
University of Padua
Doctorate Degree in Brain, Mind and Computer Science

Curriculum in Computer Science

Human Interactions in Cybersecurity:

Threats and Opportunities

Candidate Supervisor

Matteo Cardaioli Prof. Mauro Conti

University of Padova, Italy

Co-supervisor

Prof. Giuseppe Sartori

University of Padova, Italy



ii



Acknowledgments

I want to express my sincere gratitude to my advisor Prof. Mauro Conti for

his valuable support, guidance, encouragement, and enthusiasm in guiding

me in my research career. I hope to continue our collaboration in the

future and learn even more from him: keep pushing hard!. I sincerely thank

my co-supervisors, Prof. Giuseppe Sartori. His experience, curiosity, and

motivation allowed me to work with many interdisciplinary groups and apply

my knowledge to different research fields. I truly thank Prof. Gene Tsudik

for remote-hosting me at the University of California, Irvine and giving me

insight, continuous guidance, and new ideas to carry on my research.

A special thanks to all my GFT colleagues that supported me in managing

my Ph.D. from the very beginning. In particular, Maurizio Ferraris and

Luca Moroni have always been available, enthusiastic, proactive and have

allowed me to undertake this journey. A big thank also to Alessandro Gnata

and Marco Zambon, who have supported me in managing work and research

with patience and professionalism.

Many thanks to my parents, Claudio and Patrizia, who encouraged and

helped me follow my ambitions.

Special thanks to my future wife, Alice, for her continuous support,

patience, and motivation to follow what I like most. I am joyful to share all

our achievements.

A great thank to my officemates and SPRITZ group colleagues (Alessio,

Ankit, Denis, Eleonora, Federico, Gabriele, Luca PJ, prof. Pasa, Pallavi, Pier

Paolo, and Stefano) for their kind help, useful remarks towards my research

and valuable aperitives.

Matteo Cardaioli

Padova, March 30, 2022

iii



iv



You know what? I can.

B.S.

v



vi



Abstract

Over the years, many cybersecurity breaches have been attributed to human

error, considering human factors as one of the weakest links in the security

chain. In fact, human factors are exploited by cybercriminals, causing

significant losses of money and reputation to organizations. According to

Verizon’s 2021 Data Breach Investigations, 85% of breaches involved a human

element, while 61% involved stolen or compromised credentials, causing an

average breach cost of more than $3 million. To prevent cyberattacks,

organizations focus on training employees and developing new policies, while

also trying to maintain a balance between the complexity of security systems

and their usability. However, the unpredictability of human behavior, the fast

evolution of the digital world, and the increasing availability of technological

resources for cybercriminals pose new and evolving cybersecurity challenges

in anticipating both cyber threats in new environments and the rise of

new threats in systems considered secure to date. On the other hand,

the complexity and uniqueness of human behavior give new opportunities

for designing new solutions to mitigate threats, improving the security of

organizations and users.

In this thesis, we investigate human interactions and cybersecurity, fo-

cusing on two main aspects: (i) developing new attacks, based on human

interaction, against existing and consolidated authentication methods (i.e.,

PIN pads), and (ii) proposing new methods leveraging human behavior in

multiple contexts to enhance the security of users and organizations. The

first part of this thesis demonstrates the effectiveness of three attacks against

the security of PIN-based authentication systems, focusing on Automated

Teller Machines (ATMs) PIN pads. ATMs have become an indispensable

part of the banking ecosystem such that according to the European Cen-

tral Bank, in 2019 only in Europe, more than 11 billion withdrawal and
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deposit transactions were made. In particular, we show how ATM PIN pads

are exposed to security threats related to human factors even if users have

policy-compliant behaviors. We analyze different attack scenarios depending

on the sources of information available to the attacker (e.g., video, audio,

thermal, typing style). The results show that in the worst-case scenario for

the victim, our attacks can reconstruct up to 94% of the 5-digit PINs typed

within three attempts.

In the second part of this thesis, we show how the variability and unpre-

dictability of human behavior can be exploited to increase the security of

systems and users. We develop new human-based approaches focusing on

three different contexts: (i) new methods for bot detection in social networks

(i.e., Twitter) relying on the stylistic consistency of posts over time, (ii) a

new framework for identifying fake and genuine expressions from videos, and

(iii) a new de-authentication method based on the detection of physically

blurred faces. Results demonstrate the efficacy of the proposed approaches,

achieving an F1-score up to 98% in human-bot detection, an accuracy up to

90% in fake sadness detection, and accuracy in de-authenticating users up to

100% under 3 seconds of grace period.

This thesis highlights the need for more effort in designing security

solutions that focus on human factors, showing the direction for further

investigation in analyzing human interactions in cybersecurity.
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Chapter 1

Introduction

With the expansion of digital technologies, society have experienced a dra-

matic increase in opportunities for criminal activity. Almost every aspect

of human behavior is managed, recorded, and tracked in the digital realm:

e.g., communications, movements, payments. In this context, information

security is playing an increasingly critical role by balancing the protection of

confidentiality, integrity, and availability of data while maintaining effective

use of organizations’ systems and their usability. However, organizations

invest more in security technology (e.g., firewalls, encryption, secure access

devices, hard passwords) than they do in considering the human factor for

preventing cyberattacks [189].

Cybersecurity breaches have often been linked to human error over the

years, considering human factors as one of the weakest points in the security

chain. Human error can be defined as actions taken unintentionally (or

lack of action) by users that lead to, spread, or allow a security breach. A

variety of actions contribute to the risk, from downloading malware-infected

attachments to forgetting to use strong passwords. Also work environments

can force users to take shortcuts that expose them to cyber threats. A well

known example is the reuse of credentials across multiple applications in

order to avoid remembering (or worse transcribing) passwords [98]. Addae

et al. [3] suggested that increasing the usability of cybersecurity mechanisms

can greatly encourage users to adopt better security controls and behaviors.

However, human error is still a critical factor. Verizon’s 2021 Data Breach

Investigations Report1, highlighted that 85% of breaches involved a human

1 https://www.verizon.com/business/resources/reports/dbir/2021

1
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element, and 61% were due to stolen or compromised user credentials. Further,

the average cost of such breaches was estimated at $3.33 million.

Although human error remains a primary issue in mitigating cyber

incidents, with organizations focusing on employee training and policies,

human factors represent an evolving cyber security challenge. In particular,

to anticipate possible threats, it is necessary to predict potential security

flaws even when behaviors are compliant with standards. An example of

these threats is given by the so-called side-channel attacks, where the criminal

exploits the indirect effects of the system to collect information. On the

other side, human behavior can also be exploited to make existing systems

more secure or implement ad hoc solutions to mitigate the emergence of new

threats.

In this context, the rapid evolution of technology makes, on the one

hand, difficult to predict how human interactions with the digital world will

evolve (e.g., the metaverse) and, on the other hand, provides attackers with

increasingly powerful tools to perpetrate new attacks. This poses several

challenges in both anticipating cyber threats in new environments and the

rise of new threats in systems considered secure to date.

1.1 Research Motivation and Contribution

This thesis aims to investigate human interactions and cybersecurity, focusing

on two main aspects: (i) showing the feasibility of new attacks, based

on human interaction, against existing and consolidated authentication

methods (i.e., PIN pads), and (ii) developing new methods that leverage

human behavior in multiple contexts to enhance the security of users and

organizations.

In this thesis, some passages have been quoted verbatim, and some figures

have been reused from the works [15, 41, 42, 43, 44], all coauthored by the

author of this thesis.

1.1.1 In-Security Through Human Interaction Analysis: the

PIN Pad Case

Financial institutions represent one of the most profitable targets for cy-

bercriminals. The International Monetary Fund estimated that growing

cyber-threats represent a serious issue to financial institutions’ profits, rang-

ing from 9% up to 50% in worst-case scenarios [35]. Although the spread

of FinTech solutions has significantly transformed the banking ecosystem

in recent years (e.g., online banking, new payment systems, cryptocurren-

2
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cies), some elements have had smaller impacts, effectively resisting this new

technological wave. Among the most notable exponents of this category are

PINs. The combination of security, a very simple user experience, the limited

technological resources required, and their ubiquity have resulted in PINs

(and passwords) remaining the most popular authentication factor to date.

The security of PIN-based authentication systems is essentially based on

the difficulty of an attacker to succeed in guessing the correct sequence of

numbers that constitute the secret. Intuitively, longer PINs are harder to

attack, but they are also harder to remember. This trade off is an early point

where PIN-based security comes into contact with human factors, posing

the first challenges. What is the best balance between PIN length and PIN

usability? Is it safer to provide randomly generated PINs, with the risk

of them being written down somewhere, or to allow users to choose their

own secret? To answer the first question, according to ISO 9564-1 [133]

(the standard for PIN management in financial services), the issuer can

assign a PIN up to twelve digits. Still, for usability reasons is recommended

not to exceed six digits in length. Regarding the dualism between random

PINs and user-chosen PINs, several studies have shown that the latter suffer

from significant bias, which compromises their security. Textual passwords

have been analyzed for bias starting with Morris and Thompson [191],

and confirmed in many studies since [241]. Similarly, Bonneau et al. [33]

demonstrated that, in the absence of denied PIN lists, a lost or stolen wallet

will be vulnerable to theft up to 8.9% of the time, with birthday-based

guessing the most effective technique.

Other concrete threats to PIN security related to victim behavior are

so-called shoulder-surfing attacks, in which the attacker tries to spy on the

victim while typing the PIN to steal their secret. Financial institutions and

standards (e.g., ISO 9564-1 [133]) provide rules of conduct and directions

to mitigate shoulder-surfing attacks: hiding the PIN while typing, making

sure no one watches the screen, PIN digits must not be displayed, and the

duration and type of feedback sound emitted by the pressed keys must be

the same for each key.

Assuming that users and institutions follow the best standards to ensure

PIN security (e.g., random PIN, cover the PIN pad), in this part of the

thesis, we want to study whether other factors related to human behavior

can affect the security of PIN-based authentication devices.

3
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1.1.1.1 Your PIN Sounds Good: Interkeystroke-timing Based

Attacks on PINs

Personal Identification Numbers are widely used as the primary authenti-

cation method for Automated Teller Machines (ATMs) and Point of Sale

(PoS). ATM and PoS typically mitigate attacks, including shoulder-surfing,

by displaying dots on their screen rather than PIN digits and by obstructing

the view of the keypad. Further, ISO 9564-1 [133] requires that PIN digits

should not be identified by different sound characteristics or durations. In-

deed, PIN entry systems are developed to provide the same audio feedback

(e.g., same tone, same duration) for all keys to achieve a balance between

security and usability.

Contributions: In Chapter 2, we explore several sources of information

leakage from common ATM and PoS installations that the adversary can

leverage to reduce the number of attempts necessary to guess a PIN. Specifi-

cally, we evaluate how the adversary can leverage audio feedback generated

by a standard ATM keypad to infer accurate inter-keystroke timing infor-

mation, and how these timings can be used to improve attacks based on

the observation of the user’s typing behavior, partial PIN information, and

attacks based on thermal cameras. Our results show that inter-keystroke

timings can be extracted from audio feedback far more accurately than from

previously explored sources (e.g., videos). In our experiments, this increase

in accuracy translated to a meaningful increase in guessing performance.

Further, various combinations of these sources of information allowed us to

guess between 44% and 89% of the 4-digit PINs within 5 attempts. Finally,

we observed that based on the type of information available to the adversary,

and contrary to common knowledge, uniform PIN selection is not necessarily

the best strategy. We consider these results relevant and important, as they

highlight a real threat to any authentication system that relies on PINs.

1.1.1.2 Hand me your PIN: Inferring PINs from Videos of Users

Typing with a Covered Hand

Automated Teller Machines (ATMs) represent the most used system for

withdrawing cash. The European Central Bank reported more than 11 billion

cash withdrawals and loading/unloading transactions on the European ATMs

in 2019. Although ATMs have undergone various technological evolutions,

PINs are still the most common authentication method for these devices.

Unfortunately, the PIN mechanism is vulnerable to shoulder-surfing attacks

performed via hidden cameras installed near the ATM to catch the PIN

pad. To overcome this problem, people get used to covering the typing hand

4
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with the other hand. While such users probably believe this behavior is safe

enough to protect against mentioned attacks, there is no clear assessment of

this countermeasure in the scientific literature.

Contributions: In Chapter 3, we propose a novel attack to reconstruct

PINs entered by victims covering the typing hand with the other hand. We

consider the setting where the attacker can access an ATM PIN pad of the

same brand/model as the target one. Afterward, the attacker uses that

model to infer the digits pressed by the victim while entering the PIN. Our

attack owes its success to a carefully selected deep learning architecture that

can infer the PIN from the typing hand position and movements. We run a

detailed experimental analysis including 58 users. With our approach, we

can guess 30% of the 5-digit PINs within three attempts – the ones usually

allowed by ATM before blocking the card. We also conducted a survey with

78 users that managed to reach an accuracy of only 7.92% on average for the

same setting. Finally, we evaluate a shielding countermeasure that proved to

be rather inefficient unless the whole keypad is shielded.

1.1.1.3 PinDrop: Acoustic Side-Channel Attacks on ATM PIN

Pads

Attacks that exploit video recordings of PIN pads have become more

widespread over time due to their great simplicity of use. However, this kind

of attack requires placing a camera directly on-site, limiting its applicability

in many real-world contexts. Moreover, the use of protective shields on the

PIN pad or complete coverage by the user are disincentives that further

restrict the effectiveness of video-based attacks. Although these elements

protect PINs from visual attacks, acoustic emanations from the PIN pad

itself open the door for another attack type.

Contributions: In Chapter 4, we show the feasibility of an acoustic side-

channel attack (called PinDrop) to reconstruct PINs by profiling acoustic

signatures of individual keys of a PIN pad. We demonstrate the practicality

of PinDrop via two sets of data collection experiments involving two com-

mercially available metal PIN pad models and 58 participants who entered a

total of 5,800 5-digit PINs. We simulated two realistic attack scenarios: (1)

a microphone placed near the ATM (0.3 meters away) and (2) a real-time

attacker (with a microphone) standing in the queue at a common courtesy

distance of 2 meters. In the former case, we show that PinDrop recovers

96% of 4-digit, and up to 94% of 5-digits, PINs. Whereas, at 2 meters away,

it recovers up to 57% of 4-digit, and up to 39% of 5-digit PINs in three

attempts. We believe that these results are both significant and worrisome.
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1.1.2 Securing Securing Computer-Human Interaction

Cybersecurity research is increasingly focusing on behavioral aspects [161].

The unpredictability of behavior and actions makes humans a key element

in designing secure systems. As discussed before, making users aware of

risks and promoting policies and standards is not always sufficient. However,

the advancement of technology, which brings ever-increasing computing

capabilities and the rise of new ecosystems (e.g., social networks) and habits,

combined with the uniqueness of human behavior, may open new challenges

and opportunities in cybersecurity. The uniqueness of human behavior, for

example, is a feature that has enabled the development of new security layers

in authentication systems (e.g., behavioral biometrics).

This part of the thesis shows how human factors can be leveraged to

develop more secure systems with holistic and non-intrusive solutions. In

particular, we focus on three application fields where the human factor is

significant but still under-exploited in a security context: bot detection in

social networks, fake emotion detection, and de-authentication.

1.1.2.1 It’s a Matter of Style: Detecting Social Bots through

Writing Style Consistency

Social bots are computer algorithms able to produce content and interact

with other users on social media autonomously, trying to emulate and

possibly influence humans’ behavior. Indeed, bots are largely employed for

malicious purposes, like spreading disinformation and conditioning electoral

campaigns. Nowadays, bots’ capability of emulating human behaviors has

become increasingly sophisticated, making their detection harder.

Contributions: In Chapter 5, we aim at recognizing bot-driven accounts

by evaluating the consistency of users’ writing style over time. In particular,

we leverage the intuition that while bots compose posts according to fairly

deterministic processes, humans are influenced by subjective factors (e.g.,

emotions) that can alter their writing style. To verify this assumption, by

using stylistic consistency indicators, we characterize the writing style of

more than 12,000 among bot-driven and human-operated Twitter accounts

and find that statistically significant differences can be observed between

the different types of users. Thus, we evaluate the effectiveness of different

machine learning (ML) algorithms based on stylistic consistency features in

discerning between human-operated and bot-driven Twitter accounts and

show that the experimented ML algorithms can achieve high performance

(i.e., F-measure values up to 98%) in social bot detection tasks.
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1.1.2.2 Face the Truth: Detection of Spontaneous and Posed

Emotional Facial Expressions

As facial expressions communicate what we are thinking, intending and

feeling, the face is considered the most complex and reliable indicator of

emotional states. Indeed, the face includes 43 muscles and is capable of

making more than ten thousand combinations of facial expressions [91, 135].

Manifesting unfelt, unauthentic emotions has adaptive value. For this reason,

this is an ability individuals manifest since infancy. For instance, an unau-

thentic cry enables a successful communication with the caregiver, when the

infant is still not able to talk [194]. In adulthood, individuals become very

skilled in simulate or dissimulate emotional expressions to receive personal

and social advantages [75, 90]. To date, some attempts have been made

to discriminate spontaneous (i.e., genuine) and posed (i.e., fake) emotions

automatically. Unfortunately, the results obtained so far revealed significant

variability and inconsistency in state of the art. The great inter-individual

variability in the facial displays makes impossible the detection of universal

deceptive cues in the emotional expressions.

Contributions: In Chapter 6, we developed a framework for the automatic

detection of spontaneous and posed emotional facial expressions from clips.

We applied the framework in two scenarios to classify the genuineness of

emotional expressions ad hoc for each user (i.e., user-dependent scenario)

and investigate the relevancy of inter-individual variability in the emotional

lie detection (i.e., user-dependent vs user-independent scenario). Results re-

vealed that Machine Learning models achieved high accuracies in genuineness

discrimination (84.4% accuracy on average) when capitalized for a single user

specifically. Contrarily, the same approach obtained an average accuracy of

67.0% if deployed on all the users generically. Finally, the implications and

applications of the results are discussed in light of the state of the art of lie

detection, psychology of emotions, and the AI field.

1.1.2.3 BLUFADE: Blurred Face Detection

Ideally, secure user sessions should start and end with authentication and

de-authentication phases, respectively. While the user must pass the for-

mer to start a secure session, the latter’s importance is often ignored or

underestimated. Dangling or unattended sessions expose users to well-known

Lunchtime Attacks. To mitigate this threat, the research community fo-

cused on automated de-authentication systems. Unfortunately, no single

approach offers security, privacy, and usability. For instance, although facial

recognition-based methods might be a good fit for security and usability, they
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violate user privacy by constantly recording the user and the surrounding

environment.

Contributions: In Chapter 7, we propose BLUFADE, a fast, secure, and

transparent de-authentication system that takes advantage of blurred faces

to preserve user privacy. We obfuscate a webcam with a physical blur layer

and use deep learning algorithms to perform face detection continuously.

To assess BLUFADE’s practicality, we collected two datasets formed by 30 re-

cruited subjects (users) and thousands of physically blurred celebrity photos.

The former was used to train and evaluate the de-authentication system

performances, the latter to assess the privacy and to increase variance in

training data. We show that our approach outperforms state-of-the-art meth-

ods in detecting blurred faces, achieving up to 95% accuracy. Furthermore,

we demonstrate that BLUFADE effectively de-authenticates users up to 100%

accuracy in under 3 seconds, while satisfying security, privacy, and usability

requirements.

1.2 Publications

An overview of the manuscript produced during my Ph.D.period and pub-

lished or currently submitted in peer-reviewed journals, conferences, and

workshops are listed below. All manuscripts are listed in chronological order

of acceptance/submission.
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• Balagani, K., Cardaioli, M., Conti, M., Gasti, P., Georgiev, M., Gurtler,
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from obfuscated typing videos. Journal of Computer Security, 27(4),

405-425. (JCR IF 2018: 1.071)

• Miolla, A., Cardaioli, M., & Scarpazza C.(2022). Padova Emotional

Dataset of Facial Expressions (PEDFE): a unique dataset of genuine

and posed emotional facial expressions. Journal of Behavior Research

Methods. (JCR IF 2020: 6.242) Submitted

• Cardaioli, M., Miolla, A., Conti, M., Sartori, G., Monaro, M., Navarin,

N., & Scarpazza, C. (2022). Inter-individual variability in the detection

of spontaneous and posed emotional facial expressions. PloS one.

(JCR IF 2020: 3.24) Submitted
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Chapter 2

Your PIN Sounds Good: Inter-

keystroke Timing Based Attacks on

PINs

Authentication via Personal Identification Numbers (PINs) dates back to

the mid-sixties [25]. The first devices to use PINs were automatic dispensers

and control systems at gas stations, while the first applications in the

banking sector appeared in 1967 with cash machines [33]. PINs have found

widespread use over the years in devices with numeric keypads rather than

full keyboards [255].

In the context of financial services, ISO 9564-1 [133] specifies basic security

principles for PINs and PIN entry devices (e.g., PIN pads). For instance, to

mitigate shoulder surfing attacks [158, 160, 218], ISO 9564-1 indicates that

PIN digits must not be displayed on a screen, or identified using different

sounds or sound duration for each key.

As a compromise between security and usability, PIN entry systems

display a fixed symbol (e.g., a dot) to represent a key being pressed, and

provide the same audio feedback (i.e., same tone, same duration) for all

keys. While previous work has demonstrated that observing the dots as they

appear on screen as a result of a key press reduces the search space for a

PIN [16], to our knowledge no work has targeted the use of audio feedback

to recover PINs.

In this chapter, we evaluate how the adversary can reduce PIN search

space using audio feedback, with (and without) using observable information

such as PIN typing behavior (one- or two-handed), knowledge of one digit of
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the PIN, and knowledge of which keys have been pressed. We compare our

attacks with an attack based on the knowledge of PIN distribution.

Exploiting audio feedback has several advantages compared to observing

the user or the screen during PIN entry. First, sound is typically easier

to collect. The adversary might not be able to observe the ATM’s screen

directly, and might risk being exposed when video-recording an ATM in a

public space. In contrast, it is easy to record audio covertly, e.g., by casually

holding a smartphone while pretending to stand in a line behind other ATM

users. The sound emitted by ATMs is quite distinctive and can be easily

isolated even in noisy environments. Second, sound enables higher time

resolution compared to video. Conventional video cameras and smartphones

record video between 24 and 120 frames per second. In contrast, audio

can be recorded with a sampling rate between 44.1 kHz and 192 kHz, thus

potentially allowing at least two orders of magnitude higher resolution.

Contributions. In this chapter, we analyze several novel side channels

associated with PIN entry. In particular:

• We show that it is possible to retrieve accurate inter-keystroke timing

information from audio feedback. In our experiments, we were able to

correctly detect 98% of the keystroke feedback sounds with an average

error of 1.8ms. Furthermore, 75% of inter-keystroke timings extracted

by the software had absolute error under 15 ms. Our experiments also

demonstrate that inter-keystroke timings extracted from audio can be

more accurate than the same extracted from video recordings of PIN

entry as done in [15, 16].

• We analyze how the behavior of the user affects the adversary’s ability

to guess PINs. Our results show that users who type PINs with one

finger are more vulnerable to PIN guessing from inter-keystroke timings

compared to users that enter their PIN using at least two fingers. In

particular, the combining inter-keystroke timing with the knowledge

that the user is a single-finger typist leads to 34-fold improvement over

random guessing when the adversary is allowed to perform up to 5

guessing attempts.

• We combine inter-keystroke timing information with knowledge of one

key in the PIN (i.e., the adversary was able to see either the first or

the last key pressed by the user), and with knowledge of which keys

have been pressed by the user. The latter information is available,

as shown in this chapter as well as in recent work [2, 144, 193, 271]

when the adversary is able to capture a thermal image of the PIN pad

after the user has typed her PIN. Our experiments show that inter-

14



Human Interactions in Cybersecurity M. Cardaioli

keystroke timing significantly improves performance for both attacks.

For example, by combining inter-keystroke timing with a thermal attack,

we were able to guess 15% of the PINs at the first attempt, reaching a

four-fold improvement in performance. By combining multiple attacks,

we were also able to drastically reduce the number of attempts required

to guess a PIN. Specifically, we were able to guess 72% of the PINs

within the first 3 attempts.

• Finally, we show that uniform PIN selection might not be the best

strategy against an adversary with access to one or more of the side-

channel information discussed in this chapter.

2.1 Related Work

Non-acoustic Side-channels. Vuagnoux and Pasini [252] demonstrated

that it is possible to recover keystrokes by analyzing electromagnetic

emanations from electronic components in wired and wireless keyboards.

Marquardt et al. [178] showed that it is possible to recover key presses by

recoding vibrations generated by a keyboard using an accelerometer. Other

attacks focus on keystroke inference via motion detection from embedded

sensors on wearable devices. For example, Sarkisyan et al. [225] and Wang

et al. [254] infer smartphone PINs using movement data recorded by a

smartwatch.

Those attacks require that the adversary is able to monitor the user’s

activity while the user is typing. However, there are attacks that allow

the adversary to exploit information available several seconds after the

user has typed her password. For instance, one such attack is based

the observation that when a user presses a key, the heat from her

finger is transferred to the keypad, and can be later be measured using

a thermal camera [271]. Depending on the material of the keyboard,

thermal residues have different dissipation rates [193], thus affecting the

time window in which the attacks are effective. Abdelrahman et al. [2]

evaluated how different PINs and unlock patterns on smartphones on can

influence thermal attack performance. Kaczmarek et al. [144] demonstrated

how a thermal attack can recover precise information about a password

up to 30 seconds after it was typed, and partial information within 60 seconds.

Acoustic Side-channels. Asonov and Agrawal showed that each

key on a keyboard emits a characteristic sound, and that this sound can be

used to infer individual keys [10]. Subsequent work further demonstrated
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the effectiveness of sound emanation for text reconstruction. Berger et

al. [26] combined keyboard acoustic emanation with a dictionary attack

to reconstruct words, while Halevi and Saxena [116] analyzed keyboard

acoustic emanations to eavesdrop over random password. Because ISO

9564-1 [133] specifications require that each key emits the same sound, those

attacks do not apply to common keypads, including those on ATMs.

Another type of acoustic attack is based on time difference of arrivals

(TDoA) [166, 256, 277]. These attacks rely on multiple microphones to

triangulate the position of the keys pressed. Although this attacks typically

result in good accuracies, they are difficult to instantiate in realistic

environments.

Song et al. [239] presented an attack based on latency between key presses

measured by snooping encrypted SSH traffic. Their experiments show

that information about inter-keystroke timing can be used to narrow the

password search space substantially. A similar approach was used by

Balagani et al. [16], who reconstructed inter-keystroke timing from the time

of appearance of the masking symbols (e.g., “dots”) while a user types

her password. Similarly, Balagani et al. [15] demonstrated that precise

inter-keystroke timing information recovered from videos drastically reduces

the number of attempts required to guess a PIN. The main limitation

of [15, 16] is that they require the adversary to video-record the ATM screen

while the user is typing her PIN. Depending on the location and the ATM,

this might not be feasible. Further, this reduces the set of vulnerable ATMs

and payment systems to those that display on-screen feedback.

To our knowledge, this is the first work to combine inter-keystroke timing

information deduced from sound recording with observable information

from other sources, and thereby drastically reduce the attempts to guess a

PIN compared to prior work. Our attacks are applicable to a multitude of

realistic scenarios. This poses an immediate and severe threat to current

ATMs or PoS.

2.2 Adversary Model

In this section we evaluate four classes of information that the adversary can

exploit to infer PINs. These classes are: (1) Key-stroke timing information

extracted from audio recordings; (2) Knowledge of whether the user is a

single- or multi-finger typist; (3) Information about the first or the last digit

of the PIN; and (4) Information about which keys have been pressed, but not

their order. Next, we briefly review how each of these classes of information

can be collected by the adversary.
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Figure 2.1: Different typing strategies. Left: one finger; center: multiple
fingers of one hand; right: multiple fingers of two hands.

Class 1: Keystroke Timing. Keystroke timing measures the distance

between consecutive keystroke events (e.g., the time between two key presses,

or between the release of the key and the subsequent keypress). Collecting

keystroke timing by compromising the software of an ATM located in a

public space, or physically tampering with the ATM (e.g., by modifying the

ATM’s keyboard) is not practical in most cases. However, as shown in [15],

the adversary can infer keystroke timings without tampering with the ATM

by using video recordings of the “dots” that appear on the screens when the

user types her PIN. In this chapter, we leverage audio signals to infer precise

inter-keystroke timings.

Class 2: Single- or Multi-finger Typists. The adversary can typically

directly observe whether the user is typing with one or more fingers. While

the number of fingers used to enter a PIN does not reveal information about

the PIN itself, it might be a useful constraint when evaluating other sources of

information leakage. Figure 2.1 shows users typing using a different number

of fingers.

Class 3: Information about the first or the last digit of the PIN. As

users move their hands while typing their PIN, the adversary might briefly

have visibility of the keypad, and might be able to see one of the keys as it

is pressed (see Figure 2.1). We model this information by disclosing either

the first or the last digit of the PIN to the adversary.
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Class 4: Which Keys Have Been Pressed. This information can be

collected using various techniques. For instance, the adversary can use a

thermal camera to determine which keys are warmer, thus learning which

digits compose the PIN (see, e.g., Figure ). As an alternative, the adversary

can place UV-sensitive powder on the keys before the user enters her PIN,

and then check which keys had the powder removed by the users using a UV

light.

While these attacks do not reveal the order in which the keys were pressed

(except when the PIN is composed of one repeated digit), they significantly

restrict the search space. Although this attack can be typically performed

covertly, it requires specialized equipment.

(a) Thermal trace after 2 seconds. (b) Thermal trace after 7 seconds.

(c) Thermal trace after 10 seconds. (d) Thermal trace after 15 seconds.

Figure 2.2: Thermal image of a metallic PIN pad after applying a transparent
plastic cover for PIN 2200.
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Figure 2.3: Left: user typing a PIN using the ATM simulator. Right: close
up view of the ATM simulator’s keypad.

2.3 Experiment Results

We extracted keystroke sounds using the dataset from [16]. This dataset was

collected from 22 subjects, who typed several 4-digit PINS on a simulated

ATM (see Figure 2.3). Nineteen subjects completed three data collection

sessions, while three subjects completed only one session.

In each session, subjects entered a total of 180 PINs as follows: each

subject was shown a 4-digit PIN. The PIN remained on the screen for 10

seconds, during which the subject was encouraged to type the PIN multiple

times. After 10 seconds, the PIN disappeared from the screen. At this point,

the subject was asked to type the PIN 4 times from memory. In case of

incorrect entry, the PIN was briefly displayed again on the screen, and the

subject was allowed to re-enter it. This procedure was repeated in three

batches of 15 PINs. As a result, each PIN was typed 12 times per session.

Each time a subject pressed a key, the ATM simulator emitted an audio

feedback and logged the corresponding timestamp with millisecond resolution.

Users were asked to type 44 different 4-digit PINs which represented all the

Euclidean distances between keys on the keypad. Sessions were recorded in a

relatively noisy indoor public space (SNR −15 dB) using a Sony FDR-AX53

camera located approximately 1.5 m away from the PIN pad. The audio

signal was recorded with a sampling frequency of 48 kHz.

2.3.1 Extraction of Keystroke Timings from Keypad Sound

To evaluate the accuracy of timing extraction from keystroke sounds, we first

linearly normalized the audio recording amplitude in the interval [−1, 1]. We
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applied a 16-order Butterworth band-pass filter [39] centered at 5.6 kHz to

isolate the characteristic frequency window of the keypad feedback sound.

Finally, to isolate the signal from room noise, we processed the audio recording

to “mute” all samples with an amplitude below a set threshold (0.01 in our

experiments).

We then calculated the maximum amplitude across nearby values in a

sliding window of 1,200 samples (consecutive windows had 1199 overlapping

samples), corresponding to 25 milliseconds of audio recording. We determined

the length of the window by evaluating the distance between consecutive

timestamps logged by the ATM simulator (ground truth), which was at least

100 ms for 99.9% of the keypairs. Figure 2.4 shows the result of this process.

We then extracted the timestamps of the peaks of the processed signal and

compared them to the ground truth. Our results show that this algorithm

can accurately estimate inter-keystroke timing information. We were able to

correctly detect 98% of feedback sound with a mean error of 1.8 ms.

Extracting timings from audio led to more accurate time estimation than

using video [16]. With the latter, 75% of the extracted keystroke timings

had errors of up to 37 ms. In contrast, using audio we were able to extract

75% of the keystroke with errors below 15 ms. Similarly, using video, 50% of

the estimated keystrokes timings had errors of up to 22 ms, compared to less

than 7 ms with audio. Figure 2.5 shows the errors distribution for timings

extracted from video and audio recordings.

2.3.2 PIN Inference from Keystroke Timing (Class 1)

This attack ranks PINs based on the estimated Euclidean distance between

subsequent keys in each PIN. In particular, we calculated an inter-key

Euclidean distance vector from a sequence of inter-keystroke timings inferred

from audio feedback. As an example, the distance vector associated with

PIN 5566 is [0, 1, 0], where the first ‘0’ is the distance between keys 5 and

5, ‘1’ between keys 5 and 6, and ‘0’ between 6 and 6. Any four-digit PIN is

associated with one distance vector of size three. Each element of the distance

vector can be 0, 1, 2, 3, diagonal distance 1 (e.g., 1-3), diagonal distance

2 (e.g., 3-7), short diagonal distance (e.g., 2-9), or long diagonal distance

(e.g., 3-0). Different PINs might be associated with the same distance vector

(e.g., 1234 and 4567). The goal of this attack is to reduce the search space

by considering only PINs that match the estimated distance vector.

For evaluation, we split our keystroke dataset into two sets. The first

(training set) consists of 5195 PINs, typed by 11 subjects. The second (test

set) consists of 5135 PINs, typed by a separate set of 11 subjects. This
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models the lack of knowledge of the adversary of the specific typing patterns

of the victim user.

