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SUMMARY

The main topic of this thesis concerns temporal logics, with partic-
ular attention to their expressive power and to the satisfiability and
realizability problems.

Temporal logics are nowadays a well-established formalism for
expressing properties about sequences. Their connection with first-
and second-order logic, automata and formal verification makes tem-
poral logics not only a powerful theoretical framework, but also a
valuable tool in practical scenarios (e.g., for the specification of con-
current systems). On the theoretical side, one typical problem when
dealing with a temporal logic is to characterize exactly its expressive
power, that is to give the set of all and only the properties that it can
formalize. On a more practical side, there are two important prob-
lems that are considered when using temporal logics as specification
languages: (i) the satisfiability problem, that is finding whether a
given formula admits at least one model; and (ii) the realizability
problem, namely to find whether a given formula is implementable.
In formal verification, satisfiability can be used as a sanity check
for detecting vacuous specifications (i.e., valid or unsatisfiable for-
mulas), while realizability can be used to check the existence of
correct-by-construction implementations (and their consequent syn-
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thesis).
In this thesis, we try to stay in the intersection between the the-

oretical and the practical sides of temporal logics, by accompanying
the theoretical results (whenever possible) with algorithms, imple-
mentations and experimental evaluations.

Theory We introduce three fragments of Linear Temporal Logic
with Past (LTL+P) and study their expressive power: (i) for the first
fragment (called LTLEBR+P), we prove that it is expressively com-
plete with respect to the (semantically) safety fragment of LTL+P
(a safety property is a property in which a violation is irremedi-
able); (ii) the second fragment (called LTLEBR) is obtained from
LTLEBR+P by removing past operators; we prove that LTLEBR is
strictly less expressive than full LTLEBR+P; (iii) the third fragment
is called GR-EBR and it is an extension of LTLEBR+P for expressing
properties beyond the safety fragment; we compare its expressive
power with the Temporal Hierarchy of Manna and Pnueli. In ad-
dition we propose a first-order syntactical characterization (called
Safety-FO) that captures the semantically safety fragment of the
first-order logic of one successor: this result can be considered as
the version of Kamp’s Theorem for safety properties.

Problems and Algorithms We consider the satisfiability prob-
lem of LTL+P and the realizability problem from LTLEBR+P and
GR-EBR specifications. Particular attention is devoted to the use
of symbolic algorithms instead of classical explicit-state ones. We
implement all the algorithms that we propose and we compare them
with competitor tools. From the outcomes of the experimental eval-
uations, it is often evident that our symbolic techniques can solve
instances of sizes that are prohibitive for the other tools based on
an explicit-state representation.

Last but not least, we consider an industrially relevant problem
in the context of real-time requirements (i.e., properties expressing
not only the ordering between events but also the amount of time
elapsed between two events). We define and formalize the compat-
ibility problem of timed requirements, give symbolic algorithms for
this problem, and implement and evaluate the proposed procedure.



SOMMARIO

L’argomento principale di questa tesi riguarda le logiche temporali,
con particolare attenzione alla loro potenza espressiva e ai problemi
di soddisfacibilità e realizzabilità.

Le logiche temporali sono oggigiorno un formalismo ben consol-
idato per esprimere proprietà su sequenze. La loro connessione con
logiche al primo e second’ordine, con gli automi e con la verifica
formale ha reso le logiche temporali non solo un potente framework
teorico, ma anche un prezioso strumento pratico (per esempio per
la specifica di sistemi concorrenti). Sul lato teorico, uno dei tipici
problemi quando si lavora con una logica temporale è di caratter-
izzare esattamente la sua potenza espressiva, cioè di dare l’insieme
di tutte e sole le proprietà che essa è in grado di formalizzare. Su
un lato più pratico, ci sono due importanti problemi che vengono
considerati quando si usano le logiche temporali come linguaggi di
specifica: (i) il problema di soddisfacibilità, cioè stabilire se la for-
mula data ammette almeno un modello; e (ii) il problema di realizz-
abilità, cioè stabilire se la formula data è implementabile. In verifica
formale, la soddisfacibilità può essere usata come un controllo per
individuare specifiche vacue (cioè formule valide o insoddisfacibili),
mentre la realizzabilità può essere usata per controllare l’esistenza
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di implementazioni corrette per costruzione (e la loro conseguente
sintesi).

In questa tesi, cerchiamo di porci nell’intersezione tra il lato
teorico e quello pratico delle logiche temporali, accompagnando i
risultati teorici (quando possibile) con algoritmi, implementazioni e
valutazioni sperimentali.

Teoria Introduciamo tre frammenti della Logica Temporale Lin-
eare con Passato (LTL+P) e studiamo la loro potenza espressiva:
(i) per il primo frammento (chiamato LTLEBR+P) dimostriamo che è
espressivamente completo rispetto al frammento safety semantico di
LTL+P (una proprietà si dice essere di safety se ogni sua violazione
è irrimediabile); (ii) il secondo frammento (chiamato LTLEBR) è ot-
tenuto da LTLEBR+P rimuovendo gli operatori al passato; dimos-
triamo che LTLEBR è strettamente meno espressivo di LTLEBR+P;
(iii) il terzo frammento è chiamato GR-EBR ed è un’estensione di
LTLEBR+P per esprimere proprietà che vanno oltre al frammento
safety; confrontiamo la sua potenza espressiva con la Temporal Hier-
archy di Manna e Pnueli. Inoltre proponiamo una caratterizzazione
sintattica al prim’ordine (chiamata Safety-FO) che cattura il fram-
mento safety semantico della logica al prim’ordine con un successore:
questo risultato può essere considerato come la versione del Teorema
di Kamp per proprietà safety.

Problemi e Algoritmi Consideriamo il problema di soddisfaci-
bilità per LTL+P ed il problema di realizzabilità per specifiche di
LTLEBR+P e GR-EBR. Particolare attenzione è rivolta all’uso di al-
goritmi simbolici al posto di quelli classici espliciti. Implementiamo
tutti gli algoritmi che abbiamo proposto e li confrontiamo con gli
altri tool concorrenti. Dai risultati delle valutazioni sperimentali, è
spesso evidente che le nostre tecniche simboliche riescono a risolvere
istanze di dimensioni che sono proibitive per gli altri tool basati su
una rappresentazione esplicita.

Ultimo, ma non per importanza, consideriamo un problema di
rilevanza industriale nel contesto di requisiti real-time (cioè proprietà
che esprimono non solo l’ordine tra gli eventi ma anche la quantità di
tempo passata tra i due). Definiamo e formalizziamo il problema di
compatibilità di requisiti temporizzati, diamo degli algoritmi simbol-
ici per questo problema, e implementiamo e valutiamo la procedura
proposta.
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1

INTRODUCTION

Formal logic, also referred to as mathematical logic, offers an un-
ambiguous language for formalizing human and mathematical rea-
soning. Formal logic stands at the basis of computer science. Their
connection is so strong to have brought some of the most renowned
researchers on this areas to state that [111]:

Logic has turned out to be significantly more effective in computer
science than it has been in mathematics.

Among the fields of study standing at the intersection between for-
mal logic and computer science, there is the research on temporal
logics and automata theory, whose goal is to study properties of se-
quences (defined as linear orders) or more general structures, with
different formalisms. Over the years, the results obtained in these
two fields of study influenced and have been influenced by formal
verification, the study of formal and mathematical tools for the de-
velopment of correct systems, ranging from digital circuits to cyber-
physical systems. While temporal logics and automata theory can
arguably be considered as being more theoretical, formal verification

3



4 Chapter 1. Introduction

requires techniques that work well in practice, that is, for example,
fast and efficient algorithms.

In this thesis, we investigate and propose some techniques, theo-
rems and algorithms that stand in the intersection between tempo-
ral logics, automata theory and formal verification. Particular effort
will be devoted to accompany the theoretical results, wherever pos-
sible, with experimental evaluations that show the impact of our
algorithms in practice.

In this chapter, we want to give an introduction as self-contained
as possible to the topics of this thesis.

1.1 A Brief History of Logic and Com-
puter Science

The connection between logic and computer science is so tight that,
actually, logic constituted the core for the birth of computer sci-
ence. This is perfectly summarized by the following quote by Georg
Gottlob [109]:

Computer Science is the continuation of Logic by other means.

Going back to the roots of formal logic, and actually to the roots
of computer science, it is impossible not to mention Gottfried Leib-
niz, the creator (together with Isaac Newton) of the infinitesimal
calculus. Leibniz, in what Martin Davis defines as the Leibniz’s
Dream [64], aspired to create what he called the characteristica uni-
versalis, a formal language able to embrace the whole human knowl-
edge, extended with a calculus, called calculus ratiocinator, for en-
taling only true consequences starting from known facts. Leibniz’s
dream is summarized in the following famouse quote by him:

[. . . ] if controversies were to arise, there would be no more need of
disputation between two philosophers than between two calculators.
For it would suffice for them to take their pencils in their hands

and to sit down at the abacus, and say to each other (and if they so
wish also to a friend called to help): Calculemus!

From this quote, it is already clear how Leibniz’s dream was about
the mechanization of reasoning. Despite being far from developing
his characteristica universalis, Leibniz made fundamental progress
in the calculus ratiocinator, which led to what was probably the first
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formal language: its main intuition was to use an algebraic notation
for logic to denote operations over concepts, just like it is used in
arithmetic for denoting operations over natural numbers.

The algebraic notation of Leibniz was then formalized by George
Boole, in its book The laws of Thought [27], and resulted in what
is nowadays called Boolean algebra, or, equivalently, propositional
logic. One of the most important limitations of Boolean algebra is
that it is not able to distinguish, for example, between the statement
“there exists a researcher that works on logic” and the statement
“all researchers work on logic”. This limitation was overcomed by
Gottlob Frege, in its Begriffsschrift [94], by introducing the quantifi-
cation on predicates. Frege based its logic on the algebraic notation
of Boole but introducing also the two symbols ∃ and ∀ to denote the
existence and the totality of the elements. The resulting formalism
is what nowadays is called first-order logic.

Frege is also known for being the first advocate of logicism, the
school of thought according to which arithmetic, and in general the
entire mathematics, can be formalized (or better, axiomatized) in
logic. In his Grundgesetze der Arithmetik [95], he claimed that he
had succeeded in proving the reduction from arithmetic to logic.
Nonetheless, famous is the letter by Bertrand Russell to Frege stat-
ing that some axioms in Frege’s proof could be used for deriving a
contradiction, thus breaking down the consistency of its theory for
an axiomatization of arithmetic. That letter reports what is nowa-
days called Russell’s Paradox, stating that if S is defined as the set
of sets that do not belong to themselves, then S belongs to itself if
and only if S does not belong to itself. This paradox undermined
the foundations of set theory.

After the flaw in Frege’s proof became known among the math-
ematicians, a large class among them began to ask whether math-
ematics as known until then was consistent at all, in the sense of
whether it was not self-contradictory. Given the apparent difficul-
ties in creating stable foundations for mathematics, many spoke of
a crisis of foundations of mathematics.

In 1900, David Hilbert, one of the most influential mathemati-
cians of modern times, proposed 23 problems to the community. In
the preface, the motivations for the introduction of those problems
were clear: showing that any problem is solvable. Hilbert’s belief
was really that for any problem it is always possible to prove, in a
finite number of unambiguous steps (with what nowadays is called
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an algorithm), its truth or its untruth. Hilbert’s motto was the
following:

We must know
We will know

The coherence of arithmetics stood in the second place of Hilbert’s
list. Later on, in 1928, along with his students John von Neu-
mann and Wilhelm Ackermann, Hilbert proposed two main prob-
lems about logic, that would help to solve the coherence of arith-
metics. The first one was about proving the completeness of first-
order logic, that is proving whether for any (semantically) true sen-
tence expressible in first-order logic, there exists a finite proof of
its truth starting from the axioms and using deduction rules (syn-
tactical truth). The second problem is called Decision Problem (or
Entscheidungsproblem), and asks whether for any sentence written
in the language of first-order logic, there exists a finite proof of its
truth or its untruth starting from the axioms and using deduction
rules. In other words, the decision problem asks to find whether, for
any sentence, either its truth or its untruth is provable.

In 1929, in his PhD thesis [110], Kurt Gödel proved the complete-
ness of first-order logic, thus giving a positive answer to the first of
Hilbert’s questions of 1928. But the real revolution started in 1931,
with the proof by the same Kurt Gödel that there exists unprov-
able statements in all the logic systems powerful enough to express
Peano arithmetics. This is also known as the first incompleteness
theorem [108]. Using this result, Gödel proved also that the consis-
tency of arithmetic, which is the second among Hilbert’s problems,
is unprovable within the theory of arithmetic itself. This results
is known as second incompleteness theorem [108]. The two incom-
pleteness theorems are commonly recognized as the end of Hilbert’s
program of giving consistent logical foundation of the entire mathe-
matics.

The Entscheidungsproblem, the second of the 1928’s problems by
Hilbert, required a mechanization of the calculus: given a sentence,
the problem asks to find a proof of its truth or untruth that is so
simple that it can be executed by a machine. This challenge pushed
a group of logicians to investigate the real nature of computation, in
order to formally answer to the question what is really a machine?
Among those researchers, Alonzo Church and Alan Turing proposed
two different models of computation, nowadays called λ-calculus [42]
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and Turing Machines [194], respectively, that with very simple steps
are able to carry out complex tasks. This is generally recognized as
the birth of computer science. Despite being very different, the two
formalisms were proved to be equivalent. Most importantly, Tur-
ing machines are so general that there exists a type of them, called
Universal Turing Machines, that can solve themselves all possible
problems that any other Turing machine can solve. Given this gen-
erality, and also the difficulty in finding more powerful formalisms,
it is generally believed that each problem that can be solved by a
machine, can be solved by a Turing machine (or equivalently by
λ-calculus) as well. This is known as Church-Turing thesis.

In the same 1936’s paper introducing his new machines [194],
Turing also proved that there exist undecidable problems, that is
problems that cannot be solved by any Turing machine. The Halting
Problem asks to find whether, given a Turing machine and a string
as input, that Turing machine terminates when reading that input.
Turing proved that the halting problem is undecidable, that is, there
does not exists any Turing machine that solves this problem. This
is closely related to the first incompleteness theorem by Gödel, but
it extends it in some sense by formalizing the notion of computation
and by proving that there exist statements whose truth or untruth
cannot be derived by any machine (under the Church-Turing thesis).
Interestingly, Gödel and Turing used the same technique for their
proof of the first incompleteness theorem and the undecidability of
the halting problem, respectively. The proof uses an argument called
diagonalization, which was first used by Georg Cantor for proving
that the set of all sets of natural numbers is greater than the set of
natural numbers, and, consequently, that there exist infinitely many
transfinite numbers.

1.2 The Theory of Linear Orders

In the previous section, we have seen that, by the first incompleteness
theorem of Gödel and the negative answer of the Entscheidungsprob-
lem by Turing, first-order logic in undecidable. This result gave rise
to a fruitful line of research focusing on finding decidable fragments
of first-order logic, that is logics that are weaker than the full first-
order logic but for which there is an algorithm for deciding the truth
or the untruth of each sentence of the logic. It turned out that, if one
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restricts the theory of the logic, that is the domain of the interpreta-
tion and the interpretation of all symbols except from the variables,
one can obtained decidable fragments also in the second-order logic,
that is the logic obtained from the first-order one by allowing the
Frege’s quantifiers ∃ and ∀ to be applied also to n-ary relations, and
not only to variables. One of the most known examples, which re-
vealed central for the birth of formal verification, is the theory of
Sequential Calculus.

1.2.1 Sequential Calculus

Sequential Calculus [44, 34] is a logical formalism for specifying prop-
erties of sequences (or, equivalently, linear orders). The first use of
Sequential Calculus can be traced back to Church [44], who sug-
gested to use it for specifying properties of sequential circuits (hence
its name). In particular, he proposed to specify the relation over
time A(i, o) between the input i and the output o of a sequential
circuit by means of a formula ϕ(i, o) of Sequential Calculus.

Time is so the crucial common point for modeling sequential
circuits with Sequential Calculus: the behaviors over time of the
formers are modeled by the latter by means of a finite or infinite
linear order. Formally, this corresponds to fixing the theory of the
logic: in Sequential Calculus, the domain is fixed to be N (the set of
natural numbers), terms can be constructed only with the functional
symbol +1 (interpreted as the successor function) starting from the
constant symbol 0 (interpreted as the constant 0), and formulas can
either compare two terms with the symbol < (interpreted as the
strictly less relation), or be more complex formulas using Boolean
connectives, first-order quantifiers (like ∃x and ∀x) ormonadic quan-
tifiers (like ∃X and ∀X, where X denotes a set). For this reason,
Sequential Calculus is often referred to as the Monadic Second-order
Theory of One Successor, or S1S, for short.

Reactive Systems and Infinite Time

Circuits and, in general, cyber-physical systems are not closed-loop
systems, but ruther open-loop systems, in the sense that they con-
tinuously maintain an interaction with an environment and their
actions influence and are influenced by the actions of the environ-
ment: systems of this type fall under the name of reactive systems.
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A reactive system is a system that is expected to maintain an on-
going interaction with the environment, rather than to produce a
value on termination. Some reactive sytems are not even expected
to terminate: this is the case, for example, of operating systems or
processes controlling nuclear plants [141]. For this reason, typically
the exact duration of the working cycle of these type of systems is
unknown or too long to be precisely estimated. Therefore, the com-
mon assumption is to consider the duration of their working time
to be really infinite. It follows that a good formalism for modeling
reactive systems must have the possibility to specify requirements
that constrain the behavior of the system even for an infinite amount
of time. As we will see, Sequential Calculus is one of these, and this
is the reason why it is usually interpreted over infinite linear orders,
rather than on finite ones. With Sequential Calculus is thus possible
not only to formalize properties that constrain a finite interval of the
behavior of a circuit, like for example:

In the first three states, the output bit of the circuit must be low.

but also properties that constrain the behavior of the circuit for an
infinite amout of time, like for instance the following requirement:

For each request in input, a grant will always be output in the
future.

When Sequential Calculus is interpreted over finite linear orders, we
talk about Weak Sequential Calculus (WS1S, for short).

Properties as Languages

Let us take a property written in natural language. The same prop-
erty can be represented either by a formula of Sequential Calculus
expressing it (in this case, we talk about intentional definition) or
by the set of linear orders that satisfy it, i.e., its models (exten-
sional definition). We call the set of the models of a formula the
language of the formula. In our setting, a language is therefore a set
of (infinite or finite) linear orders. From now on, we will refer with
ω-regular (resp. regular) languages to the set of languages express-
ible by means of a formula in S1S interpreted over infinite (resp.
finite) linear orders. From now on, this definition holds not only for
formulas of Sequential Calculus, but also for formulas of any other
logic that we will see.
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Environment

Controller

|= ϕ(i, o)∀i ∃o

Figure 1.1: Visual representation of the realizability and reactive
synthesis problems.

1.2.2 Satisfiability, Model Checking and Realiz-
ability

The groundbreaking connection drawn by Church between digital
circuits and logic will turn out to be the basis for the birth of an en-
tire field of research, that nowadays falls under the name of formal
verification. In fact, Church’s intuition, along with many others,
opened the way for the algorithmic study (and its application in
practical scenarios) of three fundamental problems over logical for-
mulas: (i) satisfiability and validity; (ii) validity over structures,
that nowadays goes under the name of model checking ; and (iii) re-
alizability and synthesis.

Realizability and reactive synthesis (or simply synthesis) refer
to the process (and the related set of techniques) of synthesizing a
sequential circuit starting from a logical specification ϕ(i, o) (for ex-
ample of Sequential Calculus). The synthesized circuit must choose
the value of its output signals o in such a way that the specification
ϕ(i, o) is satisfied by all infinite computations of the circuit and for
any choice of the input signals i, which are not under the control of
the circuit. In fact, realizability and synthesis are usually modelled
as two-player games between the Environment player, who tries to
violate the specification ϕ(i, o), and the Controller player, who tries
to fulfill it by seeing only the history of Environment’s moves made
so far. A visual representation is depicted in Fig. 1.1. In some sense,
the synthesized circuit must be correct-by-construction.

Realizability is the decision problem of finding whether such a
circuit exists, while the synthesis problem requires to actually pro-
duce such a circuit in the cases in which it exists. Notably, these
two problems were the original motivations of Church for the use of
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Sequential Calculus as a specification language [44].
Satisfiability andValidity are the problems of establishing whether

a formula is true in at least one structure and in all structures, re-
spectively. As observed by Büchi in [34], the satisfiability and the
validity problems are of crucial importance in formal verification,
since they

[. . . ] provide a method for deciding whether or not the input-output
relation A(i, o) of a circuit satisfies a condition ϕ(i, o) stated in

Sequential Calculus.

In fact, suppose that the behavior of a given circuit A(i, o) can be
modeled by a formula ϕA(i, o) of Sequential Calculus. The task of
checking whether all computations of A(i, o) are compliant with a
property ϕ(i, o) of Sequential Calculus corresponds to the validity
problem of a formula of type

ϕA(i, o)→ ϕ(i, o)

In turn, since for any formula ϕ it holds that ϕ is valid if and only
if ¬ϕ (its negation) is not satisfiable, tipically the validity problem
is tackled by solving the corresponding satisfiability problem.

The model checking problem is very connected to validity. In
fact, it takes as input not only a specification ϕ, but also a model
of a circuit, in form of a state machine M [115], and checks whether
all computations of the state machine are compliant with the spec-
ification, written in symbols as:

M |= ϕ

For this reason, model checking is also known as validity over struc-
tures. We will formally define these three problems later in this
thesis.

Decidability and Complexity

In his two seminal papers of 1960 [34, 35], Büchi showed that the sat-
isfiability problem (and thus also the validity problem) of Sequential
Calculus [34] (under both finite and infinite linear orders interpreta-
tion) is decidable. It follows that also the model checking problem is
decidable. For proving this result, Büchi showed a translation from
every formula of Sequential Calculus to an automaton recognizing
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a, b

a
b

a, b

Figure 1.2: Büchi automaton accepting the words with an a in all
even positions.

the same language of infinite words (we will use the term “infinite
word” as a synonym of infinite linear order), and vice versa, thus
proving an exact correspondence between Sequential Calculus and
Büchi automata. An automaton is made of a set of states, some of
which are initial, some are final and others are neither initial nor
final. A transition relation specifies, from a given state and a let-
ter, which states are reached. The distinguishing feature of Büchi
automata is that they read and accept infinite words. An example
of an automaton is depicted in Fig. 1.2. The automata used by
Büchi, nowadays known as Büchi automata, have a particular type
of acceptance condition: for each accepted word, starting from an
initial state, the automaton has to visit a final state infinitely many
times, when reading that word. The automaton in Fig. 1.2 accepts
the language of words over the alphabet {a, b} containg an a in all
even positions. Interestingly, for proving the decidability of S1S [34],
Büchi used automata over infinite words, while for proving the de-
cidability of WS1S [35], he used automata over finite words, called
Nondeterministic Finite Automata (NFA, for short) and Determin-
istic Finite Automata (DFA, for short).

Büchi also focused on realizability from Sequential Calculus spec-
ifications [36], showing the decidability of this problem as well. Al-
though being decidable, these three problems for specifications of
Sequential Calculus have very high complexities. Both satisfiability,
model-checking and realizability are nonelementary [185, 36], mean-
ing that the time spent by any Turing machine for solving any of
these problems can be described only by an exponential function of
unbounded height.
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Safety, co-Safety and Liveness properties

An important class of ω-languages is the class of properties that ex-
press the fact that “something bad never happens”, like a deadlock,
or a simultaneous access to a critical section. For this reason, prop-
erties in this class are called safety properties, and the class is called
safety class. A precise definition of this class will be given later on
in this thesis.

Dual to the safety class, there is the class of co-safety languages,
comprising all and only the properties expressing the fact that “some-
thing good will eventually happen”, like termination of a program.
The safety and the co-safety class are important in formal verifica-
tion because, if it happens that the property falls under one of these
two classes, than there are efficient, dedicated methods for solving
the model checking, the satisfiability and the realizability problems.
Intuitively, this is due to the fact that we can reduce reasoning on
infinite linear orders to reasoning on finite ones, thus simplifying a
lot the algorithms.

Another fundamental class is called the liveness class, and is
made of the properties requiring a condition “to happen infinitely
many times”, like for instance the assigment of a grant to a request
at any time. As we will see, with the liveness class and its comple-
ment, it is possible to create a hierarchy of properties of increasing
expressive power, called temporal hierarchy [140].

Real-time Properties

In some scenarios, the interaction between the environment and the
systems must satisfy quantitative requirements about the time on
which some events occur. Therefore it is important to model not
only the ordering between the events of a system, which can be done
with formulas of S1S, but also the exact time at which they occur or
the precise time interval between two occurrences, expressed in some
time measure. These properties are said to be real-time properties or,
equivalently, timed properties. An example of real-time requirement
is the following:

For each request in input, a grant will always be output in the
future in at least 0.8 seconds and at most 3.0 seconds after the

request.
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Different formalisms have been introduced in the literature for
expressing real-time properties. Among them, arguably, one of the
most foundational ones is S1St [114]. This theory is interpreted no
more on simple linear orders but instead on timed linear orders, in
which each state is labeled by a time, which can belong either to
the set of natural numbers N (in this case we talk about discrete
time), or to the set of real numbers R (continuous time), or to other
more complex domains, like (R,N), i.e., the set of pairs of real and
natural numbers (called super dense time). Accordingly, formulas
of S1St can use the < symbol to not only compare two state of a
linear order but also their times.

In the part of this thesis dedicated to theory, we will introduce
some fragments of temporal logics (some of them belonging to the
safety class), which are in turn fragments of S1S, and we will study
their expressive power. In the part dedicated to algorithms, we will:
(i) investigate new techniques for the satisfiability problem of speci-
fications of Linear Temporal Logics, a fragment of S1S; (ii) introduce
new algorithms for solving the realizability of specifications written
in the fragments that we introduced; and (iii) introduce a formal-
ism for modeling a certain type of real-time properties, and study a
new problem motivated by practical scenarios, called the compatibil-
ity checking problem, that asks whether, given some local real-time
properties (each modeling a subsystem), they can in some sense be
put together in order to accomplish a global real-time requirement
(of the whole system). Before going to the contributions of this
thesis, it is important to introduce temporal logics.

1.3 Linear Temporal Logic

In this section, we take a look at another formalism for defining prop-
erties of sequences, called Linear Temporal Logic with Past (LTL+P,
for short). LTL+P was introduced by Pnueli [159] in the late seven-
ties as a way for expressing properties of computations of computer
programs and, consequently, for verifying whether those computa-
tions are compliant with properties formalized in the language of
LTL+P.
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Syntax

Differently from the Sequential Calculus formalism, which is a second-
order logic, LTL+P is a modal logic. In addition to the classical
Boolean operators, it features a particular set of operators for mov-
ing to the right (future temporal operators) or to the left (past tem-
poral operators) from any point of a linear order. Its syntax is given
by the following context-free grammar:

ϕ := p |
}︁

propositional atoms

ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |
¬ϕ | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

}︄
propositional connectives

Xϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 |
Fϕ1 | Gϕ1

}︄
future temporal operators

Yϕ1 | ϕ1 S ϕ2 | ϕ1 T ϕ2 |
Pϕ1 | Hϕ1 | Zϕ1

}︄
past temporal operators

where p ∈ Σ is a proposition letter, and Σ is a finite alphabet. We
briefly give the name of the future temporal operators, which are
the most important in this section: (i) X is called next or tomorrow ;
(ii) U is the until operator; (iii) R is the release operator; and (iv) F
and G are called eventually and globally, respectively. We call LTL
the logic of LTL+P devoid of past temporal operators. LTL+P is
interpreted over (typically infinite) state sequences, that is linear
orders in which each state is labeled by the set of proposition letters
that hold in that state. For example, the two requirements written
in natural language in the previous section can be formalized in LTL
(with only future operators) as follows. The requirement “in the
first three states, the output bit of the circuit must be low” can be
formalized by the LTL formula

¬out ∧ X¬out ∧ XX¬out

while the requirement “for each request in input, a grant will always
be output in the future” can be specified by the LTL formula

G(request→ F(grant))
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Expressive Power and Complexity

The choice of the operators of LTL+P proved to be carefully de-
signed: LTL+P is equivalent to the first-order fragment of the Se-
quential Calculus [120] (S1S[FO], for short), that is S1S in which all
quantifiers are applied only to classical variables and not to monadic
ones. It follows that LTL+P is strictly less expressive than S1S. For
example, the language of words over the alphabet {a, b} containing
the letter a in all even positions can not be expressed by any LTL+P
formula [199], but it can be recognized by the Büchi automaton de-
picted in Fig. 1.2, and thus it can be formalized in S1S. Moreover,
past temporal operators are not necessary for the expressive power
of LTL+P: the logics LTL+P and LTL have the same expressive
power [97], although some specifications of LTL can be formalized in
an exponentially more succinct way using LTL+P [143].

As we will see in the next chapters, while the complexity of the
satisfiability, the model checking and the realizability problems for
S1S and first-order S1S specification is nonelementary [185], the com-
plexities for LTL+P are lower: (i) satifiability and model checking
for LTL+P specifications are PSPACE-complete [179]; (ii) realizabil-
ity from LTL+P specifications if 2EXPTIME-complete [160, 164].

Real-time Extensions

Several extensions of LTL have been proposed in the literature for
expressing also real-time properties, similarly to how S1S has been
extended to S1St. One is the logic of TPTL, which stands for Timed
Propositional Temporal Logic [114]. TPTL extends LTL with the
freeze quantifier “x.”, which freezes the time of the state in which
the formula is interpreted into a variable, say x; that variable can
than be used in contraints of type x ≤ y + c or y ≤ x + c, for
some variable y and contant c. TPTL is interpreted over timed state
sequences, i.e., state sequences in which each state is labeled by a
time value.

Another real-time extension of LTL is Metric Temporal Logic,
MTL for short [125]. This logic extends the operators of LTL to be
time-bounded: for example, the eventually operator F is replaced by
F[a,b], where a, b ∈ R ∪∞. For example, the classical time-bounded
response propery “for each request in input, a grant will always be
output in the future in at most 3.0 seconds after the request” can be
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formalized by means of the following formula:

G(request→ F[0.0,3.0](grant))

Of course, also MTL is interpreted over timed state sequences.
Despite having different mechanisms for expressing real-time prop-

erties (TPTL has the freeze quantifier, while MTL has time-bounded
operators), both TPTL and MTL are expressively complete with re-
spect of the first-order fragment of S1St, just like LTL is expressively
complete with respect to S1S. This concludes our brief overview of
Linear Temporal Logic for this chapter.

A precondition for the description of the algorithms proposed in
this thesis is an overview of the classical approaches for solving the
satisfiability and the realizability problems for LTL specifications.

1.4 The Classical Algorithms

In this section, we take an overview of classical techniques and algo-
rithms for solving the satisfiability and the realizability problems of
specifications belonging to LTL+P or to known fragments of LTL+P.

1.4.1 Algorithms for LTL+P Satisfiability

Previously, we have already seen that satisfiability is the problem of
checking whether a formula admits at least one model, and that
it is among the first theoretical questions that are answered for
a particular logic. For LTL+P formulas, the problem is PSPACE-
complete [179], meaning that any Turing machine solving the prob-
lem requires, in the worst case, a polynomial amount of space and
exponential time with respect to the size of the input.

Satisfiability and Formal Verification

The satisfiability problem of LTL+P specifications has an important
application to formal verification. Over the years, model checking,
i.e., the problem of deciding whether a system model satisfies a
given specification for all its computations, has become very popular
and effective in the verification of large systems [60]. However, the
specification must be written with care: checking the model against a
valid formula (i.e., a formula which is trivially true in all structures)
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is useless at the least and it could be severely harmful at worst. In
fact, model checking against valid formulas always returns a positive
answer that may convince the designers of the safety of the system,
while instead some severe bugs may be present in it. More generally,
the satisfiability of LTL+P formulas plays a central role in property-
based design [156] and requirement analysis [23].

Classical Algorithms

Among the different kinds of techniques that has been proposed for
satisfiability, tableau methods were one of the first to be investi-
gated [62]. Originally devised for propositional logic [14], and then
adapted to many other logics [62], tableau methods usually rep-
resent the easiest-to-understand and the easiest-to-design decision
procedures for the satisfiability of a logic. LTL+P is no exception.

For the case of LTL+P, most of the tableau systems are graph-
shaped and two-pass, meaning that a graph structure is first created
(first pass), representing the set of all candidate models, and then
traversed (second pass) looking for a correct model (if any) or dis-
carding all the wrong candidate models, proving in this way the
unsatisfiability of the formula. This is the case for most known
tableau systems for LTL+P [141, 135, 200]. Incremental variants
of this systems that build only the portions of the graph that are
actually needed for the search have been proposed as well [122].

Another successful approach for solving LTL+P satisfiability is
to reduce the problem to LTL+P model checking [165, 166]. This
tecnique works as follows. Firstly a graph structure, very similar
to the one described above, is built for the negation of the initial
formula. In a second step, by means of a model checking algorithm,
all paths of this structure are checked against a property witnessing
the existence of a path that visits some given states infinitely many
times. If model checking returns a positive result, this means that
the negation of the formula is valid, and thus the initial formula is
unsatisfiable. Otherwise, that is, if a counter example is found in
the graph structure, it means that the negation of the formula is not
valid, that is the initial formula is satisfiable.

The one-pass and tree-shaped tableau

Going back to propositional logic, its usual tableau system is tree-
shaped, meaning that a tree structure is created for the search of
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a model [180]: branches are created for assigning different values
(true or false) to a propositional atom, and complete branches are
total assigments to the set of propositional atoms of the formula.
Differently from the propositional case, models of LTL+P formulas
are infinite state sequences, and thus the graph structure of common
tableau systems for LTL+P derives from the fact that an infinite path
can be represented by a finite path ending with a loop-back to one
of its previous states.

Recently, there has been some interest in proposing tree-shaped
tableau systems, like the one for propositional logic, for LTL+P as
well. The first tableau of this type was proposed by Schwendi-
mann [172], which described a procedure that creates a tree repre-
senting the candidate models and uses some conditions to terminate
even without building the full tree. We will call this last feature
one-pass, as opposed to the classical tableau described above which
requires two passes, one for building the graph and the other for
traversing it.

The second of such tree-shaped tableau systems was proposed
by Reynolds [163]. Like Schwendimann’s tableau, it is tree-shaped
and one-pass. However, it has the distinctive feature of producing a
tree whose branches are totally independent from the others. This is
different from the system by Schwendimann, which requires to keep
track of multiple branches in the search for a model. This feature of
Reynolds’ tableaux has been possible thanks to the introduction of a
new rule, called prune rule, which recognizes candidate models that
are doing redundant work but are not fulfulling all the necessary
requests for being a model. The smaller size of the tree with re-
gards to the full graph structure of previous methods, and its simple
rule-based tree search mechanism, led to an efficient implementation
[12], a simple parallel version of the algorithm [145], and modular
extensions to more expressive logics [100, 106]. As we shall see, we
will give a new algorithm for solving LTL+P satisfiability based on
Reynold’s tableau system, exploiting, among other things, the fact
that each branch is independent from the others.

1.4.2 Algorithms for LTL+P Realizability

In this part, we take a brief look on classical algorithms for solving
realizability from LTL+P specifications. We recall that LTL+P re-
alizability is the problem of establishing, given an LTL+P formula
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over a set of controllable and uncontrollable variables, whether there
exists a controller (i.e., a strategy) choosing the value of the con-
trollable variables in such a way that, no matter what value the
environment chooses for the uncontrollable variables, the LTL+P
formula is satisfied by all computations of the controller. The reac-
tive synthesis problem refers to the problem of really building such
a controller, if it exists. LTL+P realizability is 2EXPTIME-complete,
meaning that any Turing machine for the problem having an input
tape of length n terminates with the correct answer after 22

n

steps,
in the worst case.

Realizability and Formal Verification

Realizability has a crucial importance in model-based design and for-
mal verification. We have already seen that the original motivation
of Church for the synthesis problem was to allow for correct-by-
construction systems [44]. The advantages deriving from such an
approach to design are clear: the designers are freed from the logic
control aspects of the system and from its implementation details,
and they can instead direct all the effort on the quality of the spec-
ification. This is why synthesis and realizability are always referred
to as the culmination of declarative programming [201]. Nowadays,
this problem has been used in a variety of practical scenarios. One
of the most famous is the synthesis of a controller starting from a
complete set of requirements for the IBM AMBA bus [25, 24].

Even when the real construction of the system is skipped, that is
when we are talking about realizability of a specification, the problem
is crucial in property-based design and requirement analysis [21, 23].
In fact, before taking the design as the object of the verification, one
should verify the set of specifications, for example asking whether it
is consistent in the first place (satifiability) or whether it is imple-
mentable (realizability). This helps producing high-quality require-
ments, that can be used in later stages of the design process, not
only for the verification of designs but also for communicating intents
between different designers teams. High-quality specifications have
proved to be fundamental, since industrial data revealed that nearly
50% of bugs was due to flaws in requirements and about 80% of the
effort for rework can be traced back to requirement defects [21, 130].
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Classical Algorithms

We take a look now to classical approaches for solving LTL+P re-
alizability. The classical approach is usually identified with the one
proposed by Pnueli and Rosner [160].

Given an LTL+P formula ϕ, the classical algorithm constructs
in the first place the Büchi automaton recognizing the same lan-
guage of ϕ. In general, this automaton is nondeterministic, meaning
that there is the possibility that from a state there are two edges
labeled with the same letter leading to two different states. The
algorithm then performs a determinization of the automaton. Since
Büchi automata are not closed under determinization, the resulting
deterministic automaton has another type of acceptance condition,
called Rabin condition, on which we will not go into the details.
This determinization is typically done using Safra’s algorithm [167].
Moreover, since a strategy (i.e., what we are looking for) is a tree
rather than a string, the automaton is built in a way to no longer
reading words but rather trees.

The deterministic automaton is then viewed as an arena for a
two-player game between the Controller player, who tries to build a
winning strategy, and the Environment player, who tries to violate
the specification. This last step consists in checking the emptiness of
the Rabin automaton, i.e., checking whether its language of trees is
or is not empty: if it is empty, then the specification is unrealizable,
otherwise there exists a tree in the language which is a strategy im-
plementing the original specification, and thus the original formula
is realizable. We remark that determinism is crucial for the game
solving process; in fact, all the algorithms for checking the emptiness
of a Rabin automaton work with a deterministic representation of
the automaton.

Safraless approaches and Bounded Synthesis

When reactive synthesis started to become a practical task, it was
soon clear that the bottleneck of the previous approach is Safra’s
algorithm, that is the determinization of a Büchi automaton into a
Rabin automaton. The bottleneck is due to at least these three rea-
sons: (i) it is arguably very complex: it deals with tree structures
whose nodes are again trees; (ii) it is difficult to implement, wit-
ness the fact that its first implementation [118] has seen light more
than twenty years after the original paper by Safra [167]; (iii) it is
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definetely not amenable to optimizations.
One of the pioneering works devoted to avoiding Safra’s con-

struction is the work done by Kupferman and Vardi introducing the
so-called Safraless decision procedures [128]. In that paper, they
propose a framework for circumventing the use of Safra’s algorithm.
For example, in the context of realizability of LTL+P specifications,
they first build the corresponding Büchi automaton (like in the clas-
sical approach), but, instead determinizing it into a Rabin one, they
build the equivalent Universal co-Büchi automaton. Without enter-
ing into the details, universal co-Büchi automata are duals of Büchi
automata, meaning that a language is recognized by an automaton
of the former type if and only if its complement language is recog-
nized by an automaton of the latter type. This means that, like
a word is accepted by a Büchi automaton when it visits infinitely
many times an accepting state while reading that word, a Universal
co-Büchi automaton accepts a word when it visits only finitely many
times all rejecting states.

Most importantly, the number of visits to a rejecting state can
be bounded by an exponential function in the size of the automa-
ton. This clever observation lead Kupferman and Vardi to observe
that, by bounding this number with some constant, one obtains an
automaton over finite words, i.e., an NFA, that can be made deter-
ministic by means of the classical subset construction [115], a much
simpler and efficient algorithm than Safra’s one. This implies that
the emptiness problem of any Universal co-Büchi automaton can be
approximated by a sequence of emptiness checks to each Determin-
istic Finite Automaton (DFA) obtained by bounding the visits to
rejecting states and by applying subset construction. This approx-
imation will eventually lead to a complete emptiness check. This
is an example of Safraless decision procedure, which solves LTL+P
realizability while in fact avoiding Safra’s determinization algorithm

Bounded Synthesis [92] is another example of Safraless approach.
It was introduced in 2007 by Schewe and Finkbeiner as a way of
using the Safraless approach to reactive synthesis for distributed ar-
chitectures, which is undecidable in the general case. As Safraless
synthesis, it builds the Universal co-Büchi automaton correspond-
ing to the starting LTL+P formula. However, instead of bounding
directly the number of visits to rejecting states and building the se-
quence of DFAs obtained in that way, bounded synthesis encodes, by
means of a constraint system, the existence of a strategy forcing the
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automaton to visit n times its rejecting states, for each value of n
between 0 and a computable uppperbound. Bounded synthesis has
revealed to be very effective in practice, thanks in particular to the
many different possible encodings for it, for example using Boolean
formulas, or quantified Boolean formulas, or even dependency quan-
tified Boolean formulas [88].

Realizability of Safety-LTL

Like Safraless techniques, there is another case when the reduction
to the finite words case leads to fast and efficient algorithms. The
temporal logic of Safety-LTL is defined as the logic obtained from
LTL (thus with only future temporal operators) by avoding exis-
tential temporal operators, that is the until U and the eventually
F [201]. It is known that Safety-LTL can express only safety prop-
erties [178]. Interestingly, it holds also the converse: each safety
property definable in LTL is definable in Safety-LTL as well [40].

In [201], Zhu et al. study the reactive synthesis problem from
Safety-LTL specifications. By definition of safety property, for each
Safety-LTL formula, there exists an NFA (thus an automaton over
finite words) recognizing the same language of the negation of the
formula, and it can be then made deterministic by the classical sub-
set construction. In [201], the determinization is performed by an
external tool, mona [113], which is very optimized for performing
manipulation of automata. The game is then solved over the DFA
by playing the classical reachability game [68]: if Controller can pre-
vent the game to ever reach a final state, then there exists a winning
strategy and the original Safety-LTL formula is realizable, otherwise,
that is in the case the Environment player can force the game to
reach a finale state of the automaton, then the specification is un-
realizable. Overall, the result is an efficient algorithm for solving
realizability and reactive synthesis from Safety-LTL specifications.

1.4.3 Symbolic Algorithms

Before 1993, there was a major problem in almost all the fields re-
lated to formal verification, and in particular in model checking. The
size of the graphs, being them either systems’ models or automata,
was limited by the memory of the computers used to represent them.
This was mainly due to the fact that the graphs were represented
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explicitly, meaning that each node corresponded to a location of the
memory and edges were represented as pointers. The verification of
concurrent systems posed to the formal verification community the
challenging problem of verying models with more than 1020 states.
In fact, the number of states of a model corresponding to the syn-
chronous product of n submodules is exponential in n, in the worst
case: this is known as the state-space explosion problem [60]. Some
techniques, like partial order reduction [155, 103], were proposed,
but they were not sufficient to deal with very large systems in the
general case.

Symbolic representation

The 1993 year knew a revolution in model checking, in the par-
ticular case, and in formal verification, in the general case, called
Symbolic Model Checking [37, 146]. The necessity of verifying con-
current systems of growing size called for a new way for representing
huge graphs, no more in an explicit way, but rather symbolically, by
means of Boolean formulas.

The intuition behind symbolic model checking is to succinctly
represent sets of states by means of Boolean formulas. In particu-
lar, the symbolic representation makes each state of a graph be in
correspondence with an assignment of a set of Boolean variables,
and it exploits the fact that there are 2m possible assignments to
m variables in order to ensure succinctness. Therefore, it should
be clear that, given a graph with n states, it suffices to use log2(n)
variables for representing all states.

As states of a graph are encoded by means of Boolean variables,
the symbolic representation encodes the set of edges of a graph with
a Boolean formula. Consider a graph G = (S,E) with n states and
let V = {v1, . . . , vm} be the corresponding set of Boolean variables,
with m = log2(n). We define V ′ as the set {v′1, . . . , v′m}. For each
edge e = (s1, s2) of the graph, we will use v for denoting the value of
the variable v in state s1, while v

′ denotes the same variable but for
state s2. The set of edges E is encoded into a Boolean formula ϕE
over the set of variables V ∪V ′. Each model of ϕE is an assignment to
the variables {v1, . . . , vm, v′1, . . . , v′m} that in turn encodes an edge of
E. It is clear that, using Boolean formulas, a graph can be encoded
logarithmically. Consider for example the simple graph depicted in
Fig. 1.3, modeling a modulo-4 counter. For sake of clarity, the nodes
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Figure 1.3: A modulo-4 counter.

of the graph contain also the value for the 2 variables s0 and s1 that
are necessary for representing its states: since there are only 4 states,
it is sufficient to use log2(4) = 2 Boolean variables. The graph can
be succinctly represented by the following Boolean formula:

(s′0 ↔ ¬s0) ∧ (s′1 ↔ ((s0 ∧ ¬s1) ∨ (¬s0 ∧ s1)))

Similarly, its initial state can be represented by the following Boolean
formula:

¬s0 ∧ ¬s1

Binary Decision Diagrams

Binary Decision Diagrams (BDDs, for short) are a canonical rep-
resentation of Boolean formulas [33, 3]. They represent in a very
compact way (logarithmic in the average case) all the models of a
Boolean formula by means of a tree structure (very similar in some
sense to the classical tableau for propositional logic) and by using a
set of clever operations for reducing its number of edges and nodes,
obtaining in the end a graph representing the set of models of the
starting Boolean formula. By using BDDs, symbolic model checking
can successfully verify systems with more than 10120 states, which is
a hardly imaginable number, considered that the number of atoms
in the universe is estimated to be around 1080.

SAT-solvers

The use of propositional logic for representing graphs and the recog-
nition that a wide range of combinatorial problems can be formalized
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by means of it gave new life to effective procedures for checking the
satisfiability of Boolean formulas [20], called the SAT problem. SAT
was the first problem to be proved being NP-complete [61, 121].
Nevertheless, despite no polynomial algorithms exist for SAT so far,
a lot of efficient techniques have been proposed in the literature that
solve the SAT problem very effectively in practice. The literature of
this field of research is so vast that it would be impossible to give
even a comprehensive summary of all the results obtained in the last
decades. We recap here below two of the major breakthroughs.

Starting from the classical tableau system for propositional logic [14,
62], which tooks exponential space (and thus at least exponential
time) in the worst case, research moved to more space- and time-
efficient algorithms for SAT. One breakthrough was marked by the
DPLL algorithm [65], a space-efficient version of the previous algo-
rithm DP [66], which uses backtrack search, resolution methods and
unit propagation for an efficient decision procedure. We conclude
with Conflict-Driven Clause Learning (CDCL), one of the other ma-
jor breakthroughs in this field [176, 144]. Roughly speaking, when
a conflict is found during the exploration of the state space of all
possible assignments, this technique learns the partial assignment
that led to the contradiction and uses its negation in the rest of the
search, in order to shrink the state space.

Bounded Model Checking

We have previously seen that a graph can be represented logarith-
mically by means of Boolean formulas, and that, in turn, Boolean
formulas can be stored succinctly using BDDs. We have also seen
that this succinct representation is used by some algorithms of sym-
bolic model checking in order to tackle the state-space explosion
problem. However, a known drawback of BDDs is that there exist
cases of Boolean formulas for which the corresponding BDD occu-
pies an exponential amount of memory with respect to the size of the
formula, making in fact useless the use of binary decision diagrams.

In order to overcome the limitations of BDDs, the technique of
Bounded Model Checking (BMC) was introduced in 1999 [17, 16].
The main rationale of BMC consists in laveraging the great progress
that SAT-solvers have had in the last decades. Let us recall the main
concepts underlying BMC. First of all, BMC considers the negation
¬ϕ of the formula ϕ we want to model check, and it looks for a
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Figure 1.4: A finite path representing an infinite one.

path in the system’s model satisfying ¬ϕ: if it exists, then it returns
false along with the counterexample, otherwise it returns true. BMC
encodes the previous problem into a Boolean formula. In order to
do that: (i) it considers paths of incremental length, say n, ranging
from 0 to the diameter of the graph; (ii) starting from the Boolean
formula encoding the transition relation of the system’s model, it
encodes the existence of a path of length n satisfying ¬ϕ into a
Boolean formula; (iii) it uses a SAT solver to check the satisfiability
of that formula: if it is satisfiable, then a counterexample (of length
n) for ϕ has been found; otherwise it increments n and starts again.

Despite considering only finite paths, BMC can still work for
full LTL, which is interpreted over infinite state sequence. In fact, a
finite path can still represent an infinite one if it contains a loop-back
from its final state to one of its previous state. For example, Fig. 5.3
shows a finite path representing the infinite path that coincides with
the finite one in the first n states, and then loops forever between
the state n and the state k.

If the formula ϕ is true in the system’s model, a counterexample
does not exists and the BMC algorithm continues to increment the
length of paths until reaching the diameter of the graph, witnessing
the exploration of all paths. This is referred to as the completeness
of the algorithm. However, the computation of the diameter of a
graph starting from a symbolic representation of the latter can be
cumbersome in the general case, since it requires to solve the satis-
fiability of a quantified first-order formula. For this reason, BMC is
usually used as a bug-finder, that is for looking for counterexamples
only, rather than for proving that a property holds in a system. In
some sense, completeness is sacrificed for sake of efficiency.

Symbolic LTL+P Satisfiability

Symbolic algorithms have been proposed also for the satisfiability of
LTL+P. Since LTL+P satisfiability can be reduced to LTL+P model
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checking, all algorithms for symbolic model checking can be used for
satisfiability as well, and they proved to be quiet effective.

An interesting use of SAT-solvers is shown by Li et al. [134]. The
SAT-solver is used as a generator of all the models of a propositional
formula. These models are then used as states of an explicitly rep-
resented tableau which is subject to a series of heuristics for state
elimination.

Symbolic LTL+P Realizability

Bounded synthesis [92] is an example of a (semi-)symbolic technique
for LTL+P realizability. In fact in bounded synthesis, given the Uni-
versal co-Büchi automaton for the starting LTL+P formula ϕ, and a
number n, the existence of a strategy that forces the game to visit
the rejecting states at most n times is encoded into a constraint sys-
tem. In the original paper [92], the encoding is done in first-order
logic modulo finite integer arithmetic (with uninterpreted functions).
Other encodings have been proposed for bounded synthesis, for ex-
ample using: (i) binary decision diagrams [81]; (ii) Boolean formu-
las, quantified Boolean formulas, and dependency quantified Boolean
formulas [88]. Even if the existence of a strategy is symbolically en-
coded into a constraint system, the Universal co-Büchi automaton is
always represented explicitly. Since there is an exponential blow-up
in passing from LTL+P formulas to equivalent Universal co-Büchi
automata, there are cases in which the latter is prohibitively large
to be stored on memory explicitly. To the best of our knowledge,
there are not present in the literature techniques for constructing
a symbolic Universal co-Büchi automata directly from an LTL+P
specification.

We already mentioned that Safety-LTL is the fragment of LTL
(with only future operators) devoid of the until and the eventually
operators, and that the languages definable in Safety-LTL are exactly
the safety properties definable in LTL+P. We have also seen that,
since it is a safety fragment, for each Safety-LTL formula ϕ it is possi-
ble to construct a DFA (an automaton over finite words) recognizing
the complement language, that is the language of ¬ϕ. In [201], the
authors build such an automaton using a semi-symbolic representa-
tion; starting from the negation of the formula, they use the mona
tool [113] for building the equivalent DFA whose nodes are explicitly
represented but, for each pair of nodes, the set of edges between such
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two nodes and their labels is stored using a BDD, thus symbolically.
Usually, this type of representation is called semi-symbolic. Never-
theless, since the DFA corresponding to a Safety-LTL formula can be
in general doubly exponential in the size of the formula, there are
cases in which the DFA can’t be generated due to its size and due
to the fact that states are still explicitly represented.

Satisfiability Modulo Theory and Real-time Properties

Previously we have seen that sometimes, for a temporal specification
language, it is important not only to be able to express the order
between two events, for example “each request is eventually followed
by a response”, but also the real time elapsed between two events,
like for instance “each request is eventually followed by a response in
at most 3.0 time units”, or the exact time at which an event occurs,
like “at time 5.0, the system must start up”.

Satisfiability Modulo Theory (SMT, for short) is the problem of
checking the satisfiability of formulas that are like Boolean formulas
except from the fact that their atoms need not to be Boolean, but
they can belong to an arbitrary theory. A non-exhaustive list of
famous theories used in SMT is the following: (i) Linear Real Arith-
metic (LRA); (ii) Linear Integer Arithmetic (LIA); (iii) Equality and
Uninterpreted Functions (EUF); (iv) Bit vectors (BV); (v) Arrays
(A). Usually, given a theory TH, the set of SMT formulas belonging
to that theory is denoted as SMT(TH). An example of formula in
SMT(LRA) is the following:

(x ≤ 5.1)→ ((z + y > 7.2) ∧ (z − x ≤ 10))

Similarly to the strong connection between discrete systems and
Boolean logic that we have previously seen, there is also a strong
connection between real-time systems and SMT formulas, in par-
ticular using the LRA theory. Therefore, a real-time system can
be symbolically encoded using SMT(LRA) formulas for represent-
ing: (i) its discrete states (this is the Boolean part of SMT); and
(ii) its real-time constraints (this is the LRA part). A consequence
of this connection is that almost all symbolic algorithms that use
SAT-solvers for solving model checking of discrete systems, includ-
ing BMC, can be extended almost without effort for model checking
real-time systems by using SMT-solvers under the theory of LRA
instead of SAT-solvers.
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1.5 Contributions

The contributions of this thesis can be partitioned into the following
parts:

1. Theory : we introduce fragments of LTL+P and fragments of
S1S, we characterize their expressive power, and we compare
them with related formalisms already present in the literature.

2. Problems and Algorithms: we propose algorithms for the satis-
fiability problem from LTL+P specifications and algorithms for
the realizability problem from specifications belonging to the
fragments of LTL+P that we introduced in the previous part.
In addition, at the end of this part, we define the compatibil-
ity problem from real-time specifications and show a symbolic
algorithm for solving it.

In the following, we briefly recap the main contributions in each
category.

1.5.1 Theory

The contributions related to this part consist in the introduction of
three fragments of LTL+P and one fragment of S1S, the study of
their expressive power and the comparison with related formalisms.

As a first contribution, we introduce the logic of Extended Bounded
Response LTL+P (LTLEBR+P, for short) as a particular fragment of
LTL+P whose syntax is organized in layers. As we will see in the
Problems and Algorithms part, this organization allows for a fully
symbolic compilation of the formulas of this fragment into language-
equivalent deterministic symbolic automata, that can be used for
instance as arenas for a two-player game for solving realizability,
without the need of additional determinization algorithms. In this
part, we prove that, despite having a syntax which is arguably more
difficult than other logics, LTLEBR+P is epressively complete with
respect to the safety fragment of LTL+P, meaning that:

a safety property can be defined in LTL+P if and only if it can be
defined in LTLEBR+P

In the proof of this result, a crucial role is played by the past opera-
tors of LTLEBR+P. We compare the expressive power of LTLEBR+P
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with that of LTLEBR, that is the logic defined as LTLEBR+P devoid
of past operators. Informally, we ask whether past operators are
really necessary. We give a positive answer to this question, proving
that LTLEBR is strictly less expressive than LTLEBR+P. This is very
interesting in our opinion, since it proves that past temporal opera-
tors, despite not being important for the expressive power of LTL+P
(since LTL and LTL+P share the same expressiveness [97]), can play
a crucial role for the expressive power of fragments of LTL+P, like
for instance LTLEBR+P.

As a second contribution of the Theory part, we introduce the
logic of Generalized Reactivity(1) LTLEBR+P (GR-EBR, for short),
defined as an extension of LTLEBR+P that goes beyond the safety
fragment. In fact, in addition to safety properties, GR-EBR is able
to express also: (i) assumptions and guarantees, in form of a logical
implication between LTLEBR+P formulas; (ii) recurrence formulas
in both assumptions and guarantees, that is formulas of type GFα,
expressing that a pure past formula α holds infinitely many times.
We prove that the expressive power of GR-EBR stands between the
expressive power of the Reactivity(1) and Generalized Reactivity(1)
classes of the Temporal Hierarchy decribed in [140]. However, the
exact expressive power of GR-EBR is not clear yet.

The third and last contribution of this part consists in the def-
inition of a fragment of S1S[FO] (the first-order fragment of S1S)
that captures exactly the safety fragment of LTL, meaning that any
property definable in the first fragment is also definable in the lat-
ter, and vice versa. It follows that the fragment is expressively
equivalent to LTLEBR+P as well. This result joins Kamp’s theorem
that S1S[FO] and LTL are expressively equivalent, and it provides a
direct, compact, and self-contained proof that any safety language
definable in LTL is definable in Safety-LTL as well [40] (that is in
LTL with only the X, G and the R operators), which seems not to be
very much known, as the problem was presented as open as lately
as 2021 [201, 71].1

1.5.2 Problems and Algorithms

In this part, (i) we give a symbolic encoding of the one-pass and
tree-shaped tableau system for LTL+P; (ii) we give symbolic algo-

1As a matter of fact, we discovered about Chang et al. [40] after proving the
same result in a different way.
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rithms for solving realizability from LTLEBR+P and GR-EBR specifi-
cations; (iii) we define the compatibility problem of real-time speci-
fications and give symbolic algorithms for it.

A SAT-based encoding of the one-pass and tree-shaped
tableau for LTL+P

In the context of LTL+P satisfiability, we introduce a symbolic SAT-
based encoding of the one-pass and tree-shaped tableau system for
LTL+P [163, 106]. The tableau tree is symbolically built in a breadth-
first way, by means of Boolean formulas that encode all the tableau
branches up to a given depth k, which is increased at every step. A
set of Boolean formulas is then used for encoding the termination
rules of the tableau system, i.e., the rules allowing the tableau to
terminate either by finding a model of the formula, or by proving its
unsatisfiability. A SAT-solver is used for checking the satisfiability
of all those Boolean formulas.

This breadth-first iterative deepening approach has been exploited
in the past by bounded satisfiability checking and bounded model
checking algorithms [17, 56, 112]. However, in contrast to those
techniques, which require to compute the diameter of a graph or
of a tableau in order to terminate even for unsatisfiable instances
(completeness), the encoding that we propose guarantees complete-
ness and termination both for satisfiable and unsatisfiable instances,
without the need to precompute unsatisfiability thresholds, thanks
to the encoding of the prune rule of the original tableau system.

The proposed procedure has been implemented in a tool called
black2, which stands for Bounded Ltl sAtisfiability ChecKer.
black has been designed and implemented following the principles
of speed, flexibility and reliability. For example,

• (speed) we use state-of-the-art SAT-solvers as backends for
checking the satisfiability of Boolean formulas;

• (flexibility) black contains a layer of abstraction that allows
the seamless integration of new SAT-solvers; moreover, it can
be extended very easily to support satisfiability of different
logics, for example LTL interpreted over finite models;

• (reliability) its code coverage by unit tests is 100%.

2black can be downloaded from https://github.com/black-sat/black

https://github.com/black-sat/black
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We run some experimental evaluation between black and other
tools. The results show that black is competitive with them for
many classes of formulas in the benchmarks’ set.

Symbolic algorithms for LTLEBR+P and GR-EBR realizability

Previously we have seen that the realizability problem from LTL+P
specifications is 2EXPTIME-complete and that, for the vast majority
of cases, an explicit or a semi-symbolic automaton is built. When
such an automaton is too big to be stored in memory, those tech-
niques fail in solving the problem. A successful line of research
focused on finding fragments of LTL+P for which there exists an
efficient realizability problem. In this context, we propose symbolic
and efficient algorithms for the realizability problem from LTLEBR+P
and GR-EBR specifications.

The algorithm for LTLEBR+P realizability compiles any LTLEBR+P
formula into a language-equivalent symbolic and deterministic safety
automaton. Since it is deterministic, any algorithm for safety syn-
thesis [26, 117] can be used as black-box for solving the two-player
game played over the arena represented by the automaton. In ad-
dition, we show that this algorithm runs in singly exponential time
and that it is optimal : in fact, we prove that LTLEBR+P realizability
is EXPTIME-complete.

We implemented this algorithm in a prototype tool called ebr-
ltl-synth3 and we conducted some experimental evaluation. The
results show that our symbolic algorithm can in fact avoid an expo-
nential blow-up in time which is common to all other tools. Some of
these tools also fail at producing the explicit-state automaton due
to space limits, while our algorithm successfully produce a symbolic
automaton which can be stored in memory. This shows the advan-
tages of symbolic algorithms for realizability in constrast to standard
explicit-state ones.

We propose a fully symbolic algorithm for solving realizability
starting from GR-EBR specifications, thus allowing the realizability
of properties beyond the safety fragment. Since GR-EBR is syn-
tactically an extension of LTLEBR+P, the algorithm first builds the
symbolic automata for the LTLEBR+P parts, using the techniques
we proposed for the LTLEBR+P logic. Then it approximates the

3ebr-ltl-synth can be downloaded from http://users.dimi.uniud.it/

~luca.geatti/tools/ebrltlsynth.html

http://users.dimi.uniud.it/~luca.geatti/tools/ebrltlsynth.html
http://users.dimi.uniud.it/~luca.geatti/tools/ebrltlsynth.html
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language of the starting formula by performing a safety reduction,
in order to reduce formulas of type GFα (that are not safety) to
safety properties. The completeness of the procedure is proved by
introducing a general framework for guaranteeing completeness of
arbitrary fragments of LTL and then by instantiating it for the case
of GR-EBR. Interestingly, our framework proves that if a reduction
is complete for the model checking problem, then it is also complete
for the realizability problem. Moreover, the framework can easily
be used for proving the completeness of bounded synthesis [92], a
well-known approach for LTL realizability.

We implemented this procedure in a prototype tool called grace4.
Our experimental evaluation witnesses the importance of using sym-
bolic techniques with respect to explicit-state ones also in this case.

Compatibility checking of real-time requirements

In early phases of the workflow of model-based design, system engi-
neers typically have only a set of requirements for the system they
want to design: this is at the core of model-based design, since,
in the first phases, requirements do not require any implementation,
and any error in the requirements costs very few compared to similar
errors in implementations.

Complex cyber-physical systems often have initialization proce-
dures that require them to reach a target phase in a given real-time
interval. In order for the system as a whole to reach its target, all
of its subsystems have to reach their targets as well, possibly go-
ing through a number of intermediate phases, each within their own
time interval. Moreover, subsystems are tipically dependent to each
other: the entering of a component into phase i may be dependent
to another component entering its phase j. For instance, the system
shown in Fig. 1.5 is made of three subsystems/components, each
one with its own set of phases, time intervals and dependencies. For
example, component C must transition from phase Off to phase Nor-
mal in at least 2 and at most 3 times units, and, in doing that, it
has to make sure that component E is in phase Normal.

As already mentioned, this type of requirements arise very often
when designing initialization procedures of complex cyber-physical
systems. Take into consideration for example a power station; the

4grace can be downloaded from http://users.dimi.uniud.it/~luca.

geatti/tools/grace.html

http://users.dimi.uniud.it/~luca.geatti/tools/grace.html
http://users.dimi.uniud.it/~luca.geatti/tools/grace.html
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Figure 1.5: An example of a system made of three subsystems, each
one with its own phases, time intervals and dependencies.

global system may be made of a power-generation component, one
component for the cooling and one for the fuel supply. Suppose
that the power-generation subsystem has a time interval in which
it must transition from low-power mode to high-power mode, but,
in order to do that, it has to make sure that the cooling and the
fuel supply components are in their high-output mode as well. In
turn, the cooling and the fuel supply components themselves have a
time interval in which they must transition from low-output mode
to high-output mode.

For such systems, engineers typically write a set of real-time re-
quirements. In particular, we have a global requirement (or system
requirement) asking the global system to reach the end of its ini-
tialization procedure in at least a and at most b time units, and a
set of local requirements, one for each subsystem/component, asking
each component i to reach its own target in at least ai and bi time
units by (i) going through their sequence of phases; and (ii) fulfilling
the dependencies among the other subsystems/components. This
situation is depicted in Fig. 1.6.

For complex systems, local requirements are typically outsourced
to different companies (sometimes, those companies have not the
possibility to communicate with each other). Each company can
implement the requirement assigned to it in different ways, according
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Figure 1.6: Compatibility checking problem.

that the implementation is compliant to the requirement. So, in the
general case, there are several possible implementations for a single
local requirement.

However, there may be integration errors, that is implementa-
tions such that, even though being compliant with the correspond-
ing local requirement, when composed together, they form a system
that does not satisfy the global requirement. In the example above,
it may be the case that the company assigned to the implementation
of the power-supply component implements it in such a way that
the transition from low-output mode to high-output is performed
too early with respect to the time at which the implementation of
the cooling subsystem (which the power-supply component depends
on) performs its own transition from low to high, even though both
implementations comply with their own local requirements. This
constitutes an integration error. Therefore, given a global real-time
requirement and a set of local real-time requirements, we want to
check if there are not integration errors among them, i.e., checking
whether it is possible to choose any possible implementation of each
local requirement in such a way to guarantee the fulfillment of the
global requirement when composing together such implementations.
If this is the case, we say that the set of requirements is compati-
ble. We call this problem compatibility checking. This is the main
problem we investigate in this part.
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Sometimes, it happens that there is no way of implementing
the set of local requirements without avoiding integration errors.
In some sense, the set of local requirements is inconsistent with
respect to the global requirement. We also investigate the problem
of checking if this is the case, and we call this problem the consistency
checking problem.

Finally, if the set of local requirements is consistent but not com-
patible, this means that the bounds on the time intervals inside the
requirements are not strict enough to avoid integration errors for any
implementation. Therefore, we study also the problem of synthesiz-
ing the set of compatible refinements of the original local require-
ments, that is the requirements obtained by shrinking the original
bounds in order to avoid integration errors. We call this problem
synthesis of compatible refinements.

We propose the use of symbolic techniques for the compatibility,
the consistency and the compatible refinements’ synthesis problems
of real-time requirements. Our main technique is based on a di-
rect encoding into SMT(LRA). We implemented the algorithm into
a prototype tool called tricker5. We compared it with an encod-
ing into model checking of real-time properties. The results of the
experimental evaluation reveal better performance of the encoding
into SMT(LRA) compared to the reduction to model checking.

1.6 Organization of the thesis

The rest of the thesis is organized in two parts, the first one dedicated
to Theory and the other one to Problems and Algorithms.

The Theory part is structured as follows. We start with Chap-
ter 2, which gives the necessary background for this part. In particu-
lar, it offers an overview of four intrinsically different formalisms for
expressing properties of sequences, that have been thoroughly stud-
ied since the dawn of formal languages and automata theory. These
formalisms are: (i) the first- and second-order theories of 1 succes-
sor; (ii) automata over finite and infinite words; (iii) regular and
ω-regular expressions; (iv) linear temporal logics. For all of them,
we give the basic definitions and the fundamental theorems, com-
paring also different formalisms to each other. Particular attention

5tricker can be downloaded from http://users.dimi.uniud.it/~luca.

geatti/tools/tricker.html

http://users.dimi.uniud.it/~luca.geatti/tools/tricker.html
http://users.dimi.uniud.it/~luca.geatti/tools/tricker.html
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is devoted also to the classes of safety and co-safety properties.
We continue with Chapter 3, where we introduce three new frag-

ments of Linear Temporal Logic with Past (LTL+P) that will be the
object of our study also in the part dedicated to algorithms. In order
of appearance:

• In Section 3.1, we introduce the logic of Extended Bounded
Response LTL+P (LTLEBR+P). We give its syntax and seman-
tics, a normal form and some meaningful examples that can be
formalized within its language. We then prove that LTLEBR+P
is expressively complete with respect to the safety fragment of
LTL+P.

• We define the LTLEBR logic as LTLEBR+P devoid of past opera-
tors in Section 3.2; the main result of this section is a proof that
LTLEBR is strictly less expressive than LTLEBR+P, thus proving
the importance of past operators in the syntax of LTLEBR+P.

• Section 3.3 introduces the logic of GR-EBR (Generalized Reativ-
ity(1) LTLEBR+P) as an extension of LTLEBR+P able to express
properties beyond the safety fragment. We show an example
on how GR-EBR can be used to formalized a simple arbiter and
we characterize its expressive power by comparing it with the
temporal hierarchy [140].

We conclude the Theory part with Chapter 4, in which we introduce
a novel fragment of the first-order theory of 1 successor and prove
that this fragments captures exactly the set of safety properties de-
finable in LTL. As a by-product, we obtain a new proof of the fact
that Safety-LTL is expressively complete with respect to the safety
fragment of LTL. This concludes the Theory part.

In the Problems and Algorithms part we describe our symbolic
algorithms for solving the satisfiability, the realizability and the com-
patibility problems. We start with Chapter 5, where we give the nec-
essary background for this part. For example, we describe in details
the classical tableau system for LTL+P satisfiability [141, 135, 200]
and also the one-pass and tree-shaped tableau system [163, 106]. We
also recap the classical methods for solving LTL+P realizability.

In Chapter 6, we propose a SAT-based encoding of the one-pass
and tree-shaped tableau system for LTL+P [163, 106]. We describe
the details of the encoding and of the choices underlying the imple-
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mentation. Finally we show the results of the experimental evalua-
tion.

We continue with Chapter 7, where we focus on realizability of
LTLEBR+P specifications. First of all, we introduce the algorithm
for constructing a deterministic symbolic automaton corresponding
to a formula of LTLEBR+P. The algorithm is made of a sequence of
nontrivial steps: for each of them, we prove its correctness and give
its worst-case complexity. We give also the theoretical complexity of
the satisfiability and the realizability problems of LTLEBR+P spec-
ifications: from these results, we derive also the optimality of our
algorithm. We conclude Chapter 7 showing the performance of our
implementation with respect to state-of-the-art competitors.

In Chapter 8, we show how to extend the previous realizability
algorithm from LTLEBR+P to GR-EBR specifications. We also in-
troduce a framework for deriving sound and complete safety reduc-
tions in the context of LTL+P realizability. We then instantiate that
framework for the specific case of the GR-EBR logic: this allows us
to prove soundness and completeness of our algorithm. Finally, also
in this case, we show the outcomes of the experimental evaluation.

We study the compatibility problem of real-time requirements in
Chapter 9. We give the formal definition of the problem and, in ad-
dition, we show how it can be formalized in terms of timed interface
automata [69, 67]. We then give the encoding of the problem (i) into
SMT(LRA), and (ii) into model checking of real-time properties. Fi-
nally, we show the experimental results of our implementation.

We conclude the thesis with Chapter 10, in which we draw some
conclusions and point out interesting future directions.

1.6.1 Publications

We give the references to the papers on which the results on this
thesis have been published.

The expressive power of LTLEBR+P and LTLEBR (Sections 3.1
and 3.2) has been published in [47]. We introduced the logic of
GR-EBR (Section 3.3) as part of the paper in [45], while the con-
siderations on its expressive power appear for the first time in this
thesis.

The work on the black tool and the underlying symbolic algo-
rithm (Chapter 6) have been published in [99, 102]. The symbolic
algorithm for LTLEBR+P realizability, its implementation and the
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theoretical complexity of the problem (Chapter 7) are reported in
the papers in [46]. The symbolic algorithm for GR-EBR realizability,
its implementation and the framework for general safety reductions
(Chapter 8) are part of the paper in [45]. Finally, the work about
compatibility checking of timed requirements (Chapter 9) has been
published in [48].
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CHAPTER

2

BACKGROUND

Our objective in this chapter is to give a background theory for the
rest of this part of the thesis. If one wanted to find a common point
among all the key concepts that we used in this part, then this would
be the notion of formalism for expressing properties of sequences,
where, with the term sequences, we refer to finite or infinite linear
orders. One of the most beautiful and elegant features of this field of
study is that there is a plethora of intrinsically different formalisms
os this type that were proved to be equivalent. In fact, in this chap-
ter we will show the connection between the following formalisms
for expressing properties about sequences: (i) Sequential Calculus,
both in the second-order (S1S) and in the first-order (S1S[FO]) set-
ting; (ii) Automata over finite and infinite words; (iii) Regular and
ω-regular expressions; (iv) Linear Temporal Logics. Each of these
formalisms can be interpreted either over finite or infinite sequences.
For each of them, we will recap its main properties and the equiva-
lence with the other formalisms, both in the case of finite and infinite
sequences. Since the results for infinite sequences are an impressive
mathematical achievement and constitute a milestone for the field of
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formal languages, particular attention will be devoted to the infinite
case.

2.1 Sequential Calculus

Sequential Calculus [44, 34] is a logical formalism for specifying prop-
erties of sequences (or, equivalently, linear orders). Formally, Se-
quential Calculus is the theory of monadic second-order restricted
arithmetic, that is the theory with domain N (the set of natural
numbers), the successor function +1 and the constant 0, allowing
also quantifiers to be applied on sets. The first use of Sequential
Calculus can be traced back to Church [44], who suggested to use
it for specifying properties of sequential circuits (hence its name).
In the following, we will give the definition of Sequential Calculus,
showing its fundamental decidability properties, and, in the next
sections, its connection with automata theory.

2.1.1 Definition of S1S

Let Σ be a finite set of symbols (or letters), called alphabet. We
define an ω-word (resp. a word) σ = ⟨σ0, σ1, . . .⟩ over Σ as any
infinite (resp. finite) sequence of elements in Σ. We call Σω (resp.
Σ∗, where ∗ is the Kleene’star) the set of all the ω-words (resp.
words) over Σ. Given an ω-word or a word σ, we call σi the i-th
element of σ. For some i, j ∈ N, with i < j, with σ[i,j] we refer to
the interval ⟨σi, . . . , σj⟩ of σ. Similarly, for some i ∈ N, with σ[i,∞)

we refer to the suffix of σ starting from index i. For any σ ∈ Σ∗

and any σ′ ∈ Σ∗ ∪ Σω, we denote with σ · σ′ (or simply with σσ′)
the concatenation of σ′ at the last position of σ. A set of ω-words
is called ω-language. With L we denote the complement language,
defined as L := {σ ∈ Σω | σ ̸∈ L} (the same holds for languages of
finite words).

