducted a referable/non-
referable classification of DR on the Messidor dataset. Transfer
learning was used to handle the imbalanced dataset and exper-
iments of the proposed nets were carried out on the hybrid
color space. Li et al. [3] extracted features from various pre-
trained deep learning models and used a support vector machine
to classify images in Messi-dor data. Sahlsten et al. [4] pro-
posed a deep network based on the InceptionV3 model to dis-
tinguish DR and macular edema features. The authors made
a binary classification of DR [referable diabetic retinopathy
(RDR) vs. non-referable diabetic retinopathy (NRDR)]. Experi-
ments were undertaken by varying input image sizes using the
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Messidor dataset. The authors compared the results of an ensemble-
based model and a single model.

Kassani et al. [20] proposed a method that is based on an aggre-
gation of multilevel features from different convolution layers of
Xception. Extracted features were fed into a multilayer perceptron
to classify DR images. Additionally, transfer learning strategy and
hyperparameter tuning were used to improve classification perfor-
mance. The Kaggle APTOS 2019 contest dataset was used in the
experiments. Mateen et al. [21] proposed a DR classification system
using a Gaussian mixture model for region segmentation, VGGNet
for feature extraction, singular value decomposition (SVD) and
principal component analysis for feature selection. Softmax was
used for fundus image classification. Bodapati et al. [22] extracted
features of DR images from multiple pre-trained ConvNet mod-
els, such as VGG16, Xception. The authors blended these features
to get the final feature representations, which are used to train a
deep neural network. Experiments were carried out on the Kaggle
APTOS 2019 contest dataset. Doshi et al. [23] used various down-
scaling algorithms before feeding the retinal images into a Deep
Learning Network for classification. The authors proposed a Multi-
Channel InceptionV3 model and used EyePACS and Indian Dia-
betic Retinopathy Image Datasets in experiments.

Gargeya and Leng [24] proposed a custom CNN model for DR
diagnosis. Features were extracted from the global average pooling
(GAP) layer of the proposed network. Some metadata information
is added to the extracted features to increase the accuracy of pre-
diction. A gradient boosting classifier was applied for diagnosis and
the model trained with the EyePACS dataset. The proposed model
achieved an AUC (Area Under Curve) of 94% for no-DR vs. any
DR grade and AUC of 83% for no-DR vs. mild DR on Messidor-2.
Voets et al. [25] trained an InceptionV3 model for detecting RDR.
The images were preprocessed, and data augmentation was used.
The authors used ensemble learning by training ten networks and
the final prediction was then made by calculating the mean of the
predictions. The EyePACS dataset, hosted on the Kaggle platform, is
used in training and testing. The algorithm gives an AUC of 85.3%
on Messidor-2.

de La Torre ef al. [26] suggested a CNN model comprising 17 lay-
ers. The authors used the EyePACS dataset hosted on the Kaggle
platform to train the model. Some data augmentation techniques
were applied to artificially equalize the training set. The binary clas-
sification accuracy of the model for predicting the most severe DR
(grouping classes 2, 3 and macular edema) is 91.0% on Messidor-2.

Toledo-Cortés et al. [27] suggested a deep learning gaussian process
(GP) for DR classification. The pretrained InceptionV3 model was
used as a feature extractor and fine-tuned with the EyePACS dataset.
A GP regressor was applied in diagnosing the RDR images and the
model gave an AUC of 87.87% on Messidor-2.

Saxena et al. [28] experimented with different Inception and
ResNeT-based models. Inception Res-NetV2 outperformed all of
the other versions of the models. The authors trained multiple
models on a different train and validation sets from the Eye-PACS
dataset by arbitrary splitting. The results of these models were
combined using ensemble averaging methods and Messidor-2 was
used as a benchmark test dataset. A binary classification was made:
no-DR vs. any DR grade. The model gives an AUC of 92% on
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Messidor-2 with a specificity and sensitivity of 86.09% and 81.02%,
respectively.

