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Apoptosis: a relevant tool for anticancer therapy
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Apoptosis is a form of cell death that permits the removal of damaged, senescent or unwanted cells in

multicellular organisms, without damage to the cellular microenvironment. Defective apoptosis represents

a major causative factor in the development and progression of cancer. The majority of chemotherapeutic

agents, as well as radiation, utilize the apoptotic pathway to induce cancer cell death. Resistance to standard

chemotherapeutic strategies also seems to be due to alterations in the apoptotic pathway of cancer cells.

Recent knowledge on apoptosis has provided the basis for novel targeted therapies that exploit apoptosis to

treat cancer. These new target include those acting in the extrinsic/intrinsic pathway, proteins that control the

apoptosis machinery such as the p53 and proteosome pathway. Most of these forms of therapy are still in

preclinical development because of their low specifity and susceptibility to drug resistance, but several of them

have shown promising results. In particular, this review specifically aims at providing an update of certain

molecular players that are already in use in order to target apoptosis (such as bortezomib) or which are still being

clinically evaluated (such ONYX-015, survivin and exisulind/aptosyn) or which, following preclinical studies,

might have the necessary requirements for becoming part of the anticancer drug programs (such as TRAIL/

Apo2L, apoptin/VP3).
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introduction

An organism uses two main mechanisms for the elimination of
cells: necrosis and apoptosis. Necrosi consists of the rupture of
the plasmatic membrane and the formation of an inflammatory
process that damages the cells and their surrounding tissues.
Apoptosis, instead, involves a ‘cleaner’ type of death, where the
chromatin is condensed, the DNA becomes fragmented and
vesicles, known as ‘apoptotic bodies’, are formed. These are
rapidly phagocytized by the macrophages with the result that the
cell disappears without any inflammatory phenomena [1].
Apoptosis is, therefore, considered to be the most suitable

method of anticancer therapy. Its main aim is, in fact,
specifically to bring about tumoral cell death while limiting as
far as possible cytotoxic effects on healthy tissues. This might be
achieved in several ways, for example, by promoting the
expression of pro-apoptotic factors while reducing the
expression of anti-apoptotic factors only in the tumor cells, or
else by means of the infection of viral particles that act
specifically within the transformed cells.
Apoptosis is a fundamental physiological process which

maintains cell homeostasis; it is a genetically determined
mechanism which is, therefore, regulated by cell factors such as
proliferation and differentiation [1]. This means that, like all
other molecular events, programmed cell death may be

compromised by mutations in genes implicated in this intricate
process and, in fact, the events regulating the apoptotic pathway
are very often altered in tumor cells [2].
The apoptotic pathway is triggered off by two different

signals, one extrinsic, which responds mainly to extracellular
stimuli, and the other intrinsic, activated by modulators within
the cell itself. Although, at least at the beginning, the two
pathways are apparently separate from each other, at the end
they converge in a single crucial point, i.e. the conversion of pro-
caspase into caspase, a protease whose activation is the
biochemical event that has the strongest influence on the
structural modifications of the apoptotic cell [3].
With regard to the extrinsic pathway, the activation of the

receptors belonging to the TNF family (Fas/Apo1, TNFR1,
DR3/ TRAMP/Apo3, DR4/TRAILR1/Apo2, DR5/TRAILR2 and
DR6/TR7), by means of specific ligands (TNF-a, TNF-b,
TRAIL, FasL, etc), bring about the recruitment of the TNFR
(Fas associated death domain) and TRADD (TNFR
associated DD) family members and the chain activation of the
caspases 8, 3 e 7 [4].
In the intrinsic pathway, the mitochondria release a series of

molecules, including cytochrome c. In cytosol, the association of
cytochrome c with the adaptor protein Apaf-1 and several pro-
caspase 9 molecules, gives rise to the formation of apoptosome,
which is responsible for bringing several pro-caspase 9
molecules into close contact with one another in order to allow
their self-processing. Caspase 9 is thus able to recruit and
activate caspase 3 [5], which is the effector of both pathways.
The mitochondrial apoptotic pathway is negatively