In the context of sequential calculus, an ω-word over Σ is repre-
sented as a model-theoretic structure of type (N, 0,+1, <, {Qa}a∈Σ),
where:

• N is the domain of the interpretation and is the set of natural
numbers,

• 0 is a constant symbol, interpreted as the number 0;



2.1 Sequential Calculus 45

• +1 is a function symbol, interpreted as the successor function;

• < is a binary relation symbol, interpreted as the less than
relation;

• Qa, for each a ∈ Σ, is a unary (or, equivalently, monadic)
relation symbol, interpreted as the set of positions in which σ
contains the letter a, that is, Qa := {i ∈ N | σi = a}, for each
a ∈ Σ.

The model-theoretic structure for a finite word is a tuple (D, 0,+1, <
, {Qa}a∈Σ), where the domain D = {1, . . . , d} is a finite set of natu-
ral numbers, and the rest of the symbols is interpreted as in the case
for ω-words, except from the successor function +1 for the value d,
that is defined as d+ 1 = d.

Sequential calculus is defined as the second-order logic inter-
preted over structures of type (N, 0,+1, <, {Qa}a∈Σ). For this rea-
son, it is often called S1S, which stands for the monadic Second-order
theory of 1 Successor. From now on, we will use S1S for denoting
Sequential Calculus. The term “second-order” refers to the fact that
quantifiers of this logics are not only applied to one-valued variables
(x, y, z, . . . ), hereinafter called classical variables, but, instead, they
can be applied also to variables represeting sets (X,Y, Z, . . . ) or
n-ary relations. The term “monadic” refers to the fact that quan-
tifications are only applied to classical variables and sets variables
(hereinafter called monadic variables). We give now the formal def-
inition of S1S under the infinite linear order interpretation.

Definition 1 (Syntax of S1S over ω-words [193]). Let Σ be a finite
alphabet. The terms of S1S are built from the constant 0 and the
variables x, y, . . . using the successor function +1. Atomic formulas
are of the form t < t′, t = t′, t ∈ X and t ∈ Qa (for a ∈ Σ), where
t and t′ are terms, and X is a monadic variable. S1S-formulas are
built from atomic formulas by means of the Boolean connectives ¬,
∧, ∨, →, ↔ and the quantifiers ∃ and ∀, on both classical variables
and monadic variables. A (classical or monadic) variable x is called
free if it does not appear in the scope of a quantifier applied to x. A
S1S-formula ϕ is called a sentence if and only if it does not contain
any free (classical or monadic) variable.

Definition 2 (Semantics of S1S over ω-words [193]). Given an ω-
word σ ∈ Σω represented by the structure (N, 0,+1, <, {Qa}a∈Σ), a



46 Chapter 2. Background

S1S formula ϕ(x1, . . . , xn) with n free variables (either classical or
monadic), and n values v1, . . . , vn for the free variables (where either
vi ∈ N if xi is a classical variable or vi ⊆ N if xi is monadic), we say
that σ is a model of ϕ, written as σ, v1, . . . , vn |= ϕ, if and only if
(N, 0,+1, <, {Qa}a∈Σ) satisfies ϕ, when xi is replaced with the value
vi, for each i ∈ {1, . . . , n}. If ϕ is a sentence, then we will simply
write σ |= ϕ and we define the language of ϕ as L(ϕ) = {σ ∈ Σω |
σ |= ϕ}.

If we interpret an S1S-sentence over finite linear orders, then we
write L<ω(ϕ) to denote its language, that is, the set of finite words
represented by a structure of type (D, 0,+1, <, {Qa}a∈Σ), for some
finite domain D. We called the resulting formalism Weak Sequential
Calculus, or equivalently Weak S1S. The satisfiability problem for
S1S-sentence is the problem of determine, given a sentence ϕ of
S1S, whether there exists a structure that satisfy ϕ. Under the
infinite (resp. finite) linear order interpretation, the satisfiability

problem can be reformulated as L(ϕ) ?
= ∅ (resp. L<ω(ϕ) ?

= ∅). The
validity problem for S1S-sentence is the problem of determine, given
a sentence ϕ of S1S, whether ϕ is satisfied by all the structures of
type (N, 0,+1, <, {Qa}a∈Σ) (where N is replace with a finite domain
D in case of finite linear orders interpretation). Under the infinite
(resp. finite) linear order interpretation, the validity problem can be

reformulated as L(ϕ) ?
= Σω (resp. L<ω(ϕ) ?

= Σ∗).

Note. Since the < relation can be formalized only in terms of the
constant 0 and the function +1 using the second-order quantifiers,
one can restrict ω-words to be structures of type (N, 0,+1, {Qa}a∈Σ).
This is not true if we restrict S1S to contain only first-order quan-
tifications, that is quantifiers applied only to classical variables. We
call S1S[FO] the first-order fragment of S1S, obtained by forbid-
ding second-order quantifications. Since the relation < is necessary,
S1S[FO] is interpreted over structures of type (N, 0, <,=, {Qa}a∈Σ).
The +1 function can be easily defined by a first-order formula as
follows:

y = x+ 1⇔ (x < y ∧ ¬∃z . (x < z < y))



2.1 Sequential Calculus 47

2.1.2 Properties of S1S

Let L be an ω-language. We say that L is S1S-definable if and only
if there exists a S1S-formula ϕ such that L = L(ϕ). With some
abuse of notation, with the symbol S1S, we will also refer to the set
of formulas which can be syntactically expressed in the S1S logic.

The two seminal results that magnified the role of the logic S1S
in computer science, proved by Büchi in 1960, establish that the
satisfiability problem of S1S both on finite [35] and infinite words
[34] is decidable. From now on, when the satisfiability of a logic L
is decidable, we simply write that the logic L is decidable.

Theorem 1 (Decidability of S1S [34]). The set of S1S sentences
(over both finite and infinite words) is decidable.

Büchi first proved the theorem for the case of finite words, and
then he generalized the result for the infinite case. The core of both
the decidability proofs is a strong correspondence between logical
formulas and automata (which will be defined later). In particular,
he showed how the satifiability problem of a S1S-formula ϕ over finite
(resp. infinite) words can be reduced to the emptiness problem (we
will define it later in this section) of an automaton over finite (rest.
infinite) words built starting from ϕ. Since the emptiness problem
over automata is decidable, S1S is decidable as well. Finally, it is
worth noting that, while in 1960 automata over finite words were
already a well-established formalism in computer science, automata
on infinite words had not yet been studied. In order to solve the
decidability problem of S1S, Büchi [34] introduced a novel type of
automata accepting infinite words (from then on called Büchi au-
tomata), opening a research field that nowadays (more than 60 years
later) is still very fertile.

As will see later, another path of research of fundamental impor-
tance in computer science is the one studying temporal logics [179],
which have strong connections with the S1S logic, and, in particular,
with S1S[FO]. As we will see, temporal logics offer an expressively
equivalent variant of S1S and S1S[FO], but with lower complexities
for the satisfiability and validity problems.

2.1.3 The Safety, co-Safety and Liveness classes

An important class of S1S-definable ω-languages comprises those
expressing the fact that something “bad” never happens (like for
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instance a deadlock, or a simultaneous access into a critical section
by two different process). For this reason, they are called safety
languages (or safety properties).

Definition 3 (Safety language [127]). Let L ⊆ Σω be a S1S-definable
ω-language. We say that L is a safety language if and only if for all
the words σ ∈ Σω it holds that, if σ ̸∈ L, then ∃i ∈ N . ∀σ′ ∈ Σω .
σ[0,i] ·σ′ ̸∈ L. We call such a σ[0,i] a bad prefix of L, and we denote
with BadPref (L) the set of all the bad prefixes of L. With SAFETY,
we denote the set of all the S1S-definable safety ω-languages.

Another important class is the one of co-safety languages. Co-
safety languages contain the ω-words such that their acceptance can
be witnessed by a finite prefix.

Definition 4 (Co-Safety language [127, 201]). Let L ⊆ Σω be a
S1S-definable ω-language. We say that L is a co-safety language if
and only if for all the words σ ∈ Σω it holds that, if σ ∈ L, then
∃i ∈ N . ∀σ′ ∈ Σω . σ[0,i] ·σ′ ∈ L. We call such a σ[0,i] a good prefix
of L, and we denote with GoodPref (L) the set of all the bad prefixes
of L. With coSAFETY, we denote the set of all the S1S-definable
co-safety ω-languages.

Clearly, SAFETY and coSAFETY are dual classes, as stated by
the following proposition.

Proposition 1. Let L be an ω-language. It holds that:

1. L ∈ SAFETY ⇔ L ∈ coSAFETY;

2. If L ∈ SAFETY (or L ∈ coSAFETY) then
BadPref (L) = GoodPref (L).

Another important class of ω-languages is made of those lan-
guages that express the fact that something “good” (like termina-
tion of a program) will eventually happen. They are called liveness
languages (or liveness properties). Another way of thinking to live-
ness languages is that for every prefix of a word, there is always a
way to extend it in order to obtain a word in the language (“a partial
execution is never irremediable” [4]). Ultimately, liveness languages
define properties that talk about infinite behaviors, like the property
“there are infinitely many requests of a grant”.
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Definition 5 (Liveness language [178]). Let L ⊆ Σω. We say that
L is a liveness language if and only if for all the words σ ∈ Σ∗ it
holds that ∃σ′ ∈ Σω such that σ ·σ′ ∈ L. With LIVENESS, we denote
the set of all the liveness languages.

An alternative characterization of the LIVENESS class is the fol-
lowing one: an ω-word belongs to a liveness language if and only if
the set of its finite prefixes is exactly the set Σ∗, that is the set of
all the finite words made of elements in Σ.

2.1.4 A Notation for Syntax and Semantics

Let L be a logic interpreted over infinite or finite linear orders, like,
for instance, S1S. From now on, with the symbol L, we will also
denote the set of all and only those formulas that syntactically belong
to L. In our context, it will be useful to consider not only the
formulas that syntactically belong to a logic, but also the languages
that can be defined in a logic. First of all, we use the following
notation to distinguish the interpretation of a logic L over finite
words from the interpretation over infinite words.

Notation 1 (Finite or infinite words interpretation). Let L be a
logic interpreted over infinite or finite linear orders, and let ϕ ∈ L
be a formula that syntactically belong to this logic. With L<ω(ϕ) we
denote the language of ϕ under the finite linear order interpretation.
With L(ϕ) we denote the language of ϕ under the infinite linear order
interpretation.

To distinguish the syntax of a logic (i.e., the set of its formulas)
from its semantics (i.e., the set of languages of its formulas), we use
the following notation.

Notation 2 (Semantics of a logic over linear orders). Given a logic L
interpreted over infinite (resp. finite) linear orders, we denote with
JLK (resp. JLK<ω) the set of all and only those languages L over
infinite (resp. finite) words for which there exists a formula ϕ ∈ L
(i.e., ϕ syntactically belongs to L) such that L = L(ϕ) (resp. L =
L<ω(ϕ)). Given a set of languages of finite words JLK<ω, with some
abuse of notation, we denote as JLK<ω · (2Σ)ω the set of languages
JLK<ω · (2Σ)ω = {L ·(2Σ)ω | L ∈ JLK<ω}.

In this thesis, we will mainly consider logics L that are (seman-
tical) fragments of S1S, that is JLK ⊆ JS1SK and JLK<ω ⊆ JS1SK<ω.
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Later, we will study which languages can be defined in a logic, and
which can not. For example, it often happens that a language is
definable only in particular logic L, while it is not in another logic
L′. We define the notion of L-definability as follows.

Definition 6 (Definability for a logic over linear orders). From now
on, given a logic L interpreted over infinite (resp. finite) linear
orders and a language L of infinite (resp. finite) words, we say that
L is L-definable, or equivalently L-expressible, over infinite (resp.
finite) words if and only if L ∈ JLK (resp. L ∈ JLK<ω).

2.2 Automata over finite and infinite words

Automata are the formalism that more than the others stands at
the basis of computer science and helped to develop its theoretical
foundations. In fact, automata can be seen as a weaker form of
Turing machines [115], in the sense that the problems solvable (or the
languages recognized) by automata are solvable by Turing machines
as well, but not viceversa.

2.2.1 Automata over Finite Words

The first type of automata to be studied are the ones reading finite
words, that is words in Σ∗, for a given finite alphabet Σ.

Definition 7 (Finite Automata (NFA and DFA), [115]). A Non-
deterministic Finite Automaton (NFA, for short) is a tuple A =
(Σ, Q, I, δ, F ), where: (i) Σ is a finite alphabet; (ii) Q is a finite set
of states; (iii) I ⊆ Q is the set of initial states; (iv) δ ⊆ Q×Σ×Q
is the transition relation, and (v) F ⊆ Q is the set of final states.
If δ is a function (δ : Q×Σ→ Q), then A is called a Deterministic
Finite Automaton (DFA, for short).

Given a DFA with transition function δ : Q× Σ → Q, we define
the function δ∗ : Q×Σ∗ → Q as the generalization of δ for sequences
of letters in Σ, defined inductively as follows:

δ∗(q, ε) = q

δ∗(q, wa) = δ(δ∗(q, w), a)
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We say that NFAs and DFAs are automata over finite words.
Each automaton over finite words recognizes a language of finite
words L ⊆ Σ∗.

Definition 8 (Run and Language of a NFA). Let A = (Σ, Q, I, δ, F )
be a NFA, and let σ = ⟨σ0, σ1, . . . , σn⟩ ∈ Σ∗ be a finite word, for
some n ∈ N. A run of A over σ is a finite sequence of states τ =
⟨q0, q1, . . . , qn+1⟩ such that q0 ∈ I and (qi, σi, qi+1) ∈ δ, for i =
0, . . . , n. We say that τ is accepting if and only if its last state is
a final state, that is qn+1 ∈ F . A word σ ∈ Σ∗ is accepted by A if
and only if there exist an accepting run of A over σ. The language
accepted (or recognized) by A, denoted as L(A), is the set of all
and only the words σ ∈ Σ∗ accepted by A.

The product automaton A×A′ between the two NFAsA andA′ is
the automaton that recognizes exactly the intersection between the
languages recognized by A and A′, respectively, i.e., L(A×A′) =
L(A) ∩ L(A′), and it defined as follows.

Definition 9 (Product between NFAs). Let A = (Σ, Q, I, δ, F ) and
A′ = (Σ, Q′, I ′, δ′, F ′) be two NFAs. The product automaton A×A′

between A and A′ is the automaton (Σ, Q′′, I ′′, δ′′, F ′′) such that:

• Q′′ = Q×Q′

• I ′′ = {(q, q′) | q ∈ I, q′ ∈ I ′}

• δ′′ = {((q, q′), σ, (s, s′)) | (q, σ, s) ∈ δ, (q′, σ, s′) ∈ δ′)}

• F ′′ = {(q, q′) | q ∈ F, q′ ∈ F ′})

Given a NFA A, the emptiness problem is the problem of find-

ing whether L(A) ?
= ∅. This problem is decidable in polynomial

time (with respect to the number of states in the automaton) since
it amounts to a reachability problem: L(A) ̸= ∅ if and only if the
graph representing the structure of the automaton contains a di-
rected path from some initial state of A to some of its final states.

It is known that the set of languages recognized by some NFA is
exactly the set of languages recognized by some DFA [115]. For this
reason, we say that NFA and DFA have the same expressive power.
The proof of this equivalence uses the well known subset construction
(also known as powerset construction) in order to build a DFA A′

starting from a NFA A, in such a way that L(A) = L(A′). Subset
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construction consists in introducing a macro-state for each subset
of states of A. The states of A′ are exactly those macro-states. A
macro-state t is reachable with letter a in A′ from a macro-state s if
and only if all the original states in t are reachable with letter a in
A by some state in the macro-state s. The final states of A′ are the
macro-states containing a final state of A. In the worst case, subset
construction may produce an exponential blowup in the number of
states of A′ with respect to the number of state of A. We refer the
reader to [115] for more details on the subset construction method.

In [149], McNaughton and Papert define the class of counter-free
automata over finite words, by restricting the type of words accepted.
In particular, the words accepted by a counter-free automaton are
all and only the words containing a finite number of consecutive
repetitions of a subword.

Definition 10 (Counter-free automata over finite words [149, 170]).
Let A = (Σ, Q, I, δ, F ) be a DFA. We say that a finite word w ∈
(2Σ)+ defines a nontrivial cycle in the automaton A if and only if
there exists a state q ∈ Q such that δ∗(q, w) ̸= q and δ∗(q, wi) = q,
for some i > 1, where wi = w(1) · ... ·w(i). The automaton A is said
counter-free if and ony if it does not contain any nontrivial cycle.
We denote with cf-DFA the class of counter-free DFAs.

Alternatively, we can define counter-free automata in this way.
We say that A is counter-free if and only if there does not exists a
sequence of states q1, q2, . . . , qn ∈ Q (for some n > 1) and a word
σ ∈ Σ∗ such that qi+1 ∈ δ∗(qi, σ) for i = 1, . . . , n − 1 and q1 ∈
δ∗(qn, σ). Later in this chapter, we will give the strong relation
between counter-free automata and temporal logics.

2.2.2 Properties of Automata over Finite Words

Given a language L ⊆ (Σ)∗ of finite words, we define the reverse
language of L, written L−1, as follows:

(L)−1 := {σ ∈ (Σ)∗ | σ = ⟨σn, σn−1, . . . , σ0⟩ ∧ ⟨σ0, σ1, . . . , σn⟩ ∈ L}
(2.1)

Both DFA and counter-free automata over finite words are closed
under the reverse operation (·)−1.
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Proposition 2 (McNaughton and Paper [149]). Let L be a language
of finite words. L is recognized by some DFA (resp. counter-free
automaton) if and only if (L)−1 is recognized by some DFA (resp.
cf-DFA).

Proof. Given an automaton, it suffices to switch its initial states
with its final states (and viceversa), and to invert the direction of
its transition edges.

DFAs (and thus also NFAs) have a strong connection with the the-
ory of linear orders, that is S1S. In fact, the seminal result proved
independently by Büchi [35] and Elgot [85] establishes that the lan-
guages over finite words recognizable by a DFA (or NFA) are exactly
those definable in Weak Sequential Calculus, that is S1S interpreted
over finite linear orders. McNaughton and Papert proved addition-
ally that, if we restrict the automata to be counter-free, than the
languages that they recognize are exactly those definable in the first-
order fragment of S1S (over finite linear orders) [149].

Theorem 2 (Büchi [35], Elgot [85]). Let L be a language of finite
words. It holds that L is recognized by a NFA if and only if L ∈
JS1SK<ω.

Theorem 3 (McNaughton and Papert [149]). Let L be a language
of finite words. It holds that L is recognized by a cf-NFA if and only
if L ∈ JS1S[FO]K<ω.

2.2.3 Automata Over Infinite Words

We now consider the case of infinite words (infinite linear orders).
For a finite alphabet Σ, we recall that an ω-word σ = ⟨σ0, σ1, . . .⟩
over Σ is an element of Σω.

Büchi Automata

One of the first types of automata reading infinite words that were
introduced is the class of Büchi automata [34, 193], originally used
by Büchi to prove the decidability of the S1S logic over infinite linear
orders [34], and thus extending his result in Theorem 2.

Definition 11 (Büchi automata [193]). A Nondeterministic Büchi
Automaton (NBA, for short) is a tuple A = (Σ, Q, I, δ, F ), where:
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(i) Σ is a finite alphabet; (ii) Q is a finite set of states; (iii) I ⊆ Q
is the set of initial states; (iv) δ ⊆ Q × Σ × Q is the transition
relation, and (v) F ⊆ Q is the set of final states. If δ is a function
(δ : Q×Σ→ Q), then A is called a Deterministic Büchi Automaton
(DBA, for short).

A counter-free NBA (cf-NBA for short) is defined as an NBA for
which we require the counter-free property of Definition 10 [191].

In order for an infinite word to be accepted by a Büchi automata,
the word has to induce the automaton to visit infinitely many times
at least one of its final states. We define the notion of run and
language of a Büchi automaton as follows.

Definition 12 (Run and Language of a NBA). Let A = (Σ, Q, I, δ, F )
be a NBA, and let σ = ⟨σ0, σ1, . . .⟩ ∈ Σω be a ω-word over Σ. A run
of A over σ is a infinite sequence of states τ = ⟨q0, q1, . . .⟩ ∈ Qω

such that q0 ∈ I and (qi, σi, qi+1) ∈ δ, for i = 0, . . . , n. We say that
τ is accepting if and only if there exists at least a final state qf ∈ F
such that qi = qf for infinitely many i ∈ N. A ω-word σ ∈ Σω is
accepted by A if and only if there exist an accepting run of A over
σ. The language accepted (or recognized) by A, denoted as L(A),
is the set of all and only the ω-words σ ∈ Σω accepted by A.

The product between two Büchi automata is defined exactly as
in Definition 9.
The emptiness problem of a NBA A consists in determining whether

L(A) ?
= ∅. Similarly for the case of finite words, this problem is

decidable in polynomial time (with respect to the size of the au-
tomaton) and nondeterministic logarithmic space [196, 168], since
L(A) ̸= ∅ if and only if the graph representing the structure of the
automaton contains a directed path from one initial state of A to
one of its final state, and from such a final state to itself.

Contrary to the case of automata over finite words, the class
of languages recognized by NBAs is strictly greater than the class of
languages recognized by DBAs [193]. For example, take the language
over the alphabet Σ = {a, b} consisting of all and only the ω-words
containing finitely many positions in which a holds:

Lfin = {σ ⊆ {a, b}ω | ∃<ωi ∈ N . σi = a} (2.2)

It can be shown that there not exists any DBA A such that L(A) =
Lfin [193].
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In [34], Büchi gave the fundamental result that the ω-languages
definable in S1S (interpreted over infinite linear orders) are exactly
those recognizable by Nondeterministic Büchi Automata. As men-
tioned before, this result generalizes Theorem 2 to the case of ω-
words. Additionally, Thomas [191] proved that if we restrict the
Büchi automaton to be counter-free, than the languages that we ob-
tain are exactly those definable in S1S[FO] (the first-order fragment
of S1S) interpreted over infinite linear orders. This can be considered
as a generalization of Theorem 3 to ω-words.

Theorem 4 (Büchi [34]). Let L be an ω-language. It holds that L
is recognized by a NBA if and only if L ∈ JS1SK.

Theorem 5 (Thomas [191]). Let L be an ω-language. It holds that
L is recognized by a cf-NBA if and only if L ∈ JS1S[FO]K.

The proof of Theorem 4 is based on a language-preserving cor-
respondence between any sentence of S1S to a (nondeterministic)
Büchi automaton, and vice versa. This means that the satisfiability
problem of any S1S-sentence ϕ amounts to the emptiness problem of
a NBA built starting from ϕ. Since the emptiness problem of NBAs
is decidable, it follows the decidability of S1S-sentences over ω-words
(see Theorem 1).

Safety Automata

Theorem 4 establishes a correspondence between S1S-definable lan-
guages and Nondeterministic Büchi Automata. In this part, we de-
fine another type of automata working on ω-words, called safety
automata, that corresponds exactly to the SAFETY class (see Defi-
nition 3). Safety automata have a weaker accepting condition with
respect to Büchi’s one. In fact, instead of requiring a final state
to be visited infinitely often, they require only the existence of an
infinite run.

Definition 13 (Safety automata [201]). A Nondeterministic Safety
Automaton (NSA, for short) is a tuple A = (Σ, Q, I, δ), where: (i) Σ
is a finite alphabet; (ii) Q is a finite set of states; (iii) I ⊆ Q is the set
of initial states, and (iv) δ ⊆ Q×Σ×Q is the transition relation. If
δ is a partial function (δ : Q×Σ→ Q), then A is called a Determin-
istic Safety Automaton (DSA, for short). Let σ = ⟨σ0, σ1, . . .⟩ ∈ Σω

be a ω-word. A run of A over σ is an infinite sequence of states
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τ = ⟨q0, q1, . . .⟩ ∈ Qω such that q0 ∈ I and (qi, σi, qi+1) ∈ δ, for
i = 0, . . . , n. An ω-word σ is accepted by A if and only if there
exists a run of A over σ. The language of A (denoted with L(A))
is the set of ω-words that are accepted by A.

It is simple to see that the language recognized by any safety
automaton is a safety language (see Definition 3). In fact, it suffices
to observe that the only way for an ω-word to be rejected by a safety
automaton is to induce a run that at some point gets stuck, that is, it
cannot continue to any state reading the current letter. This implies
that each ω-word that is rejected by a safety automaton has a finite
witness, or equivalently, it can be rejected by the automaton in a
finite number of steps. Since this is exactly the definition of safety
language (Definition 3), it follows that the language is safety.

It also holds the converse result, that is, all the S1S-definable
safety languages can be defined by a safety automaton. In fact,
in [127] Kupferman and Vardi showed that, given a nondeterministic
Büchi automaton A, there exists a DFA recognizing BadPref (L(A)).
Since by Theorem 4 the class of S1S-definable languages is equivalent
to the class of languages recognizable by a nondeterministic Büchi
automaton, it follows the equivalence between the safety fragment
of S1S and the class of safety automata.

Theorem 6. Let L be a language over infinite words. It holds that
L is recognized by some NSA if and only if L ∈ SAFETY.

Duality between Safety Automata and NFAs. Nondetermin-
istic safety automata are duals of NFAs because, for each ω-language
L, there exists a NSA A recognizing L (i.e., L(A) = L) if and only
if there exists a NFA A′ accepting the set of its bad-prefixes (i.e.,
L(A′) = BadPref (L) = GoodPref (L)). The proof of this equivalence
relies on a simple translation of NSAs to NFAs, and vice versa. Take
a NFA A′ = (Σ, Q′, I ′, δ′, F ′). We define the NSA A = (Σ, Q, I, δ) as
follows:

• Q = Q′ \ F ′;

• I = I ′ \ F ′;

• for each q ∈ Q and for each a ∈ Σ, we define δ(q, a) = δ′(q, a)
if δ′(q, a) ⊆ Q, and δ(q, a) = ∅ otherwise.
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It is simple to see that L(A′) = BadPref (L(A)) [201]. The opposite
direction (from DSA to DFA) is specular. Moreover, it is easy to
see that if we start with a deterministic safety automaton, then the
construction produces a deterministic finite automaton, and vice
versa. Finally, since there is an equivalence-preserving translations
from NFAs to DFAs (i.e., the subset construction algorithm), the
translations from NSAs to NFAs and from DFAs to DSAs can be used
to show that, unlike Büchi automata, the nondeterminism does not
add expressive power to safety automata (i.e., NSAs are equivalent to
DSAs). In fact, given an NSA it suffices to: (i) build the equivalent
NFA for the set of its bad-prefixes, (ii) determinize it with subset
contruction, (iii) build the equivalent DSA for the the DFA obtained
in the previous point.

2.3 Regular and ω-Regular Expressions

Regular expressions [115] have been one of the first language-defining
formalisms to be studied. They have been introduced in 1951 by
Stephen Cole Kleene during his studies on formal languages [123].
One of the most relevant results in the theory of formal languages
is that regular expressions are equivalent to finite automata (over
finite words) Nevertheless, despite being equivalent formalisms, reg-
ular expressions offer a more declarative way to express regular prop-
erties than using finite automata. This may be due to the algebraic
laws that govern regular expressions, which reseamble the laws of
arithmetic.

Regular expressions stay at the core of the foundations of com-
puter science, not only for their role in the study of formal languages,
that in turn are the precursors of theoretical computer science, but
also for their many uses in practical scenarios. Nowadays, regular
expressions are constantly used as a declarative way for specifying
the behavior of a lexer, that are the very first units in each parser
for computer programming languages. Another fundamental use of
regular expressions can be found in all those applications that re-
quire the search of a pattern inside a text. The well-known Unix
utility grep takes in input a pattern in form of a regular expression,
and returns all the occurrences of the pattern in a text. It does so
by converting the expression into a DFA or NFA and by simulating
this automaton on the text being searched [115].
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ω-Regular expressions are the extension of regular expression for
infinite words. They maintain the algebraic feature of regular ex-
pression but work with sets of infinite words. They were introduced
by Büchi as a way to give a sort of normal form for the languages rec-
ognizable by Büchi automata [34]. Just like regular expressions are
equivalent to automata over finite words, we will see that ω-regular
expressions have the same expressive power of Büchi automata.

2.3.1 Regular Expressions

A regular expression [115] is built starting from the symbols of a
finite alphabet Σ, the symbol for the empty word ε, and a set of
operations between sets of finite words. This operations can be:
(i) the union (∪), (ii) the negation (¬), (iii) the concatenation (·),
and (iv) the Kleene’star (∗). The language represented by a regular
expression E is the set of finite words denoted by E, by interpret-
ing the three operations of union, concatenation and Kleene’star as
follows (U and V are sets of finite words):

(i) U ∪ V := {σ ∈ Σ∗ | σ ∈ U ∨ σ ∈ V }

(ii) ¬U := Σ∗ \ U

(iii) U · V := {σ ∈ Σ∗ |
σ = ⟨σ0, . . . , σm, σm+1, . . . , σn⟩,
⟨σ0, . . . , σm⟩ ∈ U
⟨σm+1, . . . , σn⟩ ∈ V }

(iv) U∗ :=
⋃︁
i≥0 U

i, where U0 := U and U i := U i−1 · U .

We refer to [115] for a comprehensive description of regular expres-
sions. A language is called regular if and only if there exists a regular
expression representing it. We call REG the set of all and only the
languages recognized by a regular expression. It is well known that
regular expressions have the same expressive power of automata over
finite words.

Theorem 7 ([115]). A language L over finite words is recognized
by some NFA if and only if L ∈ REG.

As a corollary of Theorem 2, we obtain that a language over
finite words is S1S-definable if and only if it stands in REG.
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A regular expression is called star-free if it is built without the use
of the Kleene’star. We call SF the set of all and only the languages
recognized by a star-free expression. In [149], McNaughton and Pa-
pert prove that star-free expressions have the same expressive power
of counter-free automata over finite words (recall Definition 10).

Theorem 8 ([149]). A language L over finite words is recognized
by a cf-DFA if and only if L ∈ SF.

As a corollary of Theorem 3, we obtain that a language of finite
words is definable in S1S[FO] (i.e., the first-order fragment of S1S) if
and only if it stands in SF. Intuitively, this means that Kleene’star
needs second-order quantifications for being expressed.

Finally, as a corollary of Proposition 2, we obtain that star-free
expression are closed under the reverse operation (·)−1.

Corollary 1. Star-free expressions are closed under the reverse op-
eration.

2.3.2 ω-Regular Expressions

The definition of regular expressions has been extended to the case
of ω-words [34] into what are called ω-regular expressions. An ω-
regular expression is an expression of the form:

n⋃︂
i=1

Ui · (Vi)ω

where n ∈ N and Ui, Vi ∈ REG for i = 1, . . . , n. A language is called
ω-regular when there exists a ω-regular expression representing it.
We call ω-REG the set of all and only the languages of infinite words
that are represented by an ω-regular expression. By exploiting the
closure properties of Büchi automata, the following theorem can be
proved [34].

Theorem 9 (Büchi [34]). For each language L of infinite words, it
holds that L ∈ ω-REG if and only if L is recognized by a NBA.

As a corollary of Theorem 4, it follows that ω-regular expressions
can define exactly the language definable in S1S.

Interestingly, ω-regular languages admit a simple and elegant
normal form. For any regular (or star-free) language K ⊆ Σ∗ we
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define the operator lim(·) as follows.

lim(K) := {σ ∈ Σω | ∃ωi . σ[0,i] ∈ K} (2.3)

where the symbol ∃ωi means that “there are infinitely many i”. A
Lemma used in McNaughton’s Theorem [148, 193], which is a fun-
damental result for the determinization of Büchi automata into au-
tomata with another type of acceptance condition (called Muller
automata), provides a normal form for each ω-regular expression.

Theorem 10 (Normal Form Theorem for ω-REG [148, 193]). Any
ω-language L ∈ ω-REG can be represented in the form:

n⋃︂
i=1

(lim(Ki) ∩ ¬ lim(K ′
i))

where Ki,K
′
i ∈ REG, for i = 1, . . . , n.

We remark that the outermost union in the normal form of The-
orem 10 derives from the union of all the equivalence’s classes of a
particular equivalence relation of finite index [148, 193].

Similarly to the case of finite words, we say that an ω-regular
expression

⋃︁n
i=1 Ui · (Vi)ω is star-free if each Ui and each Vi are star-

free. We say that an ω-language is star-free if and only if there
exists a star-free ω-regular expression representing it, and we call
ω-SF the set of all and only the star-free ω-languages. Thomas [190]
proved that star-free ω-regular expressions and counter-free Büchi
automata have the same expressive power, obtaining a generalization
of Theorem 8 for finite words.

Theorem 11 ([190]). A ω-language L is recognized by a cf-NBA if
and only if L ∈ ω-SF.

As a corollary of Theorem 5, it follows that star-free ω-regular
expressions can define exactly the ω-languages definable in S1S[FO].

Thomas [191] proved that Theorem 10 can be specialized for the
case of ω-SF languages, obtaining a normal form for the ω-SF class
as well.

Theorem 12 (Normal Form Theorem for ω-SF [191, 193]). Any
ω-language L ∈ ω-SF can be represented in the form:

n⋃︂
i=1

(lim(Ki) ∩ ¬ lim(K ′
i))

where Ki,K
′
i ∈ SF, for i = 1, . . . , n.
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2.3.3 Characterization of safety and co-safety classes

The classes REG and SF are important also for giving a characteriza-
tion of the SAFETY (Definition 3) and the coSAFETY (Definition 4)
classes. In particular, we can characterize the coSAFETY class by
requiring that an ω-language L is a co-safety language if and only
if L = K · (Σ)ω, where K ∈ REG is regular language (over finite
words). Following this line, one can also restrict K to be a star-
free language (i.e., K ∈ SF), obtaining two classes, coSAFETYSF

and SAFETYSF, which are strictly contained into coSAFETY and
SAFETY, respectively.

Definition 14 (Safety and co-safety classes). We define the follow-
ing classes of ω-languages:

• SAFETY := {L ⊆ (Σ)ω | L = K · (Σ)ω ∧K ∈ REG}

• SAFETYSF := {L ⊆ (Σ)ω | L = K · (Σ)ω ∧K ∈ SF}

• coSAFETY := {L ⊆ (Σ)ω | L = K · (Σ)ω ∧K ∈ REG}

• coSAFETYSF := {L ⊆ (Σ)ω | L = K · (Σ)ω ∧K ∈ SF}

We remark that the definition of the SAFETY class (resp. coSAFETY
class) given above is equivalent to the one given in Definition 3 (resp.
in Definition 4).

Consider the classes SAFETYSF and coSAFETYSF. It is natural
to ask whether the set of languages definable in SAFETYSF (resp.
coSAFETYSF) coincides with the set of languages definable in ω-SF
that are also safety languages (resp. co-safety languages). In [192],
Thomas give a positive answer to this question.

Proposition 3 ([192]). It holds that:

1. SAFETYSF = ω-SF ∩ SAFETY

2. coSAFETYSF = ω-SF ∩ coSAFETY

2.4 Linear Temporal Logics

In the previous sections, we saw some formalisms for expressing
properties about sequences, like the first- and second-order logics
S1S and S1S[FO], regular and ω-regular expressions, and automata
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over finite or infinite words. In this section, we take a look at another
formalism for defining properties of sequences, called Linear Tempo-
ral Logic (LTL, for short). LTL was introduced by Pnueli [159] in the
late seventies as a way for expressing properties of computations of
computer programs and, consequently, for verifying whether those
computations are compliant with properties formalized in the lan-
guage of LTL. Differently from the S1S and the S1S[FO] formalisms,
that are second-order and first-order logics, respectively, LTL is a
modal logic. Giving a precise definition of modal logic would in-
evitably result into an incomplete definition. For the sake of this
thesis, it suffices to know that LTL is a logic featuring particular op-
erators for moving to the right or to the left from any point of a linear
order. The choice of the operators of LTL proved to be carefully de-
signed: LTL is equivalent to the first-order fragment of S1S (i.e.,
S1S[FO]). However, as we will see in the next chapters, while the
complexity of S1S and S1S[FO] is nonelementary [185], meaning that
the time spent by any Turing machine for deciding the satisfiabil-
ity of a formula can be described only by an exponential function of
unbounded height, the complexity of LTL is PSPACE-complete [179].

2.4.1 Syntax

Linear Temporal Logic (LTL) is a modal logic interpreted over infi-
nite, discrete linear orders [159, 77]. Syntactically, LTL can be seen
as an extension of propositional logic with the addition of the next
(also called tomorrow, Xϕ, i.e., at the next state ϕ holds) and the
until (ϕ1 U ϕ2, i.e., ϕ2 will eventually hold and ϕ1 will hold until
then) temporal operators.

LTL with Past extends LTL with the addition of temporal opera-
tors able to talk about what happened in the past with respect to the
current time. LTL+P is obtained from LTL by adding the following
past temporal operators: (i) the yesterday operator (Yϕ, i.e., there
exists a previous state in which ϕ holds); (ii) the Z operator (Zϕ,
i.e., either a previous state does not exists or in the previous state
ϕ holds); (iii) and the since operator (ϕ1 S ϕ2, i.e., there was a past
state where ϕ2 held, and ϕ1 has held since then). We will now briefly
recall the syntax and semantics of LTL+P, which encompasses that
of LTL as well. Formally, given a set Σ of proposition letters, LTL+P
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formulas over Σ are generated by the following grammar:

ϕ := p |
}︁

propositional atoms

ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |
¬ϕ | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2

}︄
propositional connectives

Xϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 |
Fϕ1 | Gϕ1

}︄
future temporal operators

Yϕ1 | ϕ1 S ϕ2 | ϕ1 T ϕ2 |
Pϕ1 | Hϕ1 | Zϕ1

}︄
past temporal operators

where p ∈ Σ and ϕ1 and ϕ2 are LTL+P formulas. Most of the
Boolean and temporal operators of the language can be defined in
terms of a small number of basic ones. As for Boolean operators,
we have that: (i) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2); (ii) ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2;
(iii) ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1). As for the temporal opera-
tors, the release (ϕ1 Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2)), eventually (Fϕ ≡ ⊤Uϕ),
and always (Gϕ ≡ ¬F¬ϕ) future operators can all be defined in terms
of the until operator, while the triggered (ϕ1 T ϕ2 ≡ ¬(¬ϕ1 S ¬ϕ2)),
once (Pϕ ≡ ⊤ S ϕ), and historically (Hϕ ≡ ¬P¬ϕ) past operators
can all be defined in terms of the since operator. Finally, the weak
yesterday operator can be defined in terms of the yesterday operator
using the negation (Zϕ ≡ ¬Y¬ϕ).

The until (U) and the eventually (F) are said existential tem-
poral operators, while the release (R) and the globally (R) are said
universal temporal operators.

We say that a LTL+P formula is pure past if and only if all
the temporal operators inside the formula are past operators. We
call pure past LTL+P, written as LTL+PP, the fragment of LTL+P
containing only pure past formulas.

2.4.2 Semantics

Formulas from LTL+P (built starting from an alphabet Σ) are inter-
preted over state sequences. A state sequence σ = ⟨σ0, σ1, . . .⟩ over
Σ is a finite or infinite, linearly ordered sequence of states, where
each state σi is a set of proposition letters, that is σi ∈ (2Σ) for each
i ∈ N. Following the definitions and notations for (ω-)words given in
Section 2.1, an infinite (resp. finite) state sequence over the alphabet
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Σ is an ω-word (resp. a word) over the alphabet 2Σ. Therefore, we
can reuse the basic operations on (ω-)words for state sequences as
well. We recall some of those here below. With |σ| we will indicate
the length of σ: if σ is of infinite length, then |σ| = ω; otherwise,
if σ = ⟨σ0, . . . , σn⟩, then |σ| = n + 1. Given two indices i, j ∈ Z,
with i ≤ j, we denote as σ[i,j] the interval ⟨σi, . . . , σj⟩ if i ≥ 0, or
the interval ⟨σ0, . . . , σj⟩ otherwise. Similarly, for some i ∈ N, with
σ[i,∞) we refer to the suffix of σ starting from index i.

Standard Interpretation

The standard interpretation of LTL+P is tipically given on infinite
state sequences. Therefore, from now on, unless otherwise stated,
with the term state sequence we will refer to an infinite one. Given
a state sequence σ, a position i ≥ 0, and a LTL+P formula ϕ, we
inductively define the satisfaction of ϕ by σ at position i, written as
σ, i |= ϕ, as follows:

1. σ, i |= p iff p ∈ σi;
2. σ, i |= ¬ϕ iff σ, i ̸|= ϕ;

3. σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;

4. σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;

5. σ, i |= Xϕ iff σ, i+ 1 |= ϕ;

6. σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;

7. σ, i |= Zϕ iff either i = 0 or σ, i− 1 |= ϕ;

8. σ, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that σ, j |= ϕ2,
and σ, k |= ϕ1 for all k, with i ≤ k < j;

9. σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2,
and σ, k |= ϕ1 for all k, with j < k ≤ i;

10. σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all j ≥ i, or there exists
k ≥ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≤ j ≤ k;

11. σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there
exists k ≤ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≥ j ≥ k

We say that σ satisfies ϕ, written as σ |= ϕ, if it satisfies the
formula at the first state, i.e., if σ, 0 |= ϕ: in this case, we call σ
a model of ϕ. We say that two formulas ϕ and ψ are equivalent
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(ϕ ≡ ψ) if and only if they are satisfied by the same set of state
sequences. We say that they are strongly equivalent (ϕ

.≡ ψ) when
σ, i |= ϕ if and only if σ, i |= ψ, for all σ ∈ (2Σ)ω and for all i ∈ N.
The language of ϕ, written L(ϕ), is defined as the set of models of
the formula, that is, L(ϕ) = {σ ∈ (2Σ)ω | σ |= ϕ}. Equivalently,
L(ϕ) is the set of the ω-words such that, when considered as infinite
state sequences, are models of ϕ. Given a language L ⊆ (2Σ)ω we
say that L is LTL+P-definable if and only if there exists a formula
ϕ ∈ LTL+P such that L = L(ϕ). A formula of LTL+P is said to
be in Negated Normal Form (NNF, for short) if and only if all the
negations inside the formula are applied only to propositional atoms.

Pure Past LTL+P

Consider a pure past formula. Since all its temporal operators re-
fer to the past, pure past formulas are typically interpreted at time
points different from the starting one (thus differently from the case
of LTL+P formulas). In particular, since the past is always bounded,
in the sense that each state sequence σ = ⟨σ0, σ1, . . .⟩ has always a
state without precedessors (i.e., σ0), each pure past formula is inter-
preted at the last state of a finite state sequence, and the language
of the formula is always a language of finite words. Let ϕ ∈ LTL+PP.
We define the language of ϕ in this way:

L(ϕ) := {σ ∈ (2Σ)∗ | σ = ⟨σ0, . . . , σn⟩ ∧ σ, n |= ϕ} (2.4)

LTL+P over finite words

We consider now the case of LTL+P interpreted over finite state
sequences. Its syntax is obtained from the one of LTL+P by adding
the weak next operator (˜︁X, also called weak tomorrow). It is easy to
modify the definition of the standard semantics of LTL+P in order
for the formulas to be interpreted over finite state sequences. Let
σ = ⟨σ0, . . . , σn⟩ ∈ (2Σ)∗ be a state sequence of length n + 1, and
let ϕ be a LTL+P-formula. The satisfaction of ϕ over σ, written as
σ |=<ω ϕ, is defined as follows (the cases for the Boolean operators
and the past temporal operators are identical to the infinite case,
while the F and G modalities easily follow from these ones):

1. σ, i |=<ω Xϕ iff i+ 1 < |σ| and σ, i+ 1 |=<ω ϕ;
2. σ, i |=<ω ˜︁Xϕ iff i+ 1 < |σ| implies σ, i+ 1 |=<ω ϕ;
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3. σ, i |=<ω ϕ1 U ϕ2 iff there exists i ≤ j < |σ| such that
σ, j |=<ω ϕ2, and σ, k |=<ω ϕ1 for all k,
with i ≤ k < j;

4. σ, i |=<ω ϕ1 R ϕ2 iff either σ, j |=<ω ϕ2 for all i ≤ j < |σ|, or
there exists i ≤ k < |σ| such that
σ, k |=<ω ϕ1 and σ, j |=<ω ϕ2 for all
i ≤ j ≤ k;

The weak next operator can be defined in terms of the negation
and the next operator (˜︁Xϕ ≡ ¬X¬ϕ). We call L<ω(ϕ) the set of
all and only the finite state sequences σ that satisfy ϕ under finite
semantics, that is, such that σ |=<ω ϕ.

2.4.3 Properties

In this part, we recap the main properties of LTL (with only future
operators) under both finite and infinite semantics. We pay partic-
ular attention to the expressive power of LTL, by comparing it with
other formalisms (like S1S or regular expressions). We then show
that past operators do not add expressive power, and thus LTL+P,
although being exponentially more succinct than LTL in the worst
case, is expressively equivalent to LTL. We conclude this part by
showing some safety and co-safety fragments of LTL.

Expressive Power

Consider the LTL logic, that is LTL+P devoid of past operators. A
central theorem, due to Kamp [120] and Gabbay [97], proves that the
set of LTL-definable languages is exactly the set of S1S[FO]-definable
languages, that is, the languages definable in the first-order fragment
of S1S. In some sense, this proves that the choice of the temporal
modalities in LTL was carefully designed. Interestingly, this holds
for the case of finite state sequences as well.

Theorem 13 (Kamp [120], Gabbay [97]). It holds that:

1. JLTLK = JS1S[FO]K

2. JLTLK<ω = JS1S[FO]K<ω

The proof of Theorem 13 (that can be found in [120, 97]) is con-
structive, therefore there is an effective algorithm to turn formulas
of the first-order fragment of S1S into LTL-formulas, and vice versa.
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From Theorems 3, 5, 8 and 11, we obtain the following corollary,
establishing the equivalence between LTL, star-free languages, and
counter-free automata.

Corollary 2. Let L be a ω-language and let L<ω be a language
(over finite words). It holds that:

1. L ∈ JLTLK ⇔ L ∈ ω-SF ⇔ L is recognized by a cf-NBA;

2. L<ω ∈ JLTLK<ω ⇔ L<ω ∈ SF ⇔ L<ω is recognized by a
cf-NFA.

Extended Linear Temporal Logic

Since LTL is expressively equivalent to the first-order fragment of
S1S, not all the S1S properties are expressible in LTL. One example
is the language even(p), containing all and only the ω-words such
that in at least every even position the proposition atom p holds. In
[199], Wolper prove that even(p) is not expressible in LTL. There-
fore, a natural question is how to extend LTL in order to capture the
full expressiveness of S1S. In [199], Wolper answers this question by
introducing Extended Temporal Logic (ETL, for short), defined as an
extension of LTL with operators able to express regular expressions.
We refer to [199] for more details on ETL.

Theorem 14 (Wolper [199]). It holds that JETLK = JS1SK.

A normal form for LTL

Recall from Theorem 15 that the ω-SF class has the following normal
form:

n⋃︂
i=1

(lim(Ki) ∩ ¬ lim(K ′
i))

where Ki,K
′
i ∈ SF, for i = 1, . . . , n. Since the class of LTL-definable

languages coincides with the class ω-SF (recall Corollary 2) and since
JLTL+PPK<ω = SF, from the Normal Form Theorem for the class
ω-SF (Theorem 15) we obtain a normal form for the JLTLK class.
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Theorem 15 (Normal Form Theorem for LTL [97, 136]). Any ω-
language L ∈ ω-SF can be represented in the form:

n⋁︂
i=1

(GF(αi) ∧ ¬GF(βi))

or, equivalently, in the form:

n⋀︂
i=1

(GF(αi) ∨ ¬GF(βi))

where αi, βi ∈ LTL+PP, for i = 1, . . . , n.

The role of the past

We consider now the comparison between the expressive power of
LTL and LTL+P. Recall from Theorem 13 that JLTLK = JS1S[FO]K
(and the same for the case of finite words), and that there is also
an effective translation of any formula of LTL into an equivalent one
in S1S[FO], and vice versa. We can use this translation to prove
that LTL+P is expressively equivalent to LTL. Since LTL ⊆ LTL+P,
obviously it holds that JLTLK ⊆ JLTL+PK. In order to prove the
other direction (JLTL+PK ⊆ JLTLK), it suffices to take any LTL+P-
formula, build the equivalent S1S[FO]-formula (this can be done very
simply, by considering the semantics of the operators), and finally
use on this formula the procedure for passing from S1S[FO] to LTL.

Corollary 3. It holds that:

1. JLTLK = JLTL+PK

2. JLTLK<ω = JLTL+PK<ω

Although the two formalisms are expressively equivalent, it can
be proved that LTL+P is exponentially more succinct than LTL [143].

Proposition 4 (Markey [143]). LTL+P can be exponentially more
succinct than LTL.

Consider now LTL+PP, that is pure past LTL, and recall that
pure past formulas are interpreted at the last state of a finite state
sequence (Eq. (2.4)). For this reason, the language of any pure past
formula is a language of finite words. This opens the possibility of a
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comparison between LTL+PP and LTL interpreted over finite words.

In particular, we wonder whether JLTL+PPK<ω ?
= JLTLK<ω. We will

show that there is a positive answer to this question.
Before proving that JLTL+PPK<ω = JLTLK<ω, we show an in-

teresting duality between these two logics. In particular, given the
duality of the temporal operators over finite state sequences (X and
Y are duals, and U and S are duals), for each language L of finite
words it holds that L is LTL-definable if and only if L−1 (the reverse
language of L) is LTL+PP-definable. Since we didn’t find a proof of
this result in the literature, we give it here below.

Proposition 5. Let L ∈ (2Σ)∗. It holds that:

L ∈ JLTLK<ω ⇔ L−1 ∈ JLTL+PPK<ω

Proof. Consider the left-to-right direction. Let L ∈ JLTLK<ω. By
definition of J·K<ω, there exists a LTL-formula ϕ such that L<ω(ϕ) =
L. We define ϕ′ as the formula obtained from ϕ by replacing each
operator X with Y, and each operator U with S. Given the dual-
ity between the previous pair of operators, it is possible to prove
by induction that (L<ω(ϕ))−1 = L<ω(ϕ′), that is L−1 = L<ω(ϕ′).
Clearly, ϕ′ ∈ LTL+PP (i.e., ϕ′ syntactically belongs to LTL+PP),
and therefore L<ω(ϕ′) ∈ JLTL+PPK<ω as well. It follows that L−1 ∈
JLTL+PPK<ω. The right-to-left direction is specular.

Given this duality between LTL+PP and LTL interpreted over
finite words, the expressive equivalence between these two logics
easily follows from the closure property of star-free expressions under
the reverse operation (recall Corollary 1), and from the equivalence
between LTL and SF (recall Corollary 2). This result is stated in [192,
136] but not proved. Therefore we give here the proof.

Proposition 6 ([192, 136]). JLTL+PPK<ω = JLTLK<ω.

Proof. We prove first that JLTL+PPK<ω ⊆ JLTLK<ω.
Let L ∈ JLTL+PPK<ω. By definition of J·K<ω, there exists a pure
past formula ϕ ∈ LTL+PP such that L = L<ω(ϕ). By Proposition 5,
there exist a LTL-formula ϕ′ such that L<ω(ϕ) = (L<ω(ϕ′))−1. Since
JLTLK<ω = SF (Corollary 2) and since SF is closed under the reverse
operation (Corollary 1), we have also that (L<ω(ϕ′))−1 ∈ SF. Again
by Corollary 2, we have that there exists a LTL-formula ϕ′′ such that
L<ω(ϕ′′) = (L<ω(ϕ′))−1. It follows that L ∈ JLTLK<ω.
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Consider now the opposite direction, and take any L ∈ JLTLK<ω.
By the definition of J·K<ω there exists a formula ϕ ∈ LTL such that
L = L<ω(ϕ). By Proposition 5, there exists a LTL+PP-formula ϕ′

such that L<ω(ϕ) = (L<ω(ϕ′))−1. Since by Corollary 2 L<ω(ϕ) ∈
SF, also (L<ω(ϕ′))−1 ∈ SF. Since SF is closed under the reverse op-
eration Corollary 1, it also holds that L<ω(ϕ′) ∈ SF. By Corollary 2,
there exists a LTL-formula ϕ′′ such that L<ω(ϕ′) = L<ω(ϕ′′). By
applying again Proposition 5, we find that there exists an LTL+PP-
formula ϕ′′′ such that (L<ω(ϕ′′))−1 = L<ω(ϕ′′′). It follows that
L ∈ JLTL+PPK<ω.

The result in Proposition 6 is interesting and definitely not triv-
ial. We can derive the following corollaries.

Corollary 4. The set JLTLK<ω is closed under the reverse operation.

Corollary 5. JLTL+PPK<ω = SF.

2.4.4 Safety and co-Safety fragments of LTL

In this part, we recap some properties of the set of safety and co-
safety languages that are definable in LTL.

A formula of LTL+P is said to be a safety formula (resp. co-safety
formula) if and only if L(ϕ) is a safety language (resp. co-safety
language) (recall Definitions 3 and 5).

In Definition 14, we gave the definition of the four classes SAFETY,
SAFETYSF, coSAFETY, and coSAFETYSF. We recall that SAFETY
class is is the class of all the ω-regular languages that are also safety
languages, and it can be equivalentely defined as:

SAFETY := {L ⊆ (Σ)ω | L = K · (Σ)ω ∧K ∈ REG} (2.5)

Conversely the SAFETYSF class is obtained from SAFETY by re-
stricting the prefixes to belong to the SF class (the class of star-free
expressions), and it is exactly the set of all star-free ω-languages
that are safety languages (recall Proposition 3), i.e., SAFETYSF =
ω-SF ∩ SAFETY. The same holds for coSAFETY and coSAFETYSF

as well.
It is worth noting that it is possible that a formula is both safety

and co-safety: one example is the formula Xp. Therefore, SAFETY∩
coSAFETY ̸= ∅.
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Normal Forms

Since in the previous sections we proved that star-free ω-languages
are equivalent to LTL+P (recall Corollary 2), and since SAFETYSF =
ω-SF ∩ SAFETY, it follows that the SAFETYSF class comprises ex-
actly the ω-languages that are definable in LTL+P that are safety
languages, that is:

SAFETYSF = JLTL+PK ∩ SAFETY (2.6)

The same holds of course for coSAFETYSF as well:

coSAFETYSF = JLTL+PK ∩ coSAFETY (2.7)

Consider now the SAFETYSF class. By definition, an ω-language
L is in SAFETYSF if and only if each prefix of each ω-word in L
belongs to a star-free language, or equivalently (by Corollary 5), it
is a model of an LTL+PP formula. Consider the globally operator
(G) of LTL+P. If its argument is a formula of LTL+PP, the globally
operator constrains each prefix of each of its models. It follows
that the language of such globally operators are exactly those that
belong to the SAFETYSF class. From now on, with Gαsf we denote
the set of formulas of that form, where αsf ∈ JLTL+PPK<ω (or,
equivalently, αsf ∈ SF), and as always with JGαsf K we refer to the
set of ω-languages recognized by a formula of type Gαsf . It holds
that:

SAFETYSF = JGαsf K (2.8)

Since SAFETYSF = LTL+P ∩ SAFETY, this means that Gαsf is a
normal form for all the safety ω-languages definable in LTL+P.

Theorem 16 (Chang et al. [40], Thomas [192]). A formula ϕ ∈
LTL+P represents a safety property if and only if there exists a for-
mula αϕsf ∈ LTL+PP such that Gαϕsf ≡ ϕ.

We can generalize the above considerations also to the case where
αreg ∈ REG, that is where the argument of the globally operator is
a language recognized by a regular expression (not necessarily star-
free). We call Gαreg the set of formulas of that type where αreg ∈
REG, and with JGαregK we denote the set of language recognized by
a formula of type Gαreg . By the same considerations above, we have
that:

SAFETY = Gαreg (2.9)
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Therefore, we obtain the following normal form for every ω-regular
safety language.

Theorem 17 (Thomas [192]). A ω-language L ∈ ω-REG is a safety
property if and only if there exists a formula αL

reg such that

L<ω(αL
reg) ∈ REG and GαL

reg ≡ ϕ.

Of course, in the previous theorem, the formula αϕreg cannot be
written in LTL+P, since LTL+P is expressively equivalent to star-free
regular expressions. A possibility is to write αϕreg with ETL.

The dual considerations hold for coSAFETY and coSAFETYSF as
well. In particular, since each language in coSAFETYSF comprises
only the ω-words containing at least one prefix that has to belong
to a star-free language, the eventually operator (F) of LTL+P can
be used in combination with formulas of LTL+PP in order to give
a normal form for the class coSAFETYSF. We define Fαsf (resp
Fαreg) as the set of formulas of that type where αsf ∈ SF (resp.
αreg ∈ REG). With JFαsf K (resp. JFαregK) we refer to the set of
ω-languages recognized by a formula of the corresponding type. It
holds that:

coSAFETYSF = JFαsf K (2.10)

Since coSAFETYSF = LTL+P ∩ coSAFETY, we have that Fαsf is a
normal form for all the co-safety ω-languages definable in LTL+P.

Theorem 18 (Chang et al. [40], Thomas [192]). A formula ϕ ∈
LTL+P represents a co-safety property if and only if there exists a
formula αϕsf ∈ LTL+PP such that Fαϕsf ≡ ϕ.

Also the generalization to regular languages holds as well.

Theorem 19 (Thomas [192]). A ω-language L ∈ ω-REG is a co-
safety property if and only if there exists a formula αL

reg such that

L<ω(αL
reg) ∈ REG such that FαL

reg ≡ ϕ.

Syntactical Fragments

As we will see in the next chapters, a lot of problems in formal ver-
ifications, like for instance model checking, satisfiability and realiz-
ability, become much easier if the property is a (co-)safety property.
Therefore, if the property is expressed by means of a formula of
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LTL+P, it is useful knowing whether the formula is a (co-)safety for-
mula, that is whether its language is a (co-)safety language. Unfortu-
nately, Kupferman and Vardi proved that, given an LTL+P-formula,
recognizing whether it is (co-)safety is PSPACE-complete [127]. It
is a pretty high complexity, given that it is the same complexity of
the satisfiability of the same logic. Therefore, a good choice is to
express properties by using a syntactical safety fragment of LTL (or
equivalently a safety fragment), that is fragments with which one
can express only safety properties.

Arguably, one of the most known (and natural) safety fragments
of LTL is the one obtained from LTL (with only future temporal
operators) by restricting the negation to appear only in front of
proposition atoms and by forbidding existential temporal operators,
i.e., the until and the eventually. To the best of our knowledge,
this fragment was first studied by Sistla [178], who did not gave
it a name. Recently, the name Safety-LTL has become popular for
denoting this fragment [201, 105].

Definition 15 (Sistla [178]). The Safety-LTL logic is defined as the
set of formulas obtained from LTL such that, when in NNF, do not
contain any U or F operator.

In [178], Sistla prove that Safety-LTL is a safety fragment of
LTL, that is, each formula ϕ ∈ Safety-LTL is such that L(ϕ) is a
safety property. Actually, he prove the following more general result
(Chang et al. extended it by including also past operators [40]).

Proposition 7 (Sistla [178], Chang et al. [40]). Every pure past
formula of LTL+P is a safety property and, if α and β are safety
properties, then so are α ∧ β, α ∨ β, Xα, Gα and α R β.

A very interesting question is whether each safety formula of
LTL can be formalized in Safety-LTL as well. In some sense, this
would mean that Safety-LTL is expressively complete with respect to
the set of safety ω-languages definable in LTL. Chang, Manna and
Pnueli [40] proved that this is actually the case.

Theorem 20 (Chang et al. [40]). It holds that:

JSafety-LTLK = JLTLK ∩ SAFETY

All the above definitions and results extend to the case of co-
safety properties as well. We define the coSafety-LTL logic as the
dual of Safety-LTL.
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Definition 16. The coSafety-LTL logic is defined as the set of for-
mulas obtained from LTL such that, when in NNF, do not contain
any R or G operator.

The coSafety-LTL logic is a co-safety fragment of LTL [178], and
it is expressively complete with respect to the set of co-safety ω-
languages definable in LTL [40].

Theorem 21 (Chang et al. [40]). It holds that:

JcoSafety-LTLK = JLTLK ∩ coSAFETY

2.4.5 The Temporal Hierarchy

As we have already seen, two important subclasses of the set of LTL-
definable languages are the sets of safety and co-safety languages.
In particular, in the last section, we have seen that a LTL formula is
a safety property if and only if it can be expressed in the form Gα,
where α is a pure-past formula of LTL+P. Similarly, an LTL formula
is a co-safety property if and only if it is equivalent to Fα, for some
pure-past formula α of LTL+P. A natural question is to study the
expressive power of the compound classes obtained either by taking
Boolean combinations of formulas of type Gα and Fα, or by nesting
the two operators (G and F) one inside the other. The study of these
compound classes brings to a classification of all the LTL-definable
properties into a hierarchy, the so-called Temporal Hierarchy [140].
We will mainly focus on the work of Manna and Pnueli [140]. As
noted by the authors of [140], the importance of such a classification
is at least twofold. On the one hand, recognizing whether a property
belongs to a class of the hierarchy (e.g., the safety class) typically
reduces the computational complexity of problems like satisfiability,
realizability and model checking. On the other hand, the classifi-
cation can be used as a remedy for underspecification: by having
a sort of checklist partitioned into the classes of the hierarchy, the
specifier can try to avoid incomplete specifications by answering to
the question:

Is there a property of this class that is relevant to the system I am
specifying?
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Definition of the Temporal Hierarchy of LTL

We have already seen that safety properties express the fact that “a
good thing will eventually happen” and co-safety properties the fact
that “a good thing will happen at least one time”. We now define
two compound classes obtained by nesting the G and F operators.

The first class that we consider is the liveness class, also referred
to the recurrence class, expressing properties of type “a good thing
will happen infinitely many times”. Manna and Pnuely [140] showed
that the any liveness property can be represented by a formula of
type GFα, where α ∈ LTL+PP is a pure-past formula: this represents
a normal form for the liveness class.

We consider a second class obtained by the nesting of the globally
and the eventually operator, called the persistence class. Persistence
properties are those expressing that “a good thing will constantly
happen from a certain point on”. The normal form of this class is
represented by the formulas of type FGα, with α ∈ LTL+PP.

We consider now Boolean combinations of the classes defined
above. The obligation class is obtained by taking any Boolean com-
bination of safety and co-safety languages. Its name derives from
the fact that its properties impose a conditional obligation. Take
for instance the obligation property G¬α1∨Fα2 (which is equivalent
to Fα1 → Fα2). This property forces the fact that, if the condi-
tion α1 will happen, then also α2 will happen. The normal form of
the obligation class is the set of formulas of type

⋀︁n
i=1(Gαi ∨ Fβi),

where αi, βi ∈ LTL+PP, for some n ∈ N. Moreover, it holds that
the obligation class is strictly greater than the safety and co-safety
classes, and actually it is exactly the intersection of the liveness and
the persistence class.

Finally, we consider the reactivity class, defined as the set of
any Boolean combination of liveness and persistence languages. A
reactivity property, similarly to an obligation property, expresses a
conditional obligation. In particular, it states that “if a good thing
happens infinitely many times, so does another good thing”. The
normal form of this class comprises all and only the formulas of type⋀︁n
i=1(GFαi ∨ FGβi), where αi, βi ∈ LTL+PP and for some n ∈ N.
The temporal hierachy is the hierarchy obtained from the safety,

co-safety, obligation, liveness, persistence, and reactivity classes.
The temporal hierarchy is depicted in Fig. 2.1 (the picture has been
taken and adapted from the one in [140]).
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Safety
Gα

Co-safety
Fα

Obligation⋀︁n
i=1(Gαi ∨ Fβi)

Liveness
GFα

Persistence
FGα

Reactivity⋀︁n
i=1(GFαi ∨ FGβi)

Figure 2.1: Temporal Hierarchy [140]. The picture displays the
classes of the hierarchy, the relation among them along with their
normal forms. The arrows represent the inclusions between the
classes.

Recall from Section 2.4.3 that any LTL formula can be expressed
by one of the form

n⋀︂
i=1

(GF(αi) ∨ ¬GF(βi))

where αi, βi ∈ LTL+PP, for i = 1, . . . , n and for some n ∈ N. This is
exactly the normal form for the reactivity class. This implies that the
reactivity class is exactly the set JLTLK. Actually, there is an entire
hierarchy inside the reactivity class. We define the Reactivity(N)
(R(N), for short) class as the reactivity class but such that we fix
the number of conjuncts to be exactly N .

Definition 17 (The Reactivity(N) class). For all n ∈ N, the
Reactivity(N) class (R(N), for short) is defined as the set of formulas
of the form

n⋀︂
i=1

(GF(αi) ∨ FG(βi))

each αi, βi ∈ LTL+PP for each i ∈ {1, . . . , n}.
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It can be proved that, for each N ∈ N, the Reactivity(N) class
strictly contains Reactivity(N − 1) and it is strictly contained into
Reactivity(N + 1).

Proposition 8. For each n ∈ N, it holds that:

JR(N)K ⊊ JR(N+ 1)K

Generalized Reactivity(1)

Bloem et al. [25] studied the realizability problem of a particular
logic obtained from the Reactivity(1) class by generalizing the num-
ber of formulas of type GF and FG that it can contain. In particular,
GR(1) formulas can contain conjunctions of formulas of type GF and
disjunctions of formulas of type FG. For this reason, this class is
called Generalized Reactivity(1) (GR(1), for short). Its syntax is
defined as follows.

Definition 18 (GR(1) [25]). The class of Generalized Reactivity(1)
formulas (GR(1), for short) comprises all and only the formulas of
type:

(

m⋀︂
i=1

GFαi) ∨ (

n⋁︂
i=1

FGβi)

or equivalenty of type:

(

m⋀︂
i=1

GFαi)→ (

n⋀︂
j=1

GFβj)

for any m,n ∈ N, where αi, βj ∈ LTL+PP for each i ∈ {1, . . . ,m}
and for each j ∈ {1, . . . , n}.

Since each R(1) formula is also a GR(1) formula with only one
conjunct on both sides of the implication, the following result holds.

Proposition 9. It holds that:

JR(1)K ⊆ JGR(1)K

Fig. 2.2 and Fig. 2.3 summarize the relation between the various
formalisms discussed in this section, over finite and infinite linear
order interpretation, respectively.
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- ω-REG

- JS1SK

- JETLK

- NBA

- LIVENESS

- JGFαregK

- SAFETY

- JGαregK

- NSA

- SAFETYSF

- JGαsf K

- Safety-LTL

- coSAFETY

- JFαregK

- coSAFETYSF

- JFαsf K

- coSafety-LTL

- ω-SF

- JS1S[FO]K

- JLTLK

- JLTL+PK

- cf-NBA

Figure 2.2: Comparison of the expressiveness of the var-
ious formalism under the infinite linear order interpreta-
tion. For ease of exposition, we highlighted the rectangle
corresponding to LTL with thick borders.
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- REG

- JS1SK<ω

- JETLK<ω

- NFA

- DFA

- SF

- JS1S[FO]K<ω

- JLTLK<ω

- JLTL+PK<ω

- cf-DFA

Figure 2.3: Comparison of the expressiveness of the vari-
ous formalism under the finite linear order interpretation.
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CHAPTER

3

THE LTLEBR+P, LTLEBR
AND GR-EBR LOGICS

In this chapter, we introduce three fragments of Linear Temporal
Logic with Past (LTL+P) and we study their expressive power.

In the first section, we define the syntax of Extended Bounded
Response LTL with Past (LTLEBR+P, for short), obtained by a care-
ful application of universal temporal operators (i.e., X, G and R) to
pure past formulas. As we will see in the next sections, the main
motivation for the choices of the syntax of LTLEBR+P is to allow for
a fully symbolic compilation of LTLEBR+P formulas into determinis-
tic and symbolic automata. We will then investigate the expressive
power of LTLEBR+P and show that it is complete with respect to the
safety fragment of LTL, i.e., JLTLEBR+PK = JLTLK∩ SAFETY. Actu-
ally, we will see that even a small fragment of LTLEBR+P is still able
to capture JLTLK∩SAFETY, and we will motivate the choice for the
syntax of LTLEBR+P with an argument of naturalness of LTLEBR+P
specifications with respect to those written with the smaller frag-
ment.

81
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A fundamental role in the completeness proof of LTLEBR+P is
played by pure past formulas. For this reason, in the second section
we will study the expressive power of LTLEBR, that is the logic ob-
tained from LTLEBR+P by fobidding past operators (and thus pure
past formulas). The main result of the second section is a proof that
LTLEBR is strictly less expressive than LTLEBR+P. Interestingly, this
shows that past operators, despite not being important for the ex-
pressiveness of full LTL (since JLTLK = JLTL+PK), can be crucial for
the expressiveness of fragments of LTL, like for instance LTLEBR+P.

In the third section of this chapter, we introduce the logic of
Generalized Reactivity(1) LTLEBR+P, or GR-EBR, for short. This
logic extends LTLEBR+P by adding: (i) assumptions and guarantees
(in the form of logical implications), and (ii) fairness contraints (in
the form recurrence formulas). The choices underlying the syntax of
GR-EBR are also guided by algorithmic motivations (as for the case
of LTLEBR+P). In fact, we will see in the next chapters that the re-
alizability problem of GR-EBR specifications can be solved in a fully
symbolic way. We conclude the third section with some observations
about the expressiveness of GR-EBR, which, in contrast to the case
of LTLEBR+P, goes beyond the safety fragment.

3.1 The LTLEBR+P logic

In this section, we introduce the logic of Extended Bounded Response
LTL+P (LTLEBR+P, for short) as safety fragment of LTL+P. In the
first place, we give its syntax, which is articulated over layers. As we
will see in the next chapters, each layer of the syntax corresponds
to a step of a fully symbolic algorithm for solving the realizability
problem from LTLEBR+P specifications. We then give a normal form
for the LTLEBR+P logic and show some meaningful examples of re-
quirements that can be formalized within this logic. We conclude
this section by proving the completeness of LTLEBR+P with respect
to the safety fragment of LTL.

3.1.1 Definition and Normal Form

To start with, we define the bounded until operator ψ1 U
[a,b] ψ2 as a

shortcut for the LTL formula
⋁︁b
i=a(X1 . . .Xi(ψ2)∧

⋀︁i−1
j=0 X1 . . .Xj(ψ1)).

The bounded eventually (F[a,b]ψ), the bounded globally (G[a,b]ψ) and
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the bounded release (ψ1R
[a,b]ψ2) operators derive from the bounded

until in the classical way. We refer to all these four operators as
bounded future operators. A distinguished feature of bounded future
operators is that they can contrain only a finite and bounded inter-
val in the future. This bound depends on the number of nested next
operators inside the formula obtained by expanding the bounded
operators as shown above.

Let LTL+PBF (for Bounded Future LTL+P) be the variant of
LTL+P that features past modalities and bounded future modalities,
where past modalities can occur in the scope of bounded ones, but
not vice versa. LTLEBR+P extends LTL+PBF by including Boolean
combinations of the universal unbounded future modalities globally
(G) and release (R).

Definition 19 (The logic LTLEBR+P). Let a, b ∈ N. An LTLEBR+P
formula χ is inductively defined as follows:

η := p | ¬η | η1 ∨ η2 | Yη | η1 S η2 Pure Past Layer

ψ := η | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U
[a,b] ψ2 Bounded Future Layer

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | ψ R ϕ Future Layer

χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

We refer the reader to Section 2.4 for the semantics of LTLEBR
modalities.

The syntax of LTLEBR+P is articulated over layers, that impose
some syntactical restrictions on the formulas that can be generated
from the grammar. For example, LTLEBR+P forces the leftmost ar-
gument of any release operator to contain no universal temporal
modalities (i.e., R and G). As we will see in the next chapters, this
layered structure is guided by the steps of the algorithm for the con-
struction of symbolic automata starting from LTLEBR+P-formulas.

LTLEBR+P is safety fragment of LTL+P

Since bounded future operators can be expressed by (actually they
are shortcuts of) LTL+P formulas, we have that each formula of
LTLEBR+P is also a formula of LTL+P, and thus LTLEBR+P is a
fragment of LTL+P. Moreover, it is straightforward to see that any
LTLEBR+P formula contains only universal temporal modalities (i.e.,
X, G, and R) and pure past formulas. Therefore, by Proposition 7,
LTLEBR+P is also a safety fragment of LTL+P.
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A normal form for LTLEBR+P

A normal form of a logic has the big advantage to decrease the com-
plexity of general formulas of that logic. Here, we give a normal form
for LTLEBR+P which will be very useful in the chapters dedicated
to algoritms, in particular when we will show a fully symbolic algo-
rithm for realizability from LTLEBR+P specifications. The following
is the normal form of the logic LTLEBR+P.

Definition 20 (Normal Form of LTLEBR+P). The normal form of
LTLEBR+P is the set of all and only the formulas of the following
type:

Xi1αi1 ⊗ · · · ⊗ Xijαij⊗
Xij+1Gαij+1

⊗ · · · ⊗ XikGαik⊗
Xik+1(αik+1

R βik+1
)⊗ · · · ⊗ Xih(αih R βih)

where each αi, βi ∈ LTL+PP is a pure past formula, ⊗ ∈ {∧,∨}, and
i, j, k, h ∈ N.
We refer to Normal-LTLEBR+P as the set of formula of LTLEBR+P
that are syntactically in normal form. Obviously, the following result
holds.

Proposition 10. JLTLEBR+PK = JNormal-LTLEBR+PK.

The transformation of LTLEBR+P formulas to Normal-LTLEBR+P ones
stands at the basis of the algorithm for solving the realizability prob-
lem of LTLEBR+P, that we will describe in the next sections. For this
reason, the proof that any formula of LTLEBR+P can be transformed
into an equivalent one in Normal-LTLEBR+P (i.e., JLTLEBR+PK =
JNormal-LTLEBR+PK) will be described later in the chapter dedicated
to this algorithm.

3.1.2 Examples

We now give some examples of requirements that can be expressed
in LTLEBR+P in a fairly natural and compact way.