To estimate the Euclidean distances between consequent keys, we modeled

a set of gamma function on the inter-keystroke timing distribution, one for

each distance. We then applied the algorithm from [15] to infer PINs from

estimated distances. With this strategy, we were able to guess 4% of PINs

within 20 attempts—a 20-fold improvement compared to random guessing.

Figure 2.6 shows how timings extracted from audio and video feedback

affect the number of PIN guessed by the algorithm compared to ground

truth. Timings extracted from audio feedback exhibit a smaller decrease in

guessing performance compared to timings extracted from video.

2.3.3 PIN Inference from Keystroke Timing and Typing Be-

havior (Class 2)

This attack improves on the keystroke timing attack by leveraging knowledge

of whether the user is a single- or multi-finger typist. This additional

information allows the adversary to better contextualize the timings between

consecutive keys. For single-finger typists, the Euclidean distance between

keys 1 and 0 is the largest (see Fig 2.3), and therefore we expect the
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Figure 2.4: Comparison between the original sound signal, filtered sound
signal, windowed signal, and extracted peaks.
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Figure 2.5: Error distribution of estimated inter-keystroke timings.
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Figure 2.6: CDF showing the percentage of PINs recovered using keystroke
timing information derived from the ground truth (logged), sound feedback,
and video.

corresponding inter-keystroke timing to be the largest. However, if the user

is a two-finger typist, then 1 might be typed with the right hand index finger,

and 0 with the left hand index finger. As a result, the inter-keystroke time

might not be representative of the Euclidean distance between the two keys.

To systematically study typing behavior, we analyzed 61 videos from

the 22 subjects. 70% of the subject were single-finger typists; 92% of them

entered PINs using the index finger, and 8% with the thumb. We divided

multi-finger typists into three subclasses: (1) PINs entered using fingers from

two hands (38% of the PINs typed with more than one finger); (2) PINs

entered with at least two fingers of the same hand (34% of the PINs typed

with more than one finger); and (3) PINs that we were not able to classify

with certainty due obfuscation of the PIN pad in the video recording (28%

of the PINs typed with more than one finger).

In our experiments, subjects’ typing behavior was quite consistent across

PINs and sessions. Users that were predominantly single-finger typists

entered 11% of their PINs using more than one finger, while multi-finger

typists entered 23% of the PINs using one finger.
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We evaluated guessing performance of timing information inferred from

audio feedback on single-finger PINs and multi-finger PINs separately. We

were able to guess a substantially higher number of PINs for each number of

attempts for users single-finger typists (see Figure 2.7) compared to multi-

finger typists. In particular, the percentage of PINs recovered within 5

attempts was twice as high for PINs entered with one finger compared to

PINs entered with multiple fingers. Further, the guessing rate within the

first 5 attempts was 34 times higher compared to random guessing when

using timing information on single-finger PINs. However, our ability to guess

multi-finger PINs using timing information was only slightly better than

random. This strongly suggests that the correlation between inter-keystroke

timing and Euclidean distance identified in [16] holds only quite strongly

for PINs entered using a single finger, and only marginally for PINs entered

with two or more fingers.

0 2000 4000 6000 8000 10000
Number of Guesses

  0%

 20%

 40%

 60%

 80%

100%

P
IN

s 
R

ec
ov

er
ed

Keystroke
timing

Keystroke timing
single-finger typist

Keystroke timing
multi-finger typist

0 10 20 30 40 50
 0%

 2%

 4%

 6%

 8%

10%

Figure 2.7: CDF showing the percentage of PINs recovered using only
keystroke timing information from audio feedback, compared to timing
information for single- or multi-finger typists.

2.3.4 Knowledge of the First or the Last Digit of the PIN

(Class 3)

In this section, we examine how information on the first or last digit of

the PIN reduces the search space when combined with keystroke timings.
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Knowledge of one digit alone reduces the search space by a factor of 10

regardless of the digit’s position, because the adversary needs to guess only

the remaining three digits. (As a result, the expected number of attempts to

guess a random PIN provided no additional information is 500.)

To determine how knowledge of the first or the last digit impacts PIN

guessing based on keystroke timing, we applied the same procedure described

in Section 2.3.2: for each PIN in the testing set, we associated a list of triplets

of distances sorted by probability. We then pruned the set of PINs associated

with those distance triplets to match the knowledge of the first or last PIN.

For instance, given only the estimated distances 3, 0, and
√

2, the associated

PINs are 0007, 0009, 2224, and 2226. If we know that the first digit of the

correct PIN is 2, then our guesses are reduced to 2224 and 2226.

Information about the first or last digit of the PIN boosted the guessing

performance of the keystroke-timing attack substantially, as shown in Figure

2.8. In particular, guessing accuracy increased by 15-19 times within 3

attempts (4.36% guessing rate when the first digit was known, and 5.57%

when the last digit was known), 7 times within 5 attempts, and about 4

times within 10 attempts, compared to timing information alone. In all three

cases, timing information substantially outperformed knowledge of one of

the digits in terms of guessing rate.

2.3.5 Knowledge of Which Keys Have Been Pressed (Class

4)

In this section, we evaluate how knowledge of which digits compose a PIN,

but not their order, restricts the PIN search space, in conjunction with infor-

mation about keystroke timings. The adversary can acquire this knowledge,

for instance, by observing the keypad using a thermal camera shortly after

the user has typed her PIN [144], or by placing UV-sensitive powder on the

keys before the user enters her PIN, and then checking which keys were

touched using a UV light.

Information on which digits compose a PIN can be divided as follows:

1. The user pressed only one key. In this case, the user must have entered

the same digit 4 times. No additional information is required to recover

the PIN.

2. The user pressed two distinct keys, and therefore each digit of the

PIN might be repeated between one and three times, and might be

in any position of the PIN. In this case, the number of possible PINs

is 24 − 2 = 14, i.e., the number of combinations of two values in four
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Figure 2.8: CDF showing the percentage of PINs recovered using keystroke
timings inferred from audio, random guessing over 3 digits of the PIN, and
using inferred keystroke timings and knowledge of the first or the last digit
of the PIN.

position, except for the combinations where only one of the two digits

appears.

3. The user pressed three distinct keys. The number of possible PINs

is equal to the combinations of three digits in four positions, i.e.,

4 · 3 · 3 = 36

4. The user pressed four distinct keys. The number of possible PINs is

4! = 24.

We evaluated how many PINs the adversary could recover given keystroke

timings and the set of keys pressed by the user while entering the PIN. Our

results, presented in Figure 2.9, show that combining these two sources of

information leads to a high PIN recovery rate. Specifically, within the first

three attempts, knowing only which keys were pressed led to the recovery of

about 11% of the PINs. Adding timing information increased this value to

over 33%.

26



Human Interactions in Cybersecurity M. Cardaioli

0 5 10 15 20 25 30 35
Number of Guesses

  0%

 20%

 40%

 60%

 80%

100%

P
IN

s 
R

ec
ov

er
ed

Knowledge of PIN digits
and inter-keystroke timings

Knowledge of PIN digits

1 2 3
 0%

10%

20%

30%

40%

Figure 2.9: CDF showing the percentage of PINs recovered with the knowl-
edge of which keys have been pressed with and without inter-keystroke timing
information.

2.3.6 Combining Multiple Classes of Information

In this section we examine how combining multiple classes of information

leads to an improvement in the probability of correctly guessing a PIN.

First, we investigated how guessing probability increases when the adver-

sary knows one of the digits of the PIN (first or last), the typing behavior

(single-finger typist), and is able to infer inter-keystroke timing information

from audio feedback. We used 3461 PINs typed by 11 subjects containing

only single-finger PINs. In our experiments, we were able to guess 8.73% of

the PINs within 5 attempts, compared to 6.97% with timing information

and knowledge of one digit.

We then considered knowledge of the values composing the PIN, typing be-

havior, and inferred timing information. In this case, we successfully guessed

50.74% of the PINs within 5 attempts, and 71.39% within 10 attempts.

Finally, when we considered the values composing the PIN, one of the

PIN’s digits, and inferred timing information, we were able to guess 86.76%

of the PINs in 5 attempts, and effectively all of them (98.99%) within 10

attempts. All our results are summarized in Table 2.1.
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Table 2.1: Results from all combinations of attacks considered in this chapter,
sorting by guessing rate after 5 attempts. Because single finger reduces the
PIN search space only in conjunction with inter-keystroke timings, we do
not present results for single finger alone.

Information PINs Guessed Within Attempt

Keystroke
Timing

Single
Finger

First
Digit

PIN
Digits

1 2 3 5 10

0.01% 0.02% 0.03% 0.05% 0.10%

o 0.10% 0.20% 0.30% 0.50% 1.00%

o 0.02% 0.31% 0.70% 1.05% 2.51%

o o 0.03% 0.52% 0.91% 1.30% 3.38%

o o 3.02% 3.72% 4.36% 6.97% 11.04%

o o o 3.73% 4.13% 5.43% 8.73% 14.01%

o 3.76% 7.52% 11.28% 18.80% 37.60%

o o 15.54% 27.79% 33.63% 44.25% 65.57%

o o o 19.04% 34.01% 40.60% 50.74% 71.31%

o o 13.27% 26.62% 39.88% 66.40% 92.80%

o o o 35.27% 53.46% 66.84% 86.76% 98.99%

o o o o 40.86% 60.24% 71.77% 89.19% 99.28%
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2.4 PINs and Their Guessing Probability Distri-

bution

In this section, we evaluate whether the classes of information identified

in this work make some of the PINs easier to guess than others, and thus

intrinsically less secure. With respect to estimated inter-keystroke timings,

different timing vectors identify a different number of PINs. For instance,

vector [0,0,0] corresponds to 10 distinct PINs (0000, 1111, . . .), while vector

[1,1,1] corresponds to 216 PINs (0258, 4569, . . .). This indicates that, against

adversaries who are able to infer inter-keystroke timing information, choosing

PINs uniformly at random from the entire PIN space is not the best strategy.

The adversary’s knowledge of which digits compose the PIN has a similar

effect of the guessing probability of individual PINs. In this case, PINs

composed of three different digits are the hardest to guess, with a probability

of 1/36, compared to PINs composed of a single digit, which can always be

guessed at the first attempt.

The adversary’s knowledge of one digit of the PIN and/or the typing

behavior do not affect the guessing probability of individual PINs.

2.5 Summary

In this chapter, we showed that inter-keystroke timing inferred from audio

feedback emitted by a PIN pad compliant with ISO 9564-1 [133] can be

effectively used to reduce the attempts to guess a PIN. Compared to prior

sources of keystroke timing information, audio feedback is easier to collect,

and leads to more accurate timing estimates (in our experiments, the average

reconstruction error was 1.8 ms). Due to this increase in accuracy, we were

able to reduce the number of attempts needed to guess a PIN compared to

timing information extracted from videos.

We then analyzed how using inter-keystroke timing increases guessing

performance of other sources of information readily available to the adversary.

When the adversary was able to observe the first or the last digit of a PIN,

inter-keystroke timings further increased the number of PINs guessed within

5 attempts by 14 times. If the adversaries was capable of observing which

keys were pressed to enter a PIN (e.g., using a thermal camera), adding

inter-keystroke timing information allowed the adversary to guess 15% of the

PINs with a single attempt. This corresponds to a 4 times reduction in the

number of attempts compared to knowing only which keys were pressed.
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We evaluated how typing behavior affects guessing probabilities. Our

results show that there is a strong correlation between Euclidean distance

between keys and inter-keystroke timings when the user enters her PIN using

one finger. However, this correlation was substantially weaker when users

typed with more than one finger.

We then showed that the combination of multiple attacks can dramatically

reduce attempts to guess the PIN. In particular, we were able to guess 72%

of the PINs within the first 3 attempts, and about 90% of the PINs within

5 attempts, by combining all the sources of information considered in this

chapter.

Finally, we observed that different adversaries require different PIN

selection strategies. While normally PINs should be selected uniformly at

random from the entire PIN space, this is not true when the adversary has

access to inter-keystroke timings or thermal images. In this case, some classes

of PINs (e.g., those composed of a single digit) are substantially easier to

guess than other classes (e.g., those composed of three different digits). As a

result, uniform selection from appropriate subsets of the entire PIN space

leads to harder-to-guess PINs against those adversaries.

We believe that our results highlight a real threat to PIN authentication

systems. The feasibility of these attacks and their immediate applicability

in real scenarios poses a considerable security threat for ATMs, PoS-s, and

similar devices.
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Chapter 3

Hand me your PIN: Inferring PINs

from Videos of Users Typing with a

Covered Hand

The wide deployment of various Cyber-Physical Systems (CPS) has a sig-

nificant impact on our daily lives. Unfortunately, the increased use of CPS

also brings more threats to users. This is especially pronounced considering

new attack vectors that use machine learning approaches. As such, threats

become a global issue, and the need to design secure and robust systems

increases. One common security mechanism in devices like Automated Teller

Machines (ATMs) and Point of Sale (PoS) depends on the security provided

by the Personal Identification Numbers (PINs). While ATMs and PoS devices

are widely used 1, many people do not consider security risks and defenses

beyond those commonly mentioned 2: i) hide the PIN while typing, and i)

make sure no one watches the screen (shoulder-surfing attack). In the context

of financial services, ISO 9564-1 [133] specifies the basic security principles

for PINs and PIN entry devices (e.g., PIN pads). For example, to mitigate

the shoulder surfing attacks [30, 82], the standard indicates that i) PIN digits

must not be displayed on a screen, and ii) the duration and type of feedback

sound emitted must be the same for each key. Consequently, as a compromise

between security and usability, PIN entry systems display a fixed symbol

(e.g., a dot) to represent a digit being pressed and provide the same audio

feedback (i.e., same tone, same duration) for all keys. Thus, the combination

1https://sdw.ecb.europa.eu/reports.do?node=1000001407
2https://www.hsbc.com.hk/help/cybersecurity-and-fraud/atm-scams/
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of security mechanisms enforced by standards and the common precaution

measures taken by users should provide sufficient protection. Unfortunately,

the attackers also improve their approaches over time and consider more

sophisticated attacks.

The security of ATM and PoS devices is of great concern as millions of such

devices are used [73]. Resourceful attackers that succeed in attacking even a

small percentage of those devices can cause significant damage considering

costs and public perception. This problem is especially pronounced as last

years brought significant developments in the attack techniques [15, 42, 167].

At the same time, attacking ATM or PoS devices is not easy, especially if

considering realistic settings. Most of the state-of-the-art attacks can be

defeated by a careful user covering the PIN that is entered. Recent results

that consider thermal cameras are also difficult to succeed, depending on the

keypad type and the time users spend operating the device. The attacker

can also use timing or acoustic attacks to infer information about the entered

digits, but they are not as effective as the state-of-the-art attacks since

they require additional information such as thermal residues [42], making it

challenging to apply realistically such attacks.

This work proposes a novel attack aiming to reconstruct PINs entered

by victims that cover the typing hand by the other hand. More precisely,

we leverage the advances in the deep learning domain to develop an attack

predicting what PIN is entered based on the position of the user’s hand and

the movements while pressing the keys. Our attack gives high accuracy rates

even in the cases when the user perfectly covers the typing hand. What

is more, our attack reaches higher accuracy values than previous works

that needed to consider several sources of the information at the same time

(timing, sound, and thermal signatures) [42].

Our attack considers a profiling setting where the attacker has access

to a PIN pad that is identical (or at least similar) to the one used by the

victim. Then, we build a profiling model that can predict what digit is

entered on the target device. This is the first attack on PIN mechanisms

that works even when the PIN is covered while being entered to the best of

our knowledge. Our attack demonstrates that the ATM and PoS security

mechanisms are insufficient, and we must provide novel defenses to mitigate

attackers. We made our code and datasets publicly available at https:

//spritz.math.unipd.it/projects/HandMeYourPIN.

Contributions. The main contributions of this chapter are:

• We propose a novel attack to infer PINs from videos of users covering

the typing hand with their non-typing hand.
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• We demonstrate that our attack can reconstruct 30% of 5-digit PINs

and 41% of 4-digit PINs within three attempts, showing that hiding

the PIN while typing is insufficient to ensure proper protection.

• We evaluate our attack via extensive experiments, collecting videos of

5 800 5-digit PINs entered in a simulated ATM by 58 participants. We

conduct a study to assess humans’ accuracy in inferring covered PINs

from videos. We show that our attack outperforms humans, achieving

a four-fold improvement on reconstructing 5-digits PINs within three

attempts.

• We pre-process our dataset, and we make it publicly available to the

research community. We hope this is beneficial to understand the

problem better and propose possible solutions.

• We discuss several countermeasures that would make the attack more

difficult to conduct. We perform an analysis on the attack performance

when covering the PIN pad (coverage 25%, 50%, 75%, and 100%) and

show that attacks are possible even when using this countermeasure.

3.1 Related Work

Side-channel attacks specifically target the information gained by the imple-

mentation of a system [176]. Most of the time, these attacks exploit channels

like sound [105], timing [153], power consumption [150], and electromagnetic

emanations [29] to learn the system’s secrets in use. In [153], the authors

managed to crack RSA keys by carefully timing the operations performed

by the key-generating algorithm. Another example of a timing attack is

reported in [239], where the authors measured the timing between keystrokes

in interactive SSH sessions in an attempt to retrieve the typed passwords.

Human behavior can also be defined as a side-channel of a system, espe-

cially if the analyzed behavior directly results from the system’s requirements.

In [18], the authors analyzed the hand movements of people typing on a

keyboard and, by using basic computer vision techniques, they tried to

reconstruct the text being typed. In [234], the authors again analyzed the

finger motion during the PIN-entry process on smartphones. They showed

that 50% of the 4-digit PINs could be retrieved in just one attempt. Different

from our work, where the target of the attack is a physical PIN pad, in [234],

the attackers could also exploit more information. In particular, the users

typed the PIN using only one finger, and the attacker knew the finger the

users are typing. The different contexts and assumptions make the works

substantially different. In [242], the authors presented a side-channel attack

on tablets, consisting of analyzing the backside movements of the tablet itself
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to infer what is being typed by the victim. To do so, they selected some

peculiar features of the backside of the tablets (e.g., logos, side-buttons) and

analyzed their movement throughout the frames to understand what area

of the virtual keyboard is being pressed. Similarly, in [267], the authors

presented an attack to infer the pattern lock of mobile devices from videos.

Different from our approach, in [267], the attacker required a vision of the

user’s fingertip while drawing the pattern and a part of the device.

PIN and PIN pad attacks represent a branch of side-channel attacks that

exploit information leakage from keyboards and numeric keyboards (i.e., PIN

pads) to infer what the victim has typed (e.g., passwords or PINs). In this

context, some works focused on exploiting the heat transferred from the hand

to the keypad when the victim enters the PIN or password [144, 193]. The

attacker points a thermal camera to the keypad as soon as the victim has

finished entering the PIN. The thermal image shows which keys have been

pressed and even highlights the order in which the victim pressed them. The

main advantage of this attack is that it does not require the attacker to do

anything while the victim is typing the PIN. On the other hand, the attacker

must act quickly (i.e., within seconds) for a higher success rate as the heat

on the keypad rapidly fades away. Another drawback of the attack is that

its effectiveness depends on the keypad’s material (e.g., metal PIN pads

completely nullify the attack because of their high thermal conductivity).

Timing attacks against PINs represent another type of side-channel attack

against this authentication method. In the scenario presented in [15], the

attacker recorded the screen of an ATM while the victim is entering the PIN.

When analyzing the recorded video, the attacker exploited the PIN masking

symbols appearing on the ATM screen to extract timing information about

the keystrokes. The attacker used predictive models to infer which keys were

most likely typed by the victim, starting from the deduced inter-keystroke

timing. In [42], the authors used the ATM’s sound whenever a button

is pressed. ATM’s sound must be independent of which button is being

pressed (i.e., a generic feedback sound). This consideration means that one

feedback sound will not help the attacker. However, the sound gives enough

information to extract a timestamp of the keys being pressed. Moreover,

in [42, 167], the authors showed how combining timing, acoustic, and thermal

information can significantly reduce the number of attempts to guess a PIN

(e.g., 34% of 4-digits PINs are recovered in three attempts). These attacks

need to be reevaluated from a feasibility perspective in a real-world setting.

In particular, as shown in [144], the heat signature is dissipated abruptly by

metal PIN pads. The lack of this information limits the performance of the
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attacks presented in [42, 167], reducing the probability of guessing a 4-digit

PIN in 3 attempts to 5%.

Our work shows several advantages over the state-of-the-art in ATM

PIN inference. To the best of our knowledge, we are the first to investigate

the security of hand covering protection methods for ATM’s PIN entering.

Further, our method shows a significant improvement in reconstructing the

PIN compared to previous work on metal PIN pads, reaching 41% of success

in reconstructing 4-digit PINs in three attempts (and correctly guessing every

third PIN in the first guess).

3.2 Threat Model

The attack is performed when a victim interacts with a generic ATM keypad

and types the PIN. The ATM is equipped with a PIN pad that emits a

feedback sound when a key is pressed. The feedback sound is the same for

all the keys of the PIN pad. The ATM is equipped with a monitor where

obfuscated symbols appear when users enter a PIN to mask the entered digits.

We do not assume that the ATM or its PIN pad have been compromised

during the attack. Our approach can be considered an alternative to card-

skimmer attacks since we consider a different source of information to retrieve

the PIN. Usually, card-skimming attacks rely on fake PIN pads that directly

record the entered digits [227], while our approach infers the PINs from a

video.

3.2.1 Attacker

The attacker is a malicious user aiming to steal the victim’s secret PIN. The

attacker can place a hidden camera near the ATM to record the PIN pad.

We make no assumptions about the type of camera used by the attacker

except that it records in the visible spectrum 3. We assume that the camera

can easily be hidden close to the ATM while keeping a direct view of the PIN

pad (i.e., a pinhole camera if the attacker has access to the ATM 4 or any

standard camera placed outside the ATM chassis). We also do not assume any

specific position for the camera, but we discuss various camera placements’

advantages. We primarily consider the scenario where the attacker uses only

one camera, but we also discuss the attack performance when using multiple

cameras.

3We will use cheap and easily-concealable video sensing equipment, where standard
RGB cameras fit such requirements.

4 https://www.sperrywest.com/cameras/
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The attack may take place together with different card stealing approaches:

i) card skimming both on chip [32] or magnetic stripe [227] (currently, the

two payment-enabling technologies work together [56]), ii) exploiting a relay

attack on a contactless card [115], and iii) physically stealing the victim’s

card.

We assume a profiling side-channel attack where the side-channel infor-

mation comes from the video of the victim’s hand while entering the PIN.

More precisely, side-channel information is the position of the victim’s hand

and the hand movements (both moving the hand/fingers to reach different

keypads or movements observable due to muscle movements while a certain

keypad is pressed). The attacker can record a number of PINs entered on

a copy of the ATM device and train a profiling model to predict what key

is pressed. The attacker can retrieve the timestamps when the victim has

typed the single keys on the keypad and can do so by listening to the audio

of the video recording. There are two different types of sound clues that

the attacker can exploit: the first one is the feedback sound made by the

keypad when a key is pressed [42], the second one is the sound of the physical

button of the keypad that is pressed. External noise does not prevent the

attacker from extracting the keypresses, as the camera is close enough to

the keypad. As such, the sound can still be identified in the audio track.

If, for any reason, the attacker has no way to retrieve the timestamps from

the recorded audio (or if there is no audio at all), it is possible to place the

camera to record both the keypad and the screen of the ATM [15]. This

allows the attacker to extract the keypresses’ timing by looking at the PIN

masking symbols appearing on the screen. Common masking symbols are

usually dots and asterisks. The attacker can use any method to build a

profiling model to predict what keys are pressed. We consider the top three

predictions as a measure of success since most ATMs will allow entering the

PIN three times before blocking the card. Finally, we do not assume that

the PIN has any specific structure (pattern) that could be used to improve

the attack performance further.

3.2.2 Victim

We assume that the victim adopts basic countermeasures against card-

skimming attacks, such as covering the hand while entering the PIN. The

attacker does not need to be there when the victim types the PIN, as the

attacker can freely access the camera’s recorded video, either remotely or at

a different time.

36



Human Interactions in Cybersecurity M. Cardaioli

3.3 Attack Approach

Our attack assumes that the attacker has access to a training device and

controls the PIN selection. Additionally, the attacker knows the layout of a

target device and will select the training device to be similar. The attacker

does not know the specific person to be attacked or the PIN for the attacked

device.

3.3.1 Attack Phases

We can divide the attack into three phases: Phase A – Training, Phase

B – Video Recording, and Phase C – PIN Inference. Figure 3.1 shows the

required steps for the attack.

Phase A – Training

The attacker selects an ATM as the target of the attack. Next, the

attacker sets up a replica of the target ATM. This replica does not have

to be a faithful copy of the original, as our model takes in as input a crop

around the keypad of the ATM. Therefore, the attacker must use a keypad

similar to the one on the target ATM. The best situation is when the attacker

can retrieve the same PIN pad model. Alternatively, the attacker can also

use PIN pads that differ slightly (e.g., the key spacing can vary by a few

millimeters). Note that the layout of ATM PIN pads has to follow the ISO

9564 standard [133].

The attacker uses the ATM replica to build the training set, simulating

the victim’s behavior while entering the PIN (i.e., covering the typing

hand). The attacker must enter sequences of PINs on the replica PIN pad,

including all ten digits (i.e., all the digits must be included in the training

set). Without losing generality, the attacker can use a USB PIN pad that

logs the keys pressed and the corresponding timestamps. The attacker uses

this information to segment the videos and labels them. Leveraging the

logs, the attacker builds a training set containing, for each key pressed, a

sequence of frames and the corresponding label (digits). Finally, the attacker

trains the predictive model on the collected training set. For a detailed

discussion on the implemented model, we refer readers to Section 3.4.5.

Phase B – Video Recording

The attacker hides a camera near the target ATM to record the PIN pad.

There are multiple places where the camera can be placed, and depending
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Figure 3.1: The attack step-by-step. The data collection process does not
necessarily need to happen before the attacker steals the victim’s PIN. Still,
it is a required step of the attack.

on this, the attack can be easier or more challenging to succeed. The camera

records the victim while entering the PIN and covering the PIN pad with

the non-typing hand. The attacker retrieves the recorded video from the
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remote camera.

Phase C – PIN Inference

The attacker’s goal is to infer the victim’s PIN based on the video recorded

during the PIN entering. First, the attacker retrieves the timestamps from the

recorded video. The attacker can use both the pressed keys’ feedback sound

or the masking symbols appearing on the screen while the victim enters the

PIN to perform this task. Leveraging the timestamps, the attacker performs

the same procedure as in Phase A to generate an attack set. Differing from

the training set, the attack set contains a sequence of frames for each victim

key pressed but no information about the related label. The adversary detects

in the attack set the frames corresponding to a PIN entry, and splits the video

into N sub-sequences where N represents the number of digits composing the

PIN. For each sub-sequence, the adversary applies the model trained in Phase

A. The model provides the probability of each class (i.e., the ten possible

digits) to be the one corresponding to the input sub-sequence. Exploiting

the N sub-sequences predictions, the attacker builds a rank of PINs in the

descending order of their probabilities. In particular, the probability of a

PIN corresponds to the product of the predicted probabilities of its digits.

3.3.2 Attack Settings

We consider three realistic attack scenarios:

1. Single PIN pad scenario: the attacker knows the model of the target

PIN pad and obtains a copy of it to carry out the training phase. While

this scenario may seem unrealistic, we note it is not difficult to obtain a

specific keypad copy. Indeed, the attacker can easily obtain information

about the ATM to be attacked and then buy the keypad with the same

layout. Naturally, there can be certain differences concerning how

sensitive the keypad is (for instance, due to usage, pads can become

somewhat more difficult to press), but our experiments indicate such

differences are not substantial enough to pose issues for deep learning

models.

2. PIN pad independent scenario: this is the most challenging scenario.

The attacker does not know or cannot retrieve the model of the target

PIN pad. The training phase is performed on a PIN pad with similar

characteristics to the target (e.g., shape, distance between keys, keys

layout, and the sensitivity of keys).

3. Mixed scenario: as for the Single PIN scenario, the attacker knows the

target PIN pad model. In this case, the training is performed on two
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PIN pads: a copy of the target and at least one PIN pad with similar

characteristics. Considering several keypads in the training set makes

sense when 1) the attacker is not certain about the keypad model, 2)

the attacker assumes that the keypad will behave differently due to

environmental conditions, 3) the attacker aims to attack multiple types

of keypads (ATMs) with the same machine learning model, and 4) for

any reason, the attacker did not manage to obtain enough training

examples with a single keypad. We also note that using more keypads

in the training set makes the training process more difficult and reduces

the chances to overfit (i.e., we can consider different keypads as one

keypad with noise, having the regularization effect [31]).

3.3.3 Camera Positions

Since our threat model allows the arbitrary position of the camera, we discuss

several representative scenarios. We consider positions at the top of the

ATM preferable for the attacker as lower positions of the camera result in

no visibility of the hand pressing the keys if the other hand is covering it.

We also consider settings at the front side of the chassis as they give better

visibility for the attacker and are significantly more difficult for the victim

to notice the camera.

Then, without loss of generality, we can discuss three main positions for

the camera to provide good results. The camera can be positioned in the top

left, center, or right corner. If the camera is positioned in the right corner

and the person entering the PIN is right-handed, it will be easier to observe

the entered digits. The same happens for the camera in the left corner and

the left-handed person. However, if the camera is in the center position, it

does not favor any specific setting, making it the most general setting, but

it also makes it somewhat more challenging to conduct the attack than the

left/right position and left/right-handed persons. We will concentrate on the

top center position of the camera mounted on the chassis’s front side.

3.4 Experimental Setting

To assess the feasibility of our attack on all the scenarios described in

Section 4.2, we collected two datasets containing videos of people covering

their typing hands while entering PINs. This section first illustrates the

differences between the considered PIN pads and then describes our data

collection procedure. Finally, the adopted video pre-processing, the setup
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used to run the experiments, and the implemented deep learning models are

presented.

3.4.1 Devices under Test

We performed two separated data collection campaigns on two different real-

world ATM metal PIN pads: DAVO LIN Model D-8201 F 5 (Figure 4.3a)

and Model D-8203 B 6 (Figure 4.3b). In particular, we report the following

differences between the two PIN pads:

• Model D-8201 F has a dimension of 100 mm x 100 mm, while Model

D-8203 B has a metal surface of 92 mm x 88 mm and is contoured by

rubber protection.

• The horizontal key spacing is 1 mm larger between each key in Model

D-8203 B.

• The keys of Model D-8203 B are harder to press and slightly taller

than Model D-8201 F.

• For usability reasons, both the PIN pads emit a specific feedback sound

(the same for all keys) when a key is pressed. The frequencies of the

feedback sounds are 2 900 Hz for Model D-8201 F and 2 500 Hz for

Model D-8203 B.

For the data collection, we embedded the PIN pad into a simulated ATM

(see Figure 4.2a). We chose the simulated ATM’s size based on a real-world

ATM [130]. In particular, the simulated ATM has a width of 60 cm, a height

of 64 cm, and a depth of 40 cm. At 15 cm of height from the frame’s base,

we inserted a shelf to position the PIN pad and the monitor. The height of

the PIN pad from the ground is 110 cm. We used three Logitech HD C922

Pro webcams anchored on the ATM’s chassis to perform the video recording.

A central webcam was placed 30 cm above the PIN pad, while the other

two webcams were placed on the two top corners of the chassis 42 cm away

from the PIN pad. The camera’s maximum resolution is 1 080p with an

acquisition rate of 30 fps. We recorded the videos with a resolution of 720p

and an acquisition rate of 30 fps.

3.4.2 Data Collection

The first data collection involved 40 participants (age 38.23 ± 11.43, 24 male

and 16 female). The second data collection involved 18 participants (age

5https://www.davochina.com/4x4-ip65-waterproof-industrial-metal-keypad-stainless-
steel-keyboard-for-access-control-atm-terminal-vending-machine-p00103p1.html

6https://www.davochina.com/4x4-ip65-stainless-steel-numeric-metal-keypad-with-
waterproof-silicone-cover-p00126p1.html

41



M. Cardaioli Human Interactions in Cybersecurity

(a) DAVO LIN Model D-8201 F (b) DAVO LIN Model D-8203 B

Figure 3.2: The PIN pads used in the data collection.

29.50± 5.74, ten male and eight female). Both collections include right-hand

participants only. All the participants gave their approval to collect and use

the data by signing informed consent. All the data have been anonymized

and used by the authors of this paper for research purposes only. Participants

were asked to stand in front of the test ATM and cover the typing hand while

entering the PIN during the experiment. The participants were left free to

type as they pleased. The goal is to emulate an ATM user that is hiding the

PIN, preventing possible shoulder-surfing attacks. Each participant typed

100 5-digits PINs randomly generated, divided into four sequences of 25 PINs.

This split into four sequences has been performed to include short breaks in

the experiments and prevent the participants from getting tired. The PINs

were showed one at a time on the ATM screen: once a PIN has been entered

on the PIN pad, the user had to press the enter button to move to the next

PIN. We recorded a total of 5 800 random 5-digit PINs, resulting in a balanced

dataset per digit. Since our study aims to reconstruct the PIN from the video

sequence, regardless of the user’s typing behavior and familiarity with the

PIN or the PIN pad, we decided to randomize PINs rather than asking users

to enter the same PIN multiple times. This approach generalizes the attack,

which can be applied to mnemonic PINs and One-time Passwords (OTPs).

Moreover, we collected the environmental audio (exploiting the webcam

microphone) and the keylogs of the PIN pad through the USB interface

during the experiment. In particular, for each digit entered, we collect both

the key down and key up events. We synchronized the video recordings with

the timestamp of the key events. This information was collected to build

the ground truth for the conducted experiments. The dataset is available at

https://spritz.math.unipd.it/projects/HandMeYourPIN.
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Figure 3.3: Our experimental setup. The cameras are visible but they can
be hidden into the frame of an ATM. In all other aspects, we reproduced a
common ATM layout in detail.

3.4.3 Pre-processing Video

Once the data acquisition phase is done, we need to pre-process the videos.