modulated by anti-apoptotic factors belonging to the Bcl-2
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family; these stop the mitochondria from releasing cytochrome c.
Furthermore, caspase activity can be blocked by the ‘inhibitor of
apoptosis proteins’ (IAPs), which, in their turn, are inhibited by
Smac/DIABLO or OMI/HtrA2, the regulator proteins released
by the mitochondria.
The aim of this review is to focus attention on the most

promising pro-apoptotic drugs involved in present-day
preclinical (such as TRAIL/Apo2L, apoptin/VP3) and clinical
trials (such as bortezomib ONYX-015, survivin and exisulind)
for the treatment of human tumors.

‘death receptors’ and ‘death ligands’

Considerable progress has been made in the last few years with
regard to the understanding of the molecular mechanisms
behind programmed cell death activated by ‘death receptors’
(DR) and ‘death ligands’ (DL).
DRs are transmembrane proteins which, after binding with

a DL, transmit the apoptotic signal to the interior of the cell. The
DLs are also transmembrane proteins, which, after being
processed by specific proteases, are then transformed into
soluble cytochines, which are capable of binding their receptors
trimerically. Included in this group are the members of the
tumor necrosis factor (TNF) and their receptor superfamily
(TNFR) which regulate several biological functions, including
cell metabolism, proliferation, cytochine production and
apoptosis [6–8].
TNF-a, FasL and TRAIL/Apo2L have aroused a great deal of

interest as possible candidates for anti-cancer therapy, since in
the form of trimers, they are able to trigger off apoptosis in
many transformed cells but not in normal cells. Taken singly,
TNF and FasL are extremely efficient in causing the death of
a large variety of tumor cells but, unfortunately, their in vivo use
leads to ischemic phenomena and hemorrhagic lesions [9]. The
transfection of the gene TRAIL/Apo2L, unlike TNF and FasL,
results in a very low level of toxicity both in vitro and in vivo,
which has led to the hope that it may possibly be useful in the
treatment of a large number of human tumors [10].

TRAIL/Apo2L

In spite of the fact that a recombant form of human TRAIL with
a polyhistidine tail kills cultured human hepatocytes [11],
a more recent study has shown that the native form of TRAIL,
not only is non-toxic for in vitro human hepatocytes, but that it
is also well-tolerated in chimeric mice expressing human
hepatocytes [12].
The receptor system for TRAIL/Apo2L includes four specific

receptors, two of which, DR4 and DR5, are death receptors
containing a cytoplasmatic death domain (DD) able to
transduct the apoptotic signal; the other two receptors, DcR1
and DcR2, known as decoy receptors, have no intracellular DD
and are therefore unable to induce the apoptotic pathway [13]
(Figure 1).
The expression levels of the decoy receptors DcR1 and DcR2

appear to play an important role in the specific induction of
apoptosis by TRAIL; these levels are higher in normal cells
compared with tumor cells [14–16].

preclinical studies. Recent studies have demonstrated that, apart
from regulation by the receptors, several other cytosolic factors
are able to modulate the apoptosis induced by TRAIL, often
giving rise to resistance to the action of this protein [17]. For
example, cell lines presenting mutations in FADD (Fas-
associated death domain), the molecular adaptor that possesses
not only an interaction domain with the death receptor but also
an interaction domain with caspase 8/10, prove to be completely
resistant to TRAIL-dependent apoptosis [18]. Similarly, cells
obtained from infant neuroblastomas, which often have a silent
caspase 8 gene, are insensitive to the effects of TRAIL [19].
Apart from the mutations of genes involved in the apoptotic

signal, the overexpression of anti-apoptotic proteins such as Bcl-
2 and Bcl-xL may also interfere with the action of TRAIL, thus
preventing the release of the pro-apoptotic molecules by the
mitochondria [20].
The foregoing data suggest that TRAIL alone is not sufficient