The first one is a typical bounded response requirement. Consider
an arbiter that has to assign a grant g at most k time units after a
request r is issued. It can be expressed by the following LTLEBR+P
formula:

G(r → F[0,k]g) (3.1)
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Another common requirement is mutual exclusion. As an exam-
ple, the case of an arbiter that has to grant a resource to at most
one client at a time can be expressed as follows (for each i, gi means
that the resource has been granted to client i):

G(
⋀︂

1≤i<j≤n

¬(gi ∧ gj)) (3.2)

When a set of clients with different priorities has to be managed,
it is possible to introduce a requirement stating that, whenever two
or more clients simultaneously send a request, clients with a higher
priority must be granted before those with a lower one (i < j means
that the priority of client i is higher than that of client j):⋀︂

1≤i<j≤n

G((ri ∧ rj)→ (¬gj) U[0,k] gi) (3.3)

In many situations it is important to include requirements about
the configuration of a system model. Consider the case of a ther-
mostat. One may ask that if the prog modality is off, then the
controller has to communicate the signal on to the boiler for an in-
definitely long amount of time, while, in case the prog modality is
on, it has to do that only for a specific interval of time, say [h1, h2],
after which it has to stop the communication with the boiler. This
can be expressed in LTLEBR+P by the following formula:

(¬prog ∧ G(on)) ∨ (prog ∧ G[h1,h2](on) ∧ Xh2+1G(off)) (3.4)

Finally, the use of the Past Layer in the definition of LTLEBR+P
(Definition 19) enables the specification of some types of assumptions-
guarantees properties. Consider, for instance, the class of formulas
of the form G(α)→ G(β), where α and β are two Boolean formulas
representing the assumptions for the environment and the guaran-
tees for the controller, respectively. The specification expresses the
fact that, if the environment always complies with its assumptions,
than the controller has always to fulfill its guarantees. The for-
mula G(α) → G(β) does not belong to LTLEBR+P. Nevertheless,
consider now the strict implication between the assumption α and
the guarantee β [25], which corresponds to the following property:
the controller fulfills its guarantees as long as the environment com-
plies with its assumptions. This property can be expressed by the
LTLEBR+P formula G(Hα→ β).
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3.1.3 Expressive Power

In this section, we study the expressiveness of the LTLEBR+P logic.
In particular, we prove that LTLEBR+P is expressively complete with
respect to the safety fragment of LTL+P, that is JLTLEBR+PK =
JLTLK ∩ SAFETY. Consequently, by Theorem 20, LTLEBR+P and
Safety-LTL are expressively equivalent (i.e., JLTLEBR+PK =
JSafety-LTLK). We conclude this part showing a comparison between
LTLEBR+P and other safety fragments of LTL+P.

LTLEBR+P is expressively complete

First we recall the normal form theorem stated in Theorem 16, estab-
lishing that JLTLK ∩ SAFETY = JGαK. Proving that JLTLEBR+PK =
JLTLK ∩ SAFETY is straightforward. The left-to-right direction fol-
lows from the fact that LTLEBR+P is a safety fragment of LTL+P
(recall Section 3.1.1). For the right-to-left direction it suffices to
show that the normal form Gα is syntactically definable in LTLEBR+P
(i.e., Gα ∈ LTLEBR+P and thus also L(Gα) ∈ JLTLEBR+PK, for any
α ∈ LTL+PP).

Theorem 22 (Completeness of LTLEBR+P). It holds that:

JLTLEBR+PK = JLTLK ∩ SAFETY

Proof. We first prove that JLTLEBR+PK ⊆ JLTLK∩SAFETY. Let ϕ ∈
JLTLEBR+PK. By Definition 19, ϕ ∈ LTL+P, and thus, since JLTLK =
JLTL+PK, it holds that L(ϕ) ∈ JLTLK. Moreover, by Proposition 7,
L(ϕ) is a safety language, that is L(ϕ) ∈ SAFETY. Therefore, L(ϕ) ∈
JLTLK ∩ SAFETY.

We now prove that JLTLK ∩ SAFETY ⊆ JLTLEBR+PK. Let ϕ be
a formula such that L(ϕ) ∈ JLTLK ∩ SAFETY. By Theorem 16,
L(ϕ) ∈ JGαK. Now, Gα (for any α ∈ LTL+PP) is a formula that
syntactically belongs to LTLEBR+P, that is Gα ∈ LTLEBR+P, and
thus JGαK ⊆ JLTLEBR+PK. It follows that L(ϕ) ∈ JLTLEBR+PK.

Comparison between LTLEBR+P, Gα and Safety-LTL

In this part, we compare the LTLEBR+P logic with the Gα normal
form and with the Safety-LTL logic.

Previously, we proved that the set of languages definable in
LTLEBR+P is exactly the set of safety languages definable in LTL+P.



3.1 The LTLEBR+P logic 87

In turn, Theorem 16 shows that these sets correspond to languages
definable by a formula of type Gα, where α ∈ LTL+PP. Despite being
equivalent fragments, we think that LTLEBR+P offers a more natural
language for safety properties than the Gα fragment. Consider for
example the following property, expressed in natural language: ei-
ther p3 holds forever, or there exists two time points t′ ≤ t such that
(i) p1 holds in t, (ii) p2 holds in t′, and (iii) p2 holds from time point
0 to t. The property can be easily formalized in LTLEBR+P by the
formula p1 R (p2 Rp3). The equivalent formula in the Gα fragment is
G(H(p3) ∨O(p2 ∧O(p1) ∧H(p3))), which is arguably more intricate.

Safety-LTL is the fragment of LTL (thus with only future tempo-
ral modalities) containing all and only the LTL-formulas that, when
in negated normal form, do not contain any until or eventually oper-
ator (recall Definition 15). Recall from Theorem 20 that Safety-LTL
captures exactly the safety fragment of LTL+P, i.e., JSafety-LTLK =
JLTLK ∩ SAFETY. It immediately follows that LTLEBR+P and
Safety-LTL are expressively equivalent, namely JLTLEBR+PK =
JSafety-LTLK.

Differently from LTLEBR+P, Safety-LTL does not impose any syn-
tactic restriction on the nesting of the logical operators; as a matter
of fact, G(p1 ∨ Gp2) belongs to the syntax of Safety-LTL but not
to the syntax of LTLEBR+P, even though G(p1 ∨ Gp2) ≡ G(¬p2 →
Hp1) ∈ LTLEBR+P. The restrictions on the syntax of LTLEBR+P are
due to algorithimic aspects: each layer of the syntax of LTLEBR+P
(recall Definition 19) corresponds to a step of the algorithm for the
symbolic automata construction starting from LTLEBR+P-formulas.
As a matter of fact, we will see in the chapters dedicated to algo-
rothms that, in practice, LTLEBR+P avoids an exponential blowup in
time with respect to known algorithms for automata contruction for
safety specifications. Last but not least, we will prove that the real-
izability problem of LTLEBR+P is EXPTIME-complete, as opposed to
the realizability of LTL+P, which is 2EXPTIME-complete [160, 164].
Consider now LTLEBR, that is the fragment of LTLEBR+P devoid of
past operators. Since each formula of LTLEBR syntactically belongs
to Safety-LTL, it immediately follows that JLTLEBRK ⊆ JSafety-LTLK.
In the next section, we will prove that the converse direction does
not hold, that is LTLEBR is strictly less expressive than LTLEBR+P,
and thus less expressive than Safety-LTL as well.
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3.2 The LTLEBR logic

In the previous section, we showed that LTLEBR+P is expressively
complete with respect to the safety fragment of LTL. A crucial role in
the proof is played by the pure past layer of LTLEBR+P. In particular,
since the Gα class is a normal form for the safety fragment of LTL,
and since Gα is definable in LTLEBR (for any α ∈ LTL+PP), we
have that LTLEBR+P capture exactly the safety fragment of LTL. In
this section, we investigate whether the same holds also for the logic
obtained from LTLEBR+P by forbidding past temporal modalities. In
fact, one may wonder whether the pure past layer is really necessary,
or whether the class JGαK can be expressed in LTLEBR+P without
the use of past operators. We will give a negative answer to this
question, showing that LTLEBR+P without past operators is strictly
less expressive than LTLEBR+P.

3.2.1 Definition and Normal Form

We define the LTLEBR logic as LTLEBR+P devoid of past temporal
operators.

Definition 21 (The logic LTLEBR). Let a, b ∈ N. An LTLEBR formula
χ is inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U
[a,b] ψ2 Bounded Future Layer

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | ψ R ϕ Future Layer

χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

Before giving the normal form of LTLEBR, we define the LTL+PBP

set. A bounded past formula is any Boolean combination of propo-
sitional atoms and formulas of type Yα, where α is a bounded past
formula. We refer to LTL+PBP (Bounded Past LTL+P) as the set
of all and only the bounded past formulas of LTL+P. Equivalently,
LTL+PBP is the set obtained from LTL+PP by forbidding the since
operator.

The absence of past modalities in LTLEBR changes its normal
form with respect to the one of LTLEBR+P. In particular, while the
normal form of LTLEBR+P can have arbitrarily pure past formulas
as arguments of globally and release operators (recall Definition 20),
the normal form of LTLEBR can have only bounded past formulas as
such arguments.
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Definition 22 (Normal Form of LTLEBR). The normal form of
LTLEBR+P is the set of all and only the formulas of the following
type:

Xi1αi1 ⊗ · · · ⊗ Xijαij⊗
Xij+1Gαij+1 ⊗ · · · ⊗ XikGαik⊗

Xik+1(αik+1
R βik+1

)⊗ · · · ⊗ Xih(αih R βih)

where each αi, βi ∈ LTL+PBP is a bounded past formula, ⊗ ∈ {∧,∨},
and i, j, k, h ∈ N.

We call Normal-LTLEBR the set of LTLEBR formulas in normal
form. It holds that:

Lemma 1. JLTLEBRK = JNormal-LTLEBRK.

As before, the proof that JLTLEBRK = JLTLEBR+PK is postponed
to the chapters dedicated to algorithms, since it is the same of the
one used for normalizing LTLEBR+P formulas.

3.2.2 Expressive power

In the previous sections, we have seen that:

JLTLEBR+PK = JGαK = JLTLK ∩ SAFETY = JSafety-LTLK

In particular, thanks to the use of the pure past layer (recall Def-
inition 21), LTLEBR+P can easily capture the whole class of JGαK,
and thus the whole class of JLTLK ∩ SAFETY. However, one may
wonder whether the pure past layer is really necessary, or whether
the class JGαK can be expressed in LTLEBR+P without the use of
past operators. We will prove that this is not the case, that is

JLTLEBRK ⊊ JLTLEBR+PK (3.5)

This result proves that past modalities, although being not important
for the expressiveness of full LTL (since JLTLK = JLTL+PK [97, 136,
143]), can play a crucial role for the expressive power of fragments
of LTL, like, for instance, LTLEBR.
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The general idea

We will prove Eq. (3.5) by showing that JLTLEBRK ⊊ JSafety-LTLK.
The result in Eq. (3.5) follows from the fact that JSafety-LTLK =
JLTLEBR+PK. We will prove that the language of the Safety-LTL
formula φG := G(p1 ∨ G(p2)) cannot be expressed by any LTLEBR
formula. The formula φG belongs syntactically to Safety-LTL, and
thus L(φG) ∈ JSafety-LTLK. We remark that, despite φG does not
syntactically belong to LTLEBR+P, its language can be formalized in
LTLEBR+P. In fact, it holds that:

G(p1 ∨ G(p2)) ≡ G(¬p2 → H(p1)) (3.6)

Since G(¬p2 → H(p1)) ∈ LTLEBR+P, it holds that L(φG) ∈
JLTLEBR+PK. It is worth noting the following points: (i) G(¬p2 →
H(p1)) is of the form Gα, where α ∈ LTL+PP (α is a pure past
formula); (ii) the formula φG is equivalent to G(b) ∨ ((XGp2) R p1),
but this formulation does not syntactically belong to LTLEBR, due
to the restriction that forces the leftmost argument of any release
operator to contain no universal temporal operators (i.e., R and G).
In fact, in the following, we will prove that L(φG) ̸∈ JLTLEBRK.

The proof of the undefinability of φG is based on the fact that
each formula of LTLEBR cannot constrain an arbitrarily long prefix
of a state sequence, but only a finite prefix whose maximum length
depends on the maximum number of nested next operators inside
the LTLEBR formula.

Consider again the formula φG := G(p1 ∨ G(p2)). The language
L(φG) is expressed by the ω-regular expression ({p1})ω + ({p1})∗ ·
({p2})ω. Written in natural language, each model of φG cannot
contain a position in which ¬p2 holds preceded by a position in
which ¬p1 holds.

Remark 1. Let σ ⊆ (2Σ)ω be a state sequence. It holds that:

σ |= φG ⇒ ¬∃i, j(j ≤ i ∧ σj |= ¬p1 ∧ σi |= ¬p2)

We define i,kσj as the state sequence such that at the time points
i and k it holds p1 ∧ ¬p2, at time point j it holds ¬p1 ∧ p2, and for
all the other time points p1 ∧ p2 holds. The membership of i,kσj

to L(φG) depends on the value of the three indices i, j and k, as
follows.
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Remark 2. If i < j and k < j, then i,kσj |= φG. Conversely, if
i ≥ j or k ≥ j, then i,kσj ̸|= φG.

As we will see, given a generic formula ψ ∈ LTLEBR, one can
always find some values for the indices i, j and k such that (a) j is
chosen sufficiently greater than i; (b) k is chosen sufficiently greater
than j; (c) ψ is not able to distinguish the state sequence i,iσj from
i,kσj . Since, by Remark 2, i,iσj ∈ L(φG) but i,kσj ̸∈ L(φG), this
proves the undefinability of φG in LTLEBR. The rationale is that
the LTLEBR logic combines bounded future formulas (i.e., formulas
obtained by a Boolean combination of propositional atoms and X
operators) and universal temporal operators (i.e., G and R). This
implies that, for a generic model σ of an LTLEBR-formula ψ, at each
time point i ≥ 0 of σ (this corresponds to the universal temporal
operators) only a finite and bounded suffix after i (this corresponds
to the LTL+PBF-formulas) can be constrained by ψ (this can be
thought of as a sort of bounded memory property of this logic).
Equivalently, this means that each LTLEBR-formula is not able to
constrain any finite but arbitrarly long (unbounded) prefix of a state
sequence, contrary, for instance, to the case of the formula G(¬p2 →
H(p1)) (that is equivalent to φG, see Eq. (3.6)).

The Role of the Normal Form

The limitation of LTLEBR-formulas mentioned before is more evi-
dent in the normal form for the LTLEBR logic (recall Definition 22).
We first give some preliminaries definitions. Recall that LTL+PBP

(Bounded Past LTL+PP) is the set of all and only the LTLEBR+P for-
mulas that are a Boolean combination of propositional atoms and
yesterday operators (Y). We use the shortcut ψ1 S[a,b] ψ2 for de-

noting the formula
⋁︁b
i=a(Y1 . . .Yi(ψ2) ∧

⋀︁i−1
j=0 Y1 . . .Yj(ψ1)). Given

a formula α ∈ LTL+PBP, we define its temporal depth, denoted as
D(α), as follows:

• D(p) = 0, for all p ∈ Σ

• D(¬α1) = D(α1)

• D(α1 ∧ α2) = max{D(α1), D(α2)}

• D(Yα1) = 1 +D(α1)

• D(α1 S
[a,b] α2) = b+max{D(α1), D(α2)}
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For each α ∈ LTL+PBP, the language L<ω(α) consists only of words
of length at most D(α) + 1. Recall from Section 2.4 that, given a
infinite state sequence σ = ⟨σ0, σ1, . . .⟩ and some n ≥ 0, σ[n−d,n] is
the interval of σ of length at most d ending at index n: σ[n−d,n] =
⟨σn−d, . . . , σn⟩ if n ≥ d, or σ[n−d,n] = ⟨σ0, . . . , σn⟩ otherwise. The
crucial property of LTL+PBP-formulas, that can be shown with a
simple induction, is that their truth over a state sequence σ can be
checked by considering only a finite and bounded interval of σ, whose
length depends on the temporal depth of the formula.

Remark 3. For any α ∈ LTL+PBP, with temporal depth d = D(α),
and for any n ≥ 0, it holds that σ, n |= α if and only if σ[n−d,n] |= α.

Recall from Definition 22 the definition of Normal-LTLEBR. The
normal form makes it easier to prove Eq. (3.5). In particular, the fact
that in the normal form we have no nested universal temporal opera-
tors dramatically simplifies the proof by induction. Take for example
the formula XXG(p ∨ Yp ∨ YYp), that belongs to Normal-LTLEBR. It
is clear that, at each time point, this formula can constrain only the
interval consisting of the current state and its two previous states
(in fact its temporal depth is 3).

The main proof

In this part, we show the undefinability of the formula φG in the
Normal-LTLEBR logic. The undefinability in LTLEBR follows from
Lemma 1.

Given three indices i, j, k ∈ N such that i ̸= j and k ̸= j, we for-
mally define the state sequence i,kσj = ⟨i,kσj0, i,kσ

j
1, . . .⟩ as follows:

i,kσjh =

⎧⎪⎨⎪⎩
{p1} if h ∈ {i, k}
{p2} if h = j

{p1, p2} otherwise

The core of the main theorem is based on the fact that any
formula of type Gα or αRβ, where α and β are bounded past LTL+PP

formulas, is not able to distinguish the state sequence i,iσj with i < j
(which is a model of φG) from

i,kσj with k > j (which is not a model
of φG), for sufficiently large values of i, j and k. The choice for the
values of the three indices is based on the values of the temporal depth
of α and β. Since the globally operator is a special case of the release
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operator, that is Gα ≡ ⊥ R α, it suffices to prove the property for
formulas of type αRβ. We first prove the two fundamental properties
that show that, for any interval of i,iσj of length at most d (for any
d ∈ N), we can find the exact same interval in i,kσj , and vice versa.
Fig. 3.1 shows the idea of this correspondence.

Lemma 2. Let d ∈ N. For all i ≥ d, for all j ≥ i + d, and for all
k ≥ j + d, it holds that:

Property 1: ∀n′ ≥ 0 . ∃n ≥ 0 . i,kσj[n′−d,n′] =
i,iσj[n−d,n]

Property 2: ∀n ≥ 0 . ∃n′ ≥ 0 . i,iσj[n−d,n] =
i,kσj[n′−d,n′]

Proof. Take any value for i, j, and k such that: (i) i ≥ d, (ii) j ≥ i+d,
(iii) k ≥ j + d. Given any interval of length d of the state sequence
i,iσj , we show how to find an exact same one in i,kσj , and viceversa.

The constraints above on the three indices ensure that both the
state sequences i,iσj and i,kσj contain only three types of intervals
of length at most d. Consider i,kσj (the case for i,iσj is specular).
The three types are the following:

Type 1: ({p1, p2})n for some 0 ≤ n ≤ d;

Type 2: ({p1, p2})n · ({p1}) · ({p1, p2})d−n−1, for some 0 ≤ n < d;

Type 3: ({p1, p2})n · ({p2}) · ({p1, p2})d−n−1, for some 0 ≤ n < d;

The situation is depicted in Fig. 3.1. Given any interval of any of
the three types above, we show below how to find the very same
interval in i,iσj (Fig. 3.1 tries to show visually this correspondence):

• each interval of i,kσj of type ({p1, p2})n is equal to i,iσj[0,n];

• each interval of i,kσj of type ({p1, p2})n·({p1})·({p1, p2})d−n−1

is equal to i,iσj[i−n,i+d−n−1].
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• each interval of i,kσj of type ({p1, p2})n·({p2})·({p1, p2})d−n−1

is equal to i,iσj[j−n,j+d−n−1];

This proves Property 1.
Similarly, the correspondence between intervals of i,iσj and in-

tervals of i,kσj is the following:

• each interval of i,iσj of type ({p1, p2})n is equal to i,kσj[0,n];

• each interval of i,iσj of type ({p1, p2})n ·({p1})·({p1, p2})d−n−1

is equal to i,kσj[i−n,i+d−n−1].

• each interval of i,iσj of type ({p1, p2})n ·({p2})·({p1, p2})d−n−1

is equal to i,kσj[j−n,j+d−n−1];

This proves Property 2.

We can now prove that the state sequences i,iσj and i,kσj are
indistinguishable for each formula of type α R β (and, consequently,
of type Gα), with α, β ∈ LTL+PBP.

Lemma 3. Let α, β ∈ LTL+PBP, and let d = max{D(α), D(β)} be
the maximum between the temporal depths of α and β. It holds that
i,iσj |= α R β iff i,kσj |= α R β , for all i ≥ d, for all j ≥ i+ d, and
for all k ≥ j + d.

Proof. Take any value for i, j, and k such that: (i) i ≥ d, (ii) j ≥ i+d,
(iii) k ≥ j + d.

We first prove the left-to-right direction. Suppose that i,iσj |=
α R β. We divide in cases:

1. Suppose that i,iσj , n |= β for all n ≥ 0. Since β ∈ LTL+PBP

and D(β) ≤ d, it holds that i,iσj[n−d,n] |= β, for all n ≥ 0.

Suppose by contradiction that there exists some n′ ≥ 0 such
that i,kσj[n′−d,n′] |= ¬β. By Property 1 of Lemma 2, this means

that there exists some n′′ ≥ 0 such that i,iσj[n′′−d,n′′] |= ¬β.
But this is a contradiction. Thus, it holds that i,kσj[n′−d,n′] |= β

for all n′ ≥ 0, that is, for all n′ ≥ 0, and thus i,kσj |= α R β.

2. Suppose that ∃n ≥ 0 . (i,iσj , n |= α ∧ ∀0 ≤ m ≤ n . i,iσj ,m |=
β). We divide again in cases:
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(a) Suppose that n < k. Then i,iσj[0,n] =
i,kσj[0,n]. Clearly, it

holds that i,kσj , n |= α and i,kσj ,m |= β for all 0 ≤ m ≤
n. Therefore i,kσj |= α R β.

(b) Suppose that n ≥ k. In particular, it holds that i,iσj[n−d,n]
|= α ∧ β. We use a contraction argument for proving
that in this case there exists a smaller index at which the
release satisfies its existential part (i.e., the formula α).
Consider the time point i−1. It holds that i,iσj[i−1−d,i−1] =
i,iσj[n−d,n] and thus, since i,iσj[n−d,n] |= α ∧ β and α, β ∈
LTL+PBP, we have that i,iσj[i−1−d,i−1] |= α ∧ β. More-

over, i,iσj[0,i−1] is a prefix of i,iσj[0,n], and thus, given

that i,iσj[p−d,p] |= β for all 0 ≤ p ≤ n, it holds that
i,iσj[p−d,p] |= β for all 0 ≤ p ≤ i− 1. From this, it follows

that i,iσj , i−1 |= α and i,iσj ,m |= β for all 0 ≤ m ≤ i−1.
Since i− 1 < k, by Item 2a, it holds that i,kσj |= α R β.

We now prove the right-to-left direction. Suppose that i,kσj |=
α R β. We divide in cases:

1. Suppose that i,kσj , n |= β. This case is specular to Item 1.

2. Suppose that ∃n ≥ 0 . (i,kσj , n |= α∧∀0 ≤ m ≤ n . i,kσj ,m |=
β). Since α, β ∈ LTL+PBP and D(α), D(β) ≤ d, it holds that
∃n ≥ 0 . (i,kσj[n−d,n] |= α∧∀0 ≤ m ≤ n . i,kσj[m−d,m] |= β). We

divide again in cases:

(a) If n < k, then i,kσj[0,n] =
i,iσj[0,n] and thus i,iσj , n |= α

and i,iσj ,m |= β for all 0 ≤ m ≤ n, that is i,iσj |= α R β.

(b) If k ≤ n ≤ k + d, then i,kσj[n−d,n] =
i,kσj[n−k−i−d,n−k−i]

(we used again a contraction argument). Since by hypoth-
esis i,kσj[n−d,n] |= α, it holds also that i,kσj[n−k−i−d,n−k−i]
|= α. Moreover, i,kσj[0,n−k−i] is a prefix of i,kσj[0,n], and

thus, since by hypothesis i,kσj[p−d,p] |= β for all 0 ≤ p ≤ n,
it also holds that i,kσj[p−d,p] |= β for all 0 ≤ p ≤ n− k− i.
Therefore i,kσj[n−k−i−d,n−k−i] |= α and i,kσj[m−d,m] |= β

for all 0 ≤ m ≤ n− k− i. Since l+n− i < k, by Item 2a,
it holds that i,iσj |= α R β.
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(c) Otherwise n > k + d. We have that i,kσj[n−d,n]
= i,kσj[i−1,i−1−d] (also in this case we used a contraction

argument). Since by hypothesis i,kσj[n−d,n] |= α, it also

hold that i,kσj[i−1,i−1−d] |= α. Moreover i,kσj[0,i−1] is a

prefix of i,kσj[0,n] and thus, since by hypothesis i,kσj[p−d,p] |=
β for all 0 ≤ p ≤ n, it also holds that i,kσj[p−d,p] |= β for all

0 ≤ p ≤ i−1. Therefore i,kσj , i−1 |= α and i,kσj ,m |= β
for all 0 ≤ m ≤ i−1. Since i−1 < k, by Item 2a, it holds
that i,iσj |= α R β.

By using Lemma 3 as the proof for the base case, we prove
by induction on the structure of the formula that any formula in
Normal-LTLEBR is not able to distinguish the state sequences i,iσj

and i,kσj for sufficiently large values of i, j, k. In the following,
given a formula ψ ∈ Normal-LTLEBR, we will denote with mψ the
maximum number of nested next operators in ψ, and with dψ the
maximum temporal depth between all its LTL+PBP-subformulas.

Lemma 4. Let ψ ∈ Normal-LTLEBR. It holds that i,iσj |= ψ iff
i,kσj |= ψ , for all i ≥ mψ + dψ, for all j ≥ i + dψ, and for all
k ≥ j + dψ.

Proof. Take any value for i, j, and k such that: (i) i ≥ mψ + dψ,
(ii) j ≥ i + dψ, (iii) k ≥ j + dψ. We proceed by induction on the
structure of the formula ψ.

For the base case, we consider three cases: (i) formulas in LTL+PBP,
that is such that all its temporal operators refer to the past and are
bounded; (ii) formulas of type Gα, where α ∈ LTL+PBP; (iii) formu-
las of type α R β, where α, β ∈ LTL+PBP;

We consider the case of a formula α ∈ LTL+PBP, and suppose
that i,iσj |= α. By definition of i,iσj and i,kσj , it always holds that
i,iσj0 = i,kσj0. Since α ∈ LTL+PBP refers only to the current state or
to the past, it follows that i,iσj |= α if and only if i,kσj |= α.

Consider now the case for α R β, where α, β ∈ LTL+PBP. Since
m
αRβ = 0 (i.e., the are no next operators in this formula), we can

apply Lemma 3, having that i,iσj |= αRβ if and only if i,kσj |= αRβ.
Since Gα = ⊥Rα, this proves also the case for the globally operator.
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For the inductive step, since by hypothesis ψ belongs to the nor-
mal form of LTLEBR, it suffices to consider only the case for the next
operator, conjunctions and disjunctions.

Consider first the case for the next operator, and suppose that
i,iσj |= Xψ′. For any indices k, i and j such that i ≥ mXψ′ + dXψ′ ,
j ≥ i+dXψ′ and k ≥ j+dXψ′ , we want to prove that i,kσj |= Xψ′. By
definition of the next operator, it holds that i,iσj , 1 |= ψ′. Now, let
τ be the state sequence obtained from i,iσj by discarding its initial
state, that is τ := i,iσj[1,∞). Obviously, τ |= ψ′. We observe that τ is

equal to the state sequence i−1,i−1σj−1. Since the maximum number
mψ′ of nested next operators in ψ′ is mXψ′ − 1 (while αψ′ remains
the same), we can apply the inductive hypothesis on ψ′, having that
i−1,k−1σj−1 |= ψ′. By definition of τ , it follows that i,kσj |= Xψ′.

We consider now the case for conjunctions, and suppose that
i,iσj |= ψ1∧ψ2, for generic indices k, i and j such that i ≥ mψ1∧ψ2 +
dψ1∧ψ2 , j ≥ i+dψ1∧ψ2 , and k ≥ j+dψ1∧ψ2 . It holds that

i,iσj |= ψ1

and i,iσj |= ψ2. Moreover, mψ1
≤ mψ1∧ψ2

and mψ2
≤ mψ1∧ψ2

.
Similarly, dψ1

≤ dψ1∧ψ2
and dψ2

≤ dψ1∧ψ2
. This means that we can

apply the inductive hypothesis both on ψ1 and ψ2 on the current
indices k, i and j. By inductive hypothesis, we have that i,kσj |= ψ1

and i,kσj |= ψ2. It follows that
i,kσj |= ψ1∧ψ2. The case for ψ1∨ψ2

is specular.

Thanks to Lemma 4, it is simple to prove the undefinability of
G(p1 ∨ G(p2)) in LTLEBR, that proves that LTLEBR is strictly less
expressive than Safety-LTL.

Theorem 23. JLTLEBRK ⊊ JSafety-LTLK.

Proof. Consider the formula φG := G(p1 ∨ G(p2)). We prove that
there does not exists a formula ψ ∈ LTLEBR such that L(ψ) = L(φG).
We proceed by contradiction. Suppose that there exists a formula
ψ ∈ LTLEBR such that L(ψ) = L(φG). By Lemma 1, there exists a
formula ψ′ ∈ Normal-LTLEBR such that L(ψ) = L(ψ′). Let mψ′ be
the maximum number of nested next operators in ψ′, and let dψ′ be
the maximum temporal depth between all the LTL+PBP-subformulas
in ψ′. Let k, i and j be three indices such that: (i) i ≥ mψ′ + dψ′ ;
(ii) j ≥ i + dψ′ ; (iii) and k ≥ j + dψ′ . Consider the two state
sequences i,iσj and i,kσj . By Lemma 4, i,iσj ∈ L(ψ′) if and only
if i,kσj ∈ L(ψ′), that is i,iσj ∈ L(φG) if and only if i,kσj ∈ L(φG).
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Since it holds that i,iσj ∈ L(φG) but
i,kσj ̸∈ L(φG), this is clearly a

contradiction.

Corollary 6. JLTLEBRK ⊊ JLTLEBR+PK.

3.3 The GR-EBR logic

The objective of this section is to show an extension of LTLEBR+P
that goes beyond the safety fragment. We call the resulting logic
Generalized Reactivity(1) LTLEBR+P (GR-EBR, for short). We first
give the syntax of GR-EBR, and show that is obtained from LTLEBR+P
by adding two key ingredients: (i) assumptions and guarantees,
(ii) fairness contraints. We then show a meaningful example that
can be formalized with the language of GR-EBR. We conclude this
section discussing the expressive power of this fragment.

3.3.1 Definition

The logic ofGeneralized Reactivity(1) LTLEBR+P (GR-EBR, for short)
is obtained starting from LTLEBR+P (recall Definition 19) by adding
(i) assumptions and guarantees, that correspond to the antecedent
and the consequent of a logical implication between LTLEBR+P for-
mulas; (ii) and fairness contraints, in the form of conjunctions of re-
currence formulas (recall Section 2.4.5), that is of the form

⋀︁
i GFαi

with αi ∈ LTL+PP. The syntax of GR-EBR is the following.

Definition 23 (The logic GR-EBR). The GR-EBR logic comprises
all and only those formulas that can be written in the following form:

(ψ1
ebr ∧

m⋀︂
i=1

GFαi)→ (ψ2
ebr ∧

n⋀︂
j=1

GFβj)

for some m,n ∈ N, ψ1
ebr, ψ

2
ebr ∈ LTLEBR+P and αi, βj ∈ LTL+PP,

for each i, j ∈ N.

3.3.2 Example

We now give an example of specifications that can be expressed in
GR-EBR. Suppose that we want to design an arbiter that, given a
request from client i (for any i ∈ {1, . . . , n}) in the environment,
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assigns the grant to the corresponding client, in such a way to guar-
antee the following properties: (1) bounded response: the grant is
assigned at most k time units (for some k > n) after the request is
issued; (2) mutual exclusion: the arbiter can assign a grant at most
to one client at a time. The previous requirements form the guar-
antees for the arbiter. The assumptions for the environment are as
follows: (1) initially, there are no requests; (2) if a request is issued
at time i, then it cannot be issued until time i + k; (3) there are
infinitely many requests from each client.

In order to write a specification of the arbiter, we can model the
requests for the n clients with the variables r1, . . . , rn. Similarly, the
grant corresponding to the request ri can be modeled with the vari-
able gi, for each i ∈ {1, . . . , n}. The assumption for the environment
corresponds to the LTLEBR formula ϕe defined as follows:

n⋀︂
i=1

¬ri ∧
n⋀︂
i=1

G(ri → G[1,k]¬ri) ∧
n⋀︂
i=1

GFri

The guarantees for the controller correspond to the LTLEBR formula
ϕc defined as follows:

n⋀︂
i=1

G(ri → F[0,k]gi) ∧ G(
⋀︂

1≤i<j≤n

¬(gi ∧ gj))

The overall specification is ϕe → ϕc and syntactically belongs to
GR-EBR.

3.3.3 Expressive Power

In this part, we investigate the expressive power of the GR-EBR logic
by comparing it with other formalisms.

Comparison with LTLEBR+P

We start by comparing GR-EBR with LTLEBR+P. Each LTLEBR+P
formula ϕ is a GR-EBR formula as well. In fact, the formula ϕ is
equivalent to (⊤ ∧ ⊤) → (ϕ ∧ ⊤) which belongs to GR-EBR, and
thus:

LTLEBR+P ⊆ GR-EBR

JLTLEBR+PK ⊆ JGR-EBRK
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From Theorem 22, it follows that any safety language definable in
LTL is definable in GR-EBR as well. In addition, GR-EBR is strictly
more expressive than LTLEBR+P, since the former can express also
non-safety properties, like G(p)→ G(q), and thus:

LTLEBR+P ⊊ GR-EBR

JLTLEBR+PK ⊊ JGR-EBRK

Comparison with the Temporal Hierarchy

Recall from Section 2.4.5 the temporal hierarchy defined by Manna
and Pnueli in [140]. The Reactivity class is defined as the set of all
and only those languages definable by formulas of type

⋀︁
i(GFαi →

GFβi) where each αi and each βi is a pure-past LTL formula. It
is known that LTL is expressively equivalent to the Reactivity class
(see Sections 2.4.3 and 2.4.5). Moreover, if we fix the number of con-
juncts of the formula above to be N, than the resulting class (called
Reactivity(N)) strictly contains Reactivity(N-1) and is strictly con-
tained in Reactivity(N+1). With respect to the temporal hierarchy,
we can prove the following result.

Theorem 24. It holds that:

JR(1)K ⊆ JGR-EBRK

Proof. Let ϕ ∈ R(1). By definition of R(1) (recall Definition 17), it
holds that ϕ ≡ GFα ∨ FGβ, for some α, β ∈ LTL+PP. Since it holds
that

ϕ ≡ GF¬β → GFα ≡ (⊤ ∧ GF¬β)→ (⊤ ∧ GFα) ∈ GR-EBR

we have that L(ϕ) ∈ JGR-EBRK and thus JR(1)K ⊆ JGR-EBRK.

Comparison with GR(1)

Recall from Definition 18 that the logic of GR(1) (Generalized Reac-
tivity(1)) is defined as the set of formulas of type:

(

m⋀︂
i=1

GFβi)→ (

n⋀︂
i=1

GFαi)

for anym,n ∈ N, where αi, βi ∈ LTL+PP for each i ∈ {1, . . . , n}. De-
spite being a fragment with en efficient realizability problem, GR(1)
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presents some restrictions that limit its use as a specification lan-
guage:

• safety assumptions/guarantees are either Boolean formulas or
formulas of the form Gα, where the only temporal operator
admitted in α is the next operator X;

• assumptions are syntactically constrained to be formulas con-
trolled by Environment, in the sense that the variables inside
the next operators of the safety part of the assumptions must
be uncontrollable.

In GR-EBR we relax that syntactical restrictions of GR(1): for ex-
ample, the safety assumptions and guarantees can be any arbitrary
LTLEBR+P formula, like, for instance, G(r → F[0,10]g). For this rea-
son, GR-EBR can be considered an extension not only of LTLEBR+P,
but also of GR(1).

On the semantics side, we can prove the following result.

Theorem 25. It holds that:

JGR-EBRK ⊆ JGR(1)K

Proof. Consider a formula ϕ ∈ GR-EBR. By Definition 23, ϕ is of
the following form:

(ψ1
ebr ∧

m⋀︂
i=1

GFαi)→ (ψ2
ebr ∧

n⋀︂
j=1

GFβj)

for some m,n ∈ N, ψ1
ebr, ψ

2
ebr ∈ LTLEBR+P and αi, βj ∈ LTL+PP, for

each i, j ∈ N. Since LTLEBR+P is expressively complete with respect
to the safety fragment of LTL+P (Theorem 22) and since Gα (with
α ∈ LTL+PP) is a normal form for the safety fragment of LTL+P
(Theorem 16), it follows that there exist two pure past formulas
γ1, γ2 ∈ LTL+PP such that: (i) Gγ1 ≡ ψ1

ebr, (ii) and Gγ2 ≡ ψ2
ebr.

Therefore, ϕ is equivalent to:

(Gγ1 ∧
m⋀︂
i=1

GFαi)→ (Gγ2 ∧
n⋀︂
j=1

GFβj)

Now, since Gγ1 ≡ GFHγ1 (and the same holds for γ2 as well), we
obtain the following formula:

(GF(Hγ1) ∧
m⋀︂
i=1

GFαi)→ (GF(Hγ2) ∧
n⋀︂
j=1

GFβj)
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Since the argument of all the formulas of type GF is a pure past
formula (in both the assumptions and the guarantees), this formula
belongs to GR(1). Therefore, JGR-EBRK ⊆ GR(1).

From the previous two theorems, it follows the truth of this the-
orem.

Theorem 26. It holds that:

JR(1)K ⊆ JGR-EBRK ⊆ JGR(1)K

Comparison with (co-)Safety and Liveness classes

Since the R(1) class contains the co-safety, the safety and the liveness
fragments of LTL (recall Fig. 2.1), as a corollary of Theorem 26,
we obtain the result that JGR-EBRK contains, JLTLK ∩ coSAFETY,
JLTLK ∩ SAFETY and JLTLK ∩ LIVENESS.

Corollary 7. It holds that:

1. JLTLK ∩ coSAFETY ⊆ JGR-EBRK

2. JLTLK ∩ SAFETY ⊆ JGR-EBRK

3. JLTLK ∩ LIVENESS ⊆ JGR-EBRK

Fig. 3.2 shows the expressive power of LTLEBR+P, LTLEBR, and
GR-EBR compared to the other fragments already pictured in Fig. 2.2.

3.4 Conclusions

We introduced the LTLEBR+P logic, a safety fragment of LTL+P.
The syntax of LTLEBR+P make it difficult to exactly characterize its
expressive power. We studied the expressive power of LTLEBR+P and
of its pure future fragment, LTLEBR, and compare it with other safety
fragments of LTL. It turned out that LTLEBR+P is expressively com-
plete with respect to the safety fragment of LTL, and, consequently,
it is expressively equivalent to Safety-LTL. We found out that past
modalities are crucial for the expressive power of LTLEBR+P. In
fact, LTLEBR is strictly less expressive than full LTLEBR+P. This was
somehow surprising, since it proves that, despite not being funda-
mental for the expressiveness of full LTL, past modalities are crucial
for fragments of LTL, like, for instance, LTLEBR+P.
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We also introduced the logic of GR-EBR, which can be seen as an
extension of LTLEBR+P able to express properties beyond the safety
fragment. In particular, GR-EBR extends LTLEBR by allowing as-
sumptions and guarantees, and fairness conditions. We investigated
the expressive power of GR-EBR, comparing it with the classical
temporal hierarchy.
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Figure 3.2: Comparison of the expressive power of
LTLEBR+P, LTLEBR and GR-EBR. It is an extension of
Fig. 2.2. For ease of exposition, we highlighted the rect-
angles corresponding to LTLEBR+P, LTLEBR and GR-EBR
with thick borders.



CHAPTER

4

A FIRST-ORDER LOGIC
CHARACTERISATION OF

SAFETY AND
CO-SAFETY LANGUAGES

In this chapter, we provide a novel syntactical fragment of S1S[FO]
(the first-order fragment of S1S) that captures exactly the seman-
tically safety fragment of S1S[FO], and therefore it is also expres-
sively complete with respect to the safety fragment of LTL (i.e.,
JLTLK∩SAFETY) and to the Safety-LTL logic (namely LTL devoid of
existential temporal operators). In this fragment, called Safety-FO,
only a particularly constrained kind of existential and universal
quantifications are allowed. We prove these results by showing first
the same correspondences for the dual case, that is for the co-safety
fragment of LTL, the coSafety-LTL logic (namely LTL devoid of uni-
versal temporal operators) and the coSafety-FO fragment.
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The main result of this chapter is the proof of the correspondence
between coSafety-FO and coSafety-LTL, which extends naturally to
their duals (i.e., Safety-FO and Safety-LTL). This can also be consid-
ered as a version of Kamp’s theorem [120] specialized for safety and
co-safety properties, helping to create a clearer picture of the corre-
spondence between (fragments of) temporal and first-order logics.

Then, we use this result for deriving the expressive complete-
ness of the syntactical fragment coSafety-FO (resp. Safety-FO) with
respect to the semantically co-safety (resp. safety) fragment of
S1S[FO]. This also proves the correspondence between the seman-
tically co-safety fragment of LTL (i.e., JLTLK ∩ coSAFETY) and the
coSafety-FO logic, thus establishing also the equivalence between the
first one and coSafety-LTL. Again, this result extends to the dual
case. This provides an alternative proof of the fact that Safety-LTL
captures exactly the set of LTL-definable safety languages [40], which
can be regarded as another contribution of this chapter. The inter-
est of this alternative proof is twofold: on the one hand, the original
proof by Chang et al. [40] is only outlined and it relies on two non-
trivial translations scattered across different sources [202, 174]; on
the other hand, such an equivalence result seems not to be very
much known, as the problem was presented as open as lately as
2021 [201, 71].1 Thus, a compact and self-contained proof of the re-
sult seems to be a useful contribution for the community. Finally,
as a by-product of this proof, we provide some results that assess
the expressive power of the weak next operator of Safety-LTL when
interpreted over finite vs. infinite traces.

4.1 Safety-FO and coSafety-FO

In this section we introduce the core contribution of this chapter,
i.e., two fragments of S1S[FO] that precisely capture Safety-LTL and
coSafety-LTL, respectively, and we prove this relationship.

Definition 24 (Safety-FO). The logic Safety-FO is generated by the

1As a matter of fact, we discovered about Chang et al. [40] after setting up
the proof shown in this chapter.
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following grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |

∃y(x < y < z ∧ ϕ1) |
∀y(x < y → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate,
and ϕ1 and ϕ2 are Safety-FO formulas.

Definition 25 (coSafety-FO). The logic coSafety-FO is generated by
the following grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |

∃y(x < y ∧ ϕ1) |
∀y(x < y < z → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate,
and ϕ1 and ϕ2 are coSafety-FO formulas.

4.1.1 Notations

For sake of clarity, given a finite alphabet Σ, we denote with the same
symbol both a the infinite (resp. finite) state sequence σ ∈ (2Σ)ω

(resp. σ ∪ (2Σ)∗) and the corresponding model-theoretic structure
σ = (D, 0,+1, <, {Qa}a∈Σ), with D = N (resp. D such that |D| <
ω).

Recall from Section 2.1 that, given an S1S[FO] formula ϕ(x1, . . . ,
xn) with n free variables, a structure σ = (N, 0,+1, <, {Qa}a∈Σ),
and n values v1, . . . , vn in the domain N, we refer with σ, v1, . . . , vn |=
ϕ(x1, . . . , xn) to the fact that σ is a model of ϕ(x1, . . . , xn) when xi
is interpreted with the value vi, for each i ∈ {1, . . . , n}. Under finite
word semantics, we write |=<ω instead of |=.

In Section 2.1, we defined the notion of language only for S1S
sentences, that is formulas with no free variables. In the following,
it will be handy to consider instead formulas with exactly one free
variable, representing the instant in time when it is interpreted, and
to define the notion of language accordingly. Therefore, given a
formula ϕ(x) with exactly one free variable, the language of ϕ(x),
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denoted with L(ϕ(x)) (resp. L<ω(ϕ(x))), is the set of infinite (resp.
finite) structures σ such that σ, 0 |= ϕ(x) (resp. σ, 0 |=<ω ϕ(x)). It
follows that the sets JSafety-FOK and JcoSafety-FOK are defined as
follows:

JSafety-FOK = {L(ϕ(x)) | ϕ(x) ∈ Safety-FO}
JcoSafety-FOK = {L(ϕ(x)) | ϕ(x) ∈ coSafety-FO}

The same applies to the sets JSafety-FOK<ω and JcoSafety-FOK<ω.

4.1.2 Discussion on the two fragments

We need to make a few observations on the syntax of the two frag-
ments. First of all, note how any formula of Safety-FO is the nega-
tion of a formula of coSafety-FO and vice versa. Then, note that
the two fragments are defined in negated normal form, i.e., negation
only appears on atomic formulas. The particular kind of existen-
tial and universal quantifications allowed are the culprit of these
fragments. In particular, each Safety-FO sentence (that is, a for-
mula without free variable) restricts any existentially quantified vari-
able to be bounded between two already quantified variables. The
same applies to universal quantifications in coSafety-FO. Moreover
Safety-FO and coSafety-FO formulas are future formulas, i.e., the
quantifiers can only range over values greater than already quanti-
fied variables. These two features are essential to precisely capture
Safety-LTL and coSafety-LTL. Finally, note that the comparisons in
the guards of the quantifiers are strict, but non-strict comparisons
can be used as well. In particular, ∃y(x ≤ y ∧ ϕ) can be rewritten
as ϕ[y/x] ∨ ∃y(x < y ∧ ϕ), where ϕ[y/x] is the formula obtained by
replacing all occurrences of y with x. Similarly, ∀z(x ≤ z ≤ y → ϕ)
can be rewritten as ϕ[z/x] ∧ ϕ[z/y] ∧ ∀z(x < z < y → ϕ).

4.1.3 Lemmas

To prove the relationship between these fragments and Safety-LTL
and coSafety-LTL, we focus now on coSafety-FO. By duality, all the
results transfer to Safety-FO. Let us start by defining the
coSafety-LTL(−˜︁X) logic as coSafety-LTL devoid of the weak next op-
erator. We observe that, since the weak next operator, over in-
finite words, coincides with the next operator, coSafety-LTL and
coSafety-LTL(−˜︁X) have the same expressive power.
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Observation 1. JcoSafety-LTLK = JcoSafety-LTL(−˜︁X)K
When reasoning over finite words, the weak next operator plays

a crucial role, since it can be used to recognize when we are at the
last position of a word. In fact, the formula σ, i |=<ω ˜︁X⊥ is true if
and only if i = |σ| − 1, for any σ ∈ (2Σ)∗.

Now, let us note that, when the weak next operator is not consid-
ered, reasoning over infinite words in some sense reduces to reasoning
over finite words. In fact, the following result holds.

Lemma 5. JcoSafety-LTL(−˜︁X)K = JcoSafety-LTL(−˜︁X)K<ω · (2Σ)ω
Proof. We have to prove that, for each formula ϕ ∈ coSafety-LTL(−˜︁X),
it holds that:

L(ϕ) = L<ω(ϕ) · (2Σ)ω

We proceed by induction on the structure of ϕ. For the base case,
consider ϕ ≡ p ∈ Σ. The case for ϕ ≡ ¬p is similar. Let σ ∈ L(p). It
holds that σ0 |= p and σ0·σ′ |= p, for all σ′ |= (2Σ)ω, and in particular
for σ′ = σ[1,∞). This is equivalent to say that σ ∈ L<ω(ϕ) · (2Σ)ω.
For the inductive step:

1. Let ϕ ≡ ϕ1 ∧ ϕ2. Suppose that σ ∈ L(ϕ). Obviously, σ |= ϕ1
and σ |= ϕ2, and therefore σ ∈ L(ϕ1) and σ ∈ L(ϕ2). By the
inductive hypothesis, σ ∈ L<ω(ϕ1) · (2Σ)ω and σ ∈ L<ω(ϕ2) ·
(2Σ)ω. This means that there exists two indices i, j ∈ N such
that σ[0,i] |=<ω ϕ1 and σ[0,j] |=<ω ϕ2. Let m be the greatest
between i and j. It holds that σ[0,m] |=<ω ϕ1 ∧ ϕ2. Therefore
σ ∈ L<ω(ϕ1 ∧ ϕ2) · (2Σ)ω.

2. Let ϕ ≡ ϕ1 ∨ ϕ2 and let σ ∈ L(ϕ). We have that σ |= ϕ1
or σ |= ϕ2. Without loss of generality, we consider the case
that σ |= ϕ1 (the other case is specular). By the inductive
hypothesis, σ ∈ L<ω(ϕ1) · (2Σ)ω. Therefore, it also holds that
σ ∈ L<ω(ϕ1 ∨ ϕ2) · (2Σ)ω.

3. Let ϕ ≡ Xϕ1 and let σ ∈ L(Xϕ1). By the semantics of the
next operator, it holds that σ[1,∞) |= ϕ1. By the inductive
hypothesis, σ[1,∞) ∈ L<ω(ϕ1) · (2Σ)ω. This means that there
exists an index i ≥ 1 such that σ[1,i] |=<ω ϕ1. Therefore, it
also holds that the state sequence σ[0,i] = σ0 · σ[1,i] satisfies
Xϕ1 over finite words, that is, σ[0,i] |=<ω Xϕ1. This means
that σ ∈ L<ω(Xϕ1) · (2Σ)ω.
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4. Let ϕ ≡ ϕ1 U ϕ2. Let σ ∈ L(ϕ). By the semantics of the
until operator, it holds that there exists an index i ∈ N such
that σ[i,∞) |= ϕ2 and σ[j,∞) |= ϕ1 for all 0 ≤ j < i. By the
inductive hypothesis, we have that σ[i,∞) ∈ L<ω(ϕ2)·(2Σ)ω and
σ[j,∞) ∈ L<ω(ϕ1) · (2Σ)ω for all 0 ≤ j < i. This means that
there exists an index i ∈ N and i+ 1 indices k0 . . . ki ∈ N such
that σ[i,ki] |=<ω ϕ2 and σ[j,kj ] |=<ω ϕ1 for all 0 ≤ j < i. Let
m be the greatest between k0 . . . ki. It holds that there exists
an index i ∈ N such that σ[i,m] |=<ω ϕ2 and σ[j,m] |=<ω ϕ1 for
all 0 ≤ j < i. Therefore, σ ∈ L<ω(ϕ1 U ϕ2) · (2Σ)ω.

The following lemma proves that the result above applies to
coSafety-FO as well.

Lemma 6. JcoSafety-FOK = JcoSafety-FOK<ω · (2Σ)ω

Proof. We have to prove that, for each formula ψ ∈ coSafety-FO
with one free variable, it holds that L(ψ) = L<ω(ψ) · (2Σ)ω. We
proceed by induction, but with a more general statement. Let
ϕ(x1, . . . , xk) have k free variables. We prove by induction on ϕ
that for any infinite state sequence σ such that σ, n1, . . . , nk |=
ϕ(x1, . . . , xk), there exists a prefix σ[0,i] of σ such that for all σ′ ∈
(2Σ)∗, σ[0,i]σ

′, n1, . . . , nk |=<ω ϕ(x1, . . . , xk). The base case consid-
ers the four kinds of atomic formulas. If σ, n1, n2 |= x1 < x2, then
n1 < n2 and we know that σ[0,n2]σ

′, n1, n2 |=<ω x1 < x2 for all
σ′ ∈ (2Σ)∗. The case of x1 = x2 is similar. Now, if σ, n1 |= P (x1),
then p ∈ σn1 and we know that σ[0,n1]σ

′, n1 |=<ω P (x1) for all
σ′ ∈ (2Σ)∗. The case for ¬P (x) is similar. For the inductive step:

1. if σ, n1, . . . , nk |= ϕ1(x1, . . . , xk) ∧ ϕ2(x1, . . . , xk), by the in-
duction hypothesis we know that there are two prefixes σ[0,i]
and σ[0,j] such that σ[0,i]σ

′, n1, . . . , nk |=<ω ϕ1(x1, . . . , xk) and
σ[0,j]σ

′′, n1, . . . , nk |=<ω ϕ2(x1, . . . , xk), for all σ′, σ′′ ∈ (2Σ)∗.
Then, supposing w.l.o.g. that i ≤ j, we know that σ[0,j]σ

′′, n1,
. . . , nk |=<ω ϕ1(x1, . . . , xk) ∧ ϕ2(x1, . . . , xk). The case for
ϕ1(x1, . . . , xk) ∨ ϕ2(x1, . . . , xk) is similar.

2. If σ, n1, . . . , nk |= ∃xk+1(xu < xk+1 ∧ ϕ1(x1, . . . , xk+1)) for
some 1 ≤ u ≤ k, then there exists an nk+1 > nu such that
σ, n1, . . . , nk+1 |= ϕ1(x1, . . . , xk+1). Then, by the induction
hypothesis, we have that σ[0,i]σ

′, n1, . . . , nk+1 |=<ω ϕ1(x1, . . . ,
xk+1) for some i ≥ 0 and all σ′ ∈ (2Σ)∗. It follows that
σ[0,i]σ

′, n1, . . . , nk |=<ω ∃xk+1(xu < xk+1 ∧ ϕ1(x1, . . . , xk+1)).
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3. if σ, n1, . . . , nk |= ∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1))
for some 1 ≤ u, v ≤ k, then for all nk+1 with nu < nk+1 < nv
it holds that σ, n1 . . . , nk+1 |= ϕ1(x1, . . . , xk+1). Then, for the
induction hypothesis, for all nk+1 with nu < nk+1 < nv there
is a prefix σ[0,ink+1

] such that σ[0,ink+1
]σ

′, n1, . . . , nk+1 |=<ω

ϕ1(x1, . . . , xk+1) for all σ
′ ∈ (2Σ)∗. Then, if n∗

= maxnu<nk+1<nv (ink+1
), it holds that σ[0,n∗]σ

′, n1, . . . , nk |=<ω
∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1)).

Now, let ψ(x) be a coSafety-FO formula with exactly one free
variable x. Thanks to the above induction we can conclude that each
infinite state sequence σ such that σ, 0 |= ϕ(x) is of the form σ[0,i] ·
σ′, where σ[0,i] |=<ω ϕ(x), and this implies that L(ψ) = L<ω(ψ) ·
(2Σ)ω.

It is worth to note that Lemmas 5 and 6 show that
coSafety-LTL(−˜︁X) and coSafety-FO are insensitive to infiniteness as
defined by De Giacomo et al. [104].

Now, we can focus on the relationship between coSafety-LTL(−˜︁X)
and coSafety-FO on finite words. If we can prove that
JcoSafety-LTL(−˜︁X)K<ω = JcoSafety-FOK<ω, we are done. At first, we
show how to encode coSafety-LTL(−˜︁X) formulas into coSafety-FO.

Lemma 7. JcoSafety-LTL(−˜︁X)K<ω ⊆ JcoSafety-FOK<ω

Proof. Let L ∈ JcoSafety-LTL(−˜︁X)K<ω, and let ϕ ∈ coSafety-LTL(−˜︁X)
such that L = L<ω(ϕ). By following the semantics of the operators
in ϕ, we can obtain an equivalent coSafety-FO formula ϕS1S[FO]. We
inductively define the formula FO(ϕ, x), where x is a variable, as
follows:

• FO(p, x) = P (x), for each p ∈ Σ

• FO(¬p, x) = ¬P (x), for each p ∈ Σ

• FO(ϕ1 ∧ ϕ2, x) = FO(ϕ1, x) ∧ FO(ϕ2, x)

• FO(ϕ1 ∨ ϕ2, x) = FO(ϕ1, x) ∨ FO(ϕ2, x)

• FO(Xϕ1, x) = ∃y(x < y ∧ y = x+ 1 ∧ FO(ϕ1, y))
where y = x+1 can be expressed with the coSafety-FO formula
∀z(x < z < y → ⊥).
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• FO(ϕ1 U ϕ2, x) = ∃y(x ≤ y ∧ FO(ϕ2, y) ∧ ∀z(x ≤ z < y →
FO(ϕ1, z)))

For each ϕ ∈ coSafety-LTL(−˜︁X), the formula FO(ϕ, x) has exactly
one free variable x. It is easy to see that for all finite state sequences
σ ∈ (2Σ)∗, it holds that σ |=<ω ϕ if and only if σ, 0 |=<ω FO(ϕ, x),
and FO(ϕ, x) ∈ coSafety-FO. Therefore, L ∈ JcoSafety-FOK<ω.

4.1.4 Main Theorem

It is time to show the opposite direction of Lemma 7, i.e., that
any coSafety-FO formula can be translated into a coSafety-LTL(−˜︁X)
formula which is equivalent over finite words. To prove this fact we
adapt a proof of Kamp’s theorem by Rabinovich [162]. Our case is
relatively simpler because we do not have to deal with negations, but
we need to explicitly account for the universal quantification. The
proof goes by introducing a normal form, and showing that (i) any
coSafety-FO formula can be translated into such normal form and
(ii) any formula in normal form can be straightforwardly translated
into a coSafety-LTL(−˜︁X) formula. We start by introducing such a
normal form.

Definition 26 (
→
∃∀g-formulas). An

→
∃∀g-formula ϕ(z0, . . . , zm) with

m free variables is a formula of this form:

ϕ(z0, . . . ,zm) := ∃x0 . . . ∃xn
(︁

x0 < x1 < · · · < xn ordering constraints

∧ z0 = x0 ∧
m⋀︂
k=1

(zk = xik) binding constraints

∧
n⋀︂
j=0

αj(xj) punctual constraints

∧
n⋀︂
j=1

∀y(xj−1 < y < xj → βj(y))
)︁

interval constraints

where ik ∈ {0, . . . , n} for each 0 ≤ k ≤ m, and αj and βj, for each
1 ≤ j ≤ n, are quantifier-free formulas with exactly one free variable.

Some explanations are due. Each
→
∃∀g-formula states a number

of requirements for its free variables and for its quantified variables.
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Through the binding constraints, the free variables are identified
with a subset of the quantified variables in order to uniformly state
the punctual and interval constraints, and the ordering constraints
which sort all the variable in a total order. Note that there is no
relationship between n and m: there might be more quantified vari-
ables than free variables, or less. Note as well that the binding
constraint z0 = x0 is always present, i.e., at least one free variable
has to be the minimal element of the ordering. This ensures that
→
∃∀g-formulas are always future formulas.

We say that a formula of coSafety-FO is in normal form if and

only if it is a disjunction of
→
∃∀g-formulas. To see how formulas in

normal form make sense, let us immediately show how to translate
them into coSafety-LTL(−˜︁X) formulas.

Lemma 8. For any formula ϕ(z) ∈ coSafety-FO in normal form,
with exactly one free variable, there exists formula ψ ∈ coSafety-LTL(−˜︁X)
such that L<ω(ϕ(z)) = L<ω(ψ).

Proof. We show how any
→
∃∀g-formula is equivalent to an coSafety-LTL(−˜︁X)-

formula, over finite words. Since each formula in normal form is a

disjunction of
→
∃∀g-formulas, and since coSafety-LTL(−˜︁X) is closed

under disjunction, this implies the proposition. Let ϕ(z) be a
→
∃∀g-

formula with a single free variable. Having only one free variable,
ϕ(z) is of the form:

∃x0 . . . ∃xn
(︁

x0 < · · · < xn

∧ z = x0

∧
n⋀︂
j=0

αj(xj) ∧
n⋀︂
j=1

∀y(xj−1 < y < xj → βj(y))
)︁

Now, let Ai be the temporal formulas corresponding to αi and Bi
be the ones corresponding to βi. Recall that αi and βi are quantifier
free with only one free variable, hence this correspondence is triv-
ial. Since z is the first time point of the ordering mandated by the
formula, we only need future temporal operators to encode ϕ into a
coSafety-LTL(−˜︁X) formula ψ defined as follows:

ψ ≡ A0 ∧ X(B0 U (A1 ∧ X(B1 UA2 ∧ . . .X(Bn−1 UAn) . . . ))))
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It can be seen that σ, k |=<ω ψ if and only if σ, k |=<ω ϕ(z), for each
σ ∈ (2Σ)+ and each k ≥ 0. Thus, L<ω(ϕ(z)) = L<ω(ψ).

Two differences between our
→
∃∀g-formulas and those used by Ra-

binovich [162] are crucial: first, we do not have unbounded universal
requirements, but all interval constraints use bounded quantifica-
tions, hence we do not need the globally operator to encode them
(which does not belong to the syntax of coSafety-LTL(−˜︁X)); second,
our

→
∃∀g-formulas are future formulas, hence we only need future

operators to encode them.
We now show that any coSafety-FO formula can be translated

into normal form, that is, into a disjunction of
→
∃∀g-formulas.

Lemma 9. Any coSafety-FO formula is equivalent to a disjunction

of
→
∃∀g-formulas.

Proof. Let ϕ be a coSafety-FO formula. We proceed by structural
induction on ϕ. For the base case, for each atomic formula ϕ(z0, z1)

we provide an equivalent
→
∃∀g-formula ψ(z0, z1):

1. if ϕ ≡ z0 < z1 then ψ ≡ ∃x0∃x1(z0 = x0 ∧ z1 = x1 ∧ x0 < x1);

2. if ϕ ≡ z0 = z1, then ψ ≡ ∃x0(z0 = x0 ∧ z1 = x0).

3. if ϕ ≡ z0 ̸= z1, we can note that ϕ ≡ z0 < z1 ∨ z1 < z0 and
then apply Item 1;

4. If ϕ ≡ P (z0) then we define ψ := ∃x0(z0 = x0 ∧ P (x0)). Simi-
larly if ϕ ≡ ¬P (z0).

For the inductive step:

1. The case of a disjunction is trivial.

2. If ϕ(z0, . . . , zk) is a conjunction, by the inductive hypothesis

each conjunct is equivalent to a disjunction of
→
∃∀g-formulas.

By distributing the conjunction over the disjunction we can
reduce ourselves to the case of a conjunction ψ1(z0, . . . , zk) ∧
ψ2(z0, . . . , zk) of two

→
∃∀g-formulas. In this case we have that:

ψ1 ≡ ∃x0 . . . ∃xn
(︁
x0 < · · · < xn ∧ z0 = x0 ∧ . . .

)︁
ψ2 ≡ ∃xn+1 . . . ∃xm(xn+1 < · · · < xm ∧ z0 = xn+1 ∧ . . .)
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Since the set of quantified variables in ψ1 is disjoint from the
set of quantified variables in ψ2, we can distribute the existen-
tial quantifiers over the conjunction ψ1 ∧ ψ2, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+1 . . . ∃xm(︁
x0 < · · · < xn ∧ xn+1 < · · · < xm∧
z0 = x0 ∧ z0 = xn+1 ∧ . . .

)︁
Note that we can identify x0 and xn+1, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+2, . . .∃xm(︁
x0 < · · · < xn ∧ x0 < xn+2 < · · · < xm ∧

z0 = x0 ∧
k⋀︂
i=1

(zi = xj′′i )∧

m⋀︂
i=0

αi(xi)∧

m⋀︂
i=1

∀y(xi−1 < y < xi → βi(y))
)︁

Now, to turn this formula into a disjunction of
→
∃∀g-formulas,

we consider all the possible interleavings of the variables that
respect the two imposed orderings and explode the formula
into a disjunction that consider each such interleaving. Let
X = {x0, . . . , xn, xn+2, . . . , xm} and let Π be the set of all the
permutations of X compatible with the orderings x0 < · · · <
xn and x0 < xn+1 < · · · < xm. Note that π(0) = 0. Now,

ψ1 ∧ ψ2 becomes the disjunction of a set of
→
∃∀g-formulas ψπ,
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for each π ∈ Π, defined as:

ψπ ≡ ∃xπ(0) . . . ∃xπ(m)(︁
xπ(0) < · · · < xπ(m) ∧

z0 = x0 ∧
k⋀︂
i=1

(zi = xπ(j′′i ))∧

m⋀︂
i=0

αi(xi)∧

m⋀︂
i=0

∀y(xπ(i−1) < y < xπ(i) → β∗
i (y))

)︁
where β∗

i suitably combines the formulas β according to the
interleaving of the orderings of the original variables, and is
defined as follows:

β∗
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βπ(i) if both π(i), π(i− 1) ≤ n

or both π(i), π(i− 1) > n

βπ(i) ∧ βπ(i−1) if π(i) ≤ n and π(i− 1) > n

or vice versa

Then we have that ψ1∧ψ2 ≡
⋁︁
π∈Π(ψπ), which is a disjunction

of
→
∃∀g-formulas.

3. Let ϕ(z0, . . . , zm) ≡ ∃zm+1 . (zi < zm+1∧ϕ1(z0, . . . , zm, zm+1)),
for some 0 ≤ i ≤ m. By the inductive hypothesis, this is equiv-
alent to the formula ∃zm+1(zi < zm+1 ∧

⋁︁j
k=0 ψk(z0, . . . , zm,

zm+1)), where ψk(z0, . . . , zm, zm+1) is a
→
∃∀g-formula, for each

0 ≤ k ≤ j, that is:

∃zm+1 . (zi < zm+1∧
j⋁︂

k=0

(∃x0 . . . ∃xnkψ′
k(z0, . . . , zm+1, x0, . . . , xnk)))

By distributing the conjunction over the disjunction, we ob-



4.1 Safety-FO and coSafety-FO 117

tain:

∃zm+1 . (

j⋁︂
k=0

((zi < zm+1)∧

∃x0 . . . ∃xnkψ′
k(z0, . . . , zm+1, x0, . . . , xnk)))

and by distributing the existential quantifier over the disjunc-
tion, we have:

j⋁︂
k=0

(∃zm+1((zi < zm+1)∧

∃x0 . . . ∃xnkψ′
k(z0, . . . , zm+1, x0, . . . , xnk)))

Since the subformula zi < zm+1 does not contain the variables
x0, . . . , xn, we can push it inside the existential quantification,
obtaining:

j⋁︂
k=0

(∃zm+1 . ∃x0 . . . ∃xnk . ((zi < zm+1)∧

ψ′
k(z0, . . . , zm+1, x0, . . . , xnk)))

Now we divide in cases:

(a) suppose that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk) con-

tains the following conjuncts: zi = xli and zm+1 = xlm+1 ,
with li = lm+1. It holds that these formulas are in con-
tradiction with the formula zi < zm+1, that is:

(zi < zm+1) ∧ (zi = xli) ∧ (zm+1 = xlm+1
) ≡ ⊥

Therefore, in this case, the disjunct

(zi < zm+1) ∧ ψ′
k(z0, . . . , zm+1, x0, . . . , xnk)

is equivalent to ⊥, and thus can be safely removed from
the disjunction.

(b) suppose that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk) con-

tains the following conjuncts: zi = xli , zm+1 = xlm+1
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(with li ̸= lm+1), and xlm+1 < · · · < xli . As in the previ-
ous case, it holds that:

(zi < zm+1) ∧ (zi = xli)∧
(zm+1 = xlm+1)

∧ (xlm+1 < · · · < xli)

is equivalent to ⊥. Thus, also in this case, this disjunct
can be safely removed from the disjunction.

(c) otherwise, it holds that the formula
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk) contains the following con-

juncts: zi = xli , zm+1 = xlm+1
(with li ̸= lm+1), and

xli < · · · < xlm+1 . Therefore, the subformula zi < zm+1

is redundant, and can be safely removed from
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk). The resulting formula is a

→
∃∀g-formula.

After the previous transformation, we obtain:

j′⋁︂
k=0

(∃zm+1 . ∃x0 . . .∃xnk . ψ′′
k (z0, . . . , zm+1, x0, . . . , xnk))

Finally, since each formula ψ′′
k (z0, . . . , zm+1, x0, . . . , xnk) con-

tains the conjunct zm+1 = xlm+1
, we can safely remove the

quantifier ∃zm+1. We obtain the formula:

j′⋁︂
k=0

(∃x0 . . .∃xnk . ψ′′
k (z0, . . . , zm, x0, . . . , xnk))

which is a disjunction of
→
∃∀g-formulas.

4. Let ϕ(z0, . . . , zm) be the formula

∀zm+1(zi < zm+1 < zj → ϕ1(z0, . . . , zm, zm+1))

for some 0 ≤ i, j ≤ m. By the induction hypothesis we know

that ϕ1 is equivalent to a disjunction
⋁︁
k ψk where ψk are

→
∃∀g-
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formulas, i.e., each ψk is of the form:

ψk ≡ ∃x0, . . . , xn
(︁
x0 < . . . < xn ∧ z0 = x0 ∧

m+1⋀︂
l=1

(zl = xul) ∧

n⋀︂
l=0

αl(xl) ∧
n⋀︂
l=1

∀y(xl−1 < y < xl → βl(y))
)︁

We now note that we can suppose w.l.o.g. that the ordering
constraint and the binding constraint of ψk imply that zi, zm+1

and zj are ordered consecutively, i.e., zi < zm+1 < zj with no
other variable inbetween. That is because otherwise the con-
straints would be in conflict with the guard of the universal
quantification and the disjunct could be removed from the dis-
junction. Take for example a disjunct of ψk with an ordering
constraint of the type zi < zh < zm+1, for some h. The exis-
tence of such a zh is not guaranteed for each zm+1 between zi
and zj because when zm+1 = zi + 1 there is no value between
zi and zi + 1 (we are on discrete time models). That said,
we can now isolate all the parts of ψk that talk about zm+1,
bringing them out of the existential quantification, obtaining
ψk ≡ θk ∧ ηk, where:

θk ≡ zi < zm+1 < zj ∧
α(zm+1)∧
∀y(zi < y < zm+1 → β(y))∧
∀y(zm+1 < y < zi → β′(y))

ηk ≡ ∃x0, . . . , xn
(︁
x0 < . . . < xn ∧ z0 = x0 ∧

m⋀︂
l=1

(zl = xul)∧

n⋀︂
l=0

l ̸=um+1

αl(xl) ∧
n⋀︂
l=1

l−1 ̸=ui
l ̸=uj

∀y(xl−1 < y < xl → βl(y))
)︁

Now, we have ϕ ≡ ∀zm+1(zi < zm+1 < zj →
⋁︁
k(θk ∧ηk)). We

can distribute the head of the implication over the disjunction,
and then over the conjunction, obtaining that ϕ is equivalent
to:

∀zm+1

(︁⋁︂
k

((zi < zm+1 < zj → θk) ∧ (zi < zm+1 < zj → ηk))
)︁
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In order to simplify the exposition, we now show how to pro-
ceed in the case of two disjuncts, which is easily generalizable.
So suppose we have that ϕ is equivalent to:

∀zm+1

(︄
∨
(zi < zm+1 < zj → θ1) ∧ (zi < zm+1 < zj → η1)

(zi < zm+1 < zj → θ2) ∧ (zi < zm+1 < zj → η2)

)︄

Now we can a) distribute the disjunction over the conjunction
(i.e., convert in conjunctive normal form in the case of multiple
disjuncts), b) factor out the head of the implications and c)
distribute the universal quantification over the conjunction,
obtaining:

ϕ ≡

⎛⎜⎜⎜⎝
∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)
∧ ∀zm+1(zi < zm+1 < zj → θ1 ∨ η2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ θ2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ η2)

⎞⎟⎟⎟⎠
Now, note that η1 and η2 do not contain zm+1 as a free variable,
because we factored out all the parts mentioning zm+1 into
θ1 and θ2 before. Therefore we can push them out from the
universal quantifications, obtaining:

ϕ ≡

⎛⎜⎜⎜⎝
∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)
∧ ∀zm+1(zi < zm+1 < zj → θ1) ∨ η2
∧ ∀zm+1(zi < zm+1 < zj → θ2) ∨ η1
∧ ¬∃zm+1(zi < zm+1 < zj) ∨ η1 ∨ η2

⎞⎟⎟⎟⎠
Now, note that ¬∃zm+1(zi < zm+1 < zj) is equivalent to zi =
zj ∨ zj = zi + 1, which is the disjunction of two formulas that

can be turned into
→
∃∀g-formulas. Since both η1 and η2 are

already
→
∃∀g-formulas and since we already know how to deal

with conjunctions and disjunctions of
→
∃∀g-formulas, it remains

to show that the universal quantifications in the formula above

can be turned into
→
∃∀g-formulas. Take ∀zm+1(zi < zm+1 <
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zj → θ1), i.e.:

∀zm+1

⎛⎜⎜⎜⎝zi < zm+1 < zj →

zi < zm+1 < zj

∧ α(zm+1)

∧ ∀y(zi < y < zm+1 → β(y))

∧ ∀y(zm+1 < y < zj → β′(y))

⎞⎟⎟⎟⎠
Note that the first conjunct of the consequent can be removed,
since it is redundant. Now, this formula is requesting β(y) for
all y between zi and zm+1, but with zm+1 that ranges between
zi and zj−1, hence effectively requesting β(y) to hold between
zi and zj . Similarly for β′(y), which has to hold for all y
between zi + 1 and zj .

Hence, it is equivalent to:

zi = zj

∨ zj = zi + 1

∨ ∃xi+1(zi < xi+1 ∧ xi+1 = zi + 1 ∧ zj = xi+1 + 1 ∧ α(xi+1))

∨ ∃xi∃xi+1∃xj−1∃xj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi < xi+1 < xj−1 < xj

∧ zi = xi ∧ zj = xj

∧ α(xi+1) ∧ α(xj−1)

∧ ∀y(xi < y < xi+1 → ⊥)
∧ ∀y(xj−1 < y < xj → ⊥)
∧ ∀y(xi < y < xj−1 → α(y) ∧ β(y))
∧ ∀y(xi+1 < y < xj → α(y) ∧ β′(y))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is a disjunction of a

→
∃∀g-formula and others that can

be turned into disjunctions of
→
∃∀g-formulas. The reasoning is

at all similar for ∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2).

Any coSafety-FO formula can be translated into a disjunction of
→
∃∀g-

formulas by Lemma 9, and then to a coSafety-LTL(−˜︁X) formula by
Lemma 8. Together with Lemma 7, we obtain the following.

Corollary 8. JcoSafety-FOK<ω = JcoSafety-LTL(−˜︁X)K<ω
We are now ready to state the main result of this section.



122 Chapter 4. First-order logic characterisation of (co-)safety

Theorem 27. JcoSafety-LTLK = JcoSafety-FOK

Proof. We know that JcoSafety-LTLK = JcoSafety-LTL(−˜︁X)K<ω·(2Σ)ω
by Observation 1 and Lemma 5. Since JcoSafety-LTL(−˜︁X)K<ω =
JcoSafety-FOK<ω by Corollary 8, we have that JcoSafety-LTL(−˜︁X)K<ω·
(2Σ)ω = JcoSafety-FOK<ω · (2Σ)ω. Then, by Lemma 6 we have that
JcoSafety-FOK<ω · (2Σ)ω = JcoSafety-FOK, hence JcoSafety-LTLK =
JcoSafety-FOK.