For each video frame, we applied the following steps: i) convert the video

frames to grayscale; ii) normalize the input so that all pixel values lie in

the range [0, 1]; iii) crop the frames by centering the PIN pad, cutting off

the irrelevant part of the background; (iv) resize the image to 250 x 250

pixels. After these steps, we applied a segmentation on each PIN video to

obtain sub-sequences of frames corresponding to a single keypress (e.g., 5

sub-sequences for a 5-digit PIN). We extracted the keypress’s timestamp

from the recorded feedback sound of the PIN pad following the procedure

explained in [42]. In particular, we filtered the audio signal using a band-pass

filter, centered on the specific frequency of the feedback sound (i.e., 2 900 Hz

for Model D-8201 F and 2 500 Hz for Model D-8203 B). By identifying the

peaks of the filtered signal, we could detect the timestamp of the target key

(TK). This allowed us to extract a set of frames in each TK neighborhood.

For each TK, the maximum number of frames (full-neighborhood) consists

of all the frames ranging from the key preceding the TK to the key following

the TK. If the TK corresponds to the first digit of the PIN, we consider

43



M. Cardaioli Human Interactions in Cybersecurity

only the frames between the TK and the next keypress. Analogously, if the

TK corresponds to the last digit of the PIN, the frames considered are only

those between the TK and its previous keypress. Since our model requires

all input samples to have the same length, we decided to keep 11 frames

for each sample. This value corresponds to the average number of frames

in the full-neighborhood after removing the outliers over 3σ. To keep the

TK at the center of the frames’ sequence, we decided to consider five frames

preceding the target keypress and five frames succeeding it, for a total of 11

frames per sample (including the target frame). There are three borderline

cases: the TK is the first digit in the sequence, the TK is the last digit in

the sequence, and the full-neighborhood has less than 11 frames. We apply

black frame padding to keep the TK at the center of the sequence for these

cases. In particular, if the TK is the first digit of the pin, five black frames

are added at the head of the sequence, while if TK is the last digit of the

PIN, we add five black frames at the end of the sequence. Finally, if there

are not 11 frames in a sequence, we pad both the head and the tail (so that

the TK is at the center).

3.4.4 Machine Learning Setup

For our experiments, we used a machine equipped with a CPU Intel(R)

Xeon(R) E5-2670 2.60GHz, 128GB of RAM, and three Tesla K20m where

each GPU has 5 Gb of RAM. To implement the machine learning models,

we used Keras 2.3.0-tf (Tensorflow 2.2.0) and Python 3.8.6.

3.4.5 Prediction Models

Our approach aims to predict which key has been pressed on a PIN pad,

exploiting only the video of a user covering the typing hand with the other

hand. Since we deal with sequences of images, we implemented a model

using Convolutional Neural Networks (CNNs) [163] and a Long Short-Term

Memory (LSTM) [125]. The CNNs perform spatial feature extraction for

each frame of a sequence, while the LSTM exploits these features to extract

temporal patterns for the whole sequence of frames. The output of the

LSTM passes through a multilayer perceptron (MLP) and a final Softmax

activation function layer with ten units (as there are ten digits). This model

is known in the literature as Long-term Recurrent Convolutional Network

(LRCN) [78]. In Keras [147], such architecture can be implemented using the

TimeDistributed wrapper throughout all the CNNs layers, which causes the

same convolutional filters to be applied to all the timesteps (i.e., the frames)

of the input sequence.
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We split our dataset into train, validation, and test sets. Each set’s size

depends on the attack scenario and is discussed in detail in Section 3.5. We

explored different hyperparameters by using the randomized grid search.

Based on a preliminary assessment, we set the ranges for specific hyper-

parameters (i.e., we limit the upper value for specific hyperparameters) to

speed up the search. In particular, for the CNNs, we tested [3x3, 6x6, 9x9]

kernel sizes. We also varied the number of convolutional layers in the range

[1, . . ., 4]. In the following dropout layer, we varied the dropout rates in the

range [0.01, 0.05, 0.1, 0.2]. For the LSTM architecture, we varied the number

of layers in the range [1, . . ., 3], and the unit size in [32, 64, 128, 256]. We

also assessed our network’s performance using a Gated recurrent unit (GRU)

instead of the LSTM. Finally, we examined the number of layers for the MLP

in the range 1 to 4 and the number of units in the range 16, 32, 64, 128. We

tried two types of architectures for MLP: i) all the layers have the same num-

ber of units, ii) layers with decreasing number of units (funnel architecture),

with every next layer having half the units of the previous one.

After a tuning phase, we selected a structure consisting of four convo-

lutional layers (Conv2D in Keras) with ReLU activation functions, each

followed by a pooling layer (MaxPooling2D in Keras). Three convolutional

layers have a filter size of 3x3, and one (the second one) has a filter size of

9x9. Each pooling layer has a filter size of 2x2. The number of filters in the

convolutional layers doubles at each layer, starting from 32 filters in the first

layer, ending up at 256 filters in the fourth layer. We added a dropout layer

(dropout rate 0.1) after the last pooling layer to prevent overfitting. The

output is then flattened, preserving the temporal dimension to provide a

sequence of temporal features to the following LSTM. A single layer LSTM

with 128 units resulted in the best validation with a hyperbolic tangent

activation function. Finally, for the MLP, we used four fully connected

layers, with 64 units each, followed by the Softmax activation layer with

ten units (i.e., the number of classes we want to predict). We used the

categorical cross-entropy loss function and the stochastic gradient descent

(SGD) optimizer. Finally, we set the model to evaluate the accuracy metric.

We set the batch size to 16 and the learning rate to 0.1. We tested for 70

epochs since we found that the model always converged within this number

of epochs. In Appendix B.1, we provide additional details. Our experiments

indicate that the classification task we conduct is relatively difficult, and

one needs to use sophisticated deep learning architecture for good results.

Still, we note that the architecture we use is in line with the state-of-the-art

results for hand tracking problem [132, 162]. Finally, we observed significant
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changes in the performance depending on the specific hyperparameter choice,

indicating a need for detailed tuning for the respective tasks.

In a real-world context, it might not be possible to reproduce precisely

the experimental conditions (e.g., the camera might be rotated/tilted slightly

concerning the PIN pad, or the distance to the PIN pad might not be

the same). Thus, we also used data augmentation to generate synthetic

measurements (20% of the training dataset) that cover more scenarios to

account for such issues. In particular, we used the following video-based

transformations:

• rotation for a maximum of 7 deg both clockwise and counterclockwise;

• horizontal shift for a maximum of 10% of the width;

• vertical shift for a maximum of 10% of the height;

• zoom between 0.9 and 1.1.

Synthetic samples were generated by randomly combining the transformation

techniques listed above. We emphasize that data augmentation is also helpful

as it makes the predictive model adaptable to different types of ATMs.

3.5 Experimental Results

In this Section, we evaluate the performance of our approach for the three

attack scenarios described in Section 3.2. We adopted a user-independent

split strategy since, in a realistic context, the attacker does not have labeled

videos of victims entering PINs. In this way, we guarantee that videos from

a participant appear only once among the three sets. Moreover, since we are

interested in evaluating the PINs reconstruction accuracy, we removed all non-

5-digit sequences entered by mistake by participants (i.e., the ”enter“ key was

pressed after a sequence longer or shorter than 5-digits.) The removed non-

5-digits sequences account for 2.2% of the total PINs entered. We conducted

the experiments on both 4-digits and 5-digits PINs. To experiment on 4-digit

PINs, we removed the last digit of each 5-digit sequence in our dataset.

We define that a PIN is covered when there is no direct view of the

entered keys and their surrounding. Still, we observed that some participants

failed to obtain a satisfactory coverage level with the non-typing hand despite

our instruction before starting the data collection. Since this study aims to

infer covered PINs, we decided to exclude the videos of participants that

entered badly covered PINs from the validation and test sets. In this way,

the validation and test sets consist of videos of covered entered PINs, while

the training is composed of videos containing both covered and badly covered

PINs. Note that badly covered PINs are still difficult to “read” by simply

looking at the video, so we consider such data useful in building a training
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(a) Badly covered PIN that we excluded
from the validation and test tests.

(b) Covered PIN, where there is no direct
view of the pressed key and the surround-
ing digits.

Figure 3.4: Badly covered vs. covered PINs.

set. For the test set, we aim for the most difficult scenario where PINs are

properly covered. Under these assumptions, we ”blacklisted“ 16 participants

that badly covered the PIN pad: 14 for the first data collection and two

for the second data collection. These participants have been excluded from

validation and test sets described in the below scenarios 7. In Figure 3.4, we

provide an example of a badly covered PIN and a covered PIN.

To obtain a further indication of the quality of coverage and the difficulty

of reconstructing a PIN by a human, we surveyed a random sub-sample of

videos of covered PINs (Section 3.7). Finally, there is a question of how to

predict the PIN that is not guessed correctly from the first attempt. Since

we consider each digit independently, we consider a mechanism where our

best guess comprises of individual best guesses (for each digit). If that PIN is

incorrect, we consider the digit where the two best guesses have the smallest

difference. We change that digit to the second-best guess in our PIN, and

we try again. The same procedure is repeated for the third attempt if the

second PIN is wrong.

1. Single PIN pad scenario. To evaluate the scenario where the

adversary knows the target PIN pad model and owns a copy, we

considered only the first data collection composed of 40 participants. We

applied a user-independent split of the dataset in training, validation,

and test sets with the proportions 80/10/10%.

7Results are in Appendix B.3
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(a) True digit = 7
Pred = 7 (0.999),
4 (0.000), 8 (0.000)

(b) True digit = 3
Pred = 3 (0.979),
2 (0.012), 6 (0.005)

(c) True digit = 6
Pred = 6 (0.819),
9 (0.170), 8 (0.009)

(d) True digit = 3
Pred = 3 (0.809),
2 (0.092), 5 (0.069)

(e) True digit = 3
Pred = 2 (0.329),
3 (0.315), 6 (0.185)

Figure 3.5: PIN 73633 entered by a user in our test set in the Single PIN
pad scenario. Our algorithm suggests 73632 as the most probable PIN
(probability = 21.32%), 73633 as the second most probable PIN (probability
= 20.43%), and 73636 as the third most probable PIN (probability = 11.96%).
The algorithm predicts the correct PIN in the second attempt.
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2. PIN pad independent scenario. In this scenario, the adversary

trains the machine learning model on a PIN pad with a similar layout

to the target one. This scenario occurs when the attacker cannot obtain

the same PIN pad model to collect data. Under these assumptions, we

used for training and validation the first collected dataset (composed

of 40 participants). We included the videos from 35 participants in the

training set and the remaining 5 participants’ videos in the validation

set. We used the second collected dataset as the test set. We included

only the videos of 16 out of 18 participants of the second data collection

in the test set since two were in the group that badly covered the PIN

pad.

3. Mixed scenario. This scenario corresponds to how the attacker owns

both a copy of the target PIN pad and a PIN pad similar to the target

one. In this case, we merged the two collected datasets and applied a

user-independent split in training, validation, and test sets with the

proportions 80/10/10%.

We begin the discussion on results by providing an example of a successful

PIN attack in Figure 3.5. We consider the 5-digit PIN case and the Single

PIN pad scenario. We provide an image for each digit. We give the top

three digits and the corresponding accuracy values. Notice how the first and

second digits are predicted correctly with high probabilities. This happens

as the person sets the hand to allow an easy start of typing. Already for

the third digit, we observe a significant drop in the accuracy value for the

best prediction. Still, the value is significantly larger than the second-best

prediction, so there are no issues in getting the correct prediction. This trend

continues for the fourth digit and gets very pronounced for the last (fifth)

digit. Indeed, the best guess is not correct anymore, but the second-best

guess is correct (the difference in probability between those two guesses

equals 0.014).

For all three scenarios, Figure 3.6 shows the results for the single key

accuracy, while Figure 3.7 reports the results considering 5-digit and 4-digit

PINs. Considering the single key accuracy (averaged over all digits), notice

that even in the most difficult PIN pad independent scenario, our Top-3

accuracy reaches 63.8%, which is significantly higher than the result one

would reach with random guessing (30%). At the same time, the results for

the Single PIN pad scenario and the Mixed scenario are rather similar, and

the Top-3 accuracy reaches up to 88.7%. Interestingly, we observe somewhat

better results for Top-2 and Top-3 accuracy for Single PIN pad scenario than

the Mixed scenario, which is the opposite of the results for 4-digit and 5-digit

settings. We hypothesize this happens as we consider independent digits
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as naturally, the best results happen when the training and test are done

on the same device. On the other hand, the Mixed scenario gives slightly

better results for the PIN reconstruction scenarios as we need to consider a

sequence of PINs with the movement between digits. Then, having different

devices in the training set allows (slightly) better generalization.

In Figure 6.6e, we observe that the most difficult case is when the attacker

does not have access to the same keypad as used by the victim. There, the

accuracy for the Top-3 case equals 11.4%. Having access to the same type of

keypad improves accuracy in Top-3 to more than 20%. Finally, considering

the Mixed scenario, we can improve the accuracy for Top-3 to almost 30%

(29.7%). Next, in Figure 6.6f, we present results for 4-digit PINs. The results

are significantly better than for the 5-digit scenario. The lowest accuracy

happens for the Top-1 PIN pad independent scenario setting and it equals

10.6% (cf. 6.7% for the 5-digit scenario). The highest accuracy reaches 41.1%

for the Top-3 accuracy in the Mixed scenario.

Single
PIN pad

PIN pad
Independent

Mixed
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Top-1 Top-2 Top-3

Figure 3.6: Single key accuracy of our algorithm for the three considered
attack scenarios. Top-N means that we guessed the digit within the N
attempts.

In Figure 3.8, we depict detailed results for the digit 1. We selected this

digit since heat maps for others look similar and exhibit similar dispersion.

First, in Figure 4.5a, we show the PIN pad layout. Figure 3.8b gives results

for the Single PIN pad scenario. Notice that the heat map indicates that

guess 1 is the most likely one with 67% probability. The digits 4 and 3

are recognized as the second and third best guess, respectively. Still, their

probability is significantly lower. For the PIN pad independent scenario, we
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observe that the probabilities are more spread over all digits, which comes

at the expense of a lower prediction probability for the correct digit. The

second and third best guesses maintain the probabilities, indicating that

Top-3 guesses are sufficient to guess a large number of PINs in the most

difficult scenario. Finally, Figure 3.8d gives results for the Mixed scenario,

where we see that the best guess is on the level with the Single PIN pad

scenario. Interestingly, now the second and third best guesses are swapped

compared to the previous scenarios. All the other digits have 0 or negligible

probability of being the correct digit. Appendix B.2 provides additional

results for the key accuracy.

Single
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PIN pad
Independent

Mixed
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(a) 5-digit PINs.

Single
PIN pad

PIN pad
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Mixed
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(b) 4-digit PINs.

Figure 3.7: PIN accuracy of our algorithm in the three considered attack
scenarios. Top-N means that we guessed the PIN within the N attempts.
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(a) Layout of a generic PIN pad.
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(b) Single PIN pad scenario.
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(c) PIN pad independent scenario.
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(d) Mixed scenario.

Figure 3.8: Digit 1 predictions heat maps for the three considered attack
scenarios.

Based on our results, we provide several observations that we believe

generalize beyond these experiments:

• Covering the PIN pad with the other hand is not sufficient to defend

against deep learning-based attacks.

• Portability aspect (keypad differences) is quite significant, and the

attacker should obtain the same type of keypad for a high probability

of success in attack.

• There are three prevailing ways how users cover the typing hand: raised

hand not touching the surface, hand resting on fingers and vertically

covering the PIN pad, and hand resting on the side of the palm. The

examples of all three covering strategies are shown in Figure 3.9.

Finally, Table 3.1 provides a comparison between our attack and several

unobtrusive attacks on 4-digit PINs from the literature [42]. We divided the
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(a) Side: hand rest-
ing on the side of the
palm.

(b) Over: raised
hand not touching
the surface.

(c) Top: hand resting
on fingers and ver-
tically covering the
PIN pad.

Figure 3.9: Different covering strategies using the non-typing hand.

Attacker Information
Source

4-digit PINs
TOP-N Accuracy (%)

KT OD TT Our Attack TOP-1 TOP-2 TOP-3

0.01 0.02 0.03
§ 0.10 0.20 0.30

§ 0.02 0.35 0.72
§ § 3.02 3.72 4.36

§ 3.76 7.52 11.28
§ § 15.54 27.79 33.63

§ 29.61 37.06 41.12

Table 3.1: Comparison of our attack with other unobtrusive attacks on ATM
PIN pads. Note that we need to extract the frame for our attack, while for
KT, one needs to use the timestamp, which is more precise information.

attacks according to the information that the attacker has: keystroke timing

(KT), one digit of the victim’s PIN (OD), and the thermal trace (TT) left on

the PIN pad by the victim [2]. From the results, it is clear that our attack

performs the best for all considered TOP-N accuracies.

Appendix B.3 provides experiments where we: i) resize the images,

ii) consider different camera positions, iii) consider setup without data

augmentation, and iv) consider the training set that includes the blacklisted

participants. Finally, we also provide experiments for the frame detection

error (when the feedback sound is not properly synchronized).

3.6 Countermeasures

Different countermeasures could make the attack more difficult to succeed.

For instance:
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Coverage Key PIN TOP-3
percentage accuracy accuracy

25% 0.54 0.22
50% 0.55 0.22
75% 0.50 0.17
100% 0.33 0.01

Table 3.2: PIN shield experiments.

1. Longer PINs. This countermeasure would make the attack more dif-

ficult, as evident from the comparison for 4- and 5-digits PINs. This

countermeasure would be relatively easy to support from a technical

perspective. At the same time, it would have usability drawbacks as

longer PINs take more time to type and are more difficult to remember.

2. Virtual and randomized keypad. Instead of using a mechanical keypad,

one could consider using a touchscreen where the digits are randomized.

More and more ATMs (but not PoS) have this feature, so implementing

it would not be too difficult. Unfortunately, we believe this would

seriously damage the usability aspect as people are accustomed to digits

occurring in the natural sequence, and any changes would probably

result in wrongly entered PINs.

3. Screen protectors. On many ATMs, there are already various types of

screen protectors that occlude the typing hand. To maintain usability,

many screen protectors are short and will not cover the whole typing

hand. Making the screen protectors larger would impair usability as

it will become more difficult for the user to read the keypad. This

countermeasure is potentially not easy to deploy as it requires physical

changes to the ATMs.

Next, we analyze how a PIN shield could affect the performance of our

attack. We simulated the presence of the shield by applying a black patch to

cover the PIN pad. In Table 3.2 we report the performance of our attack

in the Mixed scenario, applying four different levels of coverage (Figure B.5,

Appendix B.3). The coverage of the PIN pad is larger than the percentage

shown in Figure B.5 since the coverage given by the non-typing hand is not

included in the given percentage. The results show that our attack remains

effective even when 75% of the PIN pad is covered, while the performance

decays significantly beyond this level of coverage. As such, it becomes clear

that our deep learning attack uses information about the whole hand position

and movement, and not only the tip of the fingers. Since the last row of the

PIN pad has only one number (0), 100% coverage has poor attack results not
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only because of hiding all the numbers on the keypad but due to hiding of

proximal interphalangeal, metacarpophalangeal, and carpometacarpal joints

of the fingers. Thus, only PIN shields that offer full PIN pad coverage can

be considered effective countermeasures to our attack.

We provide additional results with different covering strategies (Side,

Over, and Top) in Appendix B.3. Those results again show that covering

the PIN pad from the Side gives insufficient protection. On the other hand,

using the Over strategy significantly decreases the key accuracy and PIN

accuracy.

3.7 Deep Learning vs. Humans

If an attacker has direct visibility of the PIN pad, reconstructing a PIN from

a video can be considered a trivial task. One of the classic countermeasures

to the so-called shoulder-surfing attacks is to cover the hand entering the

PIN with the non-typing hand. In this way, the victim obstructs the attacker

by removing the direct visibility of the keypad. We designed a questionnaire

to evaluate how much the covering with the non-typing hand effectively

prevents the PIN reconstruction.

3.7.1 Methodology

The questionnaire consists of 30 videos of people entering 5-digit PINs by

covering the PIN pad with the non-typing hand as we noticed that for longer

questionnaires, the participants’ attention significantly goes down toward the

end. For each video, the participants had to indicate the three most likely

PINs in their opinion.

To assess human and model performance on both the PIN pads, we

decided to use the test set of the Mixed scenario (i.e., the only one including

both PIN pads). Since the test set was balanced in terms of samples per user,

we randomly selected five PINs for each of the six users in the test set. We

extracted 30 videos corresponding to the selected PINs from our dataset. We

kept the original resolution of 720p and the original audio track containing the

feedback sound emitted by the PIN pad for each video. The feedback sound

helps the participants to recognize when a digit is entered. To avoid bias

in the answers, we randomized the order of the videos in the questionnaire.

Moreover, the participants were free to modify all their answers until the final

submission. We did not apply any particular restriction to the participants

during the filling of the questionnaire. In particular, there were no time

restrictions to complete the task. The participants could freely apply the

55



M. Cardaioli Human Interactions in Cybersecurity

strategy they prefer to infer the PIN (e.g., write down the digits, pausing the

video, restart the video any number of times, use the slow-motion option).

Finally, we provided the users with the layout of the PIN pad.

To evaluate if people with specific knowledge about the task achieve a

better performance, we pre-trained a group of participants. Specifically, we

provided participants with a new set of 20 videos of users typing PINs by

covering the PIN pad with the non-typing hand and the corresponding typed

PIN. To make the training more effective, we decided to provide participants

with videos of users included in the questionnaire (none of the videos are

present in both training and questionnaire). Additionally, the questionnaire

had suggestions on what to pay special attention. For a participant to be

considered trained, the complete viewing of all 20 videos is required. In

addition, trained participants could also watch the training videos while

filling the questionnaire.

3.7.2 Evaluation and Discussion

A total of 78 distinct participants took part in our questionnaire experiment.

In particular, 45 participants (14 female age 34.1 ± 10.4 years and 31 male

age 29.7±8.3 years) completed the experiment without any training, while 33

participants (10 female age 29.1±3.3 and 23 male age 29.3±5.6) completed the

experiment after the training session. None of the questionnaire participants

took part in the two data collections described in Section 3.4.2.

The proposed questionnaire’s goal is twofold: i) investigate how effective

the hand coverage is in preventing a PIN from being inferred by a human,

and ii) compare the performance of our deep learning approach with that

of a human. Although the coverage of the PIN pad provides an obstacle to

the immediate identification of the typed PIN, a human can exploit various

information (both local and global) to reduce the probability space about

where to look for the entered PIN:

• Knowing the keys’ spatial positioning thanks to the given layout of the

target PIN pad.

• Understanding which finger pressed the key from the movements of

the hand.

• Evaluating the topological distance between two consecutive keys from

the feedback sound emitted by the PIN pad. Specifically, two topologi-

cally close keys have temporally close sound feedback [42].

• Excluding keys based on the non-typing hand coverage.

• Guessing the finger position based on the hand displacement between

the insertion of a key and the next one.
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• Deducing the fingers’ position of the covered hand.

Although a human can exploit this information, the PIN pad coverage still

partially prevents PIN reconstruction. In particular, the participants in our

questionnaire could reconstruct on average (of both trained and non-trained

humans) only 4.49% of the PINs entered in the videos on the first attempt

and 7.92% within three attempts. The performance increasing between Top-1

and Top-3 accuracy suggests a certain ability in estimating the neighborhood

of the keys pressed. This ability is also highlighted in Figure 3.11a, where

the probability distribution shows how the error decreases with the increase

of the topological distance from the target key. The heat maps for other

keys look similar and exhibit similar dispersion.

Figure 3.10: Comparison between human (non-trained and trained) and
deep learning model performance in the sub-set of videos included in the
questionnaire. Top-N means that participants guessed the PIN within the N
attempts.

Unlike humans, our algorithm focuses on target key classification and then

reconstructs the entire PIN sequence. To compare the model’s performance

to that of humans on the same task, we evaluated our algorithm’s accuracy

on the videos included in the questionnaire. Recall that the questionnaire’s

videos are a sub-sample of the Mixed scenario test set, and therefore were

not used in the model training phase. As reported in Figure 3.10, our model

performs better than humans in all Top-N accuracy scenarios. To evaluate if

our algorithm performance and humans’ performance in reconstructing 5-digit

PINs are statistically different, we applied a series of Chi-square tests [184].

The Chi-square test resulted significant for all Top-1 (χ2 = 14.19, p < 0.001),
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Top-2 (χ2 = 15.84, p < 0.001), and Top-3 (χ2 = 21.37, p < 0.001) accuracy

values for non-trained humans. In particular, our model outperforms humans

showing a four-fold improvement in reconstructing a PIN in three attempts.

Similarly, for trained humans, the Chi-square test resulted significant for

all Top-1 (χ2 = 16.12, p < 0.001), Top-2 (χ2 = 20.83, p < 0.001), and Top-3

(χ2 = 28.88, p < 0.001) accuracy values.

This result comes from the difference in performance in the classification

of single keys. The human average accuracy (considering both human data

collections) on single key classification equals 0.351, approximately half com-

pared to the model key accuracy of 0.687. The comparison of Figures 3.11b

and 3.11a shows how the error in identifying a digit is significantly higher

for humans, justifying why the increase in Top-2 and Top-3 PIN accuracy

is greater for our algorithm. Finally, comparing trained and non-trained

humans, the Chi-square test reported no significant differences with p > 0.1

for all Top-1, Top-2, and Top-3 accuracy values. This means that training

does not improve a human’s ability to identify a PIN within three attempts.

Potentially, either a longer training could be required, or additional feedback

from an expert should be provided to improve the performance. Appendix B.2

provides additional results for the comparison between our deep learning

model and human performance.
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Figure 3.11: Digit 4 predictions heat maps for the videos included in the
questionnaire. We report an example from non-trained humans, since the
heat maps for both non-trained and trained human are similar.
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3.8 Summary

This paper proposed a deep learning attack on PIN mechanisms reaching

high accuracy even when the user covers the PIN to be entered. Our attack

leverages the information from the hand position but also hand movements

while entering the PIN. Our attack works in the profiling setup where the

attacker uses a copy of the keypad to train the deep learning model and then

attacks a different device while the victim is entering the PIN. For a 4-digit

PIN, our attack reaches an accuracy of more than 40%, making it practically

applicable and more powerful than the attacks from the related works.

Our data collection phase involved 58 persons, and our questionnaire

involved 78 participants. While this required a significant effort and several

months of data acquisition, one could still consider the datasets too small to

allow general conclusions. Next, our analysis considered only two types of

keypads. While most keypads do not have significant differences, including

more keypad models in our analysis would be interesting. Additionally, there

are several potential sources of bias in our data collection phase. While we

managed to get a relatively good male and female participants ratio, we

notice that data is skewed from several perspectives. Unfortunately, this was

not possible to avoid as the participation was voluntary 8.

1. Our dataset has users ranging from 24 to 50 years. While this provides

good variety, it would be good if it included older people. Still, we

do not expect any difficulties in running our attack. We consider it

even somewhat easier as we noticed older people make more significant

hand position adjustments when entering the PIN.

2. Our analysis includes only right-handed persons. We do not expect any

issues due to the dataset’s limitations as we use a camera positioned

in the center. Still, we expect the attack to be more difficult when

attacking left-handed persons if the training set does not contain such

examples. Finally, from the real-world practicality, there are approxi-

mately 90% of right-handed persons vs. 10% left-handed persons [201],

so our attack generalizes for the dominant part of the population.

3. All participants were Caucasians. We expect our attack will have

difficulties working for people from other races. Still, this can be

alleviated by expanding the training set to include more racial diversity.

Possible future work includes:

1. In our data collection phase, we allowed the users to select their covering

strategies. Based on the current results, it would be interesting to

8The 2021 COVID-19 situation made data acquisition more challenging as participants
needed to be in our lab during the data acquisition.
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explore if modifications in how the user covers the PIN would allow

more protection.

2. We noted several potential sources of bias in our data collection phase.

Including participants from other races and left-handed persons would

allow us to make more general conclusions.

3. To avoid the need that the attacker should have different keypads,

it would be beneficial to assess whether some more straightforward

solution like a paper copy of the keypad would suffice (at the expense

of losing information about the keypress sensitivity).

4. It would be interesting to investigate if it is possible to extract the

timestamp directly from the video (when a person clicks a button,

there is a specific movement).
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Chapter 4

PinDrop: Acoustic Side-Channel At-

tacks on ATM PIN Pads

The Automatic Teller Machines Industry Association estimates that over 300

million ATMs are deployed worldwide1. In the US alone, over 10 billion ATM

transactions are performed every year [195]. ATMs have now become an

indispensable part of the self-service banking ecosystem. An ATM typically

uses a unique physical card (which a customer possesses) along with a PIN

(which a customer remembers) to form a two-factor authentication system,

wherein the card uniquely identifies the customer account and the PIN

identifies the customer.

In recent years, there have been many attacks aimed at PINs and at

information encoded on ATM cards. Such attacks are broadly referred to as

skimming operations [247], whereby criminals usually install a card-reader-

like device to trick customers into placing (or inserting) their cards and copy

the information. This is often done in tandem with installing a video camera

on the ATM (or in its vicinity) at an angle that allows the criminal to record

PIN entry [230]. Recently studied attacks on PINs (e.g., [15, 42, 261]) went

one step further and showed that the attacker does not even have to see

the PIN. These side-channel attacks use a recording device (e.g., a video

camera [15], a microphone [42], or a thermal camera [261]) placed near the

ATM to collect information and use it to infer customers’ PINs.

In this chapter, we present a new side-channel PinDrop attack on ATM

PIN entry. It consists of two steps: (1) the attacker builds an acoustic profile

1 https://www.atmia.com
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(a signature of click sounds) for each key on the target PIN pad, and (2)

at PIN entry time, the attacker records audio emitted by each pressed key

and compares them to the acoustic profile to infer the actual keys pressed,

thereby learning the PIN. These two steps can be carried out in any order.

Contributions. The main contributions of this chapter are:

• We describe a novel attack targeting PINs: PinDrop, based on acous-

tic emanations from commodity ATM PIN pads. We demonstrate

that PinDrop reconstructs up to 94% of 5-digit PINs and 96% of

4-digit PINs within three attempts. We show that the threat posed by

PinDrop is higher compared to state-of-the-art acoustic side-channel

attacks on ATM PIN pads [42, 167, 200].

• We evaluate PinDrop via extensive experiments, collecting acoustic

emanations for 5,800 5-digit PINs entered in a simulated ATM (though

using real PIN pads) by 58 distinct participants. The resulting dataset

is publicly available 2 to the research community. We believe it will be

useful in studying the problem further and developing countermeasures.

• We analyze the performance of PinDrop with two recording distances:

0.3 and 2 meters away from the PIN pad. At the distances of 0.3 and 2

meters, up to 96% and 57% (respectively) of 4-digit PINs were correctly

learned in three attempts.

• We demonstrate the feasibility of PinDrop on two commercially avail-

able ATM PIN pad models. The success rate of PIN guessing on both

pads is about the same for each distance.

• We analyze the impact of training set size on the performance of

PinDrop. We evaluated two important factors: the number of attackers

participating in the Profiling Step, and the number of digits collected

by each attacker. We showed that including training samples from

multiple attackers is an effective strategy for appreciably improving

attack success rate.

• We assess the performance of PinDrop in noisy environments, con-

sidering different levels and sources of noise to simulate real-context

scenarios. We showed that PinDrop is still an effective attack at 2

meters with low/moderate noise, while it remains effective under any

noise condition at 0.3 meters.

2Dataset link: https://spritz.math.unipd.it/projects/PINDrop
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4.1 Related Work

This section overviews attacks based on acoustic emanations from user input

devices. We first consider attacks targeting keyboards, followed by those

targeting PIN pads. For a comprehensive discussion of keyboard side-channel

attacks, we refer to [190].

Attacks on generic keyboards. The first extensive study on keyboard

acoustic eavesdropping was conducted by Asonov and Agrawal [10]. It showed

that each key can be identified by the unique sound that it emits when pressed.

This work investigated the reasons for this behavior, demonstrating that it

can be attributed to the placement of keys on the keyboard plastic plate. In

particular, when different keys are pressed, the plate produces emits sounds

with different timbers.

Subsequent efforts to infer key sequences from acoustic emanations are

based on two types of approaches: (i) extraction of features that allow

exploiting the uniqueness of acoustic emissions of pressed keys, and (ii)

extraction of temporal information. The former tries to distinguish among

keys by their characteristic sound, and relies on either supervised [10, 116,

117, 180] and unsupervised [26, 280] machine learning models, depending

on the specific attack scenario. Supervised models exploit features, notably

Fast Fourier Transform (FFT) coefficients and their derivatives, such as Mel-

frequency cepstral coefficients (MFCCs). Supervised algorithms generally

achieve better performance in identifying keystrokes. On the other hand,

these models have a greater dependence on the keyboard used in training

and the users’ typing style. A further weakness of supervised algorithms is

the need to collect a labeled dataset to be used as a training set. Indeed,

the ground truth collection is not a trivial task and could significantly affect

the attack’s effectiveness. One possible solution is discussed in [6, 46]. which

take advantage of the audio recorded during a VoIP call to collect a ground

truth dataset directly. In this scenario, the attacker can exploit the text

typed by the victim in a shared medium (e.g., in the VoIP chat or an email

sent to the attacker during the call) to label the keystroke sound.

Unsupervised methods are used to group collected samples into unlabeled

clusters. The label-cluster association is made by exploiting the characteris-

tics of the input language. In particular, Zhuang et al. [280] perform labeling

using letter frequency, while Berger et al. [26] make an association by select-

ing words from a dictionary that match specific constraints. Unsupervised

approaches overcome the need for a ground-truth dataset. However, the

scenarios where these attacks can be applied are limited by the strong as-
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sumptions on input text and therefore their performance drastically declines

on random letter sequences.

The second approach involves the extraction of temporal features of

pressed keystrokes. To this end, many efforts focused on analyzing the Time

Difference of Arrival (TDoA) information. They use one (e.g., Liu et al. [166])

or more (e.g., Zhu et al. [278]) microphones positioned around the input

device.