Zago et al. [29] suggested a patch-based CNN model to classify
DR images. The model learns to detect lesions (localization) on a
given image. A selection model, which is a five-layer CNN model,
selects the patches. The authors used VGG16, which was initialized
with pre-trained weights and tuned using the selected patches. The
DIARETDBI dataset was used in training. The model was trained
with 51,840 lesion and nonlesion patches and gave an AUC of 94.4%
on Messidor-2, for detecting RDR.

Tseng et al. [30] developed fusion CNN architectures. The best
performing architecture trained an object detection model based
on RetinaNet. An object detection model was used to enhance
the major symptoms of potential DR regions. InceptionV4 and
DenseNet121 were used in feature extraction. The extracted fea-
tures were then concatenated and ridge regression applied to clas-
sify the images. The authors used a private dataset from Taiwanese
Hospitals and used Messidor-2 for benchmarking. The model
achieved an accuracy of 91.99% in detecting RDR on Messidor-2.

The performance comparison of studies on Messidor-2 in the detec-
tion of various degrees of DR is given in Table 1. According to
Table 1, the proposed model with an AUC of 93.55% and accuracy
of 91.40% has comparable results to previous studies in a binary
classification task. These previous studies used other publicly avail-
able, or custom datasets, with significantly more observations in the
training phase and used Messidor-2 as a benchmark dataset. In the
proposed model, we used Messidor-2, a very small dataset, in train-
ing and testing. The proposed model gives a robust performance
with a small dataset, which constitutes good value, considering the
difficulties in collecting large quantities of labeled images, the train-
ing time, and computational power required.

3. METHODOLOGY

3.1. Convolutional Neural Networks

CNNess are specialized types of neural networks and can be applied
to many kinds of data with different dimensions. CNN includes
three kinds of layers: convolutional, pooling, and fully connected
layers. Convolutional layers constitute the main building blocks of
a CNN and summarize the features in an image [31].

The network uses a mathematical operation, which is called con-
volution. Convolution is a kind of linear operation which includes
multiplying a set of weights with input data. Convolutional layers
are composed of filters and feature maps. Filters are basically the
neurons of the layer and act like a neuron; filters have weighted
inputs and produce an output value. A feature map is generated
from the output of one filter applied to the previous layer. A given
filter is slid over the entire previous layer. Each position results in
the activation of the neuron and the outputs form the feature map.
Pooling layers can be considered to be a technique that compresses
or generalizes feature representations. They downsample feature
maps. The result of applying a pooling layer gives a summarized
version of the features. Lastly, fully connected layers are classic feed-
forward neural network layers [32].
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CNNs are sensitive to the spatial coherence or local pixel cor-
relations in images. So they are preferred in many image classi-
fication, recognition or analysis problems. Recently, CNNs have
offered valuable insights into various medical applications but there
are some challenges when using CNNs in medical tasks [1]. It is
difficult to collect medical images of good quality and sufficient
numbers. The availability of labeled data is limited. Collecting and
labeling data is a time-consuming process; besides, correct labeling
is critical and depends on specialist experience [3,5,33,34]. Signs of
DR (such as microaneurysms, retinal hemorrhages, and exudates)
are complicated in a fundus image. There are common signs that
are shared with the other retinal vascular diseases. Some small signs
are difficult to see if image quality is poor. High classification accu-
racy is difficult to attain by a single model with a small number of
datasets. Two essential strategies are used in deep learning studies to
overcome the mentioned challenges: transfer learning and ensem-
ble learning [1].

3.2. Transfer Learning

A common approach in deep learning for a small number of image
datasets is using a pretrained network, which is a saved network.
Transfer learning transfers knowledge learned in a pretrained net-
work to increase the learning performance of a target task. Transfer
learning is generally referred to when there is not enough dataset
for the target domain training process or when there is a favorable
solution to a related problem. It would be advantageous to use such
knowledge to solve the target problem [35]. Transfer learning is
used to train a CNN by not initializing CNN weights from scratch.
Instead, weights are imported from another CNN, which is trained
on a large dataset. The ImageNet dataset is the most famous dataset
for transferring weights of trained models [6].