Corollary 9. JSafety-LTLK = JSafety-FOK

4.2 Safety-FO captures the safety fragment
of LTL

In this section, we prove that coSafety-FO captures LTL-definable
co-safety languages. By duality, we have that Safety-FO captures
LTL-definable safety languages, and by the equivalence shown in
the previous section, this provides a novel proof of the fact that
Safety-LTL captures the safety fragment of LTL. We start by char-
acterizing co-safety languages in terms of LTL over finite words.

Lemma 10. JLTLK ∩ coSAFETY = JLTLK<ω · (2Σ)ω

Proof. (⊆) By Theorem 18 we know that each language L ∈ JLTLK∩
coSAFETY is definable by a formula of the form Fα where α ∈
LTL+PP. Hence for each σ ∈ L there exists an n such that σ, n |=<ω
α, hence σ[0,n], n |=<ω α. Note that σ[n+1,∞] is unconstrained, and
thus L = L<ω(α) · (2Σ)ω. Since, by Proposition 6, LTL+PP is equiv-
alent to LTL under finite words interpretation, there exists a formula
β ∈ LTL such that L<ω(α) = L<ω(β). Hence L = L<ω(β) · (2Σ)ω,
and thus L ∈ JLTLK<ω · (2Σ)ω.

(⊇) Given L ∈ JLTLK<ω · (2Σ)ω, we know L = L<ω(β) · (2Σ)ω for
some LTL formula β. Since, by Proposition 6, LTL+PP is equivalent
to LTL under finite words interpretation, there exists a formula α ∈
LTL+PP such that L<ω(β) = L<ω(α). Hence, for each σ ∈ L there is
an n such that σ[0,n], n |= α, i.e., σ |= Fα. Therefore, by Theorem 18,
L ∈ JLTLK ∩ coSAFETY, and this in turn implies that JLTLK<ω ·
(2Σ)ω ⊆ JLTLK ∩ coSAFETY.

Then, we observe that, in LTL interpreted over finite word, uni-
versal temporal operators can be defined in terms of the existential
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ones, and vice versa. As before, the weak next operator plays a
crucial role.

Lemma 11. JLTLK<ω = JSafety-LTLK<ω = JcoSafety-LTLK<ω

Proof. Since Safety-LTL and coSafety-LTL are fragments of LTL, we
only need to show one direction, i.e., that JLTLK<ω ⊆ JSafety-LTLK<ω
and JLTLK<ω ⊆ JcoSafety-LTLK<ω. At first, we show that universal
temporal operators are not needed over finite words. For each LTL
formula ϕ, we can build an equivalent coSafety-LTL with only exis-
tential temporal operators. The globally operator can be replaced
by means of an until operator whose existential part always refers
to the last position of the word. In turn, this can be done with the
formula ˜︁X⊥, which is true only at the final position:

Gϕ ≡ ϕ U (ϕ ∧ ˜︁X⊥)
Similarly, the release operator can be expressed by means of a glob-
ally operator in disjunction with an until operator:

ϕ1 R ϕ2 ≡ Gϕ2 ∨ (ϕ2 U (ϕ1 ∧ ϕ2))
≡
(︁
ϕ2 U (ϕ2 ∧ ˜︁X⊥))︁ ∨ (︁ϕ2 U (ϕ1 ∧ ϕ2)

)︁
Hence JLTLK<ω = JcoSafety-LTLK<ω. Now, if we exploit the fact that
the eventually and until operators are the negation of the globally
and the release operators, we obtain:

Fϕ ≡ ϕ R (ϕ ∨ X⊤)
ϕ1 U ϕ2 ≡ ϕ2 R (ϕ2 ∨ X⊤) ∧ ϕ2 R (ϕ1 ∨ ϕ2)

Hence JLTLK<ω = JSafety-LTLK<ω.

Then, we relate coSafety-LTL on finite words and coSafety-FO.

Lemma 12. JcoSafety-LTLK<ω · (2Σ)ω = JcoSafety-FOK

Proof. (⊆) We have that JcoSafety-LTLK<ω = JLTLK<ω by Lemma 11,
and this implies that JcoSafety-LTLK<ω ·(2Σ)ω = JLTLK<ω ·(2Σ)ω, and
JcoSafety-LTLK<ω ·(2Σ)ω = JS1S[FO]K<ω ·(2Σ)ω by Theorem 13. Now,
let ϕ ∈ S1S[FO], and suppose w.l.o.g. that ϕ is in negated normal
form. We define the formula ϕ′(x, y), where x and y are two fresh
variables that do not occur in ϕ, as the formula obtained from ϕ by
a) replacing each subformula of ϕ of type ∃zϕ1 with ∃z(x ≤ z ∧ϕ1),
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and b) by replacing each subformula of ϕ of type ∀zϕ1 with ∀z(x ≤
z < y → ϕ1). Now, consider the formula ψ ≡ ∃y(x ≤ y ∧ ϕ′(x, y)).
Note that ψ is a coSafety-FO formula. When interpreted over infi-
nite words, the models of ψ are exactly those containing a prefix that
belongs to L<ω(ϕ), with the remaining suffix unconstrained, that is
L(ψ) = L<ω(ϕ) ·(2Σ)ω, hence JS1S[FO]K<ω · (2Σ)ω ⊆ JcoSafety-FOK,
and this implies that JcoSafety-LTLK<ω · (2Σ)ω ⊆ JcoSafety-FOK.

(⊇) We know by Lemma 6 that JcoSafety-FOK = JcoSafety-FOK<ω·
(2Σ)ω. Since coSafety-FO formulas are also S1S[FO] formulas, we
have JcoSafety-FOK ⊆ JS1S[FO]K<ω · (2Σ)ω. By Theorem 13 and
Lemma 11, we obtain that JcoSafety-FOK ⊆ JcoSafety-LTLK<ω ·(2Σ)ω.

We are ready now to state the main result.

Theorem 28. JLTLK ∩ coSAFETY = JcoSafety-FOK

Proof. We know that JLTLK ∩ coSAFETY = JLTLK<ω · (2Σ)ω by
Lemma 10. Then, by Lemma 11 we know that JLTLK<ω =
JcoSafety-LTLK<ω, and this in turn implies that JLTLK<ω · (2Σ)ω =
JcoSafety-LTLK<ω · (2Σ)ω. Since JcoSafety-LTLK<ω · (2Σ)ω =
JcoSafety-FOK by Lemma 12, we conclude that JLTLK∩coSAFETY =
JcoSafety-FOK.

This result together with Theorem 27 allow us to conclude the
following.

Theorem 29. JSafety-LTLK = JLTLK ∩ SAFETY

Note that by Observation 1 and Lemma 5 on one hand, and by
Lemmas 10 and 11 on the other, the question of whether JSafety-LTLK
= JLTLK ∩ SAFETY can be reduced to the question of whether
JcoSafety-LTLK<ω · (2Σ)ω = JcoSafety-LTL(−˜︁X)K<ω · (2Σ)ω. If
coSafety-LTL and coSafety-LTL(−˜︁X) were equivalent over finite words,
this would prove Theorem 29 without the need of coSafety-FO. How-
ever, we can prove this is not the case.

Theorem 30. JcoSafety-LTLK<ω ̸= JcoSafety-LTL(−˜︁X)K<ω
Proof. Note that in coSafety-LTL(−˜︁X) we only have existential tem-
poral modalities and we cannot hook the final position of the word
because the weak next operator is not available. For these reasons,
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given a coSafety-LTL(−˜︁X) formula ϕ, with a simple structural in-
duction we can prove that for each σ ∈ (2Σ)+ such that σ |= ϕ, it
holds that σσ′ |= ϕ for any σ′ ∈ (2Σ)+, i.e., all the extensions of σ
satisfy ϕ as well. This implies that L<ω(ϕ) is either empty (i.e., if ϕ
is unsatisfiable) or infinite. Instead, by using the weak next operator
to hook the last position of the word, we can describe a finite non-
empty language, for example as in the formula ϕ ≡ a ∧ X(a ∧ ˜︁X⊥).
The language of ϕ is L(ϕ) = {aa}, including exactly one word, hence
L(ϕ) cannot be described without the weak next operator.

Note that Theorem 30 does not contradict Theorem 29, that is, it
does not imply that JcoSafety-LTLK<ω·(2Σ)ω ̸= JcoSafety-LTL(−˜︁X)K<ω·
(2Σ)ω. For example, consider again the formula a ∧ X(a ∧ ˜︁X⊥). It
cannot be expressed without the weak next operator, yet it holds
that: L<ω(a ∧ X(a ∧ ˜︁X⊥)) · (2Σ)ω = L<ω(a ∧ Xa) · (2Σ)ω.

A summary of the results provided by this chapter is given in
Fig. 4.1. The expressiveness of Safety-FO and coSafety-FO over infi-
nite words is depicted in Fig. 4.2. A comparison between the expres-
sive power of coSafety-LTL, coSafety-LTL(−˜︁X), Safety-LTL, coSafety-FO,
Safety-FO and other formalisms over finite words interpretation is
shown in Fig. 4.3.

4.3 Conclusions

In this chapter, we gave a characterisation of the first-order defin-
able safety and co-safety languages, by means of two syntactical
fragments of first-order logic, namely Safety-FO and coSafety-FO.
These logics support a particularly constrained kind of existential
and universal quantifications that capture the essence of safety and
co-safety languages.

The core theorem establishes a correspondence between Safety-FO
(resp., coSafety-FO) and Safety-LTL (resp., coSafety-LTL), and thus
it can be viewed as a special version of Kamp’s theorem for safety
(resp., co-safety) properties. We used this theorem for proving
the expressive completeness of coSafety-FO (resp. Safety-FO) with
respect to the semantically co-safety (resp. safety) fragment of
S1S[FO]. Thanks to these new fragments, we were able to provide a
novel, compact, and self-contained proof of the fact that Safety-LTL
captures LTL-definable safety languages. Such a result was previ-
ously proved by Chang et al. [40], but in terms of the properties
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of a non-trivial transformation from star-free languages to LTL by
Zuck [202]. As a by-product, we provided a number of results that
relate the considered languages when interpreted over finite and in-
finite words. In particular, we highlighted the expressive power of
the weak tomorrow temporal modality, showing that it turns out to
be essential in coSafety-LTL over finite words.

Different equivalent characterisations of LTL are known, in terms
of (i) first-order logics, (ii) regular expressions, (iii) automata, and
(iv) monoids (they have been summarised by Thomas in [192]). This
work focuses on the first item, but for LTL-definable safety languages.
A natural follow-up would be to investigate the other items, looking
for what kind of automata (resp., regular expressions, monoids) cap-
tures exactly safety and co-safety LTL-definable languages. While on
finite traces simple characterizations in terms of automata and syn-
tactic monoids exist, the infinite-traces scenario is more complex:
there exists a characterization of LTL in terms of counter-free au-
tomata [149] and the one for safety ω-regular languages seems not
to be difficult (see e.g., terminal automata [186, 39]), but their com-
bination requires to have a canonical (minimal) representation of
a (Muller/Rabin/Streett) automata corresponding to any ω-regular
language.
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- ω-REG

- JS1SK

- JETLK

- NBA

- LIVENESS

- JGFαregK

- SAFETY

- JGαregK

- NSA

- SAFETYSF

- JGαsf K

- Safety-LTL

- LTLEBR+P

- Safety-FO

- coSAFETY

- JFαregK

- coSAFETYSF

- JFαsf K

- coSafety-LTL

- coSafety-FO

- ω-SF

- JS1S[FO]K

- JLTLK

- JLTL+PK

- cf-NBA

- LTLEBR

- GR-EBR

Figure 4.2: Extension of Fig. 3.2 that takes into account
also of the expressive power of Safety-FO and coSafety-FO
(underlined).
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- REG

- JS1SK<ω

- JETLK<ω

- NFA

- DFA

- SF

- JS1S[FO]K<ω

- JLTLK<ω

- JLTL+PK<ω

- cf-DFA

- Safety-LTL

- coSafety-LTL

- coSafety-LTL(−˜︁X)
- Safety-FO

Figure 4.3: Comparison between the expressive power of
coSafety-LTL with and without weak next, Safety-LTL and
Safety-FO under finite word interpretation. For sake of
clarity, we underlined the logics we add with respect to
Fig. 2.3.
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CHAPTER

5

BACKGROUND

In this chapter, we give the necessary background for the Problems
and Algorithms part. We start with the satisfiability problem, for
which we recap the theoretical complexity of this problem for the
logics of S1S, S1S[FO] and LTL+P. From now on, unless otherwise
stated, for all logics under consideration, we interpret them always
over infinite linear orders (equiv. infinite words). We then take a
look at some classical techniques for solving the satisfiability problem
from LTL+P specifications, with particular attention to the details
of the one-pass and tree-shaped tableau for LTL [163, 106], since one
of the contributions of this thesis is a symbolic encoding for this
system.

We then define Kripke structures and the model checking prob-
lem for LTL. After defining what a symbolic representation is, we
recap the main ideas behind Bounded Model Checking [17] and K-
Liveness [57]. We show also how LTL satisfiability can be reduced
to LTL model checking.

We then focus on realizability. We define the basic notion of
strategy and the formal definition of realizability and reactive syn-
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thesis. Also in this case, we will take a look at classical techniques
for LTL+P realizability [160] and also on bounded synthesis [92, 88].
Some attention will be devoted also to safety synthesis.

5.1 LTL Satisfiability

Given a logic L, we have already seen in Chapter 2 that the satisfia-
bility problem for L is the problem of finding whether there exists a
model of a given formula ϕ ∈ L. Recall also that, since we are mainly
dealing with temporal logics and related formalisms, the structures
over which the formulas are interpreted are always (finite or infinite)
linear orders, or, equivalently, (finite or infinite) words.

In Notation 2, we introduced a notation for differentiating the
syntax from the semantics of a given logic. We briefly recap here the
notation. Given a logic L, we denote with L also the set of formulas
that syntactically belong to L, while with JLK we denote the set of
languages over infinite words that can be expressed with a formula
in L (semantic definition), i.e.,

JLK := {L | L = L(ϕ), ϕ ∈ L}

The satisfiability problem of L can be reformulated as the prob-

lem of establishing whether L(ϕ) ?
= ∅, given a formula ϕ ∈ L.

5.1.1 Complexity

Satisfiability is one of the first theoretical questions that are an-
swered for a particular logic. In fact, when one talks about the
complexity of a given logic, he usually refers to the complexity of
the satisfiability problem for that logic.

We start by recalling the complexity of S1S and S1S[FO] (recall
that, from now on, we will focus only on the infinite words interpre-
tion, unless otherwise stated).

Theorem 31 (Complexity of S1S and S1S[FO] [185]). The satisfia-
bility of S1S and S1S[FO] is nonelementary.

In [179], Sistla and Clarke prove that finding whether an LTL (or
LTL+P) formula admits at least one model is PSPACE-complete.

Theorem 32 (Complexity of LTL [179, 135]). The satisfiability
problem of LTL (and LTL+P) is PSPACE-complete.
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Theorems 31 and 32 are very interesting. In fact, recall from
Theorem 13 and Fig. 2.2 that JLTLK = JS1S[FO]K, that is, LTL and
S1S[FO] have the same expressive power. Nevertheless, the nonele-
mentary complexity of S1S[FO] is avoided by LTL by the careful
choice of its modal operators.

The same happens with Extended Temporal Logic (ETL). Recall
from Section 2.4 that ETL is the extension of LTL with operators
corresponding to regular expressions, and that JETLK = JS1SK (The-
orem 14). Despite being expressively equivalent, the complexity of
ETL is PSPACE-complete (the same of LTL+P), while the complexity
of S1S is nonelementary. This is not the case for other extensions of
temporal logics: for example LTL+P extended with first-order quan-
tifications [142] is expressively equivalent to S1S but its complexity
is still nonelementary.

Regarding the Safety-LTL logic, we weren’t able to find any pa-
per in the literature addressing the complexity of its satisfiability
problem. Our conjecture is that it is still PSPACE-complete, like for
LTL.

We now take a look at four methods for solving the satisfiability
problem from LTL+P specifications.

5.1.2 The automata-theoretic algorithm

One of the classical methods for solving satisfiability of LTL+P spec-
ifications is to reduce the problem to the emptiness check of a Büchi
automaton equivalent to the starting formula. There are a lot of
papers describing this technique and related optimizations for pro-
ducing small Büchi automata [196, 129, 127, 63, 181, 189, 198, 98].
The classical method, without optimizations, can be summarized as
follows:

• take an LTL+P formula ϕ; let n be its dimension;

• build a Büchi automaton A(ϕ) such that L(A(ϕ)) = L(ϕ);
in the worst case, the number of states of the automaton is
O(2n);

• check whether L(A(ϕ)) ?
= ∅, that is check the emptiness of the

automaton; if it is empty, then ϕ is unsatisfiable, otherwise ϕ
is satisfiable.
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Recall from Section 2.2 that checking the emptiness of A(ϕ)
amounts to checking whether there exists a directed path from one
of its initial states to one of its final state, and from such a final
state to itself. Since this is a reachability problem, it can be solved
in nondeterministic logarithmic space [196, 168], that is O(log2(2n)):
therefore, this step takes O(n) space. Since the emptiness check can
be performed on-the-fly (i.e., while building the automaton A(ϕ)),
the whole algorithm runs in nondeterministic polynomial space, and,
by Savitch Theorem [168], this is still in PSPACE. Since LTL+P
satisfiability is PSPACE-complete, this shows the optimality of this
algorithm.

The construction of the NBA (nondeterministic Büchi automa-
ton, recall Definition 11) starting from an LTL+P formula can be
done in several ways. Here we recall two of them.

Using Alternating Büchi Automata

In [196, 129], the construction passes through Alternating Büchi au-
tomata. These are basically Büchi automata except from the fact
that the transition relation is specified in terms of Boolean formulas.
For example, the transition relation:

δ(q, a) = (q1 ∧ q2) ∨ (q3 ∧ q4)

means that, starting from state q and reading letter a, the automaton
can reach any set of states that is a model of the above Boolean
formula, i.e., either the set {q1, q2}, or {q3, q4}, or {q1, q2, q3, q4}. In
particular, this means that a run of an Alternating Büchi automaton
is no more a sequence of states, but rather a tree of states, since the
automaton can be in different states at a given time point. For a run
to be accepting, each of its branches has to contain infinitely many
occurrences of a final state. We refer to [196] for more details about
Alternating Büchi automata.

The construction of the Büchi automaton follows the following
steps: (i) from an LTL+P formula ϕ of size n, build an equivalent
Alternating Büchi automaton of linear size (O(n)); (ii) from the
previous alternating automaton, use the Miyano-Hayashi construc-
tion [151] for building an equivalent Büchi automaton of exponential
size in the worst case (O(2n)).
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Using Generalized Büchi Automata

In [98, 181], the transformation from LTL to Büchi uses the so-called
Generalized Büchi automata. A Generalized Büchi automaton is like
a Büchi automaton, except from the fact that there is not a single
set of final states, but many ones. A run is accepting if it visits
infinitely many times at least one state for each set of final states of
the automaton.

In order to check the emptiness of a Generalized Büchi automa-
ton, there two options: (i) either using an emptiness checking algo-
rithm dedicated for generalized automata [79]; or (ii) degeneralizing
the automaton into a classical Büchi automaton [98].

5.1.3 The two-pass and graph-shaped tableau sys-
tem

In this section, we recap the classical tableau system for LTL+P [141,
135, 200]. As already mentioned, this sistem is graph-shaped and
two-pass, meaning that: (i) in a first pass, a graph structure repre-
senting all candidate models is built; (ii) in a second pass, the graph
is traversed looking for fulfilling paths, i.e., directed paths represent-
ing models that fulfills all the pending temporal requests, therefore
representing correct models. The existence of such a fulfilling path
witnesses the satisfiability of the starting formula, while the absence
of them proves the unsatisfiability.

From now on, let ϕ ∈ LTL+P be the starting LTL+P formula
over an alphabet Σ, for which we want to check the satisfiability.
Each node of the graph for ϕ built by this tableau system will be
a set of formulas “derived” from ϕ. Therefore, we start by defining
the notion of closure of an LTL+P formula, which comprises all the
formulas derived from ϕ.

Definition 27 (Closure of an LTL+P formula). Let ψ be an LTL+P
formula built over Σ. The closure of ψ is the smallest set of formulas
C(ψ) satisfying the following properties:

1. ψ ∈ C(ψ);

2. for each sub-formula ψ′ of ψ, ψ′ ∈ C(ψ);

3. for each p ∈ Σ, p ∈ C(ψ) if and only if ¬p ∈ C(ψ);

4. if ψ1 U ϕ2 ∈ C(ψ), then X(ψ1 U ψ2) ∈ C(ψ);
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Rule ψ Γ1(ψ) Γ2(ψ)

DISJUNCTION α ∨ β {α} {β}
CONJUNCTION α ∧ β {α, β}

UNTIL α U β {β} {α,X(α U β)}
SINCE α S β {β} {α,Y(α S β)}

RELEASE α R β {α, β} {β,X(α R β)}
TRIGGERED α T β {α, β} {β,Z(α T β)}

Table 5.1: Tableau expansion rules.

5. if ϕ1 R ψ2 ∈ C(ψ), then X(ψ1 R ϕ2) ∈ C(ψ);

6. if ψ1 S ψ2 ∈ C(ψ), then Y(ψ1 S ψ2) ∈ C(ψ);

7. if ψ1 T ψ2 ∈ C(ψ), then Z(ψ1 T ψ2) ∈ C(ψ).

Consider now a generic formula ψ ∈ C(ϕ), and let σ be a state
sequence. If ψ holds in σ at position i (i.e., σ, i |= ψ), then, in the
general case, it requires also other formulas of the closure to hold
in state i. For example, if ψ ≡ ψ1 ∧ ψ2, then it also holds that
σ, i |= ψ1 and σ, i |= ψ2. This is summarized in Table 5.1 by means
of expansion rules. Given a formula ψ ∈ C(ϕ), an expansion rule
returns one or two sets of formulas in C(ϕ) such that the following
statement is true for each σ ∈ (2Σ)ω and for each i ∈ N:

σ, i |= ψ ⇒ σ, i |= Γ1(ψ) and σ, i |= Γ2(ψ)

Nodes of the graphs are formalized using the notion of atom.
Intuitively, an atom is a maximal mutually satisfiable set of formulas
in the closure, meaning that all formulas in an atom can be true at
some point i of a candidate model σ. It is also maximal in the sense
that no formulas of the closure can be added to an atom while at the
same maintaining its consistency. The definition below formalizes
the notion of atom. In the following, we identify the formula ¬¬ψ
with the formula ψ.

Definition 28 (Atom). Let ϕ ∈ LTL+P and let C(ϕ) be its clo-
sure. An atom over ϕ is a set S ⊆ C(ϕ) satisfying the following
requirements:

• the conjunction of all atomic formulas in S is satisfiable;
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• for all ψ ∈ C(ϕ), ψ ∈ S if and only if ¬ψ ̸∈ S;

• for all ψ ∈ C(ϕ), ψ ∈ S implies Γ1(ψ) ∈ S and Γ2 ∈ S.

Therefore, since atoms in the graph will correspond to states of
a candidate model, if a formula ψ is included in an atom, then it
means that ψ is supposed to hold in the state represented by that
atom, while the absence of ψ from the atom means that ¬ψ holds
in the corresponding state.

We are now ready for defining the tableau for ϕ.

Definition 29 (Graph-shaped tableau). Let ϕ ∈ LTL. The tableau
for ϕ is a graph Tϕ = (V,E) such that:

• V is the set of all and only the atoms over ϕ;

• E ⊆ V ×V is the set of edges and it such that, for each atoms
A,B ∈ V , A is connected to B if and only if the following three
requirements are satisfied:

– for every Xψ ∈ C(ϕ), Xψ ∈ A iff ψ ∈ B;

– for every Yψ ∈ C(ϕ), ψ ∈ A iff Yψ ∈ B;

– for every Zψ ∈ C(ϕ), ψ ∈ A iff Zψ ∈ B.

An atom A of the tableau Tϕ is called initial if it does not contain
any formula of type Yψ or ¬Zψ, for some ψ ∈ C(ψ).

We say that a formula ψ ∈ C(ψ) promises the formula α if ψ
is of one of the following forms: β U α, Fα, ¬G¬α or ¬(¬α) R (β).
Equivalently, we say that ψ is a promising formula.

Promising formulas are the ones that may give rise of paths of the
tableau Tϕ corresponding to models such that, despite being correct
with respect to Boolean formulas or formulas of type Xα, Yα or Zα,
they always postpone the fulfillment of a request, therefore being not
correct models. This means that, once the tableau Tϕ is built, we
have to check for at least one fulfilling path, that is a path that fulfills
all temporal requests promised by some formula in the closure.

The following property is a fundamental property of promising
formulas [141]. Let ψ be a formula promising α and let σ be a state
sequence. Then it always holds that there exists infinitely many
positions i ∈ N such that:

σ, i |= ¬ψ or σ, i |= α
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The previous property gives also a definition for fulfilling paths.
We say that a path π = ⟨A0, A1, . . .⟩ in Tϕ is fulfilling if and only if
A0 is an initial atom and, for every formula ψ ∈ C(ϕ) promising α,
there exists infinitely many positions i ∈ N such that either ¬ψ ∈ Ai
or α ∈ Ai. The existence of a model for the starting formula ϕ can be
reduced to the existence of a fulfilling path π in the tableau Tϕ such
that the first atom of π contains the formula ϕ. This last condition
ensures that ϕ holds in the first state of the model σ represented by
π, that is σ |= ϕ, thus witnessing the satisfiability of ϕ.

Theorem 33 ([141]). Let ϕ ∈ LTL+P and let Tϕ be its tableau. The
formula ϕ is satisfiable if and only if there exists a fulfilling path
π = ⟨A0, A1, . . .⟩ such that ϕ ∈ A0.

In order to have an effective procedure for checking the existence
of fulfilling path, it suffices to find a strongly connected component
(SCC) within which all the paths are fulfilling. Since there are plenty
of algorithms for computing SCCs, this proves the effectiveness of
this algorithm.

5.1.4 The one-pass and tree-shaped tableau sys-
tem

We now briefly describe the tableau system for LTL+P introduced
in [101], which extends the tableau system for LTL by Reynolds [163].
In the next chapters, we will give a symbolic encoding of this system.

W.l.o.g. we assume formulas to be in NNF. A tableau for a for-
mula ϕ is a tree where each node u is labeled by a set of formulas
Γ(u) belonging to the closure C(ϕ) (recall Definition 27), with the
root u0 labeled with Γ(u0) = {ϕ}. At each step, a set of rules
is applied to a leaf (i.e., a node without children/descendants), ei-
ther for creating new nodes children of that leaf or for closing the
branch ending to that leaf by either accepting or rejecting the branch.
The produre stops when all branches have been closed. Given a
branch u = ⟨u0, . . . , un⟩, the sequence of nodes ⟨ui, . . . , uj⟩, for some
0 ≤ i ≤ j ≤ n, is denoted by u[i,j].

At each step, the selected leaf is subject to a number of expansion
rules, that select a formula of its label and expand it according to
its semantics, by means of expansion rules (recall Table 5.1). Each
expansion rule creates one or two children depending on the selected
formula. After repeated applications of the expansion rules, a node
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that only contains elementary formulas, that is, propositions, to-
morrow, yesterday, or weak yesterday formulas, is obtained: we call
such nodes poised nodes. Elementary formulas of the form X(ϕ1Uϕ2)
are called X-eventualities. An X-eventuality is a formula that, intu-
itively, requests something to be fulfilled later, and, in some sense,
corresponds to promising formulas of the graph-shaped tableau that
we previously described in Section 5.1.3. Given an X-eventuality
ϕ ≡ X(ϕ1 U ϕ2), ϕ is said to be fulfilled in a node u if ϕ2 ∈ Γ(u).

The tableau advances through time by making temporal steps.
To do that, the following rules are applied to poised nodes.

STEP A child un+1 is added to un, with:

Γ(un+1) = {α | Xα ∈ Γ(un)}

FORECAST Let

Gn =

{︃
α ∈ C(ϕ)

⃓⃓⃓⃓
Yα ∈ C(ψ) or
Zα ∈ C(ψ) for some ψ ∈ Γ(un)

}︃
For each subset G′

n ⊆ Gn (including ∅), a child u′n is added
to un such that Γ(u′n) = Γ(un) ∪ G′

n. This is done once and
only once before every application of the STEP rule.

The STEP rule advances the construction of the current branch
to the subsequent temporal state. The FORECAST is essential to the
well-functioning of the rule dealing with past, as it adds a number
of branches that nondeterministically guess formulas that may be
needed to fulfill past requests coming from future states. We refer
to [101] for more details.

Since the STEP rule is not applied to all the poised nodes (to
some of which the FORECAST rule is applied instead), we need the
following definition.

Definition 30 (Step node). In a complete tableau for an LTL+P
formula, a poised node un is a step node if it is either a poised leaf
or a poised node to which the STEP rule was applied.

Given a node u, we define u∗ as the closest ancestor of u that is
child of a step node, if any. Γ∗(u) is the union of the labels of the
nodes from u to u∗ or to the root, if u∗ does not exist. Intuitively,
Γ∗(u) represents a state of a candidate model, and, in some sense,
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it corresponds to atoms (Definition 28) of the two-pass and graph-
shaped tableau that we described in Section 5.1.3.

Before applying the STEP rule though, poised nodes are sub-
ject to the application of a few termination rules, that is, rules
that decide whether the construction has to continue or the cur-
rent branch has to be either rejected or accepted. Given a branch
u = ⟨u0, . . . , un⟩, with un a step node, the termination rules are the
following.

CONTRADICTION If {p,¬p} ⊆ Γ(un), for some p ∈ Σ, then u is
rejected.

EMPTY If Γ(un) = ∅, then u is accepted.

YESTERDAY If Yα ∈ Γ(un), then the branch u is rejected if either
u∗n does not exist or Yn ̸⊆ Γ∗(u∗n), where Yn = {ψ | Yψ ∈
Γ(un)}.

W-YESTERDAY If Zα ∈ Γ(un), then u is rejected if u∗n exists and
Zn ̸⊆ Γ∗(u∗n), where Zn={ψ |Zψ∈Γ(un)}.

LOOP If there exists a position i < n such that Γ(ui) = Γ(un) and
all the X-eventualities requested in ui are fulfilled in u[i+1...n],
then u is accepted.

PRUNE If there exist two positions i and j such that i < j ≤ n,
Γ(ui) = Γ(uj) = Γ(un), and all the X-eventualities requested
in these nodes which are fulfilled in u[j+1...n] are also fulfilled
in u[i+1...j], then u is rejected.

Intuitively, the CONTRADICTION, YESTERDAY, andW-YESTERDAY
rules reject branches that contain some contradiction, either a propo-
sitional one or because of some unfulfilled past request. The EMPTY
rule accepts a branch devoid of contradictions where there is nothing
left to do, while the LOOP one accepts a looping branch where all the
X-eventualities are proposed again and fulfilled at every repetition
of the loop. Finally, the PRUNE rule, which was the main novelty of
the system when introduced by Reynolds [163], rejects a branch that
is doing redundant work without fulfulling all the X-eventualities.

The following has been proved to hold.

Proposition 11 (Soundness and completeness [101]). Let ϕ be an
LTL+P formula. The complete tableau for ϕ contains an accepted
branch if and only if ϕ is satisfiable.
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Fig. 5.1 shows two examples tableaux built with this systems for
the formulas GF(p∧X¬p) and G¬p∧ qUp (the figure has been taken
from [101]).

5.2 Model checking

Model checking (MC) is a technique for automatically verifying sys-
tems against a specification [58, 59, 161, 60]. Model checking has
three distinguish features with respect to previous methods for the
verification of digital systems, that helped to make it very successful
and popular in practice: (i) it is fully automatic; (ii) it is exhaus-
tive, meaning that all computations of the systems are explored and
checked against the specification; (iii) in the case the specification
does not hold in the system, a counterexample of the violation is
generated.

The typical methodology for formal verification using model check-
ing is the following:

1. model the system under investigation with a state-transition
system; in the simplest case, the systems have finitely many
states and are modeled by Kripke structures [60];

2. formalize the specification that the system must satisfy by
means of a formal language; temporal logics (recall Section 2.4)
typically represent a great tool for this task;

3. use an algorithm (i.e., a fully automatic procedure) to check
the (temporal) formula over all the paths of the (Kripke) struc-
ture. If a counterexample has been found, the algorithm re-
turns a negative answer together with the counterexample,
which is of the form of a path in the structure. Otherwise,
it returns a positive result.

In this section, we consider state-transition systems with finitely
many states, which usually are denoted with the name of Kripke
structures.

Definition 31 (Kripke structure). A Kripke structure is a tuple
M = (Σ, Q, I, T, L) where:

• Σ is a finite alphabet,



144 Chapter 5. Background

{
G
F
(p

∧
X
¬
p
)}

{
F
(p

∧
X
¬
p
),X

G
F
(p

∧
X
¬
p
)}

...
{
p
,X

¬
p
,X

G
F
(p

∧
X
¬
p
)}

{¬
p
,G

F
(p

∧
X
¬
p
)}

{¬
p
,p

,X
¬
p
,...}

✗

{¬
p
,X

F
(p

∧
X
¬
p
),X

G
F
(p

∧
X
¬
p
)}

{
F
(p

∧
X
¬
p
),G

F
(p

∧
X
¬
p
)}

...
{
p
,X

¬
p
,X

G
F
(p

∧
X
¬
p
)}

✓

{
G
¬
p
∧
q
U
p}

{
G
¬
p
,q

U
p}

{¬
p
,X

G
¬
p
,p}

✗

{¬
p
,X

G
¬
p
,q
,X

(q
U
p
)}

{
G
¬
p
,q

U
p}

{¬
p
,X

G
¬
p
,p}

✗

{¬
p
,X

G
¬
p
,q
,X

(q
U
p
)}

{
G
¬
p
,q

U
p}

{¬
p
,X

G
¬
p
,p}

✗

{¬
p
,X

G
¬
p
,q
,X

(q
U
p
)}

✗

(a
)
T
a
b
lea

u
fo
r
G
F
(p

∧
X
!p
),

clo
sed

b
y
th
e
L
O
O
P
ru
le.

(b
)
T
a
b
lea

u
fo
r
G
¬
p
∧
q
U
p
,

clo
sed

b
y
th
e
P
R
U
N
E
ru
le.

F
igu

re
5.1:

E
x
am

p
le

tab
leau

x
for

tw
o
form

u
lae,

in
volv

in
g
th
e
L
O
O
P
a
n
d
P
R
U
N
E
ru
les.

D
a
sh
ed

ed
g
es

rep
resen

t
su
b
trees

collap
sed

to
sav

e
sp
ace,

b
old

arrow
s
rep

resen
t
th
e
ap

p
lica

tio
n
o
f
a
S
T
E
P
ru
le

to
a
p
o
ised

la
b
el.



5.2 Model checking 145

• Q is the finite set of states,

• I ⊆ Q is the set of initial states,

• T ⊆ Q×Q is a complete transition relation, and

• L : Q → 2Σ is the labeling function that assigns to each state
the set of atoms in Σ that are true in that state.

Let M = (Σ, Q, I, T, L) be a Kripke structure. A trace π :=
⟨π0, π1, . . .⟩ is a (finite or infinite) sequence of states of M such that
(πi, πi+1) ∈ T , for all i ≥ 0. If π0 ∈ I, we say that π is an initialized
trace.

The model checking problem takes as input a Kripke structure
and a temporal formula, and asks to find whether all the initial-
ized traces of the former satisfy the latter. For this reason, model
checking is also referred to as validity over structures.

Definition 32 (The model checking problem). Given a Kripke struc-
ture M = (Σ, Q, I, T, L) and a temporal formula ϕ, the model check-
ing problem is the problem of finding whether all the initialized traces
π of M are such that L(π) |= ϕ, written M |= Aϕ (where A is the
“for all paths” operator of CTL).

Here we are mainly interested on model checking from LTL spec-
ifications (from now on called LTL model checking), that is model
checking of specification written in Linear Temporal Logic (Sec-
tion 2.4). In [179, 135], the complexity of LTL model checking is
proved to be PSPACE-complete.

Theorem 34 (Complexity of LTL model checking [179, 135]). The
model checking problem of LTL (and LTL+P) is PSPACE-complete.

5.2.1 Symbolic Kripke Structures

The first algorithms for model checking were basically graph al-
gorithms [58, 161]: since Kripke structures correspond to graphs
with labels on states, those algorithms iteratively compute the set
of states on which the starting formula holds, until they either reach
a fixpoint or they find a counterexample.

The representation of systems by Kripke structures is usually
referred to as the explicit-state representation, meaning that each
state of the structure corresponds to a location on the memory of
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the computer, and each transition corresponds to a pointer. Explicit-
state representations revealed to be inefficient when model checking
is applied to real-life systems. In fact, it is very common to have a
system whose corresponding Kripke structure has too much states to
be stored on memory: by considering a system made of several sub-
systems, the states of the former are the cartesian product between
the set of states of each subsystem, thus taking into consideration
every possible combination of states. In the general case, a system
made of n subsystems can contain in the worst case O(2n) states.
This is known as the state-space explosion problem. Therefore the
problem is how to succinctly represent huge graph structures on
memory and, consequently, how to verify temporal formulas over
this succinct graph representation.

A breakthrough was reached in 1993 with the introduction of
Symbolic Model Checking [37, 146], which, instead of representing
Kripke structures explicitly (with each state and transition stored
on memory), it uses Boolean formulas for representing sets of states
(actually, sets of edges). In particular, states and edges are never
stored explicitly. In addition, the verification of temporal formulas
over such graphs (which amounts to traversing the graph structure
looking for the fulfillment of some conditions) is carried out by ma-
nipulating those Boolean formulas.

Let M = (Σ, Q, I, T, L) be a Kripke structure with n = |Q|
states. The symbolic representation of M uses a set of log2(n)
Boolean variables V = {v1, . . . , vlog2(n)

} for representing the states
in Q: each of the n assignments to the log2(n) variables represents a
state in Q. Given a state q ∈ Q, we denote with q the corresponding
assignment to the variables in V .

A Boolean formula is used for representing the edges of the graph,
that is the transition relation of M . In particular, we define V ′ =
{v′1, . . . , v′log2(n)

} as the set containing all variables in V but primed

in order to represent the next state of a transition. The transition
relation T of M is represented symbolically by a Boolean formula
over the variables V ∪ V ′, whose models correspond to all and only
the transitions in T .

Finally, the labeling function L is represented by a set of Boolean
formulas ϕσ over V , one for each σ ∈ Σ, such that an assignment is
a model of ϕσ if and only if the state encoded by that assignment is
labeled by σ by L in M .
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Definition 33 (Symbolic Kripke structure). LetM = (Σ, Q, I, T, L)
be a Kripke structure. The symbolic Kripke structure corresponding
to M is a tuple Ms = (Σ, V, ϕI , ϕT , {ϕσ}σ∈Σ) such that:

• V is a set of log2(|Q|) Boolean variables;

• ϕI is a Boolean formula over V for the set of initial states such
that, for each state q ∈ Q

q |= ϕI ⇔ q ∈ I

• ϕT is a Boolean formula over V ∪V ′ for the transition relation
such that, for each (q, q′) ∈ T

(q, q′) |= ϕT ⇔ (q, q′) ∈ T

• for each σ ∈ Σ, the Boolean formula ϕσ is such that, for each
q ∈ Q, it holds that:

q |= ϕσ ⇔ σ ∈ L(q)

In the following subsections, we will see how the symbolic repre-
sentation can be used also for modeling automata (see Section 2.2)
and we will take a look at the SMV language [147], a high-level
language for modeling symbolic state-transition systems. Moreover,
the symbolic algorithms of Bounded Model Checking [17] and K-
Liveness [57] will be described. We conclude the section, by showing
how LTL satisfiability can be reduced to LTL model checking.

5.2.2 Symbolic Automata

The symbolic representation described before can be used not only
for modeling Kripke structures and state-transition systems, but
also for modeling automata (recall Section 2.2). Since automata are
graphs with labels on the edge while Kripke structures are graphs
with labels on the states, the symbolic representation of an automa-
ton (from now on simply called symbolic automaton) follows from
that of a Kripke structure with only minor modifications. In this
part of the thesis, we will focus mainly on infinite sequences, and
therefore we give the definition of symbolic automata for automata
over infinite words only.
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Definition 34 (Symbolic Automata on Infinite Words). A symbolic
automaton on infinite words over the alphabet Σ is a tuple A = (V =
X ∪ Σ, I, T, α), such that

• V = X ∪Σ, where X is a set of state variables and Σ is a set
of input variables,

• I(X) and T (X,Σ, X ′), with X ′ = {x′ | x ∈ X}, are Boolean
formulas which define the set of initial states and the transition
relation, respectively, and

• α(X) is an LTL formula which defines the accepting condition.

The definitions of runs, accepted words and languages of a sym-
bolic automaton correspond naturally to those of standard (explicit
state) automata.

Definition 35 (Languages of Symbolic Automata). Let A = (V =
X ∪ Σ, I, T, α) be a symbolic automaton over infinite words. A run
(or trace) τ = ⟨τ0, τ1, . . .⟩ is an infinite sequence of state-symbol
pairs (i.e., evaluations of the variables in V ) that are in relation
with respect to T , i.e., such that any two consecutive evaluations
satisfy the formula T (τi, τi+1

′ |= T ).
A run τ is induced by the word σ = ⟨σ0, σ1, . . .⟩ iff τ0 |= I and

(τi, σi, τi+1) |= T , for all i ≥ 0. A word σ is accepted by A iff
there exists an accepting run induced by σ in A. The language of
A, denoted with L(A), is the set of all and only the words accepted
by A.

Let us consider now the product between two symbolic automata.
In the symbolic setting, the product is much simpler than in the
explicit-state setting (Definition 9), since it amounts to consider the
conjunctions between the two formulas for the initial states, the
transition relations, and the accepting conditions.

Definition 36 (Product between symbolic automata). Let A =
(V = X ∪ Σ, I, T, α) and A′ = (V ′ = X ′ ∪ Σ, I ′, T ′, α′) be two
symbolic automata. The product A×A′ between A and A′ is defined
as the automaton (V ∪ V ′, I ∧ I ′, T ∧ T ′, α ∧ α′).

When the accepting condition α(X) of Definition 34 is istantiated
to a particular LTL formula, it gives rise to the symbolic represen-
tation of different types of automata, for example safety automata
(Definition 13) or Büchi automata (Definition 11).
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Definition 37 (Symbolic Safety Automata). A symbolic safety au-
tomaton (SSA) is a symbolic automaton on infinite words A = (V =
X ∪ Σ, I, T, α) such that

α := Gψ

where G is the globally operator of LTL and ψ is a Boolean formula
over the variables in X.

It is worth noting the differences between the explicit-state stan-
dard definition of a safety automaton (Definition 13) and the sym-
bolic representation (Definition 37). The former requires each ac-
cepted word to induce at least a run that has only to satisfy the
transition relation δ, while the latter requires the run to satisfy also
the formula ψ for all of its states (in other words, it imposes also
the accepting condition α(X) on the runs). Nevertheless it is not
difficult to see that the two definitions are equivalent, in the sense
that the set of languages that they can recognize is the same:

• a safety automaton corresponds to a symbolic safety automa-
ton in which the accepting condition is α(X) := G⊤;

• a symbolic safety automaton corresponds to a safety automa-
ton in which all states that does not satisfy ψ are removed.

The reason why the definition of symbolic safety automata imposes
the additional constraint α(X) is that it is usually simpler to first
construct symbolically the transition relation of an automaton and
then give a pruning condition for the bad states by means of the
accepting condition α(X).

By istantiating the accepting condition, we can similarly define
also symbolic Büchi automata.

Definition 38 (Symbolic Büchi Automata). A symbolic Büchi au-
tomaton (SBA) is a symbolic automaton on infinite words A = (V =
X ∪ Σ, I, T, α) such that

α := GFψ

where G and F are the globally and the eventually operators of LTL
and ψ is a Boolean formula over the variables in X.

The correspondence between standard explicit-state Büchi au-
tomata (Definition 11) and symbolic Büchi automata (Definition 38)
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is tight: a Büchi automaton with final states F corresponds to a
symbolic Büchi automaton with accepting condition GFψ, where ψ
is the Boolean formula representing exactly the states in F .

Besides from the safety and Büchi acceptance conditions, one
can use also more sophisticated formulas for α(X). In the following
chapters, we will make use of the Reactivity(1) (Definition 17) and
the Generalized Reactivity(1) (Definition 18) acceptance conditions
(defined here below), which take their name from the classes of the
Temporal Hierarchy (Section 2.4.5).

Definition 39 (The R(1) and GR(1) accepting conditions). Let A =
(V = X ∪Σ, I, T, α) be a symbolic automaton. The formula α(X) is
called a:

• Reactivity(1) accepting condition (R(1), for short) iff it is of
type GFα→ GFβ;

• Generalized Reactivity(1) accepting condition (GR(1), for short)
iff it is of type

⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj;

where each α, αi, β, βj belongs to LTL+PP.

In what follows, and in particular in the parts dedicated to re-
active synthesis from LTLEBR+P and GR-EBR specifications (Chap-
ters 7 and 8), we will make a strong use of deterministic symbolic
automata. We define here the symbolic representation of determin-
istic automata.

Definition 40 (Deterministic Symbolic Automata). We say that a
symbolic automaton on infinite words A = (V = X ∪ Σ, I, T, α) is
deterministic if:

1. the formula I has exactly one satisfying assignment, and

2. the transition relation is of the form:

T (X,Σ, X ′) :=
⋀︂
x∈X

(x′ ↔ βx(X ∪ Σ)),

where βx(V = X ∪Σ) is a Boolean formula over V , for each x ∈ X.

It is worth noting how the ↔ operator (in the second point of
Definition 40) makes the value of any variable x be a function of
the assignments of βx(X ∪Σ), just like the transition relation of the
classical definition of deterministic automaton is a function of the
current state (X) and an input letter (Σ).
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5.2.3 The SMV modeling language

The SMV (Symbolic Model Verifier) language [147, 38] is a model-
ing language for both finite and infinite state-transitions symbolic
systems, and consequently also symbolic automata. It offers high-
level constructs for expressing (i) Boolean formulas; (ii) initial states;
(iii) transition relations; (iv) final states, and so on and so forth.

The basic building blocks of an SMV file are modules (expressible
with the MODULE keyword): each module can be thought of as a
class in the object oriented paradigm. In any SMV file, there must
be exactly one module named main.

Each module has to contain the declaration of the state variables,
that is the variables in the set V of Definition 33. This is done with
VAR keyword followed by the list of declarations of all the variables,
that are of the form name variable : type followed by a semicolon.
There are several possible types for a variable: boolean, integer,
real, array, bitvectore etc. It is important to note that using integer
or real types brings inevitably to infinite states systems.

Additionally, a module can contain also input variables, that are
meant to model labels on the edges (i.e., the variables in the set Σ
of Definition 34). This is done with the IVAR keyword followed by a
list of declarations of the form name variable : type;.

The transition relation T of Definition 33 is defined by the TRANS
keyword followed by a Boolean formula, built using the state and in-
put variables as the atomic propositions and the classical symbols
for the Boolean connectives, like & for the conjunction, | for the
disjuction, ! for the negation, and so on and so forth.

The LTLSPEC keyword is used for specifying the LTL specifica-
tion to check over the model. This is particularly interesting also for
modeling symbolic automata: the LTL specification is exactly the
accepting condition α(X) of Definition 34.

So far we have seen how to model each component of the def-
inition of a symbolic automaton (Definition 34) and of a symbolic
Kripke structure (Definition 33) except from the functions for label-
ing each state of a Kripke structure with a particular label σ ∈ Σ.
The SMV language does not have constructs for modeling these func-
tions. In fact, the labels on states, differently from the labels on the
edges of automata (see IVAR keyword), are not directly specifiable
in SMV. Instead, any LTL property that wants to use a label σ
as a propositional atom can simply use the corresponding Boolean
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¬s0start s0

∗,¬b
∗, b

∗, b

∗,¬b

Figure 5.2: Büchi automaton for the language of infinite words over
Σ = 2{a,b} containing infinitely many b. The ∗ symbol denotes any
value for the ‘a’ letter, that is either a or ¬a.

formula ϕσ (see Definition 33) instead of such an atom.
Let us now present an example of how to model a symbolic au-

tomaton with the SMV language. Consider the Büchi automaton
A over the alphabet Σ = 2{a,b} depicted in Fig. 5.2 accepting the
words containing infinitely many b:

L(A) = {σ ∈ (2{a,b})ω | ∃ωi . b ∈ σi}

The SMV file for the symbolic representation of A is the following:

MODULE main
IVAR

a : boolean ;
b : boolean ;

VAR

s0 : boolean ;
INIT

! s0 ;
TRANS

( ! s0 & ! b & ! s0 ′ ) |
( ! s0 & b & s0 ′ ) |
( s0 & ! b & ! s0 ′ ) |
( s0 & b & s0 ′ ) ;

LTLSPEC

GF(s0) ;

Functional SMV

The SMV language provides also a set of keywords for specify-
ing deterministic symbolic automata (recall Definition 40) or input-
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deterministic state-transition systems1. We refer to this language
as Functional SMV. Instead of using the INIT and TRANS keyword,
SMV provides the ASSIGN keyword along with the init(·) and next(·)
functions. In particular, after the ASSIGN keyword, for each state
variables there is a pair of statements of this form:

init ( s t a t e v a r ) := Boolean formula
over the s t a t e v a r i a b l e s ;

next ( s t a t e v a r ) := Boolean formula
over the s t a t e v a r i a b l e s ;

The semantics of the previous functions is intuitive: init(v) := ϕI
specifies the fact that the initial value for the state variable v is the
evaluation (true or false) of the formula ϕI ; similarly, next(v) := ϕT
specifies that the next value for v is the evaluation of the Boolean
formula ϕT .

We now give an example of an SMV file using the ASSIGN state-
ment. Consider the automaton depicted in Fig. 5.2. The automaton
is (input-)deterministic. The SMV for modeling the deterministic
symbolic automaton (Definition 40) is the following:

MODULE main
IVAR

a : boolean ;
b : boolean ;

VAR

s0 : boolean ;
ASSIGN

init ( s0 ) := FALSE ;
next ( s0 ) := case

! s0 & ! b : FALSE ,
! s0 & b : TRUE ,
s0 & ! b : FALSE ,
s0 & b : TRUE ;

esac ;
LTLSPEC

GF(s0) ;

1In the context of state-transition systems with labels on the edges rather
than automata, the type of determinism in which we are interested (that is for
each state and for each letter there is a unique successor state) is called input-
determinism.
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5.2.4 Binary Decision Diagrams, SAT and SMT

In Section 5.2.1, we have seen how to succinctly represent a state-
transtion system (equiv. a Kripke structure) by means of Boolean
formulas. Several algorithms for model checking that manipulate
Boolean formulas instead of traversing the explicit representation of
the graph have been proposed in the literature: they fall under the
name of symbolic model checking.

Binary Decision Diagrams

The first algorithm for symbolic model checking was introduced in
1992 by McMillan et al. [37, 146]. We will not go into the details of
this algorithm, since we will not make use of it throughout this the-
sis. Nevertheless, it is important to recall this groundbreaking result
since, besides having paved the way for symbolic model checking, its
limitations have inspired the introduction of other symbolic tech-
niques (that we will use in this thesis) that try to overcome those
limitations.

The technique proposed by McMillan et al. represents the Boolean
formulas orginated from the symbolic representation of Kripke struc-
tures (Definition 33) by means of Binary Decision Diagrams (BDDs)
[33, 3]. BDDs offer a canonical form for representing the set of all
and only the models of a Boolean formula in a succinct way. They
are basically binary trees with labels belonging to the alphabet {0, 1}
on the edges and on the leaves. The labels on the edges at a certain
height corresponds to assignments to a given variable of the original
Boolean formula: in this way, the path from the root to a given
leaf corresponds to an assignment to the variables of the formula
built using the labels on the edges in the path. If this leaf is labeled
with 1, then it means that the assignment is a model of the formula,
otherwise it means that it falsifies it.

BDDs are built in a bottom-up fashion, starting from the propo-
sitional atoms and providing operations for conjunctions and nega-
tions (and also for the quantifiers ∀ and ∃). In addition, there is a
set of operators that is carefully designed in order to maintain the
BDD as small as possible: this is at the core of the succinctness
of BDDs. Roughly speaking, those operations exploits some redun-
dancies between the models of a formula, specially when it comes
to don’t care variables (i.e., variables whose assignment is irrelevant
for the satisfaction of the formula).
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It is possible to prove that BDDs are canonical, in the sense
that, once fixed the order of the variables, there’s a unique minimal
BDD that can be built using the above-mentioned operations. In
the average case, BDDs are a succinct representation for the set of
models of a formula. Nevertheless, it is possible to prove that, for
some orderings of the variables, the BDDs is exponential in the size
of the formula. In addition, checking the optimal ordering (i.e., the
ordering for which the BDDs is the smallest one) is NP-complete [33].
This limitation brought to the introduction of other techniques. Two
of them are Bounded Model Checking and K-Liveness, that we will
see in the next part of this section.

The SAT problem and SAT-solvers

Instead of representing succinctly the set of models of a Boolean
formula and then look for the existence of one of them, the alter-
native is to check directly for the satisfiability of the formula. The
problem of checking the satisfiability of a Boolean formula is called
the SAT problem. It was the first problem to be proved being NP-
complete [61, 121].

A SAT-solver is an algorithm for solving the SAT problem. The
DPLL algorithm (from the name of its inventors, Davis, Putnam,
Logemann, Loveland [66, 65]) was one of the first algorithms to be
proposed for the SAT problem, but still, even more than 80 years
later, it stands at the basis of modern SAT-solvers.

A successful set of heuristics for SAT is CDDL (Conflict-Driven
Clause Learning) for SAT. It refers to a set of techniques that aim
at speed up the search of a model by learning from unsatisfiable
assignments discovered so far. By pairing the DPPL and the CDCL
algorithms together also to other clever heuristics, nowadays SAT-
solvers are very efficient and optimized and can solve instances with
millions of variables.

Finally, the success of modern SAT-solvers is also due to their
incremental interface. This interface offers two methods, push and
pop, for adding/removing a new subformula to/from the formula
already stored in the SAT-solver, respectively. The goal is to recycle
some work for the satisfiability of the new formula (the one obtained
after the push or pop) from the work done for the satisfiability of the
previous formula. This is achieved by implementing efficiently the
push and pop operations, in such a way that the SAT-solver does
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not recompute all its internal structures when these two operations
are executed.

The SMT problem and SMT-solvers

The use of Boolean formulas for specifying systems (Definition 33)
restricts the modeled system to be finite-state (i.e., a Kripke struc-
ture), since the number of models of any Boolean formula (that in
the symbolc representation are meant to represent states) is always
finite.

Nevertheless, finite-state systems are not always enough for rep-
resenting real-life designs. For example, a timed system, that is a
system in which the real-time component plays a central role, is
typically made of: (i) a finite-state discrete component; (ii) an in-
finite-state real-time component. Sometimes, the use of infinite state
systems can be a choice guided by efficiency motivations. For exam-
ple, a system can be finite-state but its Booleanization introduces
to many variables that it is more convinient to consider it as really
infinite-state.

As finite-state systems can be modeled by Boolean formulas (Def-
inition 33), infinite-state systems can be modeled by Boolean for-
mulas whose atoms are not necessary Boolean variables but can be
arbitrary atomic formulas of a fixed theory. The problem of es-
tablishing the satisfiability of these formulas is called Satisfiability
Modulo Theory (SMT). Formally, an SMT instance is a formula of
first-order logic with a fixed theory, that is, with a fixed interpreta-
tion of some symbols. Therefore, the formula can feature existential
and universal quantifiers (∃ and ∀), Boolean connectives (∨, ¬, . . . ),
variables (x, y, . . . ), and atomic propositions belonging to the fixed
theory (x+ 5 ≤ y, . . . )2.

If T is a theory, then with SMT(T ) we refer to the set of all SMT
instances where the theory T is fixed. Typically, the theories used
in SMT are decidable fragments of first-order logic. For example, a
non-comprehensive list of famous theories is the following:

• Linear Real Arithmetic (LRA), where atomic propositions are
constrained to be linear formulas (like x+y ≤ 10) and variables

2It is worth noticing that also in Boolean logic we have quantifiers, although
usually they are not explicitly considered because they can be removed very
easily by the Shannon expansion. Therefore, SMT instances are really a gener-
alization of Boolean formulas where atoms are no more contrained to be Boolean.
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are interpreted over the domain R of real numbers;

• Linear Integer Arithmetic (LIA): like above, but the domain
of interpretation is the set N of natural numbers;

• Difference Logic (DL), where atomic propositions are constrained
to be of type x + y ≤ c, for some constant c, and the domain
of interpretation is R;

• Bit-vectors (BV): atoms are bit-vectors, that is, fixed-size strings
of bits, and they are built using classical bitwise operators.

SMT-solvers are the set of techniques for deciding the satisfi-
ability of an SMT-instance (e.g., MathSAT [54], Z3 [76]). They
combine efficient decision procedures developed for SAT-solvers (for
tackling with the Boolean structure of the formula) with techniques
for deciding the truth of atomic formulas at the theory level. This
combination is tight: conflicts that are detected at theory-level can
help pruning the state-space for the Boolean part.

5.2.5 Bounded Model Checking

Bounded Model Checking (BMC) is a symbolic model checking al-
gorithm introduced in 1999 [16, 17]. The main idea behind BMC
is the following. Say that we want to solve the LTL model checking
problem M |= Aϕ, for a given symbolic Kripke structure M and an
LTL formula ϕ. BMC looks for a path in M that falsifies ϕ; equiv-
alently, it solves the following problem: M |= E¬ϕ, where E is the
exists a path operator of CTL. Crucially, it encodes this problem
into a sequence of SAT problems. Let us show how. The main cycle
of BMC is the following:

1. let n ∈ N be a natural number for the length of a candidate
model of ¬ϕ; initially, n = 0;

2. BMC checks whether there exists at least a path ofM of length
n fulfilling ¬ϕ; it solves this problem by encoding it into a
SAT instance (Section 5.2.4); for this point, BMC exploits the
fact that a finite path can still represent an infinite one if it
contains a loop-back, that is a transition from the last state of
the path to some previous state (see Fig. 5.3); in this way, it
can discover all possible paths of M that falsifies ϕ, that can
be either infinite or finite in the general case;
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nk

Figure 5.3: A finite path representing an infinite one.

3. it calls a SAT solver (Section 5.2.4) for solving the problem;
if it returns a positive result, than this means that there is a
path (of length n) inM that is a model of ¬ϕ, and so BMC re-
turns a negative result along with the path (counterexample);
otherwise, it increments n, and repeats the cycle.

Let us show how BMC encodes the existence of a counterexample
of length n of ϕ in M into a Boolean formula. This counterexample
has two features:

1. it is a path of length n of M ;

2. it is a model of ¬ϕ.

Let us see how to encode the first feature. Let M = (Σ, V, I, T,
{ϕσ}σ∈Σ) be a symbolic Kripke structure (Definition 33), where I(V )
and T (V, V ′) are Boolean formulas for the set of initial states and the
transition relation, respectively. The unfolding of T is the following
Boolean formula, whose models represent all and only the paths of
M of length n:

⟨⟨M⟩⟩n := I(V 0) ∧
n−1⋀︂
i=0

T (Vi, Vi+1)

where V i is the set of variables obtained from V by adding the index
i for specifying that they are meant to represent the ith state of a
path, and V 0 = V .

As for the second point, the satisfaction of ¬ϕ by the path (of
length n) is encoded by BMC by distiguishing two cases. If there
are loop-backs (in this case the path is called lasso-shaped), than the
finite path represents actually an infinite path in M : for example,
the finite path in Fig. 5.3 represents the infinite path that coincides
with the finite one in the first n steps and then repeats infinitely
often the suffix from k to n. In this case, standard LTL semantics
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(Section 2.4) are applied. Conversely, if there are no loop-backs (in
this case the path is called loop-free), then it means that the path is
really finite inM : even if it is finite, the path can still be a violation
of ϕ (for example, for all ϕ ∈ JLTLK ∩ SAFETY). Take for example
ϕ := Gp and the path containing two states and no loop-backs, such
that in the first state p holds while in the second ¬p holds: the finite
path is a model of ¬ϕ. Therefore, in this case, the finite semantics
of LTL are applied.

The formula Ln for detecting a loop-back from the last state n
to one of the previous states is simple:

kLn := T (V n, V k)

Ln :=

n⋁︂
k=0

kLn

The satisfaction of the formula ¬ϕ by the path of length n is en-
coded by: (i) distinguishing the case with or without loop-backs;
and (ii) accordingly, expanding the formula with classical expan-
sion rules (Table 5.1) in order to replicate the semantics along the
path. We call ⟨⟨ϕ⟩⟩0n the Boolean formula for the loop-free case of
paths of length n, while k⟨⟨ϕ⟩⟩0n the Boolean formula for the case of
a lasso-shaped model with a loop-back from state n to state k (see
Fig. 5.3). The final formula for iteration n, encoding all paths of
length n in M that violates ϕ, is the following:

⟨⟨M,¬ϕ⟩⟩n := ⟨⟨M⟩⟩n⏞ ⏟⏟ ⏞
encoding

of the Kripke
structure

∧
(︃
(¬Ln ∧ ⟨⟨¬ϕ⟩⟩0n⏞ ⏟⏟ ⏞

loop-free
models

) ∨
n⋁︂
k=0

(kLn ∧ k⟨⟨¬ϕ⟩⟩0n)⏞ ⏟⏟ ⏞
lasso-shaped

models

)︃

(5.1)

Exploiting Incrementality

Between one iteration and the next one, it is clear that only some
parts of Eq. (5.1) change. In particular, the encoding ⟨⟨M⟩⟩n of the
paths of length n in M is always the same. Also some parts of
the encodings ⟨⟨¬ϕ⟩⟩0n and k⟨⟨¬ϕ⟩⟩0n of the formula ¬ϕ can be saved
between one iteration and the other.

This can be exploit by using the incrementality of modern SAT-
solvers (Section 5.2.4), in particular by using the push/pop interface.
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For example, at the beginning of iteration n, we can pop the parts
of the Boolean formula that has to be removed from iteration n− 1,
and push the new parts. In this way, once we call the SAT-solver
on the formula for the iteration n, it does not have to recompute all
the internal structures but, instead, it can save some work from the
previous iteration.

Completeness

Consider the case in which the property ϕ holds in all paths of M
(M |= Aϕ). In this case, the algorithm of BMC described above
does not terminate, since there are no counterexamples of ϕ of any
length.

In order to guarantee termination, several techniques have been
proposed for proving the exploration of all paths. For example, if
we can prove that n is greater than the length of the longest loop-
free path (the so-called recurrence diameter [17]), then we can stop
incrementing n and terminate with a positive result. Nevertheless,
the computation of the recurrence diamater in the particular case,
and of other thresholds in the general case, is hard. For example,
for the recurrence diamater, it requires to solve the satisfiability of a
quantified Boolean formulas. For this reason, BMC is usually used
as a bug finder (i.e., for finding counterexamples to the property),
rather than as a prover (i.e., for proving the validity of ϕ over M).

5.2.6 K-Liveness

K-Liveness is a quite recent algorithm for symbolic LTLmodel check-
ing [57]. Like BMC reduces the problem into a sequence of SAT
problems and exploits efficient SAT-solvers for solving each of them,
K-Liveness reduces the problem into a sequence of model checking
problem of safety properties (Section 2.1.3) and exploits efficient
model checkers for those properties. The gain is that a safety model
checking problem is typically simpler than an LTL model checking
problem. Moreover, nowadays, very efficient model checking algo-
ritms for safety properties have been introduced: one among all is
IC3 [28, 29], which proved to bring an extreme gain in performance
againts existing algorithms.

The K-Liveness algorithm for the problem M |= Aϕ consists in
the following steps.
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1. Build the Büchi automaton A(¬ϕ) for the LTL property ¬ϕ;
this can be done using any construction algorithm, for example
the ones descibed in Section 5.1.2; K-Liveness represents this
automaton symbolically (Definition 34); let α be the Boolean
formula for the set of final states of this automaton.

2. Build the product automaton M × A(¬ϕ) between M and
A(¬ϕ) (Definition 36)3; this automaton accepts all and only
the words that are (i) computations of M ; and (ii) are models
of ¬ϕ; it holds that:

M |= Aϕ

L(M ×A(¬ϕ)) = ∅
each path of M ×A(¬ϕ) contains finitely many final states

M ×A(¬ϕ) |= A(FG¬α)

3. Bound and count the number of times a path in M × A(¬ϕ)
satisfies the formula α. This points consists in a cycle that
starts with k = 0, increments k if a path containing more
than k states satisfying α is found, or returns a positive result
otherwise (all paths of M ×A(¬ϕ) contains finitely many final
states). It can be proved that, for finite-state systems, there
exists a kmax ∈ N such thatM×A(¬ϕ) |= A(FG¬α) if and only
if each path in M ×A(¬ϕ) contains at most kmax occurrences
of a state satisfing α (i.e., a final state). This means that there
exists an iteration on which the cycle stops.

Let us see how K-Liveness performs the last step. Let k ∈ N. First of
all, a counter for α is introduced: a counter is a Kripke structure that
starts with value 0 and increments the value any time the current
state satisfies α. Let #(α) be this counter. The problem of proving
that any path inM×A(¬ϕ) has at most k states in which α holds can
be reformulated as M |= A(G(#(α) ≤ k)). Moreover G(#(α) ≤ k)
is a safety property, and thus any safety model checking algorithm
(like IC3) can be used: this is the point in which K-Liveness gains
in performance. If this algorithm returns a positive result (M |=
A(G(#(α) ≤ k))) then it means that M |= Aϕ. Otherwise, the
index k is incremented and the cycle is repeated.

3Although M is a Kripke structure and not an automaton, Definition 36 can
be adapted to the product between a Kripke structure and an automaton with
straightforward modifications.
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Completeness

Since it is guaranteed that:

M |= Aϕ

⇔
∃kmax ∈ N . M |= A(G(#(α) ≤ kmax ))

the cycle eventually stops. However in partice, like in the case for
BMC (Section 5.2.5), the threshold (kmax ) is too expensive to com-
pute. In order to avoid it, K-Liveness starts two parallel processes:
(i) one trying to proving the property ϕ by the technique above
(i.e., by bounding and counting the visits to a state satisfying α);
and (ii) the other trying to violate ϕ, for example using the BMC
algorithm. The first who terminates stops also the entire procedure.

Efficiency

K-Liveness proved to be very efficient in pratice. This is not only due
to the reduction of an LTL model checking problem to a sequence of
safety problems, but also to at least two other aspects.

The first one is that it uses IC3 as the back-end for solving the
safety model checking problems. The particular structure of IC3
(frames) allows K-Liveness to use a sort of push/pop interface like
the one for SAT-solvers (Section 5.2.4) for IC3 as well, thus allowing
to save some work between one iteration and the other.

As for the second aspect, Claessen and Sörensson (the authors
of [57]) propose also to automatically extract from M a set of con-
straints, called stabilizing constraints, that help IC3 to shrink the
state-space during the search. Stabilizaing constraints proved to be
particularly beneficial in practice.

5.2.7 From LTL satisfiability to LTL model check-
ing

Another successful approach for solving LTL satisfiability is to reduce
the problem to LTL model checking. Recall that LTL model checking
(Definition 32) is the problem of establishing, given a Kripke struc-
ture M and an LTL-formula ϕ, whether all the initialized paths in
M are models of ϕ, in symbols:

M |= Aϕ
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Recall also that model checking amounts to a language inclusion
problem; if we considerM as an automaton over infinite words, then
model checking amounts to finding whether the language L(M) of
M is a subset of the language L(ϕ) recognized by ϕ, that is:

L(M) ⊆ L(ϕ)

which in turn is equivalent to:

L(M) ∩ L(ϕ) = ∅ (5.2)

We have already seen that Eq. (5.2) can be solved algorithmically
by: (i) taking the product M ×A(¬ϕ) between the Kripke structure
M and the automaton A(¬ϕ) for ¬ϕ; (ii) checking the emptiness of
M ×A(¬ϕ).

Now, LTL satisfiability solves the problem of finding whether
L(ϕ) = ∅. In order to reduce LTL satisfiability to LTL model check-
ing, it suffices to:

1. defineM as the trivial structure, meaning that L(M) = (2Σ)ω;

2. model check the formula ¬ϕ againts M , i.e., M |= A(¬ϕ).

3. if the algorithm of model checking returns true, then ϕ is un-
satisfiable, otherwise ϕ is satisfiable.

Let us take a look on why this works. By Eq. (5.2), it holds that
M |= A(¬ϕ) if and only if L(M)∩L(¬ϕ) = ∅; since L(M) = (2Σ)ω,
this means that M |= A(¬ϕ) implies that:

L(¬ϕ) = ∅
L(ϕ) = ∅

and thus ϕ is unsatisfiable. If instead M ̸|= A¬ϕ, then

L(¬ϕ) ̸= ∅
L(ϕ) ̸= ∅

and thus ϕ is satisfiable.
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5.3 LTL Realizability and synthesis

In this section, we take a look at the definitions and the main prop-
erties of the realizability and reactive synthesis problems of logical
specifications (mainly LTL+P, but also S1S). We will then describe
some techniques that have been introduced for solving these prob-
lem, starting from the classical approach and going through more
sophisticated methods. We finish this section by describing safety
games and the realizability problem from Safety-LTL specifications

5.3.1 Definition of the problem

Realizability and reactive synthesis are in some sense more ambi-
tious problems than model checking and satisfiability, since they
aim to find whether a given temporal formula ϕ over two sets U
and C of uncontrollable and controllable variables, respectively, is
implementable and, if this is the case, to synthesize a possible im-
plementation. Usually, realizability is modeled as a two-player game
between Environment, who tries to violate the specification and Con-
troller, who tries to fulfill it. In this setting, an implementation of
the specification is represented by a strategy.

Definition 41 (Strategies). Let U and C be two disjoint sets of
input (or uncontrollable) and output (or controllable) variables,
respectively. A strategy g is a function g : (2U )+ → 2C. We define
the language of the strategy g, denoted as L(g), as the set of all and
only the sequences ⟨(U0 ∪ C0), (U1 ∪ C1), . . .⟩ such that Ui ∈ 2U and
Ci = g(⟨U0, . . . ,Ui⟩), for all i ≥ 0.

We define the language denoted by a strategy g : (2U )+ → 2C

as the set of infinite sequences ⟨(U0 ∪ C0), (U1 ∪ C1), . . .⟩ such that,
for each i ≥ 0, the Ui set is the set of variables chosen by the
Environment player to be true at the ith time point, while Ci is
the set of variables chosen by the Controller player according to the
strategy g given the history so far, that is the set g(⟨U0, . . . ,Ui⟩).

Definition 42 (Languages of Strategies). Let g : (2U )+ → 2C be a
strategy. We define the language of the strategy g, denoted as L(g),
as the set of all and only the sequences ⟨(U0 ∪ C0), (U1 ∪ C1), . . .⟩
such that Ui ∈ 2U and Ci = g(⟨U0, . . . ,Ui⟩), for all i ≥ 0.

Realizability can be formalized as the problem of establishing the
existence of a strategy that implements a given formula, in the sense
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that the language of the strategy (Definition 42) is contained in the
language of the formula (Sections 2.1 and 2.4). Reactive synthesis
is the problem of computing such a strategy.

Definition 43 (Realizability and Reactive Synthesis). Let ϕ be a
temporal formula over the alphabet Σ = U ∪ C, where U is the set
of input variables, C the set of output variables, and U ∩ C = ∅.
We say that ϕ is realizable if and only if there exists a strategy
g : (2U )+ → 2C such that L(g) ⊆ L(ϕ). If ϕ is realizable, the reactive
synthesis problem is the problem of computing such a strategy.

The games derived from realizability are determined, that is there
exists exactly one winner (either Controller or Environment). We
say that ϕ1 and ϕ2 are equirealizable when the realizability of ϕ1 im-
plies the realizability (possibly with different strategies) of ϕ2, and
vice versa. With safety synthesis we refer to the problem of estab-
lishing whether a safety specification (Section 2.1.3) is realizable.

5.3.2 Decidability and Complexity

The strategies which we are mainly interested in are the ones that
can be represented finitely. In the literature, there are two main (and
equivalent) representations for finite strategies, that is, Mealy ma-
chines and Moore machines. In this paper, we are mainly interested
in the first ones.

Definition 44 (Mealy Machine). A Mealy machine is a tuple M =
(ΣU ,ΣC , Q, q0, δ) such that: (i) ΣU and ΣC are the input and output
alphabets, respectively; (ii) Q is the (finite) set of states and q0 is
the initial state; (iii) δ : Q × ΣU → ΣC × Q is the total transition
function. We say that an infinite word σ = ⟨σ0, σ1, . . .⟩ ∈ (ΣU∪ΣC)

ω

is accepted by M iff there exists a trace ⟨(q0, σ0), (q1, σ1), . . .⟩ ∈
(Q× (ΣU ∪ ΣC))

ω such that δ(qi, σi ∩ ΣU ) = (σi ∩ ΣC , q
i+1), for all

i ≥ 0. We define the language of M , written as L(M), as the set of
all the infinite words accepted by M .

A fundamental feature is the Finite Model Property for realiz-
ability of LTL+P [90, 128, 160], which ensures that each realizable
LTL+P formula has at least a finitely representable strategy. Inter-
estingly, the same also holds for S1S [36].

Proposition 12 (Finite Model Property of LTL+P [160]). Let ϕ be
an LTL+P formula and n = |ϕ|. If ϕ is realizable by a strategy g,
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then there exists a Mealy machine Mg such that (i) Mg has at most
22
c·n

states, for some constant c ∈ N, and (ii) L(Mg) ⊆ L(ϕ).

We remark that the constant c depends on the algorithms used
for building the nondeterministic Büchi automaton for the language
L(ϕ) and on Safra’s determinazion algorithm to obtain an equivalent
deterministic Rabin automaton (see [160]). This means that the
constant c can be effectively computed, obtaining a concrete upper
bound for the size of the Mealy machine in Proposition 12.

Decidability and Complexity

The finite model property of LTL+P (and S1S) realizability is at
the core of the decidability of the problem. In fact, the search for
the existence (and the corresponding synthesis) of a finite strategy
is decidable, since it amounts to search for a subgraph correspond-
ing to a Mealy machine implementing the formula inside the graph
corresponding the (Büchi) automaton of the initial formula.

