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ABSTRACT
Algebraic Multigrid (AMG) is a very popular iterative method used

in several applications. This wide diffusion is due to its effectiveness

in solving linear systems arising from PDEs discretization. The key

feature of AMG is its optimality, i.e., the ability to guarantee a con-

vergence rate independent of the mesh size for different problems.

This is obtained through a good interplay between the smoother

and the interpolation. Unfortunately, for difficult problems, such

as those arising from structural mechanics or diffusion problems

with large jumps in the coefficients, standard smoothers and in-

terpolation techniques are not enough to ensure fast convergence.

In these cases, an improved prolongation operator is required to

enhance the AMG effectiveness. In this work, we present an up-

dated prolongation according to an energy minimization criterion

and show how this minimization can be seen as a constrained

minimization problem. In detail, we have that the constraint is

twofold: the prolongation must be sparse, and its range must repre-

sent the operator near-kernel. Even though energy minimization is

well-known in the AMG community, it has little application due

to both its cost and difficult implementation. Here, we would like

to make energy minimization feasible through suitable precondi-

tioners and effective implementation. In particular, to solve this

problem, we propose two strategies: a restricted Krylov subspace

iterative procedure and the null-space method. Both approaches

can be preconditioned to speed up the setup time. Finally, thanks to

some numerical experiments, we demonstrate how the convergence

rate can be significantly increased at a reasonable setup cost.
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1 INTRODUCTION
With the increasing availability of powerful computational resources,

scientific and engineering applications are becomingmore andmore

demanding in terms of both memory and CPU time. The current

simulation models may easily grow up to several millions or even

billions of unknowns and the efficient solution of the related sparse

linear systems of equations

Ax = b (1)

where A is a symmetric positive definite (SPD) matrix, may repre-

sent one of the most, and often the most [11, 16], expensive tasks

in any numerical application.

AMG is a very popular and effective iterative method for the

solution of (1). The main feature of AMG is its optimality, i.e., it

is characterized by a complexity that grows only linearly with the

system size. AMG is a very complex machinery made up of several

algorithmic components such as smoother, coarsening and prolon-

gation. In this contribution, we will focus on an improved algorithm

to build an accurate prolongation operator. This method was first

introduced in the early 1980s for the solution of Poisson problems

[2, 25]. In those pioneering works, the system unknowns were par-

titioned into Fine and Coarse variables, and the latter were used as

primary unknowns of the coarser problem. For historical reasons,

any AMG method performing coarsening through a coarse/fine

(C/F) partition is called Classical AMG. The fact that the constant

vector is a good approximation of the near-kernel of the Poisson

operator was exploited to build optimal solution strategies for these

matrices. Unfortunately, for other problems, such as structural me-

chanics, a larger near-kernel is required to achieve good results.

In the 1990s, the Smoothed Aggregation AMG (SA-AMG) method

was introduced to overcome this limitation. In contrast to Classical

AMG, in this case, the coarsening consists of aggregating several

fine nodes in one coarse level unknown and the interpolation oper-

ator is constructed by interpolating exactly a few approximations

of the near-kernel [26, 27]. Since then, many other multigrid varia-

tions have appeared in the literature, e.g., the element based AMG

family, with energy-minimization AMGe [6], element-free AMGe

[13] and spectral AMGe [9], but also the adaptive and Bootstrap

AMG (BAMG) [3, 4, 7, 10, 18], where the near-kernel of the operator

is approximated adaptively during the AMG setup stage. Despite

many differences, all the above methods perform coarsening based

https://doi.org/10.1145/3539781.3539796
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on a C/F partitioning or aggregation of the unknowns, hence the

common usage of distinguishing between classical or aggregation-

based AMG. For further reading on the AMG variants, we suggest

the review work of Xu and Zikatanov [28].