for the therapy of several forms of cancer. Nevertheless, the
treatment of TRAIL-resistant cell lines with chemotherapy
agents may convert them into TRAIL-responsive elements [21],
although in certain cases the molecular basis of such a synergic
action is not clearly understood.
TRAIL-resistant cells from renal, prostate and bladder

carcinomas respond to subtoxic concentrations of several
chemotherapy agents such as doxorubicin, epirubicin and
cisplatin associated with TRAIL [22].
Human U2OS osteosarcoma cells which are resistant to

TRAIL-induced apoptosis respond to TRAIL following
treatment with doxorubicin and cisplatin, without interfering
with either death receptor or decoy receptor expression [23].

Figure 1. Apo2L/TRAIL and its receptors. Apo2L/TRAIL interacts with

four closely related members of the TNF receptor superfamily in

a homotrimeric form. DR4 and DR5 contain a cytoplasmic death domain

that interacts with FADD (Fas-associated death domain); DcR1 lacks

signaling activity; DcR2 has a truncated non-functional death domain.

Unlike conventional cancer drugs, DR ligands trigger tumor cell apoptosis

independently of the p53 tumor suppressor gene.
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Paclitaxel and TRAIL used together bring about a reduction
of the tumor in vivo and induce apoptosis by means of the
interaction of TNF-family death receptors, the activation of
caspases and/or the release of cytochrome c from the
mitochondria [24]. The sequential treatment of nude mice with
chemotherapeutic drugs (paclitaxel, vincristine, vinblastine,
etoposide, camptothecin and adriamycin) followed by TRAIL
induced caspase-3 activity and apoptosis in xenografted breast
tumors. Complete eradication of established tumors and
survival of mice were achieved without detectable toxicity [25],
which leads to high hopes regarding the treatment of patients
with TRIAL associated with chemotherapy agents.
Another in vivo study involving nude mice has shown that the

use of TRAIL associated with chemotherapy agents not only
blocks breast tumor growth, but is also able to cause a reduction
in the number of lung metastases, suggesting its possible value in
the treatment of metastatic tumors [11].

clinical studies. Although no clinical studies are in progress
at the present time, the results obtained until now from
in vivo and in vitro studies lead to the hope that it will soon
be possible to produce this new type of anticancer drug
therapy for future use.

viral protein and viruses to target
apoptosis

In order to complete their life cycle, viruses require actively
proliferative cells and for this reason there has been considerable
interest regarding the use of viral proteins and attenuated
viruses in antitumor therapy.

apoptin

Apoptin or VP3 is a virus protein of avian anemia, which
induces apoptosis in a large variety of transformed cells but not
in primary cells [26].

preclinical studies. It must be borne in mind, however, that in
normal cells, although the co-expression of apoptin with the
transforming agent, a large T antigen of SV40, is transient, it
leads to susceptibility to apoptin-dependent apoptosis [27].
The mechanism behind the induction of apoptosis by apoptin

specifically in transformed cells is still not fully understood. The
reason for the phenomenon might be the different site; whereas
in tumor cells, apoptin accumulates in the nucleus, in normal
cells, it is mainly found in the cytoplasm [28]. Apoptin has
a particular nuclear localization sequence, between the 70 and
121 residues, which shows a greater affinity with transformed
cells [26] (Figure 2).
Nuclear localization, however, is apparently not the only

factor determining the apoptotic action of this protein; in
several cases, in fact, the forcing of apoptin into the nucleus of
normal cells does not cause apoptosis [29]. Moreover, it has also
been demonstrated that the induction of apoptosis requires the

phosphorylation of the apoptin threonine residue (Thr-108)
[30] in spite of the fact that this event has no effect on the
protein localitation, since the abolition of the apoptin
phosphorylation site does not lead to any significant reduction
in tumor cell nuclei [30].
Recent studies report that the only requirement for the

