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Abstract

We perform the Painlevé test to a system of two coupled Burgers-type equations
which fails to satisfy the Painlevé test. In order to obtain a class of solutions, we
use a slightly modified version of the test. These solutions are expressed in terms of
the Airy functions. We also give the travelling wave solutions, expressed in terms
of the trigonometric and hyperbolic functions.

1 Introduction

The nonlinear diffusion-convection equations


ut(x, t) = uxx(x, t) + µu(x, t)ux(x, t) + λ11v(x, t)ux(x, t)
+ λ12u(x, t)vx(x, t)

vt(x, t) = vxx(x, t) + νv(x, t)vx(x, t) + λ21v(x, t)ux(x, t)
+ λ22u(x, t)vx(x, t)

(1)

have a lot of applications in physics, chemistry and biology [1-3], particularly in
the study of porous media [4], in polydispersive sedimentation [5], in dynamic of
growing interfaces [6] and in the study of integrable coupled Burgers-type equa-
tions [7], [8].

The paper is organized as follows: in sect. 2 we show that system (1), for arbi-
trary coefficients, is not integrable in Painlevé sense; in sect. 3 a slightly modified
version of the truncated Painlevé test is used to obtain analytic solutions for par-
ticular values of the coefficients; in sect. 4 we determine some exact solutions of
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the system with the aid of the Airy, the trigonometric and the hyperbolic functions.
The last section is devoted to brief conclusions.

2 Painlevé analysis

It is possible to study the complete integrability of a system of partial or ordinary
differential equations by using the so-called Painlevé test [9], [10]. The Painlevé
test for the integrability of a system of partial differential equations

ut = K(x, t,u) (2)

presented by Weiss-Tabor-Carnevale [9] involves seeking solutions of eq. (2) as
expansion of the form of a Laurent series:

u(x, t) = φ(x, t)a
∞∑

j=0

ujφ(x, t)j

where each vector uj is a function of x and t, and the φ(t, x) = 0 defines an arbi-
trary noncharacteristic movable singular manifold. The Painlevé method consists
of the following main steps:

(i) determination of the leading behaviour;
(ii) identification of the powers at which arbitrary functions can enter in to the

Laurent series, called resonances;
(iii) verifying that at resonance values a sufficient number of arbitrary functions

exists without the introduction of the movable critical points.
First, we show that the system (1) fails to satisfy the Painlevé test. We assume

that the solutions of the system (1) take the form:

u(x, t) = φ(x, t)a
∞∑

j=0

u(x, t)jφ(x, t)j (3)

v(x, t) = φ(x, t)b
∞∑

j=0

v(x, t)jφ(x, t)j (4)

where a and b are negative integers. By leading order analysis, we find that a =
b = −1. Inserting in system (1) the expansions (3) and (4), we obtain{

µu0
2φx + λ11u0v0φx + λ12u0v0φx − 2u0φ

2
x = 0

λ21u0v0φx + λ22u0v0φx + νv0
2φx − 2v0φ

2
x = 0

(5)

Solving eqns. (5), we have


u0 = 2(λ11+λ12−ν)φx

λ11(λ21+λ22)+λ12(λ21+λ22)−µν

v0 = 2(λ21+λ22−µ)φx

λ11(λ21+λ22)+λ12(λ21+λ22)−µν

(6)
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We take the meaningful values of u0 and v0. Substituting the Laurent series (3)
in eqns. (1), collecting the coefficients of φr−3

x and utilizing eqns. (6), we finally
obtain the resonance values:

r1 = −1, r2 = 2

r3,4 = 3λ11λ21 + 5λ12λ21 + λ11λ22 + 3λ12λ22 − 2λ12µ − 2λ21ν − µν

±
√

(λ11(3λ21 + λ22) + λ12(5λ21 + 3λ22 − 2µ) − (2λ21 + µ)ν)2−
8(λ21 + λ22 − µ)(λ11 + λ12 − ν)((λ11 + λ12)(λ21 + λ22) − µν)×

(2 (λ11 + λ12) (λ21 + λ22) − 2µν)−1

Because the values of r3,4 are not integer, for any value of λhk, the system (1) does
not possess the Painlevé property.

3 Truncated Painlevé analysis

Now we use the truncated version of the Painlevé test to look for solutions of a
system of differential equations [9] and [11].