In this work, we focus on the prolongation, i.e., on the operator

interpolating the correction computed on a coarser level into a finer

one. Among other desirable features, it is of paramount importance

for the prolongation to interpolate low-frequency (i.e., smooth)

error components. Optimal prolongation has been derived follow-

ing this idea [5]. On the other side, minimizing an approximation

measure of the AMG operator leads to the definition of the ideal
interpolator, see [5, 29]. Beyond these theoretical properties, the

prolongation has to be sparse, to keep under control both the setup

cost of the single level and the overall complexities of the multigrid

framework. Here, we propose an efficient way to build a sparse

prolongation that approximately satisfies both the ideal and the

optimal requirements.

The remainder of this work is organized as follows. In Section 2,

a brief overview of the multigrid methods is presented, with a focus

on the key components, i.e., smoother and near-null space. Then,

in Section 3, we propose a strategy to improve the prolongation

operator based on energy minimization. Two algorithms to imple-

ment this energy minimization, i.e., the restricted Krylov subspace

method and the null space method, are presented and analyzed in

Section 4, where we also introduce the use of a preconditioner to

speed up the setup stage. After this, in Section 5, thanks to several

numerical results, we assess the performances of the enhanced

prolongation. Finally, some conclusions are drawn in Section 6.

2 CLASSICAL ALGEBRAIC MULTIGRID
The main components of any AMG method are: i) a multilevel

hierarchy, ii) an interpolation operator, iii) a smoother. The com-

plementary between coarse-grid correction and relaxation is the

reason behind the optimality of this class of solvers. In this work,

we adopt a classical AMG approach, where coarse variables are a

subset of the fine level variables.

The smoother is usually a stationary iterative method. Its task

is to reduce the high-frequency errors, i.e., the error components

along the eigenvectors with the largest eigenvalues of A. While

in many AMG methods the smoother is a point-wise relaxation

method, such as (block) Jacobi or Gauss-Seidel, in our multigrid

we adopt a factorized approximate inverse (FSAI), as described in

Janna et al. [15]. The FSAI preconditioner is given by

M−1 = FFT ≈ A−1
(2)

where F is computed to provide an optimal preconditioner, i.e., for

a chosen pattern, F minimizes the Frobenius norm of

∥I − FL∥F (3)

where L is the exact Cholesky lower factor of A = LLT .
Another key component of AMG is the near-null space, i.e., the

subspace of the smooth vectors, associated with the components

of the error that are not reduced by the smoother. Indeed, FSAI, as

long as any single level preconditioners, can accurately represent

only the higher part of the eigenspectrum of A, with the lower part

just roughly approximated. To build an effective AMG solver, we

need an accurate approximation of the subspace spanned by the

eigenvectors associated with the smallest eigenvalues of

I −M−1A = I − FFTA (4)

Generally, we start from an initial approximation, which is given

by rigid body modes in elasticity or the constant vector for Poisson

problems, and improve this initial guess through a Simultaneous

Rayleigh Quotient Minimization by Conjugate Gradients (SRQCG),

as introduced by [17] and used by [11].

The last component in AMG is the prolongation operator P .
Since the optimality of the multigrid method relies on the comple-

mentarity between smoothing and coarse-grid correction, it is of

paramount importance that the prolongation operator accurately

represents the low-frequency components of the error. In the lit-

erature, there are several approaches to build P . Among them, we

recall the ideal prolongation [29] and the optimal prolongation [5]

which are strongly connected with the proposed approach. In the

next section we will focus on a prolongation setup strategy, based

on energy minimization, that tries to combine the nice features of

the two aforementioned methods.

3 PROLONGATION SETUP THROUGH
ENERGY MINIMIZATION

Before focusing on energy minimization, we briefly recall the guide-

lines for optimal prolongation construction. Given the generalized

eigenproblem:

Av = λMv (5)

the optimal prolongation is constructed by collecting in the rect-

angular matrix V the eigenvectors associated with the nc smallest

eigenvalues, where nc is the size of the coarse set:

Popt = V (6)

Clearly, in a practical setting, the generalized eigenproblem is solved

only approximately for a few eigenpairs, nv , and it is required that

the range of prolongation includes this reduced size V .