Proposition 13 (Decidability of S1S and LTL+P realizability [36,
160, 164]). The realizability problem of S1S and LTL+P is decidable.

Despite being both decidable, the realizability problems of S1S
and LTL+P have two very different complexities:

1. The complexity of S1S realizability is proved to have a nonele-
mentary lowerbound [36], like S1S satisfiability. The intuition
is that realizability (like satisfiability) requires the construction
of a Büchi automaton that is language-equivalent to the initial
formula. Nevertheless, the complementation of a Büchi au-
tomaton (necessary to deal with negations inside the formula)
produces in the general case an automaton with exponentially
many states and transitions. Since an S1S formula can con-
tain an arbitrary number of negations, this gives rise to a tower
of exponentials of unbounded height (i.e., the nonelementary
complexity).

2. LTL+P realizability is 2EXPTIME-complete [160, 164]. The
intuition is that, as we will see, the two-player game corre-
sponding to realizability has nice algorithms only when played
over deterministic automata (also called arenas). It can be
proved that the construction of a deterministic arena starting
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from an LTL+P specification along with the game solving algo-
rithm require at most doubly exponenial time in the size of the
initial formula. Intuitively, one exponential is for the automata
construction, while the other one is for its determinization (the
game solving algorithm is usually polynomial in the size of the
arena/automaton).

Proposition 14 (Complexity of S1S and LTL+P realizability). It
holds that:

• S1S realizability has a nonelementary lowerbound.

• LTL+P realizability is 2EXPTIME-complete.

5.3.3 The classical approach

The classical approach to LTL+P realizability is the one proposed
by Pnueli and Rosner in [160, 164]. On a high level, given an LTL+P
formula ϕ, this approach consists in the construction of a (nonde-
terministic) Büchi automaton for the formula ϕ and its determiniza-
tion. Consequently, since the latter automaton is deterministic, it
can be seen as an automaton that, instead of reading words (eq.
linear orders), it reads/accepts trees. Finally, the realizability of ϕ
amounts to the emptiness checking of this tree automaton, which
can be performed effectively by an algorithm. All these steps have
been implemented inside the Lily tool [118].

Before going into the details of the classical approach of LTL+P
realizability, let us give some preliminaries.

Preliminaries

In Section 2.2, we have seen many types of automata reading fi-
nite or infinite words, for example NFAs (Nondeterministic Finite
Automata) or NBAs (Nondeterministic Büchi automata). One of
the common aspects between all those automata is that they read
words, that is (finite or infinite) sequences of letters belonging to an
alphabet Σ. Moreover, we have seen only two types of accepting
conditions: the one of NFAs (reachability of a final state) and the
one of NBAs (the visit of a final state infinitely many times).

Over the years, research focused on some generalizations of those
kinds of automata in two directions: (i) either by changing its ac-
cepting condition; (ii) or by changing the type of structures the
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automaton reads. As for the first point, in this part we will describe
the Rabin accepting condition, while for the second point we will give
an overview of automata reading trees instead of words. We start
with the latter point.

Automata on (finite or infinite) trees Formally, a tree is a
generalization of a word, in the sense that a word is a degenerate
tree where each node has at most (or exactly, in case of infinite trees)
one child. A tree is finite if and only if each of its branches is finite,
otherwise is infinite. A Σ-labeled tree is a tree where each node is
labeled by a letter in Σ.

An automaton A = (Σ, Q, I, δ, F ) reading trees has the same
form of the other automata that we have seen in Section 2.2. What
changes is the definition of run and accepting run. In the case of
automata reading finite (resp. infinite) trees, a run is a finite (resp.
infinite) Q-labeled tree, i.e., a tree labeled by states in Q. The run
is accepting if all the branches satisfy the accepting condition on
the set of final states F . For example, we can define the nonde-
terministic Büchi automata on trees, which accept only the infinite
trees that induce runs containing only branches with infinitely many
occurrences of a final state.

The Rabin accepting condition and Safra’s construction In
Büchi automata (Definition 11), the acceptance condition requires
each accepting run to visit at least one final state infinitely many
times. Although being very powerful (e.g., NBA are expressively
equivalent to S1S), the Büchi acceptance condition makes NBA not
closed under determinization. In fact, recall from Section 2.2.3 that
there exists an ω-language that cannot be accepted by any DBA
(Deterministic Büchi Automata).

In some applications, like for instance realizability and reactive
synthesis, it is important to deal with a deterministic automaton.
While for finite words the determinization can be carried out by the
classical subset construction (Section 2.2.1), the situation is not so
simple for the infinite case. In fact, subset construction does not
work for Büchi automata [167].

This led to the search for acceptance conditions that would allow
the closure by determinization. One of these is the Rabin acceptance
condition. Differently from the Büchi acceptance condition, which
consists in a set of states that an accepting run has to visit infinitely
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often, the Rabin condition consists of a set of pairs of subsets of
states, i.e., {(U1, V1), . . . , (Un, Vn)} where Ui, Vi ⊆ Q for each i ≥ 0,
and Q is the set of states of the automaton. A run is accepting with
respect to the Rabin condition if and only if there exists at least one
pair (Ui, Vi) such that the set of states that occur infinitely often in
the run does interset Vi but does not interset Ui. Automata with a
Rabin acceptance condition are called Rabin automata. When read-
ing infinite words, we call NRA the class of Nondeterministic Rabin
Automata and DRA the class of Deterministic Rabin Automata.

There are two notable properties of Rabin automata: (i) they are
closed under determinization; and (ii) they are expressively equiv-
alent to NBAs. These two features are used when one wants to
build a deterministic automaton starting from an NBA (for exam-
ple in realizability of LTL+P formulas). In particular, one typically
transforms the initial NBA to a language-equivalent DRA. Safra’s
algorithm [167] is an algorithm for performing such a determiniza-
tion and it was used by Pnueli and Rosner [160, 164] in one of steps
of the classical approach to LTL+P realizability4that we shall see in
the paragraphs below.

Realizability and Determinism

Realizability has a strong connection with determinism. As we will
see, the modern approach to realizability is to consider it as a two-
player game between the Environment player and the Controller
player. This game is played over an arena, which typically is the
automaton corresponding to the starting formula. Therefore, the
typical approach for solving the realizability of a formula ϕ is the
following:

1. build the automaton for the formula ϕ;

2. solve a game over the arena represented by the automaton.

As noticed by N. Piterman in [157]:

In the context of games, the opponent may be able to choose
between different options. Using a deterministic automaton we can
follow the game step by step and monitor the goal of the game.

4Safra’s algorithm is known to be very hard both to understand and to imple-
ment, since it deals with complex data structures. For this reason, in practice,
one tries always to avoid the use of this algorithm.
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Therefore, determinism can be considered as a prerequisit for apply-
ing simple game solving algorithms.

The algorithm

The algorithm used by the classical approach to LTL+P realizability
[160, 164] consists in the following steps. Let ϕ be an LTL+P formula.

1. Build the NBA A(ϕ) recognizing the ω-language L(ϕ).

2. Use Safra’s algorithm for building a DRA A′(ϕ) equivalent to
A(ϕ).

3. since A′(ϕ) is deterministic, it is simple to build a DRA A′′(ϕ)
reading infinite trees such that: (i) each branch of each tree
corresponds to an ω-word accepted by the DRA A′(ϕ), and vice
versa; (ii) each infinite tree represents a strategy (recall Defi-
nition 41), meaning that at each level it contains any possible
choice of the Environment player and the choice of the Con-
troller player given the history so far (that is the labels on the
path from that node to the root). Therefore, each infinite tree
of A′′(ϕ) corresponds to a strategy of Controller for realizing
ϕ, and vice versa.

4. Check the emptiness of the DRA A′′(ϕ). This check is effective.

Pnueli and Rosner proved that this procedure runs in doubly expo-
nential time, thus showing the optimality of this algorithm (LTL+P
is 2EXPTIME-complete).

5.3.4 The classical approach to safety synthesis

Recall that safety syntesis is the problem of establishing whether a
safety specification (for example of Safety-LTL) is realizable. Also
in this case, the problem is modeled as a two-player game between
Environment and Controller. These games are called safety games.

Let us take a closer look at safety games and at the classical ap-
proach for solving safety synthesis. Since safety specifications have
a strong connection with languages over finite words (Section 2.1.3),
and since in the general case reasoning over finite words is simpler
than reasoning over infinite words, the classical approach for safety
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synthesis exploits this feature for the determinization step: in partic-
ular, the classical subset construction (Section 2.2.1) can be applied.
The classical approach consists in the following steps.

1. From the safety specification ϕ, build the NFA A (over finite
words) for the formula ¬ϕ.

2. Determinize A into an equivalent DFA A′, using the classical
subset construction.

3. If Controller player can force the play to never visit a final
states of A′, this means that there exists a strategy realizing ϕ;
otherwise, since the game is determined, there exists a strategy
for Environment to win the game, and ϕ is unrealizable.

In the third point above, the game played by Controller is called
safety game (Controller has to force the game to visit only safe
states, in this case states that are not final), while the (dual) game
played by Environment is called reachability game (Environment has
to force the game to eventually reach a target/final state).

Solving safety games

Safety games (or equivalently reachability games) are typically played
over arenas represented by DSSA (Deterministic Symbolic Safety
Automata, Definitions 37 and 40). LetA = (V = X∪Σ, I, T,Gα(X)))
be a SSA, where the input alphabet Σ is partitioned into controllable
and uncontrollable variables (Σ = U ∪C). The safety game is solved
by computing the set of winning states of Controller player, i.e., the
states starting from which Controller can force the game to visit only
safe states. If the (only) initial state (recall that the automaton is
deterministic) is contained in the winning set, then Controller has a
winning strategy; otherwise (the game is determined) Environment
wins.

The computation of the winning states for Controller is per-
formed by computing a fixpoint over the set of states of the au-
tomaton with the strong precedessor operator, which, given a set
of states S, returns all and only the states of the automaton from
which Controller can force a step of the game to visit only states in
S. Let S(X ′) be the Boolean formula over the variables in X ′ de-
noting exactly the set of states S. The strong predecessor operator
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is defined as follows:

SPred(S(X ′)) := ∀u ⊆ U . ∃c ⊆ C . ∃X ′(S(X ′) ∧ T (X ∪ u ∪ c,X ′))

It is worth noting that SPred(S(X ′)) is a formula over the variables
X. The set of winning states of Controller is the greatest fixpoint of
SPred(S(X ′)) starting from the set of all the safe states (denoted by
the formula α(X)):

Win := νS(X) . (SPred(S(X ′)) ∧ α(X))

The greatest fixpoint can be computed, for example, by iteratively
computing the set of states from which Controller can force the game
to visit only safe states in at most i steps:

Win0 := α(X)

Wini+1 := Wini ∩ SPred(Wini)

When we found that Wini = Wini+1 or Wini = ∅, we can stop
because we have reached the fixpoint, reporting the realizability or
the unrealizability of the game, respectively.

Safety-LTL realizability

Safety-LTL (Definition 15) is defined as LTL where the temporal op-
erators are restricted to be X, G or R. Recall also that Safety-LTL
captures exatly the LTL-definable safety languages (Theorem 20).

Safety-LTL realizability is studied by Zhu et al. in [201]. The
proposed algorithm follows these steps:

1. Given a formula ϕ ∈ Safety-LTL, consider its negation ¬ϕ and
turn it into S1S[FO] interpreted over finite words.

2. Exploit the mona tool [113] for building the corresponding
NFA and for its consequent determinization into an NFAA such
that L(A) = L(ϕ). The DFA is represented semi-symbolically
as a deterministic SSA, meaning that the states of the automa-
ton are explicitly represented, while the set of labels on each
edge is represented with a BDD.

3. Play the safety game (as describe above) over A.
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5.3.5 The Safraless approach

In Section 5.3.3, we have seen that the classical approach to LTL+P
realizability requires the determinization of a NBA corresponding to
the starting formula. Determinization is necessary to apply either
(i) emptiness checking algorithms, or (ii) game solving algorithms.
We have also seen that the classical approach performs a deter-
minization of the NBA into a DRA by using Safra’s algorithm.

Since Safra’s algorithm is known to be very complicated (and
thus also error-prone and less amenable to optimizations and sym-
bolic algorithms5), research focused on finding alternatives to Safra’s
algorithm. The Safraless approach has been introduced by Kupfer-
man and Vardi in [128] and refers to the set of techniques for cir-
cumventing the use of Safra’s algorithm by using different types
automata and related acceptance conditions.

Preliminaries

We start with some preliminaries. Let A = (Σ, Q, I, δ, F ) be an
automaton. So far, have seen that, even if δ : Q × Σ × Q is a re-
lation (nondeterminism), the automaton’s run is still a sequence.
This holds both for deterministic and nondeterministic automata
(both on finite or infinite words). Universal automata change this
perspective by running over all directions of the transition relation.
Formally, a run of a universal automaton is a (finite or infinite) Q-
labeled tree (whereQ is the set of states of the automaton) such that,
if the transition relation contains the triples (q, σ, q1), . . . , (q, σ, qn),
then each node labeled with q in the tree has n children labeled
with q1, . . . , qn. In some sense, universal automata resolve the non-
determinism by having runs that are trees. It is worth noting that
in universal automata the acceptance condition can be of any type.
For example, we can have Universal Finite Automata, as well as
Universal Büchi Automata.

The coBüchi acceptance condition is defined as the dual of the
Büchi condition. Instead of specifying the set of its accepting states
(like a Büchi automaton), a coBüchi automaton A = (Σ, Q, I, δ, F )
specifies the set F of rejecting states. A run of A is rejecting when

5To the best of our knowledge, the only implementation of Safra’s algorithm
is the one implemented inside the Lily tool [118], and it was written nearly 20
years after the introduction of Safra’s algorithm [167].
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the set of states that occur infinitely often in the run does not in-
tersect F . The language of a Nondeterministic coBüchi Automaton
(NCA) is the set of ω-words inducing at least one rejecting run. The
language of a Universal coBüchi Automaton (UCA) is the set of ω-
words inducing a run tree whose branches are all rejecting. It is not
difficult to see that NBA are duals of UCA, meaning that a language
is recognized by an NBA iff its complement is recognized by an UCA.

The Safraless approach to LTL+P Realizability

The Safraless approach to LTL+P realizability proposed by Kupfer-
man and Vardi in [128] consists in the following steps. Let ϕ ∈
LTL+P.

1. Build the NBA A for ¬ϕ (the negation of the initial formula)
with standard constructions, like the one described in [198,
197].

2. When considered as a UCA, it easy to see that, by duality, A
recognizes exactly the language L(ϕ).

3. Like in the classical approach, from the UCA obtained in the
previous step, build a UCA reading infinite trees (representing
strategies) instead of infinite words.

4. Check the emptiness of this last automaton. This check is
effective [128].

By following these steps, the approach is able to avoid the use of
Safra’s algorithm.

Several Safraless algorithms for LTL+P realizability have been in-
troduced following the original idea by Kupferman and Vardi. One
example is Bounded Synthesis (that we will describe in the next sec-
tion). Another example is reported in the paper [90] by E. Filiot
et al. They describe a Safraless algorithm that coincides with the
one by Kupferman and Vardi in the first three steps. However, they
avoid the emptiness check by observing that, if there is a strategy
realizing ϕ, than the strategy forces the UCA to visit its rejecting
states a finite and bounded number of times (kmax ). From this obser-
vation, they develop an algorithm that, for each number k ranging
from 0 to kmax , checks the existence of a strategy forcing the game
to visit rejecting states at most k times. Since this is a safety objec-
tive (we will formally define it later), it is in general simpler to solve.
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If a subgame of this type is found to be winning, then this implies
also the realizability of the starting formula. Otherwise, eventually
the upperbound kmax will be reached, and this witnesses the unre-
alizability of the starting formula6.

5.3.6 Bounded Synthesis

Bounded Synthesis [92] is a Safraless algorithm for the realizability
problem of temporal formulas. We take a look at it when applied
to LTL+P formulas. The main idea behind bounded synthesis is
to reduce the problem to a sequence of safety synthesis subproblems
(equiv. safety games, Section 5.3.4) and then to encode each of these
into a contraint system in such a way to guarantee that a solution
of it corresponds to a strategy realizing ϕ, and vice versa. The great
progress that constraint solvers have had in the last decades ensures
the efficiency of the approach.

On a lower level of detail, bounded synthesis considers an LTL+P
formula ϕ and builds the corresponding UCA (Universal Büchi Au-
tomaton). It then builds a sequence of safety synthesis subproblem
by bounding the following two quantities:

1. the number of visits of the play to the rejecting states of the
automaton; and

2. the size of a candidate strategy/implementation (measured as
the number of states of the corresponding Mealy machine, Def-
inition 44).

While the first point reseambles the safety reduction of [90], the
second point is the main novelty of bounded synthesis and allows
for the realizability and synthesis also in contexts in which they are
undecidable in the general case.

Each of the safety synthesis subproblems (safety games) is en-
coded into a constraint system. In the original paper [92], Finkbeiner
and Schewe use SMT modulo LRA (Linear Real Arithmetic) and UI
(Uninterpreted Functions) for the encoding (Section 5.2.4). More
recently, several encodings for bounded synthesis have been pro-
posed, for example into Boolean formulas, quantified Boolean for-
mulas (QBF), and Dependency quantified Boolean formulas (DQBF)
[88]. Among the different encodings, QBF seems the most efficient

6This algorthm has been implemented in a tool called Acacia [90].
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in practice. Bounded synthesis has been implemented in several
tools, for example Unbeast [82, 81] (that uses BDDs for repre-
senting the safety games) and BoSy [89] (that implements all the
above-mentioned encodings).

5.3.7 The parity games approach

Another successful approach for LTL+P realizability, that is often
used also in practice (for example by the strix tool [150, 137]), is
the one based on parity games.

The parity acceptance condition

We start by defining the parity acceptance condition. Let A =
(Σ, Q, I, δ, L) be an automaton, where L : Q → {1, . . . , |Q|} is a
function labeling each state with a natural number between 1 and
|Q|. A run of A is accepting with respect to the parity condition iff
the greatest between the labels of the states occurring infinitely often
in the run is even (hence the name parity automata). An automaton
with a parity acceptance condition is called parity automaton. We
call NPA the set of Nondeterministic Parity Automata and DPA the
set of Deterministic Parity Automata. The parity acceptance con-
dition has proved to be very powerful. In fact, one can show that
many other conditions, like for instance the Büchi or the Rabin ones,
are special instances of the parity condition [128].

With parity game we refer to the game played over an arena
represented by a parity automaton, where the objective is to force
the play to fulfill the parity acceptance condition.

The algorithm

We take a look at the algorithm based on parity games described in
[150, 137]. Since it avoids Safra’s construction, it can be considered
as a Safraless approach. Let ϕ ∈ LTL+P. The algorithm consists in
the following steps.

1. Build the limit-deterministic Büchi automaton as described in
[175]. These kind of automata are made of a nondeterministic
component guessing the eventually true formulas, and of a
deterministic component verifying this guess.
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2. From the automaton obtained in the previous point, build the
language-equivalent DPA (Deterministic Parity Automaton) as
described in [87].

3. The DPA obtained in the previous point is considered as a
parity game, and any algorithm for solving parity games can
be used as backend

Parity games have been thorougly studied in the last years [169, 96],
maybe due to several reasons: (i) modal µ-calculus model checking
can be reduced to parity game solving [86]; and (ii) to the best of our
knowledge, the exact theoretical complexity of the problem is still
unkown so far (2021). It has been proved that the problem stands in
the intersection NP∩coNP but no proof of the NP-completeness and
no polynomial time algorithms have been given yet. An interesting
result by M. Jurdzinski proves that parity game solving stands in the
intersection UP∩coUP [119], where UP comprises the problems that
can be solved in nondeterministic polynomial time by an unambigous
Turing machine (i.e., Turing machines having a unique polynomial-
size certificate), and coUP is the dual class of UP.

Several optimizations are possible during the game solving pro-
cess. For example, the strix tool [150, 137] implements several op-
timizations that allows to tackle the state-space explosion problem
by avoiding to explore the whole set of states of the parity game.

5.3.8 GR(1) realizability

Recall from Definition 18, that GR(1) is defined as the set of formulas
of type:

(

m⋀︂
i=1

GFαi)→ (

n⋀︂
j=1

GFβj)

for any m,n ∈ N, where αi, βj ∈ LTL+PP for each i ∈ {1, . . . ,m}
and for each j ∈ {1, . . . , n}.

In the context of realizability and synthesis, GR(1) has another
definition (Bloem et al. [25]) which slightly differs from the original
one. Take an alphabet Σ = U∪C where U is the set of uncontrollable
variables, C is the set of controllable variables, and U ∩ C = ∅. A



178 Chapter 5. Background

GR(1) formula is of type:

(α ∧ Gα′ ∧
m⋀︂
i=1

GFαi)→ (β ∧ Gβ′ ∧
n⋀︂
i=1

GFβi) (5.3)

for any m,n ∈ N, satisfying the following constraints:

• α is a Boolean formula over U .

• β is a Boolean formula over Σ.

• α′ is a Boolean formula over Σ augmented with the X temporal
operator, such that the formulas inside a X operator cannot
contain variables in C.

• β′ is a Boolean formula over Σ augmented with the X temporal
operator.

• each αi and each βi are pure past formulas over the alphabet
Σ.

Intuitively, these contraints ensure that α and α′ are formulas con-
trolled by the Environment player (and the same holds also for β
and β′).

GR(1) is considered a good specification language because: (i) it
provides constructs for the assumptions-guarantees paradigm, which
is particularly useful in the context of realizability and synthesis, be-
cause typically a specification in this context is partitioned into as-
sumptions about the environment and guarantees for the controller.
(ii) it combines both safety and fairness (recurrence) formulas.

In [25], two types of realizability and synthesis are considered,
the strict and the standard realizability, depending on how the impli-
cation is interpreted. Before going into the details, let us note from
Definition 18 and Eq. (5.3) that each GR(1) formula is partitioned
into six components:

• two Boolean formulas (α and β) constraining the initial time
point;

• two pure past formulas (α′ and β′) that are meant to hold in
each time point;

• two conjunctions of pure past formulas (αi and βj) that are
meant to hold infinitely many times.
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These formulas naturally represent two symbolic Büchi automata
(Definition 38), since:

• α and β are the formulas for the set of initial states of the two
automata;

• α′ and β′ are the formulas for the two transition relations;

• αi and βj corresponds to the final states of the two automata.

It is worth noticing that, although α, α′ and each αi are pure past
formulas, they can be easily turned into Boolean formulas by adding
new state variables to the automaton, in order to conform to Defi-
nition 38 (the same holds for β, β′ and each βj as well).

Standard and Strict realizability

In [25], standard realizability is defined as the realizability of the
formula

(α ∧ Gα′ ∧
m⋀︂
i=1

GFαi)→ (β ∧ Gβ′ ∧
n⋀︂
i=1

GFβi)

The typical problem of standard realizability is that, as soon as the
Environment player violates one of its assumptions, the Controller
player can behave arbitrarly, since the head of the implication is
violated and thus the whole formula is trivially true. However, what
one has typically in mind is that

Controller has to behave in conformance to its guarantees as long
as Environment fulfills its assumptions.

For example, we would like the Controller to satisfy β even if En-
vironment satisfies α but at some point it violates α′. In order to
accomodate this more natural definition of the problem, Bloem et
al. [25] consider the strict realizability problem, defined as the (stan-
dard) realizability problem of the following formula:

(α→ β)∧
(G(H(α′)→ β′))∧

((α ∧ Gα′ ∧
m⋀︂
i=0

GFαi)→
m⋀︂
i=0

GFβi)
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Solving the GR(1) game

We briefly describe the algorithm proposed in [25] for solving strict
and standard realizability from GR(1) specifications. We start with
strict realizability. The algorithm consists in two steps:

1. Build the arena for the game. This is done symbolically by
considering the formulas for the initial states (α and β) and
for the transition relations (α′ and β′).

2. A triple fixpoint is used to characterize the winning states
of Controller player with respect to the fairness conditions⋀︁m
i=1 GFαi and

⋀︁n
i=1 GFβi. An algorithm for computing the

triple fixpoint is used for deciding the (un)realizability of the
initial formula.

As pointed out in [25], standard GR(1) realizability can be reduced
to strict GR(1) realizability with the introduction of additional vari-
ables.

This algorithm, together with some optimization, has been im-
plemented inside the slugs tool [84].

5.3.9 Reactive Synthesis vs Parameter Synthesis

Given a temporal specification ϕ over a set of controllable and un-
controllable variables, reactive synthesis (Definition 43) refers to the
problem of synthesizing a correct-by-construction controller (repre-
sented by means of a strategy, or a Mealy machine), that satisfies ϕ
no matter what the values of the uncontrollable variables are.

In formal verification, another important problem that goes un-
der the name of “synthesis” is parameter syntesis. Informally, a
parametric system is a partially specified system: during design time,
not all details may be known, and therefore some degrees of its
working may be left uncontrained. Consider for example a real-time
system. It may be the case that not all the real-time bounds are
known at design time, for example due to uncertainties about the
environment. In this case, the choice may be to consider the bounds
as parametric, that is replacing the bounds with constants (param-
eters). Given a specification ϕ, Parameter Synthesis refers to the
problem of synthesizing the set of values of the parameters (the pa-
rameter region) such that, when replaced to the parameters in the
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system, they produce a concrete system that satisfies ϕ. We will see
an application of parameter synthesis in Chapter 9.

Therefore, reactive synthesis must not be confused with param-
eter synthesis. As a matter of fact, the techniques for solving the
former are intrinsically different from those for solving the latter.
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CHAPTER

6

SATISFIABILITY OF
LTL+P SPECIFICATIONS

In this chapter, we propose a satisfiability checking procedure for
LTL+P formulas based on a SAT encoding of the one-pass and tree-
shaped tableau, proposed by Reynolds [163] for LTL and extended to
LTL+P and TPTL in [101]. We refer to Section 5.1.4 for the details
of the tableau system.

The tableau tree is (symbolically) built in a breadth-first way, by
means of Boolean formulas that encode all tableau branches up to
a given depth k, which is increased at every step. The termination
rules of the tableau system are encoded in Boolean formulas as well,
in such a way that a successful assignment represents a branch of the
tree of length k, which directly corresponds to a model of the original
LTL+P formula. This breadth-first iterative deepening approach has
been exploited in the past by bounded satisfiability checking and
bounded model checking algorithms [56, 112] (recall Section 5.2.5),
which share with us the advantage of leveraging the great progress

183
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of SAT solvers in the last decades, and the incrementality of such
solvers.

A common drawback of existing bounded satisfiability checking
methods is the difficulty in identifying when to stop the search in
the case of unsatisfiable formulae. In order to ensure termination,
either a global upper bound has to be computed in advance, which is
not always possible or feasible, or some other techniques are needed
to identify when the search can be stopped. In our system, termi-
nation is guaranteed by a suitable encoding of the tableau’s PRUNE
rule. This rule was the main novelty of Reynolds’ one-pass and tree-
shaped system when it was originally proposed [163], has a clean
model-theoretic interpretation [101], and the important role it plays
in our encoding adds up to its interesting properties. The result
is a simple and complete bounded satisfiability checking procedure
based on a small and much simpler SAT encoding.

We implemented the proposed procedure and encoding in a tool,
called black1for (Bounded Ltl sAtisfiability ChecKer), and we re-
port the outcomes of our experimental evaluation, comparing it with
state-of-the-art tools. The results are promising, consistently im-
proving over the tableau explicit construction.

The modularity of Reynolds’ tableau and of its encoding allows
black to support both future and past temporal operators, inter-
preted both on finite and infinite traces. On one side, past temporal
operators do not add expressive power to the logic but do increase
succinctness (recall Corollary 3 and Proposition 4) and allow for
many properties to be expressed in a more natural way [136]. On the
other side, while LTL+P has been historically defined as interpreted
over infinite traces, the finite-trace semantics (recall Section 2.4.2)
has recently seen much interest in the artificial intelligence and busi-
ness modeling communities [73]. Independently from the set of tem-
poral operators and the class of models considered, black is able
to output a model for satisfiable instances. The support for these
features makes black a quite flexible tool.

This chapter is structured as follows. Section 6.1 recalls the liter-
ature related to our work. In Section 6.2, we describe in details the
algorithm and the SAT encoding of the tableau for LTL+P, including
full proofs of soundness, completeness and termination. Section 6.3
shows how to extend the encoding for addressing the satisfiability of
LTL+P under finite words interpretation and for extracting models

1black can be downloaded from https://github.com/black-sat/black

https://github.com/black-sat/black
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of satisfiable formulas. Finally, Section 6.4 experimentally compares
the tool with other state-of-the-art solvers, and Section 6.5 concludes
with final remarks and a discussion of future developments.

6.1 Related work

In this part, we show a comparison between the encoding used by
black with respect to bounded model checking (Section 5.2.5). We
also recall the importance of the finite semantics for LTL+P and we
conclude with the role of SAT- and SMT-solvers for black.

Bounded Model Checking

As we have already seen in Section 5.2.7, LTL+P satisfiability can
be reduced to LTL+P model checking: to tell whether a formula is
satisfiable, its negation is model-checked against the complete tran-
sition system (i.e., a transition system generating all possible traces
over an alphabet Σ), with any counterexample being a model of the
original formula. Hence, any model checking technique can be seen
as an alternative satisfiability checking technique. In this sense,
the encoding presented here is similar in spirit to bounded model
checking [17, 56] techniques (recall Section 5.2.5): a counterexample
(here, a tableau branch) of length (tree depth) up to k, for increas-
ing values of k is found by encoding the paths of the structure (the
branches of the tree) up to length (depth) k into a SAT formula.

However, bounded model checking techniques are usually incom-
plete, since the computation of the diameter of the graph, which
witnesses the exploration of all paths, is usually a very hard task
(requiring for example to solve the satisfiability problem of a quanti-
fied Boolean formula [17]). Here, instead, our algorithm is complete
thanks to the encoding of the PRUNE rule of Reynolds’ tableau (see
Section 5.1.4). In addition to that, the encoding for past operators,
coming from the tableau rules, is much simpler than the virtual un-
rollings technique used to support past operators in bounded model
checking approaches [18]. Indeed, support for past operators comes
almost for free in our encoding, which allows black to support this
handy feature much efficiently. This was surprising at first, since
support for past operators (sketched in et al. [107] and finalized in
et al. [101]) is a bit more involved in the explicit construction of
Reynolds’ tableau.
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Importance of finite semantics

As already pointed out in this thesis, although LTL+P has been his-
torically defined over infinite traces, the finite-trace semantics has
recently gained popularity in the artificial intelligence [73] and busi-
ness process modeling fields [70]. Although the computational com-
plexity of all the main problems remain the same, the manipulation
of finite state automata on finite words instead of Büchi automata
guarantees a notable speedup in practice. This led to much work re-
visiting, for example, model checking and synthesis [74], and the use
of LTL on finite traces as specification language for non-markovian
rewards in Markov Decision Processes [31], for restraining specifica-
tions in reinforcement learning applications [72], and for specifica-
tions of temporally extended goals in fully observable nondetermin-
istic planning [30].

SAT- and SMT-solvers

The good performance of black would not be possible without the
use of efficient SAT solvers as the backend. The satisfiability prob-
lem for propositional logic is the canonical NP-complete problem
and one of the most studied problems in computer science. For
this reason, the efficiency of modern SAT solver has grown beyond
the best expectations. black supports different solvers as backend
in order to be able to exploit the advantages of each. In addition
to the classic but now outdated MiniSAT [80], we support Crypto-
MiniSAT [182], a modern, parallelized and very flexible SAT solver.
In addition to that, we support two Satisfiability Modulo Theories
(SMT) solvers, Z3 [76] and MathSAT [54]. Although black does
not make use of any SMT feature, the two SMT solvers proved to be
very competitive backends also for purely propositional problems.

6.2 The SAT encoding of Reynolds’ tableau

We refer to Section 5.1.4 for the description of the set of rules of
the Reynolds’ tableau. The black satisfiability checker is based on
an iterative procedure that symbolically explores the tableau tree
breadth-first by means of a SAT encoding of the tableau branches
up to a given depth k, for increasing values of k. The satisfiability
checking procedure employed by black is reported in Algorithm 1.



6.2 The SAT encoding of Reynolds’ tableau 187

Algorithm 1 black’s main procedure

1: procedure BLACK(ϕ)
2: k ← 0
3: while True do
4: if ⟨⟨ϕ⟩⟩k is UNSAT then
5: return ϕ is UNSAT
6: end if
7: if |ϕ|k is SAT then
8: return ϕ is SAT
9: end if

10: if |ϕ|kT is UNSAT then
11: return ϕ is UNSAT
12: end if
13: k ← k + 1
14: end while
15: end procedure

The three formulas ⟨⟨ϕ⟩⟩k, |ϕ|k, and |ϕ|kT encode different rules of the
tableau.

Let us start with some notation. Let ϕ be an LTL+P formula in
NNF over the alphabet Σ. We define the following sets of formulas:

XR = {ψ ∈ C(ϕ) | ψ is a tomorrow formula}
YR = {ψ ∈ C(ϕ) | ψ is a yesterday formula}
ZR = {ψ ∈ C(ϕ) | ψ is a weak yesterday formula}

XEV = {ψ ∈ C(ϕ) | ψ is an X-eventuality}

The three encoding formulas are defined over an extended alpha-
bet Σ, which includes:

1. any proposition letter from the original alphabet Σ;

2. the set {pψ | ψ ∈ XR,YR,ZR}, that is, the set of all the
grounded X-, Y-, and Z-requests;

3. a stepped version pk of all the proposition letters defined in
items 1 and 2, with k ∈ N and p0 identified as p.

Intuitively, different stepped versions of the same proposition
letter p are used to represent the value of p at different states. Thus,
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when pi holds, it means that p holds at the i-th step node of the
branch, i.e., the i-th state of the model.

Moreover, given ψ ∈ C(ϕ), we denote by ψG the formula in which
all the X-, Y-, and Z-requests are replaced by their grounded version.
Similarly, given ψ ∈ C(ϕ), we denote by ψk the formula in which all
proposition letters are replaced by their k stepped version. We write
ψkG to denote (ψG)

k.
The formula ⟨⟨ϕ⟩⟩k is called the k-unraveling of ϕ, and encodes

the expansion of the tableau tree. To define it, we need to encode
the expansion rules of Table 5.1.

Definition 45 (Stepped Normal Form). Given an LTL+P formula
ϕ in NNF, its stepped normal form, denoted by snf(ϕ), is defined as
follows:

snf(ℓ) = ℓ where ℓ ∈ {p,¬p}, for p ∈ Σ

snf(⊗ϕ1) = ⊗ϕ1 where ⊗ ∈ {X,Y,Z}
snf(ϕ1 ⊗ ϕ2) = snf(ϕ1)⊗ snf(ϕ2) where ⊗ ∈ {∧,∨}
snf(ϕ1 U ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ X(ϕ1 U ϕ2))

snf(ϕ1 R ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ X(ϕ1 R ϕ2))

snf(ϕ1 S ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ Y(ϕ1 S ϕ2))

snf(ϕ1 T ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ Z(ϕ1 T ϕ2))

The stepped normal form is the extension to past operators of
the next normal form used in [101]. It can be noted how it follows
from the expansion rules of each operator in Table 5.1. We can now
define the k-unraveling of ϕ recursively as follows:

⟨⟨ϕ⟩⟩0 = snf(ϕ)G ∧
⋀︂
ψ∈YR

¬ψG ∧
⋀︂
ψ∈ZR

ψG

⟨⟨ϕ⟩⟩k+1 = ⟨⟨ϕ⟩⟩k ∧ Sk ∧ Yk ∧ Zk

where

Sk ≡
⋀︂

Xα∈XR

(︂
(Xα)kG ↔ snf(α)k+1

G

)︂
Yk ≡

⋀︂
Yα∈YR

(︂
(Yα)k+1

G ↔ snf(α)kG

)︂
Zk ≡

⋀︂
Zα∈ZR

(︂
(Zα)k+1

G ↔ snf(α)kG

)︂
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The Sk, Yk and Zk formulas encode, respectively, the STEP,
YESTERDAY, and W-YESTERDAY rules of the tableau, while the
base case of the 0-unraveling ensures that yesterday formulas are
false and weak yesterday formulas are true at the first state. The
CONTRADICTION rule of the tableau is implicitly encoded in the
fact that only satisfying assignments of the formula are considered.
Note that the FORECAST rule as well does not need to be explicitly
encoded: the intrinsic nondeterminism of the SAT solving process
accounts for the nondeterministic choices implemented by the rule.

Intuitively, if ⟨⟨ϕ⟩⟩k is unsatisfiable, all the branches of the tableau
for ϕ are rejected before k + 1 steps.

Lemma 13. Let ϕ be an LTL+P formula. Then, ⟨⟨ϕ⟩⟩k is unsat-
isfiable if and only if all the branches of the complete tableau for ϕ
are crossed by the CONTRADICTION or (W-)YESTERDAY rules and
contain at most k + 1 step nodes.

Proof. We prove the contrapositive, i.e., that ⟨⟨ϕ⟩⟩k is satisfiable if
and only if the complete tableau for ϕ has at least a branch that is
either accepted, crossed by PRUNE, or longer than k+1 step nodes.
To do that we establish a connection between truth assignments of
⟨⟨ϕ⟩⟩k and suitable branches of the tableau.

From branches to assignments. Let u = ⟨u0, . . . , un⟩ be a branch
that is either accepted, crossed by PRUNE, or longer than k+1 step
nodes. Let π = ⟨π0, . . . , πm⟩ be the sequence of its step nodes. We
define a truth assignment ν for ⟨⟨ϕ⟩⟩k as follows. Note that ⟨⟨ϕ⟩⟩k
contains stepped propositions from p0 until pk for any given p, so we
need at most k+1 step nodes from u, which however can be shorter
if it is accepted or crossed by the PRUNE rule. Hence, let us define
ℓ = min{m, k}. Moreover, let us define pU to be p if p ∈ Σ, and
to be ψ if p = ψG for some X-, Y-, or Z-request ψ, i.e., (·)U is the
inverse of the (·)G operation. Then, for 0 ≤ i ≤ ℓ, we set ν(pi) = ⊤
if and only if pU ∈ Γ(πi). Then, we complete the assignments for
positions m < j ≤ k + 1 (if any) as follows:

1. if the branch has been accepted by the EMPTY rule, all the
other positions j > m can be filled arbitrarily;

2. if the branch has been accepted by the LOOP or crossed by
the PRUNE rule, then there is a position w such that Γ(πw) =
Γ(πm). Then we continue filling the truth assignment consid-
ering the successor of πw as a successor of πm.
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It can be verified that the truth assignment so constructed satisfies
⟨⟨ϕ⟩⟩k.

From assignments to branches. Let ν be a truth assignment for
⟨⟨ϕ⟩⟩k. We use ν as a guide to navigate the tableau tree to find a
suitable branch which is either accepted, crossed by PRUNE, or has
more than k + 1 step nodes. To do that we build a sequence of
branch prefixes ui = ⟨u0, . . . , ui⟩ where at each step we obtain ui+1

by choosing ui+1 among the children of ui, until we find a leaf or
we reach k + 1 step nodes. During the descent, we build a partial
function J : N→ N that maps positions j in ui to indexes J(j) such

that for all ψ it holds that ψ ∈ Γ(uj) if and only if ν |= snf(ψ)
J(j)
G ,

i.e., we build a relationship between positions in the branch and
steps in ν. As the base case, we put u0 = ⟨u0⟩ and J(0) = 0 so
that the invariant holds since Γ(u0) = {ϕ} and ν |= snf(ϕ)0G by the
definition of ⟨⟨ϕ⟩⟩k. Then, depending on the rule that was applied to
ui, we choose ui+1 among its children as follows:

1. if the STEP rule has been applied to ui, then there is a unique
child that we choose as ui+1, and we define J(i+1) = J(i)+1.
Now, for all Xα ∈ Γ(ui), we have α ∈ Γ(ui+1) by construction
of the tableau. Note that snf(Xα) = Xα, hence we know by

construction that ν |= (Xα)
J(j)
G . Then, by definition of ⟨⟨ϕ⟩⟩k,

we know that ν |= snf(α)
J(j)+1
G , i.e., ν |= snf(α)

J(i+1)
G . On the

other direction, if ν |= snf(α)
J(i+1)
G , then by definition of ⟨⟨ϕ⟩⟩k

we have ν |= (Xα)
J(i)
G , hence ν |= snf(Xα)

J(i)
G , hence Xα ∈

Γ(ui), so by construction of the tableau we have α ∈ Γ(ui+1).
Hence the invariant holds.

2. if the FORECAST rule has been applied to ui, then there are
n children {u1i , . . . , uni } such that Γ(ui) ⊆ Γ(umi ) for all 1 ≤
m ≤ n. Now, we set J(i + 1) = J(i) and we choose ui+1 as
a child umi with a label Γ(umi ) such that for any ψ we have

ψ ∈ Γ(ui+1) if and only if ν |= snf(ψ)
J(i+1)
G . Note that at least

one such child exists, because at least one child has the same
label as ui. Thus the invariant holds by construction.

3. if an expansion rule has been applied to ui, then there are one
or two children. In both cases, we set J(i+ 1) = J(i). Then:

(a) if there is one child, then it is chosen as ui+1. In this case,
the rule is the CONJUNCTION rule and has been applied
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to a formula ψ ≡ ψ1 ∧ ψ2, hence ψ1, ψ2 ∈ Γ(ui+1). By

construction we know that ν |= snf(ψ)
J(i)
G , hence ν |=

snf(ψ)
J(i+1)
G . Now, note that snf(ψ1 ∧ ψ2) = snf(ψ1) ∧

snf(ψ2), so it holds that ν |= snf(ψ1)
J(i+1)
G and ν |=

snf(ψ2)
J(i+1)
G . On the other direction, if ν |= snf(ψ1)

J(i+1)
G

and ν |= snf(ψ2)
J(i+1)
G we know that ν |= snf(ψ1∧ψ2)

J(i+1)
G

hence ν |= snf(ψ1∧ψ2)
J(i)
G , hence by construction we have

ψ1 ∧ψ2 ∈ Γ(ui) and so we have ψ1, ψ2 ∈ Γ(ui), hence the
invariant holds.

(b) if there are two children u′i and u
′′
i , then let us suppose the

rule applied is the DISJUNCTION rule. Similar arguments
will hold for the other rules. In this case, the rule has
been applied to a formula ψ ≡ ψ1 ∨ψ2, hence ψ1 ∈ Γ(u′i)

and ψ2 ∈ Γ(u′′i ). We know ν |= snf(ψ)
J(i)
G , hence ν |=

snf(ψ)
J(i+1)
G . Since snf(ψ1 ∨ ψ2) = snf(ψ1) ∨ snf(ψ2), it

holds that either ν |= snf(ψ1)
J(i+1)
G or ν |= snf(ψ2)

J(i+1)
G .

Now, we choose ui+1 accordingly, so to respect the in-
variant. Note that if both nodes are eligible, which one is
chosen does not matter. The other direction of the invari-
ant also holds, since if either ν |= snf(ψ1)

J(i+1)
G or ν |=

snf(ψ2)
J(i+1)
G , then ν |= snf(ψ1)

J(i)
G or ν |= snf(ψ2)

J(i)
G , so

ν |= snf(ψ1 ∨ψ2)
J(i)
G , hence ψ1 ∨ψ2 ∈ Γ(ui), hence either

ψ1 ∈ Γ(ui+1) or ψ2 ∈ Γ(ui+1).

Let u = ⟨u0, . . . , ui⟩ be the branch prefix constructed as above, and
let π = ⟨π0, . . . , πn⟩ be the sequence of its step nodes. As mentioned,
the descent stops when πn is a leaf or when n = k + 1. Note in any
case that ui = πn. In case we find a leaf, note that it cannot have
been crossed by the CONTRADICTION rule. Otherwise, we would
have {p,¬p} ⊆ Γ(ui), which would mean ν |= pJ(i) and ν |= ¬pJ(i),
which is not possible. Moreover, it cannot have been crossed by the
YESTERDAY rule, since that would mean there is some Yα ∈ Γ(πn)

with α ̸∈ Γ∗(πn−1). But, we know that ν |= snf(Yα)
J(i)
G , hence

ν |= (Yα)
J(i)
G since snf(Yα) = Yα. Then, by definition of ⟨⟨ϕ⟩⟩k,

we know that ν |= snf(α)
J(i)−1
G . Since ui = πn is a step node,

J(i)−1 = J(j) for some j such that uj = πn−1, hence ν |= snf(α)
J(j)
G ,

and by construction we know that α ∈ Γ(uj), which conflicts with
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the hypothesis that the YESTERDAY rule crossed the branch. With
a similar argument, we can see that it cannot have been crossed by
the W-YESTERDAY rule neither. Hence we found a branch which is
either longer than k + 1 step nodes, or have been accepted, or have
been crossed by the PRUNE rule.

The formula |ϕ|k is called the base encoding of ϕ and, in addition
to the k-unraveling, includes the encoding of the EMPTY and LOOP
rules, i.e., the rules that can accept branches. The formula is defined
as:

|ϕ|k ≡ ⟨⟨ϕ⟩⟩k ∧ (Ek ∨ Lk)

where the Ek formula encodes the EMPTY rule and is defined as
follows:

Ek ≡
⋀︂
ψ∈XR

¬ψkG

and the Lk formula encodes the LOOP rule and is defined as:

Lk ≡
k−1⋁︂
l=0

( lRk ∧ lFk )

where

lRk ≡
⋀︂

ψ∈XR∪YR∪ZR

(︂
ψlG ↔ ψkG

)︂

lFk ≡
⋀︂

ψ∈XEV

ψ≡X(ψ1Uψ2)

(︂
ψkG →

k⋁︂
i=l+1

snf(ψ2)
i
G

)︂

Intuitively, lRk encodes the presence of two nodes whose labels
contain the same requests for the next and the previous nodes, while

lFk checks that all the X-eventualities are fulfilled between those
nodes. It can be proved that |ϕ|k correctly encodes tableau trees
where at least one branch is accepted in k + 1 steps.

Lemma 14. Let ϕ be an LTL+P formula. If the complete tableau
for ϕ contains an accepted branch of k + 1 step nodes, then |ϕ|k is
satisfiable.

Proof. Suppose that the complete tableau for ϕ contains an accepted
branch of k+1 step nodes, so let u = ⟨u0, . . . , un⟩ be such a branch,
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and let π = ⟨π0, . . . , πk⟩ be the sequence of its step nodes. Then, by
Lemma 13, ⟨⟨ϕ⟩⟩k is satisfiable. We can then build a truth assignment
ν in the same way as in the proof of Lemma 13, such that ν |= ⟨⟨ϕ⟩⟩k.
Remember that this means we set ν(pi) = ⊤ if and only if pU ∈ Γ(πi)
for all 0 ≤ i ≤ k. So now we have to prove that ν satisfies either
Ek or Lk. We will need an auxiliary fact, that is, that ψ ∈ Γ∗(πi)
if and only if ν |= snf(ψ)iG. That can be done by induction on the
structure of ψ, exploiting the definition of the expansion rules of the
tableau.

Now, we distinguish two cases depending on which rule accepted
the branch:

1. if the branch was accepted by the EMPTY rule, then Γ(πk) =
∅, hence, in particular Γ(πk) does not contain any X-request.
Hence by definition of ν we have that ν |= ¬ψkG for any ψ ∈ XR,
so Ek is satisfied;

2. if the branch was accepted by the LOOP rule, then we have a
node πl such that Γ(πl) = Γ(πk), hence by definition of ν we
have ν |= ψlG if and only if ν |= ψkG for any ψ ∈ XR∪YR∪ZR, so
lRk is satisfied. Moreover, we know that for any X-eventuality
ψ ≡ X(ψ1Uψ2) requested in Γ(πk), ψ has been fulfilled between
πl and πk, i.e., there is a l < j ≤ k such that ψ2 ∈ Γ∗(πj).

Hence we know that ν |= snf(ψ2)
j
G, hence lFk is satisfied.

Then, lRk ∧l Fk is satisfied for at least one l, so Lk is satisfied.

Lemma 15. Let ϕ be an LTL+P formula. If |ϕ|k is satisfiable then
the complete tableau for ϕ contains an accepted branch.

Proof. Suppose that |ϕ|k is satisfiable, hence we have a truth assign-
ment ν such that ν |= |ϕ|k. Then, ⟨⟨ϕ⟩⟩k is satisfiable, and we know
from Lemma 13 that the complete tableau for ϕ has a branch that is
either accepted, crossed by PRUNE, or longer than k+1 step nodes.
Let u = ⟨u0, . . . , un⟩ be the branch prefix found as shown in the
proof of Lemma 13, and let π = ⟨π0, . . . , πm⟩ be the sequence of its
step nodes. By construction we have a function J : N→ N fulfilling

the invariant that ψ ∈ Γ(ui) if and only if ν |= snf(ψ)
J(i)
G . We now

show that indeed u is accepted or is the prefix of an accepted branch.
Since |ϕ|k is satisfiable, either Ek or Lk are satisfiable as well:
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1. if Ek is satisfiable, we know that ν |= ¬ψkG for each ψ ∈ XR.
Since ψ is an X-request, snf(ψ) ≡ ψ, so ν ̸|= snf(ψ)kG. Here,
k = J(j) for some j, and from the invariant we know that
ψ ̸∈ Γ(uj). Hence, uj does not contain any X-request, so its
successor uj+1 has an empty label, triggering the EMPTY rule
that accepts the branch.

2. if Lk is satisfiable, so are lRk and lFk for some 0 ≤ l < k.
Hence from lRk we know that ν |= ψlG if and only if ν |= ψkG
for all ψ ∈ XR ∪ YR ∪ ZR, that is ν |= snf(ψ)lG if and only
if ν |= snf(ψ)kG because ψ is an X-, Y-, or Z-request. Here,
l = J(i) and k = J(j) for some i and some j. Since the value
of the function J increments at each step node, we can assume
w.l.o.g. that ui and uj are step nodes, and by the invariant we
know ψ ∈ Γ(ui) if and only if ψ ∈ Γ(uj), i.e., ui and uj have the
same X-, Y-, and Z-request. Similarly, the fact that ν |= lFk
tells us that all the X-eventualities requested in ui are fulfilled
between ui+1 and uj . The LOOP rule requires two identical
labels in order to trigger, but ui and uj only have the same
requests. However, since they have the same X-requests, we
know that Γ(ui+1) = Γ(uj+1). Then, there is a step node uj′ ,
grandchild of uj , such that Γ(uj) = Γ(uj′) and the segment
of the branch between ui+1 and uj is equal to the segment
between uj+1 and uj′ , hence all the X-eventualities requested
in ui and uj , fulfilled between ui+1 and uj , are fulfilled between
uj+1 and uj′ as well, and the LOOP rule can apply to uj′ ,
accepting the branch.

Lastly, the formula |ϕ|kT , called the termination encoding, encodes
the PRUNE rule. The formula is defined as follows:

|ϕ|kT ≡ ⟨⟨ϕ⟩⟩k ∧
k⋀︂
i=0

¬P i
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where

P k ≡
k−2⋁︂
l=0

k−1⋁︂
j=l+1

(︁
lRj ∧ jRk ∧ lP

k
j

)︁
lP

k
j ≡

⋀︂
ψ∈XEV

ψ≡X(ψ1Uψ2)

(︂
ψkG ∧

k⋁︂
i=j+1

snf(ψ2)
i
G →

j⋁︂
i=l+1

snf(ψ2)
i
G

)︂

It can be proved that |ϕ|kT is unsatisfiable if the tableau for ϕ contains
only rejected branches.

Lemma 16. Let ϕ be an LTL+P formula. If |ϕ|kT is unsatisfiable,
then the complete tableau for ϕ contains only rejected branches.

Proof. We prove the contrapositive, i.e., that if the complete tableau
for ϕ contains an accepted branch, then |ϕ|kT is satisfiable. Let
u = ⟨u0, . . . , un⟩ be such a branch, and let π = ⟨π0, . . . , πm⟩ be the
sequence of its step nodes. By Lemma 13, we know ⟨⟨ϕ⟩⟩k is satisfi-
able, thus we can obtain a truth assignment ν such that ν |= ⟨⟨ϕ⟩⟩k.
We can build ν as in the proof of Lemma 13, i.e., such that ν(pi) = ⊤
if and only if pU ∈ Γ(πi) for all 0 ≤ i ≤ k. Similarly to the proof
of Lemma 14, we highlight the fact that ψ ∈ Γ∗(πi) if and only if
ν |= snf(ψ)iG. Now, since the branch is accepted, the PRUNE rule
cannot be applied to it. This means that either a) there are no three
nodes πu, πv, πw such that Γ(πu) = Γ(πv) = Γ(πw), or b) these
three nodes exist but there is an X-eventuality ψ requested in Γ(πw)
that is fulfilled between πu and πv and not between πv and πw. In
case a) this means uRv ∧ vRw does not hold for any u and v. In case
b), uRv ∧ vRw holds but uP

w
v does not. In any case, it follows that

¬P i holds for any 0 ≤ i ≤ k, hence |ϕ|kT is satisfied.

Together with the soundness and completeness results for the
underlying tableau (Proposition 11), the above Lemmas allow us
to prove the soundness and completeness of the procedure of Algo-
rithm 1.

Theorem 35 (Soundness and completeness). Let ϕ be an LTL+P
formula. The black algorithm answers satisfiable on ϕ if and only
if ϕ is satisfiable.
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Proof. (→) Suppose the black algorithm answers satisfiable on the
formula ϕ. Then, it means there is a k ≥ 0 such that |ϕ|k is satis-
fiable. By Lemma 15, the complete tableau for ϕ has an accepting
branch. By the soundness of the tableau, then ϕ is satisfiable.

(←) Now suppose the formula ϕ is satisfiable. By the complete-
ness of the tableau, the complete tableau for ϕ has an accepting
branch. Let us suppose such a branch has k+1 step nodes for some
k ≥ 0. Then, we want to show that the black algorithm eventually
answers satisfiable. Let i < k be any earlier iteration of the main
loop of the algorithm. We have that by Lemma 13, ⟨⟨ϕ⟩⟩i is satisfiable
because there is a branch longer than i + 1 step nodes. Similarly,
by Lemma 16, |ϕ|iT is satisfiable because not all the branches of the
tableau are rejected. Hence, the algorithm does not answer unsat-
isfiable at step i. Arrived at step k, |ϕ|k is satisfiable by Lemma 14
because the tableau has an accepted branch of k + 1 step nodes,
hence the algorithm answers satisfiable.

6.3 Extensions for finite traces and mod-
els extraction

In this section, we present two extensions of the encoding shown
in Section 6.2, one for dealing with LTL+P interpreted over finite
traces and the other allowing the extraction of a model in the case of
satisfiable formulas, that works both for infinite and finite semantics.

6.3.1 Extension for LTL under finite traces

The encoding presented above can be very easily adapted to look
for finite models of the formula. Since the tableau rules as recalled
in Section 5.1.4 support infinite models, we now have to present the
needed changes to Reynolds’ tableau in order to support the search
for finite models. Then, the corresponding changes to the encoding
will follow easily.

With respect to the tableau rules as recalled in Section 5.1.4, we
have to:

1. remove the LOOP rule, since we do not want to accept infinite
periodic models anymore;
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2. change the expansion rule for the release operator (see Ta-
ble 5.1) in such a way that if ϕ ≡ α R β, then Γ2(ϕ) =
{β, ˜︁X(α R β)}.

Moreover, we have to change the STEP and EMPTY rules as follows.
Intuitively, the presence of only weak-tomorrow requests does not
force the creation of a new state, since any formula of type ˜︁Xα is
true at the last state of a finite model. Therefore, one the one hand,
we change the STEP rule to propagate weak tomorrow requests as
well, and on the other hand we change the EMPTY rule to accept
nodes without tomorrow requests (but possibly with weak-tomorrow
requests), instead of nodes with empty labels. So, if we have a branch
u = ⟨u0, . . . , un⟩, the rule is defined as follows:

STEP A child un+1 is added to un, with:

Γ(un+1) = {α | Xα ∈ Γ(un) or ˜︁Xα ∈ Γ(un) }

EMPTY if Γ(un) does not contain tomorrow formulas, then u is
accepted.

Note that this variation of the EMPTY rule is equivalent to the
original one for infinite models that we recalled in Section 5.1.4: in
fact, since in the infinite case the tomorrow and the weak-tomorrow
operators coincide, asking for a node with an empty label amounts
to asking for a parent node with no (weak-)tomorrow formulas in its
label. However, in the finite words setting, the tomorrow and the
weak-tomorrow operators do not coincide anymore. In particular,
any formula of type ˜︁Xα is true at the last state of a finite model,
while any formula of type Xα is false in such a state. Interestingly,
this difference does not affect the definition of the EMPTY rule. In
fact, by asking for a label devoid of tomorrow formulas only, we are
leaving open the possibility for last states (i.e., leaves) to have labels
containing any weak-tomorrow formula.

Hence, as far as the encoding is concerned, the only required
changes are:

1. removing the Lk formula from the definition of |ϕ|k;

2. changing the definition of stepped normal form to reflect the
change in the expansion rule of the release operator;
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3. changing the definition of the k-unraveling to include weak
tomorrow formula in the encoding of the STEP rule. To do
this, we define ˜︁XR as follows:

˜︁XR = {ψ ∈ C(ϕ) | ψ is a weak tomorrow formula}

Then, we change the Sk formula in the definition of ⟨⟨ϕ⟩⟩k as
follows:

Sk ≡
⋀︂

Xα∈XR

(︂
(Xα)kG ↔ snf(α)k+1

G

)︂
∧
⋀︂

˜︁Xα∈˜︁XR
(︂
(˜︁Xα)kG ↔ snf(α)k+1

G

)︂

The encoding of the EMPTY rule, i.e., the Ek formula in the defini-
tion of |ϕ|k, remains the same.

6.3.2 Extraction of models

The encoding and algorithm presented in this chapter can be used
not only to decide the satisfiability of LTL+P formulas, but also to
extract a model for satisfiable ones.

To do that, one has first of all to ask the SAT solver, from the
assignment to |ϕ|k, the values of the propositions pt, which tell the
truth value of the proposition p for each time step t. Then, one
has to extract the starting state of the loop of the periodic model
identified by the LOOP rule, if any.

To do that, a few propositions ℓl,k are introduced, for some k and
some l < k, and the formula Lk defined to build the base encoding
|ϕ|k is modified as follows:

Lk ≡
k−1⋀︂
l=0

(ℓl,k ↔ (lRk ∧ lFk)) ∧
k−1⋁︂
l=0

ℓl,k

In this way, for a satisfiable formula, the first ℓl,k to be true will
tell us that the loop starts at time t = l. If no such proposition is
true, the branch was closed by the EMPTY rule and the model can
be regarded as looping through its last state (if we are looking for
an infinite model).

Then, another correction is necessary. A difference of this encod-
ing w.r.t. the original tableau by Reynolds is that, while the LOOP
rule asks for two nodes with the exact same label, the encoding
of the rule only looks for the same X-requests. From the proof of
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Lemma 15, it can be seen that this change does not compromise
correctness, and is even an advantage, since it leads the encoding
to stop earlier. However, when one wants to extract a model from
the assignment of |ϕ|k, if the loop has been identified from state l
to k, one has to take care of past requests (Yα) coming from state
l+1, that are for sure satisfied by state l, but have to be satisfied by
state k as well. The original LOOP rule does take care of this detail
by requiring the whole label to be equal. Here, where we only look
for the same X-requests, we have to take care of it explicitly. The
formula lRk then becomes:

lRk ≡
⋀︂

ψ∈XR∪YR∪ZR

(︂
ψlG ↔ ψkG

)︂
∧

⋀︂
Yα∈YR

(Yα)l+1
G ↔ snf(α)kG∧⋀︂

Zα∈YR

(Zα)l+1
G ↔ snf(α)kG

6.4 Experimental evaluation

In this section, we describe the experimental evaluation of black
against other state-of-the-art tools for the satisfiability of LTL and
LTL+P formulas under both infinite and finite trace semantics. Bench-
marks consist in a set of input formulas (see later for a detailed
account) over which the different tools have been run to measure
solving speed. All the benchmarks have been run on a 16-core AMD
EPYC 7281 processor with 64GB of RAM, with a timeout of five
minutes and a memory limit of 3GB for each formula. All the bench-
mark formulas and the supporting scripts are available in black’s
source code repository. In all the tests described here, black has
been run using the MathSAT backend [54], which in internal tests
appeared to perform better than the other backends, overall.

6.4.1 LTL over infinite traces

To evaluate black’s performance on LTL over infinite traces, we
compared it with the following tools:

1. the nuXmv [38] model checker, both in SBMC and K-Liveness
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Figure 6.1: Scatter plots of black versus nuXmv in SBMC (top)
and K-live (bottom) over LTL on infinite traces. SAT instances on
the left, UNSAT instances on the right.
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Figure 6.2: Scatter plots of black versus pltl in graph (top) and
tree (bottom) over LTL on infinite traces. SAT instances on the left,
UNSAT instances on the right.
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Figure 6.3: Scatter plots of black versus Aalta (top) and Leviathan
(bottom) over LTL on infinite traces. SAT instances on the left,
UNSAT instances on the right.
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Figure 6.4: Scatter plots of black versus nuXmv in SBMC (top)
and K-Live (bottom) modes, over LTL+P formulas. SAT instances
on the left, UNSAT instances on the right.
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Figure 6.6: Survival plot for LTL over infinite traces (top row) and
LTL+P (bottom row). SAT instances on the left, UNSAT instances
on the right.
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Figure 6.7: Survival plot for LTL over finite traces. SAT instances
on the left, UNSAT instances on the right.

modes; we used this model checker for implementing the re-
duction from LTL+P satisfiability to LTL+P model checking
described in Section 5.2.7.

2. Aalta [133], a tool based on an explicit graph-shaped tableau
built with the help of a SAT solver;

3. pltl, a tableau-based tool that implements both a graph-shaped
tableau [1] and a tree-shaped tableau à la Schwendimann [172];

4. Leviathan [13], an implementation of the explicit construction
of Reynolds’ tableau [163].

Of these, nuXmv in SBMC mode and Leviathan are the most
similar to black, in different ways. The former implements an it-
erative model checking procedure that looks for counter-examples
of the specification of length at most k for increasing values of k,
with a completeness check that ensures termination for unsatisfiable
formulas [112]. The latter is the first implementation of Reynolds’
tableau, which is the tableau underlying black’s SAT encoding and
algorithm, but which Leviathan constructs explicitly.

These tools have been tested on a total of 4181 formulas which
have been collected from two different sources:
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1. the formulas collected by Schuppan and Darmawan [171], which
include the acacia, alaska, anzu, forobots, rozier, trp and
schuppan sets;

2. a set of formulas coming from the LTL encoding of the temporal
description logic TDL-lite, as described by Tahrat et al. [187],
which are referred to in the plots as the tdllite set.

The results are shown as scatter plots reported in Figs. 6.1, 6.2
and 6.3 and the survival plot reported in Fig. 6.7. In the comparison
with nuXmv, it can be seen that black outperforms it in SBMC
mode, which is the most similar approach to black. With respect to
nuXmv in K-Liveness mode, black performs better over satisfiable
instances and suffers over unsatisfiable instances. This is a pattern
that repeats also in the comparison with Aalta. This suffering in
unsatisfiable instances can be explained with the cubic growth in size
of the termination encoding |ϕ|kT at increasing values of k. On the
other hand, in the comparison with the tableau-based tools Leviathan
and pltl, it can be seen that black performs considerably better both
on satisfiable and unsatisfiable instances. It is worth to note that
black is the only tool that manages to solve the formulas in the
tdllite set.

6.4.2 LTL+P

To evaluate black over LTL+P formulas, we compared it with
nuXmv [38] which, as far as we know, is the only other tool avail-
able that directly supports past operators. As there are no readily
available benchmark sets for LTL+P in the literature, we came up
with our own. The benchmark formulas consist in two sets:

1. the random set, which consists in randomly generated formulas
of varying size, generated with an extension of the algorithm
proposed by Tauriainen and Heljanko [188];

2. the crscounter set, which is an adaptation to the satisfiability
problem of a benchmark set for model checking provided by
Cimatti et al. [56].

The second family, in particular, needs some explanations. In the
original benchmark set for model checking, a Kripke structure called
Counter(N), where N is a power of two, is introduced. Counter(N)
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works as follows: it starts at c = 0, counts up to c = N , jumps back
to c = N/2, and then loops, counting up to c = N and jumping
back to c = N/2, forever. Afterwards, they evaluated, on top of
that Kripke structure, some parametric properties of the form:

P (i) ≡ ¬F
(︁
O((c = N

2 ) ∧ O((c = N
2 + 1) ∧ . . . ∧ O(c = N

2 + i) . . .))
)︁
.

The value i identifies the number of nested once operators, while
the structure of such properties requires that the loop of length N/2
in the model is traversed backwards several times in order to reach
a counterexample.

Since these benchmarks were introduced in the context of model
checking, we made a reduction from the model checking problem to
the satisfiability checking one for LTL+P: we built the LTL+P formu-
las ϕCounter(N) and ϕP (i) encoding the above elements. In this way,
¬(ϕCounter(N) → ϕP (i)) is UNSAT if and only if Counter(N) |= P (i).

With this framework, we were able to obtain both SAT (i ≤ N
2 ) and

UNSAT (i > N
2 ) instances. Moreover, this family of formulas stresses

the ability to process past operators and find short counterexamples,
and thus, it specifically challenges black’s performance.

The results are shown in the scatter plots of Fig. 6.4, and the
survival plot of Fig. 6.7. As it can be seen, again black outperforms
nuXmv in SBMC mode, and is competitive with nuXmv in K-
Liveness mode. The performance gain is more visible in satisfiable
instances, as in the future-only formulas of the previous sections. In
general, black’s performance is better on random formulas.

6.4.3 LTL over finite traces

We compared black against two state-of-the-art tools for LTL over
finite traces, namely Aaltaf [132], which implements an algorithm
called Conflict-Driven LTL under finite traces Satisfiability Check-
ing where a SAT-aided explicit tableau construction is paired with
the extraction of unsatisfiable cores to prune the search space, and
LTL2SAT [93], a tool which employs a SAT-based reduction but with
specific heuristics for particular classes of formulas.

We compared the tools against the following sets of formulas:

1. all the formula sets from the infinite traces case as described
above, but interpreted over finite traces;
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2. a set of formulas particularly crafted for finite traces, referred
to as LiEtAl2020 in the plots, taken from Li et al. [132].

The results are shown in the scatter plots of Fig. 6.5, and the
survival plot of Fig. 6.7. The finite traces setting is the one where
black suffers the most. As usual, the performance is better on
satisfiable instances. In this case, black performs better overall
against Aaltaf than against LTL2SAT. As in the infinite trace setting,
it is worth to note that only black is capable of solving the formulas
from the tdllite set.

6.5 Conclusions

In this chapter, we present black, a new satisfiability checking tool
for LTL and LTL+P under both infinite and finite traces semantics,
based on a SAT encoding of the one-pass tree-shaped tableau by
Reynolds [163]. Regarding its performance, extensive experimental
evaluations show that black, is competitive with other state-of-the-
art tools in most circumstances, especially on satisfiable instances.

Many future developments are possible. From the point of view
of performance, it would be interesting to find heuristics to optimize
the application of the PRUNE rule of the tableau in order to speed up
the execution on unsatisfiable instances. In particular, a linear-size
encoding would arguably provide a great speed-up in such cases.

Reynolds’ tableau has been extended to other logics beyond LTL+P,
such as TPTL. A similar SAT (or SMT) encoding for the TPTL
tableau would allow black to support this real-time logic as well.
Similar extensions are being investigated for first-order extensions
of LTL+P, based on the work by Kontchakov et al. [124].

As far as the tool itself is concerned, many improvements are pos-
sible, such as the support of more SAT backends, the improvement
of the efficiency of the current CNF translation, and the integra-
tion of more input and/or output formats. Moreover, the modular
structure of the tool is not at all tied to the specific algorithm and
encoding presented here, hence the implementation of different sat-
isfiability checking approaches is possible and would provide a nice
portfolio-based solver able to cope with even more application sce-
narios.
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CHAPTER

7

REALIZABILITY OF
LTLEBR+P

SPECIFICATIONS

Reactive synthesis is a key technique for the design of correct-by-
construction systems, which has been thoroughly investigated in the
last decades. In Section 5.3, we have seen that it consists of the syn-
thesis of a controller that reacts to environment’s inputs satisfying a
given temporal logic specification. Common approaches are based on
the explicit construction of automata and on their determinization,
which limits their scalability.

In Section 3.1, we introduced LTLEBR+P (Extended Bounded
Response LTL+P), a safety fragment of LTL+P that captures exactly
the safety properties definable in LTL+P.

In this chapter, we focus on realizability from LTLEBR+P specifi-
cations. We show that reactive synthesis from LTLEBR+P specifica-
tions can be reduced to solving a safety game over a deterministic

211
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symbolic automaton built directly from the specification. We prove
the correctness of the approach and study the complexity of the
fragment showing that (i) it is singly exponential in time (in con-
trast to that of LTL, which is doubly exponential in time); and that
(ii) the proposed solution is optimal. Finally, we evaluate it on vari-
ous benchmarks showing better performance of other approaches for
general LTL or larger safety fragments.

7.1 Overview

In the previous chapters, we have seen that, since the dawn of com-
puter science, synthesizing correct-by-construction systems starting
from a specification is recognized as an important and difficult task.
A practical algorithm to solve this task would be a big improvement
in declarative programming, since it would allow the programmer to
write only the specification of the program, freeing her from possi-
ble design or implementation bugs, which, in many cases, are due
to an imperative style of programming. In the context of model-
based design and formal verification, the possibility of synthesizing
a controller that complies with the specification, for all possible be-
haviors of the environment, would be of great importance as well,
as all the design effort would be directed to improve the quality of
the specification of the controller.

In this chapter, we focus on the realizability and reactive sythesis
problems for LTLEBR+P (Section 3.1). First, we show that formulas
of LTLEBR+P can be turned into deterministic symbolic automata
over infinite words (Definitions 37 and 40) by means of a translation
carried out in a completely symbolic way. Such a transformation is
performed in two steps: (i) a pastification of the bounded future sub-
formulas by making use of techniques similar to those exploited for
MTL [139, 138], and (ii) the construction of deterministic monitors
for the universal temporal operators as well as for the past modali-
ties of LTLEBR+P. These two steps allow the entire procedure to be
carried out without ever producing any explicit automaton. Then,
we use existing algorithms for safety synthesis to solve the game on
the deterministic symbolic automaton. Finally, we prove that the
entire procedure works in EXPTIME.

Next, we focus on complexity issues for LTLEBR+P by showing
that (i) its satisfiability problem is PSPACE-hard, and (ii) its real-
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izability problem is EXPTIME-complete. In the proof of the first
hardness result, we make use of a reduction from the corridor tiling
problem, while in the proof of the second one, we exploit a reduction
from the corridor tiling game (EXPTIME-membership immediately
follows from our algorithm). Our complexity result for LTLEBR+P
realizability shows that this problem has a lower worst-case com-
plexity than realizability from LTL (which is 2EXPTIME-complete).
Moreover, it follows that our algorithm is optimal with respect to
the theoretical complexity of LTLEBR+P realizability.

Finally, we implement the proposed solution in a tool, called ebr-
ltl-synth, and compare its performance against state-of-the-art
synthesizers for full LTL and for Safety-LTL over a set of LTLEBR+P
formulas. Despite the high (EXPTIME) complexity, the outcomes of
the experimental evaluation are quite encouraging and many cases
can be solved efficiently.

The rest of the chapter is organized as follows. In Section 7.2, we
define the compilation of LTLEBR+P formulas into symbolic safety
automata; then, in Section 7.3, we show how to exploit the result-
ing automata to solve the realizability and synthesis problems for
LTLEBR+P and we contrast the devised solution with existing algo-
rithms, pointing out the main differences. In addition, we study the
complexity of the realizability and satisfiability checking problems
for LTLEBR. We illustrate and discuss the outcomes of the exper-
imental evaluation in Section 7.4. In Section 7.5, we provide an
assessment of the work, and outline some research directions. The
proof of all the results are reported either in the main body of this
chapter or in Section A.1.

7.2 From LTLEBR+P to deterministic SSA

This section outlines a procedure to turn every LTLEBR+P formula
into a deterministic symbolic safety automaton (SSA) on infinite
words (see Definitions 37 and 40) that recognizes the same language.

We recall from Section 3.1 that any LTLEBR+P formula χ belongs
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LTLEBR+P ϕ

Pastified-LTLEBR+P ϕ

· toPastLtlEbrP

Normal-LTLEBR+P ϕ

· normalize

SSA A(ϕ)
· ltl2smv

AIGER

· fsmv2aig

result (real./unreal.)

· call to a safety synthesizer

Figure 7.1: The overall procedure.

to the following syntax:

η := p | ¬η | η1 ∨ η2 | Yη | η1 S η2 Pure Past Layer

ψ := η | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U
[a,b] ψ2 Bounded Future Layer

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | ψ R ϕ Future Layer

χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

LTL+PBF (bounded future LTL+P) is the logic obtained from the
grammar of LTLEBR+P by starting from the Bounded Future Layer,
and similarly LTL+PP (pure past LTL+P) is the logic obtained by
considering only the pure past layer. Finally, we recall that we
consider bounded operators as shortcuts for the equivalent expan-
sion using the next operator (e.g., F[a,b]ϕ ≡

⋁︁b
i=a X

iϕ, where Xi =
X(1) . . .X(i)). In particular, this means that, when considering the
dimension |ϕ| (with ϕ either a LTL+PBF or an LTLEBR+P formula),
we are referring to the size of the formula where all the bounded
operators have been expanded.

In doing the main transformation from LTLEBR+P formulas to
language-equivalent deterministic symbolic safety automata, we ap-
ply a few transformation steps on the formula, summarized in Fig. 7.1,
to simplify its syntactic structure and turn it into a form amenable
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to direct transformation into a deterministic SSA. We define two
syntactic restrictions of LTLEBR+P that are the targets of the trans-
formation steps.

Definition 46 (Pastified-LTLEBR+P). A Pastified-LTLEBR+P for-
mula χ is inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Yψ | ψ1 S ψ2

ϕ := ψ | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | (Xiψ) R ϕ
χ := ϕ | χ1 ∨ χ2 | χ1 ∧ χ2

Definition 47 (Normal-LTLEBR+P). The normal form of LTLEBR+P
formulas is inductively defined as follows:

ψ := p | ¬ψ | ψ1 ∨ ψ2 | Yψ | ψ1 S ψ2

ϕ := ψ | Gψ | ψ1 R ψ2

λ := ϕ | Xλ
χ := λ | χ1 ∨ χ2 | χ1 ∧ χ2

Normal-LTLEBR+P formulas do not contain nested occurrences of
unbounded temporal operators, whose operands can be only pure
past formulas, and each of these is prefixed by an arbitrary number
of next operators.