Pin Pad-focused Attacks. PIN pads are numeric keypads specifically

designed for Point-of-Sale (PoS) terminals and ATMs, They facilitate users

to enter their Personal Identification Numbers (PINs). Attacks on PIN pads

tend to be different from those on regular keyboards. For instance, it is

rather challenging to apply unsupervised techniques with PIN pads since the

assumptions about the victim’s language are no longer applicable. However,

the other types of attacks, such as those based on the uniqueness of the

acoustic emission and those based on the temporal information are usually

applicable. PIN pads also prompt a new set of assumptions, usually dictated

by the specific conditions under which they operate. This paves the way

to new and more efficient side-channel attack scenarios. Below, we briefly

discuss these attacks.

Balagani et al. [15] demonstrates how to obtain PIN information by

exploiting inter-keystroke timings. This information is leaked by recording

the timing of appearance of masking symbols (usually, asterisks) on the

screen while the victim is entering the PIN. On a related note, Cardaioli et

al. [42], show how inter-keystroke timing information can be inferred with

higher accuracy from the feedback sound emitted by the PIN pad when a key

is pressed. It also shows that combining multiple side-channel information

(e.g., inter-keystroke timing and thermal residue) can significantly improve

the probability of reconstructing a 4-digit PIN. Similarly, Liu et al. [167],

propose a user-independent attack based on inter-keystroke timing on a

plastic PIN pad.

PIN pad acoustic emanations can also be used to improve security of

PIN-based authentication systems. For example, Panda et al. [200] show

that inter-keystroke features obtained from PIN pad-emitted audio, can be

used as an additional layer of authentication. The same work also showed

how to perform a close-by attack (i.e., with the microphone placed a few

centimeters from the PIN pad) on an arbitrary subset of keys. Exploiting the

inter-keystroke features on this subset, a 60% accuracy in the identification

of the pressed key can be reached. Acoustic information is also used by

Souza Faria and Kim [72], where a Point-of-Sale (PoS) terminal is tampered

with by inserting multiple microphones into it. This allows identifying the

64



Human Interactions in Cybersecurity M. Cardaioli

pressed key position using triangulation, reaching the average accuracy of

88% for a single key, on three PoS models. Although very effective, this

approach requires full physical access to the PoS, thus reducing the attack’s

applicability and scalability.

4.2 PinDrop Attack

Assumptions: We assume that the victim interacts with a generic ATM,

performing PIN-based authentication. The ATM is equipped with a PIN pad

that emits a feedback sound when a key is pressed. The feedback sound (as

perceived by the human ATM users) is the same for all keys. The attacker

aims to learn the victim’s PIN by placing a microphone near the ATM to

record acoustic emanations of the PIN pad. The microphone stores recorded

audio. How the microphone stores that audio is not relevant for PinDrop,

i.e., it can be stored locally or off-loaded to a remote site. PinDrop attack

relies only on that recorded audio.

Preliminaries: To set up PinDrop, the attacker must select a target ATM

and hide a microphone nearby. The exact placement of the microphone can

vary, though in the PinDrop setting the maximum distance form the PIN

pad is 2 meters (just over 6′):

1. Concealed on the attacker’s body, in case of a real-time attack. Albeit,

strictly speaking, concealment is not required, since a regular smart-

phone microphone can be used, and it need not be hidden from view

(as it is unlikely to arouse suspicion).

2. On any surface (walls, floor, ceiling) near the ATM. In this case, it

might be in plain sight, especially, if its size and shape are inconspicuous

enough not to be noticeable. It could also be partially hidden from

view (e.g., behind a column or a light fixture), or even within or behind

some normal-looking object, e.g., a vent, a light-switch or a garbage

can.

As shown in Figure 4.1, PinDrop consists of four phases: 1) PIN Recording

(Section 4.2.1), 2) Data Processing (Section 4.2.2), 3) Model Generation

(Section 4.2.3), and 4) PIN Inference (Section 4.2.4),

4.2.1 PIN Recording

The goal of this this phase is to come up with two datasets (training and

attack) with audio recordings of entered PINs. This takes two steps:

A.1 Audio Recording using a microphone placed near the ATM.

65



M. Cardaioli Human Interactions in Cybersecurity

A.1) Audio Recording

A.2) PIN Extraction

PIN Recording

B.1) Segmentation

B.2) Feature Extraction

Trained Model
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Attacking Set

D.1) Prediction

D.2) PIN Ranking

PIN Inference
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ATM
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Figure 4.1: PinDrop attack phases.

A.2 PIN Extraction, i.e., isolation of the sequences of feedback sounds

emitted by the PIN pad, given the knowledge of the number of digits

in the PIN, e.g., the beginning and the end of the 6-digit PIN entry.

To build the training set, the attacker must enter a set of PIN sequences

on the target PIN pad. The sequences must be representative of all ten

numeric keys. Once this step is completed, the attacker has a table of entered

PINs and their corresponding audio. The attack set consists of the audio

recordings entered by the victim.

4.2.2 Data Processing

This phase is conducted on the data entered by both the attacker and the

victim. It also consists of two steps: segmentation of the PIN audio signal

into individual key-press sounds, and extraction of corresponding features.

B.1 Segmentation: The attacker uses the feedback sound emitted by

the PIN pad as a signal that a key has been pressed. This can be

achieved via the characteristic frequency of the feedback sound, as in

[42]. The attacker segments the signal, using time windows centered

at the detected key-press. The window size is chosen to comprise the

entire audio segment related to a single key-press.

B.2 Feature Extraction: The attacker extracts features descriptive of a

key-press sound. Prior results show that short-term power spectrum

can be used for this type of a classification problem. In particular, [46]

shows that mel-frequency cepstral coefficients (MFCC) [169] achieve

the best performances for discriminating among the sounds of different

keys. This step yields two feature sets: (1) a labeled training, and an

(2) unlabeled attacker.
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4.2.3 Model Generation

This phase is applied to the labeled training set in order to train a classifier.

C.1 Down-sampling: Since we make no assumptions about how often

a victim uses a specific digit in the PIN, it may be necessary to

under-sample the data by classes before proceeding with training. The

under-sampling leads to a balanced dataset and mitigates over-fitting.

C.2 Model Training. The attacker trains a multi-class classifier to predict

the digit based on its emitted key-press sound. The class labels output

by the classifier are the keys (digits) of the PIN pad. Together with

the predicted digit, classifiers also output the prediction probability of

each class.

4.2.4 PIN Inference

In this phase, the attacker utilizes the trained classifier to guess a victim’s

PIN. The output is a sequence of all possible PINs ordered by probability.

This ordering allows the attacker to minimize the number of attempts to

guess the PIN. In a real-life setting, ATM cards are usually blocked after

three failed attempts. This phase involves two steps:

D.1 Prediction: The attacker reconstructs the PIN entered by the victim

applying the classifier trained in the previous phase to the attack set.

As input to the classifier, the attacker feeds the features of a single key

of the victim’s PIN. This is repeated for each digit of the PIN.

D.2 PIN Ranking. The classifier yields a probability for each digit to be

the one actually pressed by the victim. Combining the probability set

of each input, the attacker builds a ranking of the most likely PINs.

The probability assigned to a PIN is the product of the probability of

each digit in that PIN.

4.3 Experimental Setting

To assess the feasibility of PinDrop, we collected a large dataset of keystroke

sounds, as detailed in this section.

4.3.1 Data collection

We performed two separate data collection efforts on two commercially

available (commodity) metal PIN pads: DAVO LIN Model D-8201 F (Fig-
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ure 4.3a) 3 and Model D-8203 B(Figure 4.3b) 4. For clarity’s sake, we refer

to D-8201 F as PAD-1 and D-8203 B as PAD-2. For usability reasons, both

pads emit a specific feedback sound (the same for all keys) when any key is

pressed. In all experiments, we embedded each PIN pad into a simulated

ATM (Figure 4.2a).

(a) The simulated ATM.

ATM

2 m

0.3 m

(b) The testbed configuration used in the
experiments.

Figure 4.2: PinDrop experimental setup: The photo on the left shows the
ATM layout. The figure on the right show the position of the microphone
with respect to the ATM and the victim: the closer one at 0.3m is placed
over the PIN pad, while the farther one at 2m is placed in front of the ATM,
and behind the victim.

The simulated ATM size is based on a real ATM [130]. It is 0.6m wide,

0.64m high, and 0.4m deep. At 0.15m above the ATM base, we inserted a

shelf upon which we placed the PIN pad and the monitor. The keyboard is

1.1m above the ground. To record keystroke sounds, we used the microphones

of two Logitech HD C920 Pro webcams: one placed on the ATM’s chassis

0.3m above the PIN pad, and another microphone – 2m in front of the ATM,

as shown in Figure 4.2b.

The first data collection effort involved 38 participants (23 male and 15

female, average age 38.97 ± 11.36), while the second involved 20 participants

(11 male and 9 female, average age 29.50 ± 5.74). Together, that makes the

total of 58 participants who entered 5, 800 5-digit PINs. We used both these

3https://www.davochina.com/4x4-ip65-waterproof-industrial-metal-keypad-stainless-
steel-keyboard-for-access-control-atm-terminal-vending-machine-p00103p1.html

4https://www.davochina.com/4x4-ip65-stainless-steel-numeric-metal-keypad-with-
waterproof-silicone-cover-p00126p1.html
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(a) PAD-1: DAVO LIN Model
D-8201 F

(b) PAD-2: DAVO LIN Model D-8203 B

Figure 4.3: Two commodity metal PIN pads we used.

data collections to obtain datasets of 4-digit PINs by removing the last key

entered by the participants from each 5-digit PIN.

During the experiments, participants were asked to stand in front of the

simulated ATM, and remain silent for the duration. A participant’s task

consisted of typing 100 5-digits PINs randomly generated, divided into four

batches of 25 PINs. This split was made to allow for short breaks betwen

batches in order to lower fatigue. PINs were displayed one at a time on the

ATM screen: once a PIN is entered, the participant presses the Enter button

to proceed to the next PIN.

Regardless of the individual’s typing behavior and familiarity (or lack

thereof) with a given PIN or the PIN pad, we decided to randomize the

order of PINs, rather than ask users to enter the same PIN multiple times.

This approach generalizes the PinDrop attack, which is actually applicable

to both mnemonic PINs and One Time Passwords (OTPs).

We also collected the key logs of the PIN pad via the USB interface. In

particular, for each pressed key, we collected both the ”key-down” (press)

and ”key-up” (release) events. Moreover, we synchronized the recordings

with the timestamp of these key events. All recordings were done with a

sampling frequency of 44, 100Hz and then saved in the 32-bit WAV format.

4.3.2 Classification Methods

To identify the key pressed by the victim, we experimented with four well-

known and popular classifiers: Support Vector Classification (SVC), k Nearest

Neighbors (KNN), Random Forests (RF), and Logistic Regression (LR).
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We applied a repeated nested crossfold validation to evaluate the perfor-

mance of our approach. The pipeline varies on the number of attackers (i.e.,

a single attacker or a group) included in the training set.

In the outer loop, we randomly selected the attacker(s) among the

participants in the dataset. This procedure was repeated 10 times generating

10 groups of attackers. The inner loop consists of a k-fold cross-validation,

where k depends on the number of attackers. If the training set contains

samples from a single attacker, we used 5-fold cross-validation, since a user-

independent split is not applicable. If samples from at least two attackers are

present in the training set, we use a k-fold cross-validation user-independent

where k is the number of attackers.

We varied hyper-parameters by using the grid search on all four considered

classifiers. For SVC, we considered a linear kernel and varied C among:

[10−2, 10−1, 100, 101, 102]. For KNN, we varied the number of neighbors to

among: [1, . . ., 20]. For RF, we considered from 10 to 100 estimators (steps

of 10 and extremes included) and a max depth from 6 to 31 (steps of 5 and

extremes included). Finally, LR was evaluated for ℓ1 and ℓ2 penalties, with

C ranging from 10−4 to 104.

4.4 Experimental Results

We evaluate PinDrop in different scenarios, showing its performance in the

different conditions in which the attacker may find himself. Section 4.4.1

describes how we evaluate different classifiers and consequently selected

the best for our purpose. Sections 4.4.2 and 4.4.3 report the results for

our algorithms on the key classification task and PIN classification task,

respectively. Finally, Section 4.4.4 compares the performance of PinDrop

with the results obtained in the state-of-the-art.

4.4.1 Model evaluation

To assess the performance of our classifiers, we evaluate different attack

scenarios. In particular, we considered two settings: (i) number of distinct

attackers and (ii) the number of digits entered by each attacker. We varied

the number of attackers included in the training set between 1 and 10. This

range has been selected to reflect a realistic attack scenarios. We varied the

number of digits entered by each attacker in increments of 100, i.e., 100, 200,

300, 400, or 500.
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The performance of our attack was evaluated on all possible combinations

between the number of attackers and the number of digits entered by each

attacker.

To select the best classifier, we compared the PINs validation accuracy of

all the classifiers across different scenarios (i.e., PIN pads, and distances) and

settings (i.e., number of digits per attacker, and number of attackers). SVC

and LR achieved comparable performance, outperforming KNN and RF. In

particular, LR achieved higher validation accuracy on PAD-1, while SVC

showed better performance on PAD-2. In Table 4.1, we report a comparison

of the validation accuracies for all the investigated classifiers, considering

five attackers that train the classifiers with 500 digits each (i.e., training size

= 2500 digits).

PAD-1 PAD-2

Distance Distance Distance Distance
0.3 m 2 m 0.3 m 2 m

SVC 0.90±0.04 0.35±0.12 0.86±0.06 0.21±0.07

LR 0.92±0.04 0.40±0.11 0.85±0.06 0.19±0.04

KNN 0.65±0.07 0.13±0.07 0.17±0.05 0.02±0.01

RF 0.78±0.07 0.10±0.06 0.31±0.06 0.02±0.00

Table 4.1: PIN accuracies on the validation set for the investigated classifiers.
The training set includes samples from five distinct attackers. The results
show that for PAD-1 the best performing model is the Logistic Regression
(LR), while for PAD-2 the best model is the SVC.

4.4.2 Single Key Inference

We report the LR classifier performance for the PAD-1 and the SVC classifier

performance for the PAD-2 based on the validation results. In Figure 4.4

we show single key accuracy comparison for all the considered settings (i.e.,

the number of attackers and the number of digits entered by each attacker)

in our four scenarios. Each graphic depicts how the accuracy varies in the

considered scenario as the number of entered keys included in the training

set varies. Further, each graphic shows five curves representing the number

of digits entered by the attackers, while the bullets of a curve represent

the number of attackers included in the training set. The bullets have an

increasing value from left to right: the first bullet (from left) of each curve

indicates that only one attacker has been included in training, the second

indicates two attackers were included in training, and so on. Therefore, the
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number of numeric keys included in the training set varies according to the

number of attackers and the number of digits entered by each attacker.

We note that the accuracy is significantly affected by the training set’s

size (i.e., entered keys in training) and the distance.

Interestingly, with the same number of entered keys in training, the

accuracy improves due to the number of attackers. For example, if we set the

number of entered keys in training at 400, we can see that in all scenarios,

the accuracy obtained by four attackers typing 100 keys each (i.e., 20 5-digit

PINs per attacker) is significantly higher than a single attacker typing 400

keys (i.e., 80 5-digits PINs). This may depend on the variability of the

data used to train the classifiers. Each person has a slightly different typing

style [200] (e.g., pressure strength, typing speed), and adding more attackers

would introduce higher variance in the training set and helps our classifiers

to generalize and improve their classification performance over a test set.
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Figure 4.4: Key accuracy on the testing set for the best classifiers.

Furthermore, we analyzed how our classifiers mis-classify the true key to

investigate how spatial locality interferes in the classifiers’ predictions. In
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(a) Generic PIN
pad layout.
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Figure 4.5: Digit “3” prediction heat maps for the four considered attack
scenarios. We reported the results for the experiment with 5 attackers and
500 digits entered per attacker.

Figure 4.5, we report an example for the digit “3” for all the four scenarios

(a similar behavior is shown by all the other keys).

Interestingly, we note a different distribution of classification errors be-

tween PAD-1 and PAD-2. In the first case, the error is uniformly distributed

over all digits, whereas in the second case, a higher concentration of errors is

prominent around the true digit (i.e., digits 2, 5, and 6).

4.4.3 PIN inference

In a realistic context, an attacker generally has three attempts to guess the

victim’s PIN (i.e., the max number of incorrect PIN entries allowed before

blocking the card). In this section, we report on the performance of our

approach in PIN reconstruction in TOP 3-accuracy, i.e., only the three most

probable PIN predictions. In Figure 4.6 we show the performance of the

classifiers in the reconstruction of 4-digit and 5-digit PINs according to the

different settings (i.e., PIN pad and distances). Further, similar to Figure 4.4,

73



M. Cardaioli Human Interactions in Cybersecurity

each graphic reports the performance for all possible combinations of the

settings.

The results show that the effectiveness of the attack in each scenario. In

particular, at 0.3m away, we can reconstruct correctly within three attempts

up to 94% 4-digit PINs for PAD-1 and up to 96% PINs for PAD-2. Although

the performance worsens by increasing the distance at which the microphone

is placed, PinDrop manages to reconstruct within three attempts up to 57%

of the 4-digit PINs for PAD-1 and up to 50% for PAD-2 at 2m away. At

0.3m, the accuracy graphs reach a plateau at around 1500 digits in training.

On the contrary, at 2m, the accuracy seems not to reach the plateau even

with a training of 10 attackers and 500 digits per attacker (i.e., 5000 digits in

training). This behavior is particularly marked in PAD-2, where the increase

appears almost linear also with a high number of digits in training. This

could be partially due to the classifier used in the specific scenario (i.e.,

LR for PAD-1 and SVC for PAD-2 ) in addition to the physical differences

between the two PIN pads.

Comparing the performance on two PIN pads (fixing the number of

attackers and entered keys per attacker), the accuracy on PAD-1 appears

generally higher than the one on PAD-2. This applies to both distances. The

number of attackers significantly affects performance with the same number

of entered keys in training. For example, in PAD-1 at 0.3m, the threshold of

80% of 4-digit PINs reconstructed in three attempts is reached with three

attackers whom enter 100 digits each (i.e., 300 total digits), or two attackers

whom enter at least 200 digits each (i.e., at least 400 total digits).

4.4.4 Comparison with the state-of-the-art

To evaluate PinDrop, we compare its with that of state-of-the-art attacks

exploiting acoustic emanations of PIN pads [42, 167, 200, 72]. Table 4.2

summarizes the results (with 10 attackers entering 500 digit each) in terms

of key accuracy and PIN reconstruction accuracy within three attempts.

Both [167] and [42], exploit inter-keystroke timing. Although in [167] the

distance at which the acoustic information is collected is unspecified, such

attacks can be carried out from a distance over one meter, as demonstrated

in [42]. The distance significantly decreases the risk of the attacker being

detected. However, the reported performance is rather poor, since the PINs

correctly reconstructed within three attempts were less than 1% for both

attacks. However, from a greater distance (i.e., 2m) PinDrop outperform [42,

167] achieving the accuracy of 44% and 54% on 5-digit and 4-digit PINs,

respectively.
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Figure 4.6: 5-digit PINs inference performance within 3 attempts for the
best classifiers.

Most effective attacks are those carried from a significantly shorter dis-

tance. In particular, [200] records acoustic emanations with a microphone

placed at 0.05m from the PIN pad. This work obtains 60% key accuracy on

a sub-set of keys (i.e., 6 on 10). Since we can not estimate the real accuracy

considering all the 10 digits we decided for fairness, to leave this upper-bound.

Under this assumption, we derived that this attack may achieve 4-digit and

5-digit PIN accuracies of 27.36% and 16.42%, respectively. Comparing these

results with the performance of PinDrop, we can see how PinDrop achieves

better accuracy for both 0.3m and 2m.

The last method we consider was proposed by De Souza [72]. This attack

assumes that two microphones are placed inside a PoS under the PIN pad.

Unlike other methods, it uses the time of arrival of the acoustic signals. The

performance achieved by the De Souza is slightly better to PinDrop from 2m.

However, PinDrop has better performance from 0.3m (i.e., a 26% increase in

4-digit PINs and a 33% increase in 5-digit PINs). Moreover, PinDrop differs

75



M. Cardaioli Human Interactions in Cybersecurity

from [72] in that it does not require physical tampering with the device, even

if the attack is performed from 0.3m away.

Key Accuracy 4-digit PINs 5-digit PINs Recording Distance

Liu [167] NA 0.26% * 0.11% * NA

Cardaioli [42] NA 0.72% NA 1.50m

Panda [200] 60.00% 27.36% ** 16.42% ** ∼ 0.05m

De Souza [72] 87.60% 68.40% ** 59.92% ** 0.00m***

PinDrop 95.84% 94.64% 92.79% 0.30m

PinDrop 74.58% 53.75% 43.99% 2.00m

* Performance derived from the proportion of human-chosen PINs and the
accuracy of each PIN strength level reported in the paper.
** Performance estimated from reported key accuracy, assuming the prediction
error to be equally distributed.
*** Multiple microphones are integrated in the device.

Table 4.2: Comparison between PinDrop and the state-of-the-art results on
single key accuracy and percentage of guessed PINs within three attempts.
If the score cannot be derived from the reference paper, we report N/A.

4.5 Impact of Noise on PinDrop

In Section 7.6 we demonstrated the effectiveness of PinDrop in a noise-

controlled environment. This scenario can be traced back to ATM rooms

commonly found in banks or city centers. To evaluate the effectiveness of

PinDrop in other contexts (e.g., external ATMs), we simulated two different

noise sources: i) road noise produced by urban traffic and ii) Gaussian noise.

We modulated the two sources to obtain four levels of SNRs (Signal to

Noise Ratios): very low noise (SNR 10dB), low noise (SNR 5dB), high noise

(SNR -5dB), and very high noise (SNR -10dB). In Figure 4.7, we show the

comparison between the audio emitted the sound emitted by a key press

(with the corresponding feedback sound) and two amplitude levels of the

modulated Gaussian noisy signal. Following the procedure described in

Section 4.3, for each considered SNR, we trained and tested PinDrop with

the perturbed signals obtained from the sum of the original signal with the

corresponding modulated noise.

To simulate the noise produced by urban traffic, we extracted a set of

urban noises from the AudioSet [240] dataset made available by Google.

Accordingly to the four considered SNRs levels, we modulated the urban

noises, and we added them to the original signal. In particular, 99% of
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Figure 4.7: Comparison between very-low and very high levels of Gaussian
noise with the original sound signal of a keypress.
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the power of the considered set of urban noises ranges between 125Hz and

2500Hz, in line with the literature [14, 215].

Similarly, to evaluate whether the addition of a noise that covers all

frequencies affects the performance of PinDrop, we perturbed the original

signal with four modulated Gaussian noises amplitude, according to the four

SNRs considered.

Figure 4.8 shows the results of PinDrop trained on the perturbed PAD-

1 dataset (configuration 500 digits per attacker) in inferring 5-digit PINs

within three attempts. From the graphs, it emerges that both at 0.3m

and at 2m distance regardless the source of noise, PinDrop remains very

effective when low noisy signals are added (i.e., SNR 10dB and 5dB). Further,

Figure 4.8 highlights how the addition of low noises has a greater impact

on the performance of PinDrop at 0.3m than at 0.2m. This difference

in performance can be related to the more significant background noise

component already present in the original signal recorded at 2m, making the

algorithm more robust at low perturbation levels.

For higher noise levels (i.e., SNR -5dB and -10dB), PinDrop still manages

to reconstruct a significant percentage of PINs when the attack is performed

from 0.3m (e.g., up to 59% with SNR -5dB and up to 43% with SNR -

10dB). However, the performance obtained at 0.3m by PinDrop on sounds

perturbed by Gaussian noise are slightly lower than those obtained with

urban traffic perturbation. This difference can be reconducted to the range of

frequencies perturbed by the two sources of noise: Gaussian noise affects the

entire spectrum, while urban noise has a limited frequency band. At 2m, the

performance of PinDrop degrades significantly with high-noisy perturbation,

suggesting that the information contained in the original signal is no longer

sufficient to make the attack effective in a very noisy environment. In

contrast to the attack scenario at 0.3m, at a distance of 2m we do not notice

significant differences between accuracies of PINs reconstructed from audio

perturbed with urban noise and those reconstructed from audio perturbed

with Gaussian noise. This suggests that the high-frequency component (i.e.,

above 2500Hz) is less effective in the reconstruction of the PINs at 2m

compared to 0.3m scenario.

4.6 Potential Countermeasures & Future Work

The relatively high accuracy of PinDrop highlights its danger and the

importance of robust countermeasures. Barring wholesale replacement of

PINs with other login means, we consider the following possibilities:
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Figure 4.8: Impact of noise source and SNR in the inference of 5-digit PINs
within three attempts for PAD-1 and 500 digits per attacker.

• PIN Pad noise reduction: This idea is simple, though challenging to

deploy. It consists of masking the noise emitted by the PIN pad by

covering it with soundproofing material. This approach could help in

reducing the effectiveness of longer-range attack.

• Noise emanation: This countermeasure involves the emission of white

noise by the ATM when entering the PIN. As shown in Section 4.5,

high noise levels negatively affect attack performance.

• On-screen PIN pad : An effective countermeasure could be to virtualize

the PIN pad using a touch screen. (This is in fact already done on some

ATMs). This countermeasure would also allow dynamic rearrangement

of digits, making it much more challenging to implement PinDrop-

like attacks. On the other hand, on-screen keypads are generally less

user-friendly and can pose a problem for visually impaired users;

• Feedback distortion: If removing the characteristic sound emitted by

each key is not possible, an alternative is to add noise that does not
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allow individual keys to be profiled. By emitting a masking sound at

each key-press, PinDrop can be made more difficult, especially, its

training phase;

• Personal PIN pad : Another possible countermeasure is to use a trusted

device, such as a smartphone, to replace the physical PIN pad. The

PIN could then be transmitted to the ATM using a wireless medium

(e.g., NFC);

• Behavioral biometrics layer : An additional layer of security might be

possibly via behavioral biometrics. One possibility is to involve user

authentication based on keystroke dynamics. While this method can

yield a high rate of false positives, it is completely transparent to the

user (until or unless, a false positive occurs).

Possible future directions range from improving applicability of PinDrop

to exploring its effectiveness on other kinds of PIN pads. An interesting

direction might be to apply more sophisticated (e.g., parabolic) microphones.

Such a microphone could significantly extend the effective recording distance

of PinDrop. Another direction is looking at PinDrop in the context of

screen-based PIN pads that are fairly common on modern ATMs. This

setting is more complicated due to lack of physical keys the sound of which

can be profiled. However, it would be interesting to study whether sounds

emitted by the touchscreen still allow the attacker to infer information about

keys pressed.

4.7 Summary

This chapter demonstrated PinDrop, a highly accurate acoustic side-channel

attack on PIN pads. It takes advantage of acoustic emanations produced by

ATM users entering their PINs into the commodity ATM’s metal PIN pads.

These emanations can be surreptitiously recorded and used to accurately

profile all PIN pad keys, allowing PinDrop to yield the victim’s PIN with

high probability. Specifically, this work shows that PinDrop is effective when

applied from a very short (and perhaps not always realistic) distance away

from the PIN pad (0.3m) as well as from a rather safe and inconspicuous

distance (2m).

We demonstrated the effectiveness and robustness of PinDrop by con-

ducting extensive experiments that involved a total of 58 participants and

two commodities (commercially available) metal ATM PIN pads. We experi-

mented with PinDrop in several configurations, showing how its performance

can be optimized based on the training set size and the number of attackers.
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PinDrop’s accuracy reaches 93% and 95% in reconstructing 5-and 4-

digit PINs, respectively, within three attempts, from 0.3 meters away. Also,

at 2m away, PinDrop outperforms state-of-the-art results, reaching over

44% accuracy. This translates into an average accuracy improvement of

44% and 53% in 5-digit and 4-digit PINs, respectively. Finally, we proved

that PinDrop is effective at 2 meters with low/moderate noise, reaching

a lower-bound accuracy of 37%, while it remains effective under any noise

condition at 0.3 meters. We believe that, due to its real-world applicability

and performance, this work significantly advances the state-of-the-art in

acoustic side-channel attacks.
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Chapter 5

It’s a Matter of Style: Detecting

Social Bots through Writing Style

Consistency

Social bots are algorithms acting like humans in social networks, able to

share posts, load images, and interact with other profiles. Unlike other

kinds of automated agents, such as web-crawlers or service bots, social bots

are designed for imitating human behavior online [108]. Social bots cover

a wide spectrum of types varying from bots that simply perform isolated

actions of the communication process (e.g., liking or sharing) over partially

human-steered accounts that may accomplish automatic tasks (the so-called

hybrid bots, or “cyborgs” [47]), to agents enhanced with artificial intelligence

and learning skills that may operate in a completely autonomous mode,

like Microsoft’s Zo or Replika.ai1. The usage of social bots for political

manipulation and disinformation has been so considerable that they have

inflated a huge debate [28, 96, 217], which led some governments to establish

a proper regulation2.

Since the detection of social bots remains a challenge [58], the actual

number of social bots is not certain. Different estimations exist: according to

Varol et al. [248] 9%–15% of active Twitter accounts should be social bots,

while platforms themselves claim a magnitude of millions of accounts [219].

1 https://www.zo.ai/, accessed: September 2020
2For example, the implementation of SB-1001 in California in July 2019, see

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=

201720180SB1001, accessed: September, 2020.
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(a) Genuine account (b) Twitter bot about traffic
violations

(c) Twitter bot about anthro-
pology

Figure 5.1: Tweets from genuine and bot accounts

Both indications should be considered with caution since the tools used for

detecting bots have been found to be not enough accurate [61, 187]. Given

the volume of accounts and tweets, automated methods for detecting bots are

needed. It has become increasingly difficult for a human to discern between

legitimate users and bot-driven accounts [248].

This work aims to use the consistency of posts’ style over time for

detecting social bots, hypothesizing that bots are expected to keep a certain

regularity in the posts’ style, contrary to humans. While the posts of a bot

are produced by an algorithm that composes the sentences according to fairly

deterministic processes, when humans write are influenced by many factors

that may alter their style, like rush, anger, boredom, excitement, or weariness.

Specifically, our approach proposes to model a Twitter user through the mean

and standard deviation values of a set of stylistic features computed on the

tweets posted by the user. In particular, mean and standard deviation values

aim to capture the central tendency and the width of fluctuations in the

different users’ style traits. Previous work [9] showed that stylometry-based

features could help discriminate bot profiles from human ones. However,

while previous work found that humans and bots tend to make different usages

of character-based and emotions-based features, our study (i) mainly focuses

on the writing style consistency of bot-driven Twitter accounts compared to

human-operated ones, and (ii) demonstrates that bot-driven accounts exhibit

a lower variability in specific writing characteristics.

An example of the substantial differences existing in the posts’ styles is

reported in Figure 5.1, where tweets from a genuine account (Figure 5.1a) and

from two different bots (Figure 5.1b and 5.1c) are shown. The bot in Figure

5.1b was created by Brian Howland to put attention on the fact that there

are many people driving and parking dangerously. The content of the tweets
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always has the same reporting structure. In particular, we observe numbers,

statistics, and recurring propositions distinctive of an account exhibiting

bot-like characteristics. The tweets in Figure 5.1c are posted by a bot that

is a generator of metaphors, analogies, and similes about anthropology; the

figurative outputs exhibit recurrent characteristics. For instance, the bot

tends to ration words, to favor brevity and suggestiveness over verbosity and

detailed exposition.

Computer-assisted techniques for characterizing and recognizing an au-

thor’s style are developed and investigated by stylometry [196]. Research in

stylometry has evolved during the 21st Century, expanding the spectrum of

interest from plagiarism detection to fine arts. Further goals of stylometry

envisaged unmasking identity deception in social media applications, identi-

fying email impersonation, multi-modal authentication on mobile devices,

attributing SMS messages to the original author and recognizing speech

writers [101, 123, 159, 208, 237]. Stylometry is widely applied to detect style

similarities of authors, which is the main issue of this work: to evaluate to

which extent the style of an author, human or bot, remains alike over time.

Contribution. In summary, the main contributions of this chapter are

the following:

• We propose a novel approach for evaluating the stylistic consistency

of social network posts that could be used to accomplish other kinds

of analysis based on authors’ style, like psychological traits extraction,

anger detection, identity theft;

• We identify the features capturing the stylistic consistency of posts

which can distinguish when are realized by humans or bots with statis-

tical evidence;

• We train a set of machine learning detectors built on top of stylistic

consistency features that are able to identify human-operated and

bot-driven Twitter accounts with high effectiveness (i.e., F-measure

scores up to 98%).

This work is intended to fulfill two needs claimed by the current literature

on bot detection: a larger employment of “natural language processing tech-

niques to detect automated or repeated content” [198] and the identification

of features complementary to the behavioral ones that are vulnerable to

adversarial attacks [62]. Additionally, compared to the methods proposed

so far [198], our approach offers the following advantages: (i) it leverages

machine learning (ML) algorithms (i.e., more scalable and less expensive than

deep learning-based approaches), achieving classification performance that is

in line with the state-of-the-art techniques, (ii) it is exclusively based on the

written contents posted by users (i.e., the features required to feed the ML
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algorithms are easy to collect and compute), and (iii) it is highly portable

(i.e., it can be applied “as-is” to other platforms in which further social

network features may not be available or easily accessible) and extensible

(i.e., it can be used in conjunction with state-of-the-art approaches leveraging

other features).

5.1 Related Work

Several methods have been developed to build social bot detectors and

classifiers. Most of these strategies leverage supervised machine learning

algorithms to highlight the hidden patterns characterizing automated behav-

iors (see Section 5.1.1). Other approaches are based on the topology of social

networks, such as graph-based inspections and structure-based information

(see Section 5.1.2). And finally, human-based approaches are proposed for

inspecting user posts and profile analysis (see Section 5.1.3).