From this simplification, it is then possible to construct the en-

ergy minimizing prolongation following the two guidelines below:

(1) on one side, in line with the optimal prolongation, the range
of prolongation must includeV , the approximate near kernel

of A:

V ⊆ range(Popt) (7)

(2) on the other side, in line with the ideal prolongation con-

struction, the energy of each column of P is minimized over

the set of all possible prolongations having a given non-zero

pattern P:

P
ideal
= argmin

P ∈P

(
tr(PTAP)

)
(8)

Being P
ideal

a dense matrix, it is important to define a non-zero

patternP for the prolongation operator. There are several strategies

to define this non-zero pattern [5], however, this topic is beside

the scope of this work and only one method to build P will be

presented below.

The idea of energy minimization AMG has been exploited for

both symmetric and non-symmetric operators in several works, see

for instance [19, 20, 23, 24], and, though requiring some additional

effort in the setup, gives rise to improved preconditioners.
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Suppose that a C/F partition of the unknowns of A has already

been found with nf fine nodes and nc coarse nodes (collected in

the F and C sets, respectively), and that A has been ordered ac-

cordingly:

A =

[
Af f Af c
ATf c Acc

]
(9)

where Acf = ATf c since A is SPD. In the context of classical AMG,

the prolongation takes the form:

P =

[
W
I

]
(10)

so that only the entries inW have to be computed. We assume that

a Strength of Connection (SoC) [22] matrix is available, and we

denote by S the binary matrix representing the non-zero pattern

of SoC after filtering out the weak connections. Suppose now that

we have already computed a tentative prolongation P0, the non-

zero pattern of the final prolongation must be chosen. One way to

determine P is by computing this product between binary matrices:

P = SkP0 (11)

for a small power k (typically k = 1), and enforcing the pattern of

the identity for the block of coarse unknowns.

Condition (7) is equivalent to require the existence of a rectan-

gular matrix, X with the same number of columns of V , such that

PX = V . Using the C/F splitting defined in (9), the near kernel of V
is partitioned as:

V =

[
Vf
Vc

]
(12)

Using the definition of P in (10), it is possible to write:{
WX = Vf
X = Vc

(13)

and the ability to interpolate low-frequency errors expressed in

((7)) reads:

W Vc = Vf (14)

which can be viewed as a set of nf conditions on the rows ofW .

By denoting aswT
i and vTi the i-th rows ofW and V , respectively,

condition (14) can be written as:

VT
c wi = vi ∀i ∈ F (15)

By exploiting the fact that P must be sparse, and thus a fine node

has to be interpolated using just a few coarse nodes, we can rewrite

(15) considering only the nonzeros ofwi :

Vc (Ji , :)
T w̃i = vi ∀i ∈ F (16)

where w̃i are small vectors collecting nonzeros ofwi , and Ji is the

set of column indices of the prescribed nonzeros of the i-th row of

W . The matrix Vc (Ji , :), which is a dense submatrix of Vc has ntv
columns, with ntv the number of test vectors. It is important to

note that the nf constraints (16) are completely independent each

other, that is each unknown row wT
i ofW must satisfy only one

constraint.

On the other side, minimizing (8) is equivalent to minimizing

the energy of the individual columns pi of P :

pi = argmin

p∈P
pTAp ∀i ∈ C (17)

Denoting by Ii the set of nonzero row indices of the i-th column

ofW , and by h̃i the vector collecting the nonzero entries of the i-th
column ofW , the minimization above is equivalent to solving:

A(Ii ,Ii )h̃i = −A(Ii , i) ∀i ∈ C (18)

As before, we note that each column of P can be found indepen-

dently from the others, by solving a small dense linear system of

equations.

The pair of conditions 1 and 2 gives rise to a constrained mini-

mization problem, whose solution is the desired energy minimal

prolongation with a range matching the near kernel and respecting

the prescribed non-zero pattern P. We stress that this approach, as

many other AMG approaches, requires a sparse prolongation to be

feasible. If too many non-zeroes are included in P , the minimization

would become practically impossible and the AMG application too

expensive.

