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ABSTRACT: The fundamental implications that chirality has in science and technology require continuous efforts for the
development of fast, economic, and reliable quantitative methods for enantiopurity assessment. Among the different analytical
approaches, chiroptical techniques in combination with supramolecular methodologies have shown promising results in terms of
both costs and time analysis. In this article, a tris(2-pyridylmethyl)amines (TPMA)-based supramolecular cage is able to amplify the
circular dichroism (CD) signal of a series of chiral dicarboxylic acids also in the presence of a complex mixture. This feature has been
used to quantify tartaric acid in wines and to discriminate different matrixes using principal component analysis (PCA) of the raw
CD data.
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Since Pasteur’s tartrate experiment highlighting the
significance of “dissymmetry”, control of chirality at the

molecular level has led to many technological and scientific
advancements in physics, chemistry, and life sciences.1 Along
with the progress of this area, the quantification of
enantiomeric excess (e.e.) has urged the development of fast
and effective methods. Within this context, promising results
have been reported by the use of supramolecular approaches
which have developed molecular sensors able to amplify
chiroptical signal intensities.2−11 The leading strategy in this
field is represented by the use of chemosensors carrying a
chromophore unit and a labile stereogenic element in fast
racemization.12−17 Interaction of these stereodynamic probes
with a chiral analyte shifts the equilibrium among the two
enantiomeric forms of the receptor toward a preferential
diastereoisomer. The presence of chromophores allows to
translate this bias into a signal which is detected using
electronic circular dichroism (CD). Among the different
molecular architectures exploiting this feature, metal complexes

of tris(2-pyridylmethyl)amine (TPMA)18 ligands have gained
considerable attention due to the seminal contributions of
Zahn and Canary et al.,19,20 Anslynet al.,21,22 and, more
recently, by our group.23,24 These complexes exploit the
propeller-like arrangement of the ligand around the metal
center, whose configuration is controlled by the interaction
with the chiral analyte. However, it should be noted that while
these probes have shown a good capability to amplify CD
signals of a wide variety of molecular systems, one unresolved
issue remainstheir application in the presence of other
possible interfering analytes. Indeed, while the versatility
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toward different functional groups can be considered an
analytical strength, low specificity in the presence of complex

mixtures or reaction crudes, just to cite some practical
examples, can represent a hampering weakness. In particular,

Figure 1. Circular dichroism spectra for the R@1 series. Solution of molecular cages containing the different diacids have been analyzed using CD
spectroscopy. Dichroic signals are observed for all diacid. Among them, L-Tar acid is furnishing the stronger signal. CD measurements were
performed by diluting the synthesized cage with anhydrous DMSO to obtain a final concentration equal to 1.0 × 10−5 M (0.1 cm cuvette). The
counterions are perchlorate for the cage.

Figure 2. Diacids lead mainly to the formation of two diastereomeric conformations characterized by the opposite helicity of the TPMA unit (MM
or PP) according to DFT calculations. Energy difference among the diastereomeric structures is 0.2 kcal/mol for the L-Mal and 0.8 kcal/mol for the
L-Tar acids. The higher energy difference calculated in the latter case is ascribable to the formation of two intramolecular hydrogen bonds, which
results in a tightening of the cage (representative distances in L-Mal@1 O−O 6.05 Å and Zn−Zn 9.67 Å, L-Tar@1 O−O 5.47 Å and Zn−Zn 9.11
Å).
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the main drawback comes in those cases in which the presence
of other chiral components within the analytical mixture can
interfere with the chiroptical output.
We recently reported the use of TPMA-based supra-

molecular cages able to self-assemble in the presence of a
complex mixture like wine or fruit juices.25 In these mixtures,
cages were able to selectively encapsulate dicarboxylic acids
present in the matrixes. Herein, we report the chiroptical
analytical employment of a TPMA cage, which highlighted that
a confined stereodynamic structure can allow the e.e.
determination of chiral dicarboxylic acids also in complex
mixtures. The reported system displayed a preferential
enhancement of the dichroic signal for tartaric acid which is
more than 1 order of magnitude higher than the structural
closest system malic acid.

■ RESULTS AND DISCUSSION
In recent years, we have been interested in carboxylic acids
sensing26−29 using TPMA-based supramolecular cages.30−32

The high affinity and selectivity of our system toward diacids,
together with the capability to form in complex mixtures,
prompted us to investigate if it was possible to take advantage
also of the stereodynamic features of the two TPMA units in
chiral sensing.33 −35 For these reasons, we investigated the
recognition capabilities and chiroptical properties of the
molecular cage 1 toward: L-malic acid (L-Mal), L-tartaric acid
(L-Tar), the amino acids Boc-L-glutamic acid (L-Glu), Boc-L-
aspartic acid (L-Asp), and (1R,3S)-camphoric acid (R,S-Cam).
The enclosed cages were formed taking advantage of the

imine-based dynamic covalent chemistry process obtained by
mixing the aldehyde precursor with ethylenediamine in the
presence of the chiral diacid in DMSO-d6. After 12 h, the
formation of the cages was confirmed for all the systems by 1H
NMR, 2D-NMR (COSY, DOSY), and ESI-MS analyses
(Figures S18−S25). Once cage systems were formed, dichroic
signals were observed for all five differently included cages in
the spectral region between 260 and 350 nm, a region where
the free diacids do not display any meaningful signal.
Additional investigations revealed a linearity in the CD
intensity response as a function of the e.e. of the guest (Figure
S2). Unexpectedly, while for four embedded diacids the
intensities are in line with previously reported TPMA probes,23

a higher signal enhancement was observed in the case of
encapsulated tartaric acid L-Tar@1 (Figure 1). This feature
was also more remarkable considering that the closely related
system incorporating malic acid L-Mal@1, which displayed a
binding constant similar to L-Tar@1 (Table S6), had a signal
intensity 1 order of magnitude lower (L-Tar@1 [θ] = −3.5 and
L-Mal@1 [θ] = 0.36 deg cm2 dmol−1 105 at 314 nm).
To clarify the origin of the signal enhancement in the case of