Pretrained networks are composed of two parts. The first part
includes a series of convolution and pooling layers and these layers
end with a densely connected classifier. Convolutional feature maps
take into consideration object locations in an input image. On the
other hand, densely connected layers at the top of the convolutional
base are mostly useless for object detection problems. A pretrained
network is trained on a large dataset, generally on large-scale image
classification problems. These kinds of networks include VGG19,

Xception, MobilNet, ResNet, DenseNet, and InceptionV3. These
networks were trained on the ImageNet dataset, in which classes
are mostly everyday objects and animals. If the dataset is large and
general enough, pretrained networks can be used as generic models
by learning the spatial hierarchy of features. Thus, these networks
can be useful for many different computer vision tasks, even if new
tasks consist of entirely different classes [35].

There are two ways to use a pretrained model: feature extraction
and fine-tuning. Feature extraction is based on using the convolu-
tional base of a pretrained network with a new classifier and run-
ning the new dataset through it. The convolutional base is reusable
because it learns representations that are generic for various tasks.
Complementary to feature extraction, is fine-tuning, where some
of the top layers of the frozen model base (used for feature extrac-
tion) are unfrozen. The top layers and classifier parts of the model
are then jointly trained [35,36].

Transfer learning from a pretrained CNN model is shown in
Figure 1. The trained convolutional base can be used as a feature
extractor and then extracted features are fed into a new classifier.
On the other hand, depending on the relevance of the tasks, layer-
wise fine tuning can be carried out on the convolutional base by
unfreezing some of the layers.

Source Task

Target Task \\

‘ New Classifier

Transfer P E

. Learned Trained
Trained Knowledge

5 Convolutional
Convolutional .
Base frozen/tuning
Base
layers
< D,

Figure 1

Transfer learning from a
pretrained convolutional neural
network (CNN) model.

Table1 Performance comparison on Messidor-2 in detection various degrees of DR.
Study Model Training Data (Number Classes Performance (%)
of Images)

Gargeya and Leng [24] CNN + Gradient EyePACS (75137) No-DR vs. DR 94.0 (AUC)
Boosting

Voets et al. [25] InceptionV3 CNN EyePACS in Kaggle (45717) NRDR vs. RDR 85.3 (AUC)

de La Torre et al. [26] CNN EyePACS in Kaggle (75650) Most severe cases 91.0 Acc.

of DR vs. the rest

Toledo-Cortés et al. [27] InceptionV3 + GP EyePACS (56827) NRDR vs. RDR 87.87 (AUC)
regressor

Saxena et al. [28] Inception and EyePACS (56839) No-DR vs. DR 92.0 (AUC)
ResNeT based mod-
els

Zago et al. [29] Patch-based CNN DIARETDBI (28) NRDR vs. RDR 94.4 (AUC)

Tseng et al. [30] Fusion CNN Archi-  Custom (22617) NRDR vs. RDR 91.99 Acc.
tecture

Proposed Model InceptionV3 + Messidor-2 (1392) NRDR vs. RDR 91.40 Acc; 93.55

XGBoost

(AUC)
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Using full scale, fine-tuned transfer learning methods has two main
issues: negative transfer and overfitting. When the domain of the
pretrained network and the target outputs are not similar we may
see a performance decrease in the transfer learning model, which
is called negative transfer [37]. This is because features extracted in
the later layers are complex and not suitable for the target domain.
On the other hand, fine-tuning later layers can lead to overfitting
problems. In order to adapt later layer features to our target domain
we need to train the layers with a huge number of parameters. This
is not practical since the common, pretrained network InceptionV3
has 21,802,784 parameters; ResNet152 has 58,370,944 parameters.
When these large-scale networks are trained, there is the risk of
overfitting the model; it is also extremely time and CPU power con-
suming. In order to tackle these problems, we only use features from
earlier layers. Early features are primitive and do not depend on the
domain which can be used in machine learning algorithms as inputs
[35,38].