A widely-used class of methods to solve this kind of problems

are the Lagrange multipliers, which reduce the constrained mini-

mization problem to the solution of a saddle point system:[
K B

BT 0

] [
p
λ

]
=

[
f
д

]
(19)

In the expression (19), p is the vector form of the prolongation en-

tries that we are computing, λ is the vector of Lagrange multipliers

(the auxiliary variable used to impose the constraint and that we

do not really need to know), K is a block diagonal matrix collecting

the small and dense matrices A(Ii ,Ii ) for every column of P , B
is a matrix collecting Vc (Ji , :) for every row or P , f is a vector

collecting −A(Ii , i) for every column of P and, finally, д is a vector

collecting ṽi for every row or P .
Note that, both K and B can be sorted so that they become

block diagonal matrices. If we number the nonzero entries of P
by columns, then K is block diagonal, conversely, if we number

by rows, than B is block diagonal, but unfortunately, there is no

sorting able to produce two block diagonal matrices at the same

time.

4 SOLUTION ALGORITHMS
The saddle-point linear system (19) that arises from the energy

minimization is a classical problem in numerical linear algebra. To

solve it, there are several techniques available in the literature. In

this context, the key factor is represented by the efficiency. In fact,

solution to (19) is only a part of the AMG setup, so that, if we want

a competitive method, we must solve this problem very quickly.

We propose two possible solution algorithms:

• a restricted conjugate gradient;

• the null space method.

The former has been originally proposed in [23] while the latter is

a classical method to solve saddle-point systems [1]. We show that,

with a specific choice of the null space and using the conjugate

gradient on the reduced systems, the two methods are equivalent

and require the same number of iterations to reach the desired

accuracy. Finally, we show how preconditioning can be used to

accelerate convergence.
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4.1 Solution through restricted conjugate
method

We perform energy minimization starting from a tentative prolon-

gation, P0, that already satisfies the near kernel constraints. In other

words, by denoting by p0 the initial prolongation in vector form,

we assume p0 is such that:

BTp0 = д (20)

This condition can always be guaranteed, provided that the prolon-

gation pattern is large enough that BT is full rank.

Defining the final prolongation as the tentative prolongation p0

plus the correction ∆p, the problem can be recast as that of finding:

∆P = argmin

∆Ptrial∈P
tr

(
(P0 + ∆Ptrial)

TA(P0 + ∆Ptrial)
)

(21)

subject to the constraint

BT ∆p = 0 (22)

By recalling that ∆P has nonzero components only inW , that is

∆P =
[
∆WT

0

]T
, and using the C/F partition (9), we can write:

tr((P0 + ∆P)
TA(P0 + ∆P)) =

= tr(∆WTAf f ∆W ) + 2tr(WT
0
Af f ∆W ) + 2tr(ATf c∆W )+

+tr(WT
0
Af fW0) + 2tr(ATf cW0) + tr(Acc )

(23)

where the last three terms are independent of the increment ∆P .
Thus the problem becomes that of minimizing:

δwTKδw + 2wT
0
Kδw + 2f T δw (24)

subject to the constraint BT δw = 0, where K and f are defined as

in (19) and δw is the vector form of ∆W .

The minimization above can be performed using the (precondi-

tioned) conjugate gradient (CG), as suggested in Olson et al. [23],

ensuring that the initial solution and the search direction satisfy

the constraint, namely equations (20) and (22) are satisfied.

By defining the projection orthogonal to B:

ΠB = I − B(BT B)−1BT (25)

any vector that is projected by ΠB satisfies the homogeneous con-

straint (22):

BTΠBx = 0, ∀x (26)

and allow us to define a restricted linear system which is solvable

though CG:

ΠBKΠB∆w = −ΠB (f + Kw0) (27)

starting from ∆w = 0. Due to its block diagonal structure, it is

easy to find a QR decomposition of B, B = QR, and the projection

becomes:

ΠB = I −QQT
(28)

By denoting KΠ = ΠBKΠB and
¯f = f + Kw0, the Krylov subspace

that is constructed by CG is:

Km = span{ΠB ¯f ,KΠ
¯f ,K2

Π
¯f , . . . ,Km

Π
¯f } (29)

The CG pseudocode is provided in algorithm 1. The same projection

can be applied to a nonsymmetric Krylov subspace method, such

as GMRES, allowing for the extension of the energy minimization

procedure to the case of non-symmetric A.