The transformation of LTLEBR+P formulas into deterministic SSAs
consists of three steps, which are depicted in Fig. 7.1: (i) a transla-
tion from LTLEBR+P to Pastified-LTLEBR+P; (ii) a translation from
Pastified-LTLEBR+P to its normal form; (iii) a transformation of
Normal-LTLEBR+P formulas into deterministic SSA. Once a deter-
ministic SSA A(ϕ) for the original LTLEBR+P formula ϕ over C ∪ U
has been obtained, we solve the safety game ⟨A(ϕ), C,U⟩, i.e., we
check the existence of a winning strategy for Controller in the au-
tomaton, by applying an existing safety synthesis algorithms (see
Section 5.3.4).

7.2.1 From LTLEBR+P to Pastified-LTLEBR+P

Let ϕ be an LTLEBR+P formula. The first step consists in translating
each LTL+PBF subformula of ϕ into an equivalent one, which is of the
form Xdψ, with ψ ∈ LTL+PP and d ∈ N. We refer to this process as
pastification [139, 138]. As we will see, since “the past has already
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happened”, pure past formulas can be represented by deterministic
monitors.

In order to pastify each LTL+PBF subformula of ϕ, we adapt to
LTLEBR+P a technique developed by Maler et al. for MTL−B [139,
138]. Intuitively, for each model of a LTL+PBF formula ϕ, there
exists a furthermost time point d (the temporal depth of ϕ) such
that the subsequent states cannot be constrained by ϕ in any way.
The pastification of ϕ is a formula that uses only past operators and
that is equivalent to ϕ when interpreted at time point d instead of
at the origin.

We now define the temporal depth and the pastification of a for-
mula. Since we consider bounded operators as shortcuts, in those
definitions it would suffice to consider only the cases for atomic
propositions, Boolean operators, and the next temporal operator.
However, for sake of completeness, we include also the case for the
bounded until operator (in gray color).

Definition 48 (Temporal Depth [139]). Let ϕ be an LTL+PBF for-
mula. The temporal depth of ϕ, denoted as D(ϕ), is inductively
defined as follows:

• D(ψ) = 0, for all ψ ∈ LTL+PP

• D(¬ϕ1) = D(ϕ1)

• D(ϕ1 ∨ ϕ2) = max{D(ϕ1), D(ϕ2)}

• D(Xϕ1) = 1 +D(ϕ1)

• D(ϕ1 U
[a,b] ϕ2) = b+max{D(ϕ1), D(ϕ2)}

It is easy to see that, for any LTL+PBF formula ϕ, it holds that
D(ϕ) ≤ |ϕ|.

Definition 49 (Pastification [139]). Let ϕ be an LTL+PBF formula
and d ≥ D(ϕ). The pastification of ϕ at d is the formula Π(ϕ, d)
inductively defined as follows:

• Π(ψ, d) = Ydψ, where ψ ∈ LTL+PP

• Π(¬ϕ, d) = ¬Π(ϕ, d)

• Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∧Π(ϕ2, d)

• Π(Xϕ, d) = Π(ϕ, d− 1)
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• Π(ϕ1U
[a,b]ϕ2, d) =

⋁︁b−a
t=0 (Y

t(Π(ϕ2, d−b)∧Hb−t−1YΠ(ϕ1, d−b)))

Note that from Definition 49 we can derive that Π(F[a,b]ϕ, d) ≡
Π(⊤ U[a,b] ϕ, d) ≡

⋁︁b−a
t=0 Y

tΠ(ϕ, d− b).

Proposition 15 (Soundness of pastification). Let φ be a LTL+PBF

formula. For all state sequences σ ∈ (2Σ)ω, all i ∈ N, and all
d ≥ D(ϕ), it holds that:

σ, i |= φ ⇔ σ, i |= XdΠ(φ, d)

Proof. See Section A.1.

Our definition of pastification differs from the original one [139,
138] in two directions. Firstly, the input of our pastification can be
an arbitrary LTL+PBF formula, that is, one belonging to the two
last layers of Definition 21. In constrast, in [139], the input formu-
las of the pastification algorithm are pure future formulas with only
bounded operators, which are a special case of LTL+PBF formulas
(they correspond to LTL+PBF formulas without past operators). We
can deal with general LTL+PBF formulas by noting that LTL+PP

subformulas do not need to be pastified (see the base case of Defi-
nition 49).

Secondly, in [139, 138] the pastification of a bounded until oper-
ator produces a novel temporal operator P [a,b], called bounded pre-
cedes, which allows the output formula to be linear in size with
respect to the input one even when the bounded operators are con-
sidered as primitives, in particular: Π(ϕ1 U[a,b] ϕ2, d) = Π(ϕ1, d −
b)P [a,b]Π(ϕ2, d− b). On the contrary, since we consider the bounded
until as a shortcut, we pastify the bounded until (and also the
bounded eventually) operator by using only primitive past opera-
tors, like yesterday and historically, but still maintaining linear the
size of the pastified formula.

From now on, let pastify(ϕ) be the formula XD(ϕ)Π(ϕ,D(ϕ)), that
is the pastification of ϕ at the temporal depth of ϕ, prefixed by as
many nested next operators as its temporal depth. As an example,
if ϕ := F[0,k1](q ∧ F[0,k2]p), then pastify(ϕ) := Xk1+k2

⋁︁k1
i=0 Y

i(Yk2q ∧⋁︁k2
j=0 Y

jp). We state the following complexity result about pastifi-
cation.

Proposition 16 (Size of pastification). Let ϕ be a LTL+PBF for-
mula. Then, pastify(ϕ) is a formula of size O(n), where n = |ϕ|.
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Given an LTLEBR+P formula ϕ, we pastify each of its LTL+PBF

subformulas with the pastify operator: we call this step toPastLtlE-
brP. Once it has been completed, the resulting formula belongs to
Pastified-LTLEBR+P (see Definition 46).

Optimization

The toPastLtlEbrP algorithm can be improved by observing that
there are LTL+PBF formulas that already belong to Pastified-LTLEBR+P.
One example is the formula p∧XXXq. Obviously, for this kind of for-
mulas there is no need for the algorithm to pastify them. Consider
the previous example. Without the proposed trick, the algorithm
would have produced the formula XXX(YYYp∧ q), while, by simply
noting that the formula already belongs to Pastified-LTLEBR+P, it
does not need to pastify anything, returning p ∧ XXXq.

Proposition 17. For each LTLEBR+P formula ϕ, there is an equiv-
alent Pastified-LTLEBR+P formula ϕ′ of size O(n), where n = |ϕ|.

Proof. Since the pastify operator replaces any subformula of size n
with another one of size O(n), the size of pastify(ϕ) is again O(n).
Moreover pastify(ϕ) ∈ Pastified-LTLEBR+P.

7.2.2 From Pastified-LTLEBR+P to Normal-LTLEBR+P

The second step is the normalization of the Pastified-LTLEBR+P for-
mula obtained from the previous step, in order to produce an equiv-
alent formula in normal form (Definition 47). Normal-LTLEBR+P
formulas are Boolean combinations of formulas of the form Xiψ1,
XiGψ1, and Xi(ψ1 R ψ2), where ψ1 and ψ2 are pure past formulas.
Compared to general Pastified-LTLEBR+P formulas, those in normal
form do not admit neither nested unbounded operators nor next
operators in front of the left-hand argument of a release.

The algorithm computing the normalization of a Pastified-LTLEBR+P
formula works by applying the following set of rewriting rules on the
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formula obtained from the step described in the previous subsection:

R1 : Xi(ψ1 ∧ ψ2)⇝ Xiψ1 ∧ Xiψ2

R2 : ψ R (ψ1 ∧ ψ2)⇝ ψ R ψ1 ∧ ψ R ψ2

R3 : (Xiψ1) R (Xjψ2)⇝

{︄
Xi(ψ1 R (Yi−jψ2)) if i > j

Xj((Yj−iψ1) R ψ2) otherwise

R4 : (Xiψ1) R (Xj(ψ2 R ψ3))⇝{︄
Xi(ψ1 R ((Yi−jψ2) R (Yi−jψ3))) if i > j

Xj((Yj−iψ1) R (ψ2 R ψ3)) otherwise

R5 : GXiGψ ⇝ XiGψ

R6 : GXi(ψ1 R ψ2)⇝ XiGψ2

R7 : (Xiψ1) R (XjGψ2)⇝

{︄
XiGYi−jψ2 if i > j

XjGψ2 otherwise

Rflat : X
i(ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . )))⇝

Xi((ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤) . . . )) R ψn) for any n ≥ 3

where ψ, ψ1, ψ2, and ψ3 are pure past formulas. It is worth noting
that, so far, we do not have rules (preserving equivalence) to deal
with the following cases: (i) (ϕ1 ∧ ϕ2) R (ϕ), (ii) (Gϕ1) R (ϕ) or
(iii) (ϕ1 R ϕ2) R (ϕ). This is why, in Definition 21, we restricted
the left-hand argument of each release operator to be a LTL+PBF

formula.

Definition 50 (Normalization). Given a Pastified-LTLEBR+P for-
mula ϕ, we define normalize(ϕ) as the formula flatten(applyR1R7(ϕ)),
where applyR1R7 is the algorithm in Fig. 7.2 and flatten is the algo-
rithm in Fig. 7.4.

We state the following results about the correctness and com-
plexity of normalize(ϕ).

Lemma 17 (Soundness of normalize(·)). For any Pastified-LTLEBR+P
formula ϕ, it holds that ϕ and normalize(ϕ) are equivalent and normalize(ϕ)
is a Normal-LTLEBR+P formula.

Lemma 18 (Complexity of normalize(·)). For any Pastified-LTLEBR+P
formula ϕ, normalize(ϕ) can be built in O(n) time, and the size of
normalize(ϕ) is O(n), where n = |ϕ|.
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/∗
∗ I n p u t : ϕ ∈ Pastified-LTLEBR+P
∗ Ou t p u t : ϕ ∈ Pastified-LTLEBR+P
∗ N o t a t i o n :
∗ ϕ, ϕ1, . . . , ϕn ∈ LTLEBR+P
∗ ψ, ψ1, ψ2, ψ3 ∈ LTL+PP
∗ p ∈ Σ
∗/
de f i n e applyR1R7(ϕ){

switch (ϕ){
// Base c a s e = LTL+PP f o r m u l a e
case p :
case ¬ψ :
case Yψ1 :
case ψ1 S ψ2 :

return ϕ

// And/Or O p e r a t o r s
case ϕ1 ∧ ϕ2 :

return applyR1R7(ϕ1) ∧
applyR1R7(ϕ2)

case ϕ1 ∨ ϕ2 :
return applyR1R7(ϕ1) ∨

applyR1R7(ϕ2)

// Ne x t R e w r i t i n g R u l e s
case Xϕ1 :
ϕ1 ← applyR1R7(ϕ1)
switch (ϕ1 ){

case ϕ2 ∧ · · · ∧ ϕn : // r u l e R1
return Xϕ2 ∧ · · · ∧ Xϕn

default :
return Xϕ1

}

// G l o b a l l y R e w r i t i n g R u l e s
case Gϕ1 :
ϕ1 ← applyR1R7(ϕ1)
switch (ϕ1 ){

case ϕ2 ∧ · · · ∧ ϕn : // r u l e R2
ϕ2 ← r e s o l v e g l o b a l l y (ϕ2 )
. . .
ϕn ← r e s o l v e g l o b a l l y (ϕn )
return ϕ2 ∧ · · · ∧ ϕn

default :
ϕ1 ← r e s o l v e g l o b a l l y (ϕ1 )
return ϕ1

}

// R e l e a s e R e w r i t i n g R u l e s
case ψ R ϕ1 :
ϕ1 ← applyR1R7(ϕ1)
switch (ϕ1 ){

case ϕ2 ∧ · · · ∧ ϕn : // r u l e R2
ϕ2 ← r e s o l v e r e l e a s e (ψ ,ϕ2 )
. . .
ϕn ← r e s o l v e r e l e a s e (ψ ,ϕn )
return ϕ2 ∧ · · · ∧ ϕn

default :
ϕ1 ← r e s o l v e r e l e a s e (ψ ,ϕ1 )
return ϕ1

}

default :
unreachable code ( )

}
}

Figure 7.2: The applyR1R7 algorithm (part I).
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de f i n e r e s o l v e g l o b a l l y (ϕ){
switch (ϕ){

case Xiψ : // r u l e R3 ( 2 nd c a s e )

return XiGψ

case XiGψ : // r u l e R5
return XiGψ

case Xi(ψ R ψ1) : // r u l e R6
return XiGψ1

default :
return Gψ

}
}

de f i n e r e s o l v e r e l e a s e (Xiψ1 ,ϕ){
switch (ϕ){

case Xjψ2 : // r u l e R3
i f (i > j )

return Xi(ψ1 R (Yi−jψ2))
else

return Xj((Yj−iψ1) R ψ2)

case XjGψ2 : // r u l e R7
i f (i > j )

return XiG(Yi−jψ2)
else

return XjGψ2
case Xj(ψ2 R ϕ3) : // r u l e R4

i f (i > j )

return Xi(ψ1 R ((Yi−jψ2) R (Yi−jψ3)))
else

return Xj((Yj−iψ1) R (ψ2 R ψ3))
default :

return (Xiψ1) R ϕ
}

}

Figure 7.3: The applyR1R7 algorithm (part II).

de f i n e flatten(ϕ){
switch (ϕ){

case ϕ1 ∧ ϕ2 :
return flatten(ϕ1) ∧ flatten(ϕ2)

case ϕ1 ∨ ϕ2 :
return flatten(ϕ1) ∨ flatten(ϕ2)

// r u l e Rflat

case Xi(ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . ))) :

return Xi((ψn−1 ∧ O(ψn−2 ∧ . . . O(ψ1 ∧ Yi⊤) . . . )) R ψn)

default :
return ϕ

}
}

Figure 7.4: The flatten algorithm.
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7.2.3 From Normal-LTLEBR+P to deterministic SSA

The particular shape of Normal-LTLEBR+P formulas makes it pos-
sible to encode the specification into deterministic symbolic safety
automata (SSA, recall Definitions 37 and 40). The key observa-
tion is that LTL+PP formulas can be encoded into deterministic au-
tomata: since these formulas talk exclusively about the past, their
truth can be evaluated at any single step depending only on pre-
vious steps, without making any guess about the future (“the past
already happened”). But LTL+PP formulas are not the only ones
that can be encoded deterministically. Consider, for instance, the
formula ϕ ≡ Xp ∨ Xq. At a first glance, it may seem that ϕ needs a
non-deterministic automaton to be encoded, which at the first state
makes a choice about whether p or q will hold in the next state. Nev-
ertheless, this formula is equivalent to X(p∨q) and it corresponds to
the deterministic automaton that, once arrived in its second state
by reading any proposition symbol, proceeds to an accepting state
by reading either p or q, or goes to a sink (error) state otherwise.

Pastified-LTLEBR+P in its normal form combines pure past for-
mulas into a broader language that can still be turned into symbolic
deterministic automata, extending the above intuition and exploit-
ing the monitorability of universal temporal operators.

Monitoring is a technique coming from runtime verification [131].
Consider the formula Gα. By observing a state sequence, at each
step we can decide if a violation has occurred; indeed, if α is false
at the current step, then the value of Gα is certainly false for each
of the previous steps. More generally, universal temporal formulas,
such as Gϕ and ϕ1 R ϕ2, are monitorable, meaning that a violation
of them can be decided on the basis of the observation of a finite
number of steps. In particular, reporting an error in the next state
can be done by considering only the current values. This means
that any universal temporal operator can be monitored by adding a
Boolean error variable with a deterministic transition relation.

Therefore, despite not being able to evaluate the truth of a for-
mula such as Gα, as it can be done in the case of past operators,
we can nevertheless state in the accepting condition that an error
state can never be reached. In this way, if the trace is accepting,
that is, an error state can never be reached, then we know that there
are no violations, e.g., for Gα, we have forced α to be true in every
state. Otherwise, if the trace is not accepting, that is, an error state
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is reachable, we know that there is a (finite) violation and that the
temporal formula was falsified at some step. We therefore introduce
an error bit for each Xiψ1, XiGψ1, and Xi(ψ1 R ψ2) of a normal
Pastified-LTLEBR+P formula.

Let ϕ be a Normal-LTLEBR+P formula over the alphabet Σ =
C∪U . We define the deterministic SSAA(ϕ) = (V, I, T, S) as follows:

• Variables. The set of state variables of the automaton is de-
fined as X = XP ∪XF ∪XC , where:

XP = {vα | α is an LTL+PP subformula of ϕ}

XF =

{︄
errorφ

⃓⃓⃓⃓
⃓φ is subformula of ϕ of the form

Xiψ, XiGψ, or Xi(ψ1 R ψ2)

}︄

XC =

{︄
counteri

⃓⃓⃓⃓
⃓ i ∈ {0, . . . , log2 d}d max. among all Xdψ in ϕ.

}︄

Intuitively, variables in XP track the truth value of all the
pure past subformulas, variables in XF implement the above-
described monitoring mechanism, and variables inXC are used
to encode a binary counter used to monitor nested tomorrow
operators. In particular, for n nested tomorrow operators, a
counter with log2(n) bits is needed.

• Initial state. All the state variables, including the counter bits,
are initially false, that is, I(X) =

⋀︁
x∈X ¬x.

• Transition relation. T (X,Σ, X ′) is the conjunction of the tran-
sition functions of the binary counter and the monitors of each
subformula of ϕ, as will be defined later. Notice that each con-
junct is of the form x′ ↔ βx(X ∪ Σ), and thus it corresponds
to a deterministic transition relation.

• Safety condition. S(X) is a Boolean formula obtained from ϕ
by replacing each formula φ ∈ XF by ¬errorφ, i.e., S(X) =
ϕ[φ/¬errorφ].

We now define the monitors for the binary counter, used to han-
dle nested tomorrow operators, any formula ψ ∈ LTL+PP, and any
Normal-LTLEBR+P formula of one of the forms Xiψ1, XiGψ1, and
Xi(ψ1 R ψ2). We give the definition of the monitors using the SMV
language (recall Section 5.2.3), as it provides useful shorthands (like
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the switch-case primitive). Each of the following SMV statement
corresponds to the Boolean formula that defines transition functions
of our monitors.

We define a counter with log2(n) bits that starts with value 0,
increments at each successive state and, once it reaches the value n,
it keeps its value. The monitor for the counter is defined as follows:

next ( counter0 ) := (
⋀︁log2(n)
j=1 counter j) ∨ ¬counter0

next ( counter i ) := (
⋀︁log2(n)
j=1 counter j) ∨ ((

⋀︁i−1
j=0 counter j) ↔ ¬counter i)

If ψ is a formula in the pure past layer, its monitor is defined as
follows:

next (vYα ) := vα ∧ counter> 0
next (vZα ) := vα ∨ counter≤ 0
DEFINE
vαSβ := vβ ∨ (vα ∧ vY(αSβ))
vαTβ := (vα ∧ vβ) ∨ (vβ ∧ vZ(αTβ))

If ψ is a propositional atom, a negation, or a disjunction of pure
past formulas, we define its monitor as follows:

DEFINE
vp := p
v¬α := ¬vα
vα∨β := vα ∨ vβ

For each formula ϕ of type Xiψ, where ψ is a pure past formula,
we introduce a new error bit errorϕ. Its monitor is defined as follows:

next (errorXiψ ) := case

errorXiψ : TRUE ;

counter = i ∧ ¬vψ : TRUE ;
TRUE : FALSE ;

esac

If ϕ := XiGψ, where ψ is a pure past formula, we introduce a
new error bit errorϕ, and we define its monitor as follows:

next (errorXiGψ ) := case

counter < i : FALSE ;
¬errorXiGψ ∧ vψ : FALSE ;

TRUE : TRUE ;
esac

The same for ϕ := Xi(ψ1 R ψ2):
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next (errorXi(ψ1Rψ2) ) := case

counter < i : FALSE ;

¬errorXi(ψ1Rψ2) ∧ vi
ψ
p
1

: FALSE ;

¬errorXi(ψ1Rψ2) ∧ vψ1
∧ vψ2

: FALSE ;

¬errorXi(ψ1Rψ2) ∧ vψ2
: FALSE ;

TRUE : TRUE ;
esac

next (vi
ψ
p
1
) := case

counter < i : FALSE ;
vψ1

: TRUE ;

vi
ψ
p
1

: TRUE ;

TRUE : FALSE ;
esac

In Fig. 7.5, we describe the execution of all the steps described
so far on a simple formula.

G(u1 → XXc1) ∧ G(u2 → Xc2)

GXX(YYu1 → c1) ∧ GX(Yu2 → c2)

XXG(YYu1 → c1) ∧ XG(Yu2 → c2)

ASSIGN
init(error1) := ⊥
next(error1) := . . .

ASSIGN
init(error2) := ⊥
next(error2) := . . .

INVARSPEC
¬error1 ∧ ¬error2

pastify

normalize

to SSA

Figure 7.5: The execution of the sequence of steps: a simple example.

Before giving the correctness and complexity results for the con-
struction of deterministic SSAa we have just described, we prove the
following lemma.

Lemma 19. For each Normal-LTLEBR+P formula ϕ, for each LTL+PP

formula α ∈ LTL+PP that is a subformula of ϕ, for each state se-
quence σ, and for each i ≥ 0, σ(i) |= α iff τ(i) |= vα, where τ is the
trace of A(ϕ) induced by σ.
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Proof. We prove the lemma by induction on the structure of α. For
the base case, σ(i) |= p ∈ Σ iff τ(i) |= vp; since by definition of
its monitor vp ↔ p, we have that σ(i) |= p iff τ(i) |= p; since τ is
induced by σ, this is always true.

For the inductive step, consider first α ∨ β. If σ(i) |= α ∨ β,
then either σ(i) |= α or σ(i) |= β; by inductive hypothesis, either
τ(i) |= vα or τ(i) |= vβ ; finally, by the definition of the monitor for
disjunction, we have that τ(i) |= vα∨β . The opposite case and the
case for ¬α can be proven similarly.

Consider the case for Yα. If σ(i) |= Yα, then σ(i − 1) |= α and
i > 0. By inductive hypothesis τ(i−1) |= vα and i > 0; by definition
of the monitor for Yα, τ(i) |= vYα.

Finally, we prove the case for α S β. If σ(i) |= α S β, then either
σ(i) |= β or σ(i) |= α ∧ Y(α S β); by inductive hypothesis, either
τ(i) |= vβ or τ(i) |= vα ∧ vY(αSβ); by definition of the monitor for

α S β, we have that τ(i) |= vαSβ . The opposite direction can be
proven in the similar way.

Proposition 18. Let ϕ be a Normal-LTLEBR+P formula, with |ϕ| =
n. Then, there exists a deterministic SSA of size O(n) that accepts
the same language.

Proof. Let ϕ be a Normal-LTLEBR+P formula over the alphabet Σ
and let A(ϕ) = (X ∪ Σ, I(X), T (X,Σ, X ′), S(X)) be the determin-
istic symbolic safety automaton as previously defined.

Soundness. We first prove that L(ϕ) = L(A(ϕ)). In particular
we prove that ∀σ ∈ L(ϕ).σ |= ϕ iff τ(i) |= S(X) ∀i ≥ 0, where τ is
the trace induced by σ in A(ϕ). Recall that S(X) = ϕ[φ/¬errorφ].
We proceed by induction on the structure of ϕ.

For the base case we consider ϕ = XiGα where α ∈ LTL+PP(the
cases for Xiα and Xi(αRβ) are similar). If σ |= XiGα then σ(i) |= Gα,
that is σ(j) |= α ∀j ≥ i. By Lemma 19, τ(j) |= vα ∀j ≥ i. The
following points hold:

1. given the first condition in the monitor for XiGα, we have that
τ(j) |= ¬errorϕ ∀0 ≤ j < i;

2. given the previous point and the fact that τ(j) |= vα ∀j ≥ i,
by the second condition of the monitor we have that τ(j) |=
¬errorϕ ∀j ≥ i.
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By these two points, it follows that τ(j) |= ¬errorϕ ∀j ≥ 0. Vice
versa, if τ(j) |= ¬errorϕ ∀j ≥ 0, then by definition of the monitor
we have that τ(j) |= vα ∀j ≥ i. By Lemma 19, σ(j) |= α ∀j ≥ i,
that is σ |= XiGα.

For the inductive step, consider first ϕ = ϕ1 ∧ ϕ2. If σ |=
ϕ, then σ |= ϕ1 and σ |= ϕ2. By inductive hypothesis, τ(i) |=
ϕ1[φ/¬errorφ] ∀i ≥ 0 and τ(i) |= ϕ2[φ/¬errorφ] ∀i ≥ 0, that is
τ(i) |= (ϕ1 ∧ ϕ2)[φ/¬errorφ] ∀i ≥ 0. The opposite direction can be
proven in the same way.

Finally, consider the case ϕ = ϕ1 ∨ ϕ2. If σ |= ϕ, then by in-
ductive hypothesis either τ(i) |= ϕ1[φ/¬errorφ] ∀i ≥ 0 or τ(i) |=
ϕ2[φ/¬errorφ] ∀i ≥ 0; thus τ(i) |= (ϕ1∨ϕ2)[φ/¬errorφ] ∀i ≥ 0. For
the opposite direction, assume that τ(i) |= (ϕ1∨ϕ2)[φ/¬errorφ] ∀i ≥
0; since each errorφ is monotone (once set to true, it remains true
forever), it holds that either τ(i) |= ϕ1[φ/¬errorφ] ∀i ≥ 0 or τ(i) |=
ϕ2[φ/¬errorφ] ∀i ≥ 0. By inductive hypothesis, either σ |= ϕ1 or
σ |= ϕ2, that is σ |= ϕ1 ∨ ϕ2.

Complexity. Let n = |ϕ|; it holds that:

• |X| = |MP |+ |MF | ∈ O(n), since |MP |+ |MF | ≤ n;

• |I(X)|, |T (X,Σ, X ′)| ∈ O(n), since they are both summations
over the variables in X;

• |S(X)| ∈ O(n), since S(X) is obtained from ϕ by replacing
each subformula in MF with a variable.

Overall, we have that the size of A(ϕ) is O(n).

Theorem 36. Let ϕ be an LTLEBR+P formula and let n = |ϕ|.
Then, there exists a deterministic SSA of size O(n) that accepts the
same language.

Proof. Let ϕ be an LTLEBR+P formula of size n. By Proposition 17,
we can build an equivalent Pastified-LTLEBR+P formula ϕ′ of size
O(n); by Lemma 18, from ϕ′ we can obtain an equivalent
Normal-LTLEBR+P formula ϕ′′ of linear size with respect to |ϕ′|. Fi-
nally, by Proposition 18, the size of the deterministic symbolic safety
automaton A(ϕ′′) is linear in |ϕ′|, hence | A(ϕ′′)| ∈ O(n).
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7.3 An optimal algorithm for LTLEBR+P
realizability

7.3.1 Solving the game on the deterministic SSA

Once we have obtained the deterministic SSA A(ϕ) for an LTLEBR+P
formula ϕ with the steps described in the previous sections, we can
use A(ϕ) as the arena of a two-player game between Controller and
Environment in order to solve the realizability (and synthesis) prob-
lem for ϕ.

Let us focus on the safety game represented by the deterministic
symbolic safety automaton A = (V = X ∪ Σ, I, T,Gα(X))) with
Σ = U ∪ C and U ∩ C = ∅ (recall Section 5.3.4). Safety games have
been extensively studied, as their reachability objective makes the
problem simpler than considering ω-regular objectives, such as, for
instance, Büchi and Rabin conditions.

The aim of Controller is to choose an infinite sequence of values
for the controllable variables in such a way that, no matter what
values for the uncontrollable variables are chosen by Environment,
the trace induced by the play in A(ϕ) is safe, that is, it visits only
states s such that s |= S(X) (recall Definition 37). Since in our case
A(ϕ) recognizes exactly the language of ϕ, the play satisfies ϕ, and
thus Controller has a winning strategy for ϕ.

Since the organization of the SYNTCOMP [117], many optimized
tools have been proposed in the literature to solve safety games. For
this reason, we chose to use a safety synthesizer as a black box. The
majority of these tools accept as input a symbolic arena described in
terms of and-inverter graphs (or AIGER format [19]), so we provide
a simple utility to obtain the AIGER representation of Functional
SMV modules (recall Section 5.2.3), that is, SMV modules with the
transition relation expressed only in terms of ASSIGN statements,
such as the ones resulting from our encoding. The AIGER model is
then given as input to the chosen safety synthesizer, completing the
process outlined in Fig. 7.1.

The next theorem states the complexity of the procedure.

Theorem 37. The realizability problem for LTLEBR+P belongs to
EXPTIME.

Proof. Since it is easy to see that the time complexity of all the
steps matches their space complexity, we have an algorithm to turn
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an LTLEBR+P formula ϕ into an equivalent deterministic SSA A(ϕ)
whose time complexity is O(n), where n = |ϕ|. Since A(ϕ) is
symbolically represented, it can be turned into an explicit automa-
ton A′(ϕ) of size at most exponential in the size of A(ϕ), that is,
| A′(ϕ)| ∈ O(2n). Finally, the time complexity of reachability games
is linear in the size of the arena [68], and thus the overall time com-
plexity of the realizability problem for LTLEBR+P is EXPTIME.

It is interesting to briefly compare the proposed procedure for
realizability to the one used by the ssyft tool for Safety LTL spec-
ifications [201]. In that tool, the negation of the initial formula
is first translated into first-order logic over finite words and then
transformed into deterministic automata using the tool mona [113],
which uses the classical subset construction to determinize automata
over finite words. Finally, ssyft uses the classical backward fixpoint
iteration to compute the set of winning states over the DFA. It is
worth to notice that the way mona represents automata is not fully
symbolic: the set of states is explicitly represented, while it uses a
BDD for each pair of states in order to represent symbolically the
transitions between the two corresponding states. In contrast to sub-
set construction, our solution performs the pastification of LTL+PBF

formulas. Most importantly, our construction of deterministic mon-
itors is carried out in a fully symbolic way.

7.3.2 Complexity of LTLEBR+P

In the following, we prove that the realizability problem for LTLEBR+P
is EXPTIME-complete by showing its EXPTIME-hardness.

In fact, we first prove that the problem of establishing whether or
not an LTLEBR+P formula is satisfiable is PSPACE-hard. As we will
see, such a preliminary result, besides being interesting by itself,
allows us to set up a machinery that is crucial for the following
hardness proof. Then, we demonstrate that deciding realizability for
LTLEBR+P, that is, proving the existence of a winning strategy for
controller, is EXPTIME-hard.

We start with the satisfiability problem, and provide a reduction
from the corridor tiling problem, which is known to be PSPACE-
complete [195, 152]. As a first step, we define the notions of tiling
structure and of tiling.
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Definition 51 (Tiling Structure). A tiling structure is a tuple T =
⟨T , t⊥, t⊤, H, V , n⟩, where T is a finite set of elements, called tiles,
t⊥, t⊤ ∈ T are the bottom tile and the top tile, respectively, H,V ⊆
T ×T are the horizontal and the vertical relations, respectively, and
n ∈ N is a natural number encoded in unary.

Definition 52 (Tiling). Let T = ⟨T , t⊥, t⊤, H, V , n⟩ be a tiling
structure. A tiling for T is a function f : N × [0, n) → T such
that associates a tile in T with every position of the infinite discrete
corridor of height n in such a way that:

1. the horizontal relation is satisfied:

∀x ∈ N ∀y ∈ [0, n) . f(x, y)Hf(x+ 1, y);

2. the vertical relation is satisfied:

∀x ∈ N ∀y ∈ [0, n− 1) . f(x, y)V f(x, y + 1);

3. the (infinite) bottom row of the corridor is tiled only with t⊥:

∀x ∈ N . f(x, 0) = t⊥;

4. the (infinite) top row of the corridor is tiled only with t⊤:

∀x ∈ N . f(x, n− 1) = t⊤.

Given a tiling structure T (Definition 51), the corridor tiling
problem is the problem of checking whether there exists a tiling (Def-
inition 52) for T . This problem is known to be PSPACE-complete
[195, 152].

We prove the PSPACE-hardness of the satisfiability problem for
LTLEBR+P by reducing the corridor tiling problem to it. The proof
basically defines a correspondence between tilings for the tiling struc-
ture T (see Definition 51) and models, that is, infinite sequences of
states, of an LTLEBR+P formula built starting from T .

Theorem 38. The satisfiability problem of LTLEBR+P is PSPACE-
hard.

Proof. Given a tiling structure T = ⟨T , t⊥, t⊤, H, V , n⟩, we build a
formula ϕT of LTLEBR+P such that there is a tiling f for T if and
only if there is a model σ for ϕT .
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Figure 7.6: Correspondence between a tiling f of T and a model σ
of ϕT .

The correspondence between a tiling f for T and a model σ for
ϕT is shown in Fig. 7.6. The first state of σ corresponds to the
bottom-left tile of the corridor, that is, the tile at coordinates (0, 0);
the second state of σ corresponds to the tile at coordinates (0, 1);
the n-th state of σ corresponds to the tile at coordinates (1, 0), and
so on and so forth. Formally, for all i ∈ N, σi is in correspondence
with f(x, y) where x = ⌊ in⌋ and y = (i mod n).

We will define ϕT as a formula over the set of atomic proposition
AP = T ∪{b⊥, b⊤}, where T is the set of tiles of the tiling structure
T , and b⊥ and b⊤ are two special variables for the bottom and top
border of the corridor. We build it step-by-step by introducing all
its components (conjuncts) separately:

• mutual exclusion: each state of σ can contain at most one tile:

G(
⋀︂

t,t′∈T ,t′ ̸=t

¬(t ∧ t′))

• no empty cells: each state must contain at least one tile:

G(
⋁︂
t∈T

t)

• horizontal constraint : for each i ∈ N, the tile at state i must
be in horizontal relation with the tile at state i + n, that is,
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the one to its right in the corridor:

G(
⋁︂

(t,t′)∈H

(t ∧ Xnt′))

• top border : the variable b⊤ is true at all and only the positions
of σ corresponding to the top border of the corridor:

G[0,n−2]¬b⊤ ∧ Xn−1b⊤ ∧ G(b⊤ ↔ Xnb⊤)

• bottom border : the variable b⊥ is true at all and only the posi-
tions of σ corresponding to the bottom border of the corridor:

b⊥ ∧ G(b⊤ ↔ Xb⊥)

• vertical constraint : for each i ∈ [0, n − 1), that is, for all the
tiles except for the ones in the top border, the tile at state i
must be in vertical relation with the tile at state i+1, that is,
the one above it in the corridor:

G(¬b⊤ →
⋁︂

(t,t′)∈V

(t ∧ Xt′))

• top row constraint : all the states of σ corresponding to the top
border of the corridor must satisfy t⊤:

G(b⊤ → t⊤)

• bottom row constraint : all the states of σ corresponding to the
bottom border of the corridor must satisfy t⊥:

G(b⊥ → t⊥)

The formula ϕT is the conjunction of all the above formulas. It is
easy to see that T has a tiling f if and only if ϕT has a model σ, that
is, if and only if ϕT is satisfiable. Moreover, since by Definition 51
the number n is encoded in unary, and since the bounded operators
of LTLEBR+P are only shortcuts (e.g., Xnp has dimension n), the size
of ϕT is polynomial in the size of T . Therefore, the proposed reduc-
tion works in polynomial time. Since the corridor tiling problem is
PSPACE-complete, we can conclude that the satisfiability problem
of LTLEBR+P is PSPACE-hard.
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We now prove that the realizability problem of LTLEBR+P is
EXPTIME-hard by means of a reduction from the corridor tiling
game, which is the two-players variant of the tiling problem of Def-
inition 52. Tiling games extend tiling problems by considering two
players: Constructor, whose goal is to build a tiling for the tiling
structure T , and Saboteur, trying to prevent this from happening.

The two players play one at a time (with Constructor being
the first one to play), choose a tile from T and position it on the
tiling structure T in a precise order: the first position is the one
at coordinates (0, 0) (see Fig. 7.6), the second position is the one at
coordinates (0, 1), and so on and so forth. When a column is entirely
tiled, the game proceeds on the next column. If there is no tile fitting
the next position or the definition of tiling (Definition 52) is violated,
then Saboteur wins. Otherwise, that is, in the case the game goes
on forever, Constructor wins. The problem is EXPTIME-complete
[41].

From an instance of the corridor tiling game, we will build a
corresponding LTLEBR+P formula which is realizable if and only if
the tiling game is won by Constructor. In doing that, we will make
use of the definition of ϕT from the proof of the PSPACE-hardness
of the satisfiability problem of LTLEBR+P.

The simplicity of the reduction comes from the similarities be-
tween the exponential corridor tiling game and the LTLEBR+P re-
alizability problem. In particular, besides the connection between
tilings for a tiling structure T and models for an LTLEBR+P formula,
that we already established in the previous proof, there is a straight-
forward correspondence between Constructor player and Controller
player, as well as between Saboteur player and Environment player.
Nevertheless, there are some issues that have to be solved in order
to design a correct reduction between the two problems:

1. in tiling games, the two players choose the tile to position
from the same set of tiles T , while in the realizability problem,
Environment and Controller player can choose the value only
for their own set of uncontrollable and controllable variables,
respectively;

2. in tiling games, exactly one player can decide which tile to
place in a given cell, while in the realizability problem each
state is determined by the choices of both players; since in the
proof of Theorem 38 we established a correspondence between
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cells in the corridor and states of a model of the LTLEBR+P
formula, this mismatch is present, and must be solved;

3. the player who moves first is different in the two problems: in
tiling games, Constructor moves first, while in the realizability
problem Environment moves first.

We now prove the EXPTIME-hardness of the realizability problem
of LTLEBR+P by dealing with all the above issues.

Theorem 39. The realizability problem of LTLEBR+P is EXPTIME-
hard.

Proof. Given a tiling structure T = ⟨T , t⊥, t⊤, H, V , n⟩, we build a
formula ϕgameT of LTLEBR+P such that Constructor wins the corridor

tiling game in T if and only if there exists a strategy of Controller
(Definition 41) for ϕgameT .

As anticipated, we reuse the LTLEBR+P formula ϕT introduced
in the proof of Theorem 38. The formula ϕgameT is defined over the
following sets of variables:

• U := {tu | t ∈ T} is the set of uncontrollable variables, and

• C := {tc | t ∈ T} ∪ {b⊤, b⊥} is the set of controllable variables.

In such a way, we solve the first of the above mentioned problems:
each player has its own set of variables, which corresponds to a copy
of the same set of tiles T . Note also that b⊤ and b⊥ are set to
be controllable. This is because we want formulas for the top and
bottom border to be non-blocking for the realizability of ϕgameT , that

is, we want ϕgameT to be realizable if and only if there exist some

values v⊤ and v⊥ such that ϕgameT [b⊤ ↦→ v⊤, b⊥ ↦→ v⊥] is realizable.

As it happened with ϕT , we build ϕgameT step-by-step.

• The tiling generated by the two players during the play has to
be a correct one (Definition 52). Here, we exploit formula ϕT
that we introduced in the proof of Theorem 38. Since now we
have not a single set of variables, but rather two disjoint sets
U and C, we impose the tiling to consist of tiles chosen either
by Controller or by Environment by means of the following
formula:

ϕT [t ↦→ tc ∨ tu]
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• Next, for each cell of the corridor, we force that exactly one
player can decide the tile to place on it and, at the next round,
the other player does the same, thus addressing the second of
the above-mentioned issues:

G(
⋁︂
t∈T

tu ↔ X
⋁︂
t∈T

tc) ∧ alternation between players

G(
⋁︂
t∈T

tu ↔
⋀︂
t∈T

¬tc) mutual exclusion between players

• Finally, environment player is the first who moves:
⋁︁
t∈T t

u.

We define ϕgameT as the conjunction of the three formulas above. It

is easy to see that ϕgameT is an LTLEBR+P formula and that it is real-
izable if and only if Constructor wins the corridor tiling game. As it
happens with ϕT , ϕ

game

T is polynomial in the size of the tiling struc-

ture T . Since the corridor tiling problem is EXPTIME-complete, this
proves the EXPTIME-hardness of the realizability from LTLEBR+P
specifications.

Given the EXPTIME-membership of the LTLEBR+P realizability
problem, we obtain two results: (i) the LTLEBR+P realizability prob-
lem is EXPTIME-complete, and (ii) the algorithm described in Sec-
tion 7.3.1 is optimal. This shows that LTLEBR+P is a syntactical
(safety) fragment of LTL with a lower complexity for the realizabil-
ity problem.

7.4 Experimental Evaluation

We implemented the proposed procedure (see Fig. 7.1) in a tool
called ebr-ltl-synth.1 The transformation from LTLEBR+P to de-
terministic SSA together with the translation to AIGER has been
implemented inside the nuXmv model checker [38]. As the back-
end for solving the safety game, we have chosen the SAT-based tool
demiurge [26].

We tested our tool on a set of scalable benchmarks divided in
four categories (the propositional atoms starting with the letter c
are controllable, while those starting with the letter u are uncon-
trollable):

1https://es-static.fbk.eu/tools/ebr-ltl-synth/

https://es-static.fbk.eu/tools/ebr-ltl-synth/
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1. the first category is generated by the realizable formula:

G(c0 ∧ XG(c1 ∧ · · · ∧ XnG(cn ∨ u) . . . ))

2. the second category is generated by the realizable formula:

G((c0 ∨ u0) ∧ XG((c1 ∨ u1) ∧ · · · ∧ XnG((cn ∨ un)) . . . ))

3. the third category is generated by the unrealizable formula:

G(c) ∧
n⋁︂
i=1

G(
i⋀︂

j=0

uj)

4. the fourth category is generated by the unrealizable formula:

c ∧
n⋀︂
i=1

Xi(ui ∨ ui+1)

Each category contains the respective scalable formula for n ∈ [1, 200],
for a total of 800 benchmarks, half of which are realizable and the
other half are unrealizable. We remark that the two unrealizable
categories are already in normal form, while this is not true for the
realizable categories.

We set a timeout of 180 seconds for each benchmark. We com-
pared ebr-ltl-synth with ltlsynt [116], strix [137] (the version
of SYNTCOMP 2020) and ssyft [201]. The first two tools solve the
realizability and synthesis problems for full LTL and are based on a
translation to parity games. ltlsynt uses SPOT [78] for efficient
translation and manipulation of automata. strix implements sev-
eral optimizations like specification splitting, that enables to split
the initial formula in safety, co-safety, Büchi, and co-Büchi subfor-
mulas and speeds up the process of solving of the game. On the
contrary, ssyft solves the realizability problem for specifications
written in Safety LTL (see Section 7.3.1 for a brief description of the
ssyft tool).

For realizability, we tested all the tools in their sequential con-
figurations. ltlsynt has two sequential configurations, which differ
on whether the split of actions into Controller’s and Environment’s
ones is performed before or after the determinization. strix has
two sequential modes as well, depending on the kind of search on
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the arena (depth-first for the first configuration and with a priority
queue for the second). ssyft and ebr-ltl-synth have only one
configuration.

Figure 7.7 shows the outcomes of the comparison between ebr-
ltl-synth and the best configuration of ltlsynt: it can be clearly
seen that, for both realizable and unrealizable formulas, ltlsynt
presents an exponential blow-up in the solving time that is avoided
by ebr-ltl-synth. Figure 7.8 compares ebr-ltl-synth with the
best configuration of strix: while for the majority of realizable for-
mulas strix reaches a timeout, it is interesting to note that for the
unrealizable benchmarks the difference between the solving time of
the two tools is linear, mostly showing a 10x improvement in favor
of ebr-ltl-synth. The survival plots for the set of realizable and
unrealizable scalable benchmarks are shown in Figs. 7.9 and 7.10, re-
spectively. The better performance of ebr-ltl-synth with respect
to ltlsynt and strix is most likely due to the fact that the sym-
bolic representation of safety automata used by ebr-ltl-synth is
more succinct than the representation of the arenas for parity games
used by the other two tools. Moreover, ltlsynt and strix are tools
for full LTL realizability and they are based on parity games: in the
general case, the parity objective (that ltlsynt and strix have to
guarantee during the game) is more complex than the safety objec-
tive, which is the one used by ebr-ltl-synth.

The outcomes of the comparison between ebr-ltl-synth and
ssyft are shown in Fig. 7.11. The three lines near the sides of the
figure correspond to timeouts (the solid black line), memouts for
unrealizable benchmarks and memouts for realizable benchmarks
(the dotted lines). It can be noticed that ssyft reaches a memory
out for the vast majority of benchmarks. For instance, on both the
realizable categories, ssyft reaches the first memout with n = 7.
As for the unrealizable benchmarks, on the third category, ssyft
reaches the first memout with n = 36, while for the fourth category
with n = 59. This is due to mona, which is not able to build the
(explicit) DFA for the (negation of the) initial specification2. This is
an important hint about the use of fully symbolic techniques for the
representation of automata, like the one of ebr-ltl-synth, as in
many cases they can avoid an exponential blowup of the automata’
state space. The survival plot between ebr-ltl-synth and ssyft

2We point out that in some cases, like in the fourth category for n ≥ 60,
mona’s memouts are due to its parser.
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Figure 7.7: ebr-ltl-synth vs
ltlsynt (first conf.) on all scal-
able benchmarks.

Figure 7.8: ebr-ltl-synth vs
strix on all scalable bench-
marks.

Figure 7.9: Survival plot for re-
alizable scalable benchmarks.

Figure 7.10: Survival plot for un-
realizable scalable benchmarks.
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Figure 7.11: ebr-ltl-synth vs
ssyft on scalable benchmarks.

Figure 7.12: Survival plot for
ebr-ltl-synth and ssyft on
scalable benchmarks.

Figure 7.13: Survival plot for
SYNTCOMP benchmarks.

Figure 7.14: Survival plot for
ebr-ltl-synth and ssyft on
SYNTCOMP benchmarks.
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Figure 7.15: ebr-ltl-synth vs
ltlsynt on normalized scalable
benchmarks.

Figure 7.16: ltlsynt on original
scalable benchmarks vs ltlsynt
on normalized scalable bench-
marks

Figure 7.17: ebr-ltl-synth vs
strix on normalized scalable
benchmarks.

Figure 7.18: strix on original
scalable benchmarks vs strix on
normalized scalable benchmarks
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Figure 7.19: ltlsynt on origi-
nal SYNTCOMP benchmarks vs
ltlsynt on normalized SYNT-
COMP benchmarks.

Figure 7.20: strix on original
scalable benchmarks vs strix on
normalized scalable benchmarks

Figure 7.21: ssyft on original
scalable benchmarks vs ssyft on
normalized scalable benchmarks

Figure 7.22: ssyft on orig-
inal SYNTCOMP benchmarks
vs ssyft on normalized SYNT-
COMP benchmarks
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is shown in Fig. 7.123.
In addition to the previous scalable benchmarks, we run the four

tools on the benchmarks of the 2020 edition of the Reactive Syn-
thesis Competition (SYNTCOMP 20204) that belong to LTLEBR+P,
which consists of 29 benchmarks. The survival plot showing the
comparison with ltlsynt and strix is shown in Fig. 7.13, while
the comparison with ssyft is shown in Fig. 7.14. It is interesting
to see that, on the SYNTCOMP benchmarks, the results of ebr-
ltl-synth and ssyft are comparable: likely, this could depend on
the simple structure of the considered SYNTCOMP benchmarks,
that have only few temporal operators, in most cases globally (G)
operators.

As for the synthesis problem, once a specification is found to be
realizable, all the tools except for ssyft produce a strategy as a
witness: this strategy is in the form of an and-inverter graph whose
input bits are only the starting uncontrollable variables. Often, such
a strategy can be minimized by using logic synthesis tools (like abc
[32]) as black-box. In the particular case of ebr-ltl-synth, ltl-
synt and strix, they all use a separate logic synthesizer as black
box, with different configurations to minimize the strategy. There-
fore, we do not compare the size of the resulting strategies, since such
a comparison would add nothing about the methods implemented
by the tools but would rather compare their backends. The only ex-
ception is strix, which, before applying the minimization, extracts
the strategy in form of an incompletely specified Mealy machine, in
the attempt to synthesize circuits of smaller size [137, 2].

7.4.1 Normalized Benchmarks

One could wonder how the transformation from LTLEBR+P to normal
form (which is represented by the first two steps in Fig. 7.1) impacts
the performance and how much, instead, the good performance of
our tool is due to the symbolic (and obviously deterministic) rep-
resentation of the automaton. In order to answer this question, we
transformed to normal form (see Definition 47) the benchmarks of

3The reason why we do not have a single survival plot comparing all the four
tools is that ssyft could not have been compiled for the same platform as the
others, due to issues with its source code.

4The official website of SYNTCOMP is the following: http://www.syntcomp.
org/

http://www.syntcomp.org/
http://www.syntcomp.org/
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all the four scalable categories that we described above. We run the
four tools on this new set of benchmarks.

Fig. 7.15 shows the comparison between ebr-ltl-synth and
ltlsynt on the normalized benchmarks. First of all, we remark
that the two unrealizable categories are already in normal form,
while this is not true for the other two (realizable) categories. By
comparing Fig. 7.7 and Fig. 7.15, we can notice that, while there
is no worsening of performance of ebr-ltl-synth over the already
normalized unrealizable formulas, a lot of timeouts of ltlsynt for
non-normalized realizable formulas become faults on normalized for-
mulas. By fault we mean an error of the tool, like a segmentation
fault or a maximum call stack size exceeded error of the parser. For
ltlsynt (and for strix as well) these faults are indeed due to the
parser, which is not able to deal with normalized formulas, which
have a lot of nested next with respect to the non-normalized ones.

Fig. 7.16 shows the comparison between ltlsynt executed on
the original benchmarks and the same tool run over the normal-
ized benchmarks. This comparison of course involves only the two
realizable categories, where the non-normalized version is different
from the normalized one. In the top-right corner, on the intersection
between the timeout line and the fault line, there are all the formu-
las that reach a timeout when not normalized but result in a fault
when normalized. In this plot, an interesting trend is the one of the
benchmarks of the first category (which corresponds to the orange
line in the middle of the plot), on which ltlsynt reaches the first
timeout with n = 47 on the original benchmarks but with n = 28
on the normalized benchmarks. Moreover, from Fig. 7.16, we clearly
see an exponential worsening of the performance, when the formula
is normalized.

The comparison between ebr-ltl-synth and strix on the nor-
malized benchmarks is shown in Fig. 7.17. Similarly, Fig. 7.18 shows
the times of strix on the non-normalized and the normalized bench-
marks. The plots confirm the fact the normalized does not improve
the solving time of the tool, but on the contrary it worsen the perfor-
mance. We can draw similar conclusions for ssyft (see Fig. 7.21).

We transformed into normal form also the SYNTCOMP bench-
marks. Among the 29 SYNTCOMP benchmarks that belong to
LTLEBR+P, in 4 benchmarks the pastification step introduces addi-
tional past operators to the normal form. Since the other three tools
do not deal with past operators, the normalization of these 4 formu-
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las could not be included in the comparison. Fig. 7.19 and Fig. 7.20
show the comparison between ltlsynt on non-normalized and nor-
malized SYNTCOMP benchmarks and strix on non-normalized
and normalized SYNTCOMP benchmarks. In this case, the perfor-
mance are comparable, since almost all the dots are placed on the
diagonal line. Also in this case, we can make similar observations
for ssyft (see Fig. 7.22).

7.5 Conclusions

In this chapter, we focused on the realizability and reactive synthesis
problems for LTLEBR+P. The main contribution is a fully symbolic
translation from any LTLEBR+P formula to a deterministic symbolic
safety automaton on infinite words. The process applies a pastifica-
tion step and a set of rules to reach a normal form for LTLEBR+P
formulas. The realizability is then decided by solving a safety game
on the arena represented by the automaton. We first showed that
realizability for LTLEBR+P belongs to EXPTIME. The problem is
indeed EXPTIME-complete, as we proved. Then, we implemented
the proposed procedure in a tool, whose experimental evaluation
revealed very good performance against tools for realizability and
synthesis of full LTL and Safety LTL specifications.

As a future development of this line of work, we believe that the
translation from LTLEBR+P to deterministic SSA may provide many
benefits in the context of symbolic model checking as well, since the
search of the state space could benefit from a deterministic repre-
sentation of the automaton for the formula [173]. On the automata
construction side, an interesting development would be to consider
the bounded operators as primitives, without, for instance, expand-
ing Xiα into i nested next operators. Last but not least, we aim
at checking whether the synthesis problem for more expressive log-
ics, like, for instance, LTL, can be reduced to the synthesis problem
for LTLEBR+P, for example checking whether it is possible to use
LTLEBR+P for solving the safety problems originated from bounded
synthesis techniques.



CHAPTER

8

REALIZABILITY OF
GR-EBR SPECIFICATIONS

In Section 3.1 and Chapter 7, we have introduced the logic of LTLEBR+P,
we have shown that it allows one to express any safety language de-
finable in LTL+P and we provided an efficient, fully-symbolic algo-
rithm for reactive synthesis.

In this chapter, we focus on realizability of GR-EBR (Generalized
Reactivity(1) LTLEBR+P, see Section 3.3), an extension of LTLEBR+P
with fairness conditions, assumptions, and guarantees. The logic
of GR-EBR preserves the main strength of LTLEBR+P, that is, ef-
ficient realizability, and makes it possible to specify properties be-
yond safety. We study the problem of reactive synthesis for GR-EBR
and devise a fully-symbolic algorithm that reduces it to a number
of safety subproblems. To ensure soundness and completeness, we
propose a general framework for safety reductions in the context of
realizability of (fragments of) LTL+P. The experimental evaluation
shows the feasibility of the approach.

245
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8.1 Overview

In Section 5.3, we have seen that one of the most important problems
in formal methods and requirement analysis is establishing whether
a specification over a set of controllable and uncontrollable actions
is implementable (or realizable), that is, whether there exists a con-
troller that chooses the value of the controllable actions and satis-
fies the specification, no matter what the values of uncontrollable
actions are. This problem has been formalized in the literature un-
der the name of realizability [43]. The very close problem of reac-
tive synthesis aims at synthesizing such a controller, whenever the
specification is realizable. Usually, these problems are modelled as
two-player games between Environment, who tries to violate the
specification, and Controller, who tries to fulfill it. Realizability is
known to have a very high worst-case complexity. In particular, it
has a non-elementary lower bound for S1S specifications [36], and
it is 2EXPTIME-complete for LTL+P specifications [160, 164] (see
Proposition 14).

In order to apply realizability and reactive synthesis in real-world
scenarios, research has focused on the identification of fragments of
logics like S1S and LTL+P, with a limited expressive power, for which
realizability can be solved efficiently.

A well-known example is Generalized Reactivity(1) logic (GR(1),
for short) [25] (recall Section 5.3.8). In this fragment, a specification
is syntactically partitioned into assumptions about the environment
and guarantees for the controller. Both of them are either Boolean
formulas (α) or safety formulas (Gα) or conjunctions of recurrence
formulas (

⋀︁n
i=1 GFαi). The dichotomy between assumptions and

guarantees reflects the way a system engineer usually formalizes sys-
tem’s requirements, which is summarized by the following sentence:
“the controller has to behave in conformance to the guarantees, un-
der the given assumptions on the environment”.

On a different direction, other approaches focused on safety frag-
ments of LTL+P [201, 46]. In particular, in Section 3.1 we intro-
duced the logic of Extended Bounded Response LTL+P (LTLEBR+P,
for short), a safety fragment of LTL+P that allows for a fully sym-
bolic compilation of formulas into deterministic automata (recall
Chapter 7). Such a feature contributes to a great improvement in
solving time for the synthesis problem. Moreover, LTLEBR+P has
a well-established expressiveness: LTLEBR+P can define exactly the
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set of safety languages definable in LTL+P.
A second line of research on reactive synthesis focuses on finding

good algorithms for the average case. Among these, an important
class of algorithms comprises the so-called safety reductions, which
reduce the realizability problem of the starting formula to a sequence
of subproblems over safety formulas, by bounding some behaviors
of the former (e.g., the visits to the rejecting states of the corre-
sponding automaton) by some integer k. The rationale behind these
techniques is that a safety problem is usually much simpler to solve,
since it amounts to a strong reachability problem [26]. This is in
turn inspired by safety reductions for the model checking problem,
where the validity of an LTL+P formula over a Kripke structure is
reduced to checking the reachability of a given error state [57, 15];
one example is the K-Liveness algorithm (Section 5.2.6). Usually,
safety reductions (both for realizability and for model checking) are:
(i) sound, meaning that a positive answer to any of the subproblems
implies a positive result of the starting formula, and (ii) complete,
ensuring that there exists an upper bound µ such that, if the kth

subproblem has a negative answer for all k ≤ µ, then also the result
of the starting formula is negative. Important examples of safety
reductions for realizability are the works on bounded synthesis [92]
(recall Section 5.3.6), which are based on the pioneering work on
Safraless algorithms of [128], and all the different encodings pro-
posed for solving it [88].

8.1.1 Contributions

The main contributions of this chapter are the following ones. First,
we devise a novel framework for deriving complete safety reductions
in the context of realizability of (fragments of) LTL+P. A notable
feature of the framework is that it provides a link to safety reduc-
tions for the model checking problem and proves that if a reduction
is complete for model checking, then it is also complete for realiz-
ability. On one hand, this allows one to reason on Kripke structures
(Definition 31) instead of on strategies (Definition 41), which is sim-
pler; on the other hand, it enables the use of some reductions already
exploited in model checking for realizability, provided that they con-
form to the framework.

Second, the proposed framework is used to derive a complete
safety reduction for the realizability problem of GR-EBR. We recall
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that a GR-EBR formula is of type:

(ψ1
ebr ∧

m⋀︂
i=1

GFαi)→ (ψ2
ebr ∧

n⋀︂
j=1

GFβj)

for some m,n ∈ N, ψ1
ebr, ψ

2
ebr ∈ LTLEBR+P and αi, βj ∈ LTL+PP, for

each i, j ∈ N. We refer to Definition 23 for more details.
We use such a reduction as the core of an algorithm for GR-EBR

realizability, which, at each iteration, builds a safety sub-problem
and checks for its realizability. If it returns a positive result, then
the initial formula is realizable as well; otherwise, it continues with
the next iteration. If the upper bound given by the reduction has
been reached, the algorithm outputs the unrealizability of the initial
formula. As a matter of fact, the upper bound is doubly exponential
in the size of the formula and thus prohibitively large. For this
reason, in practice, it is useful to use the algorithm in parallel with
another one checking for the unrealizability of the formula. The first
that terminates stops the other and, thus, the entire procedure. A
crucial property of the algorithm is that the realizability check of
each safety sub-problem is performed in a fully symbolic way, thus
retaining the distinctive feature of LTLEBR+P.

Last but not least, we provide an implementation of the algo-
rithm as a prototype tool called grace (GR-ebr reAlizability ChEcker).
The experimental evaluation shows good performance against tools
for full LTL+P synthesis.

8.1.2 Related work

GR(1) (Generalized Reactivity(1)) has been introduced in [158, 25]
(recall Sections 2.4.5 and 5.3.8). It is known that GR(1) is a good
candidate for writing specifications of real-world scenarios, with a
relatively low complexity: the realizability problem can be solved
with at most a quadratic number of symbolic steps in the size of
the specification [25]. On the other hand, GR(1) presents some re-
strictions that limit its use as a specification language: we refer to
Section 3.3.3 to a detailed comparison between the expressive power
of GR(1) and GR-EBR.

The (strict) realizability problem for GR(1) is solved in [25] by
building a symbolic arena (called game structure) and by solving
a fixpoint computation over it, that requires O(N2) symbolic op-
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erations, where N is the size of the specification (we refer to Sec-
tion 5.3.8 for more details). In this chapter, we follow a different
approach based on a reduction to safety, that generates a sequence
of deterministic safety automata over which the corresponding game
can be solved with at most a linear number of symbolic steps.

In [153], Morgenstern and Schneider identify a syntactical frag-
ment of LTL+P, whose formulas correspond to deterministic Büchi
automata. The fragment is defined in such a way that it corresponds
to the temporal hierarchy defined in [140] (as a matter of fact, each
formula of GR-EBR can be transformed into an equivalent one of
that fragment by expanding bounded operators). Realizability is
solved by exploiting known algorithms like subset construction and
Miyano-Hayashi breakpoint construction for the determinization of
the automata. On the contrary, the compilation of GR-EBR to au-
tomata is fully symbolic, which has been proved in [46] to be a key
point for performance, compared to classical algorithms for deter-
minization.

Recall from Section 5.3.6 that Bounded synthesis [92, 88] belongs
to the class of Safraless techniques [128] (Section 5.3.5), and it con-
sists in bounding the number of times Controller is forced to visit a
rejecting state of a Universal co-Büchi automaton (UCA, for short)
for the initial formula. This corresponds to a safety automaton,
which can be either (i) made deterministic by a suitable general-
ization of the classical subset construction [90, 81], or (ii) encoded
into a constraint system [92, 88] (e.g., SAT- or SMT-based) which
bounds also the size of a candidate controller (this also allows one to
tackle undecidable problems, for instance in the case of distributed
or parametric synthesis). Both choices work for the whole class of
UCA, and thus for full LTL+P. A significant drawback of such an
approach is that the UCA, which can be exponentially larger than
the initial specification, is explicitly represented. Moreover, in the
first case, the algorithm for the determinization turns out to be quite
complex, since each state of the resulting automaton is actually a
function. This can also result into a very large state space, that
can be tackled by exploiting either antichains [90] or BDDs [81]. In
contrast, as we will see, we define a reduction tailored to GR-EBR
formulas that allows us to exploit the LTLEBR+P transformations
introduced in [46] for a fully symbolic mapping of the initial formula
directly into a sequence of symbolic safety automata. In particu-
lar, we never build any explicit-state automaton and we avoid the
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subsequent use of determinization algorithms.

Organization

The rest of the chapter is organized as follows. The framework for
deriving complete reductions is presented in Section 8.2. In Sec-
tion 8.3 we describe the algorithm for the realizability of GR-EBR
specifications. The outcomes of the experimental evaluation are re-
ported in Section 8.4. Finally, in Section 8.5, we point out some
interesting future research directions.

8.2 A Framework of Safety Reductions
for Realizability

The central question of this section is: how can we obtain a complete
safety reduction for the realizability problem of specifications written
in (fragments of) LTL+P? In the following, we propose a framework
to answer it.

8.2.1 A sound but not complete safety reduction

Devising a sound and complete safety reduction for realizability
is not a trivial task. Consider for example LTL+P. One could
be tempted to define a safety reduction that, given any formula
ϕ ∈ LTL+P, turns ϕ in negated normal form (NNF, for short) and
then transforms each F and U into the corresponding k-bounded op-
erator, that is F[0,k] and U[0,k], respectively, obtaining a safety for-
mula (see Section 2.4.4). The resulting reduction would be sound,
since the resulting formula implies the starting one, but it would not
be complete. Consider for example the formula ϕ := Gu↔ Gc. The
formula obtained by means of this safety reduction is:

ϕk := (F[0,k]¬u ∨ Gc) ∧ (F[0,k]¬c ∨ Gu)

Although ϕ is realizable, ϕk is unrealizable for each k ∈ N. In fact,
Environment can choose u in the first k steps and ¬u in the step
k+1: in this way, it falsifies both F[0,k]¬u and Gu. Since Controller
can force exactly one between the formulas Gc and F[0,k]¬c, we have
that ϕk is unrealizable, and therefore this particular safety reduction
is not complete for realizability.
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8.2.2 Definition of safety reduction

The core and the main novelty of our framework is a link with safety
reductions for model checking: in order to design a complete reduc-
tion for the realizability problem, one can prove that it is complete
for the model checking problem and then use our framework to de-
rive completeness for realizability. On one hand, this allows to prove
completeness at the level of model checking, which is simpler than
proving completeness for realizability. For example, reasoning over
infinite paths is in general simpler than reasoning over strategies and,
thus, sets of infinite paths. On the other hand, this opens the pos-
sibility of using existing safety reductions already devised for model
checking for realizability as well. We start by defining what is a
safety reduction in the context of our framework.

Definition 53 (Safety reduction). Let S ⊆ LTL+P be a fragment
of LTL+P. A safety reduction for S is a function J·K such that, for
each formula ϕ ∈ S over the alphabet Σ, it holds that JϕK = {ϕk}k∈N,
where ϕk is a safety formula over the alphabet Σ such that ϕk → ϕ,
for any k ∈ N. With JϕKk, we will denote the formula ϕk of the set
above.

8.2.3 Link between realizability and model check-
ing

The rationale behind the link between realizability and model check-
ing is the following one: since we can easily view Mealy machines
(Definition 44) as a particular type of Kripke structures (Defini-
tion 31) and viceversa, and since by the Finite Model Property of
LTL+P realizability (Proposition 12) we can restrict realizability to
the search of finite strategies representable by Mealy machines, the
realizability problem of the LTL+P formula ϕ can be reduced to
checking if there exists a Mealy machine Mg such that M ′

g |= Aϕ,
where M ′

g is the Kripke structure corresponding to Mg.
The Kripke structure M ′

g corresponding to the Mealy machine

Mg = (2U , 2C , Q, q0, δ) is defined asM ′
g = (2U∪C , Q′, I ′, T ′, L′) where:

1. Q′ = Q× {qU | U ∈ 2U} × {qC | C ∈ 2C};

2. I ′ = {(q0, qU , qC) ∈ Q′ | δ(q0, U) = (C, q′) for any U ∈ 2U , C ∈
2C and q′ ∈ Q},
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3. T ′ = {((q, qU , qC), (q′, qU ′ , qC′)) | δ(q, U) = (C, q′) for any U,U ′ ∈
2U , C, C ′ ∈ 2C , and q, q′ ∈ Q′} and

4. L′((q, qU , qC)) = U ∪ C.

The Kripke structure M ′
g is such that each trace of M ′

g corresponds
to a word of Mg, and viceversa.

In proving the completeness theorem, we will abstract from the
concrete safety reduction and give the conditions for a general safety
reduction J·K (as defined in Definition 53) to be complete. These
conditions are formalized in Definition 54.

Definition 54 (Sound and Complete safety reduction). Let S ⊆
LTL+P be a fragment of LTL+P, ϕ a formula in S, and J·K a safety
reduction for S. We say that J·K is µ-complete, for a given function
µ : N→ N if and only if, for all ϕ ∈ S and for all Kripke structures
M :

M |= Aϕ ⇔ ∃k ≤ µ(|M |) . M |= AJϕKk

Example Let J·Kbo and JϕKkbo be the reduction and the formula
ϕk described in Section 8.2.1, respectively (bo stands for bounded
operators). Since JϕKkbo contains only Boolean operators, the next
temporal operator (coming from the expansion of the bounded op-
erators) and universal temporal operators (i.e., G and R), it is a
safety formula [177] and thus J·Kbo is a safety reduction according
to Definition 53. We have already seen that the reduction is sound
but not complete for realizability. According to our framework, this
reduction is not even complete for the model checking problem (i.e.,
with respect to Definition 54), and indeed a counterexample can be
found on Figure 1 in [57].

We can finally state the main theorem of our framework, which
uses Definition 54 and Proposition 12 in order to establish that if a
safety reduction is complete for the model checking problem, then
it is complete for the realizability problem as well.

Theorem 40 (Soundness and Completeness for LTL+P Realizabil-
ity). Let S ⊆ LTL+P be a fragment of LTL+P, ϕ ∈ S a formula over
the input alphabet U and output alphabet C (with n = |ϕ|) and J·K a
µ-complete safety reduction for S, for a given function µ. It holds
that:

ϕ is realizable ⇔ ∃k ≤ µ(2|U| · 2|C| · 22
c·n

) . JϕKk is realizable
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Proof. We first prove the soundness, which corresponds to the right-
to-left direction. Suppose there exist a k ≤ µ(2|U| · 2|C| · 22c·n) such
that JϕKk is realizable. Then, there exists a strategy g : (2U )+ → 2C

such that L(g) ⊆ L(JϕKk). By Proposition 12, there exists a Mealy
machine Mg = (2U , 2C , Q, q0, δ) with input alphabet 2U and output
alphabet 2C such that L(Mg) ⊆ L(JϕKk). Starting from Mg, let
M ′
g = (2U∪C , Q′, I ′, T ′, L′) be the corresponding Kripke structure.

The Kripke structure M ′
g is such that each trace of M ′

g corresponds
to a word of Mg, and viceversa. Therefore all the traces π of M ′

g are

such that L′(π) |= JϕKk, that is M ′
g |= AJϕKk. Since by hypothesis

J·K is a µ-complete safety reduction, by Definition 54, it holds that
M ′
g |= Aϕ. This means that also L(Mg) ⊆ L(ϕ). Since Mg is a

Mealy machine, this implies that ϕ is realizable.
We now prove completeness, which corresponds to the left-to-

right direction. Suppose that ϕ is realizable. Since ϕ ∈ S and
since S ⊆ LTL+P, ϕ is an LTL+P formula as well. Therefore, by
Proposition 12, there exists a Mealy machine Mg with input alpha-
bet 2U and output alphabet 2C such that L(Mg) ⊆ L(ϕ) with at
most 22

c·n
states, for some constant c ∈ N. From Mg, we build an

equivalent Kripke structure M ′
g with input alphabet Σ′ = 2U∪C , as

described above for the soundness proof. It holds that M ′
g |= Aϕ.

Since by hypothesis J·K is a µ-complete safety reduction for S, and
since |Q′| = 2|U| · 2|C| · |Q| (where Q and Q′ are the set of states
of Mg and M ′

g, respectively), by Definition 54, there exists a k ≤
µ(2|U| · 2|C| · 22c·n) such that M ′

g |= AJϕKk. This means that also

L(Mg) ⊆ L(JϕKk). Since Mg is a Mealy machine, this means that
there exists a k ≤ µ(2|U| ·2|C| ·22c·n) such that JϕKk is realizable.

Novelty and Usage

As already mentioned before, a distinguished and important feature
of our framework is that it provides a link with safety reductions for
the model checking problem. This opens the possibility to use model
checking safety reductions for the realizability problem as well, pro-
vided that the reduction fulfills the requirements in Definition 54.
In the next sections, we will define a concrete safety reduction for
GR-EBR specifications that is complete with respect to Definition 54,
and we will use it for introducing a novel algorithm for GR-EBR re-
alizability. Using Theorem 40, we will derive a corollary for the
completeness of our algorithm.
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GR-EBR formula ϕ

check
realizability

of ϕ
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algorithm

check unre-
alizability
of ϕ with a
(terminat-
ing) tool
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if ϕ is

realiz-
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if ϕ is

unrealiz-

able

stop

stop

only in practice

Figure 8.1: High-level view of our procedure for the realizability of
GR-EBR formulas.

In practice

The upper bound for the value of µ(·) (after which we can answer
unrealizable) is doubly exponential in the size of the initial formula
and therefore, in practice, it is prohibitively large. It follows that
usually the completeness of a safety reduction can be exploited in
practice only for making sure that, starting from a realizable specifi-
cation, we will eventually find a k ∈ N such that the kth subproblem
is realizable. Therefore, like K-Liveness for model checking [57] (re-
call Section 5.2.6), we can use our algorithm in parallel with another
one that checks for the unrealizability of the specification. The first
that terminates stops the other and, thus, the entire procedure. The
high-level view of our procedure, which we will detail in the next sec-
tion, is summarized in Fig. 8.1. We remark that we cannot check
the unrealizability of ϕ by solving the dualized game (i.e., looking
for a Moore-type strategy of Environment) for ¬ϕ, because GR-EBR
and LTLEBR+P are not closed under complementation.
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8.2.4 Formalization of Bounded Synthesis

It is worth noting that also bounded synthesis techniques [92] can
be formalized in our framework. This family of techniques works
for the entire class of Universal co-Büchi Word automata (UCA, for
short), which subsumes LTL+P. However, in this part, we focus
only on bounded synthesis applied on LTL+P formulas. Given an
LTL+P formula ϕ, bounded synthesis algorithms build the Büchi
automaton A¬ϕ for the negation of ϕ (eq., the Universal co-Büchi
automaton for ϕ) and bound the number of times Controller player
is forced to visit the set of final states of the Büchi automaton A¬ϕ
(eq., the set of rejecting states of the Universal co-Büchi automa-
ton for ϕ). Consider the safety automaton Ak defined as A¬ϕ×Ck,
where Ck is the safety automaton corresponding to a counter that
increments if it visits a final state of A¬ϕ, retains its value other-
wise, and whose safe states are all those states where the counter
has value less than k. We define the set of safe states of Ak as the
set of final states of Ck. We can formalize bounded synthesis in our
framework by means of a safety reduction, that we call J·Kbs , defined
as follows: for any LTL+P formula ϕ and for any k ∈ N, we define
JϕKkbs to be any safety formula (not necessarily of LTL+P) such that
L(JϕKkbs) = L(Ak). Note that, since Ak is a safety automaton, JϕKkbs
is a safety formula as well (Section 2.4.4) and thus J·Kbs is a safety re-
duction (Definition 53). This reduction is also complete with respect
to Definition 54, as proved by the theorem below. An interesting fea-
ture is that this proof, which reasons on model checking (thanks to
Definition 54), amounts to prove the completeness of the K-Liveness
algorithm (Section 5.2.6, [57]), which is a simple but very efficient
algorithm for model checking based on safety reductions. From now,
with id : N→ N we denote the identity function.

Theorem 41. The safety reduction J·Kbs is id-complete.

By using the main theorem of our framework (Theorem 40), we
can prove the completeness of bounded synthesis for LTL+P [92, 88].
We remark that bounded synthesis works for the full class of UCA
and that this is the reason why here we obtain a smaller upper bound
with respect to [92, 90].

Corollary 10 (Completeness of Bounded Synthesis). Let ϕ be an
LTL+P formula over the set of variables Σ = U ∪ C. It holds that ϕ
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is realizable if and only if there exists k ≤ 2|U| · 2|C| · 22c·n such that
JϕKkbs is realizable.

In this paper, we do not consider the J·Kbs safety reduction, which
corresponds to bounded synthesis and works with full LTL+P, be-
cause we do not know yet if there exists a fully symbolic transla-
tion from any JϕKkbs to a safety automaton. Since we aim at using
symbolic techniques and since for LTLEBR+P there exists a fully sym-
bolic procedure for obtaining an equivalent deterministic automaton
(Chapter 7, [46]), we focus on fragments of LTL+P for which we can
use LTLEBR+P for this task. As we will see later in Section 8.3,
GR-EBR is one of these.