The suitability of transfer learning for DR classification can be eval-
uated by comparing a model that was trained from scratch, to its
fine-tuned version. Several studies (such as Masood et al. [39]; Wan
et al. [5]; Xu et al. [40]) agree that using transfer learning increases
the accuracy of a model significantly in the classification of DR
[6]. A vast number of images are needed to sufficiently train a
deep learning model. DR image datasets have a limited number of
images. Collecting DR images and labelling them correctly is a very
costly process in terms of time, experience, and resources. We used
transfer learning in the proposed study because of the dataset limi-
tation and its proven success in DR classification.

InceptionV3 is a frequently-referenced, deep CNN model, and
is a feature extractor in DR classification studies. The superior
performance of InceptionV3 refers to some network connection
techniques, such as using MLPconv layers to replace linear convo-
lutional layers, adopting batch normalization, and factorizing con-
volutions with large kennel sizes. These techniques significantly
decrease the number of parameters and the complexity of the
model [10]. In this study, we also used InceptionV3 as a feature
extractor to generate feature vector representations from retinal
images.

3.3. Ensemble Learning

Ensemble learning methods try to improve generalizability or
robustness over a single estimator by combining the multiple model
predictions. Bagging, boosting, and stacking models are based on
ensemble learning. When the training dataset is small, ensemble
methods can decrease the risk of choosing a weak classifier by aver-
aging individual classifiers’ votes.

In bootstrap aggregating (namely bagging), multiple models are
built from different subsamples of the training dataset [41]. In
boosting, new models are added to fix the prediction errors made
by existing models. Models are added sequentially until no further
improvements can be accomplished [42]. A stacking model consists
of base models, which are called level-0 models, and a meta-model,
combining the predictions of the level-0 model. The meta-model
is called a level-1 model. Stacking differs from boosting in that a
meta-model tries to learn how to best combine the predictions from
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the base models, instead of a sequence of models that correct the
prediction errors of prior models [43].

3.4. Machine Learning Algorithms

In this study, a boosting model (XGBoost), bagging models (bagged
decision trees, random forest, extra trees), support vector machines
(SVC, linear SVC), a linear classifier (logistic regression), and a
neural network model (MLP) are used in classification. A detailed
explanation of the computations is beyond the scope of this study.
Brief introductory information of the abovementioned machine
learning algorithms are explained below.

XGBoost is short for “Extreme Gradient Boosting” and it is an
implementation of the Gradient Boosting Algorithm. It is a scalable
machine learning algorithm for tree boosting which enables com-
putational efficiency by parallel and distributed computing and,
generally, better model performance. As in the aforementioned def-
inition of boosting, new models are created which predict pre-
diction errors or residuals from prior models and then add them
together to make the final prediction. XGBoost uses a gradient
descent algorithm, minimizing loss when adding new models. The
models in XGBoost are decision trees that are generated and added
sequentially [44]. A detailed explanation of the computations can
be found in the study by Chen and Guestrin [45].

A Bagging classifier is an ensemble meta estimator that fits base clas-
sifiers onto random subsets of the original dataset and then aggre-
gates their individual predictions, by voting or averaging, to make
a final prediction [41]. In this study, decision trees are used as base
estimators for the bagging classifier and are known as bagged deci-
sion trees.

Random Forest and Extra Trees are two averaging algorithms based
on randomized decision trees. The prediction of the ensemble is
given by the average prediction of individual classifiers. Random
forest uses random feature selection in the tree induction process.
Each decision tree is generated randomly. The difference of extra
trees (or extremely randomized trees) from random forest is that
each tree uses the entire training set, not the bootstrap sample, and
it splits nodes by choosing cut-points totally at random [46-48].
More explanations about random forest and extra trees are available
in Breiman [49] and Geurts et al. [47], respectively.

Logistic Regression is one of the most used binary classification algo-
rithms in machine learning. The algorithm’s name comes from the
function used, the logistic function or the sigmoid function, which
takes any real-valued numbers and turns them into a value between
0 and 1. A sigmoid function is an S-shaped curve. Logistic regres-
sion is a linear classification model. Peng et al. presented a detailed
information [50].