Algorithm 1. CG for energy minimization

1: procedure EMIN_CG(maxit,K ,ΠB ,w0,w)

2: ∆w = 0;

3: r = ΠB (f + Kw0);

4: for i = 1, . . . , maxit do
5: γ = rT r ;
6: if i = 1 then
7: y = r ;
8: else
9: β = γ/γold ;
10: y = r + βy;
11: end if
12: γold = γ ;
13: ỹ = ΠBKy;
14: α = γ/yT ỹ;
15: ∆w = ∆w + αy;
16: r = r + αỹ;
17: end for
18: w = w0 + ∆w ;

19: end procedure

4.2 Solution through the null space method
Another solution strategy to (19) is the use of the null space method

[1]. To follow this idea, we need a null-space for BT , that is Z such

that BTZ = 0, and a particular solution p̂ such that BT p̂ = д. After
defining the general solution as:

p = Zv + p̂ (30)

and substituting this expression for p into the first block of equa-

tions of (19), after pre-multiplying by the full-rank matrix ZT , we
have:

ZTKZv = ZT (f − Kp̂) (31)

which is an SPD system of reduced size n −m in the unknown v .
Once v is known, the final value of p can be easily recovered using

(30).

Finding a suitable Z in our case is relatively cheap, since we

can easily compute a QR decomposition of B, since it consists of a
set of nf blocks of ntv columns which are orthogonal each other.

Once the QR decomposition QR = B is computed, we set Z =
[qm+1qm+2 . . .qn ], with qi the i-th column ofQ , thus guaranteeing

that BTZ = 0. As in the previous case, we can assume that we

already have a tentative prolongation p0 satisfying B
Tp0 = д and,

if this is not the case, we can easily recover it. Note that the matrix

ZTKZ needs not to be formed, as its product times a vector is more

economically performed through the successive multiplication by

Z , K and ZT , and the use of CG is the most effective option.

4.3 Equivalence between the restricted
conjugate gradient and the null space
method

Using CG for solving the nullspace system ZTKZv = ZT (f − Kp̂)
is equivalent to applying restricted CG. In fact, recalling that Q ∈

Rn×m in (28) and Z ∈ Rn×(n−m)
in (30) are disjoint parts of the
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complete QR factorization of B:

B = [Q,Z ]

[
R
0

]
(32)

it is immediately seen that QQT +ZZT = I , that allows us to write

the projector ΠB as:

ΠB = I −QQT = ZZT (33)

The restricted CG iteration matrix thus becomes ΠBKΠB =

Z
(
ZTKZ

)
ZT , which clearly hasm null eigenvalues, whose eigen-

vectors span the range of Q . The non-trivial eigenvectors v can be

written as linear combination of the columns of Z :

v = Zw (34)

giving rise to the following eigenproblem:

Z
(
ZTKZ

)
ZTv = Z

(
ZTKZ

)
ZTZw = λZw (35)

which, after noting that ZTZ = I , clearly shows that the nonzero

part of the eigenspectrum of ΠBKΠB is the same as the eigenspec-

trum of ZTKZ .

4.4 Preconditioning
Preconditioning is used to accelerate the iterative solution to (31).

We refer to the null space system ZTKZ as the two methods are

equivalent. Two viable options that we explore are the following:

(1) using a Jacobi preconditioner of ZTKZ . Note that forming

the entire matrix ZTKZ is not necessary, but only its diago-

nal entries can be computed;

(2) using the projection over Z of an effective preconditioner of

K , that is preconditioning with ZTM−1Z with M−1 ≃ K−1
.

Note that, due to the block diagonal structure of K ,M−1
is

easily computable also in the form of an exact or incomplete

Cholesky factorization of K .

We notice that projecting an effective preconditioner for K onto Z
is not guaranteed to be a good choice. We found experimentally

that this choice is quite effective, as will be shown in the numerical

examples, and its theoretical explanation is the focus of ongoing

research.