The invariant formalism of truncated Painlevé [10], [12] implies looking for a
solutions of eqns. (1) as: {

u = U1ω + U0

v = V1ω + V0

(7)

where the ω = Ψx/Ψ.
The variable ω satisfies the Riccati equations

ωx = −ω2 − S

2

ωt = Cω2 − ωCx +
CS + Cxx

2
and the variable Ψ satisfies the linear equations

Ψxx = −1
2
SΨ (8)

Ψt =
1
2
CxΨ − CΨx

The coefficients are related by the cross-derivative condition

St + 2SCx + CSx + Cxxx = 0

where S, the Schwarzian derivative of φ, and C are defined by:

S =
φxxx

φx
− 3

2

(
φxx

φx

)3

C = − φt

φx

Substituting eqns. (7) in eqns. (1), then for eqns. (7) to be a solution, we must
have:
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For j = 1:

U1 =
2(λ11 + λ12 − ν)

(λ11 + λ12)(λ21 + λ22) − µν

V1 =
2(λ21 + λ22 − µ)

(λ11 + λ12)(λ21 + λ22) − µν

for j = 2:

U0 = − (λ11 + λ12 − ν)C
(λ11 + λ12)(λ21 + λ22) − µν

V0 = − (λ21 + λ22 − µ)C
(λ11 + λ12)(λ21 + λ22) − µν

therefore

u =
λ11 + λ12 − ν

(λ11 + λ12)(λ21 + λ22) − µν
(2ω − C)

v =
λ21 + λ22 − ν

(λ11 + λ12)(λ21 + λ22) − µν
(2ω − C)

and, for j = 3:

Ct + CCx − Sx − 2Cxx = 0 (9)

and, of course, the cross-derivative condition

St + 2SCx + CSx + Cxxx = 0 (10)

4 Exact solutions

Now we able to obtain solutions of system (1), by solving eqns. (9), (10) and (8).
A possible set of solutions of eqns. (9) and (10) is:

C = at + c

S = ax − a2t2

2
− act + d (11)

while eqn. (8):

Ψxx +
(

ax − a2t2

2
− act + d

)
Ψ
2

= 0 (12)

is now an ordinary differential equation of Airy type [13], the variable t acting as
a parameter. We consider three cases.
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4.1 a �= 0

The Airy equation has the following general solution

Ψ = k1Ai
(

3
√

(2/a)2
(

a2t2 + 2act − 2d

4
− ax

2

))
+

k2Bi
(

3
√

(2/a)2
(

a2t2 + 2act − 2d

4
− ax

2

))

therefore, the solutions of system (1) are:

u =
λ11 + λ12 − ν

(λ11 + λ12)(λ21 + λ22) − µν

(
at + c +

3
√

4a
Ai′

(
3
√

4a
(

at2

4 + ct
2 − d

2a − x
2

))
+ kBi′

(
3
√

4a
(

at2

4 + ct
2 − d

2a − x
2

))
Ai

(
3
√

4a
(

at2

2 + ct
2 − d

2a − x
2

))
+ kBi

(
3
√

4a
(

at2

2 + ct
2 − d

2a − x
2

))



v =
λ22 + λ21 − µ

(λ11 + λ12)(λ21 + λ22) − µν

(
at + c +

3
√

4a
Ai′

(
3
√

4a
(

at2

4 + ct
2 − d

2a − x
2

))
+ kBi′

(
3
√

4a
(

at2

4 + ct
2 − d

2a − x
2

))
Ai

(
3
√

4a
(

at2

2 + ct
2 − d

2a − x
2

))
+ kBi

(
3
√

4a
(

at2

2 + ct
2 − d

2a − x
2

))



where Ai and Bi are the Airy functions, the prime denotes the derivative with
respect to the argument, and k is an arbitrary constant.

4.2 a = 0, d = −δ (δ > 0)

The eqn. (12) has the general solution expressed in terms of the hyperbolic func-
tions, so that the solutions of system (1) are:

u =
λ11 + λ12 − ν

(λ11 + λ12)(λ21 + λ22) − µν
×

c +
√

2δ + k(c −√
2δ)(cosh

√
2δ(x − ct) + sinh

√
2δ(x − ct))

1 + k(cosh
√

2δ(x − ct) + sinh
√

2δ(x − ct))

v =
λ22 + λ21 − µ

(λ11 + λ12)(λ21 + λ22) − µν
×

c +
√

2δ + k(c −√
2δ)(cosh

√
2δ(x − ct) + sinh

√
2δ(x − ct))

1 + k(cosh
√

2δ(x − ct) + sinh
√

2δ(x − ct))
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4.3 a = 0, d = δ (δ > 0)

In this case, analogously, eqn. (12) has the general solution expressed in terms of
the trigonometric functions, and the solutions of system (1) are:

u =
λ11 + λ12 − ν

(λ11 + λ12)(λ21 + λ22) − µν
×

c −√
2δk + (ck +

√
2δ) tan

(
(x − ct)

√
δ/2

)
1 + k tan

(
(x − ct)

√
δ/2

)

v =
λ22 + λ21 − µ

1 − (λ11 + λ12)(λ21 + λ22) − µν
×

c −√
2δk + (ck +

√
2δ) tan

(
(x − ct)

√
δ/2

)
1 + k tan

(
(x − ct)

√
δ/2

)

5 Conclusions

In this note we obtain for the system (1), in addition to the usual travelling wave
solutions corresponding to the constant values of the invariant S and C, another
type of interesting analytic solutions, related to Airy functions, where S and C are
not constant.
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