8.3 A Safety Reduction for GR-EBR

In this section, we describe the algorithm for solving realizability
of GR-EBR specifications. It consists in three steps. Firstly, we
build the product between the two symbolic and safety automata for
the safety (LTLEBR+P) parts of both assumptions and guarantees.
This product automaton has a GR(1) accepting condition (Defini-
tion 39), that is of the form

⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj , where each

αi and βj belongs to LTL+PP. The second step consists in a so-
called degeneralization, that, by using deterministic monitors, turns
the GR(1) accepting condition into a R(1) (Reactivity(1), for short)
condition (Definition 39), that is of the form GFα → GFβ, where
α, β ∈ LTL+PP. The third and last step, that is the core of the
procedure, reduces the realizability problem over the above automa-
ton to a sequence of safety synthesis problems, that is, realizability
problems over safety (and symbolic) automata Ak

safe , one for each
index k ∈ N. By introducing a concrete safety reduction J·Kebr for
GR-EBR, and by proving that it is complete with respect to Defi-
nition 54, we prove the completeness of the entire procedure. The
structure of the full procedure is depicted in Fig. 8.2.

At each step, our algorithm checks if Ak
safe is realizable, by solv-

ing a safety game. If this is the case, then, by Theorem 40, ϕ is
realizable as well. Otherwise, we increment k and continue with the
next iteration. Since J·Kebr is a complete safety reduction, by The-
orem 40, in the case ϕ is realizable, we will eventually find a k ∈ N
such that Ak

safe is realizable. If instead ϕ is unrealizable, then by
the same theorem: (i) in theory, we will eventually reach the upper



8.3 A Safety Reduction for GR-EBR 257

GR-EBR formula ϕ :=
(ϕ1ebr ∧

⋀︁m
i=1 GFαi)→ (ϕ2ebr ∧

⋀︁n
j=1 GFβj)

GR(1) acceptance condition:
· build A(ϕ1ebr) with safe states ¬error1
· build A(ϕ2ebr) with safe states ¬error2
· set objective to

⋀︁m
i=1 GF(αi ∧ ¬error1) →⋀︁n

i=1 GF(βj ∧ ¬error2)

⋀︁m
i=1 GF(αi ∧ ¬error1) →⋀︁n
i=1 GF(βj ∧ ¬error2)

· degeneralization of the
GR(1) objective

SSA for monitors M tot
α and M tot

β

(objective GFmtot
α → GFmtot

β )

· safety reduction for a given
k ∈ N of the R(1) objective

SSA for counter # with
safe states # < k

A(ϕ1ebr),
A(ϕ2ebr)

· compose ⊗

Ak
safe

· call safety synthesizer back-
end

is Ak
safe

realiz-
able?

output “ϕ is
realizable”

k++

is k
upper-
bound?

output “ϕ is
unrealizable”

yes no

yes

no

only in theory

Figure 8.2: Low-level view of the procedure for the realizability of GR-EBR formulas.
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bound of J·Kebr , (ii) or, in practice, the algorithm in parallel will
eventually terminate, stopping the entire procedure. Crucially, at
each step k ∈ N, the realizability check for Ak

safe is performed in a
fully symbolic way.

Finally, note that, as for now, there is no incrementality between
an iteration and the next one, because of the lack of incremental
safety synthesizers. The only point that we save between one itera-
tion and the next one is the construction of the two symbolic safety
automata, which is performed only once during the procedure.

8.3.1 The automaton with the GR(1) condition

In this part, we describe the first step of the algorithm. Starting from
a GR-EBR formula ϕ := (ϕ1ebr∧

⋀︁m
i=1 GFαi)→ (ϕ2ebr∧

⋀︁n
j=1 GFβj), the

objective is to obtain an automaton A such that: (i) it has a GR(1)
accepting condition, that is of the form

⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj ,

and (ii) it recognizes the same language of ϕ, i.e., L(ϕ) = L(A). In
order to do that, we first build the two symbolic safety automata for
the safety parts of both the assumptions and the guarantees, that is
for ϕ1ebr and ϕ2ebr. Since by definition both are LTLEBR+P formulas,
we use the transformation described in Section 7.2, to which the
reader is referred for more details.

From now on, let A(ϕ1ebr) and A(ϕ2ebr) be the automata for ϕ1ebr
and ϕ2ebr, respecively. Let Aϕebr

be the product automaton A(ϕ1ebr)×
A(ϕ2ebr). The question is how to set the acceptance condition ofAϕebr

such that the conditions (i) and (ii) of above are fulfilled. We answer
this question by examining how the automata A(ϕ1ebr) and A(ϕ2ebr)
are made internally. Take for example the formula Gp (for some
atomic proposition p ∈ Σ). The safety automaton corresponding to
this formula comprises an error bit as one of its state variables, let
us call it error, which is initially set to be false. The transition
function for error is deterministic and updates error to true if
¬p holds in the current state, or keeps its value otherwise. The set
of safe states comprises all and only those states in which error

is false. In a symbolic setting, this is expressed by the formula
G¬error. In this way, p is forced to hold constantly in all (and
only) the words accepted by the automaton.

A crucial property of each error bit is monotonicity : once error
is set to true, it can never be set to false again. Formally, given
a trace τ of the automaton, it holds that, if there exists i ≥ 0 such
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that τ(i) |= error, then τ(j) |= error, for all j ≥ i. Monotonicity
of the error bits allows us to express an accepting condition of type
G¬error in terms of GF¬error, by maintaining the equivalence.

Lemma 20 (Monotonicity of Error Bits). Each error bit is mono-
tone.

Proof. Consider a trace τ of an automaton with an accepting con-
dition of the type G¬error. If τ |= G¬error then of course τ |=
GF¬error. Suppose now that τ |= GF¬error. If by contradiction
we suppose that τ ̸|= G¬error, we have that there exists an i ≥ 0
such that τ(i) |= error. By the monotonicity property, this would
mean that also τ(j) |= error, for all j ≥ i, that is τ |= FGerror, but
this a contradiction with out hypothesis. Therefore, we proved that
changing the acceptance condition of an automaton from a G¬error
to GF¬error maintains the equivalence.

Let error1 and error2 be the error bits of A(ϕ1ebr) and A(ϕ2ebr),
respectively. Let A∧→∧

ebr be the automaton obtained from Aϕebr
by

replacing its acceptance condition with the following GR(1) condi-
tion:

(GF¬error1 ∧
m⋀︂
i=1

GFαi)→ (GF¬error2 ∧
n⋀︂
j=1

GFβj) (8.1)

The intuition is that error1 and error2 keep track of the safety
parts of ϕ, that is ϕ1ebr and ϕ2ebr. The following lemma proves the
equivalence between ϕ and A∧→∧

ebr .

Lemma 21. Let ϕ be an GR-EBR formula. It holds that L(ϕ) =
L(A∧→∧

ebr ).

Proof. Let ϕ ∈ GR-EBR. ϕ is of the following form:

(ϕ1ebr →
m⋀︂
i=1

GFαi)→ (ϕ2ebr →
n⋀︂
j=1

GFβj)

By the theorems proved in [46], it holds that L(ϕ1ebr) = L(A(ϕ1ebr))
and L(ϕ2ebr) = L(A(ϕ2ebr)).

Consider first the left-to-right direction. Let σ ∈ L(ϕ). We
prove that σ ∈ L(A∧→∧

ebr ). Each σ ∈ L(ϕ) is such that: a. either
σ |= ¬ϕ1ebr ∨ ¬(

⋀︁m
i=1 GFαi), b. or σ |= ϕ2ebr ∧

⋀︁n
j=1 GFβj Recall that
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A∧→∧
ebr is defines as the product automaton A(ϕ1ebr) ×A(ϕ2ebr) with

the acceptance condition α defined as (GF¬error1 ∧
⋀︁m
i=1 GFαi)→

(GF¬error1 ∧
⋀︁n
j=1 GFβj).

Consider case a. If σ |= ¬ϕ1ebr ∨ ¬(
⋀︁m
i=1 GFαi), then the trace

induced by σ in A∧→∧
ebr is such that at least one of the following two

cases hold:

a.1. either ∃i ≥ 0 such that τ(i) |= error1, that is τ |= F(error1).
In this case, we exploit monotonicity of error1. Since τ |=
F(error1), it also holds that τ |= FG(error1), that is τ ̸|=
GF(¬error1). As a consequence, τ |= α, where α is the accep-
tance condition of A∧→∧

ebr , and thus σ ∈ L(A∧→∧
ebr ).

a.2. or τ |= ¬
⋀︁m
i=1 GFαi. In this case, of course, τ |= α (that

is, τ satisfies the acceptance condition of A∧→∧
ebr ), and thus

σ ∈ L(A∧→∧
ebr ).

Consider now the case b. If σ |= ϕ2ebr ∧
⋀︁n
j=1 GFβj , then σ |=

ϕ2ebr and σ |=
⋀︁n
j=1 GFβj . Therefore, the trace induced by σ in

A∧→∧
ebr is such that τ |= G(¬error2) ∧

⋀︁n
j=1 GFβj , that implies

that τ |= GF(¬error2) ∧
⋀︁n
j=1 GFβj . Therefore, τ |= α, and thus

σ ∈ L(A∧→∧
ebr ).

We now prove the opposite direction. Suppose that σ ∈ L(A∧→∧
ebr ).

We prove that σ ∈ L(ϕ). By definition of A∧→∧
ebr , it holds that the

trace τ induced by σ in A∧→∧
ebr is such that τ |= (GF¬error1 ∧⋀︁m

i=1 GFαi)→ (GF¬error2 ∧
⋀︁n
j=1 GFβj). We divide in cases:

c. either τ |= FGerror1 ∨ ¬
⋀︁m
i=1 GFαi,

d. or τ |= GF¬error2 ∧
⋀︁n
j=1 GFβj .

Consider case c. We divide again in cases:

c.1 if τ |= FGerror1, even more so it holds that τ |= Ferror1, that
is τ |= ¬G¬error1, and therefore σ |= ¬ϕ1ebr and σ ∈ L(ϕ).

c.2 if instead τ |= ¬
⋀︁m
i=1 GFαi, then of course σ |= ¬

⋀︁m
i=1 GFαi,

and σ ∈ L(ϕ).

Finally, consider the case d. If ϕ |= GF¬error2 ∧
⋀︁n
j=1 GFβj , then

τ |= GF¬error2 and τ |=
⋀︁n
j=1 GFβj . Since τ |= GF¬error2

and thanks to the monotonicity of error2, it can not exists an
i ≥ 0 such that τ(i) |= error2 (otherwise τ |= FGerror2, that is
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τ |= ¬GF¬error2, but this is a contradiction with our hypothe-
sis). Therefore, for all i ≥ 0 it holds that τ(i) |= ¬error2, that is
τ |= G(¬error2). Since τ is a trace induced by σ in A∧→∧

ebr , it follows
that σ |= ϕ2ebr. Since it also holds that σ |=

⋀︁n
j=1 GFβj , we have that

σ ∈ L(ϕ).

Optimization Instead of considering the acceptance condition de-
scribed in Eq. (8.1), we propose to repeat the error bits inside each
fairness condition.

(

m⋀︂
i=1

GF(αi ∧ ¬error1))→ (

n⋀︂
j=1

GF(βj ∧ ¬error2)) (8.2)

This may be helpful during the safety game solving, since it cre-
ates a redundancy that the solver can exploit during the search.
Obviously, this maintains the equivalence.

8.3.2 Degeneralization

The objective of this part is to transform the GR(1) accepting con-
dition of the automaton A∧→∧

ebr , that is of the form
⋀︁m
i=1 GFαi →⋀︁n

j=1 GFβj , into a condition of the form GFα → GFβ (also called
Reactivity(1) objective, R(1), for short). In this context, we will use
the term monitor as a synonym of deterministic symbolic automaton
(Definition 40).

Intuition In order to accomplish the task, for each αi (resp. for
each βi), we define a monitor Mαi (resp. Mβi) that is set to true
when αi (resp. βi) has been read and is reset to false when all the
αi (resp. βi) have been read. For this last condition, we define the
monitors M tot

α and M tot
β .

Monitors for the degeneralization Let Mαi and M tot
α be the

symbolic safety automata such that their input alphabet is 2Σ (where
Σ is the alphabet of the starting GR-EBR formula), their set of state
variables are {mαi} and {mtot

α }, respectively, all their reachable
states are safe states, and their transition relations are the following:
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init (mαi ) := 0
next (mαi ) := case

αi : 1
mtotα : 0

d e f au l t : mαi
esac

init (mtotα ) := 0
next (mtotα ) := case
mα1

∧ · · · ∧mαm : 1
d e f au l t : 0

esac
dumbline

We defineMβi andM
tot
β asMαi andM

tot
α , respectively, but with

αi substituted with βi and α substituted with β. Let Adegen be the
product between all the Mαi , Mβi , M

tot
α and M tot

β . Let AGF→GF
degen

be the automaton obtained from Adegen by replacing its accepting
condition with the Reactivity(1) condition GFmtot

α → GFmtot
β . We

can prove the following lemma, which states that this step of the
algorithm maintains the equivalence.

Lemma 22. L(A∧→∧
ebr ) = L(Aϕebr

×AGF→GF
degen ).

Proof. We prove separately the two directions. Consider first the
right-to-left direction. Let σ be an infinite word of L(Aϕebr

×AGF→GF
degen ).

Then σ is a word in L(Aϕebr
). Moreover, σ is a word in L(AGF→GF

degen )

and thus there exists a run τ induced by σ such that τ |= GFmtot
α →

GFmtot
β , that is, τ |= FG¬mtot

α ∨ GFmtot
β . We divide in cases:

• if τ |= FG¬mtot
α , then by the semantics of the temporal opera-

tors F and G, there exists an i ≥ 0 such that for all j ≥ i, τj |=
¬mtot

α . By construction of the monitors mtot
α , this means that

there exists an i ≥ 0 such that for all j ≥ i, τj |=
⋁︁m
k=1 ¬mαk .

This implies that, there exists a k ∈ [1,m] and an i ≥ 0 such
that for all j ≥ i, such that τj |= ¬mαk . Indeed, suppose by
contradiction that it is not so: then for all k ∈ [1,m], there ex-
ists infinitely many positions i ≥ 0 such that τi |= mαk . This
would mean that the monitor M tot

α is set to true infinitely
many times, that is GFmtot

α , but this is a contradiction with
our hypothesis. Therefore, it holds that τ |=

⋁︁m
k=1 FG¬mαk ,

and thus also that τ |=
⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj . Overall,

since τ is induced by σ, we have that σ is a word of L(Aϕebr
)

that induces a run τ such that τ |=
⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj ,

that is σ ∈ L(A∧→∧
ebr ).

• If otherwise τ |= GFmtot
β , then there exists infinitely many

positions i ≥ 0 such that τi |= mtot
β . Moreover, it holds that

for all i1 ≥ 0 and for all i2 ≥ i1, if τi1 |= mtot
β and τi2 |= mtot

β ,
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then, for all 1 ≤ k ≤ n, there exists a i1 ≤ j ≤ i2 such that
τj |= mbk . Putting together these two points, we have that
for all 1 ≤ k ≤ n, there exists infinitely many i ≥ 0 such
that τi |= mbk . That is, τ |=

⋀︁n
k=1 GFmbk . By definition

of the monitors Mβi and since τ is induced by σ, we have
that σ is a word in L(Aϕebr

) that induces a run τ such that
τ |=

⋀︁m
i=1 GFαi →

⋀︁n
j=1 GFβj . That is, σ ∈ L(A∧→∧

ebr ).

The proof the left-to-right direction is specular, and therefore is
omitted from the presentation.

Related work Our degeneralization step is similar to the one pro-
posed in [22] for transforming a GR(1) condition to a one-pair Streett
condition, in the context of parity game solving. The main difference
is that, in this paper, we do not fix any order on the visits to the αi
(resp. βi). For example, M tot

α is set to true whenever all the αi have
been read, no matter the order. As noted in [83], this has the poten-
tial to be more effective than imposing an order to the visits (like in
[22]), for example in the case where the order is ⟨β1, β2, . . . , βn⟩ but
Controller can never satisfy fairness βi after having satisfied first the
fairness βi+1.

8.3.3 Reduction to Safety for R(1) objectives

In this part, we describe a complete safety reduction (see Defini-
tion 54) tailored for Reactivity(1) objectives. We will apply this re-
duction on the automaton AGF→GF

degen obtained from the previous step.
The intuition is to use a counter to count and limit the number of
positions, after a position in which mtot

β holds, in which mtot
α ∧¬mtot

β

holds. We define the counter as follows.

Definition 55 (Counter for the Reactivity(1) objective). Let Ak#→α,β
be the symbolic and deterministic safety automaton whose set of safe
states is represented by the formula G(#→

α,β < k) and whose transi-
tion relation is the following:

i n i t (#→α,β ) := 0
n e x t (#→α,β ) := c a s e

mtotβ : 0

mtotα : #→α,β + 1
d e f a u l t : #→α,β

e s a c
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We define Ak
safe := Aϕebr

×Adegen×Ak#→α,β , and we set the ac-

cepting condition of Ak
safe to be the one of Ak#→α,β , i.e., G(#

→
α,β ≤

#→
α,β < k). The automaton Ak

safe is a symbolic and determinis-
tic safety automaton, and therefore it can be used as an arena for
a safety game. In practice, we check the realizability of Ak

safe by
means of a tool for safety synthesis. We start with k = 0, and we
check the realizabilty of Ak

safe : if Controller has a strategy, than we
stop, otherwise we increment k and we repeat the cycle.

In order to prove that this step is sound and complete, we use
the framework described in Section 8.2. We call J·Kebr the safety
reduction described in this part. Since the framework works with
formulas rather than with automata, for all ϕ ∈ GR-EBR, we define
JϕKkebr to be any safety formula such that L(JϕKkebr ) = L(Ak

safe).
From now, with id : N→ N we denote the identity function.

Theorem 42. J·Kebr is a id-complete safety reduction for GR-EBR.

Proof. We have to prove that, for all ϕ ∈ GR-EBR, for all Kripke
structures M and for all k ∈ N, it holds that:

M |= Aϕ ⇔ ∃k ≤ id(|M |) . M |= AJϕKkebr

We prove separately the two directions. Consider first the sound-
ness which corresponds to the right-to-left direction. Suppose that
M |= AJϕKkebr . It holds that, for each initialized trace π of M ,
L(π) |= JϕKkebr , where L(·) is the labeling function of M . Let π
be an initialized trace of M . By definition of J·Kebr , it holds that,
there exists a run τ induced by L(π) such that: (i) τ is accepting in
Aϕebr

×Adegen, and (ii) τ is accepting in Ak#→α,β . From the second

point, we have that:

• either, #→
α,β make infinitely many resets. This means that

there exists infinitely many positions in τ in which mtot
α holds

and, after at most k occurrences ofmtot
α , there is amtot

β . There-
fore, in particular, there exists infinitely many positions in
which mtot

β holds, that is τ |= GFmtot
β .

• or the counter #→
α,β stops to increment because, because it

does not read any mtot
α . This means that there exists finitely

many positions in which mtot
α holds, that is τ |= FG¬mtot

α .
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Therefore, it holds that τ |= FG¬mtot
α ∨GFmtot

β , that is τ |= GFmtot
α →

GFmtot
β . Finally, we have that τ is an accepting run of Aϕebr

×
Adegen such that τ |= GFmtot

α → GFmtot
β . Since by hypothesis L(π)

is induced by τ , by definition of AGF→GF
degen , we have that L(π) ∈

L(Aϕebr
×AGF→GF

degen ). By concatenating Lemma 21 and Lemma 22,
we have that L(π) ∈ L(ϕ), and therefore π |= ϕ. It follows that
M |= Aϕ.

We now prove completeness, which corresponds to the left-to-
right direction. Suppose that M |= Aϕ, where ϕ ∈ GR-EBR. We
prove this case by contradiction. Suppose therefore that for all k ≤
id(|M |), M ̸|= AJϕKkebr . This means that there exists an initialized
trace π inM such that L(π) ̸∈ L(JϕKkebr ), for all k ≤ id(|M |). By def-
inition of J·Kebr , for k = id(|M |), we have that for all runs τ induced

by L(π) in Aϕebr
×Adegen×Ak#→α,β , it holds that τ ̸|= G(#→

α,β ≤ k).

Let τ be one of these runs. There exists a position i in τ such that
τi |= (#→

α,β = v), for some v > k. By definition of the counter #→
α,β ,

the run τ is such that:

∃0 < h1 < h2 < · · · < hv . ( τh1 |= mtot
α ∧

τh2
|= mtot

α ∧ . . . τhv |= mtot
α ∧

∀h1 ≤ h ≤ hv . (τj |= ¬mtot
β ))

Recall that τ is a run induced by L(π). Since v > k, k = id(|M |)
and M is a finite-state Kripke structure, the positions h1 . . . hv in
π (attention: not in τ) cannot be all different. That is, there ex-
ists at least two indexes s, e ∈ N such that: (i) 1 ≤ s < e ≤ v,
(ii) πhs = πhe , and (iii) πhs |= mtot

α . Starting from π, we can build
a looping trace π′ that agrees with π in the prefix π[0,he] and then
loops on the interval π[hs,he]. It holds that π′ is an initialized trace
of M and it induces a run τ ′ such that τ ′ |= GFmtot

α ∧ FG¬mtot
β ,

that is τ ′ ̸|= GFmtot
α → GFmtot

β . Nevertheless, since M |= Aϕ, by

Lemma 21 and Lemma 22, we have that L(π′) ∈ L(Aϕebr
×AGF→GF

degen ),
and therefore this is a contradiction. This means that it has to
hold that L(π) ∈ L(JϕKkebr ), that is π |= JϕKkebr for all the initial-
ized traces π of M , and thus there exists a k ≤ id(|M |) such that
M |= AJϕKkebr .

With Theorem 40, we derive the following corollary that proves
the completeness of our procedure.
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Corollary 11. For any formula ϕ ∈ GR-EBR, it holds that: ϕ is
realizable iff ∃k ≤ id(2|U| · 2|C| · 22c·n) such that JϕKkebr is realizable.

8.4 Experimental Evaluation

We implemented the algorithm described in Section 8.3 and summa-
rized in Fig. 8.2 in a prototype tool called grace (which stands for
GR-ebr reAlizability ChEcker) 1 . We chose safetysynth [116] as
a BDD-based backend for solving each safety game. safetysynth
implements the classical BDD-based backward fixpoint for finding a
strategy for Controller in a safety game represented in AIGER for-
mat [19]. We set a timeout of 180 seconds. The experiments have
been run on a 16-cores machine with a 2696.6 MHz AMD core with
62 GB of RAM.

8.4.1 Description of the competitor tools

As competitor tools, we choseBoSy [91, 89, 88] and strix [137, 150].
BoSy implements the Bounded Synthesis approach (Section 5.3.6),

while strix is based on parity games and is the winner of SYNT-
COMP 2018, 2019 and 2020. The main algorithm of BoSy takes a
temporal formula ϕ in input and consists of the following steps:

1. it builds the Universal co-Büchi automaton (UCA) for ϕ; this
automaton is built by executing one of the two tools ltl3ba
[10] and spot [78], and it is explicitly represented;

2. the automaton is optimized, e.g., by analyzing its strongly con-
nected components [92];

3. the optimized automaton, along with the bound k on the visits
to its rejecting states, is encoded into a constraint system (e.g.,
SAT, QBF, SMT) and solved by a corresponding backend.

Among the different encodings, the one based on Quantified Boolean
Formulas (QBF) appears to be the most efficient one in practice [88],
and thus it is the default one and the one with which we compare
our tool grace. Finally, BoSy starts two threads, one checking the
realizability of the formula and the other checking the unrealizability.
Since we will evaluate grace and BoSy only on realizable formulas

1https://es-static.fbk.eu/tools/grace/

https://es-static.fbk.eu/tools/grace/
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(the only ones of interest in our context), in order to make fair the
comparison with BoSy, we commented the part of the source code
of BoSy that starts the thread for the unrealizability check.

strix is based on the classical approach with parity games (Sec-
tion 5.3.7) and in addition it implements several optimizations like
specification splitting, that enables to split the initial formula in
safety, co-safety, Büchi, and co-Büchi subformulas and speeds up
the process of solving of the game.

We remark that a comparison with GR(1) synthesis tools is non-
trivial. The majority of the tools for GR(1) only support the re-
alizability of the strict implication (see for example [84]), not the
standard one (which is our case). Therefore, although the latter
can be reduced to the former [25], a non-trivial practical effort is
required to write an algorithm for this translation.

8.4.2 Description of the benchmarks set

We considered benchmarks of two types: (i) artificial, and (ii) de-
rived from the SYNTCOMP [116] benchmarks’ set. Regarding the
artifical benchmarks, we partitioned them in four categories, each
containing 30 benchmarks scalable in their dimension N , for a total
of 120 formulas. The categories are the following ones:

1. G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . ))) → G(
⋀︁N
i=1(ui ↔

Xci))

2. (G(u0 → X(u1 → X(u2 → · · · → X(uN ) . . . ))) ∧ XNGuN ∧
GFuN )→ (

⋀︁N
i=1(ui ↔ XNci) ∧ GFcN )

3. (G(u0)∧XG(u1)∧· · ·∧XNG(uN )∧
⋀︁N
i=1 GFui)→ (

⋀︁N
i=1 G(ui ↔

ci) ∧
⋀︁N
i=1 GFci)

4. (¬u0∧G[0,N ]¬u0∧XN+1Gu0)→ (
⋀︁N
i=1 G(u0 ↔ Xci)∧

⋀︁N
i=1 GF(ci∧

u0))

The variables starting with u are uncontrollable, while those starting
with c are controllables. All the benchmarks are realizable, and
were specifically crafted to elicit potential criticalities of grace.
The formulas in the first category consist of an implication between
two LTLEBR+P formulas. The second category extends the first one
by adding to its assumptions (resp. the guarantees) the stabilization
constraint XNGuN (resp. XNGcN ) and a single fairness GFuN (resp.



268 Chapter 8. Realizability of GR-EBR specifications

0 50 100 150

0

50

100

150

0 50 100 150

0

50

100

150

category 4 syntcomp-escalator category 1
category 2 category 3 category 4
example-arbiter syntcomp-arbiter syntcomp-escalator

GRACE GRACE

B
oS

y 
(d

ef
au

lt
)

S
tr

ix

Figure 8.3: grace compared to BoSy (on the left) and to strix
(on the right)

GFcN ). In the third category, the formula corresponding to both the
assumptions and the guarantees is such that half of it is safety and
the other half is fairness. In particular, there are multiple fairness, as
many as the dimension N . The benchmarks in the fourth category
have been specifically designed in order to force the minimum k of
the termination of grace to increase with their dimension.

Regarding the benchmarks derived from the SYNTCOMP bench-
marks’ set, we included (i) simple arbiter N (for eachN ∈ {2, 4, 6, 8, 10,
12}), escalator bidirectional, which belong to the SYNTCOMP bench-
marks’ set, and (ii) our example for an arbiter (Section 3.3.2), with
N ∈ {1, . . . , 15}.

8.4.3 Discussion of the results

Fig. 8.3 show the comparison between the tools on all the bench-
marks of both types. All times are in seconds. From Fig. 8.3 (left),
it is clear the exponential blowup in solving time in which BoSy
occurs. The blowup involves formulas of both types, and of all four
categories (of artificial benchmarks). For example, (i) on category
1, the blowup is immediate starting from N = 4 (on which BoSy
takes 0.463 sec.) and N = 5 (on which BoSy reaches the time-
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out); for N = 4, the corresponding automaton (after optimization)
has 40 states. (ii) on category 2 (and similarly for category 3), the
blowup starts with N = 5; the solving time of BoSy is of 49.272
sec., and the corresponding automaton (after optimization) has 48
states; with greater values of N , BoSy reaches the timeout; (iii) on
category 4, the solving times of BoSy on N = 13, 14 are 19.4 and
136.3 sec., respectively, and the corresponding automata have 27
and 31 states, respectively. (iv) on simple arbiter N, BoSy takes
45.714 sec. for N = 8, and reaches the timeout for N = 10. Fig. 8.4,
which compares the dimension of the benchmarks (X axis) with the
solving time of grace, BoSy and strix (Y axis), clearly shows this
trend. A more precise study of the complexity of BoSy shows that
the majority of the time spent by it is due to the construction of the
UCA corresponding to the input formula, which is the task of the
tools ltl3ba and spot. On the contrary, it is clear from Fig. 8.3
(left) that grace avoids this bad behavior, most likely due to the
fact that the explicit state UCA is never built. Similar considerations
can be made for the tool strix (see Fig. 8.3, right), except for the
category example-arbiter, in which the solving times of strix are
consistently better than the ones of grace. A careful study revealed
that all these benchmarks are transformed to the equi-realizable for-
mula true by the preprocessor of Owl [126] (a tool for ω-automata
manipulation), which strix is based on.

The plot in Fig. 8.5 shows, for each index k ranging from 1 to
31 (these correspond to the columns), on how many benchmarks
(of both types) grace or BoSy terminate with index k (this cor-
responds to the height of a column). The benchmarks in category 4
and the ones of simple arbiter N force grace to terminate with in-
creasing values of k. The plot in Fig. 8.5 points out that BoSy does
not incur in this growth, except for one benchmark. Nevertheless,
the solving times of grace are still better than the ones of BoSy.
This witnesses the fact that each safety sub-problem generated by
grace is very simple to solve.

8.5 Conclusions

In this paper, we focused on the realizability problem of GR-EBR,
an extension of LTLEBR+P adding fairness conditions and assumes-
guarantees formulas, thus able to express properties beyond the
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safety fragment.
We proposed a general framework to derive complete safety re-

ductions in the context of realizability of (fragments of) LTL+P, and
then we used it as the core of an algorithm for the realizability of
GR-EBR formulas. The algorithm reduces the original problem to
a sequence of safety realizability problems. The properties of the
framework ensure the completeness of the algorithm. We imple-
mented our approach in a prototype tool and showed the achieved
improvement in running time with respect to a tool for full LTL+P
realizability based on Bounded Synthesis (Section 5.3.6) and one
based on parity games. The experimental evaluations showed good
performances against tools for bounded synthesis.

We aim at extending the work done in three directions: (i) as
far as we know, there are no safety synthesizer (like safetysynth
[116]) that are able to exploit incrementality ; since in our context,
the only part of the automaton that changes between one iteration
and the next one is the counter, some work may be saved; (ii) sta-
bilizing constraints are successfully used in model checking, in par-
ticular by the K-Liveness algorithm (Section 5.2.6, [57]), in order to
shrink the search of the search space; we expect that realizability
may also benefit from them; (iii) since GR(1) is a very efficient frag-
ment, it is important to investigate whether there is a compilation
from GR-EBR to GR(1); (iv) last but not least, we aim at exploit-
ing the proposed framework for more expressive logics, such as full
LTL+P.
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CHAPTER

9

COMPATIBILITY CHECK
OF TIMING

REQUIREMENTS

The initialization of complex cyber-physical systems often requires
the interaction of various components that must start up with strict
timing requirements on the provision of signals (power, refrigeration,
light, etc.). In order to safely allow an independent development
of components, it is necessary to ensure that the specification of
local timing requirements prevents later integration errors due to
the dependencies (safe decomposition).

We propose a high-level formalism to model local timing require-
ments and dependencies. We consider the problem of checking the
consistency (existence of an execution satisfying the requirements)
and compatibility (absence of an execution that reaches an integra-
tion error) of the local requirements, and the problem of synthesizing
a region of timing constraints that represents all possible correct re-

273
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finements of the original specification. We show how the problems
can be naturally translated into a model checking and parameter
synthesis problem (Section 5.3.9) for timed automata with shared
variables. We propose an encoding of the problem into SMT (Sec-
tion 5.2.4) by exploiting the linear structure of the requirements. We
evaluate the SMT-based approach using MathSAT and show how
it scales better than the automata-based approach using Uppaal
and nuXmv.

9.1 Introduction

Complex industrial cyber-physical systems often have an initializa-
tion procedure that requires to reach a startup mode within a speci-
fied design target time interval. In order for the system as a whole to
complete the startup within the required interval, each subcompo-
nent of the system may have to go through a number of intermediate
phases, within their own target intervals, each of which may itself be
dependent upon other subcomponents reaching startup or interme-
diate phases. E.g. for a power generation system to startup at full
power, it may need to transition first through a low power output
phase and a number of subsidiary systems (perhaps cooling or fuel
supply) may first have to undergo their own phase transitions. In
turn, these subsidiary systems may require transitions to occur in
systems subsidiary to them and so on.

Traditionally, the integration of these distributed transition tar-
gets are validated via simulation and testing, which while sufficient
to reach a desired design performance are labor and time inten-
sive. Having a more efficient process for arriving at and validating
a set of design targets that satisfy the overall system requirements
is clearly beneficial in these contexts. Firstly, we would like to ver-
ify that these requirements prevent failed transitions in which the
time performance of the subsidiary systems lead to outcomes where
our main system (e.g., the power generation system) cannot per-
form a transition within its time window. For example, suppose the
power system has a time window within which it must transition
from low-power mode to high-power mode; in order for it to achieve
this transition, however, it requires that two subsidiary systems, a
cooling system and a fuel supply system, must themselves transition
from a low-output mode to a high-output mode, each within their
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own target transition time windows. If these time windows are not
compatible, the power generator may fail to provide the high power
in time. Secondly, if our starting set of requirements is inadequate
to provide this guarantee, we would like to be able to synthesize a
set of requirements that is adequate to this task.

In this chapter, we formalize the problem starting from a sim-
ple industrially relevant setting, where the components have a linear
sequence of phases, must progress to the next phase within a cer-
tain interval of time, and must respect some dependencies upon the
phases of other components. Dependencies are expressed as Boolean
combinations of variables representing the component phases and are
divided into two types: (i) signal dependencies, where the entering
of a component into a phase is conditioned by the presence of other
components in some specific phases; (ii) state dependencies, where
a component can stay in a phase only if, during all its stay, other
components are in some specific phases. We are interested in the
following problems:

1. checking if the requirements are compatible, i.e., if all reach-
able states can be extended with an execution satisfying the
requirements; thus, if the components satisfy the local require-
ments, they cannot lead the system to an illegal state (where
a component does not receive the input in time);

2. checking if the requirements are consistent, i.e., there exists an
execution of the components satisfying all requirements (incon-
sistency is actually a pathological case of incompatibility);

3. synthesizing the set of refinements (same requirements with
stricter intervals) that are consistent and compatible.

We show how the first two verification problems can be naturally
translated into a model checking problem for timed automata (TA)
with shared variables. Exploiting the linear structure of the re-
quirements, we propose an encoding of the problem into SMT (Sec-
tion 5.2.4). If all intervals are bounded, the encoding is quantifier-
free. Finally, both approaches have been extended to solve also
the parameter synthesis problem (Section 5.3.9), using synthesis for
parametrized model checking of TAs and quantifier elimination in
SMT, respectively.

We implemented the SMT-based approach in a tool called
tricker and carried out experimental evaluation, comparing it with
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other tools for the verification of timed automata. We used Uppaal
[11] and nuXmv [49] to model check timed automata and Math-
SAT [55] to solve the SMT problems. We performed an experi-
mental evaluation based on a test-set of randomly generated local
requirements. When comparing the SMT-based approach with the
automata-based one, the results highlight a better performance of
the former technique on all three problems.

9.1.1 Related Work

The problem of the integration and compatibility of input/output
timed automata has been extensively studied in the literature. Typ-
ically, works in the literature focus on deadlock checking (see, e.g.,
[8, 9]). The work of [6] also addresses the parameter synthesis to
avoid deadlocks in timed automata. In order to check for livelocks,
liveness properties can be addressed with approaches proposed in
[52, 49]. A general definition of illegal states for timed interface
automata is given in [69]. As shown in Section A.2, the compatibil-
ity problem addressed in this chapter can be seen as a subcase of
the homonym problem for input/output timed interface automata.
As we are considering a closed system, the problem reduces to the
existence of a deadlock or livelock in a phase of some component (de-
pending if the related time interval is bounded or not). Moreover,
compared to the above model checking approaches we are consid-
ering a specific fragment of timed automata with a linear structure
that can be exploited for specialized solutions.

Related problems have been addressed in the context of task
scheduling. In the formalism introduced in [183, 184], called DRT
(short for digraph real-time task model), in which tasks and dead-
lines are expressed as directed graphs, the problem of determining
whether a schedule exists (feasibility problem) bears some similari-
ties with the consistency checking problem we study here. The DRT
model allows the use of very general graph topologies, with multiple
outgoing branches and loop-backs, but it does not consider depen-
dencies across different tasks. The main difference with our work
is that the problem is addressed from a global point of view (i.e.,
the existence of a global scheduler that can coordinate the execu-
tion of the tasks), whereas we are interested in local solutions, in
which each requirement can be considered in isolation. Another dif-
ference is the approach used to tackle the problem: while in [183]
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dynamic programming is used to deal with the possible explosion of
the search space, we use SMT [75] as the main framework for all the
three above-mentioned problems.

9.1.2 Outline

In Section 9.2, we introduce a suitable formalism to model local re-
quirements and we formalize the three problems. In Section 9.3,
we propose the reductions of compatibility checking and consistency
checking into timed automata and SMT. The corresponding solu-
tions for the parameter synthesis problem are then described in Sec-
tion 9.4. The experimental results are described in Section 9.5. In
Section 9.6, we draw some conclusions and highlight possible future
directions of this work.

9.2 Problem Statement

9.2.1 Domain formalization

We propose a high level formalism to model the local requirements.

Definition 56 (Local Requirements). A specification S is given
by a set of local (or component) requirements, where each local re-
quirement C ∈ S is given by an (ordered) sequence ⟨PC1 , . . . , PCn ⟩
of phases. In turn, when i > 1 each phase Pi of C is associated
with a closed real interval βPi with non-negative lower limit lPi and
(finite or infinite) upper limit uPi , with a formula ϕPi (called signal
dependency) and, when i > 0 with a formula ψPi (called state de-
pendency). Both ϕPi and ψPi are Boolean formulae over the atoms
in {⟨D,Q⟩}D∈S\{C},Q∈D (i.e., the phases of other components).

If a dependency ψP is just a conjunction of atoms, then we say
that ψP is convex. With the notation |C|, we will refer to the number
of phases of C.

Figs. 9.1a and 9.1b show two examples of sets of local require-
ments. In Fig. 9.1a, we have two local requirements A and B (i.e.,
S = {A,B}); each local requirement has two phases Off and On
(i.e., PA1 = Off and PA2 = On and similarly for B); the bounds
are depicted in square brackets (thus, for example βAOn = [3, 6]);
all dependencies are trivially true apart from the state dependency
ψBOn = ⟨A,On⟩ of the local requirement B, which is plotted as an
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A

Off

On

[3, 6]

B

Off

On

[2, 4]

(a) Example of system with two lo-
cal requirements and one state de-
pendency.

E

Off

Normal

[1, 2]

C

Off

Normal

High

[2, 3]

[2, 3]

D

Off

Normal

[4, 6]

(b) Example of system with two lo-
cal requirements and two signal de-
pendencies.

arrow from the phase On of B to phase On of A. In Fig. 9.1b, we
have another example with three components and some signal de-
pendencies; for example, signal dependency ϕCNormal = ⟨E,Normal⟩
is plotted as an arrow from the transition to phase Normal of C to
phase Normal of E.

Definition 57 (Stronger local requirements). We say that a local re-
quirement C ′ = ⟨PC′1 , . . . , PC

′

n ⟩ is stronger than C = ⟨PC1 , . . . , PCn ⟩
(written C ′ ⪯ C), iff phase PC

′

i is identical to PCi except that
lPCi ≤ lPC′i

and uPC′i
≤ uPCi , for all 1 ≤ i ≤ n. Given two specifi-

cations S = {C1, . . . , Cn} and S′ = {C ′
1, . . . , C

′
n}, we say that S′ is

stronger than S (written S′ ⪯ S) iff for all i, 1 ≤ i ≤ n, |Ci| = |C ′
i|

and C ′
i ⪯ Ci.

In defining the semantics of a composition of local requirements
C1 . . . Cn, every local requirement Ci is associated with a local clock,
which is reset each time it enters a new phase. Given a local require-
ments specification {C1, . . . , Cn}, we define its semantics formally by
defining the predicate Reach((C1, j1, t1), . . . , (Cn, jn, tn)), which is
true iff the phases PC1

j1
. . . PCnjn are reachable at local times t1 . . . tn.

Definition 58 (Reachability for local requirements). Given the spec-
ification {C1 . . . Cn} and the time points t1 ∈ R . . . tn ∈ R, we in-
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ductively define the predicate Reach((C1, j1, t1), . . . , (Cn, jn, tn)) as
follows:

• (base case) Reach((C1, 1, 0), . . . , (Cn, 1, 0)) holds and for all
i ∈ {1 . . . n} it holds that (state dependencies):
((C1, 1), . . . , (Cn, 1)) |= ψCi1

• (timed transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and there
exists a δ ∈ R such that ti + δ ≤ uCiji+1 for all i ∈ {1 . . . n},
then Reach((C1, j1, t1 + δ), . . . , (Cn, jn, tn + δ)).

• (discrete transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and
there exists a δ ∈ R and a M ⊆ {1, . . . , n} such that:

1. for all i ∈ {1 . . . n} such that ji < |Ci|, ti+δ ∈ [lCiji+1, u
Ci
ji+1]

if i ∈M , and ti + δ ≤ uCiji+1 otherwise;

2. for all i ∈M , it holds that (signal dependencies):
((C1, j1), . . . , (Cn, jn)) |= ϕCiji+1

3. for all i ∈M , it holds that (state dependencies - entry):
((C1, j1), . . . , (Cn, jn)) |= ψCiji+1

4. for all i ∈ {1 . . . n}, it holds that (state dependencies -
invariant):
((C1, j

′
1), . . . , (Cn, j

′
n)) |= ψCij′i

then it holds that Reach((C1, j
′
1, t

′
1), . . . , (Cn, j

′
n, t

′
n)), where

j′i = ji + 1 and t′i = 0 if i ∈ M and ji < |Ci|, and j′i = ji
and t′i = ti + δ otherwise.

We define the predicate CompS to be true iff there are no reach-
able states in S such that no component can proceed to its next
phase.

Definition 59 (Compatibility for local requirements). Given the
set of local requirements S = {C1 . . . Cn}, the predicate CompS is
true iff:

∀j1 ∈ {1 . . . |C1| − 1} . . . ∀jn ∈ {1 . . . |Cn| − 1} ∀t1 . . . tn ∈ R
(︂

Reach((C1, j1, t1), . . . , (Cn, jn, tn))⇒

∃M ⊆ {1 . . . n}
(︁
M ̸= ∅ ∧Reach((C1, j

′
1, t

′
1), . . . , (Cn, j

′
n, t

′
n))
)︁)︂
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where j′i = ji + 1 and t′i = 0 for all i ∈ M , or j′i = ji and t
′
i = ti

otherwise. If CompS holds, we say that C1 . . . Cn are compatible, or
equivalently that S is compatible.

For example, in Fig. 9.1a, predicate Reach((A, 1, 4), (B, 1, 4))
holds, but predicate Reach((A, 1, 4), (B, 2, 0)) does not, because for
all δ ∈ R and for all S ⊆ {1 . . . n}, predicateReach((A, 1, 4), (B, 2, 0))
is false.

Strict Semantics The above definition adopts a weakly-monotonic
model of time, where discrete transitions are instantaneous and,
therefore, the system may be in two different states at the same
instant. The definition and the reductions to model checking and
SMT can be easily adapted to have a strict semantics.

Verification and Parameter Synthesis Problems The core
problem we address is to check if a given specification S = {C1, . . . , Cn}
is compatible, i.e., if CompS holds. The consistency checking prob-
lem amounts to checking if there exists a time point in which the
final phase of all the local requirements is reached, that is it amounts
to checking if the following formula holds:

∃t1 . . . ∃tn Reach((C1, |C1|, t1), . . . , (Cn, |Cn|, tn))

If this is the case, then we say that S is consistent. Finally, we
can formalize the parameter synthesis problem (Section 5.3.9) as the
problem of computing (a symbolic representation of) the set: {S′ |
CompS′ ∧ S′ ⪯ S}

9.2.2 NP-hardness

In this section, we show that the simplest of the problems defined
above is already NP-hard. In fact, we show a reduction from SAT
to the consistency checking problem.

Let φ(x) be a Boolean formula over the variables x = ⟨x1 . . . xn⟩;
without loss of generality, we assume φ(x) to be in negated normal
form, i.e., with all the negations only in front of literals. For all
1 ≤ i ≤ n, we define the local requirement corresponding to variable
xi as Ci = ⟨P i1, P i2⟩, such that BP i2 = [0,+∞) and ϕP i1 = ψP i1 =
ϕP i2 = ψP i2 = ⊤; the idea is to encode the values ⊥ and ⊤ of each

xi with the two phases P i1 and P i2, respectively. Moreover, we define
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the local requirement G, which will be useful as a gadget for the
reduction, as follows: G = ⟨PG1 , PG2 ⟩, where PG2 = ⟨[0,+∞), φ[xi ↦→
⟨Ci, P i2⟩,¬xi ↦→ ⟨Ci, P i1⟩],⊤⟩. The specification Sφ corresponding
to the Boolean formula φ(x) is defined as Sφ = {G,C1, . . . , Cn}. It
holds that φ(x) is satisfiable if and only if Sφ is consistent. In fact, if
Sφ is consistent, then there exists a time point in which the signal de-
pendency of the second phase of G has been satisfied, and thus φ(x)
is satisfiable. Viceversa, let’s suppose that φ(x) is satisfiable and let
M be an arbitrary model of it, expressed as the set of true atoms,
in which we also substitute every xi in it with the pair ⟨Ci, P i2⟩.
Since the local requirements C1 . . . Cn have no dependencies and,
together with G, have only infinite bounds, there exists a time t
such that predicate Reach((G,PG1 , t), (C1, P

G
b1
, t1), . . . , (Cn, P

n
bn
, tn))

is true, where for all 1 ≤ i ≤ n, bi = 2 and ti = 0 iff xi ∈ M and
ti = t otherwise. By definition of Reach (see Definition 58), this im-
plies that Reach((G,PG2 , t), (C1, P

1
2 , t), . . . , (Cn, P

n
2 , t)) holds, i.e., S

is consistent.
In Section 9.3.2, we will give an encoding of the consistency

checking problem based on SMT(DL) (i.e., Satisfiability Modulo
Theory of Difference Logic). In particular, we will show that the
problem can be reduced to the satisfiability of a formula in SMT(DL).
Since the latter belongs to NP [154], the consistency checking prob-
lem belongs to NP as well, having that consistency checking is NP-
complete.

9.3 Verification

In this section, we first describe how to reduce both the problem of
consistency checking and safe decomposition to model checking of
a network of timed automata. We then propose a direct encoding
into SMT: as we will see in the next section, if from the theoretical
side the latter reduction requires a greater effort to be written down
correctly, from the practical side it reveals itself more efficient then
the former.

9.3.1 Reduction to Model Checking

In order to formalize the two verification problems into ones of model
checking networks of timed automata, we use timed automata with
shared variables. To this end, besides the clock constraints Ξ(C), we
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define L = {lA, lB, . . . } as a set of location variables (one for each
automaton A in the network), and Θ(L) as the set of all Boolean
combinations of atoms of type lA = vA, where A is a timed au-
tomata, lA ∈ L and vA is a state of A.

Definition 60 (Timed Automata with Shared Variables). A timed
automaton with shared variables (TASV, for short) A = ⟨VA, v0A, lA,
CA, inv

cl
A, inv

loc
A , TA⟩ consists of:

• a finite set of locations VA;

• an initial location v0A ∈ VA;

• a location variable lA with range VA;

• a finite set of clocks CA, where a clock is a real-valued variable;

• a clock invariant invclA : VA → Ξ(CA) for each location;

• a location invariant invlocA : VA → Θ(CA) for each location;

• a transition relation TA ⊆ VA × 2CA × Ξ(CA)×Θ(L)× VA.

Given a set of clocks C, we denote with ν : C → R a clock
valuation, that is a function assigning a rational value to each clock;
with VC , we denote the set of all possible clock valuations over C.
For t ∈ R, ν+t is the clock valuation which maps every clock c ∈ C to
the value ν(c)+t. For R ⊆ C, we define ν[R ↦→ 0] to be the valuation
that maps x to 0 if x ∈ R, and to ν(x) otherwise. When defining
the product of two TASVs, we will deal with tuples (lA1

, . . . , lAn)
of location variables; in this context, we usually denote with λ any
function from the set of n-tuples of location variables to the set
VA1 × · · · × VAn . Moreover, we write that λ |= Φ (where Φ ∈ Θ(L))
iff Φ[lAi ↦→ vAi , for all 1 ≤ i ≤ n] is true and λ((. . . , lAi , . . . )) =
(. . . , vAi , . . . ). We give the semantics of a TASV in terms of traces
and we define their product as described below.

Definition 61 (Trace of a TASV). A trace τ of a TASV A =
⟨VA, v0A, lA, CA, inv

cl
A, inv

loc
A , TA⟩ is a (either finite or infinite) se-

quence of states of the form:

⟨v0, ν0, λ0⟩
α1−→ ⟨v1, ν1, λ1⟩

α2−→ ⟨v2, ν2, λ2⟩
α3−→ . . .

such that vi ∈ VA, αi ∈ R∪{τ}, νi ∈ VCA and λi ∈ VL for all i ≥ 0,
and:
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• (initiation) v0 = v0A, ν0(x) = 0 for all x ∈ CA, ν0 |= invclA(v
0
A),

λ0(lA) = v0 and λ0 |= invlocA (v0A);

• (consecution): for all i ≥ 0

– (timed transition) if α ∈ R, then vi+1 = vi and νi+1 =
νi + α, νi + δ |= invclA(vi), for all 0 ≤ δ ≤ α, and
λi+1(lA) = vi;

– (discrete transition) if α = τ then there is a tuple (vi, Ri,Ξi,
Φi, vi+1) ∈ TA such that: νi |= invclA(vi) ∧ Ξi; λi |= Φi;
νi+1 = νi[Ri ↦→ 0]; νi+1 |= invclA(vi+1); λi+1(lA) = vi+1,
and λi+1 |= invlocA (vi+1).

Definition 62 (Product of TASVs). Given two TASVs A and B,
their product is the TASV A⊗ B defined as follows:

• VA⊗B = VA × VB and v0A⊗B = (v0A, v
0
B);

• lA⊗B = (lA, lB);

• CA⊗B = CA ∪ CB;

• invclA⊗B(v, u) = invclA(v) ∧ invclB (u), for all (v, u) ∈ VA⊗B;

• invlocA⊗B(v, u) = invlocA (v) ∧ invlocB (u), for all (v, u) ∈ VA⊗B;

• the transition relation is defined as follows:

TA⊗B ={((v, u), R,Ξ,Φ, (v′, u)) | (v,R,Ξ,Φ, v′) ∈ TA} ∪
{((v, u), R,Ξ,Φ, (v, u′)) | (u,R,Ξ,Φ, u′) ∈ TB}

It is worth noting that each TASV corresponds to a timed au-
tomaton defined in the standard way [5], and viceversa. We define
now the TASV corresponding to a local requirement.

Definition 63 (TASV for a Local Requirement). Let C = ⟨PC1 , . . . , PCn ⟩
be a local requirement. We define the corresponding TASV A =
{VA, v0A, lA, CA,
invclA, inv

loc
A , TA} as follows:

• for each phase PCi of local requirement C, viA is the correspond-
ing location in VA; P

C
0 corresponds to v0A and CA = {cA};

• for each phase PCi (but the last) of C, invclA(v
i
A) := cA ≤ uPCi+1

;
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A

off inv:
cA ≤ 6

on

3 ≤ cA ≤ 6
cA := 0

B

inv:
cB ≤ 4

inv:
ψon

2 ≤ cB ≤ 4
cB := 0
ψon

Figure 9.2: Example of TASV corresponding to a local requirement.

• (discrete transition) for each phase PCi (but the last) of C,
it holds that (viA, {cA},ΞCi ,ΦPCi+1

∧ ΨPCi+1
, vi+1

A ) ∈ TA, where

ΞCi := lPCi+1
≤ cA ≤ uPCi+1

.

• (state deps) for each phase PCi of C, it holds that invlocA (viA) :=
ΨPCi ;

where ΦP := ϕP [(d, j) ↦→ (ld = vj)], for each phase P (the same
holds for Ψ);

Example. Consider Fig. 9.1a: the corresponding TASV is de-
picted in Fig. 9.2. Each phase of each local requirement corresponds
to a location of the corresponding TASV; in the example, phase off
is mapped into location off. The first locations of automata A and
B have attached the invariants cA ≤ 6 and cB ≤ 4, respectively. Au-
tomaton A proceeds to location on (corresponding to phase A.on)
by a transition labelled with clock constraint 3 ≤ cA ≤ 6 and clock
reset cA := 0. Since the second phase of local requirement A has no
dependencies, the transition to on has no constraints on the loca-
tion variables. The situation is different for automaton B, for which
the transition to on is labelled with 2 ≤ cB ≤ 4 and cB := 0, and
also with ψon := (lA = on), that is the state dependency of phase
B.on; moreover, ψon is also an invariant for the second location of
automaton B, since it is a state dependency.

Given a network S := A1 × · · · × An of TASVs, the problem of
consistency checking can be expressed as the reachability of location
(A1.last, . . . ,An.last) ∈ VS . A deadlock of a TASV A is defined as
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a state (v, t) ∈ VA × R such that A can take neither a timed nor
a discrete transition from (v, t). We call livelock a state (v, t) such
that A can take only timed transitions. The compatibility checking
problem can be expressed as the problem of checking if there exists
a trace of S such that (i) either the trace is finite and its final
state is a deadlock of S; we can check this property by adding a
sink location to the TASV S to which all locations can transition
to and by checking the reachability of it; (ii) or the trace is infinite
and there exists a location v ∈ VS and a point k ≥ 0 such that
lS = v ̸= (A1.last, . . . ,An.last), for all the states after k in the
trace, where the ith component of v together with the time of the
current state is a livelock for automata Ai, for some 1 ≤ i ≤ n.
The second point is fundamental for local requirements featuring
infinite bounds: in these automata, it is not sufficient to check for
deadlocks, since a timed transition could be always enabled; instead,
an illegal state can be described by a trace of the system that reaches
a livelock whose location has no invariants attached and then stays
constantly in this location. Having reached a livelock, the automaton
can proceed only with timed moves: in particular, it can’t proceed
to the next location because its dependencies are violated. We can
check the second point in this way: we first add a sink location
sinkAiv for each location v ∈ Ai (and of course a transition from
the latter to the former), for each 1 ≤ i ≤ n, and we attach to it
the invariant ¬invlocAi (v). Now, in the product S of these modified
automata, we look for a trace such that, from a certain time point
onwards, it stays constantly in a location (l1, . . . , ln) such that at
least one li is a sink state. This property can be formalized in Linear
Temporal Logic as FG(

⋁︁
1≤i≤n,v∈Ai sink

Ai
v ).

9.3.2 Encoding into SMT

We describe the encoding into SMT(DL) (Satisfiability Modulo The-
ory of Difference Logic) for the problems of consistency checking and
compatibility checking. For all 1 ≤ c ≤ n and 1 ≤ i ≤ |c|, we intro-
duce the following variables: (i) rci ∈ B represents the fact that phase
i of local requirement c is reachable; (ii) sci = (tci , p

c
i ) represents the

superdense time instant in which local requirement c enters phase i,
where tci ∈ R and pci ∈ N. We can compare two superdense-valued
variables (t, p) and (t′, p′) with the lexicographical order, which we
define as follows: (t, p) ⪯ (t′, p′) iff t ≤ t′ ∧ (t = t′ → p ≤ p′). We
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now give the set of (conjunctively related) constraints which form
our SMT(DL) encoding.

Initialization. Each local requirement starts in its first phase at
the same time, i.e., the real time point 0. Hence, for all 1 ≤ c ≤ n,
we add the constraint tc0 = 0.

Reachability. For all local requirements c and all phases i, it holds
that if i − 1 is not reachable then so is phase i, i.e., ¬rci−1 → ¬rci .
Moreover, we require the monotonicity over time, i.e., rci → (sci−1 ≺
sci ).

Bounds. For all local requirements c and all phases i, c can move
to i only if it respects the bounds [lci , u

c
i ] of phase i, namely rci →

(lci ≤ tci − tci−1 ≤ uci ). If uci = ∞, then we add only the left-most
inequality.

Signal and State dependencies. Consider a local requirement
c and one of its phases i. Since we have only a finite number of
phases, we can preprocess both signal and state dependencies to
remove from them all negations, as explained in Section A.3.1; this
means that every atom in ϕci and ψ

c
i occurs positive.

We want c to reach i only if all its signal and state dependencies
are satisfied. For signal dependencies, we require the time point
in which c enters i to be strictly greater1than the time point of the
entry of the target phase and smaller than or equal to the time point
of the exit of the target phase.

rci → ϕci [(d, j) ↦→ (rdj ∧ sdj ≺ sci ⪯ sdj+1)]

Moreover, we have to guarantee that the state dependencies hold as
well. In particular, if phase i is reachable, then surely the time point
in which c enters i has to be strictly greater than the time point in
which the other local requirement reaches the target phase.

rci → ψci [(d, j) ↦→ (rdj ∧ sdj ≺ sci )]

Since state dependencies are invariant properties, i.e., they have to
hold for each time instant a local requirement is in a particular phase,

1This allows us to model the observability of the events: c first observes d
entering its phase j and then moves.
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if one state dependency is violated at some time point of phase i−1,
then phase i is not reachable. The contrapositive means that if phase
i is reachable, then the state dependencies of phase i− 1 have to be
invariant for phase i− 1, namely:

rci → ∀˜︁s(sci−1 ⪯ ˜︁s ⪯ sci → ψci−1[(d, j) ↦→ (rdj ∧ sdj ≺ ˜︁s ⪯ sdj+1)])

(9.1)

Illegal States. If phase i of local requirement c is not reachable,
i.e., i is an illegal state, then there exists a time point scill such
that, for all the next (remaining) time points s between scill and
the upperbound of the transition, at least one dependency is not
satisfied.

(rci−1 ∧ ¬rci )→ (9.2)

∃scill∀s(scill ⪯ s ⪯ sci−1 + uci−1 → VIOLATION(s))

where

VIOLATION(s) := (9.3)

¬ϕci [(d, j) ↦→ (rdj ∧ sdj ≺ s ⪯ sdj+1)] ∨ (9.4)

¬ψci [(d, j) ↦→ (rdj ∧ sdj ≺ s)] ∨ (9.5)

∃˜︁s(sci−1 ⪯ ˜︁s ⪯ s ∧ ¬ψci−1[(d, j) ↦→ (rdj ∧ sdj ≺ ˜︁s ⪯ sdj+1)]) (9.6)

We interpret s ⪯ sci−1+u
c
i as ∀p(s ⪯ sci−1+(uci , p)) and the + symbol

as the pairwise sum. In the case the upperbound of the transition
is infinite, we simply do not add the s ⪯ sci−1 + uci inequality. We
refer to the conjunction of all these constraints as W.

For consistency checking, we define

END :=
⋀︂

1≤c≤n

r|c|

and we call Wcons the conjunction of W with END. We check con-
sistency by checking the satisfiability of Wcons.

For compatibility checking, we define

ILL :=
⋁︂

1≤c≤n
1≤i≤|c|

¬rci
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and we call Will the conjunction of W with ILL. We check the
existence of an illegal state in the system by checking the satisfiabil-
ity of Will, i.e., Will is satisfiable iff the local requirements are not
compatible.

Strict Semantics In the strict semantics setting, we forbid two
events to occur at the same real-time point. For strict semantics,
the encoding is equal to W except that we interpret ≺ and ⪯ as
< and ≤, respectively, and all the sci variables as single real-valued
variables tci ∈ R. We call S this encoding and we define Scons and
Sill as above.

Finite bounds and convex dependencies. Despite being very
close to the problem formalization, the W encoding features a high
number of quantifications, also in alternation; therefore, in the gen-
eral case, it is very burdensome for an SMT solver to first perform
quantifier elimination on W and then to solve the resulting formula.
Nevertheless, if we make some restrictions on the type of local re-
quirements we consider, we are able to remove upfront all the quan-
tifiers from W, without the need to use quantifier elimination tech-
niques. In fact, suppose we consider only local requirements with
finite bounds and convex state dependencies (see Section 9.2). We

call ˆ︁Will
fin the encoding equal to W except that Eq. (9.1) is replaced

by:

rci → ψci−1[(d, j) ↦→ (rdj ∧ sci ⪯ sdj+1)] (9.7)

and we add the following constraint:

(rci−1 ∧ ¬rci )→ (tci = tci−1 + uci−1) (9.8)

and we replace Eq. (9.2) with:

(rci−1 ∧ ¬rci )→WEAKVIOL(tci ) (9.9)

where:

WEAKVIOL(tci ) := ¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ tci < tdj+1)] ∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ tci )] ∨
¬ψci−1[(d, j) ↦→ (rdj ∧ tci ≤ tdj+1)])

(9.10)

We can prove that
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Proposition 19 (Equisatisfiability). Will and ˆ︁Will
fin are equisatisfi-

able for every set of local requirements with only finite bounds and
convex dependencies.

Notably, there are no quantifiers in Will
fin: as said before, this

makes the encoding dramatically more efficient with respect to W:
in Section 9.5, we will consider only local requirements of this type.
The details of the proofs are reported in Sections A.3 and A.4 in
which, given that the proofs are a bit involved, we proceed incre-
mentally, showing first how we can remove upfront the quantifiers
in case of finite bounds with strict semantics, then in the case with
weak semantics and finally in case of convex dependencies.

9.3.3 Optimization of the Encoding

In order to let illegal state checking in the SMT-based approach to
perform better even in the case of system with a very high number
of dependencies, we propose the following improvement to the en-
coding described in Section 9.3.2. Let DEPSci be the set of all the
dependencies of phase i of component c; formally:

DEPSci := {(d, j) | (d, j) ∈ ϕci ∪ ψci ∪ ψci−1}

The idea is the following one: instead of looking for (describing)
all the possibile configurations in which phase (c, i) can go to an
illegal state, we only look for the situation in which all the other
phases which (c, i) depends on are reachable and (c, i) goes into an
illegal state only because of its own dependencies. In other words,
the improvement proposed here follows this rationale: if a phase
(d, j) which (c, i) depends on is not reachable, for the sake of illegal
state checking it doesn’t matter if we do not look for the situation in
which (c, i) is not reachable because of that, since we have already
found an illegal state, i.e., the one of (d, j). Hence, Eq. (9.2) can be
modified as follows:

(rci−1 ∧ ¬rci )→
⋀︂

(d,j)∈DEPSci

rdj ∧

∃scill∀s(scill ⪯ s ⪯ sci−1 + uci−1 → VIOLATION′(s))

where VIOLATION′(s) is obtained from VIOLATION(s) by replac-
ing all the boolean variables rdj with True.
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9.4 Parameter Synthesis

In this section, we tackle the parameter synthesis problem, i.e., com-
puting the set of all stronger local requirements (as defined in Defini-
tion 57) of the initial local requirements such that their composition
is compatible. We solve this problem by reducing it to a parameter
synthesis problem (see [51] for a more detailed description); given a
local requirement C, its corresponding parametric local requirement
⟨C, π⟩ is defined as C (see Section 9.2), except that the bounds lP
and uP of each phase P are now the parameters lP and uP , respec-
tively, and π := {lP | P is a phase of C}∪ {uP | P is a phase of C}.
Given a set of local requirements S = {C1, . . . , Cn}, we write ⟨S,Π⟩
for its parametric version {⟨C1, π1⟩, . . . , ⟨Cn, πn⟩}, where the set
of parameters is defined as Π :=

⋃︁n
i=1 πi. A parameter valuation

γ : Π → Q assigns a rational value to each parameter; moreover,
for each 1 ≤ i ≤ n, it also induces a (concrete) local require-
ment ⟨Ci, γ(πi)⟩, obtained from ⟨Ci, πi⟩ by replacing every param-
eter p ∈ πi with the concrete value γ(p). In the same way, we can
define the concrete version ⟨S, γ(π)⟩ of ⟨S, π⟩. γ is said to be feasi-
ble for S if ⟨Ci, γ(πi)⟩ is a stronger local requirement of Ci, for all
1 ≤ i ≤ n, and ⟨S, γ(π)⟩ is compatible. A feasible region is a set
R := {γ | γ is feasible for S}. Also in this case, we can either use
parameter synthesis algorithms over timed automata [7] or reduce
the problem to SMT(LRA); we focus on the latter and in particular,
we will synthesize a symbolic representation of the region R, namely
an SMT formula φR with the following property: γ |= φR iff γ ∈ R,
for each valuation γ.

Let Will be the encoding equal to Will except that each num-
ber lci (resp. uci ) is replaced with the variable l

c

i (resp. uci ) and
each phase is required to have finite bounds. We define the sets of
variables R := {rci | c ∈ S, i is a phase of c} and S := {sci | c ∈
S, i is a phase of c}: these are the variables we are going to remove
by means of quantifier elimination. Finally, we define:
DOMAIN :=

⋀︁
1≤c≤n
1≤i≤|c|

(l
c

i ≥ 0 ∧ lci ≤ uci )

REFINE :=
⋀︁

1≤c≤n
1≤i≤|c|
uci ̸=∞

(aci ≤ l
c

i ∧ uci ≤ bci )



9.5 Experimental Evaluation 291

The symbolic representation of the feasible region R is given by:

SYNTH := DOMAIN ∧ REFINE ∧ ¬∃S,R
(︂
Will

)︂
(9.11)

By removing the existential quantification on S and R (this can be
done by means of quantifier elimination techniques), we obtain a
quantifier-free formula over the variables in Π. By construction,
we have that each model γ of SYNTH is a feasible valuation, and
viceversa. Therefore SYNTH is the symbolic representation of the
feasible region R.

9.5 Experimental Evaluation

We implemented the encoding described in Section 9.3.2 in a tool
called tricker (Timing Requirements Integration ChecKer) 2, which
uses MathSAT [55] as the backend SMT engine. We compared
tricker with Uppaal [11] and Timed-nuXmv [50], both using the
automata-based encoding described in Section 9.3.1.

The test set is partitioned into three categories: (i) bounded

convex contains only systems with finite bounds and convex state
dependencies; (ii) bounded contains systems with only finite bounds,
but with arbitrary dependencies (not necessarily convex); (iii) general
contains systems with infinite bounds and arbitrary dependencies
(this is the most general fragment). Each category in turn con-
sists of ca. 500 randomly-generated systems, divided in 10 sub-
categories, namely 2c3p, 2c15p, 5c3p, 5c20p, 10c4p, 10c30p,
50c5p, 50c30p, 100c3p and 100c10p, where NcMp is the cat-
egory containing only systems with N components and (approxi-
mately) M phases for each component. Inside each sub-category,
each benchmark is randomly generated, meaning that the exact
number of phases for each component and the density of its sig-
nal and state dependencies was chosen uniformly at random. For
each benchmark, we compare the time spent by the three tools on
the consistency checking and compatibility checking problems. We
ran the experiments on a cluster of Linux machines with a 2.27GHz
Xeon CPU, with a timeout of 360 seconds for each instance.

We consider first the bounded convex category. Fig. 9.3 shows
the comparison of tricker with Timed-nuXmv and Uppaal on

2http://users.dimi.uniud.it/~luca.geatti/tricker.html

http://users.dimi.uniud.it/~luca.geatti/tricker.html
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the two verification problems. In both cases, Timed-nuXmv runs
the infinite-state variant of IC3 described in [53] after discretizing the
timed automata. As for Uppaal, we verify a property in the form
EFφ, where φ is a Boolean formula. For both problems, the SMT-
based approach implemented in tricker outperforms the model
checkers. While there are a number of instances for which the model
checkers perform better than tricker (especially for Uppaal), the
latter overall solves a significantly larger amount of problems within
the timeout, showing a clear improvement in scalability. This can
be seen also in the survival plots comparing the three tools with the
Virtual Best Solver (vbs for short). We can make similar considera-
tions for the bounded and general categories, shown respectively in
Fig. 9.4 and Fig. 9.5. (Note that for the general case, we could not
evaluate Uppaal as it does not support the verification of fairness
properties.) We remark that we did not note any kind of correlation
between the number of signal or state dependencies in the bench-
marks and the time spent by the solver. Finally, Fig. 9.6 shows the
correlation between the memory (measured in MB) and the time (in
seconds) spent by tricker on consistency and compatibility check-
ing, respectively.

We also evaluated the parameter synthesis algorithm described
in Section 9.4. Since Uppaal currently does not support parameter
synthesis for timed automata, we could not include it in the com-
parison. We therefore compared tricker with Timed-nuXmv, for
which we used the Param-IC3 parameter synthesis algorithm de-
scribed in [51]. The algorithm is based on the inverse method, i.e., it
finds a bad configuration for the parameters and it tries to generalize
it, maximizing the set of bad parameters removed from the current
approximation of the region. We took all the consistent benchmarks
of the previous test sets, which amounts to approximately 100 in-
stances (note that for each instance of the class NcMp, the number
of parameters is ≈ 2 · N ·M3). The results of the comparison are
shown in Fig. 9.7; as in the previous cases, tricker shows better
performance and scalability than Param-IC3, though there are sev-
eral instances for which synthesis via quantifier elimination is still
very expensive.

3recall that both the lower and the upper bounds are parameters.
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9.6 Conclusions

In this chapter, we defined verification and synthesis problems of in-
dustrial relevance focused on the decomposition of startup require-
ments into local timing constraints and dependencies on compo-
nents. Namely, we addressed the problem of checking if the local
requirements are free of integration errors (i.e., consistent and com-
patible), and the problem of synthesizing the region of refinements
of the original specification that are error free. The problem can be
naturally translated into model checking and synthesis problems for
timed automata with shared variables. Exploiting the structure of
the requirements, we provide an encoding into SMT where consis-
tency and incompatibility correspond to satisfiability queries, while
synthesis is resolved by means of quantifier elimination.

In the future, we will consider various directions, such as ex-
tending the applicability of the approach to more general structures
with loops, enriching the synthesis problem with cost functions to
repair the specification driven by specific industrial goals, and con-
sidering more complex representations of signals exchanged between
components.
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Figure 9.3: Comparison on the bounded convex category (consis-
tency checking on the first three plots and compatibility checking on
the last three plots).
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Figure 9.4: Comparison on the bounded category (consistency check-
ing on the first three plots and compatibility checking on the last
three plots).
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Figure 9.5: Comparison on the general category (consistency check-
ing on the first row and compatibility checking on the second).
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Figure 9.6: Comparison between time and memory consuption of
tricker (consistency checking on the left and compatibility checking
on the right).

Figure 9.7: Comparison on parameter synthesis.
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CHAPTER

10

CONCLUSIONS

The main topic of this thesis is about temporal logics specifications.
We introduced some temporal logics, we studied their expressive
power, and we give symbolic algorithms for (i) the satisfiability prob-
lem of LTL+P, (ii) the realizability problem of those fragments, and
(iii) and the compatibility problem of real-time specifications. Par-
ticular attention has been devoted to follow the theoretical results
(whenever this was possible) with an algorithmic study and empiri-
cal evaluations.

Theory

We introduced three fragments of the Linear Temporal Logic with
Past (LTL+P), that is: (i) LTLEBR+P; (ii) LTLEBR; and (iii) GR-EBR.

In Section 3.1, we proved that LTLEBR+P is expressively complete
with respect to the safety fragment of LTL+P, that is any safety
property that is definable in LTL+P is definable in LTLEBR+P as
well.

A peculiarity of LTLEBR+P is that it features past operators, that

299



300 Chapter 10. Conclusions

is operators for looking into the past starting from a time point
of a sequence. Past operators play a crucial role in the complete-
ness proof of LTLEBR+P. We considered the problem of establishing
the expressive power of LTLEBR, that is LTLEBR+P devoid of past
operators. We proved that LTLEBR is strictly less expressive than
full LTLEBR+P (Section 3.2). This is somehow surprising, since for
LTL+P the presence or the absence of past operators does not affect
the expressive power. Therefore our result show that past operators,
despite being not important for the expressive power of LTL+P, can
play a crucial role for the expressiveness of fragments of LTL+P, like
for instance LTLEBR+P.

In Section 3.3, we compared the logic of GR-EBR, defined as an
extension of LTLEBR+P able to define properties beyond the safety
fragment, with the Temporal Hierarchy of Manna and Pnueli [140],
showing that its expressive power stands between the one of R(1)
(Reactivity(1)) and GR(1) (Generalized Reactivity(1)).

In Chapter 4, we identified a syntactical fragment of the first-
order logic of one successor (S1S[FO]) and proved that it is ex-
pressively complete with respect the semantically safety fragment
of S1S[FO], and thus also complete with respect to the semantical
safety fragment of LTL+P. This result provides a first-order charac-
terization of LTL-definable safety languages, and joins Kamp’s The-
orem for the equivalence between LTL and the first-order logic of one
successor. In addition, this result allows us to prove that Safety-LTL
(i.e., LTL with only universal temporal operators) is expressively
complete as well. This proof seems not to be very much known in
the literature, as some authors presented the problem as open as
lately as 2021 [201, 71].

Problems and Algorithms

We studied the satisfiability problem of LTL+P specifications (Chap-
ter 6). We gave a symbolic encoding of the one-pass and tree-shaped
tableau system by Reynolds [163]. The algorithm encodes all the
branches of the tableau up to depth k by means of a Boolean for-
mula and uses efficient SAT-solvers for deciding their satisfiability.
We implemented this algorithm in a tool called black with the goals
of stability, reliability, and efficiency in mind. We compared the
symbolic encoding of the tableau with the (explicit-state) tableau of
Reynolds. The experimental evaluation shows a clear improvement
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in solving time.
In Chapter 7, we gave a fully symbolic algorithm for the real-

izability problem of LTLEBR+P specifications. The algorithm com-
prises two steps: (i) the construction of a symbolic safety automaton
starting from the initial formula; (ii) the solving of a safety game
over the arena represented by the safety automaton. We imple-
mented this approach in a prototype tool called ebr-ltl-synth and
compared the performance with other tools for realizability of speci-
fications of (fragments of) LTL+P, which rely all on an explicit-state
representation of the automaton. The outcomes show that there is
a clear improvement in time and memory consumption using the
symbolic method: in some cases, our symbolic algorithm could solve
some instances that were prohibitively large for the other tools based
on an explicit-state representation.