4.5 Observations
Supposing that P has on average r nonzeros per row, the matrix

K in (19) would be of size n = r nc
nf
nc = r nf , while B would

havem = nf ntv columns. Hence, the overall dimension of K and

B is significantly much larger than that of the original system.

From our numerical experiments, we have observed that K easily

reaches 20 times the nonzeros of A in elasticity problems. For this

reason, the solution of (19) has to be performed with special care,

taking advantage of its special structure. In some circumstances it

may also be useful to apply K and B in a matrix free fashion, i. e.,

without explicitly storing them in memory but grabbing the needed

entries directly from A and V whenever necessary. The main issue

of this matrix free approach is that, if we want to use a projected

preconditioner for K , then we must compute it from scratch at

every application.

Table 1: Size and number of non-zeroes of the matrices used
in the tests. The application giving to the problem is also
provided.

Matrix source n nnz nnz/row

Cube_105k elasticity 105,597 4,079,357 38.63

Cube_739k elasticity 739,167 29,610,351 40.06

Cube_5317k elasticity 5,317,443 222,268,213 41.80

Mech_447k elasticity 447,703 18,243,793 40.75

finger4m porous flow 4,718,592 23,591,424 5.00

Pflow_742 porous flow 742,793 37,138,461 50.00

cavity CFD 1,000,000 6,940,000 6.94

5 NUMERICAL EXPERIMENTS
The implementation used in the numerical tests is based on a C++

library implementing all the most compute-intensive kernels. The

library exploits a shared-memory parallelization through OpenMP

directives [8] and is called by MATLAB [21] thanks to a MEX (MAT-

LAB executable) interface. All the numerical examples have been

run on a local server running Ubuntu 20.04, equipped with a dual

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with ten cores each,

and 64 GB of RAM. Even though part of the implementation is still

in native MATLAB and sequential, all 20 cores have been used in

the parallelized part of the algorithm. We remind that since the im-

plementation is still under development, timings are only provided

to show the relative advantage of the proposed approach over a

more traditional one, but further improvements are still possible

with a fully parallel and optimized implementation.

Below, we show some results obtained on a few matrices arising

from both elasticity and Poisson problems using different levels of

refinement. The size and the number of non-zeroes of the matrices

are shown in Table 1. We first define a baseline for both elasticity

and flow problems. For the former we use the smoothed-BAMG

prolongation (SMBAMG) and for the latter the extended+i interpo-

lation (EXTI) that are the recommended methods in the Chronos

package [12, 14]. We adopt a preconditioned conjugate gradient

(PCG) as Krylov solver preconditioned with a single V(1,1)-cycle

of AMG. The iterative procedure stops when the relative residual

norm is reduced by 8 orders of magnitude. To compare different

runs, the performances are measured in terms of iterations count

(nit ), number of AMG levels (nl ) and grid (Cдd ) and operator (Cop )
complexities. These complexities consist of the sum overall levels

of the number of rows/entries of the operators, respectively. Finally,

timings are reported for the prolongation setup and PCG solution

stages, named TP and Ts , respectively.
First, we analyze the so called Cube tests, a linear elasticity bench-

mark consisting in a tetrahedral discretization of a cube with three

levels of refinement (see Figure 1) whose results are shown in Ta-

ble 2. EMIN(X) denote the use of X iterations of restricted CG to

minimize prolongation energy. We see that just a few iterations

are enough to be more effective than the standard SMBAMG: the

number of iterations nit are almost halved without increasing the

operator complexity Cop and both prolongation setup and solution

times, TP and Ts respectively, are reduced. The convergence pro-
files for the preconditioned conjugate gradient using AMG with
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Figure 1: Mesh for the Cube tests. The three test cases are
obtained through successive refinement levels.
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Figure 2: Converge profiles for the Cube_739k linear elastic-
ity benchmark.

different prolongations for the case Cube_739k are shown in Figure

2. The effectiveness of the energy minimization process can be

easily noticed. Moreover, we point out that the effectiveness of the

energy minimization increases with the problem size as well as

the speed-up of EMIN over SMBAMG. The EMIN method proved

effective also on the industrial test case Mech_447k (see Figure 3)
and the same considerations made above in terms of speed-up hold.