Multilayer perceptron (MLP) is a type of neural network [51]. MLP
is a supervised learning algorithm that includes three layers, namely
the input layer, hidden layer, and output. Deep networks consist
of many hidden layers. MLPs learn mapping from inputs to out-
puts and have the capability of learning nonlinear models. Back-
propagation is used in the training process [52].

Support vector machines (SVMs) are effective algorithms in
performing linear and nonlinear classification problems [53]. In
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A

input

Pre-processing

Figure2 Pipeline of the proposed model.

nonlinear problems, SVMs use kernel trick and they use hyper-
planes in separating two classes. Optimal separating is achieved
when the hyperplane maximizes the distance to the closest point
from either two classes [54,55].

Principal component analysis (PCA) is an important machine learn-
ing method for dimensionality reduction [56]. This method uses
matrix operations from linear algebra and some statistics for calcu-
lating the projection of the original data, which includes the same
number or fewer dimensions. Kernel PCA [57] is an extension of
PCA that achieves nonlinear dimensionality reduction through the
use of kernels. Incremental PCA [58] is a linear dimensionality
reduction using SVD of the data, keeping only the most signifi-
cant singular vectors to project the data to a lower-dimensional
space. Truncated SVD [59] performs linear dimensionality reduc-
tion through truncated SVD. Contrary to PCA, this estimator does
not center the data before computing the SVD. This means that
Truncated SVD can work efficiently with sparse matrices.

3.5. Proposed Model

After the preprocessing, input images are fed into the InceptionV3
network and we extracted features from one of the initial layers. In
a deep CNN model, layers close to the inputs learn generic features
such as edges and lines, and layers to the end, meaning more in-
depth, learn more abstract features such as a specific object. Since
we used pretrained weights in InceptionV 3, features extracted from
deeper layers do not represent more abstract features or more valu-
able information than the initial layers.

Extracted features are summarized using global average pooling
(GAP) and then classified with various machine learning meth-
ods. On the other hand, dimensionality reduction algorithms are
applied to these summarized features and lower-dimensional rep-
resentations are obtained. These representations are classified with
the most successful classifier. Details of the experiment are given
in the next section. Figure 2 presents the pipeline of the proposed
model.

Classifier

&

Reduction

Feature extraction

Table 2 The distribution of relabeled data.

Label Class Number
0 NRDR 1286
1 RDR 455

4. EXPERIMENTAL RESULTS AND
DISCUSSION

4.1. Dataset and Preprocessing

In this study, the Messidor-2 dataset [60,61] was used. This dataset
includes DR examinations, consisting of macula-centered eye
fundus images. Detailed information about the dataset is avail-
able on the website given in the acknowledgments section. The
Messidor-2 dataset contains 1,748 images and the adjudicated grade
levels are: no-DR, mild, moderate, severe, and proliferative DR.
Seven images are excluded because of their poor image quality.

Categorization of the fundus images was carried out, following
international clinical DR and macular edema disease severity scales
(PIRC and PIMEC, respectively). The class name NRDR stands for
nonreferable DR. NRDR considers the cases with no DR and mild
DR The second class name RDR stands for referable DR. RDR con-
siders the cases with moderate (or worse) DR. This classification
has recently been used in DR studies [4].

Table 2 gives the distribution of labeled data. There are 1,286 images
in the NRDR class and 455 images in the RDR class. Several pre-
processing methods were applied to the images before feeding them
into the model. The images were scaled down to an image size of
1200 x 960, in terms of width and height. Image pixel values were
converted from [0, 255] to [0, 1] in the RGB (red, green, blue)
channels.

4.2. Experiments

In this study, 1,741 retinal images with a resolution of 1200 x
960 pixels were used in Png and JPG formats. 80% of images
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were used for training and the remaining images were used for
testing. Preprocessed images were fed into the In-centionV3 model,
which comprised 10 mixed layers. Features were extracted from the
mixed3 layer, which is one of the initial layers of InceptionV3, and
frozen weights (layers without layer-wise tuning) were used. Fea-
tures from the mixed3 layer gave us maximum classification accu-
racy with applied machine learning algorithms. The GAP operation
was applied to the extracted features. GAP helps to decrease over-
fitting by reducing the total number of parameters in a model and
summarizes the presence of features in an image. GAP averages val-
ues in the entire feature map and finds a single value for each. A
tensor with dimensions h(height) x w(width) x d(depth) is reduced
in size to 1 x 1 x d when applying GAP. Features from the GAP
outputs are then used directly by the classifiers.