5.1.1 Feature-based approaches

The use of Artificial Intelligence (AI) in this context is mainly based on

the assumption that bots and humans are clearly separable and that each

machine actor has individual features that make it distinguishable from

human ones. Chu et al. [48] used entropy measures for characterizing the

differences between bots and humans on Twitter in terms of tweet content,

tweeting behavior, and account properties. They have determined that

humans have high entropy, i.e., complex timing behavior, whereas bots and

cyborgs have a low entropy, i.e., regular or periodic timing. SentiBot [76], is

a sentiment-aware architecture that considers four classes of features related

to tweet syntax, tweet semantics, user behavior as well as network-centric

user properties and uses an ensemble of six classifiers (Naive Bayes, SVMs,

AdaBoost, Gradient Boosting, Random Forests, and Extremely Randomized

Trees).

Igawa et al. [131] relied on pattern recognition in posts to distinguish

bot from human-operated accounts, while Bara et al. [20] search for similar

patterns in the posts produced by the same author for identifying bot.

Since both the techniques are close to the one proposed here, there is a

significant difference: our method relies on the evaluation of style through

the stylometric metric bench, while those other methods consider patterns

of words, the entity in the text (like URLs and emoticons) and a reduced set

of punctuation. Cresci et al. [59] focused on the problem of fake followers,

a type of automated accounts commonly used to increase the popularity of
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famous people’s accounts. Starting from a manually constructed dataset

of human accounts, comparing two types of classifiers, one based on rules

and another based on features, they showed that black-box and feature-

based classifiers perform better at spotting fake followers than white-box,

rule-based classifiers. Davis et al. [68] proposed BotOrNot, the first social

bot detection framework publicly available for Twitter. The tool applied a

random forest approach, based on more than 1,000 features among network,

user, friends, temporal, content, and sentiment features, with an 86% success

rate. Other features-based studies took BotOrNot as a baseline, as the work

on Bot-Hunter [27]. The authors propose a tiered approach to bot detection:

single tweet text (tier 0), account and one tweet (1), account and full timeline

(2), and account, timeline, and friends timelines (3).

Kabakus and Kara [142] examined the systems used for detecting spam-

bots, which have been classified into four techniques. The first one is account-

based and measures the account’s properties like the number of tweets, the

number of followers, and likes. Tweet-based spam detection considers parts

of a tweet such as mentions, hashtags, the number of likes the tweet received,

the number of retweets the tweet received, and the tweet’s content lexical

analysis of the tweet, the URL of the tweet, and so on. Graph-based spam

detection analyzes the relationships between the sender and the mentions of

a tweet, such as connectivity and distance among accounts. It evaluates the

strengths of their connections to reveal the possibility of a spam connection.

Finally, there are hybrid approaches that use a combination of the other

three. According to the authors’ analysis, tweet, account, and graph-based

approaches can reach 99% of accuracy. Contrary to these techniques specific

for detecting spambots, our approach is designed to be applied to any kind

of social bots.

5.1.2 Network-based approaches

The network-based detection techniques focus on detecting Sybil accounts,

i.e., fake accounts, which are mainly used to forge other users’ identities

and disseminate misinformation and malware. There are many works that

solve the Sybil detection problem by using structures of the network. Cao

et al. [40] developed SybilRank to detect Sybil accounts (bots) in social

networks that analyze the social graph to compute Sybil-likelihood scores.

These scores can facilitate the manual verification of such users and the

eventual countermeasures. The work examines the social graph of Facebook

and highlights how feature-based approaches with machine learning models

failed to be effective for social network intrusion detection. SybilInfer [66] is
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an algorithm that recognizes Sybil attacks using a combination of Bayesian

inference and Monte-Carlo sampling techniques to estimate the set of honest

and Sybil users. The bounds provided by SybilInfer depend on the number

of colluding entities in the social network and not on the number of trust

relations between an honest and a dishonest node. SybilGuard [268] adopts

the assumption that malicious users can create many Sybils. Still, the Sybils

can have few connections to honest accounts, and nodes do not require the

complete network topology knowledge, unlike SybilInfer.

5.1.3 Crowdsourcing-based approaches

Most of the aforementioned approaches rely on a partial manual labeling

process to assess the automated classifiers’ value. In the work by Cao et al.

described in [40], human annotation is defined as ineffective when it comes

to large-scale evaluations due to the effort required for a single classification.

In [61], the authors assessed the human performance in discriminating be-

tween genuine accounts, social spambots, and traditional spambots. They

proved that crowdsourcing annotators were not able to distinguish new waves

of spambots from legitimate users. However, in the detection of traditional

social bots, human annotation and human-based methods are often used

as ground-truth, as it happens in the work by Chu et al. [48]. Among the

collected data, they randomly chose different samples and classified them by

manually checking user logs and homepages of humans, bots, and cyborgs.

Authors of [248] proposed a bottom-up approach for the identification of bots

with similar online behavior and the classifier adopted is the one adopted

by BotOrNot, while the dataset used also included a manually annotated

collection of Twitter accounts. The PAN 2019 [209] evaluation campaign was

aimed at author profiling, held each year since 2013 and 2019, and envisaged

bots detection and gender profiling. The best results (accuracy score of

about 92%) in bots detection using the English language have been obtained

with a variety of stylistic features and Random Forest [139].

From the analysis of the related literature, it emerges that human-based

approaches are expensive in terms of time and individuals involved. Graph-

based methods fit well large-scale evaluations, using low computational

complexities, and the feature-based methods seem to be more suitable to

infer over bots and humans. For this reason, as mentioned before, our work

rather focuses on a feature-based approach to distinguish bot-driven from

human-operated accounts, relying on a metrics suite of stylometry that has

not been yet largely investigated for social bot detection.
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5.2 Study Design

The goal of this study is to verify whether the consistency of writing style is

effective to discern human-operated from bot-driven Twitter accounts. The

context consists of Twitter posts authored by both human- and bot-operated

accounts, and it is detailed in Section 5.2.1. To validate our hypothesis, we

pose two research questions:

• RQ1: Do bots and humans exhibit different stylistic consis-

tency in social network posts? This research question aims at

evaluating whether the stylistic consistency of bots is greater than the

one observed in human authors.

• RQ2: To which extent are machine learning models based on

stylistic indicators able to discern bot-driven from human-

operated Twitter accounts? The purpose of this research question is

to investigate the effectiveness of stylistic consistency indicators when

used to train machine learning models aimed at predicting the nature

(i.e., either bot- or human-operated) of Twitter accounts.

The writing style consistency of users is measured through a suite of

metrics selected from the literature about stylometry, which will be introduced

in Section 5.2.2, while in Section 5.2.3 we discuss the analyses performed to

answer our research questions.

5.2.1 Context

The source of the dataset used in this research originates from [61]. It

contains a collection of spambots, social spambots, fake followers, and genuine

accounts. More specifically, the fake followers considered in our study are

Twitter accounts created to inflate the number of followers of a target account

and were bought from three different Twitter online markets [59], while

the traditional spambot and social spambot accounts have been manually

validated in previous work [61, 263].

As some of the accounts in the original dataset could have no tweets

associated [199] and our approach relies on the stylistic consistency of tweets,

we avoided considering accounts with no tweets associated. The dataset

used in our work includes 12,179 among genuine and fake accounts (i.e.,

fake followers, traditional spambots, and social spambots) and more than

11.5 million tweets. The numbers of accounts and tweets considered in each

category are reported in Table 5.1.
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Table 5.1: Experimental dataset

Group name Description Accounts Tweets

genuine accounts
human-operated accounts
from [61]

3,211 7,896,356

fake followers
fake follower accounts
from [59]

3,099 195,757

traditional spambots
spammer bot accounts
from [263]

998 145,085

social spambots #1
retweeters of an Italian
political candidate from [61]

989 1,610,171

social spambots #2
spammers of paid apps
for mobile devices from [61]

3,420 427,890

social spambots #3
spammers of products
on sale at Amazon.com
from [61]

462 1,418,619

Overall 12,179 11,693,878

5.2.2 Metrics Suite

The metrics suite has been built by selecting the indicators used in stylome-

try’s literature for measuring four properties of a text since they fit better

than the others the purpose of our study: the structural traits, the semantic

traits, the lexical traits, and the readability.

The structural analysis assumes that the text is simply a sequence of

characters: this assumption allows to perform different analyses. The analyst

may count: the number of characters in the text, punctuation signs or only

the upper- or lowercase, the frequency of a specific letter, or n-grams, which

are language-independent, differently than words. Furthermore, the sampling

in character sequences allows obtaining a dataset richer than the one based

on words for short texts. Some of these structural properties showed to be

effective in the authorship attribution [107].

The automatic computation of data concerning a text’s semantics has

not yet reached the same levels as other fields of linguistics, like phonology,

lexical, and syntactic. There are several attempts to make quantitative the

semantic data, like in Gamon et al. [104] or in Argamon et al. [8] which

maps a functional trait with a specific word. A similar mechanism is used to

perform Sentiment Analysis, which associates a word with a label depending

on the feeling it transmits.

Even the lexical choices done in a text may indicate the historical period

when the text was written, the provenience, and the author’s education.

Mistakes can lead to determine the identity of an author. The lexical traits

may be measured by examining the vocabulary’s richness or the number
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Table 5.2: Metrics of Stylometry used in the Experiment

Metric Formula Description

Number of Total Char-
acters

C where C is the total number of characters in the text.

Number of Uppercase
Characters

∑C
i=0 u(ci)

where u(ci) is 1 if the i-th character is an uppercase character and 0 otherwise.

Number of Lowercase
Characters

∑C
i=0 l(ci)

where l(ci) is 1 if the i-th character is a lowercase character and 0 otherwise.

Number of Special
Characters

∑C
i=0 s(ci)

where s(ci) is 1 if the i-th character is a special character and 0 otherwise.

Number of Numbers
∑C

i=0 n(ci)
where n(ci) is 1 if the i-th character is a number and 0 otherwise.

Number of Blanks
∑C

i=0 b(ci)
where b(ci) is 1 if the i-th character is a blanck character and 0 otherwise.

Number of Words W where W is total number of words in the text.

Average Length of
Words

1
W

∑W
i=0 len(wi) where W is the number of words while len(wi) is the length of the i-th word.

Number of Propositions P where P is the total number of propositions in the text.

Average Length of
Propositions

1
P

∑P
i=0 len(pi)

where len(pi) is the length of the i-th proposition.

Number of Punctuation
Characters

∑C
i=0 z(ci)

where z(ci) is 1 if the i-th character is a punctuation character and 0 otherwise.

Number of Lowercase
Words

∑W
i=0 h(wi) where h(wi) is 1 if the i-th word is a lowercase word and 0 otherwise.

Number of Uppercase
Words

∑W
i=0 j(wi) where j(wi) is 1 if the i-th word is an uppercase word and 0 otherwise.

Vocabulary Richness dw
W

where dw is the length of the text without duplicated words.

Number of URLs
∑W

i=0 q(wi) where q(wi) is 1 if the i-th word is a url and 0 otherwise.

Flesch Kincaid Grade
Level 0.39∗(E)+11.8∗(G)−15.59

where G is the average number of syllable per word, while E is the average
number of words per proposition.

Flesch Reading Ease 206.835− (84.6 ∗G)−
(1.015 ∗ E)

where G is the average number of syllable per word, while E is the average
number of words per proposition.

Dale Chall Readability 0.1579 ∗ (PDW ) + 0.0496 ∗
ASL

where PDW is the percentage of difficult words (words that do not appear on
a specially designed list of common words familiar to most 4th-grade students),
while ASL is the average length of a proposition in words.

Automated Readability
Index 4.71 ∗ C

W
+ 0.5 ∗ W

P
− 21.43

where W is the number of words contained in the text, C is the number of the
total amount of characters in the text, while P is the number of propositions
in the text.

Coleman Liau Index 0.0588∗L−0.296∗S−15.8
where S is the average number of propositions per 100 words while L is the
average number of letters per 100 words.

Gunning Fog 0.4 ∗ (W
P

+ 100 ∗ DW
W

)

where W is the number of words contained in the text, DW is the number
of words consisting of three or more syllables, while P is the number of
propositions in the text.

SMOG (Simple Mea-
sure of Gobbledygook) 1.0430 ∗

√
DW∗30

P
+ 3.1291

where DW is the number of words consisting of three or more syllables while
P is the number of propositions in the text.

Linsear Write lw

For each word with two or less syllables an index is increased by 1, while
for each word with more than three syllables, the index is increased by 3.
Finally, the resulting number is divided by the number of propositions. If the
result is greater than 20 it is divided by 2, otherwise it is divided by 2 and 1is
subtracted from this number.
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of words used in a sentence. This technique can be applied by leveraging

a tokenizer, according to a bag of words model. Different values can be

computed: the ratio between different words and the number of words, the

number of hapaxes, which occurs only once in the text.

The metrics of readability capture the ease of understanding of a written

text. The greater this feature, the easier the reader will distinguish letters

and words. The readability is related to the speed and effort of reading, but it

is specifically relevant for the readers with poor text comprehension abilities.

Different metrics have been proposed for evaluating readability. The Flesch

Kincaid Reading Ease uses the number of words and syllables while the

Flesch-Kincaid grade level considers the same pair of parameters but with

different weights [238]. The Dale-Chall [103], designed for quantifying the

readability in books for children, assigns a score to a text. The greater the

score, the higher is the level of education required to understand the text:

it uses the length of the words and the percentage of difficult words. The

Automated Readability Index [232] evaluates the readability utilizing the

percentage of characters per word and words per sentence. The Coleman

Liau Index [183] considers only the number of characters that make up the

words, while the Gunning Fog [112] is an indicator of the formal number

of years necessary to educate a person who can easily understand the text.

SMOG (Simple Measure of Gobbledygook) [182] aims at expressing the

same property but is more accurate and easier to compute than Gunning

Fog. The Linsear Write formula [95] was developed by the US Air Force

for computing the readability of their technical handbooks and relies on the

length of sentences and the number of syllables contained in words. The

list of metrics selected for the suite, the mathematical formulation, and the

corresponding definition are provided in Table 5.2.

5.2.3 Analysis Method

To answer if bots and humans exhibit different stylistic consistency (RQ1),

we perform a statistical analysis on the extracted stylometric features. In

particular, once computed every metric M (detailed in Table 5.2) for each

post in our dataset, we group these values by the authors of the posts, U ,

obtaining the sets MU . In order to characterize the style of a generic user U ,

for each set MU , we compute the mean, AMU
, and the standard deviation,

SDMU
. To assess whether the differences in the style consistency between

the two types of users (i.e., bot-driven and human-operated) can be observed,

for each considered metric M , we compare the distributions of AMU
and

SDMU
values obtained for the bot-driven users with the distributions of AMU
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and SDMU
values obtained for the human-operated accounts. For comparing

the pairs of distributions, we apply (i) the Mann-Whitney test [185] (with α

fixed to 0.01), which is used when it is not assumed any specific distribution

for two independent groups, and (ii) the Cliff’s d effect-size measure [49], to

quantify the amount of difference between groups. As recommended by the

guidelines given in [109], we interpret the effect size as small for |d| < 0.33,

medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474.

To answer if ML models can discern between human and bot accounts

(RQ2), for every user in our dataset, we use the mean (AMU
) and the standard

deviation (SDMU
) values of each metric M computed in the previous phase

to (i) train five different machine learning (ML) classifiers, namely decision

tree (DT), random forest (RF), logistic regression (LR), linear Support

Vector Machine (SVM linear), and Support Vector Machine with rbf kernel

(SVM rbf), and (ii) evaluate the extent to which such classifiers are able to

distinguish between bot-driven and human-operated Twitter accounts. We

chose these specific ML algorithms as they have been successfully employed

in previous work concerning author profiling tasks [210]. In particular,

we perform a stratified nested 10-fold cross-validation to split the dataset

in training and test set, and a 10-fold inner cross-validation for hyper-

parameters selection and model validation. In this configuration, each

split of the nested-cross-fold validation consists of 80% of the dataset in

training, 10% in validation, and 10% in testing. This approach allows us to

estimate an unbiased generalization performance and evaluate both models

and features robustness through different splits. We a-priori select a set

of the hyper-parameters for each model to perform the model validation

using grid search. In particular, for the DT, the depth varies between 1

and 4, and the CART learning algorithm is used. For the RF classifier,

the depth varies between 1 and 4, and the number of estimators is selected

in {20, 50, 100}. For LR C is set in {10−3, 10−2, . . . , 101}, and penalty in

{L1, L2}. For SVM linear, C is set in {10−3, 10−2, . . . , 101}. Finally, for

SVM rbf C is set in {10−3, 10−2, . . . , 101} and γ in {10−3, 10−2, . . . , 100}. For

LR, SVM linear, and SVM rbf, we normalize the data using a standard scaler.

We evaluate the performance achieved by the different ML models through

widely-known metrics in the information retrieval field: Accuracy, Precision,

Recall, and F-measure [12]. As recommended by Demšar [74], we apply

(i) the Friedman test [102], to investigate whether the differences observed

in the performance (in terms of F-measure) achieved by the experimented

classifiers are statistically significant, followed by (ii) an eventual post-hoc

Nemenyi test [197], to identify the specific pairs whose differences exhibit

statistical evidence.
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5.3 Results

We assess the statistical differences in bot and human tweets’ collected data

applying the Mann-Whitney test and Cliff’s delta. The Mann-Whitney test

resulted in significant differences on all the features (p < 0.001).

Regarding the effect size, four features show large values of d, specifically:

the standard deviation of URLs (d = 0.747), the standard deviation of the

number of numbers (d = 0.589), the average of URLs (d = 0.576), and the

average of the number of numbers (d = 0.571). Besides, five features exhibit

medium effect size, namely the average of the number of uppercase words

(d = 0.396), the standard deviation of the number of punctuation characters

(d = 0.369), the average of the number of uppercase characters (d = 0.367),

the average of the number of propositions (d = 0.351), and the average of

the number of punctuation characters (d = 0.337).

From the statistical analysis, it emerges that tweets generated by bot-

driven accounts report a relatively stable consistency in including links and

numbers. This behavior is evidenced in Figure 5.2, comparing the distribu-

tions between bots and humans for the two features with the largest effect

size. In particular, both the standard deviation of URLs and the standard

deviation of the number of numbers show higher average values for humans,

confirming a greater writing consistency in bots accounts for these two fea-

tures. On the other hand, we report higher usage of uppercase characters

and uppercase words in human-generated tweets. While the consistency in

the usage of links and numbers could depend on bots’ primary goals (i.e.,

spreading contents), more recurrent uses of uppercase characters and words

are likely connected with the emotional sphere of human users [151].

To assess whether the stylometric features provide adequate information

to discern bot-driven from human-operated Twitter accounts, we evaluated

different ML classifiers’ performance. In the bar chart of Figure 5.3, for each

considered metric and ML algorithm, we report the average (represented by

the height of the colored bar) and the standard deviation (represented by

the error bar) of the results obtained on each (cross-validation) split.

The results show that all classifiers obtain an F1 score above 0.95, con-

firming the robustness of the features extracted. The tree-based classification

algorithms exhibit the worst results among those considered in this study,

achieving F1 scores of 0.955 ± 0.003 and 0.959 ± 0.007 for DT and RF,

respectively. The best performance for all metrics is achieved by the SVM rbf

that reaches a F1 score of 0.982±0.004. Moreover it is possible to notice how

the variance of the results is generally limited for all the metrics, highlighting

the robustness of the models in the different splits of the cross-validation.
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Figure 5.2: Violin plots comparing the distribution of humans and bots for
the two features with the largest effect size.
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Figure 5.3: Classification metrics of decision tree (DT), random forest (RF),
logistic regression (LR), linear Support Vector Machine (SVM linear) and
Support Vector Machine with rbf kernel (SVM rbf) classifiers, in nested
10-fold cross-validation.

To assess whether the classifiers’ differences are statistically significant, we

apply Friedman’s test on the F1 metric. Specifically, Friedman’s test returns

p < 0.001, suggesting that the classification results achieved by the differ-

ent ML algorithms are not equivalent. In Figure 5.4 we report the critical

difference (CD) diagram among the classifiers applying the Nemeny’s test.

Classifiers are ordered by average rank on all splits, specifically: DT = 4.6,

RF = 4.3, LR = 2.5, SVM linear = 2.6, and SVM rbf = 1.0. According to

the Nemenyi post-hoc analysis, the tree-based algorithms show significantly

different performance compared to LR, SVM linear, and SVM rbf. On the

contrary, these latter techniques do not present significant CDs between them.

Although we observe differences in experimented models’ performance, the

F-measure in the classification of human accounts and bots is above 0.95 for

all the investigated ML techniques. This suggests that the high effectiveness

in discerning human-operated from bot-driven Twitter accounts is mostly

related to the stylistic consistency features used in this study rather than

the specific predictive model selected.

Cresci et al. [61] compared the detection performance of different state-of-

the-art techniques on two test sets sampled from the same dataset we used

in this study. Such a comparison highlighted that the best bot-detection

performance is achieved by the methods proposed by Ahmed et al. [4]
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Figure 5.4: Critical difference (CD) diagram of the post-hoc Nemenyi test
(alpha = 0.10). If the gap between the ranks of two algorithms is larger than
CD, their difference is significant.

and Cresci et al. [60], that obtain F-measure values higher than 0.92 on

both test sets. While the approach proposed by Ahmed et al. [4] leverages

interaction-based, post-based, URL-based, and tag-based features, Cresci

et al. [60] exploit DNA fingerprinting techniques based on the types of

tweets (i.e., simple tweets, reply tweets, or re-tweets) posted. In terms of F1

score, our SVM rbf model obtains slightly better classification performance

than both prior approaches. Besides, when using them on other social

networking platforms, both previous methods need adjustments. Differently,

our approach can be used “as-is” on other platforms since it only analyzes

posts’ contents.

5.4 Threats to Validity

Threats to construct validity are related to possible imprecision in measure-

ments we performed. To carry out our study, we measure different factors

that could not be sufficient to exhaustively model the writing style of a Twit-

ter user. To partially mitigate this threat, we selected a set of well-known

metrics previously used for tackling similar issues [170, 210, 275].

Threats to internal validity concern confounding factors that could affect

our results. An important confounding factor could be related to possible

inaccuracies in identifying actual human and Twitter users in our dataset.

To alleviate this issue, in our study, we leverage publicly available datasets

in which both human- and bot-operated accounts were manually verified [59,

61, 263].

Threats to conclusion validity concern the relationship between treatment

and outcome. Appropriate statistical procedures have been adopted to draw

our conclusions. Specifically, we used the Mann-Whitney U test for exploring

the statistically significant differences occurring in the stylistic features which

characterize the two groups of users (i.e., human-operated and bot-driven).

The magnitude of the significant differences is then quantified by using Cliff’s

delta effect size measure. Besides, as recommended by Demšar [74], we
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used the Friedman test, followed by a post-hoc Nemenyi test, to investigate

whether the differences in the performance achieved by the selected machine

learning models were statistically significant.

Threats to external validity concern the generalizability of the findings.

The leveraged dataset collects tweets posted by three main types of bot-driven

accounts: (i) fake followers, (ii) spambots, and (iii) social bots. However,

different types of bots (or bots operating on other platforms) could exhibit

higher style inconsistency and different writing behaviors. Thus, further

research to verify whether our findings generalize to other types of bots is

needed. To cope with this matter, in the future, we plan to replicate our

study at a larger scale, considering more heterogeneous bots.

5.5 Summary

In the last years, the number of bot-driven accounts has been extraordinarily

growing in social networks. Recently, massive usage of social bots has been

observed for spreading misinformation or conditioning electoral campaigns.

As approaches for bots identification are not yet accurate enough, we proposed

a method for detecting social bots based on the writing style’s characterization.

The underlying assumption is that a human author tends to change the

writing style over time as it is influenced by external factors, while a bot

should show a style that is mainly consistent over time, as it is produced by

an algorithm whose result is fairly deterministic. For measuring the style of

a post’s author, we used a set of metrics defined by stylometry literature.

The experimentation carried out on 12,179 among bot-driven and human-

operated Twitter accounts demonstrated that our conjecture was correct.

Indeed, most of the selected metrics exhibited differences in style consis-

tency over time between human-operated and bot-driven accounts. that

are statistically significant (p < 0.001). ML classifiers were trained with

the stylometry metrics for evaluating their ability to distinguish between a

human author and a bot. All the ML algorithms achieved F-measure values

above 0.95, while Support Vector Machine with rbf kernel showed the best

performance, achieving an F1 score of 0.982 ± 0.004. We will apply this

method for detecting identity theft, fake profiles, and profile masquerading

in social networks in future work.
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Chapter 6

Face the Truth: Detection of Spon-

taneous and Posed Emotional Facial

Expressions

Facial expressions represent an innate and automatic behavioral component

of emotional and social communication [67, 136, 192, 281]. Emotional fa-

cial expressions, in particular, have a communicatory function that conveys

specific information to the observer [7, 67, 94, 134, 135]. For example, an

expression of happiness through a smile in response to a particular behav-

ior increases the probability that the action will be repeated in the future,

differently from an angry or sad face [192]. In this sense, the nature and

the interpersonal function of the emotional facial expressions conveys a mes-

sage that predicts different social outcomes [67, 83]. It is precisely for this

reason that accurately deciphering what someone is trying to communicate

through facial expression, is extremely important in day-to-day social inter-

actions [140]. Importantly, emotions conveyed by faces can change under

several parameters. We can display different varieties of expressions: some in-

tense and sustained, while others are subtle and fleeting [5]. One of the most

high-level and critical communication features is related to the perception of

authenticity of the emotion expressed [171, 216]. We can express emotions

spontaneously, triggered by real circumstances (i.e., “event-elicited”)[69]. For

example, someone might be scared because he is genuinely afraid of a snake

or be sad because of the loss of a loved one. Conversely, we can deliberately

feign or pose emotions in the absence of a congruent underlying context to

receive adaptive advantages. These expressions reflect the strategic intent of
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the sender in the absence of felt emotions [93]. For example, pretending to

be sad can be a useful strategy to take advantage of a perceiver’s reciprocal

kindness or compensatory behavior in response [212]. The endogenous na-

ture of emotional experiences (i.e., genuine or posed) completely changes the

observer’s perception and reaction. In social interactions, perceiving others’

emotional reactions as genuine might promote social interaction and increase

the expresser’s trustworthiness [212].

Social media represents a field in which the sharing (conscious or not) of

emotions is a major factor. Humans’ nature to share emotions derives from

different reasons such as obtaining help, care, or support, drawing attention,

getting closer to someone, facilitating social interactions, and so on [213, 214].

In the last decades, the easy use of social media started to dig deeper and

deeper down into society’s brain stem, catalyzing the human tendency to

widespread every aspect of their lives [36, 71, 250, 258, 259]. The current

social media platforms promote emotional self-expression, inviting users to

post their positive and negative emotional expressions online regularly [259].

TikTok, for example, is one of the fastest-growing social media platforms in

the world, which allows users to share their personal content. According to

the latest statistics, 689 million people are monthly active users. Among them,

55% upload their own videos displaying feelings, reactions, and emotions1.

Social media platforms are also a theater where everyone may fake their

feelings. In fact, many people on social media do not display genuine emotions

for a number of reasons: increase or appease their followers, present idealistic

self-representation, regulate their emotions by sharing their feelings, and

so forth [13, 250]. Consequently, it is common to see fake (altered) facial

expressions of emotions on social media. Many users may pose their emotional

reactions, may hide their inner feelings, or overreact to scenarios they create

through their social media profiles. It is in human nature to lie. Therefore,

how can we distinguish spontaneous emotional reactions from posed ones?

It is well known how people are completely unable to recognize deceit in

emotional displays, in particular, if they have to rely on visual cues only [23],

without a real context of interaction (like in social media). Several studies

demonstrated how people tend to perform not far from the chance level when

asked to detect such behaviors [205, 206, 251]. The research community is

tackling the problem by applying machine learning algorithms to discern

between genuine and posed emotions. However, the models used so far

yielded great variability among the results and a lack of robustness [114, 138].

1 https://www.oberlo.in/blog/tiktok-statistics
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Consequently, to date, there is still skepticism about the interpretability and

real-world applications of the results obtained.

In this chapter, we want to evaluate how intra-individual variability in

expressing posed or genuine emotions affects the performance of predictive

models.

Contributions. The contributions of the current chapter are multiple:

• We developed a framework for the automatic detection of spontaneous

and posed emotional facial expressions from clips. We applied the

framework in two scenarios to classify the genuineness of emotional

expressions ad hoc for each user (i.e., user-dependent scenario) and

investigate the relevancy of inter-individual variability in the emotional

lie detection (i.e., user-dependent vs user-independent scenario).

• We assessed the performance of our framework in genuineness discrimi-

nation through extensive experiments. Predictive models achieve an

average accuracy of 84.4% in a user-dependent scenario and 67.0% in

a user-independent scenario.

• We created a novel dataset (PEDFE) that includes a considerable

amount of emotional clips (i.e., 1458) for both spontaneous and posed

emotions. The same emotion is displayed genuinely and posed for

each participant, allowing a direct comparison (i.e., intra-subject and

between-subject) between these two ways to express the emotional

facial expressions.

• To elicit the emotion as naturally as possible, we applied a novel protocol

that uses a multimodal sensorial perception, avoiding any restrictions

or influences by the researcher. To the best of our knowledge, the

current emotion elicitation protocol has more tasks (i.e., 15) than the

other reported methods (see Miolla et al. [188] for a review).

• We validated all stimuli through a survey by asking 122 participants to

rate each clip according to the emotion, genuineness, and intensity of

the facial expression perceived. It implies an essential step in creating

emotional datasets that most of the datasets displaying genuine and

posed emotions neglected (see Miolla et al. [188] for a review).

6.1 Related Work

So far, only a few studies applied machine learning to discriminate

genuine/non-genuine emotions based on the dynamics of facial movements.

The first attempt to automatically detect genuine from fake facial expres-

sions was carried out by [23] where a system based on nonlinear SVM and

AdaBoost for real-time recognition of facial actions was implemented. The
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authors trained 20 different classifiers (one per AU) and used the individual

Gabor filters applied to the videos as features. The input of the SVM con-

sists of 200 features per AU, 4000 in total, derived after a feature selection

performed by the AdaBoost algorithm. In this work, the authors focused

only on the recognition of true and posed pain facial expressions, reaching up

to 72% of accuracy. Then, another deception detection analysis was proposed

by the same authors [24], obtaining an accuracy of 85%. In this work, 50

genuine and fake facial expressions videos of pain were analyzed by using 20

facial actions extracted by the Computer Expression Recognition Toolbox

(CERT) [22]. Each facial action was processed with temporal Gabor filters

at eight different frequencies. The authors detected the zero-crossing for

each frequency and calculated the resulting area under the curve and over

the curve. The distribution of these measures was used as input to train a

nonlinear SVM with a Gaussian kernel. As the previous one, also in this

work, the authors focus only on pain expressions, not on emotion deception,

using non-interpretable models.

Most advanced machine learning and computer vision analysis focused

on the difference between the activation and the kinematics of the muscle

movements, also called Action Units (AUs) [91], in spontaneous and posed

facial expressions (please see [138] for a review). This method originates from

Ekman’s theories [92, 89], which identified six basic emotions characterized

by a specific facial configuration in their display: happiness, sadness, anger,

disgust, surprise, and fear. Previous research’s aim was to identify the

keystone about the emotional lie detection in facial displays, identifying

a ”common pattern” in detecting spontaneous and posed emotional facial

expressions.

Different features were investigated to discriminate spontaneous and posed

emotions automatically. For example, spontaneous smiles seem to have a

slower onset speed, and larger duration than posed ones [114, 155, 228, 229].

Conversely, onset and offset speeds tend to be greater in posed smiles

than the genuine counterpart [228]. Other features were also considered in

the detection of spontaneous and posed facial displays, such as intensity

[154, 157], symmetry of both sides of the face [86, 114], or the degree of

irregularity (i.e., number of pauses or discontinuous changes in the phases of

the expressions) of the emotional expressions [114, 124]. However, approaches

used so far yielded great variability among the results and a lack of robustness

[114, 138]. Consequently, to date, there is still skepticism about the real-world

applications of the results obtained.

The problem of determining whether a given emotion is fake or not was

proposed in the ”ChaLearn Looking At People Real Versus Fake Expressed
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Emotion Challenge”[253]. Five teams achieved the final stage and published

their analysis. The best two models, which achieved the same performance,

were proposed by NIT-OVGU (NTO) [226] and HCILab (HCL) [129]. The

first proposed a method based on Support Vector Regression (SVR) ensembles

to estimate AUs intensity frame by frame. The time series were smoothed

using a first-order Butterworth filter, and 440 features were extracted. Finally,

a Rank-SVM Ensemble was trained to detect the most authentic expression

between two videos of the same participant, achieving an average of 67%

accuracy. The second one (HCL) proposed a method based on an LSTM

trained on each emotion after extracting facial landmarks from the videos. As

in [226], the algorithm ranks a couple of videos to detect the most authentic

expression between them. Also, in this case, the overall achieved accuracy

was 67%. Even if this approach is suitable for the challenge set, the use of

ranking algorithms between pairs of videos strictly limits the applicability of

these methods.

Although some studies have reported promising detection accuracy on

specific datasets (i.e., intra-dataset testing scenario), the performance can

vary widely using the same detection method with different databases [138].

Indeed, the generalization and the improvement of these models is a problem

still unsolved so far [138]. The machine learning models used so far yielded

great variability among the results and a lack of robustness [114, 138].

Consequently, to date, there is still skepticism about the interpretability

and real-world applications of the results obtained. The weak consistency

among the results may be due to the high inter-individual variability in

the facial displays of emotions [80, 126, 224, 260]. In [126] the inter and

intra-variability of the subjects were measured in controlled smiles. The

results showed how inter-individual variability achieved up to 60%, whereas

the intra-variability was constant at 10%. Likewise, [106] investigated the

facial muscles activity during elicited emotional experiences by means of

EMG. The relative results showed how the corrugator activity evidenced

substantial differences and individual variability between the subjects.