Now, we refer to the application of the EMIN method to Poisson

problems, where the results seem more controversial. In two test

cases, finger4m and Pflow_742, the EMIN method proves more

effective than the standard EXTI. As seen before for the mechanical

problems, the number of iterations needed to reach the solution is

almost halved, but the cost for the prolongation setup is slightly

larger than the standard EXTI. In any case, the benefit in the so-

lution phase is such that the overall speed-up remains large. On

the other hand, in the last test case cavity the EMIN method does

Figure 3: Mesh for the Mech_447k industrial study case. It
consists in a poorly constrained steel hook discretized with
tetrahedral finite elements.

Table 2: Comparison between different prolongation algo-
rithms P −type on the test cases reported in Table 1. For each
run, the following information are provided: the number of
PCG iteration nit and the number of AMG levels nl , the grid
Cдd and operator Cop complexities, the prolongation setup
time TP and the iteration time Ts , in seconds.

Matrix P − type nit (nl ) Cдd /Cop TP Ts

Cube_105k SMBAMG 35 (3) 1.06/1.53 0.9 1.0

Cube_105k EMIN(2) 23 (3) 1.06/1.50 0.7 0.6

Cube_105k EMIN(5) 18 (3) 1.06/1.50 0.8 0.5

Cube_739k SMBAMG 58 (4) 1.06/1.60 10.6 12.4

Cube_739k EMIN(2) 36 (4) 1.06/1.51 5.1 7.3

Cube_739k EMIN(5) 24 (4) 1.06/1.51 5.8 5.1

Cube_5317k SMBAMG 157 (4) 1.04/1.28 68.7 229.4

Cube_5317k EMIN(2) 82 (4) 1.04/1.28 30.6 111.5

Cube_5317k EMIN(5) 45 (4) 1.04/1.28 38.4 71.0

Mech_447k SMBAMG 42 (3) 1.04/1.27 4.2 15.5

Mech_447k EMIN(5) 33 (3) 1.04/1.27 4.4 13.7

finger4m EXTI 29 (5) 1.41/2.35 8.8 25.7

finger4m EMIN(5) 14 (5) 1.40/3.08 15.2 13.0

Pflow_742 EXTI 505 (4) 1.22/4.01 33.9 216.9

Pflow_742 EMIN(5) 268 (4) 1.23/2.85 38.2 75.6

cavity EXTI 12 (4) 1.33/3.91 4.2 2.2

cavity EMIN(5) 13 (4) 1.32/6.99 7.6 2.8

not represent a valid alternative to EXTI: the setup cost increases

but there is no benefit in the solution phase. We observe, however,

that in this test case EXTI interpolation was already very effective

requiring a very low number of iterations for convergence, so it is

very difficult to improve its performance. The EMIN procedure is

then recommended for tough test cases only.
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6 CONCLUSIONS
In this work an energy minimization-based prolongation has been

presented to improve AMG effectiveness. The technique is not com-

pletely new, as it has already been presented in [23], but our con-

tribution stands in making it feasible in real applications through a

detailed analysis, the use of appropriate preconditioners to acceler-

ate the convergence of the constrained minimization problem and

effective implementation. Two approaches have been discussed:

a restricted Krylov subspace iterative method and the null space

method coupled with a standard iterative algorithm. The two meth-

ods turn out to be equivalent, thus the same considerations on

preconditioning effects hold for both.

The numerical results on large test cases show an improved

convergence for the AMG based on a prolongation enhanced by

energy minimization, especially in hard problems.

A distributed memory implementation of the proposed approach

is under development and will be included in the Chronos library

[12, 14] to be used in large-scale applications on modern supercom-

puters.

The next steps of our research will concern:

• the investigation of different options to build the initial pro-

longation pattern P;

• the minimization of approximated energy expressions able

to reduce setup time and memory footprint with acceptable

differences in the overall convergence rate;

• the use of relaxed constraints to facilitate the energy min-

imization procedure without threatening the overall AMG

effectiveness.
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