Calibration can make models better predictors, especially for non-
linear machine learning algorithms, which do not directly return
probabilistic predictions; rather, they use approximations in classi-
fication problems. In this study, the predicted probabilities of dif-
ferent methods were calibrated with the “CalibratedClassifierCV”
library in Scikit learn. CalibratedClassifierCV 1is fitted and cali-
brated on training data using k-fold cross-validation in the related
method, this calibration set is then used in making predictions. In
the study by Niculescu-Mizil and Caruana [62], empirical results
showed that when calibration is applied, random forests, boosted
trees, and SVMs predict better. According to our experimental
results, all methods benefit from calibration. Several hyperparam-
eters in the methods were tuned to prevent overfitting or poor per-
formance using the grid search method.

For XGBoost, grid search is carried out for a number of estimators
between 100 and 500, for a learning rate between 0.001 and 0.300,
and for a maximum depth between 3 and 6. The maximum accuracy
is obtained when the parameter combination is: number of estima-
tors = 400; learning rate = 0.1; maximum depth = 4.

For random forest and extra trees classifiers, the number of esti-
mators is searched between 100 and 500. The default number gives
the maximum accuracy for random forest. For extra trees, when the
number of estimators equals 300, maximum accuracy is obtained.
For bagged decision trees, a grid search is carried out for a number
of estimators between 10 and 50.

For linear SVC, the maximum iteration number is searched
between 1,000 and 11,000. For SVC, the probability parameter is
chosen as “True” which enables the classifier to make probability
estimates. Available kernel parameters (linear, poly, rbf, sigmoid)
and degree (between 3 and 10) are searched. The maximum accu-
racy is obtained when the parameter combination is probability =
True, kernel = poly, degree = 8.

For logistic regression, the maximum iteration number is searched
between 100 and 1,200. Available solver parameters (newton-cg;
Ibfgs, liblinear, sag, saga) are also searched. The default solver,
namely Ibfgs, gives maximum accuracy. For MLP, hidden layer size
and number of neurons in each hidden layer are searched. The
learning rate is made “adaptive” and maximum accuracy is obtained
when the parameter combination is hidden layer size = 2, number
of neurons in each hidden layer = 512.

For dimensionality reduction algorithms, a sufficient number of
components in explaining variance is searched.

Confusion Matrix for XGBoost

250
< NRDR 12 200
o]
©
- 150
2
= 100
RDR 18 51
50
nRDR RDR

Predicted Label
accuracy=0.9140; misclass=0.0860

Figure 3 Confusion matrix for XGBoost.

We chose CalibratedClassifierCV  parameters as such: cross-
validation value as 5 and method as isotonic. Models are trained
on Python 3.7 and scikit learn 0.23.1. Table 3 gives the evalua-
tion results and parameters (except default values) of the methods.
Default parameter values are available from the scikit learn [63] and
XGBoost official websites, given in the acknowledgments.

According to the results, the performance of ensemble-based meth-
ods is better than the other machine learning methods. XGBoost
gives the maximum accuracy, with 91.40%. Random forest and
extra trees provide equal accuracy (89.68%) followed by bagging
classifier. Linear SVC’s (similar to SVC with a linear kernel param-
eter but implementation is based on liblinear rather than lib-svm)
performance is better than SVC: 89.11% and 87.97%, respectively.
The performance of logistic regression is close to SVC. Lastly, MLP
gives the lowest accuracy of 86.53%.

Tree boosting algorithms are very effective and widely used
machine learning methods. XGBoost, as one of the widely used
boosting algorithms, enables researchers to achieve a state of the art
results on many machine learning problems. In our study, XGBoost
outperforms in NRDR vs. RDR classification.