Exploiting the algorithm for LTLEBR+P realizability, we gave a
symbolic algorithm for the realizability problem of GR-EBR specifi-
cations (Chapter 8). The algorithm performs a safety reduction in
order to reduce the original problem to a sequence of safety synthe-
sis (sub-)problems. The completeness of the procedure was proved
by introducing a general framework for guaranteeing completeness
of arbitrary fragments of LTL+P and then by instantiating it for
the case of GR-EBR. Interestingly, our framework proves that if a
reduction is complete for the model checking problem, then it is also
complete for the realizability problem. Moreover, the framework
can easily be used for proving the completeness of bounded synthe-
sis [92], a well-known approach for realizability. Also in this case,
we implemented the approach in a prototype tool called grace,
showing some improvements with respect to competitor tools.

Last but not least, in Chapter 9, we considered timed temporal
specifications, that is requirements expressing not only the ordering
between events but also the amount of time elapsed between two
events. In particular, we defined and formalized the compatibility
problem of timed requirements: given a set of timed specifications,
the problem is to check whether all possible implementations of each
requirement can be composed to the others in such a way to guar-
antee the completion of each of them (in some sense, checking the
absence of deadlocks in the all implementation’s compositions). We
gave two encodings of the problem, one into SMT(LRA) (Satisfia-
bility Modulo the Theory of Linear Real Arithmetic) and one into
model checking of timed automata. The outcomes of the experi-
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mental evaluations of our implementation (in the tricker proto-
type tool) shows that the encoding into SMT(LRA) is much more
efficient than the other.

Future directions

We list some open points regarding the research that we have done
in this thesis.

The exact expressive power of GR-EBR is still unknown. In Sec-
tion 3.3, we proved that GR-EBR is at least as expressive as R(1) and
at most as expressive as GR(1). However, we do not know yet if the
two inclusions (or which of the two) are strict. In the first place, as
a starting point for addressing the problem, one has to understand
whether R(1) and GR(1) are or are not expressively equivalent.

In Chapter 4 we proved that the Safety-FO fragment captures
exactly all safety languages that are definable in LTL+P (or equiva-
lently in the first-order theory of one successor). Different equivalent
characterisations of LTL+P are known, in terms of (i) first-order log-
ics, (ii) regular expressions, (iii) automata, and (iv) monoids (they
have been summarised by Thomas in [192]). The work done in Chap-
ter 4 focuses on the first item, but for LTL-definable safety languages.
A natural follow-up would be to investigate the other items, looking
for what kind of automata (resp., regular expressions, monoids) cap-
tures exactly safety and co-safety LTL-definable languages. While on
finite traces simple characterizations in terms of automata and syn-
tactic monoids exist, the infinite-traces scenario is more complex. In
fact:

• there exists a characterization of LTL in terms of counter-free
automata [149];

• moreover, an automata-based characterization for safety ω-
regular languages seems not to be difficult (see e.g., terminal
automata [186, 39])

However, in order to combine these two characterizations and obtain,
let’s say, a counter-free terminal automata starting from any safety
LTL-definable ω-language, one must apply the two above-mentioned
characterizations/transformation to the very same automaton. For
this reason, one needs a theorem ensuring the existence of a canon-
ical/minimal ω-automaton for each ω-regular language.
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The black satisfiability checker described in Chapter 6 is based
on a SAT-encoding (described in the same chapter) of Reynolds’tableau.
One of the advantages of this tableau system is that it is very sim-
ple to extend to different temporal logics. For example, it has been
extended to Timed Propositional Temporal Logic (TPTL) in [100].
An interesting question is whether a SAT- or SMT-encoding of the
one-pass and tree-shaped tableau for TPTL proposed in [100] or for
other more expressive temporal logics is possible.

Regarding the realizability problem of LTLEBR+P (Chapter 7),
there are several interesting open points:

• The fully-symbolic automata construction can be used not only
for realizability but also for model-checking. In particular,
the deterministic ad symbolic safety automata (that we obtain
with our algorithm) may provide many benefits for symbolic
model checking, since the search of the state space could ben-
efit from a deterministic representation of the automaton for
the formula [173].

• In LTLEBR+P, the bounded operators are short-cuts for the
equivalent expansions using the next operators. It would be
interesting to consider the bounds as primitives, represented
with a logarithmic encoding. This would allow: (i) on the one
hand, to obtain exponentially more succinct specifications; and
(ii) on the other hand, to open the possibility to the underlying
algorithm of expoiting the symbolic bounds for a more clever
automata construction.

• Last but not least, we aim at checking whether the synthe-
sis problem for more expressive logics, like, for instance, LTL,
can be reduced to the synthesis problem for LTLEBR+P, for
example checking whether it is possible to use LTLEBR+P for
solving the safety problems originated from bounded synthesis
techniques.
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APPENDIX

A

PROOFS

A.1 Proofs of Chapter 7

Proposition 15 (Soundness of pastification). Let φ be a LTL+PBF

formula. For all state sequences σ ∈ (2Σ)ω, all i ∈ N, and all
d ≥ D(ϕ), it holds that:

σ, i |= φ ⇔ σ, i |= XdΠ(φ, d)

Proof. The proof goes by structural induction over φ. As the base
case, consider a LTL+PP formula ψ, and since D(ψ) = 0, consider
any d ≥ 0. It holds that σ, i |= ψ if and only if σ, i |= XdYdψ,
hence σ, i + d |= Ydψ, which by definition of Π(·) is equivalent to
σ, i + d |= Π(ψ, d). For the inductive case, we consider multiple
cases. The case for the negation and the disjunction operators are
straightforward. Consider now the case ϕ ≡ Xϕ1. We prove first the
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left-to-right direction. It holds that:

σ, i |= Xϕ1

↔ σ, i+ 1 |= ϕ1

semantics of next

↔ ∀d1 ≥ D(ϕ1) . σ, i+ 1 + d1 |= Π(ϕ1, d1)

inductive hypothesis on ϕ1

↔ ∀d ≥ D(ϕ1) + 1 . σ, i+ d |= Π(ϕ1, d− 1)

with d = d1 + 1

↔ ∀d ≥ D(ϕ) . σ, i+ d |= Π(ϕ1, d− 1)

since D(ϕ) = D(ϕ1) + 1

↔ ∀d ≥ D(ϕ) . σ, i+ d |= Π(Xϕ1, d)

by definition of Π(·)

↔ ∀d ≥ D(ϕ) . σ, i |= XdΠ(ϕ, d)

Consider now the case ϕ ≡ ϕ1 U
[a,b] ϕ2. The following equivalences

hold:

σ, i |= ϕ1 U
[a,b] ϕ2

↔ ∃j2 .
(︁
(a ≤ j2 ≤ b) ∧ σ, i+ j2 |= ϕ2∧
∀j1 . ((0 ≤ j1 < j2)→ σ, i+ j1 |= ϕ1)

)︁
semantics of bounded until

↔ ∀d1 ≥ D(ϕ1) . ∀d2 ≥ D(ϕ2) .
(︂

∃j2 .
(︁
(a ≤ j2 ≤ b) ∧ σ, i+ j2 + d2 |= Π(ϕ2, d2)∧

∀j1 . ((0 ≤ j1 < j2)→ σ, i+ j1 + d1 |= Π(ϕ1, d1))
)︁)︂

by the inductive hypothesis

Since D(ϕ) = b+max{D(ϕ1), D(ϕ2)}, it holds that D(ϕ1) ≤ D(ϕ)−
b and D(ϕ2) ≤ D(ϕ) − b. Therefore, for any first-order formula
ϕ(d1, d2) where d1 and d2 are free variables, it holds that if ∀d1 ≥
D(ϕ1) . ∀d2 ≥ D(ϕ2) . ϕ(d1, d2) then ∀d ≥ D(ϕ) . ϕ[d1 ↦→ (d −
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b), d2 ↦→ (d− b)]. And thus:

⇒∀d ≥ D(ϕ) .
(︂

∃j2 .
(︁
(a ≤ j2 ≤ b) ∧ σ, i+ j2 + d− b |= Π(ϕ2, d− b)∧

∀j1 . ((0 ≤ j1 < j2)→ σ, i+ j1 + d− b |= Π(ϕ1, d− b))
)︁)︂

since D(ϕ) = b+maxD(ϕ1), D(ϕ2)

⇔∀d ≥ D(ϕ) .
(︂

∃k2 .
(︁
(a ≤ b− k2 ≤ b) ∧ σ, i+ d− k2 |= Π(ϕ2, d− b)∧

∀j1 . ((0 ≤ b− k1 < b− k2)→ σ, i+ d− k1 |= Π(ϕ1, d− b))
)︁)︂

with k2 = b− j2 and k1 = b− j1

⇔∀d ≥ D(ϕ) .
(︂

∃k2 .
(︁
(0 ≤ k2 ≤ b− a) ∧ σ, i+ d− k2 |= Π(ϕ2, d− b)∧

∀j1 . ((0 ≤ k1 ≤ b− k2 − 1)→ σ, i+ d− k1 − 1 |= Π(ϕ1, d− b))
)︁)︂

simple arithmetic

⇔∀d ≥ D(ϕ) .
(︁
σ, i+ d |=

b−a⋁︂
k2=0

Yk2(Π(ϕ2, d− b) ∧ H[0,b−k2−1]YΠ(ϕ1, d− b))
)︁

definition of yesterday and bounded historically operators

⇔∀d ≥ D(ϕ) .
(︁
σ, i |= XdΠ(ϕ1 U

[a,b] ϕ2, d)
)︁

definition of Π(·)
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We now prove the right-to-left direction. It holds that:

∀d ≥ D(ϕ) .
(︁
σ, i |= Xd(

b−a⋁︂
t=0

Yt(Π(ϕ2, d− t) ∧ H[0,b−t−1]YΠ(ϕ1, d− b)))
)︁

⇔∀d ≥ D(ϕ) .
(︁

∃k2 . ((0 ≤ k2 ≤ b− a) ∧ π, i+ d− k2 |= Π(ϕ2, d− b)∧
∀k1 . ((0 ≤ k1 ≤ b− k2 − 1)∧

π, i+ d− k2 − k1 − 1 |= Π(ϕ1, d− b)))
)︁

semantics of yesterday and bounded until

⇔∀d ≥ D(ϕ) .
(︁

∃k2 . ((0 ≤ k2 ≤ b− a) ∧ π, i− k2 |= XdΠ(ϕ2, d− b)∧
∀k1 . ((0 ≤ k1 ≤ b− k2 − 1)∧

π, i− k2 − k1 − 1 |= XdΠ(ϕ1, d− b)))
)︁

semantics of next

⇔∀d1 ≥ D(ϕ)− b . ∀d2 ≥ D(ϕ)− b .
(︁

∃k2 . ((0 ≤ k2 ≤ b− a) ∧ π, i− k2 |= Xd2+bΠ(ϕ2, d2)∧
∀k1 . ((0 ≤ k1 ≤ b− k2 − 1)∧

π, i− k2 − k1 − 1 |= Xd1+bΠ(ϕ1, d1)))
)︁

with d1 = d− b and d2 = d− b

⇔∀d1 ≥ D(ϕ)− b . ∀d2 ≥ D(ϕ)− b .
(︁

∃k2 . ((0 ≤ k2 ≤ b− a) ∧ π, i− k2 + b |= Xd2Π(ϕ2, d2)∧
∀k1 . ((0 ≤ k1 ≤ b− k2 − 1)∧

π, i− k2 − k1 − 1 + b |= Xd1Π(ϕ1, d1)))
)︁

semantics of next

Since D(ϕ1) ≤ D(ϕ) − b and D(ϕ2) ≤ D(ϕ) − b, the inductive
hypothesis applies in particular for all d1 ≥ D(ϕ1) − b and forall
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d2 ≥ D(ϕ2)− b, and thus we have:

⇒∃k2 . ((0 ≤ k2 ≤ b− a) ∧ π, i− k2 + b |= ϕ2∧
∀k1 . ((0 ≤ k1 ≤ b− k2 − 1) ∧ π, i− k2 − k1 − 1 + b |= ϕ1))

by inductive hypothesis

⇔∃j2 . ((0 ≤ b− j2 ≤ b− a) ∧ π, i+ j2 |= ϕ2∧
∀j1 . ((0 ≤ b− j1 ≤ b+ j2 − b− 1) ∧ π, i+ j2 − b+ j1 − 1 |= ϕ1))

with j2 = b− k2 and k1 = b− j1

⇔∃j2 . ((a ≤ j2 ≤ b) ∧ π, i+ j2 |= ϕ2∧
∀j1 . ((b+ 1− j2 ≤ j1 ≤ b) ∧ π, i+ j2 − b+ j1 − 1 |= ϕ1))

by simple arithmetics

⇔∃j2 . ((a ≤ j2 ≤ b) ∧ π, i+ j2 |= ϕ2∧
∀l . ((b+ 1− j2 ≤ l − j2 + 1 + b ≤ b) ∧ π, i+ l |= ϕ1))

with l = j1 + j2 − b− 1

⇔∃j2 . ((a ≤ j2 ≤ b) ∧ π, i+ j2 |= ϕ2∧
∀l . ((0 ≤ l < j2) ∧ π, i+ l |= ϕ1))

by simple arithmetics

⇔σ, i |= ϕ1 U
[a,b] ϕ2

by the semantics of bounded until

This concludes the proof.

Proposition 16 (Size of pastification). Let ϕ be a LTL+PBF for-
mula. Then, pastify(ϕ) is a formula of size O(n), where n = |ϕ|.

Proof. We first give a bound for the Π(·) operator. It holds that:

• |Π(ψ, d)| = d+ |ψ| for each ψ ∈ LTL+PP;

• |Π(¬ϕ, d)| = |Π(ϕ, d)|+ 1;

• |Π(ϕ1 ∨ ϕ2, d)| = |Π(ϕ1, d)|+ |Π(ϕ2, d)|+ 1;

• |Π(Xϕ1, d)| = |Π(ϕ1, d− 1)|+ 1 ≤ |Π(ϕ1, d)|+ 1;

Recall that, since bounded operators are shortcuts, it suffices to
consider the cases of atomic propositions, Boolean operators and
the next temporal operator.
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The case for disjunctions clearly dominates all the others. Sup-

pose without loss of generality that |ϕ1| = |ϕ2| = |ϕ|−1
2 . The recur-

rence equation S(n) describing the space required for |Π(ϕ, d)|, with
n = |ϕ|, is the following:

S(n) =

{︄
O(d) if n = 1

O(1) + 2 · S(n2 ) otherwise

By unrolling the equation for i steps, we have that S(n) = O(i) +
2i · S( n2i ). For i = log2 n, the equation amounts to:

S(n) = O(log2 n) + 2log2 n · S( n

2log2 n
)

= O(log2 n) + n · S(1)
= O(n)

Since pastify(ϕ) is defined as XdΠ(ϕ, d)) where d = D(ϕ), and since
D(ϕ) ≤ n, it holds that |pastify(ϕ)| ≤ O(n).

Lemma 23 (Strong equivalence for the rules). Let ψ, ψ1, ψ2 and ψ3

be LTL+PP formulas. For all state sequences σ and for all positions
i ∈ N, it holds that:

R1: σ, i |= X(ψ1 ∧ ψ2)⇔ σ, i |= Xψ1 ∧ Xψ2

R2: σ, i |= ψ R (ψ1 ∧ ψ2)⇔ σ, i |= ψ R ψ1 ∧ ψ R ψ2

R3: σ, i |= (Xiψ1) R (Xjψ2)⇔

σ, i |=

{︄
Xi(ψ1 R (Yi−jψ2)) if i > j

Xj((Yj−iψ1) R ψ2) otherwise

R4: σ, i |= (Xiψ1) R (Xj(ψ2 R ψ3))⇔

σ, i |=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xi(ψ1 R ((Yi−jψ2) R (Yi−jψ3)))

if i > j

Xj((Yj−iψ1) R (ψ2 R ψ3))

otherwise

R5: σ, i |= GXiGψ ⇔ σ, i |= XiGψ
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R6: σ, i |= GXi(ψ1 R ψ2)⇔ σ, i |= XiGψ2

R7: (Xiψ1) R (XjGψ2)⇔

σ, i |=

{︄
XiGYi−jψ2 if i > j

XjGψ2 otherwise

Rflat: σ, 0 |= Xi(ψ1R(ψ2R(. . . (ψn−1Rψn) . . . )))⇔ σ, 0 |= Xi((ψn−1∧
O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤) . . . ))) R ψn) ∀n ≥ 3

Proof. Before starting the proof, we remark that the claim of this
lemma not only asks for proving the equivalence between the left-
and the right-hand side of the rules, but requires to prove the strong
equivalence between the two, i.e., that for all the state sequences σ
and for all the positions i, σ is a model starting from position i of the
left-hand formula iff σ is a model starting from position i of the right-
hand formula. Equivalence is a special case of strong equivalence by
considering only i = 0. In our case, the necessity of considering
strong equivalence is due to the fact that the left-hand side of the
rules (except for Rflat, for which we require only the equivalence)
can appear as subformulas of the original ϕ on which we apply the
normalize algorithm, and thus it can be interpreted potentially on
any position i. Since we want to maintain the equivalence between
ϕ and normalize(ϕ), we have to make sure that each subformulas
is strongly equivalent to the one by which it is replaced during the
applications of the rules. The only exception is the Rflat rule, which
is applied only to top-level conjuncts or disjuncts, and thus we can
require for it to maintain only the equivalence.

Initially we prove the first two points (i.e., R1 and R2). For the
R1 rule, the following steps hold:

σ, i |= X(ψ1 ∧ ψ2)

⇔ σ, i+ 1 |= ψ1 ∧ ψ2

⇔ σ, i+ 1 |= ψ1 ∧ σ, i+ 1 |= ψ2

⇔ σ, i |= Xψ1 ∧ σ, i |= Xψ2

⇔ σ, i |= Xψ1 ∧ Xψ2

Consider rule R2. We first prove that σ, s |= ψ R (ϕ1 ∧ ϕ2) implies
σ, s |= ψ R ϕ1 ∧ψ R ϕ2, for all state sequences σ and for all positions
s. Let σ be a state sequence and let s ∈ N be a position such that
σ, s |= ψ R (ϕ1 ∧ ϕ2). We divide in cases:
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1. if ∀i ≥ s.(σ, i |= ϕ1 ∧ ϕ2), then ∀i ≥ s.σ, i |= ϕ1 and ∀i ≥
s.σ, i |= ϕ2. Thus, σ, s |= ψ R ϕ1 and σ, s |= ψ R ϕ2, that is
σ, s |= ψ R ϕ1 ∧ ψ R ϕ2.

2. if ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.σ, j |= (ϕ1 ∧ ϕ2)) then

⇔ ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.(σ, j |= ϕ1)∧
∀s ≤ k ≤ i.(σ, k |= ϕ2))

⇒ ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.(σ, j |= ϕ1))∧
∃i ≥ s.(σ, i |= ψ ∧ ∀0 ≤ j ≤ i.(σ, j |= ϕ2))

⇔ σ, s |= ψ R ϕ1 ∧ ψ R ϕ2

We now prove the opposite direction, that is σ, s |= ψ R ϕ1 ∧ ψ R ϕ2
implies σ, s |= ψ R (ϕ1 ∧ ϕ2), for all state sequences σ and for all
positions s. Let σ be a state sequence and let s ∈ N such that
σ, s |= ψ R ϕ1 ∧ ψ R ϕ2. We divide again in cases:

1. if ∀i ≥ s.(σ, i |= ϕ1) ∧ ∀i ≥ s.(σ, j |= ϕ2), then ∀i ≥ s.(σ, i |=
ϕ1 ∧ ϕ2) and thus σ, s |= ψ R (ϕ1 ∧ ϕ2).

2. if ∀i ≥ s.(σ, i |= ϕ1) and ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.σ, j |=
ϕ2), then ∃i ≥ s(σ, i |= ψ ∧ ∀s ≤ j ≤ i.σ, j |= (ϕ1 ∧ ϕ2)), that
is σ, s |= ψ R (ϕ1 ∧ ϕ2).

3. if ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.σ, j |= ϕ1) and ∀i ≥ s.(σ, i |=
ϕ2), then ∃i ≥ s.(σ, i |= ψ ∧ ∀s ≤ j ≤ i.σ, k |= ϕ1 ∧ ϕ2), that is
σ, s |= ψ R (ϕ1 ∧ ϕ2).

4. consider the case such that ∃l ≥ s.(σ, l |= ψ∧∀s ≤ j ≤ l.σ, j |=
ϕ1) and ∃k ≥ s.(σ, k |= ψ ∧ ∀s ≤ j ≤ k.σ, j |= ϕ2). Let
i = min(l, k): then σ, i |= ϕ and ∀s ≤ j ≤ i.(σ, j |= ϕ1 ∧ ϕ2),
that is σ, s |= ψ R (ϕ1 ∧ ϕ2).

This concludes the proof for the R2 rule.
Before proving the cases of the remaining rules, we define and

prove the following auxiliary strong equivalences. For all state se-
quences σ and for all positions i, it holds that:

R1: σ, i |= ψ1 R (Xiψ2) ↔ σ, i |= Xi((Yiψ1) R ψ2)

R2: σ, i |= (Xiψ1) R ψ2 ↔ σ, i |= Xi(ψ1 R (Yiψ2))

R3: σ, i |= YiXiψ ↔ σ, i |= ψ ∧ Yi⊤
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R4: σ, i |= Yi(ψ1 R ψ2) ↔ σ, i |= (Yiψ1) R (Yiψ2)

R5: σ, i |= GGψ ↔ σ, i |= Gψ

R6: σ, i |= G(ψ1 R ψ2) ↔ σ, i |= Gψ2

R7: σ, i |= ψ1 R (Gψ2) ↔ σ, i |= Gψ2

These will help proving the cases for R3-R7.
Consider the case for rule R1. We first prove that σ, s |= ψ1 R

(Xiψ2) implies σ, s |= Xi((Yiψ1) R ψ2), for all state sequences σ and
all positions s. Let σ be a state sequence and let s ∈ N such that
σ, s |= ψ1 R (Xiψ2). We divide in cases:

1. if ∀j ≥ s.σ, j |= Xiψ2, then

⇔ ∀j ≥ s+ i.σ, j |= ψ2

⇒ σ, s+ i |= (Yiψ1) R ψ2

⇔ σ, s |= Xi((Yiψ1) R ψ2)

2. if ∃j ≥ s.(σ, j |= ψ1 ∧ ∀s ≤ k ≤ j.σ, k |= Xiψ2), then ∃j ≥
s.(σ, j+ i |= Yiψ1∧∀s+ i ≤ k ≤ j+ i.σ, k |= ψ2), which in turn
means that σ, s+i |= (Yiψ1)Rψ2, that is σ, s |= Xi((Yiψ1)Rψ2).

We now prove the opposite direction, that is σ, s |= Xi((Yiψ1) R
ψ2) implies σ, s |= ψ1 R (Xiψ2), for all state sequences σ and all
positions s. Let σ be a state sequence and let s ∈ N such that
σ, s |= Xi((Yiψ1) R ψ2). We divide again in cases:

1. if ∀j ≥ s + i.(σ, j |= ψ2), then ∀j ≥ s.(σ, j |= Xiψ2) and thus
σ |= ψ1 R (Xiψ2).

2. if ∃j ≥ s+ i.(σ, j |= Yiψ1 ∧ ∀s+ i ≤ k ≤ j.σ, k |= ψ2), then:

⇔ ∃j ≥ s+ i.(σ, j − i |= XiYiψ1 ∧ ∀s ≤ k ≤ j − i.σ, k |= Xiψ2)

⇔ ∃j ≥ s+ i.(σ, j − i |= ψ1 ∧ ∀s ≤ k ≤ j − i.σ, k |= Xiψ2)

⇔ σ, s+ i |= Yi(ψ1 R (Xiψ2))

⇔ σ, s |= ψ1 R (Xiψ2)

This concludes the proof for the rule R1. The proof for the R2 rule
is specular.
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Consider the R3 case. We first prove that σ, s |= YiXiψ implies
σ, s |= ψ ∧ Yi⊤, for all state sequences σ and all positions s. Let σ
be a state sequence such that σ, s |= YiXiψ for a given s ∈ N. We
divide in cases:

(i) if s < i, then σ, s ̸|= YiXiψ, but this is a contradiction with
our hypothesis;

(ii) then it has to be the case that s ≥ i. It holds that:

σ, s |= YiXiψ ⇔ σ, s− i |= Xiψ

⇔ σ, s− i+ i |= ψ

⇔ σ, s |= ψ ∧ Yi⊤ since s ≥ i

We prove the opposite direction, that is σ, s |= ψ ∧ Yi⊤ implies
σ, s |= YiXiψ, for all state sequences σ and all positions s. Let σ be
a state sequence such that σ, s |= ψ ∧ Yi⊤ for a given s ∈ N. We
divide in cases:

(i) if s < i, then σ, s ̸|= Yi⊤, but this is a contradiction with our
hypothesis;

(ii) then it has to be the case that s ≥ i. It holds that:

σ, s |= ψ ∧ Yi⊤ ⇔ σ, s− i |= Xiψ since s ≥ i
⇔ σ, s− i+ i |= YiXiψ

⇔ σ, s |= YiXiψ

This concludes the proof for R3.
Consider now the R4 case. We first prove the left-to-right direc-

tion, that is σ, s |= Yi(ψ1 R ψ2) implies σ, s |= (Yiψ1) R (Yiψ2), for
all state sequences σ and all positions s. Let σ be a state sequence
such that σ, s |= Yi(ψ1 R ψ2) with s ≥ i (obviously, it can’t be that
s < i). It holds that σ, s− i |= ψ1Rψ2. Now, we divide in cases:

1. if ∀k ≥ s − i.σ, k |= ψ2, then ∀k ≥ s.σ, k |= Yiψ2 and thus
σ, s |= (Yiψ1) R (Yiψ2).

2. if ∃k ≥ s − i.(σ, k |= ψ2 ∧ ∀s − i ≤ l ≤ k.σ, l |= ψ1), then
∃k ≥ s.(σ, k |= Yiψ2 ∧ ∀s ≤ l ≤ k.σ, l |= Yiψ1), and thus
σ, s |= (Yiψ1) R (Yiψ2).
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Now we prove the opposite direction. Suppose that σ, s |= (Yiψ1) R
(Yiψ2) where s ≥ i. We divide in cases:

1. if ∀k ≥ s.σ, k |= Yiψ2, then:

∀k ≥ s− i.σ, k |= ψ2 ⇔ σ, s− i |= ψ1 R ψ2

⇔ σ, s |= Yi(ψ1 R ψ2)

2. if ∃k ≥ s.(σ, k |= Yiψ1 ∧ ∀k ≤ l ≤ k.σ, l |= Yiψ2), then:

∃k ≥ s− i.(σ, k |= ψ1 ∧ ∀s− i ≤ l ≤ k.σ, l |= ψ2)⇔ σ, s− i |= ψ1 R ψ2

⇔ σ, s |= Yi(ψ1 R ψ2)

This concludes the proof for the R4 case.
The case for R5 is simple, and it consists in the following steps.

For all state sequences σ and for all positions s, it holds that:

σ, s |= GGψ ⇔ ∀i ≥ s.σ, i |= Gψ

⇔ ∀i ≥ s.∀j ≥ i.σ, j |= ψ

⇔ ∀i ≥ s.σ, i |= ψ

⇔ σ, s |= Gψ

Consider the R6 strong equivalence. We first prove the left-to-right
direction. Suppose that σ, s |= G(ψ1Rψ2), for a given state sequence
σ and a given position s. It holds that ∀i ≥ s.σ, i |= ψ1 R ψ2. We
divide in cases, depending on the semantics of the release operator:

1. if ∀i ≥ s.∀j ≥ i.σ, j |= ψ2. In this case we have that ∀i ≥
s.σ, i |= ψ2, that is σ, s |= Gψ2.

2. otherwise, ∀i ≥ s.∃j ≥ i.(σ, j |= ψ1 ∧ ∀i ≤ k ≤ j.σ, k |= ψ2).
In particular, for k = i, we have that ∀i ≥ s.σ, i |= ψ2, that is
σ, s |= Gψ2.

We prove the right-to-left direction for the R6 case. Suppose that
σ, s |= Gψ2, for a given state sequence σ and position s. It holds
that:

σ, s |= Gψ2 ⇔ ∀i ≥ s.σ, i |= ψ2

⇔ ∀i ≥ s.∀j ≥ i.σ, j |= ψ2

⇒ ∀i ≥ s.σ, i |= ψ1 R ψ2

⇔ σ, s |= G(ψ1 R ψ2)
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Finally, consider the case for the R7 strong equivalence. We first
prove the left-to-right direction. Suppose that σ, s |= ψ1 R (Gψ2)
for a given state sequence σ and position s. We divide in cases,
depending on the semantics of the release operator:

1. if ∀i ≥ s.σ, i |= Gψ2, then for i = s we have that σ, s |= Gψ2.

2. otherwise, ∃i ≥ s.(σ, i |= ψ1 ∧ ∀s ≤ j ≤ i.σ, j |= Gψ2). In
particular, for j = s, σ, s |= Gψ2.

Therefore, in both cases we have that σ, s |= Gψ2. For the right-to-
left direction, suppose that σ, s |= Gψ2. Then, ∀i ≥ s.σ, i |= Gψ2.
This implies that σ, s |= ψ1 R (Gψ2). This concludes the proof of all
the auxiliary strong equivalences.

We can now prove the remaining rules R3-R7. Consider first R3

in the case i > j: we have to prove that σ, s |= (Xiψ1) R (Xjψ2) ↔
σ, s |= Xi(ψ1 R (Yi−jψ2)), for all states sequences σ and all positions
s. This can be simply done by means of the auxiliary rules R2 and
R3:

σ, s |= (Xiψ1) R (Xjψ2)

↔ σ, s |= Xi(ψ1 R (YiXjψ2)) by rule R2

↔ σ, s |= Xi(ψ1 R (Yi−j(YjXjψ2)))

↔ σ, s |= Xi(ψ1 R (Yi−j(ψ2 ∧ Yj⊤))) by rule R3

↔ σ, s |= Xi(ψ1 R (Yi−jψ2 ∧ Yi−j+j⊤))
↔ σ, s |= Xi(ψ1 R (Yi−jψ2 ∧ Yi⊤))
↔ σ, s |= Xi(ψ1 R (Yi−jψ2))

Consider now the rule R3 in the case i ≤ j. We have to prove that
σ, s |= (Xiψ1) R (Xjψ2) ↔ σ, s |= Xj((Yj−iψ1) R ψ2). This can be
done using the auxiliary equivalences R1 and R3:

σ, s |= (Xiψ1) R (Xjψ2)

↔ σ, s |= Xj((YjXiψ1) R ψ2) by rule R1

↔ σ, s |= Xj((Yj−i(YiXiψ1)) R ψ2)

↔ σ, s |= Xj((Yj−i(ψ1 ∧ Yi⊤)) R ψ2) by rule R3

↔ σ, s |= Xj((Yj−iψ1 ∧ Yj−i+i⊤) R ψ2)

↔ σ, s |= Xj((Yj−iψ1 ∧ Yj⊤) R ψ2)

↔ σ, s |= Xj((Yj−iψ1) R ψ2)
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Consider the R4 rule in the case i > j. It holds that:

σ |= (Xiψ1) R (Xj(ψ2 R ψ3))

⇔ σ, s |= Xi(ψ1 R (YiXj(ψ2 R ψ3))) by rule R2

⇔ σ, s |= Xi(ψ1 R (Yi−jYjXj(ψ2 R ψ3)))

⇔ σ, s |= Xi(ψ1 R (Yi−j(ψ2 R ψ3 ∧ Yj⊤))) by rule R3

⇔ σ, s |= Xi(ψ1 R (Yi−j(ψ2 R ψ3) ∧ Yi⊤))
⇔ σ, s |= Xi(ψ1 R (Yi−j(ψ2 R ψ3))) ∧ Xi(ψ1 R Yi⊤) by rule R1

⇔ σ, s |= Xi(ψ1 R (Yi−j(ψ2 R ψ3)))

⇔ σ, s |= Xi(ψ1 R ((Yi−jψ2) R (Yi−jψ3))) by rule R4

Finally, consider the R4 rule in the case i ≤ j. It holds that:

σ |= (Xiψ1) R (Xj(ψ2 R ψ3))

⇔ σ, s |= Xj((YjXiψ1) R (ψ2 R ψ3)) by rule R1

⇔ σ, s |= Xj((Yj−iYiXiψ1) R (ψ2 R ψ3))

⇔ σ, s |= Xj((Yj−i(ψ1 ∧ Yi⊤)) R (ψ2 R ψ3)) by rule R3

⇔ σ, s |= Xj((Yj−iψ1 ∧ Yj⊤) R (ψ2 R ψ3))

⇔ σ, s |= Xj((Yj−iψ1) R (ψ2 R ψ3))

Consider the R5 rule. It can be proven by means of the rules R4

and R5 as follows. For all state sequences σ and all positions s, it
holds that:

σ, s |= GXiGψ

⇔ σ, s |= (X0⊥) R (Xi(⊥ R ψ)) by definition of globally operator

⇔ σ, s |= Xi((Yi⊥) R (⊥ R ψ)) by rule R4

⇔ σ, s |= Xi(⊥ R (⊥ R ψ))

⇔ σ, s |= Xi(GGψ)

⇔ σ, s |= XiGψ by rule R5

Consider the R6 rule. It can be prove by means of the rules R4 and
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R6 as follows. For all state sequences σ and positions s it holds that:

σ, s |= GXi(ψ1 R ψ2)

⇔ σ, s |= ((X0⊥) R (Xi(ψ1 R ψ2))) by definition of globally operator

⇔ σ, s |= Xi((Yi⊥) R (ψ1 R ψ2)) by rule R4

⇔ σ, s |= Xi(⊥ R (ψ1 R ψ2))

⇔ σ, s |= Xi(G(ψ1 R ψ2))

⇔ σ, s |= Xi(Gψ2) by rule R6

Consider the R7 rule. It can be proven by means of the rules R4

and R7 as follows. Let σ be a state sequence and let s be a position.
We divide in cases. If i > j, then:

σ, s |= (Xiψ1) R (XjGψ2)

⇔ σ, s |= (Xiψ1) R (Xj(⊥ R ψ2))

⇔ σ, s |= Xi(ψ1 R ((Yi−j⊥) R (Yi−jψ2))) by rule R4

⇔ σ, s |= Xi(ψ1 R (⊥ R (Yi−jψ2)))

⇔ σ, s |= Xi(ψ1 R (G(Yi−jψ2)))

⇔ σ, s |= Xi(ψ1 R (G(Yi−jψ2))) by rule R7

⇔ σ, s |= XiGYi−jψ2

Otherwise, it holds that i ≤ j and:

σ, s |= (Xiψ1) R (XjGψ2)

⇔ σ, s |= (Xiψ1) R (Xj(⊥ R ψ2))

⇔ σ, s |= Xj((Yj−iψ1) R (⊥ R ψ2)) by rule R4

⇔ σ, s |= Xj((Yj−iψ1) R (Gψ2))

⇔ σ, s |= XjGψ2 by rule R7

This concludes the case for the rules R1-R7.
It remains the case for the Rflat rule, for which we have to prove

only equivalence. We first prove the left-to-right direction, for all
n ≥ 3. Suppose that:

σ, 0 |= Xi(ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . )))

⇔ σ, i |= ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . ))
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This formula contains exactly n release operators. Each of these can
be satisfied in two ways: (i) universally, that is if for all the future
positions the right-hand side formula holds, or (ii) existentially, if
there exists a position in the future where the left-hand side formula
holds and the right-hand side formula holds until then. Therefore,
we have a total of 2n−1 cases.

We consider first the cases in which there exists a release operator
that is universally satisfied. These correspond to 2n−1−1 cases. Let
m be the index of the outermost between these operators. Let k1 = i.
We have that:

∃j1 ≥ k1.(σ, j1 |= ψ1 ∧ ∀k1 ≤ k2 ≤ j1.
∃j2 ≥ k2.(σ, j2 |= ψ2 ∧ · · · ∧ ∀km−1 ≤ km−1 ≤ jm−2.

∀km ≥ km−1.(σ, km |= ψm R (. . . (ψn−1 R ψn) . . . ))) . . . )

Which is equivalent to:

∃j1 ≥ k1.(σ, j1 |= ψ1 ∧ ∀k1 ≤ k2 ≤ j1.
∃j2 ≥ k2.(σ, j2 |= ψ2 ∧ · · · ∧ ∀km−1 ≤ km−1 ≤ jm−2.

(σ, km−1 |= G(ψm R (. . . (ψn−1 R ψn) . . . ))) . . . ))

By the repeated application of the R6 auxiliary rule n − m times,
we have that:

∃j1 ≥ k1.(σ, j1 |= ψ1 ∧ ∀k1 ≤ k2 ≤ j1.
∃j2 ≥ k2.(σ, j2 |= ψ2 ∧ · · · ∧ ∀km−1 ≤ km−1 ≤ jm−2.(σ, km−1 |= Gψn) . . . ))

that is:

∃j1 ≥ k1.(σ, j1 |= ψ1 ∧ ∀k1 ≤ k2 ≤ j1.
∃j2 ≥ k2.(σ, j2 |= ψ2 ∧ · · · ∧ ∀km−1 ≤ km−1 ≤ jm−2.

∀k ≥ km−1.(σ, k |= ψn) . . . ))

In particular, for k1 = k2 = · · · = km−2 = km−1, we have that:

∀k ≥ k1.σ, k |= ψn

Since by definition k1 = i, we have that ∀k ≥ i.σ, k |= ψn, and
thus σ, 0 |= Xi((ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤))) R ψn). The
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remaining case is when all the release operators are existentially
satisfied. Suppose that:

∃j1 ≥ k1.(σ, j1 |= ψ1 ∧ ∀k1 ≤ k2 ≤ j1.
∃j2 ≥ k2.(σ, j2 |= ψ2 ∧ · · · ∧ ∀kn−1 ≤ kn−1 ≤ jn−2.

∃jn−1 ≥ kn−1.(σ, jn−1 |= ψn−1 ∧ ∀kn−1 ≤ kn ≤ jn−1.σ, kn |= ψn)) . . . )

where k1 = i. This implies that:

∃j1 ≥ i.(σ, j1 |= ψ1∧
∃j2 ≥ j1.(σ, j2 |= ψ2 ∧ · · · ∧
∃jn−1 ≥ jn−2.(σ, jn−1 |= ψn−1 ∧ ∀i ≤ k ≤ jn−1.σ, k |= ψn) . . . ))

This is equivalent to:

∃jn−1 ≥ i.(σ, jn−1 |= ψn−1∧
∃i ≤ jn−2 ≤ jn−1.(σ, jn−2 |= ψn−2 ∧ · · · ∧
∃i ≤ j1 ≤ j2.(σ, j1 |= ψ1) . . . ) ∧ ∀i ≤ k ≤ jn−1.σ, k |= ψn)

This in turn is equivalent to:

∃jn−1 ≥ i.(σ, jn−1 |= ψn−1∧
∃0 ≤ jn−2 ≤ jn−1.(σ, jn−2 |= ψn−2 ∧ · · · ∧
∃0 ≤ j1 ≤ j2.(σ, j1 |= ψ1 ∧ Yi⊤) . . . ) ∧ ∀i ≤ k ≤ jn−1.σ, k |= ψn)

This is the definition of the existential semantics of the formula
(ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤))) R ψn, starting from position i.
Therefore, σ, 0 |= Xi((ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤))) R ψn).

We now prove the right-to-left direction for Rflat. Suppose that
σ, 0 |= Xi((ψn−1 ∧ O(ψn−2 ∧ . . .O(ψ1 ∧ Yi⊤))) R ψn). Therefore,
σ, i |= (ψn−1 ∧O(ψn−2 ∧ . . .O(ψ1 ∧Yi⊤)))Rψn. We divide in cases:

1. if ∀j ≥ i. σ, j |= ψn, then σ, 0 |= Xi(ψ1 R (ψ2 R (. . . (ψn−1 R
ψn) . . . )))

2. otherwise, ∃j ≥ i.(σ, j |= ψn−1∧O(ψn−2∧. . .O(ψ1∧Yi⊤) . . . )∧
∀i ≤ k ≤ j.σ, k |= ψn).

With the former case, we are done. Instead, the latter is equivalent
to:

∃jn−1 ≥ i.(σ, jn−1 |= ψn−1∧
∃0 ≤ jn−2 ≤ jn−1.(σ, jn−2 |= ψn−2 ∧ . . .
∃0 ≤ j1 ≤ j2.(σ, j1 |= (ψ1 ∧ Yi⊤)) . . . ) ∧ ∀i ≤ k ≤ jn−1.σ, k |= ψn)
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In turn, this is equivalent to:

∃jn−1 ≥ i.(σ, jn−1 |= ψn−1∧
∃i ≤ jn−2 ≤ jn−1.(σ, jn−2 |= ψn−2 ∧ . . .
∃i ≤ j1 ≤ j2.(σ, j1 |= ψ1) . . . ) ∧ ∀i ≤ k ≤ jn−1.σ, k |= ψn)

This is equivalent to:

∃j1 ≥ i.(σ, j1 |= ψ1∧
∃j2 ≥ j1.(σ, j2 |= ψ2 ∧ . . .
∃jn−1 ≥ jn−2.(σ, jn−1 |= ψn−1) . . . ) ∧ ∀i ≤ k ≤ j1.σ, k |= ψn)

which implies that:

∃j1 ≥ i.(σ, j1 |= ψ1 ∧ ∀i ≤ k1 ≤ j1.
∃j2 ≥ j1.(σ, j2 |= ψ2 ∧ · · · ∧ ∀kn−2 ≤ kn−1 ≤ jn−1.

∃jn−1 ≥ jn−2.(σ, jn−1 |= ψn−1 ∧ ∀kn−1 ≤ k ≤ jn−1.σ, k |= ψn) . . . ))

This is the definition of the existential semantics of the formula
ψ1R (ψ2R (. . . (ψn−1Rψn) . . . )), starting from position i. Therefore,
σ, 0 |= Xi(ψ1R (ψ2R (. . . (ψn−1Rψn) . . . ))). This concludes the proof
of Lemma 23.

Lemma 24. Let ψ1, ψ2 and ψ3 be LTL+PP formulas. Let ϕ be a
formula of type Xjψ2, X

jGψ2 or Xj(ψ2Rψ3). For each state sequence
σ and position i, it holds that:

1. σ, i |= Gϕ ↔ σ, i |= resolve globally(ϕ)

2. σ, i |= (Xiψ1) R ϕ ↔ σ, i |= resolve release(Xiψ1, ϕ)

Proof. We prove the second point, for the release operator. The sub-
routine resolve release divides in cases, depending on the struc-
ture of ϕ:

• if ϕ = Xjψ2 and i > j, then:

resolve release(Xiψ1,X
jψ2) := Xi(ψ1 R (Yi−jψ2))

By rule R3 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).
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• if ϕ = Xjψ2 and i ≤ j, then

resolve release(Xiψ1,X
jψ2) := Xj((Yj−iψ1) R ψ2)

By rule R3 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).

• if ϕ = Xj(ψ2 R ψ3) and i > j, then

resolve release(Xiψ1,X
j(ψ2 R ψ3)) := Xi(ψ1 R ((Yi−jψ2) R (Yi−jψ3)))

By rule R4 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).

• if ϕ = Xj(ψ2 R ψ3) and i ≤ j, then

resolve release(Xiψ1,X
j(ψ2 R ψ3)) := Xj((Yj−iψ1) R (ψ2 R ψ3))

By rule R4 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).

• if ϕ = XjGψ2 and i > j, then

resolve release(Xiψ1,X
jGψ2) := XiGYi−jψ2

By rule R7 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).

• if ϕ = XjGψ2 and i ≤ j, then

resolve release(Xiψ1,X
jGψ2) := XjGψ2

By rule R7 of Lemma 23, we have that σ, i |= (Xiψ1) R ϕ ↔
σ, i |= resolve release(Xiψ1, ϕ).

The case for resolve globally(ϕ) is analogous.

Lemma 25 (Soundness of applyR1R7(·)). For any Pastified-LTLEBR+P
formula ϕ, for any state sequence σ and for any position i, it holds
that σ, i |= ϕ iff σ, i |= applyR1R7(ϕ).

Proof. Consider the pseudo-code of applyR1R7(·) as described in
Fig. 7.2. We prove this claim by induction on the complexity of
formula ϕ.
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The base case corresponds to the case when ϕ is a LTL+PP for-
mula. In this case, the applyR1R7(·) algorithm returns ϕ it self.
Obviously, ϕ is strongly equivalent to applyR1R7(ϕ)

For the inductive step, we divide in cases. If ϕ := Xϕ1, then
σ, i + 1 |= ϕ1. By inductive hypothesis σ′, i′ |= ϕ1 iff σ′, i′ |=
applyR1R7(ϕ1), for all state sequences σ′ and positions i′. There-
fore:

σ, i |= Xϕ1 ⇔ σ, i+ 1 |= ϕ1

⇔ σ, i+ 1 |= applyR1R7(ϕ1) by inductive hypothesis

⇔ σ, i |= X(applyR1R7(ϕ1))

In general, applyR1R7(ϕ1) is a conjunction of formulas of type Xjψ,
XjGψ, Xj((Xkψ1) R ψ2), that is:

applyR1R7(ϕ1) := ϕc2 ∧ · · · ∧ ϕcn

and thus:

σ, i |= Xϕ1 ⇔ σ, i |= X(ϕc2 ∧ · · · ∧ ϕcn)

Using rule R1 of Lemma 23, we have that:

σ, i |= Xϕ1 ⇔ σ, i |= X(ϕc2 ∧ · · · ∧ ϕcn)
⇔ σ, i |= Xϕc2 ∧ · · · ∧ Xϕcn by rule R1 of Lemma 23

σ, i |= ϕ⇔ σ, i |= applyR1R7(ϕ)

This concludes the case for ϕ := Xϕ1. Consider the case ϕ :=
(Xiψ1) R ϕ1. Since by inductive hypothesis σ′, i′ |= ϕ1 iff σ′, i′ |=
applyR1R7(ϕ1), for all state sequences σ′ and positions i′, we have
that:

σ, i |= (Xiψ1) R ϕ1 ⇔ σ, i |= (Xiψ1) R (applyR1R7(ϕ1))

σ, i |= (Xiψ1) R (ϕc2 ∧ · · · ∧ ϕcn)

where ϕci is a formula of type Xjψ, XjGψ, Xj((Xkψ1)Rψ2), for each
1 < i ≤ n. By rule R2 of Lemma 23, we have that:

σ, i |= (Xiψ1) R ϕ1 ⇔ σ, i |= (Xiψ1) R (ϕc2 ∧ · · · ∧ ϕcn)
⇔ σ, i |= (Xiψ1) R (ϕc2) ∧ · · · ∧ (Xiψ1) R (ϕcn)
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Let ϕri ≡ resolve release(Xiψ1, ϕ
c
i ), for all 1 < i ≤ n. By Lemma 24:

σ, i |= (Xiψ1) R ϕ1 ⇔ σ, i |= (Xiψ1) R (ϕc2) ∧ · · · ∧ (Xiψ1) R (ϕcn)

⇔ σ, i |= (Xiψ1) R (ϕr2) ∧ · · · ∧ (Xiψ1) R (ϕrn)

by Lemma 24

⇔ σ, i |= applyR1R7(ϕ) by definition of applyR1R7

This concludes the case for ϕ := ϕ := (Xiψ1) R ϕ1. The case for the
globally operator is analogous to the proof for the release one.

Lemma 26 (Soundness of flatten(·)). For any Pastified-LTLEBR+P
formula ϕ, it holds that ϕ ≡ flatten(ϕ).

Proof. We prove this lemma by induction on the number n of top-
level conjucts or disjuncts. The base case corresponds to the case of
n = 0. We divide in cases:

• if ϕ := Xi(ψ1 R (ψ2 R (. . . (ψn−1 R ψn) . . . ))), then flatten(ϕ) :=
Xi((ψn−1∧O(ψn−2∧ . . .O(ψ1∧Yi⊤) . . . ))Rψn). By the Rflat
rule of Lemma 23, ϕ ≡ flatten(ϕ).

• otherwise, the flatten algorithm falls in the default case. In
this case, flatten(ϕ) := ϕ, and obviously ϕ ≡ flatten(ϕ).

For the inductive step, we divide in cases as well.

• if ϕ := ϕ1 ∧ ϕ2, then by inductive hypothesis ϕ1 ≡ flatten(ϕ1)
and ϕ2 ≡ flatten(ϕ2). Thus ϕ ≡ flatten(ϕ1) ∧ flatten(ϕ2), that
is ϕ ≡ flatten(ϕ).

• if ϕ := ϕ1 ∧ ϕ2, then by inductive hypothesis ϕ1 ≡ flatten(ϕ1)
and ϕ2 ≡ flatten(ϕ2). Thus ϕ ≡ flatten(ϕ1) ∨ flatten(ϕ2), that
is ϕ ≡ flatten(ϕ).

Lemma 17 (Soundness of normalize(·)). For any Pastified-LTLEBR+P
formula ϕ, it holds that ϕ and normalize(ϕ) are equivalent and normalize(ϕ)
is a Normal-LTLEBR+P formula.

Proof. Recall that normalize(ϕ) is defined as the formula flatten(applyR1R7(ϕ)),
where applyR1R7 is the algorithm in Fig. 7.2 and flatten is the algo-
rithm in Fig. 7.4. By Lemma 25, for each state sequence σ and
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position i, we have that σ, i |= ϕ iff σ, i |= applyR1R7(ϕ). In
particular, for i = 0, this means that ϕ ≡ applyR1R7(ϕ). By
Lemma 26, we have that flatten(applyR1R7(ϕ)) ≡ applyR1R7(ϕ), and
thus ϕ ≡ flatten(applyR1R7(ϕ)), and by definition ϕ ≡ normalize(ϕ).

Finally, it is easy to see that all the rules of Lemma 23, except
for R4, replace a formula with a one in Normal-LTLEBR+P. Thus
normalize(ϕ) would be a Normal-LTLEBR+P formula if we did not
consider the nested release operators. Since this is exactly the case
solved by the Rflat rule and thus by the flatten algorithm (which pro-
duces a formula in normal form), we have that flatten(applyR1R7(ϕ)),
which by definition is normalize(ϕ), is in Normal-LTLEBR+P.

Lemma 18 (Complexity of normalize(·)). For any Pastified-LTLEBR+P
formula ϕ, normalize(ϕ) can be built in O(n) time, and the size of
normalize(ϕ) is O(n), where n = |ϕ|.

Proof. Since normalize(ϕ) := flatten(applyR1R7(ϕ)), we study the
complexity of both applyR1R7 and flatten. At each iteration, algo-
rithm applyR1R7(ϕ) makes at most one recursive call on a formula
ϕ′ of size |ϕ′| < |ϕ| and thus it stop at most after O(n) iterations.
The same holds for flatten. At each iteration, applyR1R7 and flat-
ten produce a formula of constant size with respect to the size of
the formula produced by the recursive call; therefore the recurrence
equation describing the size of the formula produced by normalize(ϕ)
is:

S(n) =

{︄
O(1) if n = 1

S(n− 1) +O(1) otherwise

Therefore:

S(n) = S(n− 1− i) + i · O(1)
= S(1) +O(n) for i = n− 2

∈ O(n)

A.2 Formalization into Timed Interface
Automata (Chapter 9)

We recall here the basic definitions. Let C be a set of variables over
the time domain Q. A clock constraint is a boolean combination of



350 Chapter A. Proofs

formulae of type x < c or x ≤ y + c, where c ∈ Q and x, y ∈ C. We
denote with Ξ(C) the set of all the clock constraints over C.

Definition 64 (Timed Interface Automata). A timed interface au-
tomaton
(TIA, for short) A = ⟨VA, v0A,ΣIA,ΣOA, CA, inv

I
A, inv

O
A, TA⟩ consists

of:

• a finite set of locations VA;

• an initial location v0A ∈ VA;

• an input alphabet ΣIA and an output alphabet ΣOA, such that
ΣIA ∩ΣOA = ∅; we define the alphabet of A as ΣA = ΣIA ∪ΣOA;

• a finite set of clocks CA, where a clock is a real-valued variable;

• an input invariant invIA : VA → Ξ(CA) for each location;

• an output invariant invOA : VA → Ξ(CA) for each location;

• a transition relation TA ⊆ VA × ΣA × 2CA × Ξ(CA)× VA.

We give the semantics of a TIA in terms of traces, which basically
are the same as in timed automata, except that an action can be
either an input or an output.

Definition 65 (Trace of a TIA). A trace τ of a TIA A = ⟨VA, v0A,ΣIA,
ΣOA, CA, inv

I
A, inv

O
A, TA⟩ is a (either finite or infinite) sequence of

states of the form:

⟨v0, ν0⟩
α1−→ ⟨v1, ν1⟩

α2−→ ⟨v2, ν2⟩
α3−→ . . .

such that vi ∈ VA, αi ∈ ΣA ∪Q and νi ∈ VCA for all i ≥ 0, and:

• (initiation) v0 = v0A, ν0(x) = 0 for all x ∈ CA, and ν0 |=
invIA(v

0
A) ∧ invOA(v0A);

• (consecution): for all i ≥ 0

– (timed transition) if α ∈ Q, then vi+1 = vi and νi+1 =
νi+α and νi+δ |= invIA(vi)∧invOA(vi), for all 0 ≤ δ ≤ α;

– (discrete transition) for each player γ ∈ {I,O}, if α ∈
ΣγA then there is a tuple (vi, α,Ri,Ξi, vi+1) ∈ TA such
that: (i) νi |= invγA(vi) ∧ Ξi; (ii) νi+1 = νi[Ri ↦→ 0];
(iii) νi+1 |= invγA(vi+1).
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For all α ∈ ΣA ∪ Q, we define time(α) = α if α ∈ Q, and
time(α) = 0 otherwise. A trace τ is said to be diverging iff∑︁|τ |
k=1 time(αk) = ∞. A state ⟨v, ν⟩ is said to be reachable in A iff

there exists a trace of A containing it. As in [69], we say that two
TIAs A and B are composable iff ΣOA∩ΣOB = ∅ and CA∩CB = ∅. If
A and B are composable, then we define shared(A,B) = ΣA ∩ ΣB,
that is the set of actions on which the two TIAs can synchronize.
We now define the product of two TIAs: the two automata will
synchronize on the shared actions and in this case they both have
to satisfy their clock constraints, and asynchronously interleave on
all the other actions (in this case only the clock constraints of the
automaton that moves have to be satisfied.)

Definition 66 (Product of TIAs). Given two composable TIAs A
and B, their product is the TIA A⊗ B defined as follows:

• VA⊗B = VA × VB and v0A⊗B = (v0A, v
0
B);

• ΣIA⊗B = (ΣIA ∪ ΣIB) \ shared(A,B) and ΣOA⊗B = ΣOA ∪ ΣOB ;

• CA⊗B = CA ∪ CB;

• invIA⊗B(v, u) = invIA(v)∧invIB(u) and invOA⊗B(v, u) = invOA(v)∧
invOB (u);

• the transition relation is defined as follows:

TA⊗B ={((v, u), α,R,Ξ, (v′, u)) |
∃α ̸∈ shared(A,B).(v, α,R,Ξ, v′) ∈ TA}∪

{((v, u), α,R,Ξ, (v, u′)) |
∃α ̸∈ shared(A,B).(u, α,R,Ξ, u′) ∈ TB}∪

{((v, u), α,R,Ξ, (v′, u′)) |
∃α ∈ shared(A,B).(v, α,RA,ΞA, v

′) ∈ TA∧
(u, α,RB,ΞB, u

′) ∈ TB∧
R = RA ∪RB ∧ Ξ = (ΞA ∧ ΞB)}

The definition of the product between two TIAs inherits the
union of the clock resets and the conjunction of the clock constraints
from the definition of intersection between timed automata [5], while
it inherits the interleaving between no-shared actions from the defi-
nition of the product between interface automata [67].
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A

Off

On

[3, 6]

B

Off

On

[2, 4]

(a) Set of local requirements.

A

invO :
cA ≤ 6αoff

A

3 ≤ cA ≤ 6
cA := 0

αon
A

off

on

B

invI/O :
cB ≤ 4 αoff

B

2 ≤ cB ≤ 4
αon
A

cB := 0

αon
B

(b) Corresponding TIAs.

Example. Consider for example the set of local requirements in
Fig. A.1a: each one corresponds to a TIA depicted in Fig. A.1b.
We have that ΣOA = {αoffA , αonA }, while ΣIA = ∅; instead, ΣOB =

{αoffB , αonB } and ΣIB = {αonA }. Therefore, it holds that shared(A,B) =
{αonA }. In the product TIAA⊗B, each state of the form ((off, off), ν)
such that 2 ≤ ν(cA) = ν(cB) ≤ 4 is (reachable and) an immediate
illegal state, since αonA ∈ shared(A,B) and it is accepted by B in
state (off, ν) but it is not issued by A in state (off, ν). In order to
remove all these immediate illegal states, we strengthen the input
invariant on location off of B to invI : cB < 2. Now there exists
a strategy for Output player such that for all strategies of Input
player the time converges and Input is always to blame: in fact, it
suffices that Output chooses a timed move α ≥ 2. Therefore, every
state of the form ((off, off), ν) of A ⊗ B in which we removed all
the immediate illegal states and such that ν(cA) = ν(cB) < 2 is
a time illegal state, since it is reachable and I-live. In particular,
((off, off), ν[cA ↦→ 0, cB ↦→ 0]) is a time illegal state, and thus A
and B are not compatible.

Compatibility of Timed Interface Automata In this subsec-
tion, we give a characterization of the three problems we want to
solve (see Section 9.2) in terms of automata-theoretic problems. In
particular, we show the strong relation between local requirements
(as defined in Definition 56) and timed interface automata.

As in the original paper on TIAs [69], we consider two types of
illegal states: immediate and time. A state ((v, u), ν) ∈ VA⊗B×V is
an immediate illegal state iff there exists a shared action accepted by
A in (v, ν) but not accepted by B in (u, ν), or viceversa. Conversely,
a time illegal state ((v, u), ν) ∈ VA⊗B × V is a state reachable in
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A⊗B, but not I-live in the TIA A⊗B after removing (i.e., making
not reachable 1) all the immediate illegal states. We call illegal
states the set of all immediate and time illegal states. Therefore,
given a product of TIAs where all the immediate illegal states are
not reachable, a time illegal state is a state from which there exists
a strategy for the Output player such that for all strategies for the
Input player the time converges and the Input player is always to
blame beyond some point. We define compatibility between TIAs
as follows.

Definition 67 (Compatibility between TIAs). Two composable TIAs
A and B are compatible (or equivalently A ⊗ B is compatible) iff
((v0A, v

0
B), ν[CA⊗B ↦→ 0]) is not a time illegal state.

Finally, we give a brief overview of the translation from our local
requirements defined in Definition 56 to TIAs. Intuitively, each local
requirement Ci corresponds to a TIA ACi such that (i) its output
alphabet contains one letter for each phase, and these are issued
when ACi is in the corresponding phase; (ii) the input letters of ACi
corresponds to the output letters of the TIAs which ACi depends
on; (iii) there is only one clock, which is reset after each discrete
transition; (iv) each transition is labeled by the clock constraint of
the corresponding target phase. Given a system S = ⟨C1, . . . , Cn⟩,
we can now formalize the three problems described in Section 9.2 as
problems over the product TIA AS = AC1

⊗ · · · ⊗ACn , in this way:
(i) consistency checking : it corresponds to checking the reachability
of state (|C1|, . . . , |Cn|) on the product automaton AS ; (ii) com-
patibility checking : it corresponds to checking the compatibility of
AS , namely: the set of local requirements S is safely decompos-
able iff A1 . . .An are compatible; (iii) synthesis: it corresponds to
the synthesis of the set of all the TIAs A′

C1
, . . . ,A′

Cn
such that

A′
S = A′

C1
⊗ · · · ⊗ A′

Cn
is compatible and L(A′

S) ⊆ L(AS).
1A state ((v, u), ν) ∈ VA⊗B ×V can be made not reachable by strenghtening

the input or output invariants of the previous state(s). For example, in Fig. 9.1a
we can make the state ((A.1, B.2), 4) not reachable by strenghtening the input
invariant of location B.1 to cA1 < 4.
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A.3 Quantifier-free encoding for require-
ments with only finite bounds (Chap-
ter 9)

In this section, we will see how the restriction of having only finite
bounds on each transition of the system can lead to a simpler (but
equisatisfiable) encoding, not featuring the (potentially very expen-
sive) double alternation of existential and universal quantifiers in
Eq. (9.2). Since the proof in the case of weak semantics is a bit in-
volved, we start with strict semantics first and then reuse the same
argument to prove the result for weak semantics as well. From now
on, we call finite-bounds a system that does not have infinite bounds
on any of its transitions.

A.3.1 Positive Dependencies

Each of our dependency formula does not contain negations, i.e., it is
a boolean combination of theory atoms, which occur always positive.
This choice was guided by the fact that negation in our case does
not add expressive power. In fact, since we have a finite number of
phases, a dependency of the type ϕ := ¬(d, j) can be rewritten as:⋁︂

1≤c≤n
1≤i≤mc

(c,i) ̸=(d,j)

(c, i)

Thus negation does not add expressive power, although it can add
succinctness. Since our dependencies contain only theory atoms oc-
curring positive and contain no negation, we have that the negation
normal form of ¬ϕ (which we refer to as nnf(¬ϕ)) contains only
negated theory atoms. Therefore, we can rewrite for example the
following formula:

ϕci [(d, j) ↦→ (rdj ∧ sdj ≺ s ⪯ sdj+1)]

as the equivalent one:

nnf(¬ϕci )[¬(d, j) ↦→ (¬rdj ∨ s ⪯ sdj ∨ sdj+1 ≺ s)]
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A.3.2 Strict Semantics

Suppose we add to the S encoding also the constraint (for all com-
ponents c and phases i)

(rci−1 ∧ ¬rci )→ (tci = tci−1 + uci−1) (A.1)

and modify Eq. (9.2) as follows:

(rci−1 ∧ ¬rci )→ VIOLATION(tci ) (A.2)

We call this encoding Sfin and we define Sillfin := Sfin ∧ ILL and
Sconsfin := Sfin ∧END. It is easy to see that Scons is equivalent to
Sconsfin . Now let’s prove it for Sillfin as well.

Proposition 20 (Equisatisfiability under strict semantics). Sill and
Sillfin are equisatisfiable for finite-bounds systems under strict seman-
tics.

Proof. Let’s first prove that if Sill is satisfiable, then so is Sillfin. Let σ
be a model of Sill; there surely exists a variable rci such that σ(rci ) =
⊥ and thus there exists a value for tcill such that (in particular)
t = tci−1 + uci−1 (this because the bound of phase i of component
c is finite by hypothesis) and VIOLATION(t) is true: let val(t) be
the aforesaid value of t. Now, let σ′ be equal to σ except that
σ′(tci ) = val(t). Since by construction σ′ satisfies Eq. (A.1) and
Eq. (A.2), we have that σ′ |= Sillfin.

Now let’s prove that if Sillfin is satisfiable, then so is Sill. Let σ
be a model of Sillfin; we show that σ |= Sill as well. In fact, if we
take tcill = σ(tci ) = σ(tci−1) + uci−1, then it is easy to see that the
body of the ∃ in Eq. (9.2) is true and thus Eq. (9.2) itself is true as
well.

A.3.3 Weak Semantics

In case of weak semantics, we can give a similar result of the previous
subsection, but the proof is more involved. We call Wfin the encoding
equal to W except that we add constraint Eq. (A.1) and we replace
Eq. (9.2) with

(rci−1 ∧ ¬rci )→WEAKVIOL(tci ) (A.3)
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where

WEAKVIOL(tci ) := (A.4)

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ tci < tdj+1)] ∨ (A.5)

¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ tci )] ∨ (A.6)

∃˜︁t(tci−1 ≤ ˜︁t ≤ tci ∧ ¬ψci−1[(d, j) ↦→ (rdj ∧ tdj ≤ ˜︁t < tdj+1)]) (A.7)

We define Wcons
fin := Wfin ∧END and Will

fin := Wfin ∧ ILL. It is
straightforward to see that Wcons and Wcons

fin are equivalent. We
prove the following result:

Proposition 21 (Equisatisfiability under weak semantics). Will and
Will

fin are equisatisfiable for finite-bounds systems under weak seman-
tics.

Proof. ⇒. We first prove that if Will is satisfiable, than Will
fin is

satisfiable as well. Let σ be a model of Will: there exists surely
a variable rci such that σ(rci ) = ⊥; without loss of generality, let’s
suppose it’s the only variable set to false among all the boolean
variables. Therefore, we have that the body of Eq. (9.2) is true for
these particular c and i. We can rewrite it (in a more explicit form)
as follows:

∃tcill∃pcill∀t∀q∀p
(︂(︁

(tcill < t) ∨ (tcill = t ∧ pcill ≤ q)
)︁
∧(︁

(t < tci−1 + uci−1) ∨ (t = tci−1 + uci−1 ∧ q ≤ p)
)︁
→

VIOLATION(t, q)
)︂

Since σ satisfies this formula, there exists a value val(tcill) for t
c
ill and

a value val(pcill) such that the model σ′ := σ[tcill ↦→ val(tcill), p
c
ill ↦→

val(pcill)] satisfies the following formula:

∀t∀q∀p
(︂(︁

(tcill < t) ∨ (tcill = t ∧ pcill ≤ q)
)︁
∧(︁

(t < tci−1 + uci−1) ∨ (t = tci−1 + uci−1 ∧ q ≤ p)
)︁
→

VIOLATION(t, q)
)︂

Now the idea is to remove all the universal quantifiers of this formula.
We first focus on ∀p; since the righthand part of the implication does
not contain any free occurrence of p, we can push the quantification
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on the lefthand part; moreover, since the top-level operator is an
implication, ∀p becomes ∃p, obtaining:

∀t∀q
(︂
∃p
(︂(︁

(tcill < t) ∨ (tcill = t ∧ pcill ≤ q)
)︁
∧(︁

(t < tci−1 + uci−1) ∨ (t = tci−1 + uci−1 ∧ q ≤ p)
)︁)︂
→

VIOLATION(t, q)
)︂

Moreover, since there’s only one theory atom containing a free oc-
currence of p, we can push ∃p only in front of it, obtaining ∃p(q ≤ p);
given that this is a true formula, we have that:

∀t∀q
(︂(︁

(tcill < t) ∨ (tcill = t ∧ pcill ≤ q)
)︁
∧
(︁
(t ≤ tci−1 + uci−1))

)︁
→

VIOLATION(t, q)
)︂

Now we want to remove the ∀q quantification. Let val(q) be any ra-
tional number strictly greater than the maximum among the values
assigned by σ′ to all the (real-values) free variables in the previous
formula. Let σ′′ := σ′[q ↦→ val(q)]. Obviously, it holds that σ′′

satisfies the following formula:

∀t
(︂(︁

(tcill < t) ∨ (tcill = t ∧ pcill ≤ q)
)︁
∧
(︁
(t ≤ tci−1 + uci−1))

)︁
→

VIOLATION(t, q)
)︂

Moreover, given that by definition pcill ≤ q is true, σ′′ satisfies the
following formula as well:

∀t
(︂
(tcill ≤ t ≤ tci−1 + uci−1)→ VIOLATION(t, q)

)︂
Let val(t) := σ′′(tci−1 +uci−1) and let σ′′′ := σ′′[t ↦→ val(t)]. We have
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that σ′′′ |= VIOLATION(t, q), i.e.:

¬ϕci [(d, j) ↦→ (rdj∧
((tdj < t) ∨ (tdj = t ∧ pdj < q))∨
((t < tdj+1) ∨ (t = tdj+1 ∧ q ≤ pdj+1)))]∨

¬ψci [(d, j) ↦→ (rdj ∧ ((tdj < t) ∨ (tdj = t ∧ pdj < q)))]∨
¬∀˜︁t∀˜︁q(︁ ((tci−1 < ˜︁t) ∨ (tci−1 = ˜︁t ∧ pci−1 ≤ ˜︁q))∧

((˜︁t < t) ∨ (˜︁t = t ∧ ˜︁q ≤ q))→
ψci−1[(d, j) ↦→ (rdj ∧ ((tdj < ˜︁t) ∨ (tdj = ˜︁t ∧ pdj < ˜︁q))∧
((˜︁t < tdj+1) ∨ (˜︁t = tdj+1 ∧ ˜︁q ≤ pdj+1)))]

)︁
By definition of model σ′′′, pdj < q is true and q ≤ pdj+1 is false.
Therefore σ′′′ satisfies

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ t < tdj+1]∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ t]∨
¬∀˜︁t∀˜︁q(︁ ((tci−1 < ˜︁t) ∨ (tci−1 = ˜︁t ∧ pci−1 ≤ ˜︁q))∧

((˜︁t < t) ∨ (˜︁t = t ∧ ˜︁q ≤ q))→
ψci−1[(d, j) ↦→ (rdj ∧ ((tdj < ˜︁t) ∨ (tdj = ˜︁t ∧ pdj < ˜︁q))∧
((˜︁t < tdj+1) ∨ (˜︁t = tdj+1 ∧ ˜︁q ≤ pdj+1)))]

)︁
Let val(˜︁q) := σ′′′(q) and let ψ := σ′′′[˜︁q ↦→ val(˜︁q)]. Obviously, ψ
satisfies the following formula:

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ t < tdj+1]∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ t]∨
¬∀˜︁t(︁ ((tci−1 < ˜︁t) ∨ (tci−1 = ˜︁t ∧ pci−1 ≤ ˜︁q))∧

((˜︁t < t) ∨ (˜︁t = t ∧ ˜︁q ≤ q))→
ψci−1[(d, j) ↦→ (rdj ∧ ((tdj < ˜︁t) ∨ (tdj = ˜︁t ∧ pdj < ˜︁q))∧
((˜︁t < tdj+1) ∨ (˜︁t = tdj+1 ∧ ˜︁q ≤ pdj+1)))]

)︁
By definition of ψ, we have that both pci−1 ≤ ˜︁q and ˜︁q ≤ q are true.
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Therefore, ψ satisfies:

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ t < tdj+1]∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ t]∨
¬∀˜︁t(︁ (tci−1 ≤ ˜︁t ≤ t)→

ψci−1[(d, j) ↦→ (rdj ∧ ((tdj < ˜︁t) ∨ (tdj = ˜︁t ∧ pdj < ˜︁q))∧
((˜︁t < tdj+1) ∨ (˜︁t = tdj+1 ∧ ˜︁q ≤ pdj+1)))]

)︁
For the same reason, we have that pdj < ˜︁q is true and ˜︁q ≤ pdj+1 is
false, having that the following formula is satisfied by ψ:

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ t < tdj+1]∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ t]∨
¬∀˜︁t(︁tci−1 ≤ ˜︁t ≤ t→ ψci−1[(d, j) ↦→ (rdj ∧ tdj ≤ ˜︁t < tdj+1)]

)︁
Finally, since by definition ψ(t) = ψ(tci−1) + uci−1, we have that ψ
satisfies Eq. (A.3) and also:

¬ϕci [(d, j) ↦→ (rdj ∧ tdj ≤ tci < tdj+1]∨
¬ψci [(d, j) ↦→ (rdj ∧ tdj ≤ tci ]∨
∃˜︁t(︁tci−1 ≤ ˜︁t ≤ tci ∧ ¬ψci−1[(d, j) ↦→ (rdj ∧ tdj ≤ ˜︁t < tdj+1)]

)︁
that is WEAKVIOL(tci ). Therefore, ψ |= Will

fin.
⇐. Following backward all the steps of direction⇒, it is possible

to prove also that if Will
fin is satisfiable, then Will is satisfiable as well.

In particular, given a model ψ of Will
fin, following the previous steps

we can build the model σ (see the opposite direction) such that
σ |= Will.

A.4 Quantifier-free encoding for Convex
Dependencies (Chapter 9)

We show how, in case of convex dependencies we can drop the uni-
versal quantifier from Eq. (9.1) and consequently also the existential
quantifier from Eq. (9.3).

Definition 68 (Convex Dependencies). A dependency (i.e., an SMT(DL)
formula) Γ(s) is said to be convex iff, given two time points si and
sj, Γ(si) and Γ(sj) holds iff Γ(s) holds, for all si ⪯ s ⪯ sj.



360 Chapter A. Proofs

Proposition 22 (Conjunctive Dependencies). If Γ(s) is a conjunc-
tive dependency, i.e., a conjunction of theory atoms of SMT(DL),
then Γ(s) is convex.

We callˆ︂W the encoding equal to W except that, if ψci−1 is convex,
Eq. (9.1) is replaced by:

rci → ψci−1[(d, j) ↦→ (rdj ∧ sci ⪯ sdj+1)] (A.8)

and Eq. (9.3) is replaced by:

VIOLATION(s) := ¬ϕci [(d, j) ↦→ (rdj ∧ sdj ≺ s ⪯ sdj+1)] ∨ (A.9)

¬ψci [(d, j) ↦→ (rdj ∧ sdj ≺ s)] ∨ (A.10)

¬ψci−1[(d, j) ↦→ (rdj ∧ sci ⪯ sdj+1)] (A.11)

We can state the following proposition:

Proposition 23 (Equisatisfiability between W and ˆ︂W). W and ˆ︂W
are equisatisfiable.

Proof. Simple, it is sufficient to apply Definition 68.

Note that, given what we proved in Section A.3, for a system
with only finite bounds and only convex dependencies, we are able
to generate a quantifier-free encoding, that we call ˆ︃Wfin: this has a
big impact on the performances of our tool.

Quantifier-free encoding for non-convex dependencies. The
encoding proposed in Section 9.3.2 for the general case features a uni-
versal quantifier in Eq. (9.1), in order to deal with non-convex state
dependencies. Despite being more intuitive, it is not necessary, in
that we can substitute Eqs. (9.1) and (9.6) with the following con-
traints, respectively:

rci → EXITVIOL

(rci−1 ∧ ¬rci )→ ¬EXITVIOL
(A.12)

where:

EXITVIOL :=⋀︂
1≤d≤n
1≤j≤|d|

(︁
tci−1 ≤ tdj ≤ tci → ψci−1[(e, k) ↦→ (rek ∧ tek < tdj ≤ tek+1)]

)︁
(A.13)
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It is worth noting that for the big-and in Eq. (A.13) is sufficient to
range only among the pairs (component,phase) on which phase C.i
depends on (including itself); this in general brings to a significanly
smaller encoding.
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