accumulation within the nucleus and the selectivity of cancer
cells by apoptin is the protein expression level. Tumor cells, in
fact, are often more easily transfected compared with normal
cells, which leads to an accumulation of the protein within the
cytosol, indispensable for its translocation to the nucleus [29].
Apoptin over-expression may bring about the death of several

normal cells. The discordance of the data regarding different cell
types may be due to the different techniques used for the
insertion of apoptin within the cell. The main aim, therefore, is
to identify the most suitable method, either by proteic
transduction or the expression of inducible vectors, for an
accurate assay of the cell proteins [31].
It is surprising that, in the last few years, spectroscopic studies

have reported that the biologically-active form of a recombinant
apoptin (recombinant MBP-apoptin) is a multimer made up of
about 30–40 monomers [32]. This complex would appear to be
produced by the interaction in the hydrophobic regions of the
N-terminal (aa 1–69) of each monomer, which contain the
nuclear export sequence (NES) (aa 33–46). If this is so, the
formation of the multiproteic complex might complicate the
exportation of the nucleus [31]. On the other hand, the C-
terminal tip of each monomer which contains the nuclear
localization sequence (NLS) and the phosphorylation site still
remains available.
The molecular mechanism by which apoptin is able to kill is

still not fully understood. It acts independently of the p53 status
[33] and it has recently been shown that it binds to the anaphase
promoter complex (APC/C) with resulting cell cycle block in
G2M and p53-independent cell death. This leads to the hope
that this viral protein might be useful for the treatment of those
tumors which have lost their p53 and are therefore resistant to
many forms of anticancer therapy [34].
It has been demonstrated that apoptin interacts with FADD

(Fas-associating protein with death domain) and with Bc110,
which are both involved in apoptosis mediated by Fas and
TNFR [29], although the significance of this is still unknown.
On the other hand, MCF7 cells, which have neither FADD or
caspase 8 functions, are just as responsive to apoptosis,
indicating that in these cells at least apoptin probably acts by
means of a pathway which is independent of death receptors.
Apoptin is responsible for the release by the mitochondria of

cytochrome c and the protein which induces apoptosis (AIP).
However, in MCF7 cells, Bcl-2 and Bcl-XL intervene in order to
protect the cell from apoptosis [35]. These results seem to
disagree with those obtained in the past on other cell lines, for
example, in human cells, Saos-2 transfected with plasmids
which codify for apoptin and Bcl-2 undergo apoptosis much
more frequently than the same cells expressing apoptin on their

Figure 2. Linear proteic structure of apoptin with nuclear localisation signal (NLS) nuclear export signal (NES)
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own account [36]. This might be partially explained by the fact
that two different cell types were used in the two studies.
In vivo studies have showed that apoptin is a candidate for

safe and effective anti-tumor gene therapy. Toxicity studies with
rats showed that recombinant adenovirus expressing apoptin
did not result in obvious abnormalities. One single intra-
tumoral infection of nude mice bearing subcutaneous human
hepatomas with a single batch of recombinant apoptin-
adenovirus, resulted in reduction of tumor-growth and
symptoms of regression within 7 days. In contrast, a control
adenovirus showed no reduction in tumor growth [37].
In the last few years, studies using apoptin-transgenic mice

and other animal models have shown apoptin to be a safe and
efficient anti-tumor agent. These in vitro and in vivo tumor-
specific features of apoptin imply that it might form the basis of
future anti-tumor strategies [38].

clinical studies. To date no clinical studies are in progress. Only
a complete understanding of the mechanism by which apoptin
is able to induce programmed cell death and the identification
of the proteins that it interacts with will make it possible to
decide if apoptin can be used as an anticancer drug or whether
its use should be limited to certain specific cases.