To analyze each case (NRDR, RDR), we presented the confusion
matrix of the best classifier, the XGBoost algorithm. For NRDR
cases, the XGBoost algorithm classified 268 out of 280 observations
correctly, while 51 out of 69 RDR observations were correctly clas-
sified. In the confusion matrix given in Figure 3, it can be seen
that the misclassification error for RDR cases was greater compared
to NRDR cases. This could be due to the number of RDR images
being significantly lower than the NRDR cases, which affects the
proposed model’s detection performance.

As mentioned before, ensemble learning methods are useful when
the training dataset is small, like the Messidor-2 dataset, because
they decrease the risk of choosing a weak classifier over individual
classifiers. These methods try to improve generalizability or robust-
ness over a single estimator. According to the results, ensemble
methods performed better than different SVM, logistic regression,
and MLP algorithms.

Summarized features obtained from GAP are reduced with dimen-
sionality reduction algorithms. The number of features is reduced
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Table 3  Evaluation results of methods in detecting RDR.

Method Parameters Accuracy (%) AUC (%)

XGBoost (n_estimators = 400, I, = 0:1, max 91.40 93.55
depth = 4)

Random Forest (n_estimators = 100) 89.68 88.23

ExtraTrees (n_estimators = 300) 89.68 88.95

Bagged Decision Trees  (n_estimators = 20, b, = decisiontree) 89.40 86.63

Linear SVC (max_iter = 10000) 89.11 91.15

SVC (probability = True, kernel = poly, 87.97 89.58
degree = 8)

Logistic Regression (max_iter = 10000) 87.39 89.58

MLP (hidden_layer_sizes = (512,512); 1, = 86.53 87.49
adaptive)

SVD + XGBoost (n_f eatures = 19) 87.10 87.91

PCA + XGBoost (n_f eatures = 19) 86.24 88.38

Kernel PCA + (n_f eatures = 19) 86.24 88.96

XGBoost

Incremental PCA + (n_f eatures = 19) 85.95 88.11

XGBoost

Ir =learning rate, be =base estimator.

from 768 to 19 for each image. These 19 features explain 95% of the
variance for PCA. XGBoost gives an accuracy of 87.10% with trun-
cated SVD; 86.24% with both PCA and kernel PCA; 85.95% with
incremental PCA.

Moreover, we built an eight-layer deep CNN model inspired by
the AlexNet architecture, one of the most influential papers pub-
lished in computer vision. The model is comprised five con-
volutional layers, followed by three fully connected layers. The
structure of convolutional layers in our model is the same as
AlexNet’s convolutional layers, except we used fewer nodes in fully
connected layers. Also, we used data augmentation techniques and
dropout to prevent overfitting. We trained the model from scratch
through 150 epochs with a batch size of 32. Our network archi-
tecture has approximately 23 million parameters, in contrast to 60
million parameters reported in the AlexNet paper [64]. The model
gives an approximate accuracy of 75%. Considering the developed
deep CNN model’s performance, in terms of the number of parame-
ters to be trained, training time, and accuracy, our proposed model
offers superior performance.

This study shows that when the dataset size is small, machine learn-
ing methods with a transfer learning approach give satisfactory
results, even without layer-wise tuning.

5. CONCLUSION

The present study offers a model for automated detection of DR in
retinal images using the representational power of deep CNN and
machine learning methods. The proposed model is based on pre-
processing, feature extraction, and classification steps. The main
concern was to reduce the complexity and training time of the
model while achieving high performance. A pretrained network is
used to extract features from images without fine-tuning weights.
The extracted features are classified by several machine learning

algorithms. Moreover, summarized features are obtained by several
dimensionality reduction algorithms. Experiments show that the
proposed model yields competitive results, compared with other
models trained on the same dataset.

Training the proposed model requires a small number of images,
which is valuable, when considering the lack of labeled DR image
datasets. The results provide researchers with a performance com-
parison for different machine learning algorithms.

Our model can also be helpful to ophthalmologists, in diagnosing
DR grade.
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