The poor performances maybe thus be because the datasets used for

training models do not adequately take into account the real-world scenarios

variability, an effect called dataset bias effect [148]. This could explain why

the accuracy of these models drastically drops in real-world situations with

spontaneous expressions [224, 80]. The previous analyses are, in fact, based on

averaged values of subjects, an approach that may be called user-independent,

and do not consider the specific individual variations [126]. This bias is

particularly important considering that different factors such as gender, age,

culture, morphological appearance strongly affect how emotions are exhibited
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[54, 99, 110, 224, 257, 272]. Previous works on pain facial expression analysis

have proved that person-specific models are advantageous in comparison with

generic ones [224]. Accordingly, it would be an understatement to neglect

the inter variability among the subjects in favor of a generalist approach.

Facial displays are not identical for different subjects, and perhaps even each

person does not have a unique expression for the same emotion [222].

In the current study, we made a step forward, trying to identify a

specific pattern in the genuineness of the emotional displays for each subject

(different from the previous user-independent scenario). In other words,

Machine learning (ML) models were used to detect a unique fingerprint

of genuineness singularly for each user. Moreover, a comparison with a

more generic approach (i.e., user-independent) that neglects the specificity

of the subjects’ emotional displays in favor of an ensemble method was also

investigated.

6.2 Data Collection

This section describes the procedures adopted to collect videos of genuine

and posed facial expressions, the methods used to elicit them, and the process

used to select the clips.

6.2.1 Participants Selection Procedure

Fifty-seven participants, aged between 20 and 30 years, took part in the

experiment. Participants were enrolled using an advertisement on the Uni-

versity Website and were compensated for their participations. Participants

signed an informed consent before the beginning of the experiments. After

reading this informed consent, they were still unaware of the purpose of the

study and were unaware of being filmed. The participants were informed

that they had the right to quit the experiment and withdrew their consent

at any time. At the end of the session, participants were debriefed, and the

study’s real aims were revealed. They were also told they were recorded. One

participant withdrew her consent, and her clips were permanently removed

from the database. The experimental procedure and the emotional elicita-

tion protocol submitted to the participants and described in the following

paragraphs were approved by the Ethics Committee of the University of

Padua (Protocol number: 2917). The participants’ video recordings were

included in the database only after they signed a written consent to use their

videos for research purposes.
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6.2.2 Data Collection Setup

The aim of the experimental procedure was to record spontaneous (i.e.

stimulus elicited) emotions of participants while they watched emotional

video or were performing simple tasks. For this reason, participants were left

alone in an experimental room to decrease the possibility that embarrassment

and social inhibition could affect the spontaneity of expressed emotion,

impacting on the overt manifestation of emotions. The doors and windows

were kept shut during the entire protocol to avoid external interference and

allow participants a more in-depth emotional excursion during the tasks.

Participants were set about one meter in front of a Lenovo ThinkPad T490.

As it is known that awareness of the experimental aim can interfere with

the spontaneity of overt emotional expression [118, 231], participants were

unaware of the purpose of the experiment. For this reason, a cover story was

created. In particular, participants were told they have to rate emotional

valence of the videos, as already did for a previous study [118]. They were

also told that, in order to accurately assess emotions, they had to try to

get immersed in the viewing experience and feel free to experience their

emotions. Moreover, subjects were allowed to sit at their ease without any

other restrictions inside the experimental room to avoid possible suspects or

limit the emotions’ naturalness.

The same protocol was submitted in two different ways to enrich the

database and differently deal with acknowledged limitations of previous

dataset. The first setting was created based on the well-known assumption

that awareness of being filmed might impacts on spontaneity of overtly

expressed emotions. Thus, in this first setting, a hidden camera placed at

the right room’s top angle was used. Participants were thus totally unaware

of being recorded, preserving the emotional reactions’ spontaneity. The clips

were recorded with a AW-HE40HWEJ–Panasonic at a distance of at least

2 meters, with an angular size of 20°, varying in accordance with the head

movements of subjects. The second setting was thought with the aim to

create video depicting the participants on a frontal view. For this reason, in

the second setting, a Logitech C920 HD Pro Webcam, Full HD 1080p/30fps,

was placed at the top of the computer screen used for the tasks. In this

setting, to preserve the subjects’ expressions’ spontaneity, participants were

told that the recording was necessary to study the eye movements and pupil

dilatation while performing the valence rating task. The two experimental

setups guarantee more options to the experimenter who will use the emotional

stimuli by having the same emotions (both spontaneous and posed) with a

front and a lateral view (see Fig. 6.1).
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(a) First setting (b) Second setting

Figure 6.1: Examples of fear expressions for the two settings.

6.2.3 Emotion Elicitation Procedure

Spontaneous emotional reactions were elicited with a multimodal protocol

described in Table 6.1. Emotions were mostly triggered by watching emotion-

inducing videos, which resulted to be the most effective stimuli for evoking

emotional responses [45]. The clips were selected from different stimuli that

have been used for similar studies [220], and from other sources such as

international films, commercial spots, and YouTube clips. The length of the

clips did not exceed 5 minutes according to the recommended size of the

emotional video [220]. The emotions were not only elicited through passive

elicitation by watching emotion-inducing videos. For example, anger was also

triggered by using a rage game, well-tested stimuli to provoke anger, in which

the emotion was elicited as a result of the encoder actively engaging with the

game [236]. Indeed, the typology of these games was designed to make the

task very difficult to purposely increase a high level of frustration and anger

to the players. As, in pilots trails, we found that anger is often repressed,

we provide participants with a desktop punching ball. Finally, as olfactory

stimuli can reliably elicit disgust and have been resulted in very efficiently

in previous studies [120, 121, 273], an unpleasant odor was presented to the

subject to induce a disgusting feeling. The spontaneous emotion elicitation

protocol is summarized in Table 6.1.

After the end of each task, participants were asked to identify the emotion

they experienced/felt within the six basic emotion and neutral. They were

also given the possibility to report if they felt an emotion that was not included

within the six basic ones. Furthermore, besides identifying the emotion felt,

they were also asked to rate how much the emotion they felt was genuine on

a Likert scale ranging from -7 to +7 where -7 corresponded to “completely

not genuine” and +7 corresponded to “completely genuine”, according with

previous literature [69]. Finally, participants rated the intensity of the

emotions experienced during the tasks on a Likert scale ranging from 0
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(“Emotion not felt/No intensity”) to 9 (Emotion felt very intense/Very

Strong Intensity”) [69].

When the multimodal emotion elicitation protocol was successfully con-

cluded, participants were asked to pose the six basic emotions multiple times,

modulating the intensity of the posed emotions. In particular, participants

were asked to pretend to feel a target emotion and to pose that emotion for

at least 15 second different times trying to modulate its intensity. During

this task, they were also asked to use the same objects they used during

genuine emotion elicitations (i.e. punching ball and olfactory stimuli). After

the end of each trial, they were debriefed about the emotions they felt and

expressed and all of them confirmed they did not felt any kind of emotions,

and thus that emotions expressed are to be considered not genuine as they

were only posed but not felt.

6.2.4 Video Extraction

A certified Facial Action Coding System (FACS) coder, extracted the facial

expression of emotions present in the recorded videos. The clips’ selection

was made considering both the FACS’s criteria and participants’ self-reports.

FACS is a widely used protocol for recognizing and labeling all visually

discernible facial movements, called Action Units (AUs). The FACS manual

proposes a list of possible combinations of AUs which are typically associated

with expression of emotions [88]. The current method was used to reliably and

accurately extract the emotional facial expressions shown by participants. In

other words, the clips were selected only if the emotion elicited and conveyed

by the face (e.g., happiness) matched: i) the target emotion for each task

(in order to avoid to include emotions affected by other emotions); ii) FACS

criteria (e.g., AU6+12) and iii) participants’ self-report (e.g., they declare

to have experienced happiness). Conversely, if participants reported having

1 https://www.youtube.com/watch?v=URGUQlcAoNUab_channel=larablacklady
2 https://www.youtube.com/watch?v=F2bk_9T482g&ab_channel=xXJEashXx
3 https://www.youtube.com/watch?v=cLCE9_JHjPE&ab_channel=Mercating
4 https : / / www . youtube . com / watch ? v = JHX0btJYcyI&ab _ channel =

PhilBeastallFilms
5 https://www.youtube.com/watch?v=4_B6wQMd2eI&ab_channel=WIACZO
6 https : / / www . youtube . com / watch ? v = 0grANlx7y2E&ab _ channel =

PhillipNorthfield
7 https://www.youtube.com/watch?v=FZluzt3H6tk&ab_channel=ChaZacIsa
8 https://www.youtube.com/watch?v=v3iPrBrGSJM&ab_channel=Quirkology
9 https://flappybird.io/

10 https://www.gioco.it/gioco/scary-maze
11 https : / / www . youtube . com / watch ? v = beAxdoCFnhw&ab _ channel =

COMPILATIONPOPPINGVIDEOS
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Table 6.1: Multimodal protocol for Spontaneous and Posed emotion elicita-
tion. Tasks are presented in this table in the same order they were presented
to participants.

Task Emotion Activity Description Lenght

T1 Sadness Watch a VIDEO: Death
of Mufasa, from the Lion
King 2

The clip displayed the saddest part
of the movie, when Mufasa dies be-
cause of Scar, and the touching reac-
tion of Simba.

02:42 min

T2 Sadness Disney Pixar Up3 The scene where Ellie and Carl are
shown. Their relationship is being
shown as time passes from their wed-
ding to Ellie’s death.

04:21 min

T3 Sadness “Giving without expect-
ing anything in return
is the best communica-
tion”4

Spot for Telecom in Thailand. The
story is about kindness rewarded
over the course of 30 years.

03:08 min

T4 Sadness “Love is a gift”5 It’s a short film about a man count-
ing down the days to Christmas so
he can continue his yearly tradition
sparked by a tragic moment from the
past.

02:25 min

T5 Sadness “Edeka 2015 Christmas
Commercial”6

Edeka’s holiday commercial reminds
people of the important things in life
in a tragic piece of storytelling.

01:30 min

T6 Surprise The Invisible Gorilla7 An experiment in Change Blindness. 01:00 min
T7 Happiness When Harry met Sally8 This is a classic and funny part to

a very good movie. The restau-
rant/deli scene where Sally fakes an
orgasm to prove a point.

02:46 min

T8 Surprise Colour Changing Card
Trick9

An experiment in Change Blindness. 02:43 min

T9 Anger Flappy Bird10 A so-called “Rage game”, namely a
game while gaming and can’t accom-
plish your goal whatever that is, and
you get random from your lack of
success.

05:00 min

T10 Fear Scare Jump11 A so-called jump scare, namely a
game intended to scare the audience
by surprising them with an abrupt
change in image, co-occurring with
a frightening sound.

04:00 min

T11 Anger Abused dog in a metro The clip showed the abuse of a dog,
beaten by his owner on a public
metro.

03:00 min

T12 Fear Scare jump horror clip A classic horror clip aimed to scare
participants with frightening scenes
and spectral sounds.

02:28 min

T13 Disgust Pimples squeezing12 Disgusting huge and ingrown pim-
ples are squeezed in the clip.

05:00 min

T14 Disgust Stinky potion A solution characterized by an un-
pleasant smell that causes a strong
reaction of disgust.

01:00 min

T15 - Simulation Session Participants were asked to pose each
emotion for 30 seconds each, trying
to change their intensity.

06:00 min
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felt constrained and not natural in the emotional experience (e.g., a score

of -4 on the genuineness scale), all the expressions associated with the task

were removed. Likewise, if participants showed a facial expression associated

with an emotion (e.g., a scowl that may reflect anger), the facial change was

not selected if participants did not report to have experienced anger. In fact,

a scowl is not always a cue of anger but could instead reflect confusion or

concentration. This strict procedure aims to reduce the selection of facial

expressions that do not convey authentic and spontaneous emotions. Each

clip was cut from the onset point (i.e., the first frame when the expression is

visible) to the apex (i.e., the period during which the movement was held

at the highest intensity reached) of the emotion. Additionally, if the same

emotion(s) was repeatedly elicited in a task, the target expressions were

selected multiple times, in order to increase the number of clips included

in the final dataset and provide more trials of the same emotion for each

participant. Lightworks13, a non-linear editing system (NLE) for editing

and mastering digital video, was used to extract the emotional clips’ perfect

range frame.

6.3 Dataset Summary

PEDFE contains clips and static pictures of 56 participants, displaying

subtle to full-blown elicitation of different emotions. Overall, the number of

emotional clips is 1731 (the exact number clips for each emotion and category

are provided in Fig. 6.2.

The duration of the facial expressions varied in accordance with the emo-

tion displayed. For example, sad clips last longer (M=5.35s; SD=2.92s) than

other emotions such as happiness (M=2.89s; SD=1.25s), disgust (M=2.81s;

SD=1.33s) or anger (M=2.92; SD=1.38) because of the gradual evolution

of sadness over a longer time-frame. Conversely, emotions like surprise

(M=1.94s; SD=1.04s) or fear (M=1.86s; SD=0.92s) emerged and disappeared

faster, lasting a few seconds at the most[90] The considerable amount of clips

(i.e., 1731), as well as the self-reports given by participants, revealed the

effectiveness of the elicitation protocol (please see Fig. 6.3, Fig. 6.4). In fact,

most participants reported, on average, to have experienced the emotion that

the elicitation tasks aim to do (except for Task 3). This was also confirmed

by the intensity reported for each task, reflecting from medium to very high

intensity (for the disgust tasks). Furthermore, the genuineness distribution

rating revealed the spontaneity and genuineness of the emotional expressions

13 https://www.lwks.com/
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Figure 6.2: Number of clips before the validation, divided for emotion and
type.

displayed by participants. However, as expected and already reported in

similar studies [118], the elicitation and recording of facial expressions occur-

ring spontaneous emotional experiences is empirically not easy [243]. Indeed,

the emotional induction varied according to the subjective perception and

sensitivity of the participants. For example, Task 1 (”The Lion King”) was

reported as very sad by most of the subjects, while a few experienced fear or

anger. Yet, in Task 11 (“Abused dog in a metro”), most participants revealed

to have experienced anger. However, others reported sadness, surprise, or

even no emotions (i.e., neutral).

Likewise, the intensity of the emotional excitement perceived varied

across the tasks and between the subjects Importantly, the intensity reported

in self reports is not predictive of the emotional expressions shown. For

example, even though fear is reported as the second emotion per high level

of intensity, the number of the clips is relatively low compared to other

emotions (e.g., happiness). Moreover, not all subjects display the entire

range of emotions. While happiness and disgust were easy to induce (see

Fig. 6.1), other emotions such as fear and anger were challenging to elicit.

6.4 Dataset Validation

In this section we describe the validation process of PEDFE, providing an

analysis of the results.
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Figure 6.3: Emotion distribution from self-report for each task.
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Figure 6.4: Genuineness and Intensity rate distribution for each task.

6.4.1 Participants

Being the number of stimuli very high (n=1731), they were split into four

independent blocks, each of them including approximately 400 stimuli. Each

rater was randomly assigned to one block. A total of 122 participants were

recruited for the validation study, resulting in each block being validated by

30 independent raters. A further 29 subjects did open the link to the rating

task but never started it (i.e., 23.8% drop-out). Of all 122 participants, 98

(80.3%) completed the entire rating, while 24 raters (19.7 %) did not. Among

these, 25% (6 out of 24) completed more than 70% of the questionnaire. The
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rest of participants (18 out of 24) partially rated the validation (23.8% on

average), and their data is included. Participants were all graduate students

at the University of Padova (Italy). The majority of the participants were

recruited through the institute’s participant pool. Others were recruited

from online University discussion forums.

6.4.2 Validation Procedure

The Validation Procedure was sent online to participants’ email addresses

using Qualtrics software 14. Participants were shown short clips displaying

facial expressions of anger, disgust, fear, happiness, sadness, and surprise

from the PEDFE. During the validation session, the original audio was

removed from the video, in order to avoid the results on emotion recognition

and genuineness to be inflated by the presence of the audio. The validation

was conducted according to [69].

After each of the emotional clips, participants were asked to categorize

the emotion (they have to choose one within the six basic emotions, or

neutral, or other, to give them the possibility to indicate an emotion not

included within the six basic ones [100], and the type of expression (i.e.,

genuine or fake, on a Likert scale ranging from -7 -not genuine at all- to 7 –

totally genuine-; [69]) displayed. The neutral midpoint ”0” corresponded to

”I do not know”. This method allowed us to assess the ratings in absolute

terms (i.e., genuine or fake).Furthermore, it provided information regarding

the gradient of genuineness perceived by raters (e.g., +7 indicates that the

emotion was perceived as genuine without any doubt by the observer, a

different gradient from a score of +1, very close to ”0”). Last, participants

evaluated how intense the observed emotions looked to them on a Likert

scale ranging from 0 (no intense at all) to 9 (extremely intense) [69].

Regarding the emotion recognition, we calculated the “hit rates” by

dividing the number of accurately recognized emotions by the total number

of displays for that emotion. Regarding genuineness recognition, we calculated

the ”hit rate” of genuineness by dividing the number of accurately recognized

emotions as genuine or posed by the total number of displays. Simultaneously,

the mean and the Standard Deviation (SD) of the gradient of genuineness

were also calculated. Finally, the mean and SD of perceived intensity were

calculated for each clip. The questionnaire took about 2 hours and 30 min

to be completed. However, participants were strongly suggested to divide

the questionnaire into three days (i.e., 45 minutes of task per day).

14 http://www.qualtrics.com
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6.4.3 Validation Results

The “hit rate for emotion” was adopted as the main exclusion criteria for

the original 1731 clips. In fact, all the clips recognized with a ”hit rate for

emotion” less than 30% were removed from the entire dataset, obtaining 1458

emotional clips (i.e., 707 spontaneous and 751 posed) in total. The list of the

final stimuli, including the hit rates for emotion and genuineness, intensity

and genuineness rating, as well as the duration of each clip is provided

in Supplemental Material T1. In 6.2, the total number of clips included

in PEDFE, as well as the hit rates, divided for emotion (e.g., disgust)

and genuineness (i.e., spontaneous and posed), are reported respectively.

Furthermore, the same analysis was conducted more in detail for every

single subject actor included in the PEDFE’s clips Notably, on average,

regardless of genuineness (i.e., spontaneous or posed), all the emotions were

categorized with an accuracy of 78.6%, ranging from 58.01% (for fear) to

93.66% (for happiness). As expected, happiness is the best-labeled emotion

(both for spontaneous and posed expressions). Conversely, fear is the worst

in accordance with the literature that reveal lower recognition rates of fear

than the other basic emotions [221]. Further analyses were run in order to

investigate if the cause of the low accuracy rating of fear was due to the

misclassification with the surprise. To do this, we calculate the number of

times the emotion was categorized as a surprise for each clip.

Results confirmed that, on average, fear is labeled as a surprise 29.76% of

the time (SD 19.71%). Additionally, to evaluate if the intensity perception of

the emotional expressions affects the emotion’s discrimination, we conducted

the Pearson correlation test. Importantly, the hit rate seems to be moderately

affected by the intensity of the emotions expressed (r = 0.44, for 1458 items),

in particular for anger expressions (r = 0.67 for 166 items). For what concerns

the hit rate for the genuineness categorization, the global accuracy is stable

across all the emotions (i.e., 62.51%), ranging from 60.22% (for disgust)

to 65.25% (for fear). More precisely, genuine emotions were categorized

better (i.e., 71.92% on average) than the posed ones (i.e., 53.65% on average),

regardless of the emotion displayed (please see Fig. 6.5). Chi-squared test

among all the binary responses extract by raters for each emotional stimulus

confirmed the significant effect of the type of the stimuli (i.e., spontaneous

or posed) on the hit rate of genuineness for each emotion with a p < 0.00001.

In particular, anger χ2(N = 4662) = 100.65, disgust χ2(N = 7719) = 221.97,

fear χ2(N = 4049) = 164.53, happiness χ2(N = 10876) = 376.52, sadness

χ2(N = 6619) = 172.65, and surprise χ2(N = 5823) = 100.94. In other

words, people tended to classify posed emotions as genuine more often than
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Table 6.2: Total number of clips included in PEDFE, followed by their
respective hit rates.

TOT POS GEN
HR Emo
TOT (%)

HR Emo
POS (%)

HR Emo
GEN (%)

HR Type
TOT (%)

HR Type
POS(%)

HR Type
GEN (%)

Anger 166 90 76 64.88 69.30 59.64 60.92 56.36 66.33
Disgust 305 149 156 84.48 87.10 81.98 60.22 49.69 70.28
Fear 156 93 63 58.01 53.95 64.01 65.25 57.66 76.47
Happiness 370 156 214 93.66 93.42 93.84 65.02 47.85 77.53
Sadness 251 132 119 71.09 73.57 68.35 60.66 55.18 66.74
Surprise 210 131 79 78.70 85.44 67.52 62.84 58.81 69.51

ALL 1458 751 707 78.61 79.51 77.66 62.51 53.65 71.92

Note. TOT: Total number of clips; GEN: Number of Genuine clips; POS: Number of Posed clips; HR Emo TOT: Emotion Hit
rate for the total number of clips; HR Emo POS: Emotion Hit rate for Posed clips; HR Emo GEN: Emotion Hit rate for Genuine
clips; HR Type TOT: Genuineness Hit rate for the total number of clips; HR Type POS: Genuineness Hit rate for Posed clips;
HR Type GEN: Genuineness Hit rate for Genuine clips .

they classify genuine as posed. Differently from the hit rate for emotion,

these results are completely unrelated to the intensity (r = 0.11, for 1458

item) or the emotion (r = 0.06, for 1458 item) expressed.

0 10 20 30 40 50 60 70 80 90 100

Accuracy
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Figure 6.5: Genuineness Hit rate for each emotion.

6.5 Experimental Setting

In the current section, the framework used for the prediction of posed and

spontaneous emotions is described. In Figure 6.7 the steps followed in our

approach are depicted. In particular, four main steps have been identified:

1. Stimuli : Clips displaying spontaneous and posed facial expressions of

the six basic emotions (i.e., happiness, sadness, anger, fear, surprise,

disgust) were used for the current study. Stimuli were collected as
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described in Section 6.2. A comparison between spontaneous and posed

facial expression for the six basic emotions is reported in Figure 6.6 The

dataset was divided into training (i.e., posed or spontaneous labeled

clips) and test sets (i.e., unlabeled clips). Sets’ size and composition

depends on the configuration considered (i.e., user-independent or user

dependent) and is discussed in detail in Section 6.5.1.

(a) Anger (b) Disgust (c) Fear (d) Happi-
ness

(e) Sadness (f) Surprise

Figure 6.6: Peak intensity images of genuine (first row) and posed expressions
(second row) of the six emotions included in PEDFE and processed by
OpenFace.

2. Data Processing : The Facial Action Coding System (FACS) represents

the gold standard to detect and describe every single facial appearance

accurately, also note as action units (AUs) [91]. To automatically ex-

tract AUs from the set of emotional stimuli (AUs Activation Detection),

all the videos were processed using OpenFace [17]. OpenFace, as far as

we know, is the best state-of-the-art free software for AU extraction. It

estimates the activation level of 17 AUs for each frame (see Table 6.3),

providing two metrics: binary (active/non-active with predetermined

threshold) or continuous (it assumes a value between 0 and 5, where

0 corresponds to inactive and 5 to maximum activation). A total of

136 features per video were extracted from the metrics provided by

OpenFace (Feature Extraction). More precisely, 5 groups of features

were calculated for each AU, as reported in Table 6.4.

3. Model Generation: Five binary Machine Learning models were trained

on different groups of features and validated to select the best

model/feature configuration for the prediction of posed and spon-

taneous emotions. In particular, Support Vector Machine with RBF

kernel (SVM RBF), linear Suppor Vector Machine (SVM Linear), Ridge

classifier (RC), Decision Tree (DT), and Random Forest (RF) were
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Table 6.3: List of the Action Units detected by OpenFace with the description
of their facial movements.

AU FACS name Appearance Changes

1 Inner brow raiser The inner portion of the eyebrows run vertically from the top of the head to the eyebrows
2 Outer brow raiser The lateral (outer) portion of the eyebrows upwards
4 Brow lowerer The eyebrows are pulled together and lowered
5 Upper lid raiser The upper eyelid is raised, widening the eye aperture
6 Cheek raiser The cheeks are lifted upwards, raising the infraorbital triangle
7 Lid tightener The eyelids get tightened
9 Nose wrinkler The skin along the sides of the nose upwards towards the root of the nose causing wrinkles
10 Upper lip raiser The upper lip is pulled upwards and towards the cheek, pulling the upper lip up
12 Lip corner puller The corners of the lips are pulled back and upward (obliquely)
14 Dimpler The corners of the mouth are tightened and pulled inwards, narrowing the lip corners
15 Lip corner depressor The corners of the lips are pulled down
17 Chin raiser The chin is pushed upwards, pushing up the lower lip
20 Lip stretcher The lips are pulled back laterally, elongating the mouth horizontally
23 Lip tightener The lips and skin around the lips are tightened and thinned
25 Lips part The mouth is opened, separating the lips
26 Jaw drop The mandible is lowered by relaxation
45 Blink The eyes are closed and opened very quickly

used as prediction models. A 5-fold cross-validation was applied on

the training set to select the best combination of features. Further,

hyper-parameters were varied by using the grid search on all five con-

sidered classifiers. Specifically, for SVM RBF C was varied among

[10−2, 10−1, 100, 101, 102], and γ in the range [10−3, 10−2, 10−1, 100, 101].

For SVM Linear C was varied in [10−2, 10−1, 100, 101, 102]. For both the

SVM models a Standard Scaler was applied to normalize the input. The

α parameter for RC was tested in the range [10−2, 10−1, 100, 101, 102].

For DT the max depth was varied in the range [2, 3, 4, 5]. Finally, for

RF number of estimator were set in [20, 50, 100, 500], and the max

depth was varied in [2, 3, 4, 5].

4. Prediction: The selected models and group of features are used to

perform the prediction on the testing clips.

6.5.1 Application Scenarios

The significant amount of clips, as well as the several samples for the same

subject and for the same emotion, allowed us to use two main analysis

scenarios: user-independent and user-dependent. These two scenarios were

applied in order to investigate how the role of the intra-individual variability

affects the detection of spontaneous and posed emotional facial expressions

in automatic classification.

User-independent scenario The user-independent scenario intends to

identify a common (deception) cue to detect each emotion’s spontaneous or
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Figure 6.7: Framework for the automatic detection of spontaneous and posed
emotional facial expressions.

Table 6.4: Groups of feature extracted from OpenFace output leveraging
the Action Units (AUs) and the Activated Action Units (AAUs) activity.
Where i, k ∈ 1, 2, 4, . . . , 45 are variables ranging over the action units, and
n ∈ {0, . . . , N} is the frame number.

Feature
Group

Description Formula

Activation
Average and standard devia-
tion of AUs’intensity

Meani = 1
N

∑N−1
n=0 AUi(n)

SDi =
√

1
N

∑N−1
n=0 (AUi(n) −Meani)2

Normalized
Activation

Normalized average activation
and normalized standard devi-
ation of the AU activation per
frame

NMeani = 1
N

∑N−1
n=0

AUi(n)∑45
k=1 AUk(n)

NSDi =

√
1
N

∑N−1
n=0

(AUi(n)−NMeani)2∑45
k=1 AUk(n)

Duration
Activation duration of the AU
normalized on frames number

Duri = 1
N

∑N−1
n=0 AAUi(n)

Speed
Average and standard devia-
tion of the changes in AU ac-
tivity

SMeani = 1
N

∑N−1
n=0 AUi(n + 1) −AUi(n)

SSDi =
√

1
N

∑N−1
n=0 [(AUi(n + 1) −AUi(n)) − SMeani]2

Entropy
Average dispersion of AU
activity across subsequent
frames

Enti = 1
N

∑N−1
n=0 |AAUi(n + 1) −AAUi(n)|
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posed facial expressions. This scenario assumes that the proposed approach

is applied to an unknown subject (i.e., the subject is not present in the

training set). To simulate this scenario, a leave-one-subject-out was applied:

all the subjects were used for training the models except one used for testing

(i.e., the unknown subject). This procedure was looped for each subject

included in the dataset to avoid information leaking from the tested subject.

In other words, no previous information (i.e., clips) about the tested subject

is available in the training phase. In particular, a nested cross-validation

(CV) was implemented. The outer loop consists of a leave-one-out CV per

subject, while the inner loop consists of a group 5-fold CV used in the Model

Generation phase for model validation, model selection, and feature selection

(please see Figure 6.7). This procedure was repeated for each emotion

separately, generating a total of six models (i.e., one for each emotion).

User-dependent scenario The user-dependent scenario aims to classify

the genuineness of emotional facial expressions of a specific subject based

on its already known emotional displays. In other words, the information

(i.e., clips) of the subject was used for training the models in order to

classify the genuineness of a new clip of the same subject. The application

of the aforementioned scenario is twofold: first, to identify a fingerprint

of genuineness in the emotional facial expression of each user; second, to

investigate the impact of the inter-individual variability among the users’

emotional displays. Contrarily to the user-independent scenario, all the clips

of the specific user (i.e., previous information) were used to train the models

except the one used for testing (i.e., the subject’s unknown clip).

This procedure was looped for each clip of the subject by using a nested

CV per clip. In particular, in the outer loop, a leave-one-out CV per clip

was performed, while in the inner loop, a 5-fold CV was implemented for

the Model Generation phase. Subjects with less than 20 clips were excluded

from the analysis for lack of sufficient information in the training phase of

the models.

6.6 Experimental Results

The experimental results obtained in the user-independent scenario, yielded

an overall accuracy of 67.0%. In particular, for anger was obtained an

accuracy of 62.4%, for disgust 61.7%, for fear 67.4%, for happiness 65.4%,

for sadness 69.9%, for surprise 75.5%. In this scenario, RF resulted the most

selected model, followed by SVM Linear (see Fig. 6.8a).
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A significant improvement was obtained in the user-dependent scenario,

where an overall accuracy of 84.4% was achieved. Specifically, the following

accuracies were obtained for anger, disgust, fear, happiness, sadness, and

surprise respectively: 90.1%, 82.2%, 84.6%, 81.7%, 89.8%, 83.2%. Differently

from the first scenario, SVM RBF resulted the best model for the majority

of the users, followed by RC (see Fig. 6.8b). The significant improvement in

the genuineness classification can also be noted for each emotion singularly

(see Fig.6.9). In particular, the user-dependent scenario increased the per-

formances by 27.7% for anger, 20.5% for disgust, 17.2% for fear, 16.3% for

happiness, 19.9% for sadness, 7.7% for surprise, with an overall improvement

of 17.4%.

A further investigation was conducted by analyzing the differences in the

classification for each user in both scenarios. The radar graph displayed in

Fig. 6.10 confirmed the enhancement of performances in the genuineness

classification for every single user. Our framework showed an increase in

the overall accuracy between user-dependent and user-independent scenarios

for 94% of the users. Analyzing each emotion (see Fig. 6.11) for the

90% of the users the prediction accuracy improved for anger genuineness

classification. Sadness, fear, and disgust showed an improvement in 87%,

85%, and 83% of the users, respectively. Finally, surprise and happiness

reported an improvement in 76% and 75% of users.

6.7 Discussion

In the current chapter, Muscle Movement (Action Units) based ML models

were used to automatically discriminate spontaneous and posed emotions.

More precisely, five binary machine learning models were adopted in two

different settings, namely user-independent and user-dependent. In the first

setting, a leave one out nested CV per subject was used across the whole

dataset of clips, recursively and randomly subdividing training, validation,

and test set for each emotion regardless of the subject’s identity displayed in

the clips. The user-independent approach was used to identify the common

differences between spontaneous and posed emotions with no regard to the

inter-individual variability of the subjects that performed the emotional facial

expressions. Contrarily, in the second setting, a leave one out nested CV per

clip was used singularly for each subject, thus splitting training, validation,

and testing set only across the clips of the subject regardless of the emotion

displayed. The latter approach was used in order to take into account the

potential inter-user variability in the emotional display. The results were of

particular interest as they revealed a significant difference between the two
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Figure 6.8: Frequency of selected models in our framework per scenario.

122



Human Interactions in Cybersecurity M. Cardaioli

Anger

Disgust

Fear

HappinessSadness

Surprise

Overall

0

0.2

0.4

0.6

0.8

1

User-Independent
User-Dependent

Figure 6.9: Accuracy detection in user-independent and user-dependent
scenarios across all the emotions. Each axis of the radar graph represent the
emotions investigated while the y axis inside the graph reflects the accuracy.

approaches even though the same models were implemented on the same

features. In particular, the user-independent approach achieved on average

67.0% of accuracy. In contrast, the user-dependent approach performed with

a 84.4% accuracy, reaching up to 90.1% accuracy for sadness emotion.

The comparison of the performance between the two scenarios, highlights

the significant differences across all the subjects’ emotional displays. The gen-

eral framework spontaneous vs posed emotions used in the user-independent

scenario was partially able to identify a keystone about the emotional lie

detection in facial displays. However, the current analysis totally neglected

the individual variations in the emotional displays, causing a drop in the

performances if compared to the second approach. In fact, the same approach

gained an overall 17.4% improvement if adopted singularly for each subject,

and thus if they were specialized ad hoc for each user without trying to gen-

eralize a unique facial patterns to every user (i.e., user-dependent scenario).

The implications of the present research are relevant on multiple levels.

First, concerning the emotional lie detection applications, it seems that it

would be more reliable to focus on detecting the unique deceptive cues for each

subject instead of identifying a common rule to discriminate spontaneous and

posed emotional facial expressions generally. In other words, the significant
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Figure 6.10: Accuracy detection in user-independent and user-dependent
scenarios across all the subjects on average for all the emotions. Each axis of
the radar graph represent the number of the subject while the y axis inside
the graph reflects the accuracy.

inter-individual variability in people’s emotional display may underestimate

the intra-individual differences between spontaneous and posed emotional

displays of each subject. Consequently, it may seem that, despite some

similarities (detected with 67% accuracy by user-independent scenario),

each subject tends to have a specific strategy or deception fingerprint that

discern spontaneous from posed emotions. This factor may partially explain

the inconsistent results obtained so far in the automatic detection of the

genuineness of emotional facial expressions [114, 138, 141, 173].