ONYX-015

At present, several preclinical and clinical trials involving
strategies for the treatment of tumors with mutated p53 are in
progress. One of these, ONYX-015, regarding the use of viruses
that specifically replicate in deficient p53 cells, has aroused
particular interest.
ONYX-015 is an oncolytic virus, which seems to replicate

selectively in p53-defective tumor cells. It lacks the E1B-55K
gene product and, therefore, fails to degrade p53 during viral
replication [39].

preclinical studies. The exact role of p53 in determining ONYX-
015 selectivity remains controversial. ONYX-015, in fact, is able
to replicate in several tumor cell lines retaining wild-type p53
[40]. This apoptotic response appears to be due to the activity of
the viral E1A protein, which is not altered in the ONYX-015
virus and which is capable of activating the host cell p53 via p14/
ARF [41]. The selectivity of ONYX-015 for tumor cells has
therefore been called into question.
Recently a tumor specific replicative adenovirus vector ZD55

(E1B 55KD deleted Adv.) which is similar to ONYX-015 in

targeting function but significantly different in construction has
been produced and various single therapeutic genes have been
into ZD55 (ZD55-Gene ). In mice with xenograft tumors, the
ZD55-Gene seems to produce better results [42].

clinical studies. Different phase I and II trials, with intratumoral
and peritumoral injections, have been conducted in multiple
tumor types with proven safety and evidence of promising
clinical activity from several indications [41, 43–45].
A phase II clinical trial reported that ONYX-015 treatment,

combined with chemotherapy, was promising in 30 patients
with head and neck cancers. Tumors disappeared completely in
eight patients and another 19 experienced a dramatic reduction
in tumor size [43].
Pilot trials in patients with refractory cancer, have shown that

ONYX-015 can be administered safely in combination with
CPT11, 5FU or low-dose IL-2 and is able to access malignant
tissue following intravenous infusion [46].
Recently, a clinical trial (phase I and II) using ONYX-015 was

completed in patients with pancreatic cancer. The phase II trial
yielded beneficial results (tumor reduction or stabilization) in
about 50% of the patients [47].

proteosome inhibitors

Because of its importance in cell homeostasis, in the past
proteosome was studied with a view to using it in anticancer
therapy. Particular interest was focused on proteosome
inhibitors, which are molecules able to trigger selective
apoptosis in tumor cells [48].
Cells can only function correctly when there is a highly

regulated turnover of the proteins, brought about, in
eukaryotes, by the proteosome complex. The proteins to be
eliminated are first ‘labeled’ by a polyubiquitine tail and then
degraded [49]. Proteosome 26S is a multiproteic complex that
includes a core (20S) with enzymatic activity and two regulatory
complexes (19S), one at each end of the core, responsible for the
recognition and for the binding of the polyubiquitine tail [50]. It
has been shown that, apart from damaged or mutated proteins,
about 80% of the cell proteins are proteosome targets, since they
are cell cycle regulators, oncosuppressors and transcription
factors [51].
There exist various molecules, both natural and synthetic,

able to inhibit protein degradation through the proteosome, for
example the original bacterial compound lactacystin, and

Table 1. Bortezomib: preclinical studies

Tumor type Study type Combination Reference

Bladder In vitro/in vivo Gemcitabine Kamat et al. [59]

Breast In vitro/in vivo Radiotherapy, cyclophosphamide, cisplatin Teicher et al. [60]

Breast In vitro/in vivo Doxorubicin Thornton et al. [61]

Colon In vitro/in vivo Irinotecan Cusack et al. [62]

Lung In vitro Docetaxel Gumerlock et al. [63]

Ovarian In vitro/in vivo Docetaxel Pink et al. [64]

Pancreatic In vitro/in vivo Irinotecan Shah et al. [65]

Pancreatic In vivo Paclitaxel Sclabas et al. [66]