L-Tar, TD-DFT calculations on the L-Mal@1 and L-Tar@1
cages were carried out (Section S4). In more detail, initially a
conformational search was performed to identify the structures
responsible for the observed signals. Possible conformations
are ruled by the propeller-like arrangement of the ligand
around the metal and the conformations of the enclosed
diacids. The latter were essentially dictated by the intra-
molecular network of hydrogen bonds among hydroxyls and
carboxylates (Figure 2 and Section S4.1). The lowest energy
structures found for the two inclusion systems highlighted
intramolecular hydrogen bonds within the diacids, two in the
case of L-Tar versus one in the case of L-Mal. These hydrogen
bonds are responsible for a shorter length of the guest in the

case of L-Tar@1 in comparison with L-Mal@1. This influences
the size of the cage and in its capability to adopt the two
enantiomeric forms. The extra hydrogen bond in L-Tar induces
a tightening in L-Tar@1, which corresponds to a higher
thermodynamic differentiation among the two diastereomeric
forms of the cage in comparison to L-Mal@1. This difference
in population is responsible for signal intensities as confirmed
by the overlap between the calculated and the experimental
CD spectra (Figures S10−S11).
As mentioned in the introduction, we already reported the

capability of this system to form also in the presence of
complex matrixes, such as fruit juices and wines, taking
advantage of the templating capability of dicarboxylic acids
present in these solutions.25 Due to the “natural” chiral
character of these templates, the chiroptical probe was tested
using complex mixtures as sources of the diacids. In the first
experiment, the capability of the cage to preferentially enhance
the L-Tar signal was exploited to quantify the tartaric acid
content of the wines using circular dichroism. In more detail,
the standard addition method was used to minimize the effect
of the sample matrix.
In particular, cage synthesis has been optimized in the

presence of wine, reducing the time of formation to 20 min
(Figure S28), and they have been assembled using the different
wines and increasing aliquots of commercially available
optically pure L-Tar (Figures S12−S17).
The L-Tar content obtained by the CD investigation has

been compared with the L-Tar content measured using 1H
NMR with an internal standard (Table 1).25

In a second experiment, cage synthesis was performed using
11 different juices and 6 wines as the source of templating
agent. CD of the resulting mixtures were registered and the
collected data analyzed using the Principal Component
Analysis (PCA) method (Figure 3).36,37 Even though the
CD spectra seem mainly dictated by the L-Tar (viz. negative
curves) and L-Mal (viz. positive curves) contents, PCA showed
an effective degree of separation allowing discrimination
among the different “templating” matrixes. PC1, which
accounted for more than 99% of the total variation, showed
a direct correlation with the L-Tar acid content.
Wines with high L-Tar content are in the positive region of

PC1, while two white wines are present in an intermediate
region of PC1 axis. In this case, as shown by 1H NMR analysis,
L-Tar content is low. All the other juices display a negative
PC1, and discrimination is obtained along PC2. High L-Mal
content systems (pears and apples) are in the positive PC2
region, while systems that do not present high contents of

Table 1. L-Tar Acid Content in Different Wines Obtained
with Standard Addition Method and 1H-NMR Peak
Integration in the Presence of an Internal Standard

tartaric acid content

wine CD(g/L) NMR(g/L)a

Prosecco 1.1 1.3
Chianti 2.3 2.4
Chardonnay 1.7 1.5
Barbera 2.5 2.5
Müller-Thurghau 1.2 1.5
Valpolicella 2.2 2.0

aValues have been taken from ref 21.
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either L-Mal or L-Tar are in the negative PC2 region. It is also
interesting to notice that PC1 and PC2 loadings strongly
resembled CD spectra of L-Tar and L-Mal, respectively
(Figures S29−S47).
It should be highlighted that even if a naked eye impression

over the CD spectra in Figure 3 seemed uninformative,
unexpectedly, the differences in CD spectra of the two natural
diacids, (e.g., absolute value, intensity, and maximum
absorbance wavelength) were sufficient to furnish a distinct
discrimination among the different natural matrixes.

■ CONCLUSIONS
In conclusion, we reported a supramolecular cage able: (i) to
act as sensor for chiral diacids, (ii) to display a CD signal 1
order of magnitude higher for L-Tar in comparison with the
structurally related L-Mal, (iii) to report L-Tar content in
wines, and (iv) to discriminate different juices using PCA.
These results have been obtained combining the stereo-
dynamic properties of the two TPMA units together with the

properties arising from cage confinement. It should be stressed
that dynamic covalent chemistry has already been successfully
exploited in complex mixtures taking advantage of differential
sensing in dynamic chemical networks.38 −40 However, the
possibility to master the self-assembly of a defined molecular
architecture in the presence of a complex mixture and to report
a signal urges novel opportunities in the preparation of
innovative functional supramolecular systems in more
challenging matrices.
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