Second, these results remarked the higher inter-individual variability

in the facial displays of emotions, already highlighted in previous studies

[80, 126, 224, 260]. In other words, the valuable differences and individual

variability between the subjects reflected in different characteristics (e.g.,

gender, age, morphological traits [54, 99, 110, 224, 257]) was revealed to be

an essential factor to be considered.

Third, these results are particularly interesting also in relation to the

universality of emotions (i.e., basic emotion approach) proposed by [84]. The

basic emotion theory claims the existence of prototypical facial configurations

for some given emotion categories (i.e., basic emotions) [85, 87]. For example,
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(a) Anger
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(b) Disgust
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(c) Fear
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(d) Happiness
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(e) Sadness

1 2 3 4
5

6
7

8
9
10
11
12
13
15

16
17

18
19

20
2122232426272829

30
32

33
34

35
36
38
40
45
47
48
49

50
53

54
55 56 57

0

0.2

0.4

0.6

0.8

1

User-Independent
User-Dependent

(f) Surprise

Figure 6.11: Accuracy detection in user-independent and user-dependent
scenarios across all the subjects for the six emotions. Each axis of the radar
graph represent the number of the subject while the y axis inside the graph
reflects the accuracy.
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according to the theory, the facial core configuration of anger is typically

reflected by furrowing the brows, widening the eyes, and tightening the

lips. Additionally, some variants may involve the opening of the mouth or

include the narrowing of the eyes only [88]. According to that, it would be

possible to read people’s emotional states universally, and, more important,

it would be possible to discriminate spontaneous from posed emotions basing

on temporal (e.g., onset time of the expression), and morphological cues

(e.g., reliable muscles) [1, 186]. As a consequence of that, the models used

should have been able to generally discriminate spontaneous and posed basic

emotions across all the subjects, without any concern about the significant

potential variability in the emotional displays. However, the user-independent

approach partially confirmed a common pattern between all the subjects. In

fact, even though it is possible to find a slight similarity in the emotional

deception for all the individuals included in the dataset, the intra-individual

analysis (i.e., user-dependent approach) was revealed to be more accurate

and precise than the general approach (e.g., user-independent approach). In

other words, albeit some inter-subjects similarities found by ML models, our

results yield significant differences between subjects. These results align with

the recent theories of emotions that refuse the universality of emotional facial

displays. In particular, other scientific frameworks suggest that the facial

configurations of emotions may vary substantially across different people and

situations [21]. In particular, the behavioral ecology view (BECV) proposes

that facial expressions are flexible tools that mute over time for cultural

or natural reasons and may cause diversity across people [63]. This could

explain why the user-dependent approach outperformed the generic user-

independent approach. However, it is fair to assert that these results may

also depend on the simplicity of the models and features used that are not

able to generalize to all people’s emotional displays (i.e., user-independent)

like in the user-dependent scenario.

Finally, the importance of the intra-individual variability is also relevant

in relation to the use of the recent emotion recognition software that claim

to be able to read emotions in people based on their facial expressions (e.g.,

Affectiva.com, 2018; Microsoft Azure, 2018). These API systems aim to

generalize their predictions in the open world, neglecting both the intra-

individual variability among the emotional displays and the discrepancy in

the performance between spontaneous and posed facial emotions [79, 156].

Different bias already emerged in the performance of the machine learning

algorithms used, such as the gender or the age of people [127, 149, 152, 57]

The current results provide additional proof about the variety in the emotional

displays, both in spontaneous and posed emotions, raising further doubts
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about the methodology used in emotional facial recognition. Additionally,

the current research restates the necessity of a methodology based on the

single user, emphasizing the significant differences among the individuals,

and abandoning the idea of a collective and equal emotional facial display.

Nonetheless, the findings of this study have to be seen in the light of

some limitations. The sample size used for the analysis is composed of only

56 subjects. Moreover, the features extracted are limited to the descriptive

statistics of action unit movements and do not consider dynamic and temporal

elements (e.g., onset, offset time, asymmetry, acceleration). Finally, only five

models were used in the current research. Other models may be revealed

more effective and accurate in the same task. Therefore, the empirical results

reported herein should be interpreted and considered with caution. Future

studies are needed to address the generalization of these results.

6.8 Summary

The automatic genuineness detection of emotional facial expressions is a

topic still debated and controversial in the state of the art of lie detection.

In the current chapter, ML models were used to predict the genuineness of

emotional facial expressions in general and specifically for every single user.

The framework used was revealed to be a promising approach to apply in

future research, and highlighted how inter-individual variability could be a

significant factor to consider. Finally, the related findings were discussed in

light of the state of art of lie detection, psychology of emotions, and artificial

intelligence.
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Chapter 7

BLUFADE: Blurred Face Detection

To begin using any modern computing device (e.g., desktop, workstation,

laptop, tablet, or smartphone), the user must be authenticated. During the

authentication process, the user is typically asked to demonstrate possession

or knowledge of one or more of: (1) a secret, such as a password or PIN, (2)

a biometric, such as a face or fingerprint, and (3) a device, such as a secure

dongle or smartphone. Massive investments were made over the years to

create and support secure means of user authentication.

At a later time, when the user ends (or abandons) its current session on a

logged-in device, so-called de-authentication must ideally take place. However,

in contrast with authentication, de-authentication received substantially less

attention since lack thereof is not perceived as necessary as lack of (or

insufficient) authentication. This is unfortunate since an unattended active

secure session triggers the very real danger of Lunchtime Attacks [81]. Such

attacks can occur whenever an adversary gains physical access to the active

session of another user who carelessly stepped away and left the logged-in

device unattended.

This motivates the need for secure, privacy-preserving, and usable de-

authentication techniques. However, prior results do not satisfy all these

three requirements. For instance, the popular means of de-authentication

via inactivity timeouts can be considered somewhat1 privacy-preserving.

However, if timeouts are too long, it offers poor security as the lunchtime

attack time window grows. Whereas, if timeouts are too short, usability

1Timeouts are not very privacy-preserving since they monitor user’s typing and/or
mouse activity.
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suffers since the user might need to re-authenticate needlessly [235]. Other

methods continuously authenticate the user, and de-authentication occurs

once the user’s identity can no longer be verified. Common techniques rely

on detecting physical presence of the user [175, 177, 51].

We believe that continuous face recognition is a promising means of de-

authentication. It tracks and identifies previously authenticated user’s face

as long as it is visible from the webcam; once the user’s face disappears from

view (for a specific time interval), de-authentication occurs. This general

approach offers several benefits. First, it is easy to implement and does

not require extra equipment since most modern general-purpose computing

devices are equipped with video cameras. Second, it is secure because

current face detection algorithms are fast and highly accurate [181], making

it resistant to Lunchtime Attacks. Third, it keeps the user authenticated and

logged in, even if keyboard or mouse activity stops, as long as the user’s face

remains within line-of-sight of the webcam. This is in contrast with methods

based on inactivity intervals, keystroke dynamics [19] or gaze–tracking [81],

where users have to interact with the system continuously or frequently.

However, face recognition in de-authentication is hampered by significant

privacy concerns. First, most users would not want to be video-recorded

continuously. Even if the rules explicitly state that recordings are not stored

anywhere, users might (rightfully) not trust such promises and refrain from

(or attempt to circumvent) using such a method. Second, an attacker who

gains access to the webcam or recordings could exploit this information for

malicious purposes. Blackmailing a user recorded during private moments is

just one of many possible threats.

Nonetheless, most modern devices are equipped with user-facing cameras,

and despite the manufacturers’ assurances that cameras only operate in

tandem with some user-visible indicator (e.g., an LED light in, or next to,

the camera), many users find the constant presence of the camera unnerving.

In fact, on some computers with integrated cameras, it is possible to surrep-

titiously turn on the camera and record without triggering the obligatory

indicator [37].

Due to privacy and safety concerns, many cautious users have been

applying physical barriers (e.g., placing tape) on their webcams [174]. This

practice was publicly supported by the ex-FBI director James Comey [119],

and some manufacturers now deliver laptops with built-in sliders to cover

webcams.

Motivated by the above discussion, we propose BLUFADE, a de-

authentication system based on continuous face detection that provides

user privacy, security, and usability. We apply a physical blurring material
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on the webcam that obfuscates users’ facial traits, making them unrecogniz-

able. Then, after demonstrating that state-of-the-art face detection models

perform very poorly on blurred images, we implemented a deep neural net-

work for this specific task. We tested our system with 30 subjects in different

scenarios and activities, reaching over 95% detection accuracy.

Contributions. The main contributions of this chapter are:

• A novel secure, usable, and privacy preserving de-authentication

method based on blurred face detection

• Its evaluation via extensive experiments, demonstrating that it outper-

forms state-of-the-art algorithms on blurred face detection tasks

• Publicly released two datasets of physically blurred faces: the first one

consists of 20k images of celebrities and backgrounds, blurred with two

different materials, and the second contains 1, 080 enrollment images

and 600 videos of 30 subjects interacting with a laptop (both blurred).

7.1 Related Work

Related work stems from several areas, including de-authentication as well

as face recognition and detection.

7.1.1 De-Authentication

In contrast with authentication techniques, which are extensively studied in

the literature and are widely used in everyday life, there are no standard

or broadly adopted user de-authentication methods. This reflects the fact

that users are forced to authenticate at the beginning of a login session,

while de-authentication is almost never mandatory. Locking the screen or

logging out during a short break (e.g., coffee, bathroom, hallway chat, lunch)

is widely perceived as being tedious or unnecessary (i.e., 25% of the users

leave their computers unlocked when stepping away from their desk [50]).

However, as mentioned earlier, failure to de-authenticate opens the door

for lunchtime attacks, which are pretty common, as noted by Marques et

al. [179]. Thus, the research community tried to come up with secure, usable,

and privacy-preserving techniques for automatic user de-authentication.

The simplest de-authentication method is to log out the user after a

fixed keyboard/mouse inactivity period. However, choosing the duration

of this period is not trivial [235]. Recent techniques rely on Continuous

Authentication (CAuth): the user is continuously monitored and authenti-

cated while interacting with the system, and de-authentication happens once

these interactions stop. CAuth usually relies on some form(s) of biometrics
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usually based on recognition of: face [223, 175], voice [202], motion [65, 233],

keystroke and/or mouse dynamics [19], and even video-game playing style [52].

For an extensive list of these techniques, we refer to [11, 122].

Of the above, keystroke dynamics is popular and seemingly non-intrusive

while requiring no special equipment, whereas others need a camera and/or

a microphone, which must be turned on. Keystroke dynamics utilize the

user’s unique typing style (reflected in a profile created at enrollment time)

for authentication. While easy to deploy, this approach is not secure since

an attacker can reproduce the user’s typing style [245]. Carrying around

a unique token that communicates with the workstation is another option

[55]. However, its prominent drawback is the requirement to always carry

and protect this token. A similar approach is explored in ZEBRA [177]: the

user is continuously authenticated using a personal bracelet as long as wrist

movements and the computer actions match. Unfortunately, [128] showed

that Zebra is insecure. More complex and exotic systems, e.g., based on

gaze–tracking [81] and pulse–response [211] have been proposed. Since they

require pricey specialized equipment, thus their applicability is quite limited.

All aforementioned techniques have a major common drawback: a user

can be authenticated only when interacting with the device. Consider

the following frequent everyday activities that involve no interaction (no

keyboard, mouse, or touchscreen actions) while the user remains physically

present:

• Reading something on-screen or printed

• Watching a video/movie

• Listening to music or podcast

• Making a phone-call

• Taking a seated nap

• Having an in-person conversation with someone

Any of such activity, once it exceeds the inactivity threshold, would cause

automatic de-authentication, resulting in extra user burden or even DoS.

To overcome this issue, several methods have been proposed. FADEWICH

[51] instruments an office with position sensors to detect whether the users

are sitting at their desks. Assentication [143] detects user presence through

pressure sensors in the chair cushion. Whereas, [53] instruments a chair

with BLE beacons to detect whether the user is currently sitting. Facial

recognition can be used for CAuth by continuously monitoring faces that

appear in front of the camera, while being user-transparent [64, 203, 223].

In this chapter, we focus on detection – rather than recognition – of faces,

since most facial features would not be visible for privacy reasons. Since the
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user is already logged in, it is enough to trace the presence (detection) of

their face.

7.1.2 Face Detection and Recognition

Face detection and face recognition are distinct Computer Vision tasks

thoroughly studied in recent years. We consider face recognition a subclass of

face detection, since the algorithms first start by detecting a face and then use

its features to compare to a set of known faces to recognize the person. In early

stages, face recognition was done by automatically extracting distinctive facial

features, e.g., eyes, mouth, or nose. These features were used to transform

the face into a vector, and using statistical pattern recognition techniques,

faces were matched [38, 145]. With the rise of deep learning, especially

Convolutional Neural Networks (CNN), computers reached (and surpassed)

human performance in such tasks [204]. Deep-learning-based face recognition

techniques can be divided into: (1) ones using single CNN [111, 146], (2)

multi CNNs [172], and (3) variants of CNN [269]. For a comprehensive list

of face recognition methods, refer to [113, 137].

Similar to face recognition, early face detection methods were based

on developing discriminative hand-crafted features from faces and building

robust learning algorithms [264, 274]. Nowadays, with the evolution of CNNs,

detecting frontal faces is considered a solved task [181]. More efforts took

place to detect faces under challenging conditions, such as partial faces [266] or

faces captured by depth sensors [34]. Recently, TinaFace [279], by considering

face detection as a particular object detection task, outperformed state-of-

the-art methods on the set of most challenging face detection dataset WIDER

FACE [265]. We refer to [270] for a complete treatment of this topic. Finally,

[276] tested state-of-the-art face detection models on low-quality images

with different levels of blurring, noise, and contrast, showing that both

hand-crafted and deep-learning-based face detectors perform poorly on such

images.

7.2 Model Overview

We now describe our system model and its real-world application scenarios.

7.2.1 System Model

The core idea is to use a webcam (built-in or external) to detect the user’s

face continuously. At the beginning of the session, the user authenticates
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by any canonical method, e.g., passwords or fingerprint recognition. Then,

BLUFADE collects images at regular intervals from the webcam, keeping the

user authenticated as long as a face is detected. Once the detection fails and

a grace period passes, the user is automatically logged out. To preserve user

privacy, the webcam view is physically blurred by a somewhat-transparent

tape or a similar means. Thus, users can be sure that the images received

by the webcam are already altered and cannot be used to recognize them.

We note that BLUFADE’s goal is to detect, and not to recognize, faces since

the tape should blur the image enough to obscure facial traits.

Besides privacy, BLUFADE offers the usual benefits of face detection de-

authentication mechanisms. First, is completely transparent for the user,

since it does not interfere with normal user behavior, and prevents Lunch

Time Attacks. Furthermore, it only requires a simple strip of tape as ad-

ditional equipment, and allows the user to remain inactive without being

de-authenticated, as long as they remain in the camera’s view. The main

implementation challenges are: (i) selecting an appropriate material that

obscures users’ facial traits, while still allowing face detection by automated

algorithms, and (ii) developing an algorithm to detect faces from blurred

images. (i) is analyzed in Section 7.4, and (ii) in Section 7.5.

7.2.2 Application Scenario

We start by distinguishing between shared and personal computers. We

assume that the latter is always used by the same person; thus, the detection

system can be tailored to their blurred face. The phase of training the

software to recognize a face is called enrollment. In shared computer settings,

the system is used by multiple users and should detect all of them. Thus,

the enrollment is complicated and should be done to every new user, which

is clearly not applicable. The second distinction concerns the place where

the system is used. A computer can be stationary or portable, which defines

the scene its webcam sees when no users are present (i.e., the “background”).

If stationary, the background is fixed; otherwise, it will vary depending on

the place. Based on that, we identify four scenarios:

• Scenario 1 - Same person and fixed background: represents

workstations or desktops, located in an office/home and is always used

by the same person. Enrollment is possible;

• Scenario 2 - Different people and fixed background: represents

shared workstations in fixed places (e.g., offices). Enrollment is not

applicable;
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• Scenario 3 - Same person and variable background: represents

personal computers, e.g., laptops or tablets, that owners can bring

anywhere. Enrollment is possible;

• Scenario 4 - Different people and variable background: repre-

sents shared computers that are either portable and/or have variable

backgrounds, e.g., public ATMs or wheeled workstations. Enrollment

is not applicable.

7.3 Material Evaluation

One of the critical design elements for BLUFADE is how to choose the ap-

propriate blurring material. In this section, we discuss the criteria for this

selection (Section 7.3.1), and the experimental settings to determine the best

candidates in terms of suitability for face detection (Section 7.3.2).

(a) None (b) Chair (c) Antirefl

(d) Ruvid (e) RuvidX2 (f) Scotch

Figure 7.1: Effectiveness of blurring materials considered at a distance of 30 cm.

7.3.1 Selection Criteria

The ideal blurring material should satisfy three requirements: (i) blur enough

to prevent face recognition, (ii) not blur too much to enable face detection,

(iii) be inexpensive and readily available. Based on these requirements, we

identify five possibilities2:

2Chair: https://bit.ly/3i9Vjm8, Antirefl: https://bit.ly/3CN14xS, Ruvid:
https://bit.ly/3m3KZ0i, Scotch: https://bit.ly/3zMUOV8.
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• Chair - Polimark Poliver Battisedia 280854. Semi-transparent rigid

plastic material that is commonly used on floors to prevent chairs from

scratching them;

• Antirefl - Polimark Poliver PL01322. Anti-reflective obfuscating film,

commonly used on windows to block visibility from the outside but

letting light to pass through;

• Ruvid - Ruvid Transparent Paper. Transparent rough paper used as

book covers;

• RuvidX2 - Double Ruvid Transparent Paper. Double layer of the

previous item;

• Scotch - Magic Tape Scotch 3M. Common semi-transparent white

adhesive tape;

7.3.2 Experimental Settings & Best Candidates

To find the best blurring material, we evaluated the quality of blurred

images produced by a webcam when various materials were applied. To

this extent, we used a mannequin called Dolores3 as a fixed subject of our

photos. For each material, we positioned Dolores in front of the webcam

at several distances (from 30 cm to 90 cm, with 10 cm steps), simulating

realistic usage scenarios. We used a white background in a light-controlled

environment. At each distance, we took five snapshots, and used three

samples of each material. Then, we assessed image quality (i.e., sharpness)

using the algorithm presented in [70], and averaged the results. Figure 7.1

shows pictures of Dolores taken with different blurring materials, while

Figure 7.2 shows the quality of images for all materials and steps. A lower

Niqe value indicates the image has an higher sharpness. The plot shows that

all blurring materials significantly lower image quality and that the distance

from the webcam does not meaningfully influence the Niqe value. Ideally,

the lower the image quality, the more challenging the face recognition by

automatic systems. Thus, we selected two materials yielding highest quality

images (Chair and Antirefl), which from visual inspection (examples are

visible on Figure 7.1) could preserve users’ privacy. The following section

provides more evidence on their privacy features and discusses material

selection.

3The name was chosen from an analog situation from the TV series Umbrella Academy.
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Figure 7.2: Averaged quality of images for each material and steps. Lower Niqe values
are associated to sharper images.

7.4 Material Selection

To select the best material among the two candidates from the previous

section, we need to evaluate their privacy-preserving characteristics. To

this extent, we first collected a dataset of blurred pictures of celebrities

(Section 7.4.1), and we conducted a survey asking the participants to recognize

some of them (Section 7.4.2). Last, we report the results and final decision

(Section 7.4.3).

7.4.1 Celebrities Dataset

To the best of our knowledge, there are no physically blurred faces datasets

publicly available. Furthermore, to carry on our experiments, we need images

of both blurred backgrounds and faces with the materials we selected in

Section 7.3.2. To create such a dataset, we exploit the CelebA dataset [168]

and the SUN dataset [262]. In particular, we randomly selected 5000 images

from CelebA (faces) and 5000 images from SUN (backgrounds). Then,

applying the Chair and Antirefl filters to a laptop webcam, we recorded

a slideshow of the 10K images displayed on a tablet. Finally, we picked a

frame in correspondence of each image from the recording, creating two new
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datasets of 10K blurred images each. The dataset is available at the following

link: https://spritz.math.unipd.it/projects/BLUFADE/

7.4.2 Celebrities Privacy Survey

We conducted an online survey asking participants to recognize celebrities

from blurred images to test whether the blur level was enough to protect

users’ privacy. In particular, we selected ten images of well-known celebrities

in a neutral context, and we asked participants to guess their names. For

each image, first, we presented the Antirefl version, then the Chair version,

and last the original image (i.e., from the less sharp image to the most).

The participants were asked to provide a name at each step, without the

possibility to go back and change the name after seeing a less blurred image.

If the name provided at the last step was correct (we also accepted names

with spelling errors), we could assume the participant knew the celebrity, and

thus we checked at which blur stage the participant recognized them. If the

participant did not know the celebrity, we discarded that sample. Figure 7.3

shows an example of a celebrity blurred with the two filters and the original

photo.

(a) Antirefl (b) Chair (c) None

Figure 7.3: Angelina Jolie with different blur filters.

7.4.3 Survey Results and Material Decision

We collected answers from 70 participants (Age range: 22-45, 64.3% Male,

35.7% Female). 391 images were recognized correctly with no blur, 273 with

Chair blur, and only 5 with Antirefl. In other words, participants recognized

a celebrity they knew only in 1.28% of the cases through the Antirefl filter,

and in 69.8% of the cases through Chair. Thus, we demonstrated that

Antirefl successfully protects users’ privacy, and we decided to use it for the

rest of the experiments.
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7.5 Experiments

We now present the experiments we conducted to evaluate BLUFADE. In

Section 7.5.1, we illustrate the data we collected for the experiments. Sec-

tion 7.5.2 evaluates the face detection state of the art models on our data.

Last, we propose our model in Section 7.5.3.

7.5.1 Data Collection

To conduct our experiments, we collected data from 30 people, 13 females and

17 males, aged 22-43. According to the scenarios presented in Section 7.2.2,

we first asked participants to follow an enrollment procedure, and then we

recorded them while performing common everyday actions. In detail, the

enrollment procedure consisted in taking snapshots of the user in 9 different

positions: in front of the webcam at close distance (i.e., less than 30 cm),

mid-range distance (between 30 and 70 cm), and far (more than 70 cm); at

mid-range translated to left and right (i.e., the face should be completely

contained in the left or right half of the webcam view); at mid-range rotating

the head by looking up, down, left, and right. Then we recorded users for 10

seconds while reading an email, writing sentences, looking at their phones,

talking with a colleague, and leaving the workstation. Users repeated these

steps on four different backgrounds bn ∈ B, n = {1, 2, 3, 4} of increasing

difficulty: a white wall (b1 - easy), a white wall with a closet and a poster (b2
- medium–easy), a white wall with a blue door (b3 - medium–hard), a white

wall with a written blackboard and a window (b4 - hard). They are shown in

Figure 7.4. We used a Logitech C922 Pro Stream Webcam (30 Frames Per

Second) with Antirefl blur for the recordings. This dataset is available at the

following link: https://spritz.math.unipd.it/projects/BLUFADE/

7.5.2 State of the Art Face Detection Algorithms

The performance of BLUFADE highly depends on the face detection algorithm

behind it. Before implementing our neural network, we tested the state-

of-the-art face detection systems on both our celebrities and enrollment

blurred images. To this extent, we extracted 240 random celebrities and 240

random enrollment images and tested with Google Cloud Vision4, Amazon

Rekognition5, Azure Cognitive Services with detection 01 and detection 03

4 https://cloud.google.com/vision/docs/detecting-faces
5 https://docs.aws.amazon.com/rekognition/latest/dg/faces.html
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(a) b1, easy (b) b2, medium-easy

(c) b3, medium-hard (d) b4, hard

Figure 7.4: The four different backgrounds used in the experiments (left original, right
blurred with Antirefl).

models6, and TinaFace [279]. Results are reported in Table 7.1, and they

show how any of the state-of-the-art models were not suitable for our task,

given the high level of blur of our images. Even Azure v3, explicitly designed

for blurred faces, with 72.08% of accuracy, was not good enough for BLUFADE.

Table 7.1: Comparison between accuracy of state-of-the-art face detection models on
blurred samples from Celebrities and People datasets

Google Amazon Azure v1 Azure v3 TinaFace

Celebrities 1.67% 43.75% 0.04% 45.83% 13.75%
People 3.33% 26.25% 0.00% 72.08% 18.75%

7.5.3 Proposed Model

The poor performances of state-of-the-art methods in detecting blurred faces

suggest that a new approach is needed for this task. Since the high level

of blur removes facial traits, we decided to shape our problem as an object

detection task, as also suggested by Zhu et al. [279]. Rather than binary

classification (i.e., face vs. no face), we opted for object detection also to

possibly track the person, or detect two or more people in the same image

for security purposes. For instance, if a person is logged in and using the

6 https://docs.microsoft.com/en-us/azure/cognitive-services/face/face-

api-how-to-topics/specify-detection-model
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computer and another user walks behind the first user, the system should

detect which person is keeping the session alive; otherwise, it might wrongly

de-authenticate the user. Furthermore, [249, 276] demonstrated that CNNs

do not cope well with blurred images, but fine-tuning them can help to

improve the performances in object detection significantly. From these

considerations, we decided to fine-tune the state-of-the-art object detection

model RetinaNet [164], which uses ResNet and Feature Pyramid Network as

back-bone for feature extraction. We followed an official procedure released

by TensorFlow [244]. In particular, our fine-tuning procedure follows these

steps: starting from ResNet pre-trained using the COCO dataset [165], we

replace the classification head with a new randomly initialized classification

head able to classify a single class (i.e., face), and we finally fine-tune the

network using 150 batches of 32 samples each, with SGD optimizer (learning

rate = 0.01, momentum = 0.9).

7.5.3.1 Four Scenarios

To represent the four scenarios from Section 7.2.2, we used the enrollment

snapshots and the activity videos to create different training and test sets. In

general, enrollment images are used in the training set, while activity videos

are used for testing purposes. For each scenario, we test person by person

and background by background, creating every time a training set that

respects the requirements of the scenario to fine-tune the neural network. We

remind that every person p of our dataset of people P has taken 9 enrollment

snapshots for each background b of the 4 backgrounds B analyzed (from easy

to hard). We refer to the 9 enrollment images of a person p in a background

b as ep,b. In more details, we use a leave-one-out test procedure, testing at

each iteration the activity videos of a person p ∈ P in a background b ∈ B,

and setting the training (fine-tuning) set as specified in Table 7.2. In the

table, we give formal and informal explanations on how we constructed the

training set to understand the scenarios easily.

7.5.3.2 Regular People vs. Celebrities

To introduce more variance in the training set, we also run some experiments

using the celebrities dataset. The first set of experiments was run using only

people’s snapshots as a training set. Then, we repeated the experiments

adding in the training set 1, 080 celebrities’ faces, and the last repetition was

done fine-tuning the network using celebrities only. This way, we could see

how the variance in the training set affects performance of network detection.

The case of celebrities only was possible just in the fourth scenario, since
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it was impossible to have their enrollment or more celebrities in the same

background.

7.5.3.3 Confidence Threshold

RetinaNet returns the objects it detects along with their confidence scores.

Based on a threshold, usually 0.80, the object is detected or ignored. Since

our data is highly blurred and strongly differs from usual data, we had to

find a proper threshold for the task. We used the more general celebrities

in this case since it has thousands of faces and thousands of backgrounds

without faces. Using the celebrities instead of the people dataset to find

the threshold, we would have limited the possibility of overfitting. Thus, we

fine-tuned the network with the same 1080 celebrities we used to augment the

people training set, and we tested the network on the remaining celebrities

and backgrounds of our dataset. Then, we tried different thresholds ranging

in [0.100,0.125 0.150, . . . , 0.900], selecting the one which gave the best

accuracy (i.e., threshold = 0.425). We used this threshold for the rest of the

experiments.

7.6 Results and Discussion

We now present the results of our experiments. Section 7.6.1 shows the

performance of the face detection task. In Section 7.6.2, we evaluate the

performance of BLUFADE in de-authenticating people. Last, we discuss current

limitation of our system in Section 7.6.3.

7.6.1 Face Detection

Table 7.3 reports the balanced accuracy of face detection on the frames of

the activity videos divided by scenarios, backgrounds, training datasets, and

tasks (T1 = read email, T2 = write sentence, T3 = look phone, T4 = talk

with colleague, T5 = leave workstation). As expected, we reach the best

performance on the easiest background b1, with around 98% accuracy on

every scenario using the people scenario, 97% also using the celebrities, and

94% in the celebrities only case. Among the tasks, T1, T2, T3 scores the best,

probably because are composed of frontal frames of the people. In T4, people

were talking with a colleague on their left or right, showing the webcam their

face profile. This has probably lead to some mistakes. Finally, T5 shows

some errors during the transition period in which the user is leaving. In

fact, we considered the user had completely left only when the face was not

more visible, and the network struggled a bit with partial faces or with just
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the body. However, when the user was fully present or absent, the network

worked just fine as in the other tasks. In Section 7.6.2, we better analyze

this task to implement the de-authentication system.

Looking at the scenarios, surprisingly, those without enrollment (i.e.,

Scenarios 2,4) show slightly better performances than the others. This could

be explained by the lacking of real unique traits in the enrollment images.

Having a wider variance in the training set helps the network in detecting

people in different tasks. In fact, the great differences are again in T4,

T5, thus a more general network can help in such difficult tasks. Finally,

better performances are achieved when the training set is formed by people

only. This is understandable since the training and test set are more similar.

Adding the celebrities lowers the performances, but not significantly. We lose

around 2% in each scenario, but still achieve 90% accuracy, which is a good

result. We believe that adding more variance in the training set as in this

case could help on a real-world situation with a lot of different people and

backgrounds. Finally, using only celebrities to fine-tune the network leads to

the worst accuracy, but still the average is above 80%, which is remarkable

since training and test set are very different. Comparing our results with the

one state of the art models (Table 7.1), we clearly outperform them. Against

Azure v3, specifically built to detect blur faces, we score around 35% and

20% more on celebrities and people respectively.

7.6.2 BLUFADE Performance

Face detection is the heart of BLUFADE. By detecting the user’s face frame by

frame, we are able to understand when they leave and de-authenticate them

accordingly. Even with results above 90%, which are generally good in the

computer vision area, we still need an improvement to provide users a reliable

de-authentication system. In fact, de-authenticate them every time the neural

network fails the prediction is not desirable, and can negatively impact the

users’ experience. To improve BLUFADE, we can consider two crucial aspects:

i) the neural network commits sparse, not sequential mistakes, and ii) the de-

authentication has not to be instantaneous. In fact, the literature identifies

a “grace period” in which the user might be still logged in even though

they already left. Obviously, this period must be short enough to not allow

lunchtime attacks, and is based on the fact that users, in that period, can

notice if someone is trying to steal their active session. A good grace period

is below six seconds [51].

Following these considerations, BLUFADE performs face detection and

evaluates the results using a sliding window of aggregates frames. The de-
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authentication occurs once the face is no detect for N consecutive frames.

N can be 1, which means that at the first frame the face is not detected,

BLUFADE de-authenticates the user, or higher. In our experiments, we tested

different values of N , to a maximum of 90, which means 3 seconds (the

webcam recorded at 30 FPS). Figure 7.5 shows the logout accuracy (i.e., the

times BLUFADE correctly logs out a user) per different level of N (aggregation

frames) and the corresponding grace period needed to log-out the user. The

four graphs represent the four scenarios, and each bar in the plot represents a

background accuracy, while the dots indicates the grace period. These graphs

refer to the experiments using the people dataset only, which achieved better

scores than using People and Celebrities or Celebrities only. We discuss these

two cases later in this section.
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(a) Scenario 1: Same person and fixed
background
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(b) Scenario 2: Different people and fixed
background
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(c) Scenario 3: Same person and variable
background

1 10 20 30 60 90
Aggregation Frames

0

20

40

60

80

100

Lo
go

ut
 A

cc
ur

ac
y 

(%
)

b1 b2 b3 b4 grace period

0

1

2

3

4

5

Gr
ac

e 
Pe

rio
d 

(s
ec

on
ds

)

(d) Scenario 4: Different people and vari-
able background

Figure 7.5: Average logout accuracy (bars) and average grace period (dots) for different
aggregation frames and application scenarios.

In general, the de-authentication accuracy trends reflect the underlying

face detection system. For all the application scenarios, the accuracy increases

as the aggregation does. Considering an aggregation frame equal to one,
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BLUFADE would wrongly de-authenticate users too frequently (i.e., over 60%

on average in all the scenarios and backgrounds), making our system not

usable. On the other hand, considering an higher number of aggregation

frames (i.e., 90 frames) the logout accuracy rate increases up to 100% for

Scenario 1 (Figure 7.5a) and scenario 2 (Figure 7.5b) in b1 and b2, keeping

the grace period under 5 seconds. Scenario 3 (Figure 7.5c) shows the

lowest performance of BLUFADE, with an accuracy below 80% even with 90

aggregation frames in b4. However, the other backgrounds show very high

scores with a grace period under five seconds.

Considering all scenarios together, the difficulty of the backgrounds highly

impacts the performances. More difficult is the background, less the accuracy.

Starting from 30 aggregation frames, b1 reaches 100% of accuracy in all

the scenarios, keeping the grace period below 3 seconds. b2 shows similar

performance, reaching 100% of accuracy in less than 4 seconds in all the

scenarios when the aggregation frames is equal to 60. b3 shows more than

95% accuracy with 90 aggregated frames in about five seconds, while b4
struggles a bit especially in the third scenario. These data reveals that

BLUFADE can work incredibly well when the background is an empty wall

or with simple decorations, like in a common work office, and struggles a

bit with challenging backgrounds. However, when the background is fixed,

BLUFADE always performs above 90%.

Figure 7.6 compares the averaged BLUFADE performances in all the sce-

narios and background, with respect to the different training sets we used to

fine-tune the network (i.e., People, People & Celebrities, Celebrities only).

The plot clearly shows how adding more variance to the training set does

not help in the task. This is understandable since when using People only,

the training and test set are more similar, which is preferable. In this case,

BLUFADE achieves 96% accuracy in less than 4 seconds. On the other hand,

when fine-tuning the network only using Celebrities, the training and test

set are very different. Still, BLUFADE achieve almost 90% accuracy in less

than 5 seconds, which is remarkable.