Prostate In vitro/in vivo Doxorubicin, Etoposide, Gemcitabine Williams et al. [67]
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pharmacological inhibitors such as synthetic peptidyl aldehydes.
These both act by inhibiting the protosome through the binding
of the 20S catalytic core to the simil-chemotrypsin, thus
imitating the substrate binding to the active site [52].
Since the proteosome possesses a large number of substrates,

the inhibition of its function leads to the alteration of several
pathways. There is, therefore, an increase of important cell cycle
regulators, for instance of the oncosuppressor p53, which acts as
a negative transcription regulator and plays an important part in
apoptosis induction following DNA damage, and also of cell
cycle inhibitors such as p21 and p27, able to induct cell cycle
block in G1, thus making the cell more susceptible to apoptosis.
Considerable interest has been aroused by the inhibition of

NF-jB, whose constitutive expression is frequently associated
with phenomena of resistance to traditional forms of anticancer
therapy [53]. Proteosome inhibitors, in fact, act indirectly on
NF-jB, thus stabilizing Ik-B levels and blocking its translocation
to the nucleus. NF-jB is a transcription factor that activates the
transcription of a whole series of molecules implicated in
proliferation and in angiogenesis.
VEGF, a cytochine with angiogenic activity, is also

a transcriptional target of NFkB [54]. It has recently been
reported that in multiple myeloma, the non-phosphorylation of
caveolin-1, a protein implicated in cell motility, by the VEGF,
prevents both tumor cell migration and angiogenesis [55].
Proteosome inhibition has also shown its capacity of

increasing intracellular levels of c-Jun-NH2 terminal kinases
(JNK), which, in response to cell stress and increased levels of
misfolded proteins, promote cell death [56]. However, several of
these inhibitors are either non-specific for proteosome or else
their intracellular kinetics make them unsuitable for clinical use
[57] (Figure 3).

bortezomib

It has been seen that if the aldehyde group of the synthetic
peptidyl aldehydes is replaced by boronic acid, the selectivity
and affinity of these components towards proteosome increases
[57]. This occurs with bortezomib or PS-341 or velcade,
a modified dipeptyl-boronic acid that has proved to be capable
of triggering an irreversible and highly selective 385 inhibition
of proteosome 26 S activity (Figure 4).

preclinical studies. Murine studies have shown the antitumoral
efficiency and tolerability of bortezomib in a great variety of
tumors, both when used alone and when combined with other
forms of therapy (Table 1). This drug, in fact, has proved to be
efficient for several tumors that had previously shown resistance
to other types of traditional treatment. In a study conducted on
60 different cell lines of NCI, bortezomib induced tumoral cell
toxicity, thus bringing about a reduction of 50% in cell growth
at low concentrations (7 nM). In vivo trials on mice implanted
with human tumors have shown that if bortezomib is injected
directly into the tumor, in 40% of cases the volume of the
tumoral mass is reduced by 70% [68].
The association of bortezomib with several other anticancer

agents has shown in vitro studies synergic effects. Mice
implanted with xeno-colon (LOVO), -pancreas (PANC-1), -
prostate (PC-3) and -ovary (SKOV-3), were treated either with
bortezomic alone or associated with CPT-11, 5-fluorouracil,
paclitaxel, docetaxel or cisplatin. In all cases a greater reduction
of the tumor was observed with two combined treatments than
with bortezomib therapy alone [68].

clinical studies. Due to its high specificity, bortezomib is the first
proteosome inhibitor to be approved by the US Food and Drug
Administration (FDA). This occurred in 2003 for the treatment
of multiple myeloma (MM), but only in those cases where, in
spite of the fact that at least two chemotherapy treatments had
been concluded, there was disease progression during the final
one (third-line therapy). Since April 2005, treatment with
Velcade is also permitted in patients who have undergone only
one previous treatment (second-line therapy).
A number of phase I and II trials based on preclinical studies

in a variety of solid tumor types are currently in process to
determine the maximum tolerated dose (MTD), dose limiting
toxicity (DLT), and pharmacodynamic and pharmacokinetic
effects of bortezomib. Both in NSCLC and SCLC, bortezomib,
either singly or in combination regimens, has proved to cause
apoptosis via multiple pathways [69]. In a phase II study,
however, bortezomib was well-tolerated but showed limited
clinical activity against metastatic breast cancer when used as
a single agent [70]. Furthermore, bortezomib as a single agent
has minimal activity in soft tissue sarcomas [70].