7.6.3 Limitations

Though BLUFADE achieves good performance, it has some limitations. First,

our participants set include few ethnicity, and subjects were tested in just

four backgrounds. We added more variance using the celebrities dataset,

and the good results suggest BLUFADE would work even with different people.

Still, more evaluations need to be conducted. Nonetheless, the four scenarios

give us a good idea of how BLUFADE would work in the real world. Second,
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Figure 7.6: Logout accuracy (bars) and grace period (dots) for different aggregation
frames and training sets. The accuracy and grace periods are averaged on all the background
and scenarios.

participants performed their tasks for ten seconds each. Clearly, longer use

of BLUFADE needs to be evaluated. Finally, our evaluation focused on frames

containing one person. Since RetinaNet can detect multiple objects in a

single image, we assume it can also cope with multiple faces. This needs to

be assessed.

7.7 Summary

In this work, we presented BLUFADE, a de-authentication system based on

blurred face detection deep learning algorithm. We conducted extensive

experiments to select the physical blurring material for BLUFADE, to remove

facial traits, ensuring privacy, while allowing face detection by deep learning

algorithms. Users’ privacy was evaluated through an online survey, demon-

strating that a simple anti reflex tape applied to the webcam is sufficient

to make a face unrecognizable. By continually detecting the users’ blurred

faces, BLUFADE automatically de-authenticates them with very high accuracy,

i.e., up to 100% in under 3 seconds on simple backgrounds, or 96% within 4

seconds considering also difficult ones. We tested BLUFADE in four application

scenarios that represent most of the real-world systems, ranging from laptops
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to ATMs, with 30 people conducting five different tasks. Our face detection

neural network outperforms both commercial and literature state of the art

algorithms, demonstrating that fine-tuning can help in the detection of highly

blurred objects and faces.

As future work, we plan to better assess the security of the system, testing

whether is possible to reconstruct facial traits from physical blurry images.

Another possible direction to expand our work is to implement a tracking

system instead of performing face detection frame by frame. This way, a

higher security level could be achieved without hurting usability.
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Chapter 8

Conclusion and Future Work

The expansion of digital technology has transformed human societies, and

with it, criminal activity has increased exponentially, accelerating every day.

In addition to the public sphere and institutions, these activities affect families

and communities in the private sphere. Human actors are at the center of

the digital transformation, but from a security perspective, they represent

a critical point to be carefully considered to design robust cybersecurity

solutions and predict new threats.

In this thesis, we investigated human interactions and cybersecurity,

focusing on two main aspects: In Part I we developed new attacks, based

on human interaction, against existing and consolidated authentication

methods (i.e., PIN pads), and in Part II we proposed new methods leveraging

human behavior in multiple contexts to enhance the security of users and

organizations.

8.1 Summary of Contributions

In this section, we summarize the contributions of the works presented in

this thesis.

8.1.1 In-Security Through Human Interaction Analysis: the

PIN Pad Case

In Part I, we investigate several attacks against the security of PIN-based

authentication systems, leveraging human interactions. Our goal is to empha-
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size vulnerabilities raised by the evolution of technology on a consolidated

authentication system (i.e., the PIN pad) and propose possible solutions to

improve the security.

• Your PIN Sounds Good: Inter-keystroke Timing Based Attacks on

PINs: In Chapter 2, we investigated several novels inter-keystroke

timing-based attacks on PINs. We demonstrated that it is possible

to retrieve accurate inter-keystroke timing information from audio

feedback. We showed how the user’s behavior affects the adversary’s

ability to guess PINs. In particular, users who type PINs with one

finger are more vulnerable to PIN guessing from inter-keystroke timings

than users who enter their PIN using at least two fingers, leading to a

34-fold improvement over random guessing. Further, we combined inter-

keystroke timing with other information an adversary could retrieve

(e.g., thermal trace, knowledge of a key). Our experiments show that

inter-keystroke timing significantly improves the performance of the

attacks. For example, by combining inter-keystroke timing with a

thermal attack, we were able to guess 15% of the PINs at the first

attempt, reaching a four-fold improvement in performance compared

to thermal attack only.

• Hand me your PIN: Inferring PINs from Videos of Users Typing with

a Covered Hand : In Chapter 3, we proposed a novel attack aiming to

reconstruct PINs entered by victims that cover the typing hand with the

other hand. Using deep learning models, we developed a method that

predicts what PIN is entered based on the position of the user’s hand

and their movements while pressing the keys. Our attack was evaluated

through an extensive data collection of 58 participants who typed 5,800

5-digit PINs in a simulated ATM. The collected dataset has been made

publicly available for the scientific community. We demonstrated that

30% of 5-digit PINs and 41% of 4-digit PINs could be reconstructed by

our attack within three attempts, showing that hiding the PIN while

typing is not enough to ensure adequate protection. Finally, we assess

several possible countermeasures suggesting strategies to mitigate our

attack.

• PinDrop: Acoustic Side-Channel Attacks on ATM PIN Pads: In

Chapter 4, we demonstrated how acoustic emanations produced by

ATM users entering their PINs could be leveraged to perform a highly

accurate side-channel attack (PinDrop). Our experiments showed

that PinDrop could reconstruct up to 94% of 5-digit PINs and 96%
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of 4-digit PINs within three attempts. We evaluated the robustness

of the attack on two metal PIN pads by combining: the number of

attackers, the size of the training set, the microphone’s distance from

the PIN pad, and the presence of different environmental noises. We

showed that the threat posed by PinDrop is higher compared to the

performance of state-of-the-art acoustic side-channel attacks on ATM

PIN pads.

8.1.2 Securing the Interaction with Humans

In Part II, we explore how human factors can be used to create non-intrusive,

holistic, and secure systems. We focused on three application areas where

human interactions play an important role but are still not fully exploited in

security contexts: bot detection in social networks, fake emotion detection,

and de-authentication.

• It’s a Matter of Style: Detecting Social Bots through Writing Style Con-

sistency : In Chapter 5, we proposed a novel approach for bot detection

leveraging the stylistic consistency of social network posts. More than

12,000 Twitter accounts, including human- and bot-operated ones, were

characterized by their writing style. Based on statistical evidence, we

identified a set of features capturing the stylistic consistency of posts

that allow distinguishing when humans or bots create them. Finally, we

evaluated the effectiveness of different ML algorithms based on stylistic

consistency features in discerning between human-operated and bot-

driven Twitter accounts. Our results showed that the ML models could

achieve high performance in this task, achieving an F-measure value

up to 98%.

• Face the Truth: Detection of Spontaneous and Posed Emotional Facial

Expressions: In Chapter 6, we developed a novel framework for the

automatic detection of spontaneous and posed emotional facial expres-

sions from clips. For this purpose, we collected a novel dataset that

includes a considerable amount of emotional clips (i.e., 1458) for both

spontaneous and posed emotions. We validated the dataset through a

survey asking 122 participants to rate each clip according to the emo-

tion, genuineness, and intensity of the facial expression perceived. The

dataset was publicly released to the research community. We showed

that our framework achieves an average accuracy of 84.4% in detecting

spontaneous and posed facial expressions in a user-dependent scenario,

outperforming humans in the same task (i.e., average accuracy 62.5%).
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• BLUFADEBlurred Face Detection: In Chapter 7, we proposed a novel

secure, usable, and privacy-preserving de-authentication method

(BLUFADE) based on blurred face detection. We assessed our approach

through extensive experiments on two datasets. The first consists of

20k images of celebrities and backgrounds, blurred with two different

materials. The second contains 1, 080 enrollment images and 600 videos

of 30 subjects interacting with a laptop (both blurred). Both datasets

have been made publicly available. BLUFADE showed 95% accuracy in de-

tecting blurred faces, outperforming state-of-the-art methods. Results

demonstrate that BLUFADE can effectively de-authenticates users up to

100% accuracy in under 3 seconds while satisfying security, privacy,

and usability requirements.

8.2 Future Work

In this section, we introduce future directions of the research presented in

this thesis.

8.2.1 In-Security Through Human Interaction Analysis: the

PIN Pad Case

Although the use of PINs and passwords are consolidated as authentication

methods, several directions can still be taken from a security perspective. In

particular, new sources of information could be investigated and used in the

attack presented in Chapter 2 to increase its effectiveness. Nevertheless, it

would be interesting to develop PIN pads that would allow to mitigate the

effectiveness of an attack based on inter-keystroke timing and at the same

time maintain high usability of the input devices. The study presented in

Chapter 3 also suggests further work in terms of the attack’s effectiveness

and the study of new countermeasures. In particular, we believe that an

interesting direction is to investigate if it is possible to extract the timestamp

directly from the video rather than inferring it from the audio feedback.

Further, the study could be extended to other PIN pads models (e.g., PoS).

Moreover, it would be interesting to explore new strategies for user coverage

and their effectiveness in mitigating the attack. Finally, we believe the work

presented in Chapter 4 can be extended on the one hand by studying new

solutions to increase the recording distance (e.g., parabolic microphones),

on the other hand by evaluating the performance of the attachment on new

PIN pads (e.g., touch screen PIN pads).
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8.2.2 Securing Computer-Human Interaction

The variability and unpredictability of human behavior are characteristics

that can also be exploited to increase the security of systems and the users

themselves. In Chapter 5 we showed how writing style is effective in dis-

tinguishing human and bot accounts on Twitter. One future direction in

this study is to extend the dataset to other social networks to validate the

generalizability of the proposed approach. Moreover, it would be interest-

ing to evaluate whether stylometry also effectively detects other profiles

(e.g., trolls on social media). The human-human behavior distinction is a

challenging topic, even for humans themselves. In Chapter 6, we showed

how the task of distinguishing genuine from false facial expressions subtends

processes that are not easily generalizable. In this context, it would be

useful to extend our method as support, via interpretable models, for more

insights into the strategies used for expressing fake emotions. In addition,

expanding the dataset and developing deep learning models could increase

the accuracy of the presented approach. The development of new methods

that leverage human behavior to increase security cannot ignore two factors:

usability and privacy preservation. Following these directions, in Chapter

7 we developed a novel method for de-authentication of physically blurred

faces (BLUFADE). Several directions on the security side can be explored

to advance the proposed work. First, assess the resistance of our filters to

deblurring algorithms. Second, implementing a tracking system instead of

performing face detection frame by frame. Finally, it would be interesting to

add an additional layer that would allow recognizing if a lunchtime attack

has happened in the grace period, analyzing if there has been a substitution

of the user (e.g., different clothes, different haircuts).
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Martin, Marcus R Munafò, Sebastian Ocklenburg, and Silvia Paracchini.

Human handedness: A meta-analysis. Psychological Bulletin, April

2020.

[202] Ge Peng, Gang Zhou, David T Nguyen, Xin Qi, Qing Yang, and

Shuangquan Wang. Continuous authentication with touch behavioral

biometrics and voice on wearable glasses. IEEE transactions on human-

machine systems, 47(3):404–416, 2016.

[203] Pramuditha Perera and Vishal M Patel. Face-based multiple user active

authentication on mobile devices. IEEE Transactions on Information

Forensics and Security, 14(5):1240–1250, 2018.

[204] P Jonathon Phillips and Alice J O’toole. Comparison of human and

computer performance across face recognition experiments. Image and

Vision Computing, 32(1):74–85, 2014.

176



Human Interactions in Cybersecurity M. Cardaioli

[205] Stephen Porter and Leanne ten Brinke. The truth about lies: What

works in detecting high-stakes deception? Legal and criminological

Psychology, 15(1):57–75, 2010.

[206] Stephen Porter, Leanne Ten Brinke, and Brendan Wallace. Secrets and

lies: Involuntary leakage in deceptive facial expressions as a function of

emotional intensity. Journal of Nonverbal Behavior, 36(1):23–37, 2012.

[207] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov.

Real-time computer vision with opencv. Communications of the ACM,

55(6):61–69, 2012.

[208] Roshan G. Ragel, P. Herath, and Upul Senanayake. Authorship de-

tection of sms messages using unigrams. 2013 IEEE 8th International

Conference on Industrial and Information Systems, pages 387–392,

2013.

[209] Francisco Rangel and Paolo Rosso. Overview of the 7th author profiling

task at pan 2019: Bots and gender profiling in twitter. In Proceedings

of the CEUR Workshop, Lugano, Switzerland, pages 1–36, 2019.

[210] Francisco Rangel, Paolo Rosso, Moshe Koppel, Efstathios Stamatatos,

and Giacomo Inches. Overview of the author profiling task at pan

2013. In CLEF Conference on Multilingual and Multimodal Information

Access Evaluation, pages 352–365. CELCT, 2013.

[211] Kasper Bonne Rasmussen, Marc Roeschlin, Ivan Martinovic, and Gene

Tsudik. Authentication using pulse- response biometrics. In NDSS,

2014.

[212] Lawrence Ian Reed and Peter DeScioli. The communicative

function of sad facial expressions. Evolutionary Psychology,

15(1):1474704917700418, 2017.
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[243] Anna Tcherkassof, Damien Dupré, Brigitte Meillon, Nadine Mandran,

Michel Dubois, and Jean-Michel Adam. Dynemo: A video database of

natural facial expressions of emotions. The International Journal of

Multimedia & Its Applications, 5(5):61–80, 2013.

[244] TensorFlow. Eager few shot object detection colab. https://tinyurl.

com/FineTuningTF, 2020. Accessed: January, 2021.

[245] Chee Meng TEY, Payas GUPTA, and Debin GAO. I can be you:

Questioning the use of keystroke dynamics as biometrics.(2013). In

20th NDSS 2013, pages 1–16, 2013.

[246] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and

color images. In Iccv, volume 98, page 2, 1998.

[247] United States Attorney’s Office, District of Massachussets. Bulgarian

National Pleads Guilty to ATM Skimming, 2021.

180

https://tinyurl.com/FineTuningTF
https://tinyurl.com/FineTuningTF


Human Interactions in Cybersecurity M. Cardaioli

[248] Onur Varol, Emilio Ferrara, Clayton B Davis, Filippo Menczer, and

Alessandro Flammini. Online human-bot interactions: Detection,

estimation, and characterization. In Proceedings of the Eleventh Inter-

national AAAI Conference on Web and Social Media (ICWSM 2017),

pages 280–289, 2017.

[249] Igor Vasiljevic, Ayan Chakrabarti, and Gregory Shakhnarovich. Ex-

amining the impact of blur on recognition by convolutional networks.

arXiv preprint arXiv:1611.05760, 2016.

[250] Anne Vermeulen, Heidi Vandebosch, and Wannes Heirman. # smil-

ing,# venting, or both? adolescents’ social sharing of emotions on

social media. Computers in Human Behavior, 84:211–219, 2018.

[251] Aldert Vrij. Detecting lies and deceit: Pitfalls and opportunities. John

Wiley & Sons, 2008.

[252] Martin Vuagnoux and Sylvain Pasini. Compromising electromagnetic

emanations of wired and wireless keyboards. In USENIX security

symposium, pages 1–16, 2009.

[253] Jun Wan, Sergio Escalera, Gholamreza Anbarjafari, Hugo Jair Es-
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Chapter A

Your PIN Sounds Good

A.1 Additional Details on Data Collection

We recorded subjects entering 4-digit PINs on a simulated ATM, shown in

Figure A.1. Our dataset was based on experiments with 22 participants; 19

subjects completed three data collection sessions, while 4 subjects completed

only one session, resulting in a total of 61 sessions. At the beginning of

each session, the subject was given 45 seconds to get accustomed with the

keypad of the ATM simulator. During this time, they were free to type as

they pleased. Next, a subject was shown a PIN on the screen for ten seconds

(Figure A.2a), and, once it disappeared from the screen, asked to enter it four

times (Figure A.2b). Subjects were advised not to read the PINs out loud.

This process was repeated for 15 consecutive PINs. During each session,

subjects were presented with the same 15-PIN sequence 3 times. Subjects

were given a 30-second break at the end of each sequence.

Specific 4-digit PINs were selected to test whether: inter-keypress time

is proportional to Euclidean Distance between keys on the keypad; and

the direction of movement (up, down, left, or right) between consecutive

keys in a keypair impacts the corresponding inter-key time. We show an

example of these two situations on the ATM keypad in Figure A.3. We

chose a set of PINs that allowed collection of a significant number of key

combinations appropriate for testing both hypotheses. For instance, PIN

3179 tested horizontal and vertical distance two, while 1112 tested distance

0 and horizontal distance 1.
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Figure A.1: Setup used in PIN in-
ference experiments.

(a) (b)

Figure A.2: ATM Simulator dur-
ing a data collection session. (a)
The simulator displays the next
PIN. (b) A subject types the PIN
from memory.

Sessions were recorded using a Sony FDR-AX53 camera, at a pixel

resolution of 1,920×1,080 pixels, and 120 frames per second. At the same time,

ATM simulation software collected millisecond-accurate inter-key distance

ground truth by logging each keypress. PIN feedback was shown on a DELL

17” LCD screen with a refresh rate of 60 Hz, which resulted in each frame

being shown for 16.7 ms.

A.1.1 Timing Extraction from Video

We developed software that analyzes video recordings to automatically detect

the appearance of masking symbols and log corresponding timestamps. This

software uses OpenCV [207] to infer the number of symbols present in each

image. All frames are first converted to grayscale, and then processed through

a bilateral filter [246] to reduce noise arising from the camera’s sensor. The

resulting images are analyzed using Canny Edge detection [77] to capture

the edges of the masking symbol. External contours are compared with the

expected shape of the masking symbol. When a masking symbol is detected,

software logs the corresponding frame number.

A.2 Inter-keystroke Timings and Key Distance

We analyzed the relationship between inter-keystroke timings and Euclidean

Distance between consecutive keys, and between inter-keystroke timings and

direction of movement on the keypad.
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(a) (b)

Figure A.3: ATM keypad in our experiments. (a) To type keypairs
1-2 and 1-4, the typing finger travels the same distance in different
directions. (b) Keypairs 1-2 and 1-3 require the typing finger to travel
different distances in the same direction.

Distance. Across all subjects, we observed that distributions of inter-

keystroke latencies were distinct in all cases (for p-value < 5 · 10−6), with the

following exceptions: (1) latencies for distance 2 (e.g., keypair 1-3) were close

to latencies for distance 3 (keypair 2-0); (2) latencies for distance 2 were close

to latencies for diagonal 1×1 (e.g., keypair 4-8); latencies for distance 3 were

close to latencies for 2×1 diagonal (i.e. “2” to “9”, “1” to “6”, etc.), and

diagonal 2×2 (e.g., keypair 7-3), and diagonal 3×2 (e.g., keypair 3-0). Figure

A.4a shows the various probability distributions, while Figure A.4b models

these different probability distribution functions as gamma distributions. In

Figure A.4a, dist zero indicate keypairs composed of the same two digits.

dist one, dist two, and dist three shows timings distributions for keypairs with

horizontal or vertical distance one (e.g., keypair 2-5), two (e.g., 2-8), and three

(2-0), respectively. dist diagonal one and dist diagonal two indicates keypairs

with diagonal distance one (e.g., 2-4) and distance two (e.g., 1-9), respectively.

dist dogleg and dist long dogleg show timing distributions of keypairs such as

1-8 and 0-3. In Figure A.4b, dist one horizontal and dist one vertical indicate

Euclidean Distance right in the left/right directions, and up/down directions,

respectively, while dist one up, dist one down, dist one left, and dist one right

indicate distances one in the up, down, left, and right directions.

Direction. The relative orientation of keypairs characterized by the

same Euclidean distance (e.g., 2-3 vs. 2-5) has a negligible impact on the
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(a) From raw data.
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(b) Modeled as gamma distributions.

Figure A.4: Inter-keystroke timings of all possible distances for ATM keypad
typing.
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Figure A.5: Frequency of inter-keystroke timings for Euclidean Distance of
one. dist one indicates latency distribution for distance one in any direction.

corresponding inter-key latency. We observed that the distributions of

keypress latencies observed from each possible direction between keys were

not significantly different (for p-value < 10−4). Figure A.5 shows different

probability distributions relative to various directions for Euclidean distance

1.

A.3 PIN Guessing Algorithm

We are not aware of any publicly-available PIN timing datasets that can

be used to train our algorithm (PILOT). To compute the attack baseline,

we considered all PINs to be equally likely, i.e., we are modeling PINs as

random four-digit strings. This is consistent with how many European banks

assign PINs to bank cards [97], and with the work of Bonneau et al. [33],
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which showed that users are reluctant to change the random PIN provided

by their bank.

Using the data we collected, we mapped the distribution of inter-keypress

latencies, and used the resulting probabilities to test the effectiveness of

PINs prediction from inter-key latencies. Our PIN guessing algorithm is

composed of two parts: (1) an algorithm that estimates distances from

keystroke timings; and (2) an algorithm that ranks PINs based on the

estimated distances. The source code of the algorithm can be found at

https://spritz.math.unipd.it/datasets/PILOT/ The core idea is to

consider the PIN pad as a weighed multigraph. The graph nodes represent the

keys, and are labeled 0-9. Keys are connected by weighted edges. The weight

of an edge corresponds to the Euclidean distance between the corresponding

keys, using the distance between two adjacent keys (e.g., 1 and 2) as unit.

We identified 8 possible distances: zero distance (e.g., key 3 followed by key 3,

weight = 0); horizontal or vertical distance one (e.g. keys 1-2, weight = 1);

horizontal or vertical distance two (e.g., keys 1-3, weight = 2); vertical

distance three (e.g., keys 2-0, weight = 3); diagonal distance one (e.g., keys

1-5, weight =
√

12 + 12); diagonal distance two (e.g., keys 1-9, weight =√
22 + 22); short diagonal distance (e.g., keys 1-8, weight =

√
12 + 22) and

long diagonal distance (e.g. keys 1-0, weight =
√

12 + 32).

For each PIN, we created three sets a subgraphs, indicated as S1, S2, and

S3, composed only of the nodes connected by edges with the same weight as

the estimated distance. Specifically, Si contains all the two-nodes subgraphs

such that their edges have weight equal to the estimated distance between

the keys in the i-th PIN digraph.

We combined the subgraphs in these sets by ensuring that, for i = 1 and

i = 2, the second node of a graph from Si is the same as the first node of a

graph from Si+1. For instance, given estimated distances 3, 0, and
√

2, our

algorithm extracts the subgraphs shown in Figure A.6. It then refines these

choices by removing all subgraphs from S2 which do not have nodes 2 and 0

as their first node. The same rule is applied to S3. The two resulting graphs

are shown in Figure A.7.

Not all estimated distances correspond to possible PINs. For instance,

estimated distances 3, 0, and
√

8 do not match any PIN that can be typed

on the pad used for the experiments: distance 3 indicates that the second

PIN digit must be either 0 or 2; as a consequence, distance 0 associated to

the second PIN digraph restricts the third PIN digit to 0 or 2; however, the

set of keypairs with a relative distance of
√

8 (i.e., {(1, 9), (7, 3), (9, 1), (3, 7)})

does not include keys 0 or 2. Therefore, estimated distances 3, 0, and
√

8 do
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not lead to any valid PIN. Figure A.8 shows a visual representation of this

example.

weight = 3 weight = √2 

weight = 0 
S1 S2 S3 

G 

Figure A.6: Full graph, and subgraphs h1 ∈ S1 (weight = 3), h2 ∈ S2

(weight = 0), and h3 ∈ S3 (weight =
√

2).

S1 S2 S3 

2 - 0 1 - 1 1 - 5 

0 - 2 2 - 2 2 - 4 

3 - 3 2 - 6 

4 - 4 3 - 5 

5 - 5 4 - 2 

6 - 6 4 - 8 

7 - 7 … 

8 - 8 7 - 0 

9 - 9 8 - 4 

0 - 0 8 - 6 

9 - 0 

0 - 7 

0 - 9 

Figure A.7: Nodes sequences for input distances 3, 0,
√

2.

For each triplet of estimated distances, the number of associated PINs

may differ. For example, 58 triplets have no associated PIN (e.g., distances

3, 0, and
√

8). The remaining 454 combinations vary from a minimum of 2

associated PINs (57 combinations; e.g., distances 3, 3, and 3 correspond only

to PINs 2020 and 0202) to a maximum of 216 PINs (distances 1, 1, and 1). If

the adversary is able to reconstruct the distances between digraphs without

errors, this process drastically reduces the number of attempts needed to

guess the PIN compared to a random guessing. Figure A.9 shows the benefit
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of this approach in terms of percentage of PINs guessed within a fixed number

of attempts. However, due to the overlapping between timing distributions

shown in figures A.4 and A.5, the adversary cannot always estimate distances

correctly.

weight = 3 weight = √8 

weight = 0 
S1 S2 S3 

G 

(a)

S1 S2 S3 

2 - 0 1 - 1 1 - 9 

0 - 2 2 - 2 3 - 7 

3 - 3 7 - 3 

4 - 4 9 - 1 

5 - 5 

6 - 6 

7 - 7 

8 - 8 

9 - 9 

0 - 0 

(b)

Figure A.8: (a) Subgraphs corresponding to distances 3, 0, and
√

22 + 22.
(b) Nodes connected by vertices weights 3, 0, and

√
22 + 22. No common

nodes are in S2 and S3, and therefore this combination of distances does not
correspond to any PIN.

193



M. Cardaioli Human Interactions in Cybersecurity

Figure A.9: CDF showing the number of PINs recovered under the assumption
that distances are recovered without error.
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Chapter B

Hand me Your PIN

B.1 Neural Networks Additional Info

In Figure B.1, we show the training and validation accuracy for the three

models selected after the random grid search. In the Mixed scenario, the

validation accuracy grows faster than in PIN pad independent scenario and

Single PIN pad scenario, reaching faster the plateau. Indeed, in the Mixed

scenario, the validation accuracy stabilizes after 20 epochs, while we require

more than 35 epochs for the other scenarios. This difference can be linked to

a larger training size and a higher variance in the samples since the Mixed

scenario is the only one to include videos from both PIN pads in the training

phase.

Next, we report some statistics about the training execution times for

the three scenarios we consider.

• Single PIN pad scenario: the training set is composed of 32 partici-

pants, corresponding to 16 000 samples of 11 frames each. Our model

takes 1 577 seconds to complete an epoch (i.e., approximately 34 hours

to complete the entire training phase).

• PIN pad independent scenario: the training set is composed of 35

participants, corresponding to 17 500 samples of 11 frames each. Our

model takes 1 598 seconds to complete an epoch (i.e., approximately

34 hours to complete the entire training phase).

• Mixed scenario: the training set is composed of 46 participants,

corresponding to 23 000 samples of 11 frames each. Our model takes
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2 240 seconds to complete an epoch (i.e., approximately 46 hours to

complete the entire training phase).
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(a) Single PIN pad scenario. We included
4 participants in validation, correspond-
ing to 400 digits.
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(b) PIN pad independent scenario, We
included 5 participants in validation, cor-
responding to 500 digits.
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(c) Mixed scenario. We included 6 par-
ticipants in validation, corresponding to
600 digits.

Figure B.1: Training and validation accuracy for our three scenarios.

B.2 Key Accuracy Analysis

In this section, we provide further analysis on the key accuracy for our attack.

Figure B.2 highlights that the accuracy on a single key is worse in the PIN

pad independent scenario. Although the performance is considerably lower

than the other two scenarios in Top-1 accuracy, it is interesting that the

error dispersion affects the keys topologically close to the target one.

In Figure B.3, we compare our model and human performance on the

key classification task. The misclassification error and the dispersion result

are significantly lower for our algorithm. Moreover, it can be noticed how
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the four keys on which humans perform the best match those in the corners

of our keypad (i.e., 1, 3, 7, and 9).
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(a) Single PIN pad scenario.
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(c) Mixed scenario.

Figure B.2: Confusion matrices of key predictions (predicted labels) vs. true
values (true labels) for our three scenarios.
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(a) Recalculated confusion
matrix for our algorithm
(Mixed scenario).
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Figure B.3: Confusion matrix comparison between our algorithm and humans.

B.3 Additional Experiments

To gain further insight into how coverage can affect the attack performance,

we grouped the tested users by the coverage strategy:

• Side: The non-typing hand rests on the side of the palm and is angled

to cover the keys of the PIN pad (40% of users applied this covering

strategy).

• Over: The non-typing hand is raised completely off the surface, covering

the PIN pad both with the entire back of the hand and the fingers

(43% of users applied this covering strategy).
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• Top: The fingers of the non-typing hand rest on the top of the PIN

pad, and the back of the hand is used for the coverage (17% of users

applied this covering strategy).

(a) Left-corner camera. (b) Center camera. (c) Right-corner camera.

Figure B.4: Same video frame recorded by three cameras.

In Table B.1, we report key and PIN TOP-3 accuracies for our approach.

Clearly, Side covering strategy provides the least protection and should be

avoided. At the same time, the Over and Top covering strategies provide

much better protection. Interestingly, we see that with the Over covering

strategy, the Mixed scenario reaches lower accuracy than the Single PIN pad

scenario. We postulate this happens as this covering strategy makes it less

“natural” for the user to type, deceiving the deep learning algorithm. Further

attack improvements could be made with datasets having examples of one

covering strategy only. For the Top covering strategy, there were no data for

two out of three scenarios (denoted NA in Table B.1).

For the PIN shield countermeasure, we depict various levels of hiding in

Figure B.5. There, 25% denotes that the first row of the PIN pad is covered

(simulated with a black patch), 50% first two rows, 75% first three rows, and

finally, 100% all four rows of the PIN pad are covered. Note that we do not

include the covering with the other hand into these percentages.

Table B.2 provides results for several additional attack configurations.

First, we performed two experiments simulating a lower camera quality or a

larger camera distance from the PIN pad. For this purpose, we reduced the

model input resolution from 250 x 250 to 125 x 125 and to 64 x 64. Results

show that our model maintains an accuracy higher than 20%, even when

halving the input resolution (i.e., doubling the camera distance). However,

this is not to be considered as a physical limitation for our attack since if the

attacker places a camera outside the ATM chassis, it is possible to use an

optical zoom. Further, many pinhole cameras can record with a resolution
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(a) 25% of PIN pad surface covered (i.e.,
digits form 1 to 3).

(b) 50% of PIN pad surface covered (i.e.,
digits form 1 to 6).

(c) 75% of PIN pad surface covered (i.e.,
digits form 1 to 9).

(d) 100% of PIN pad surface covered (i.e.,
no digit is visible).

Figure B.5: PIN pad shield configurations.
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Covering Scenario Key PIN TOP-3
strategy accuracy accuracy

Single 0.64 0.30
Side Independent 0.42 0.12

Mixed 0.77 0.53
Single 0.52 0.12

Over Independent 0.31 0.10
Mixed 0.46 0.07
Single NA NA

Top Independent 0.41 0.13
Mixed NA NA

Table B.1: Performance of our attack for different covering strategies in
Single PIN pad, PIN pad independent, and Mixed scenarios. Top covering
participants were present in the PIN pad independent scenario only, as for
the others, no data were available (NA).

up to 1 080p 1, which is higher than the resolution we used to collect our

dataset (720p).

Next, we investigated the accuracy of our attack leveraging different

camera positions. In particular, we performed two experiments training

and testing our model with the left-corner and the right-corner cameras,

respectively. Figure B.4 shows the camera views used in our experiments.

The results give a significant difference in performance if the camera is on

the right or the left. This is because the participants in our experiment were

right-handed, and therefore filming from the right had worse coverage of

the PIN pad and typing hand. In contrast, the typing hand and the PIN

pad were almost completely covered using shots from the left, significantly

reducing the model’s performance. We also evaluated whether using video

from all three cameras in training (the experiment “multi-camera training“

in Table B.2) could improve the accuracy of our model when compared with

videos recorded from the center camera only. The results show a drop in

performance, which we attribute to the higher variance in the data provided

as input to the model.

Finally, we report the results of our model without data augmentation

and without including the blacklisted users in the training set. In both

configurations, the performance of our model drops, showing that reducing

the training size is penalized heavily. Note that even in the worst case of a

camera placed on the left corner (i.e., the one with less visibility), our model

still performs better than an average human.

1https://www.dsecctv.com/Prod telecamere spioncino porta AHD.htm
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Experiment Key PIN TOP-3
accuracy accuracy

Input resolution 125 x 125 0.55 0.23
Input resolution 64 x 64 0.47 0.15

Left-corner camera 0.46 0.10
Right-corner camera 0.62 0.31

Multi-camera training 0.53 0.22

No data augmentation 0.44 0.11
Blacklisted excluded in training 0.54 0.18

Table B.2: Additional attack configurations and results in the Mixed scenario.

In this paper, we used the feedback sound emitted by the PIN pad

as a detection system for the frames containing a keystroke. To evaluate

the impact of other frame detection systems, we conducted an experiment

varying the frame extraction precision. We simulated the detection error

by adding Gaussian noise with mean zero to the ground truth (i.e., the

frame position in the video). In Table B.3, we report the single key and the

PIN TOP-3 accuracies for the Mixed scenario, simulating five levels of the

frame detection error. Compared to the results obtained using the audio

feedback (key accuracy 0.61, 5-digits PIN Top-3 accuracy 0.30), we see that

our model works well even with small/medium levels of frame detection error

(i.e., less than five frames). In particular, for a frame error confidence of three

(i.e., when the frames are detected through the appearance on the screen

of the masked symbols [42]), the performance drops only 1% both for key

and TOP-3 PIN accuracies. Contrarily, when the detection error becomes

high (i.e., more than 15 frames), the performance of our model decreases

significantly. This happens since the frames considered by the model do not

contain information related to the target key, as they are too temporally

shifted. Naturally, if the attacker recognizes a situation like this, it would be

possible to mitigate the effect of detection error by not using the feedback

sound but observing the appearance of “*” symbols on the screen.
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Frame error Key PIN TOP-3
confidence (p < 0.01) accuracy accuracy

3 0.60 0.29
5 0.59 0.26
10 0.54 0.16
15 0.49 0.12
20 0.12 0.06

Table B.3: Performance of our attack in the Mixed scenario assuming different
levels of frame detection error.
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