Figure 3. Inhibition of the proteasome by bortezomib results in activations

of JNK and stabilization of p53, Bid, Bax, p21, p27, caveolin-1, IkBa. Thus
stabilization of Ik-B levels results in inhibition of NF-jB.

Figure 4. Chemical structure of the proteasome inhibitor bortezomib:

pyrazylcarbonyl-Phe-Leu-boronate.
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A list of additional clinical studies is given in Table 2.
However, further studies of this drug are needed to establish its
full spectrum of activity, the ideal regimens for various tumor
types, and clinically useful prognostic indicators that predict
favorable outcomes.

targeting IAP: survivin

Survivin is highly expressed during embryo development
whereas it is more or less absent in a large number of normal
differentiated tissues [78]. The only adults tissues where it is
found are the thymocytes, the CD34+ bone marrow stem cells
and basal colonic epithelium [78–80].
An important feature of survivin is its different expression in

tumor cells compared with that of normal differentiated tissues.
It is, in fact, overexpressed in a large number of human
neoplasias, including those of the lungs, colon, pancreas,
bladder, uterus, ovary, breast and liver. Furthermore, it is re-
expressed in numerous pre-neoplastic and/or benign lesions,
such as colonic polyps and breast adenomas [78]. In tumor cells
it has a cytoprotective role by contrasting apoptosis, thus
guaranteeing a correct progression by means of mitosis.
In several solid tumors, such as in colorectal and pancreatic

cancer [81, 82], the nuclear survivin overexpression was
associated with a more favorable prognosis, while its
cytoplasmic overexpression proved to be a negative prognostic
factor. All these factors have aroused a great deal of interest
in the last few years, and have given rise to hope that it
might be possible to use this drug as a diagnostic marker and
as a target for anticancer therapy.
In order to have an effect on the survivin pathway in tumoral

cells, a complete understanding of its mechanism of action in
normal cells is required. It is now well-known that survivin
induces apoptosis by inhibiting, both directly and indirectly,
the activity of caspases 3, 7 and 9 [83] and that a fundamental
event for survivin regulation is the phosphorylation of the
Threonine 34 residue (Thr34) by the cyclic-dependent p34cdc2
chinase [84].
Several methods have been proposed for the reduction of

survivin levels in tumor cells, in order to increase their response
to agents inducing apoptosis. One of these proposes the use of

survivin-antagonist molecules such as antisense
oligonucleotides [85] and small interfering RNA (siRNA) [86]
and another is the use of negative dominant mutants [87] and
cyclin-dependent chinase inhibitors [88].

preclinical studies

The results obtained from the various in vivo and in vitro studies
have shown that survivin inhibition not only increases the
efficiency of traditional chemotherapy drugs, but that it is also
able to reduce tumoral angiogenesis [89].

clinical studies

Clinical trials are in progress at present on the use of antisense
oligonuceleotides of survivin [90].

synthetic activation of caspases:
exisulind

Exisulind (sulindac sulfone, FGN-1, Aptosyn) is a metabolic
product of sulindac, a non-steroid, anti-inflammatory drug,
belonging to a new group of pro-apoptotic compounds known
as selective apoptotic antineoplastic drugs (SAANDS). The pro-
apoptotic effects of exisulind differ from the other sulindac
derivatives, OSI-461 (formerly CP461) and OSIP486 821
(formerly CP248) in that they do not affect microtubule
polymeration [91, 92].
Exisulid is a specific activator of programmed cell death in

cancerous and pre-cancerous cells but not of normal cells. It
works by means of a pathway which is independent from p53
and Bcl2 [93]. It is able to induce apoptosis through the
inhibition of cyclic guanosine monophosphate (cGMP)
phosphodiesterases 2 and 5. This inhibition gives rise to an
increase in cGMP levels with the resulting activation of PKG
(c-GMP-dependent protein kinase G). PKG activation
promotes the degradation by the proteosome of b-catenine
and the activation of JNK, leading to caspase activation
and thus to apoptosis [94].

Table 2. Bortezomib: clinical studies

Solid tumor Treatment Phase Results Investigator

Advanced solid tumors Bortezomib and

docetaxel

I MTD: docetaxel 25 mg/m2 days 1,8 plus bortezomib 0.8 mg/m2

days 2, 5, 9, and 12 given every 21days

Messersmith [72]

Advanced solid tumors

and lymphomas

Bortezomib I Well tolerated at doses not exceeding 3.0 mg on day 1 and

day 4 every other week

Hamilton [73]

Pediatric refractory

advanced solid tumors

Bortezomib I Recommended phase II dose: 1.2 mg/m2/dose twice weekly for

2 weeks followed by a 1-week break

Blaney [74]

Metastatic neuroendocrine

tumors

Bortezomib II Single-agent bortezomib did not induce any objective responses Shah [75]

Androgen-independent

prostate cancer

Bortezomib I Antitumor activity was seen at tolerated doses of bortezomib Papandreou [76]

Advanced solid tumors Bortezomib I Dose-limiting toxicities on this schedule were diarrhea and

sensory neurotoxicity

Aghajanian [78]
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preclinical studies

In the murine model it has been demonstrated that exisulind,
like sulindac, is able to inhibit the growth of several tumor cells,
for example, of the colon, prostate, bladder and breast [95],
prostate [96] and lung [97]. Unlike sulindac, however, exisulind
does not inhibit Cox-1 and Cox-2 activity.
Pre-clinical in vitro studies on prostate and lung tumor cells

have reported synergic effects when exisulind is used together
with docetaxel or paclitaxel [98], probably because both drugs
lead to JNK activation and to the promotion of apoptosis.

clinical studies

Several clinical studies, either already concluded or still in
progress, have shown that exisulind, because of its tolerability
and activity, could be used for the treatment of solid tumors
such as for prostate tumors [99].
A recent phase I study has determined the maximal tolerated

dose (MTD) of the combination of weekly docetaxel and
exisulind in patients with advanced solid tumors. [100].
However, although preclinical data demonstrate increased
apoptosis and prolonged survival for the combination of
exisulind and docetaxel, multiple clinical trials do not support
further clinical development of this combination regimen in
patients with advanced NSCLC [101]. Furthermore, in sporadic
colonic adenomas, exisulind causes significant regression
of sporadic adenomatous polyps but is associated with
toxicity [102].

conclusions

The last decade has seen an extraordinary increase in our
understanding of the complexities of apoptosis and the
mechanisms evolved by tumor cells to resist engagement of cell
death. The activation of alternative pathways by proapoptotic
approaches such as death receptors (e.g. TRAIL) or the
introduction of exogenous proapoptotic molecules such as
apoptin are capable of inducing apoptosis even in a genetically
altered context. Although at present there are still many
components of the apoptotic pathways that are still not fully
understood, the information collected so far has led to a better
knowledge of the mechanisms of resistance to standard chemo-
and radio-therapy, as well as possible strategies aimed at
restoring apoptotic sensitivity. Furthermore, the genetic features
of each individual tumor and apoptotic response will make it
possible to choose a more suitable therapeutic approach with
the aim of overcoming treatment resistance and limiting
cytotoxic effects in normal tissues.
Based on the present knowledge, the use of these ‘biological

drugs’ in synergistic association with the traditional cytotoxic
drugs, might represent an important goal in the treatment of
malignant cells.
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